
DB2 11 for z/OS

Introduction to DB2 for z/OS

SC19-4058-00

���

DB2 11 for z/OS

Introduction to DB2 for z/OS

SC19-4058-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 2001, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . ix
Who should read this information . ix
DB2 Utilities Suite . ix
Terminology and citations . x
Accessibility features for DB2 11 for z/OS . x
How to send your comments . xi

Chapter 1. An overview of DB2 and Information Management. 1
Scenarios for using DB2 . 1

Availability and scalability for large businesses . 1
Critical business information for decision makers . 4
Data distribution and Web access . 5

The IBM Information Agenda. 6
DB2 data servers and environments . 7

Enterprise servers. 8
DB2 Database distributed editions . 8
DB2 on smaller-scale servers . 9
Personal, mobile, and pervasive environments . 9
Multiple transaction and application environments . 9
DB2 and network communication . 10
Clients supported by DB2 data servers . 10
Sources of data . 11

Information Management tools . 11
Application development tools . 13
Middleware components . 14

IBM Data Studio. 14
IBM Rational Portfolio Manager . 14
DB2 Connect . 15
WebSphere Application Server . 15
WebSphere Studio . 16
WebSphere Host Integration . 16
Federated database support through WebSphere Information Integrator 16
Data replication through InfoSphere Replication Server . 17
WebSphere DataStage . 18
WebSphere QualityStage . 18

Client application programming interfaces . 18
Open standards . 20

Chapter 2. DB2 concepts . 21
Structured query language . 21

Static SQL . 22
Dynamic SQL . 22
Deferred embedded SQL . 23
Interactive SQL . 23
SQL Call Level Interface and Open Database Connectivity. 23
Java database connectivity and embedded SQL for Java 23

DB2 data structures. 24
DB2 tables . 25
DB2 indexes . 25
DB2 keys . 26
DB2 views. 28
DB2 schemas and schema qualifiers . 31
DB2 storage groups. 32
DB2 databases . 33

Storage structures . 35

© Copyright IBM Corp. 2001, 2013 iii

DB2 table spaces. 35
DB2 index spaces . 36

DB2 hash spaces. 37
DB2 system objects . 37

DB2 catalog . 37
DB2 directory. 38
Active and archive logs . 39
Bootstrap data set . 40
Buffer pools . 40
Data definition control support database . 41
Resource limit facility tables . 41
Work file database . 42

DB2 and data integrity . 42
Constraints . 42
Triggers . 47

Application processes, concurrency, and recovery. 48
Locking, commit, and rollback . 48
Unit of work . 48
Unit of recovery . 49
Rolling back work . 49
Packages and application plans . 51

Routines . 52
Functions . 52
Stored procedures . 52

Sequences . 53
Support for high availability. 54
Application processes and transactions . 55
Distributed data . 56

Remote servers . 56
Connectivity in distributed environments . 57

pureXML . 57

Chapter 3. DB2 for z/OS architecture . 59
z/Architecture and the z/OS operating system . 59
DB2 in the z/OS environment . 61
DB2 internal resource lock manager . 62
DB2 and the z/OS Security Server. 63
DB2 and DFSMS. 63
DB2 attachment facilities . 64

CICS attachment facility . 65
IMS attachment facility . 66
TSO attachment facility . 67
Call attachment facility . 68
Resource Recovery Services attachment facility . 68

Distributed data facility . 68
DB2 in a Parallel Sysplex environment . 69

Chapter 4. DB2 objects and their relationships 71
Logical database design using entity-relationship modeling 71

Data modeling . 71
Entities for different types of relationships . 74
Application of business rules to relationships . 76
Attributes for entities . 76
Normalization to avoid redundancy . 79

Logical database design with Unified Modeling Language. 83
Physical database design . 84

Database design with denormalization . 85
Customized data views . 87
Database design with indexes . 88
Database design with hash access . 88

iv Introduction to DB2 for z/OS

Chapter 5. SQL: The language of DB2 . 91
Ways to access data. 91

Ways to select data from columns . 91
How a SELECT statement works . 94
SQL functions and expressions . 95
Ways to filter the number of returned rows . 102
Ways to order rows . 110
Ways to summarize group values. 112
Ways to merge lists of values . 113
Ways to specify search conditions . 115
Ways to join data from more than one table . 116
Subqueries . 123
Ways to access DB2 data that is not in a table . 124

Ways to modify data . 125
Insert statements . 125
Update statements. 126
Merge statements . 126
Delete statements . 127
Truncate statements . 127

Ways to execute SQL . 128
Static SQL . 128
Dynamic SQL . 128
DB2 ODBC . 128
DB2 access for Java: SQLJ, JDBC, pureQuery . 128
Interactive SQL. 129

DB2 sample tables . 131
Activity table (DSN8B10.ACT). 131
Department table (DSN8B10.DEPT) . 132
Employee table (DSN8B10.EMP) . 134
Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME) 137
Project table (DSN8B10.PROJ) . 139
Project activity table (DSN8B10.PROJACT) . 140
Employee-to-project activity table (DSN8B10.EMPPROJACT) 141
Unicode sample table (DSN8B10.DEMO_UNICODE) . 142
Relationships among the sample tables . 143
Views on the sample tables . 144
Storage of sample application tables . 148

Chapter 6. Application programming for DB2. 153
Development of DB2 applications in integrated development environments 153

WebSphere Studio Application Developer . 154
DB2 Development add-in for Visual Studio .NET . 154
Workstation application development tools . 155

Programming languages and methods for developing application programs 155
Performance information for SQL application programming 157
Preparation process for an application program . 158
Static SQL applications . 161

Declaration of table and view definitions . 162
Data access with host variables . 163
Data access with host variable arrays . 164
Data access with host structures . 165
Row retrieval with a cursor . 165
Ways to check the execution of SQL statements . 168

Dynamic SQL applications . 169
Types of dynamic SQL . 169
Dynamic SQL programming concepts . 170
Use of ODBC to execute dynamic SQL . 171

Use of Java to execute static and dynamic SQL . 172
SQLJ support . 173
JDBC support . 174

Use of an application program as a stored procedure . 175

Contents v

Languages used to create stored procedures . 175
Stored procedure processing . 176
Use of the SQL procedural language to create a stored procedure 178
Use of development tools to create a stored procedure 179
Setup of the stored procedure environment . 179
Preparation of a stored procedure . 179
How applications can call stored procedures . 180

Chapter 7. Implementation of your database design 181
Creation of tables . 181

Types of tables . 182
Archive-enabled tables and archive tables . 185
Creation of base tables . 186
Creation of temporary tables . 186
Creation of materialized query tables . 188
Creation of a table with table-controlled partitioning . 188
Creation of temporal tables . 189

Definition of columns in a table . 190
Column names . 190
Data types . 190
Null and default values . 198
Use of check constraints to enforce validity of column values 202

Row design . 204
Record lengths and pages . 204
Designs that waste space . 204

Creation of table spaces . 204
Types of DB2 table spaces . 205
How DB2 implicitly creates a table space . 214
How DB2 implicitly creates an XML table space . 214
Assignment of table spaces to physical storage . 218

Creation of indexes . 221
Types of indexes . 221
How indexes can help to avoid sorts . 222
Index keys . 223
General index attributes . 224
XML index attributes . 231
Partitioned table index attributes . 232

Creation of views . 237
A view on a single table . 238
A view that combines information from several tables . 238
Inserts and updates of data through views . 239

Creation of large objects . 240
Creation of databases. 241
Creation of relationships with referential constraints . 242

How DB2 enforces referential constraints . 243
Construction of a referential structure . 245
Tables in a referential structure . 246
Creation of exception tables . 247

Creation of triggers . 247
Creation of user-defined functions . 248

Chapter 8. DB2 performance management . 251
Initial steps for performance management . 251

Performance objectives . 251
Application design for performance . 252
Origin of performance problems . 252
Tools for performance analysis . 253

Ways to move data efficiently through the system . 254
The role of buffer pools in caching data . 254
The effect of data compression on performance . 256

vi Introduction to DB2 for z/OS

||

How data organization can affect performance . 257
Ways to improve performance for multiple users . 260

Improved performance through the use of locks . 260
Improved performance through concurrency control . 265

Ways to improve query performance . 267
Tools that help you improve query performance. 268
Query and application performance analysis . 269
Using EXPLAIN to understand the access path . 273
Hash access paths . 274

Chapter 9. Management of DB2 operations. 277
Tools that help you manage DB2 . 277

IBM Data Studio . 277
DB2 Administration Tool . 278
DB2 Interactive . 278
DB2 command line processor . 278

Use of commands and utilities to control DB2 operations. 278
DB2 commands . 278
DB2 utilities . 279

Management of data sets . 280
Authorization and security mechanisms for data access . 280

How authorization IDs control data access . 281
How authorization IDs hold privileges and authorities 282
Ways to control access to DB2 subsystems . 283
Ways to control access to data . 285
Ways to control access to DB2 objects through explicit privileges and authorities 286
Row-level and column-level access control . 288
Use of multilevel security to control access . 289
Use of views to control access . 289
Use of grant and revoke privileges to control access . 290

Backup, recovery, and restart . 292
Backup and recovery resources and tools . 293
DB2 restart . 296
Regular backups and data checks. 296
Control of database changes and data consistency . 297
Events in the recovery process. 299
Optimization of availability during backup and recovery 300

Chapter 10. DB2 and the web . 303
Web application environment . 304

Components of web-based applications. 304
Architectural characteristics of web-based applications 305
Benefits of DB2 for z/OS as a server . 307

Web-based applications and WebSphere Studio Application Developer 308
XML and DB2 . 310

Benefits of using XML with DB2 for z/OS. 310
Ways to use XML with DB2 for z/OS . 311

SOA, XML, and web services . 311

Chapter 11. Distributed data access. 313
Ways to implement distributed data in programs . 314

Explicit CONNECT statements . 314
Three-part names . 315

Ways that other tasks are affected by distributed data . 317
Effects of distributed data on planning . 317
Effects of distributed data on programming . 317
Effects of distributed data on program preparation . 318

How updates are coordinated across distributed systems . 319
DB2 transaction manager support . 319
Servers that support two-phase commit . 319

Contents vii

Servers that do not support two-phase commit . 320
Ways to reduce network traffic . 320

Improvements in query efficiency . 321
Reduction in the volume of messages . 322
Optimization for large and small result sets . 323
Performance improvements for dynamic SQL . 324

Chapter 12. Data sharing with your DB2 data. 327
Advantages of DB2 data sharing . 327

Improved availability of data . 328
Scalable growth . 328
Flexible configurations . 330
Protected investments in people and skills. 334

How DB2 protects data consistency in a data sharing environment 334
How updates are made in a data sharing environment . 335
How DB2 writes changed data to disk in a data sharing environment 339
Ways that other tasks are affected by data sharing . 340
Ways that availability is affected by data sharing . 340

Information resources for DB2 for z/OS and related products 343

Notices . 345
Programming interface information . 346
Trademarks . 347
Privacy policy considerations . 347

Glossary . 349

Index . 351

viii Introduction to DB2 for z/OS

About this information

This information provides a comprehensive introduction to IBM® DB2® for z/OS®.
It explains the basic concepts that are associated with relational database
management systems in general, and with DB2 for z/OS in particular.

After reading this information, you will understand basic concepts about DB2.

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
If you are new to DB2 for z/OS, this information is for you.

Perhaps you have worked with DB2 on other operating systems (Windows, Linux,
AIX®, iSeries®, VM, or VSE). Perhaps you have worked on non-IBM database
management systems (DBMSs) or on the IBM hierarchic DBMS, which is called
Information Management System (IMS™). Perhaps you have never worked with
DBMSs, but you want to work with this product, which many companies use for
mission-critical data and application programs. Regardless of your background, if
you want to learn about DB2 for z/OS, this information can help you.

If you will be working with DB2 for z/OS and already know what specific job you
will have, begin by reading the first three chapters. Then, you can consider what
your role will be when you choose to read all or only a subset of the remaining
chapters. For example, assume that you know you will be a database administrator
(DBA) for an organization that has some distributed applications and is beginning
to plan for on demand business. In this case you would probably want to read the
chapters about designing objects and data, implementing your database design,
DB2 and the Web, and accessing distributed data.

This information is written with the assumption that most readers are data
processing professionals.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES

© Copyright IBM Corp. 2001, 2013 ix

v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

x Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

About this information xi

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

xii Introduction to DB2 for z/OS

Chapter 1. An overview of DB2 and Information Management

DB2 is a key component of Information Management.

One good way to start learning about a software product is to observe how real
organizations use it. Thousands of companies around the world use DB2 to run
their businesses. For you to observe even a small percentage of those businesses
would be impractical. Scenarios can help you imagine some of the possibilities by
describing a few ways in which organizations depend on DB2 to accomplish their
business objectives.

In addition to understanding how organizations depend on DB2 to accomplish
their business objectives, you also need to understand the overall IBM strategy for
helping its customers effectively manage enterprise data.

You also need to understand how DB2 works with a wide variety of operating
systems.

Scenarios for using DB2
Scenarios can illustrate how some organizations might successfully use DB2.

What do the following situations have in common?
v An international bank that provides uninterrupted services to its customers 24

hours a day.
v A multi-campus university system that educates thousands of students and

offers hundreds of courses.
v An electric company that provides electricity to a large geographic region.

The common characteristic in each situation is that DB2 is a key ingredient in the
data processing environment of each organization.

If you are new to DB2, you might wonder how these and other organizations use
the product. You might wonder what types of organizations use DB2. Maybe you
wonder if the organizations that use DB2 have all, or only a portion, of their data
on the enterprise server. (Sometimes people refer to the enterprise server as the
"mainframe.") You might wonder why organizations still continue to put their core
business data on the mainframe.

Availability and scalability for large businesses
Large businesses choose DB2 for z/OS because they need a robust database server
that ensures superior availability and scalability.

You might be thinking that the terms “enterprise server” and “mainframe” imply
that very large businesses use a product like DB2 for z/OS.

You might ask the question: “Why do large businesses choose DB2 for z/OS?” The
answer is, “Because these companies need a robust database server that ensures
superior availability and scalability.”

© Copyright IBM Corp. 2001, 2013 1

Superior availability and scalability in a Parallel Sysplex® environment are the key
features that distinguish DB2 for z/OS from other database servers. Because of
these qualities, DB2 for z/OS is widely deployed in industries that include:
v Major credit card companies
v Banks
v Insurance companies
v Brokerage companies
v Credit information companies

These are companies that process very high volumes of transactions that require
millions of concurrent updates every day.

Consider some examples.
v The volume of trading that goes on at the major stock exchanges can reach over

1,000,000,000 shares in a single day.
v A brokerage company might have a network of thousands of financial advisors

and millions of customers who need online access to highly sensitive financial
information daily.

v A transportation company might deliver more than 10 million packages in a
single day. Each package requires several steps in the delivery process, such as
pick up, transit points, and final delivery. The status of the package can be
shown to customers on the web.

v A credit information company needs to provide millions of credit reports each
day, while keeping the data current with more than 100 million updates in a
single day.

v A sports website provides statistics, results, and live updates for their viewers.
The site must continue to provide this information to their viewers quickly and
efficiently during hours of peak demand.

You can easily understand why these businesses need the database system that
processes these transactions to be continuously available, scalable, and secure.
These enterprise systems must be available to customers who are searching for and
relying on their services 24 hours a day.
v Systems must provide continuous availability.

If you are waiting for a financial transaction to process and the application that
runs that transaction suddenly fails, you might lose the opportunity to make a
stock trade at a critical time. The key objective of high availability is to ensure
that a system has no single point of failure.

v Systems must be scalable.
As businesses grow, their data processing needs also grow. Business ventures,
such as mergers, acquisitions, and new services, or new government regulations,
can accelerate how quickly the data processing needs of the business grow. As
rapid growth occurs, companies need a way to scale their business successfully.
Companies need a large database system that is designed to easily absorb
ongoing additions of new types of information and application processes
without sacrificing performance or availability. That database system should
never impose a constraint on growth. As businesses add more computing
capacity, the database system must expand accordingly to ensure that businesses
gain the full advantage of the added capacity and have continuous access to
their data.

v Systems must be secure.
The needs for protection and regulatory compliance are expanding greatly.
Customers must be able to trust the database when they use it to manage

2 Introduction to DB2 for z/OS

valuable information such as finances or personal information. System z® has a
long history of system integrity and security. DB2 security responds to the
needs.

The following scenarios describe how a large international bank benefits from
these DB2 for z/OS strengths to provide the highest quality of service to its
customers.

Scenario 1: Bank mergers occur often. As two banks combine operations, how
does the newly formed bank merge unrelated applications?

DB2 for z/OS data sharing in a Parallel Sysplex environment provides the solution
that the new bank needs so that the two banking systems can be merged.

Parallel Sysplex clustering technology in DB2 is the answer to availability and
scalability. A Parallel Sysplex is a cluster, or complex, of z/OS systems that work
together to handle multiple transactions and applications. This technology
implements a data sharing design.

The DB2 data sharing design gives businesses the ability to add new DB2
subsystems into a data sharing group, or cluster, as the need arises and without
disruption. As applications run on more than one DB2 subsystem, they can read
from and write to the same set of shared data concurrently.

The Parallel Sysplex can grow incrementally without sacrificing performance.
Parallel Sysplex architecture is designed to integrate up to 32 systems in one
cluster. In a shared-disk cluster, each system is a member of the cluster and has
access to shared data.

An integral component of a Parallel Sysplex is the coupling facility, a mechanism
that coordinates transactions between the different members within a cluster. Other
solutions attempt to implement similar capabilities through software, but
messaging by using software can cause high overhead and directly impact the
ability to scale and perform.

When Parallel Sysplex technology is used, the applications from each bank can
easily be integrated into a data sharing group and can access shared data.

Scenario 2: The bank runs batch jobs every night and the online workload is
running close to 24 hours a day. How can the bank run varied workloads, keep
them balanced, and avoid problems at peak times?

DB2 works closely with the z/OS Workload Manager (WLM) component. WLM
provides the best way to run mixed workloads concurrently, and data sharing
gives the bank a lot of flexibility in how to run the workloads.

Parallel Sysplex technology is designed to handle varied and unpredictable
workloads efficiently. The Workload Manager ensures that the bank's workloads
are optimally balanced across the systems in the Sysplex.

For example, when the bank adds a new subsystem or the workload becomes
unbalanced, data does not need to be redistributed. The new subsystem has the
same direct access to the data as all existing subsystems in the data sharing group.

Data sharing works with WLM to give the bank the flexibility it needs to handle
peak loads easily. WLM provides the ability to start up servers and subsystems on

Chapter 1. An overview of DB2 and Information Management 3

demand, based on predefined service goals. For example, the bank can start data
sharing members to handle peak loads at quarter-end processing, and stop them
when the quarter-end peak finishes.

DB2 is the only data server on System z to take full advantage of WLM
capabilities.

Scenario 3: The bank creates a website to provide online banking to its customers
24 hours a day. Now the DBMS can never be out of service for maintenance
activities. How can the bank apply maintenance to its DBMS if it needs to be
operational 24 hours a day?

Data sharing and Parallel Sysplex technology give the bank a way to apply
software maintenance (a planned outage) while always keeping a subset of its DB2
subsystems up and running.

The Parallel Sysplex environment provides multiple paths to data and builds
redundancy into the coupling facility to avoid single points of failure. With Parallel
Sysplex technology, the bank can add maintenance to one member at a time while
their systems continue running and remain up-to-date on service. The technology
also allows the bank to migrate to a new software release by applying the new
release to one member at a time. With this design, the bank avoids outages.

In the event of an application or a system failure on one system (an unplanned
outage), the Workload Manager ensures that other systems within the Sysplex can
take over the full workload. Again, the bank avoids outages.
Related concepts:
Chapter 12, “Data sharing with your DB2 data,” on page 327
“DB2 in a Parallel Sysplex environment” on page 69

Critical business information for decision makers
Most organizations use various hardware and software products to store a large
amount of data. DB2 can assist in providing essential information to key decision
makers that helps them to make critical business decisions.

Consider a multi-campus university system. A group of educational experts
manages the system from day to day. These people make decisions that affect all
the university campuses. The decision makers use a data warehouse so that they
can "mine" data from system databases and make the best organizational decisions.

You can think of a data warehouse as a system that provides critical business
information to an organization. Data mining is the act of collecting critical business
information from that data warehouse, correlating it, and uncovering associations,
patterns, and trends. The data warehouse system cleanses the data for accuracy
and currency. The data warehouse system also presents the data to the decision
makers so that they can interpret and use it effectively and efficiently.

Data warehousing and data mining are related terms that are encompassed by the
more global term, business intelligence.

Most organizations use various hardware and software products to store a large
amount of data. However, many key decision makers do not have timely access to
the information that they need to make critical business decisions. If they had the
information, they could make more intelligent decisions for their businesses—thus,
the term business intelligence.

4 Introduction to DB2 for z/OS

The university's data warehouse system, which relies on DB2, transforms the vast
amount of data from being operational to being informational. An example of
operational data in a university is the identities of people who enroll in various
classes. Clearly, the university needs this information to operate. This operational
data becomes informational when, for example, decision makers discover that most
students who enroll in Advanced Calculus also enroll in Music Appreciation. The
university does not require this information to operate, but decision makers can
run a more effective institution if they have informational data. As a result of
having access to this informational data, university personnel can make better
decisions. Individuals who plan class schedules can ensure that these classes do
not meet at the same time, enabling students to enroll in both classes. Using DB2
as your enterprise data warehouse ensures that you are making key business
decisions based on data that is correct.

The university also uses the power of the Internet. Each campus has a website,
which supplies relevant information to university decision makers, students,
parents, and members of the communities that surround each campus.

Using DB2 for z/OS as its enterprise server, the university can act as follows:
v Evaluate the effectiveness of curriculum, expenditures, professors, and

professional development
v Identify emerging trends early enough for effective action
v Complete grant applications more quickly and effectively
v Compile a complete summary report on any individual student
v Enable authorized users to use the web to perform any of these actions, plus

others

Data distribution and Web access
The ability to distribute data and provide Web access to that data is vital to service
providers and their customers.

An electric company provides electricity to a large geographic region. Working out
of a single office, the company's customer service representatives answer customer
calls and submit requests for service. The electric company has hundreds of field
representatives who provide service at customer locations. The field representatives
work out of many local offices, and they need access to customer service requests
that the central office receives.

The customer service representatives document customer requests on their
workstations, which have DB2 Connect™ Personal Edition. This information is
uploaded to DB2 for z/OS. The field representatives can then use Java™

applications to access the customer request information in DB2 from their local
offices.

In this scenario, the electric company's distributed environment relies on the
distributed data facility (DDF), which is part of DB2 for z/OS. DB2 applications
can use DDF to access data at other DB2 sites and at remote relational database
systems that support Distributed Relational Database Architecture™ (DRDA®). DRDA
is a standard for distributed connectivity. An organization called The Open Group
developed the standard, with active participation from many companies in the
industry, one of which was IBM. All IBM DB2 data servers support this DRDA
standard.

Chapter 1. An overview of DB2 and Information Management 5

DDF also enables applications that run in a remote environment that supports
DRDA. These applications can use DDF to access data in DB2 servers. Examples of
application requesters include IBM DB2 Connect and other DRDA-compliant client
products.
Related concepts:
Chapter 10, “DB2 and the web,” on page 303
“Distributed data facility” on page 68

The IBM Information Agenda
The IBM Information Agenda® can help you to transform information into trusted
strategic assets. These assets can be used across applications, processes, and
decisions to create a sustained competitive advantage.

The IBM Information Agenda integrates strategy, information governance, and
enterprise information infrastructure with a comprehensive implementation
roadmap. The approach is based on unique software capabilities, best practices,
and deep industry knowledge. The Information Agenda approach has a proven
track record of helping businesses to access and share data. The Information
Agenda can help your business become more competitive and productive by
helping you to develop a plan for transforming your data into a trusted, strategic
asset.

The IBM Information Agenda provides the following benefits:
v Connecting data, people, and processes
v Aligning IT and business goals
v Using industry-specific assets and solutions
v Establishing competency centers

The IBM Information Agenda approach has a proven track record of helping
companies to respond and adapt quickly to unpredictable changes in information.
IBM software and consulting services are designed to help your business to
develop a customized implementation roadmap in a matter of weeks and to reduce
IT spending by using existing investments.

The Information Agenda is made up of the following components:

Information infrastructure
DB2 creates the foundation for your information infrastructure, and works
with IMS and Informix®. DB2 runs on many operating systems, such as
z/OS, IBM i, Linux, UNIX, Windows, and Solaris. Around the Information
Management systems is a structure that includes tools for analysis, data
replication, warehouse management, content management, and information
integration. Complementing the tools are key database technologies, such
as XML, service-oriented architecture (SOA), and web services, and groups
of developer communities that IBM works with to complete business
solutions.

Enterprise management
Products such as the IBM Information Management tools collection offer
organizations a broad range of tools for everything from database
management to performance analysis. The DB2 Control Center also
provides tools for managing your environment. In addition, many IBM
products support Tivoli tools, which help organizations manage enterprise
information.

6 Introduction to DB2 for z/OS

Business information services
Business information services satisfy the major business needs of the
organization. These services include Master Data Management and Entity
Analytics. In addition to these IBM products, your organization can acquire
applications from various independent software vendors.

Business partners
IBM works with several vendors and places great importance on
relationships with business partners that develop and support core
applications for their customers. These applications provide vital business
functions, such as Customer Relationship Management and Supply Chain
Management.

Related concepts:
Chapter 10, “DB2 and the web,” on page 303
“Information Management tools” on page 11
“Use of DB2 Query Management Facility for Workstation” on page 130

DB2 data servers and environments
DB2 data server products run on a wide set of operating systems, including z/OS,
IBM i, Linux, UNIX, and Windows.

In addition to learning about DB2 for z/OS, you will also want to know about
some of the other products that work with DB2 for z/OS. Your company probably
uses some of these other products.

DB2 data servers include support for the following products:
v DB2 for z/OS
v DB2 for i
v DB2 for Linux, UNIX, and Windows
v DB2 for Linux on IBM System z

Recommendation: Download free or trial demonstration versions of many DB2
products and tools. By using demonstration code, you can increase your
understanding of the various products that you will read about in this information.
To download demonstration copies, visit the IBM software downloads web page.
From that page, you can select a specific DB2 product, and choose the download
option on that product's home page.

IBM specifically developed the DB2 data servers so that the underlying code of
each DBMS uses the individual capabilities of the various operating systems.

The DB2 data server products encompass the following characteristics:
v Data types among the DB2 data servers are compatible.
v Open standards mean that many different types of clients can access data in the

DB2 data servers.
v You can develop applications with SQL that are common across DB2 data

servers and port them from one DB2 operating system to another with minimal
modification. (Porting means moving an application from one operating system
to another.)

v DB2 data servers can support applications of any size. For example, imagine that
your application starts with a small number of users and small volumes of data

Chapter 1. An overview of DB2 and Information Management 7

and transactions, but then it grows significantly. Because of compatibility across
DB2 data servers, your application can continue to work efficiently as you
transition to System z.

v Similar function is typically incorporated into each DB2 data server over time.
v Tools are available to help you manage all the DB2 data servers in a similar way.

Tip: Identify someone who is familiar with your company's I/S environment. Ask
that person to provide a list of the products that you will likely work with. Your
company might have only a subset of the products that are mentioned in this
information. Knowing basic information about your company's environment will
help you know which topics are most important for you to read.

Enterprise servers
Enterprise servers are the systems that manage the core business data across an
enterprise and support key business applications.

z/OS is the main operating system for IBM's most robust hardware platform, IBM
System z. DB2 for z/OS continues to be the enterprise data server for System z,
delivering the highest availability and scalability in the industry. DB2 for z/OS
supports thousands of customers and millions of users. The following DB2
products can act as enterprise servers:
v DB2 for z/OS
v DB2 for Linux, UNIX, and Windows
v DB2 for i, which supports applications in the midrange IBM i environment
v DB2 for VSE and VM, supporting large applications on the VSE and VM

environments
Related concepts:
“z/Architecture and the z/OS operating system” on page 59

DB2 Database distributed editions
Several DB2 Database editions run in the DB2 workstation environment.

DB2 Enterprise Server Edition
DB2 Enterprise Server Edition runs on any size server in the Linux, UNIX,
and Windows environments. This edition provides the foundation for the
following capabilities:
v Transaction processing
v Building data warehouses and Web-based solutions
v Connectivity and integration for other DB2 enterprise data sources and

for Informix data sources

The DB2 Connect feature provides functionality for accessing data that is
stored on enterprise server and midrange database systems, such as DB2
for z/OS and DB2 for i. This edition supports both local and remote DB2
clients.

IBM Database Enterprise Developer Edition
IBM Database Enterprise Developer Edition lets you develop and test
applications that run on one operating system and access databases on the
same or on a different operating system.

DB2 Express® Edition
DB2 Express Edition is an entry level data server that is suitable for
transaction processing and complex query workloads for small- and
medium-size businesses.

8 Introduction to DB2 for z/OS

IBM Informix
IBM Informix is an online transaction processing database for enterprise
and workgroup computing.

DB2 Personal Edition
DB2 Personal Edition provides a single-user database that is designed for
occasionally connected or remote-office implementations. You can use this
edition to create and manage local databases, or as a client to DB2
Enterprise Server Edition or Workgroup Server Edition database servers.
DB2 Personal Edition does not accept requests from clients.

DB2 Workgroup Server Edition
DB2 Workgroup Server Edition is suited for a small business environment
with up to four CPUs. These editions support both local and remote DB2
clients.

DB2 on smaller-scale servers
In addition to the enterprise servers, most companies support smaller-scale servers
on local area networks (LANs). Smaller-scale servers handle important applications
that don't demand the resources that are available on the larger enterprise servers.

DB2 runs on the Linux operating system, including Linux on System z. The System
z platform offers four operating systems on which you can run DB2 data server
products. The four operating systems are z/OS, Linux, VM, and VSE. Many
customers use DB2 for Linux on System z as their application server, connecting
with DB2 for z/OS as the data server, so that they can take advantage of
distributed connections and HiperSockets™ for fast and secure communication.

Personal, mobile, and pervasive environments
DB2 is available on small devices that are designed for individual use. You can
write programs that access DB2 data on your own desktop, laptop, or handheld
computer while you are traveling or working at home. Then, later you can
synchronize these databases with corporate databases in the enterprise.

In the desktop and laptop workstation environments, DB2 Express provides a data
server engine for a single user. DB2 Express serves your needs if you are working
independently and occasionally connected or mobile. You can download and
deploy DB2 Express-C for free.

For handheld computers, DB2 Everyplace® enables lightweight database
applications on all the Palm Operating System, Windows CE, Embedded Linux,
QNX Neutrino, Linux, and Symbian EPOC operating systems. DB2 Everyplace is
available in two editions: Enterprise Edition and Database Edition. A trial version
of DB2 Everyplace is available for download.

Multiple transaction and application environments
To optimize performance, throughput, and response time, organizations can
distribute their application transactions and data, and they can run database
queries in parallel.

A cluster is a complex of machines that work together to handle multiple
transactions and applications. The following DB2 data server products use cluster
technology:
v DB2 for z/OS
v DB2 for i, which runs in the parallel System i® environment

Chapter 1. An overview of DB2 and Information Management 9

v DB2 for Linux, UNIX, and Windows

DB2 data server products can operate in clusters in the following environments:
v AIX
v HP-UX
v IBM i
v Linux
v Solaris
v Windows
v z/OS

DB2 and network communication
The DB2 data server products can communicate by using both wide area networks
(WANs) and local area networks (LANs).

WAN A wide area network generally supports the enterprise servers such as DB2
for z/OS; they require either Transmission Control Protocol/Internet
Protocol (TCP/IP) or Systems Network Architecture (SNA).

LAN A local area network generally supports smaller servers, which requires
TCP/IP.

Clients supported by DB2 data servers
DB2 data servers support a wide variety of clients, languages, and tools.

Environments
v AIX
v Eclipse
v HP-UX
v Linux
v Solaris
v Windows
v Web browsers

Languages
v APL2®

v Assembler
v C
v C++
v C#
v COBOL
v Fortran
v Java
v .NET
v Perl
v PHP
v PL/I
v Python
v REXX

10 Introduction to DB2 for z/OS

v Ruby on Rails
v SQL procedural language
v TOAD for DB2
v Visual Basic .NET

Development tools
v IBM Optim™ Development Studio
v Rational® Developer for System z
v Java Virtual Machine

Sources of data
Access to heterogeneous data is a powerful asset for any organization that has data
in various sources.

DB2 for Linux, UNIX, and Windows supports access to many different data
sources with a single SQL statement. This support is called federated database
support, which is provided by InfoSphere® Information Integration products. For
example, with federated database support, you can join data from a wide variety
of data sources. The application (and the application developer) does not need to
understand where the data is or the SQL differences across different data stores.
Federated data support includes support for the following relational and
nonrelational data sources:
v All DB2 data server products
v IMS
v Informix
v Oracle
v Microsoft SQL Server, Microsoft Excel
v Sybase
v JDBC
v Databases that supports JDBC API
v OLE DB
v Teradata
v EMC Documentum

If you also use InfoSphere Federation Server, your applications that access the DB2
DBMS can have read-write access to additional data sources, web services, and
WebSphere® Business Integration. Access to heterogeneous, or dissimilar, data
means that applications can accomplish more, with less code. The alternative
would be that programmers would write multiple programs, each of which
accesses data in one of the sources. Then the programmers would write another
program that would merge the results together.

Information Management tools
Many different products and tools are available in the marketplace to help you
manage the DB2 environment, regardless of which operating system you use.

The following products are helpful to people who are managing a DB2
environment:
v DB2 tools
v DB2 Data Studio Administrator

Chapter 1. An overview of DB2 and Information Management 11

DB2 tools

The IBM Information Management tools offer DB2 tools for z/OS, IBM i, Linux,
UNIX, and Windows.

These tools are organized into six different categories with the following
capabilities:

Database administration
Navigate through database objects and perform database administration
tasks on one or many objects at a time. This category also includes tools
that are used to alter, migrate, and compare objects in the same or in
different DB2 systems.

Utility management
Manage DB2 systems with high-performance utilities and automation.

Performance management
Monitor and tune DB2 systems and applications to obtain optimal
performance and lowest cost.

Recovery management
Examine recovery assets and recover DB2 objects to a point in time in the
event of system outage or application failure. This category also includes
tools to help you manage recovery assets.

Replication management
Propagate data changes by capturing and applying changes to remote
systems across the DB2 data servers.

Application management
Manage DB2 application changes with minimal effort, and build and
deploy applications across the enterprise.

Most of the database tools that support DB2 for z/OS provide a graphical user
interface (GUI) and also contain an ISPF (Interactive System Productivity Facility)
interface that allows you to perform most DB2 tasks interactively. With the ISPF
interfaces integrated together, you can move seamlessly from one tool to another.

With DB2 tools, you can anticipate:
v Immediate support of new versions of DB2
v Cross-platform delivery
v Consistent interfaces
v Thorough testing that is performed on the same workloads as the database

products

You can read more about specific Information Management tools throughout this
information.

DB2 Data Studio Administrator

You can use DB2 Data Studio Administrator to administer DB2 environments,
including DB2 for z/OS.

The DB2 Data Studio Administrator can also perform the following tasks:
v Display database objects (such as tables) and their relationships to each other.
v Manage local and remote servers from a single workstation.
v Perform operations on database objects across multiple DB2 data servers.

12 Introduction to DB2 for z/OS

v Start other Information Management tools.
Related reference:

DB2 and IMS Tools

Application development tools
DB2 provides a strong set of tools for application development. Developers can use
these tools to create DB2 applications, stored procedures, and applications that
support business intelligence and On Demand business.

IBM Optim Development Studio

IBM Optim Development Studio is a suite of Eclipse-based tools that are for
development database administrators and application developers. You can use IBM
Optim Development Studio for the following tasks:
v Developing pureQuery applications in a Java project
v Creating, testing, debugging, and deploying routines, such as stored procedures

and user-defined functions
v Creating, editing, and running SQL queries
v Connecting to data sources and browsing data objects and their properties
v Creating and altering data objects

Rational Developer for System z

Rational Developer for System z can improve efficiency and helps with mainframe
development, web development, and integrated mixed workload or composite
development. By using Rational Developer for System z, you can accelerate the
development of your web applications, traditional COBOL and PL/I applications,
web services, and XML-based interfaces.

Rational Developer for System z provides a common workbench and an integrated
set of tools that support end-to-end, model-based application development, run
time testing, and rapid deployment of On Demand applications. With the
interactive, workstation-based environment, you can quickly access your z/OS
data.

Rational Application Developer for WebSphere Software

IBM Rational software provides a full range of tools to meet your analysis, design,
and construction needs, whether you are an application developer, application
architect, systems engineer, or database designer. IBM Rational Application
Developer for WebSphere Software helps developers to quickly design, develop,
analyze, test, profile, and deploy high-quality web, Service-oriented Architecture
(SOA), Java, J2EE, and portal applications.

By using Rational Application Developer, you can increase productivity, minimize
your learning curve, and shorten development and test cycles so that you can
deploy applications quickly.

Chapter 1. An overview of DB2 and Information Management 13

http://www.ibm.com/software/data/db2imstools/

WebSphere Studio Application Developer

WebSphere Studio Application Developer is a fully integrated Java development
environment. Using WebSphere Studio Application Developer, you can build,
compile, and test J2EE (Java 2 Enterprise Edition) applications for enterprise On
Demand business applications with:
v JSP (JavaServer Pages) files
v EJB (Enterprise JavaBeans) components
v 100% Pure Java applets and servlets
Related concepts:
“Use of development tools to create a stored procedure” on page 179
“Web-based applications and WebSphere Studio Application Developer” on page
308

Middleware components
Middleware and client application programming interfaces (APIs) complement the
DB2 data server products. Middleware and client APIs help DB2 products to
communicate and work together more effectively.

IBM middleware components include a broad portfolio of WebSphere products that
help you achieve the promise of on demand business. The product families that
comprise the WebSphere portfolio provide all the infrastructure software that you
need to build, deploy, and integrate your on demand business. The WebSphere
products fall into the following categories:
v Foundation & Tools for developing and deploying high-performance business

applications
v Business Portals for developing scalable enterprise portals and enabling a single

point of personalized interaction with diverse business resources
v Business Integration for end-to-end application integration

WebSphere products run on the most popular operating systems, including z/OS,
AIX, Linux, OS/390®, IBM i, Windows, and Solaris.

IBM Data Studio
IBM Data Studio is a set of powerful Information Management tools that help you
manage enterprise data, databases, and data-driven applications.

IBM Data Studio includes the following tools:
v IBM InfoSphere Data Architect
v Optim Database Relationship Analyzer
v IBM Optim Development Studio
v IBM Optim pureQuery® Runtime
v IBM Data Studio Administrator
v IBM DB2 Performance Expert
v IBM Database Encryption Expert
v DB2 High Performance Unload

IBM Rational Portfolio Manager
IBM Rational Portfolio Manager can help you align your IT and systems
investments with your business goals.

14 Introduction to DB2 for z/OS

IBM Rational Portfolio Manager is integrated with the following software:
v IBM Rational ProjectConsole™ software
v IBM Rational Method Composer software
v IBM Rational ClearQuest® software
v IBM Rational RequisitePro® software

DB2 Connect
DB2 Connect leverages your enterprise information regardless of where that
information is. DB2 Connect gives applications fast and easy access to existing
databases on IBM enterprise servers. The applications can be on demand business
applications or other applications that run on UNIX or Microsoft Windows
operating systems.

DB2 Connect offers several editions that provide connectivity to host and IBM i
database servers. DB2 Connect Personal Edition provides direct connectivity,
whereas DB2 Connect Enterprise Edition provides indirect connectivity through the
DB2 Connect server.

With DB2 Connect, you can accomplish the following tasks:
v Extend the reach of enterprise data by providing users with fast and secure

access to data through intranets or through the public Internet
v Integrate your existing core business applications with new, Web-based

applications that you develop
v Create on demand business solutions by using the extensive application

programming tools that come with DB2 Connect
v Build distributed transaction applications
v Develop applications by using popular application programming tools such as

Visual Studio .NET, ActiveX Data Objects (ADO), OLE DB, and popular
languages such as Java, PHP, and Ruby on Rails

v Manage and protect your data
v Preserve your current investment in skills

Users of mobile PCs and pervasive computing devices can use DB2 Connect to
access reliable, up-to-date data from z/OS and IBM i database servers.

DB2 Connect provides the required performance, scalability, reliability, and
availability for the most demanding applications that your business uses. DB2
Connect runs on AIX, HP-UX, Linux, Solaris, and Windows.
Related reference:

DB2 Connect

WebSphere Application Server
WebSphere Application Server is part of the Foundation & Tools WebSphere
portfolio. This product enables organizations to move quickly from simple web
publishing to secure on demand business.

WebSphere Application Server is a Java 2 Enterprise Edition (J2EE) and web
services technology-based platform. With WebSphere Application Server, you can
take advantage of the following services:

Web services
Web services can help you develop applications more quickly.

Chapter 1. An overview of DB2 and Information Management 15

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.dbconn.doc/doc/c0004770.html

Dynamic application services
Dynamic application services let you manage your on demand business
environment with web services and J2EE 1.3 support that uses standard,
modular components to simplify enterprise applications.

Integrated tools support
WebSphere Studio Application Developer provides support with integrated
tools.

Related concepts:
“SOA, XML, and web services” on page 311

WebSphere Studio
WebSphere Studio is part of the Foundation & Tools WebSphere portfolio.
WebSphere Studio is actually a suite of tools that spans development for the web,
the enterprise, and wireless devices.

The WebSphere Studio suite of tools provides the following support:
v For application development: WebSphere Studio Application Developer works

with Java and J2EE applications and other tools that include WebSphere Studio
Enterprise Developer for developing advanced J2EE and web applications.

v For application connectivity: WebSphere MQ is a message handling system that
enables applications to communicate in a distributed environment across
different operating systems and networks.

v For web development: WebSphere Studio Homepage Builder is an authoring
tool for new web developers, and WebSphere Studio Site Developer is for
experienced web developers.

Related concepts:
“Web-based applications and WebSphere Studio Application Developer” on page
308

WebSphere Host Integration
WebSphere Host Integration is part of the Foundation & Tools WebSphere
portfolio. WebSphere Host Integration provides support for applications that rely
on both the web and host environments.

WebSphere Host Integration is actually a portfolio of products that help
organizations access, integrate, and publish host information to web-based clients
and applications.

Federated database support through WebSphere Information
Integrator

The WebSphere Information Integration family of products is a key part of the
information integration framework. The product components include a federated
data server and a replication server for integrating these diverse types of data.

Information integration technology provides access to diverse, distributed data.
This technology lets you integrate a wide range of data, including traditional
application sources as well as XML, text documents, web content, email, and
scanned images.

The following key technologies provide Information integration:
v Support for accessing XML data sources
v Web services support

16 Introduction to DB2 for z/OS

v Federation technology
v Additional features such as advanced search and flexible data replication

The IBM federated database systems offer powerful facilities for combining
information from multiple data sources. These facilities give you read and write
access to diverse data from a wide variety of sources and operating systems as
though the data is a single resource. With a federated system, you can:
v Keep data where it resides rather than moving it into a single data store
v Use a single API to search, integrate, and transform data as though it is in a

single virtual database
v Send distributed requests to multiple data sources within a single SQL statement

For example, you can join data that is located in a DB2 table, an Oracle table, and
an XML tagged file.

The IBM product that supports data federation is WebSphere Information
Integrator.

Consider federation as an integration strategy when the technical requirements of
your project involve search, insert, update, or delete operations across multiple
heterogeneous, related sources or targets of different formats. During setup of the
federated systems, information about the data sources (for example, the number
and the data type of columns, the existence of an index, or the number of rows) is
analyzed by DB2 to formulate fast answers to queries. The query optimization
capability of federated systems can automatically generate an optimal plan based
on many complex factors that are in this environment. This automatically
generated plan makes application development in a federated system much easier,
because developers no longer need to dictate the execution strategies in the
program.

Data replication through InfoSphere Replication Server
InfoSphere Replication Server for z/OS provides high-volume, low-latency
replication for business continuity, workload distribution, or business integration
scenarios.

Data replication is the process of maintaining a defined set of data in more than one
location. Replication involves copying designated changes from one location (a
source) to another location (a target) and synchronizing the data in both locations.
The source and the target can be in servers that are on the same machine or on
different machines in the same network.

You can use InfoSphere Replication Server to help maintain your data warehouse
and facilitate real-time business intelligence. InfoSphere Replication Server
provides the flexibility to distribute, consolidate, and synchronize data from many
locations by using differential replication or ETL.

InfoSphere Replication Server supports the following features:
v Queue-based and SQL-based replication models
v Data sharing configurations for DB2 for z/OS
v High-volume and low-latency data replication

Chapter 1. An overview of DB2 and Information Management 17

WebSphere DataStage
IBM WebSphere DataStage® provides the capability to perform extract, transform,
and load (ETL) operations from multiple sources to multiple targets, including DB2
for z/OS.

This ETL solution supports the collection, integration, and transformation of large
volumes of data, with data structures ranging from simple to highly complex.
WebSphere DataStage manages data that arrives in real time and data received on
a periodic or scheduled basis.

ETL operations with WebSphere DataStage are log-based and support a broad data
integration framework. You can perform more complex transformations and data
cleansing, and you can merge data from other enterprise application software
brands, including SAP, Siebel, and Oracle.

WebSphere QualityStage
IBM WebSphere QualityStage® provides a data quality solution that you can use to
standardize customer, location, and product facts.

You can use WebSphere QualityStage to validate global address information and
international names and other customer data, including phone numbers, email
addresses, birth dates, and descriptive comments, to discover relationships.
WebSphere QualityStage delivers the high-quality data that is required for success
in a range of enterprise initiatives, including business intelligence, legacy
consolidation, and master data management.

Client application programming interfaces
Application programming interfaces provide various ways for clients to access a
DB2 database server.

Java interfaces

DB2 provides two standards-based Java programming application programming
interfaces (APIs) for writing portable application programs that access DB2:

pureQuery
Developers can use pureQuery to build applications with less code than
JDBC, but with greater control over database access than object-relational
frameworks. Developers can use SQL for in-memory collections and
databases without learning a new query language that is not optimal for
data access.

JDBC A generic interface for writing platform-independent applications that can
access any SQL database.

SQLJ Another SQL model that a consortium of major database vendors
developed to complement JDBC. ISO (International Standards
Organization) defines SQLJ. SQLJ is easier to code than JDBC and provides
the superior performance, security, and maintainability of static SQL.

With DB2 for z/OS support for JDBC, you can write dynamic SQL applications in
Java. With SQLJ support, you can write static SQL applications in Java. These Java
applications can access local DB2 data or remote relational data on any server that
supports DRDA.

18 Introduction to DB2 for z/OS

With DB2 for z/OS, you can use a stored procedure that is written in Java. (The
DB2 Database family supports stored procedures that are written in many
additional languages.) A stored procedure is a user-written application program that
the server stores and executes. A single SQL CALL statement invokes a stored
procedure. The stored procedure contains SQL statements, which execute locally at
the server. The result can be a significant decrease in network transmissions.

You can develop Java stored procedures that contain either static SQL (by using
SQLJ) or dynamic SQL (by using JDBC). You can define the Java stored procedures
yourself, or you can use IBM Data Studio and WebSphere Studio Application
Developer tools.

ODBC

DB2 Open Database Connectivity (ODBC) is the IBM callable SQL interface for
relational database access. Functions are provided to application programs to
process dynamic SQL statements. DB2 ODBC allows users to access SQL functions
directly through a call interface. Through the interface, applications use procedure
calls at execution time to connect to databases, to issue SQL statements, and to get
returned data and status information. The programming languages that support
ODBC are C and C++.

Web services

Web services are self-contained, modular applications that provide an interface
between the provider and consumer of On-Demand business application resources
over the Internet. Web services client applications can access a DB2 database.

DB2 Database Add-ins for Visual Studio

The IBM DB2 Database Add-ins for Microsoft Visual Studio is a set of tightly
integrated application development and administration tools designed for DB2
Database. The Add-ins integrate into the Visual Studio .NET development
environment so that application programmers can easily work within their
Integrated Development Environment (IDE) to access DB2 data.

The following features offer key benefits:
v Support for client applications (both desktop and web-based applications) to use

.NET to access remote DB2 servers
v A tool for building stored procedures that makes it easy for any application

programmer to develop and test stored procedures with DB2 for z/OS without
prior System z skills or knowledge

Chapter 1. An overview of DB2 and Information Management 19

Related concepts:
“DB2 Development add-in for Visual Studio .NET” on page 154
“Use of an application program as a stored procedure” on page 175
Chapter 11, “Distributed data access,” on page 313
“Use of Java to execute static and dynamic SQL” on page 172
“Programming languages and methods for developing application programs” on
page 155
“Use of ODBC to execute dynamic SQL” on page 171
“SOA, XML, and web services” on page 311

Open standards
Open standards provide a framework for on demand business that is widely
accepted across the computer industry. With common standards, customers and
vendors can write application programs that can run on different database systems
with little or no modification. Application portability simplifies application
development and ultimately reduces development costs.

IBM is a leader in developing open industry standards for database systems. DB2
for z/OS is developed based on the following standards:
v The SQL:2003 ANSI/ISO standard
v The Open Group Technical Standard DRDA Version 3
v The JDBC API 3.0 Specification, developed by the Java Community Process

20 Introduction to DB2 for z/OS

Chapter 2. DB2 concepts

Many structures and processes are associated with a relational database. The
structures are the key components of a DB2 database system, and the processes are
the interactions that occur when applications access the database system.

In a relational database, data is perceived to exist in one or more tables. Each table
contains a specific number of columns and a number of unordered rows. Each
column in a table is related in some way to the other columns. Thinking of the
data as a collection of tables gives you an easy way to visualize the data that is
stored in a DB2 database.

Tables are at the core of a DB2 database. However, a DB2 database involves more
than just a collection of tables; a DB2 database also involves other objects, such as
views and indexes, and larger data containers, such as table spaces.

Structured query language
The language that you use to access the data in DB2 tables is the structured query
language (SQL). SQL is a standardized language for defining and manipulating data
in a relational database.

The language consists of SQL statements. SQL statements let you accomplish the
following actions:
v Define, modify, or drop data objects, such as tables.
v Retrieve, insert, update, or delete data in tables.

Other SQL statements let you authorize users to access specific resources, such as
tables or views.

When you write an SQL statement, you specify what you want done, not how to
do it. To access data, for example, you need only to name the tables and columns
that contain the data. You do not need to describe how to get to the data.

In accordance with the relational model of data:
v The database is perceived as a set of tables.
v Relationships are represented by values in tables.
v Data is retrieved by using SQL to specify a result table that can be derived from

one or more tables.

DB2 transforms each SQL statement, that is, the specification of a result table, into
a sequence of operations that optimize data retrieval. This transformation occurs
when the SQL statement is prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can run. The result of
preparation is the executable or operational form of the statement.

As the following example illustrates, SQL is generally intuitive.

Example: Assume that you are shopping for shoes and you want to know what
shoe styles are available in size 8. The SQL query that you need to write is similar

© Copyright IBM Corp. 2001, 2013 21

to the question that you would ask a salesperson, "What shoe styles are available
in size 8?" Just as the salesperson checks the shoe inventory and returns with an
answer, DB2 retrieves information from a table (SHOES) and returns a result table.
The query looks like this:
SELECT STYLE

FROM SHOES
WHERE SIZE = 8;

Assume that the answer to your question is that two shoe styles are available in a
size 8: loafers and sandals. The result table looks like this:
STYLE
=======
LOAFERS
SANDALS

You can send an SQL statement to DB2 in several ways. One way is interactively,
by entering SQL statements at a keyboard. Another way is through an application
program. The program can contain SQL statements that are statically embedded in
the application. Alternatively the program can create its SQL statements
dynamically, for example, in response to information that a user provides by filling
in a form. In this information, you can read about each of these methods.

Chapter 6, “Application programming for DB2,” on page 153
Chapter 5, “SQL: The language of DB2,” on page 91
“Performance information for SQL application programming” on page 157

Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

Static SQL statements in a source program must be processed before the program
is compiled. This processing can be accomplished through the DB2 precompiler or
the DB2 coprocessor. The DB2 precompiler or the coprocessor checks the syntax of
the SQL statements, turns them into host language comments, and generates host
language statements to invoke DB2.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the modified source
program.

Dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled
like those that contain static SQL, but unlike static SQL, the dynamic statements
are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to DB2
by the program using the static SQL PREPARE or EXECUTE IMMEDIATE
statement. A statement that is prepared using the PREPARE statement can be
referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement. Whether
the operational form of the statement is persistent depends on whether dynamic
statement caching is enabled.

22 Introduction to DB2 for z/OS

SQL statements embedded in a REXX application are dynamic SQL statements.
SQL statements submitted to an interactive SQL facility and to the CALL Level
Interface (CLI) are also dynamic SQL.

Deferred embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic.

Like a static statement, it is embedded within an application, but like a dynamic
statement, it is prepared during the execution of the application. Although
prepared at run time, a deferred embedded SQL statement is processed with
bind-time rules such that the authorization ID and qualifier determined at bind
time for the plan or package owner are used.

Interactive SQL
Interactive SQL refers to SQL statements submitted using SPUFI (SQL processor
using file input) or the command line processor.

SPUFI and the command line processor prepares and executes these statements
dynamically.
Related concepts:

Command line processor (DB2 Commands)
Related tasks:

Executing SQL by using SPUFI (DB2 Application programming and SQL)

SQL Call Level Interface and Open Database Connectivity
The DB2 Call Level Interface (CLI) is an application programming interface in
which functions are provided to application programs to process dynamic SQL
statements.

DB2 CLI allows users to access SQL functions directly through a call interface. CLI
programs can also be compiled using an Open Database Connectivity (ODBC)
Software Developer's Kit, available from Microsoft or other vendors, enabling
access to ODBC data sources. Unlike using embedded SQL, no precompilation is
required. Applications developed using this interface can be executed on a variety
of databases without being compiled against each of databases. Through the
interface, applications use procedure calls at execution time to connect to
databases, to issue SQL statements, and to get returned data and status
information.

Java database connectivity and embedded SQL for Java
DB2 provides two standards-based Java programming APIs: Java Database
Connectivity (JDBC) and embedded SQL for Java (SQL/OLB or SQLJ). Both can be
used to create Java applications and applets that access DB2.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation
for such tasks as connecting to databases and handling SQL errors, but can contain
embedded static SQL statements in the SQLJ source files. An SQLJ file has to be
translated with the SQLJ translator before the resulting Java source code can be
compiled.

Chapter 2. DB2 concepts 23

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_executesqlspufi.htm#db2z_executesqlspufi

DB2 data structures
Data structures are elements that are required to use DB2. You can access and use
these elements to organize your data. Examples of data structures include tables,
table spaces, indexes, index spaces, keys, views, and databases.

The brief descriptions here show how the structures fit into an overall view of
DB2. The following figure shows how some DB2 structures contain others. To some
extent, the notion of “containment” provides a hierarchy of structures.

The DB2 structures from the most to the least inclusive are:

Databases
A set of DB2 structures that include a collection of tables, their associated
indexes, and the table spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and
indexes are stored.

Table spaces
A set of volumes on disks that hold the data sets in which tables and
indexes are stored.

Figure 1. A hierarchy of DB2 structures

24 Introduction to DB2 for z/OS

Tables All data in a DB2 database is presented in tables, which are collections of
rows all having the same columns. A table that holds persistent user data
is a base table. A table that stores data temporarily is a temporary table.

Views A view is an alternative way of representing data that exists in one or more
tables. A view can include all or some of the columns from one or more
base tables.

Indexes
An index is an ordered set of pointers to the data in a DB2 table. The index
is stored separately from the table.

Related concepts:
“DB2 system objects” on page 37

Implementing your database design (DB2 Administration Guide)
“Storage structures” on page 35

DB2 tables
Tables are logical structures that DB2 maintains. DB2 supports several different
types of tables.

Tables are made up of columns and rows. The rows of a relational table have no
fixed order. The order of the columns, however, is always the order in which you
specified them when you defined the table.

At the intersection of every column and row is a specific data item, which is called
a value. A column is a set of values of the same type. A row is a sequence of values
such that the nth value is a value of the nth column of the table. Every table must
have one or more columns, but the number of rows can be zero.

DB2 accesses data by referring to its content instead of to its location or
organization in storage.

DB2 supports several different types of tables:
v Archive tables
v Archive-enabled tables
v Auxiliary tables
v Base tables
v Clone tables
v Empty tables
v History tables
v Materialized query tables
v Result tables
v Temporal tables
v Temporary tables
v XML tables

“Creation of tables” on page 181
“Types of tables” on page 182

DB2 indexes
An index is an ordered set of pointers to rows of a table. DB2 can use indexes to
improve performance and ensure uniqueness. Understanding the structure of DB2
indexes can help you achieve the best performance for your system.

Chapter 2. DB2 concepts 25

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementingdesign.htm#db2z_implementingdesign

Conceptually, you can think of an index to the rows of a DB2 table like you think
of an index to the pages of a book. Each index is based on the values of data in
one or more columns of a table.

DB2 can use indexes to ensure uniqueness and to improve performance by
clustering data, partitioning data, and providing efficient access paths to data for
queries. In most cases, access to data is faster with an index than with a scan of the
data. For example, you can create an index on the DEPTNO column of the sample
DEPT table to easily locate a specific department and avoid reading through each
row of, or scanning, the table.

An index is stored separately from the data in the table. Each index is physically
stored in its own index space. When you define an index by using the CREATE
INDEX statement, DB2 builds this structure and maintains it automatically.
However, you can perform necessary maintenance such as reorganizing it or
recovering the index.

The main purposes of indexes are:
v To improve performance. Access to data is often faster with an index than

without.
v To ensure that a row is unique. For example, a unique index on the employee

table ensures that no two employees have the same employee number.
v To cluster the data.
v To determine which partition the data goes into.
v To provide index-only access to data.

Except for changes in performance, users of the table are unaware that an index is
in use. DB2 decides whether to use the index to access the table. Some techniques
enable you to influence how indexes affect performance when you calculate the
storage size of an index and determine what type of index to use.

An index can be either partitioning or nonpartitioning, and either type can be
clustered. For example, you can apportion data by last names, possibly using one
partition for each letter of the alphabet. Your choice of a partitioning scheme is
based on how an application accesses data, how much data you have, and how
large you expect the total amount of data to grow.

Be aware that indexes have both benefits and disadvantages. A greater number of
indexes can simultaneously improve the access performance of a particular
transaction and require additional processing for inserting, updating, and deleting
index keys. After you create an index, DB2 maintains the index, but you can
perform necessary maintenance, such as reorganizing it or recovering it, as
necessary.

“Creation of indexes” on page 221

CREATE INDEX (DB2 SQL)

DB2 keys
A key is a column or an ordered collection of columns that is identified in the
description of a table, an index, or a referential constraint. Keys are crucial to the
table structure in a relational database.

26 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex

Keys are important in a relational database because they ensure that each record in
a table is uniquely identified, they help establish and enforce referential integrity,
and they establish relationships between tables. The same column can be part of
more than one key.

A composite key is an ordered set of two or more columns of the same table. The
ordering of the columns is not constrained by their actual order within the table.
The term value, when used with respect to a composite key, denotes a composite
value. For example, consider this rule: “The value of the foreign key must be equal
to the value of the primary key.” This rule means that each component of the value
of the foreign key must be equal to the corresponding component of the value of
the primary key.

DB2 supports several types of keys.

Unique keys

A unique constraint is a rule that the values of a key are valid only if they are
unique. A key that is constrained to have unique values is a unique key. DB2 uses a
unique index to enforce the constraint during the execution of the LOAD utility and
whenever you use an INSERT, UPDATE, or MERGE statement to add or modify
data. Every unique key is a key of a unique index. You can define a unique key by
using the UNIQUE clause of either the CREATE TABLE or the ALTER TABLE
statement. A table can have any number of unique keys.

The columns of a unique key cannot contain null values.

Primary keys

A primary key is a special type of unique key and cannot contain null values. For
example, the DEPTNO column in the DEPT table is a primary key.

A table can have no more than one primary key. Primary keys are optional and can
be defined in CREATE TABLE or ALTER TABLE statements.

The unique index on a primary key is called a primary index. When a primary key
is defined in a CREATE TABLE statement or ALTER TABLE statement, DB2
automatically creates the primary index if one of the following conditions is true:
v DB2 is operating in new-function mode, and the table space is implicitly created.
v DB2 is operating in new-function mode, the table space is explicitly created, and

the schema processor is running.
v DB2 is operating in conversion mode, and the schema processor is running.

If a unique index already exists on the columns of the primary key when it is
defined in the ALTER TABLE statement, this unique index is designated as the
primary index when DB2 is operating in new-function mode and implicitly created
the table space.

Parent keys

A parent key is either a primary key or a unique key in the parent table of a
referential constraint. The values of a parent key determine the valid values of the
foreign key in the constraint.

Chapter 2. DB2 concepts 27

Foreign keys

A foreign key is a key that is specified in the definition of a referential constraint in
a CREATE or ALTER TABLE statement. A foreign key refers to or is related to a
specific parent key.

Unlike other types of keys, a foreign key does not require an index on its
underlying column or columns. A table can have zero or more foreign keys. The
value of a composite foreign key is null if any component of the value is null.

The following figure shows the relationship between some columns in the DEPT
table and the EMP table.

Figure notes: Each table has a primary key:
v DEPTNO in the DEPT table
v EMPNO in the EMP table

Each table has a foreign key that establishes a relationship between the tables:
v The values of the foreign key on the DEPT column of the EMP table match

values in the DEPTNO column of the DEPT table.
v The values of the foreign key on the MGRNO column of the DEPT table match

values in the EMPNO column of the EMP table when an employee is a manager.

To see a specific relationship between rows, notice how the shaded rows for
department C01 and employee number 000030 share common values.
Related concepts:
“Referential constraints” on page 43

DB2 views
A view is an alternative way of representing data that exists in one or more tables.
A view can include all or some of the columns from one or more base tables.

Primary
key

Primary
key

Foreign
key

Foreign
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

C01 INFORMATION CENTER 000030 A00

D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ------ D11

EMPNO LASTNAME DEPT JOB

000030 KWAN C01 MGR

000200 BROWN D11 DES

200340 ALONZO E21 FLD

Figure 2. Relationship between DEPT and EMP tables

28 Introduction to DB2 for z/OS

A view is a named specification of a result table. Conceptually, creating a view is
somewhat like using binoculars. You might look through binoculars to see an
entire landscape or to look at a specific image within the landscape, such as a tree.

You can create a view that:
v Combines data from different base tables
v Is based on other views or on a combination of views and tables
v Omits certain data, thereby shielding some table data from users

In fact, these are common underlying reasons to use a view. Combining
information from base tables and views simplifies retrieving data for a user, and
limiting the data that a user can see is useful for security. You can use views for a
number of different purposes. A view can:
v Control access to a table
v Make data easier to use
v Simplify authorization by granting access to a view without granting access to

the table
v Show only portions of data in the table
v Show summary data for a given table
v Combine two or more tables in meaningful ways
v Show only the selected rows that are pertinent to the process that uses the view

To define a view, you use the CREATE VIEW statement and assign a name (up to
128 characters in length) to the view. Specifying the view in other SQL statements
is effectively like running an SQL SELECT statement. At any time, the view
consists of the rows that would result from the SELECT statement that it contains.
You can think of a view as having columns and rows just like the base table on
which the view is defined.

You also can specify a period specification for a view, subject to certain restrictions.

Example

Example 1: The following figure shows a view of the EMP table that omits
sensitive employee information and renames some of the columns.

Base table, EMP:

View of EMP EMPINFO:, named

EMPNO FIRSTNME LASTNAME DEPT HIREDATE JOB EDL SALARY COMM

EMPLOYEE FIRSTNAME LASTNAME TEAM JOBTITLE

Figure 3. A view of the EMP table

Chapter 2. DB2 concepts 29

|

Figure note: The EMPINFO view represents a table that includes columns named
EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, and JOBTITLE. The data in the
view comes from the columns EMPNO, FIRSTNME, LASTNAME, DEPT, and JOB
of the EMP table.

Example 2: The following CREATE VIEW statement defines the EMPINFO view
that is shown in the preceding figure:
CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)

AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
FROM EMP;

When you define a view, DB2 stores the definition of the view in the DB2 catalog.
However, DB2 does not store any data for the view itself, because the data exists in
the base table or tables.

Example 3: You can narrow the scope of the EMPINFO view by limiting the
content to a subset of rows and columns that includes departments A00 and C01
only:
CREATE VIEW EMPINFO (EMPLOYEE, FIRSTNAME, LASTNAME, TEAM, JOBTITLE)

AS SELECT EMPNO, FIRSTNME, LASTNAME, DEPT, JOB
WHERE DEPT = ’AOO’ OR DEPT = ’C01’

FROM EMP;

In general, a view inherits the attributes of the object from which it is derived.
Columns that are added to the tables after the view is defined on those tables do
not appear in the view.

Restriction: You cannot create an index for a view. In addition, you cannot create
any form of a key or a constraint (referential or otherwise) on a view. Such
indexes, keys, or constraints must be built on the tables that the view references.

To retrieve or access information from a view, you use views like you use base
tables. You can use a SELECT statement to show the information from the view.
The SELECT statement can name other views and tables, and it can use the
WHERE, GROUP BY, and HAVING clauses. It cannot use the ORDER BY clause or
name a host variable.

Whether a view can be used in an insert, update, or delete operation depends on
its definition. For example, if a view includes a foreign key of its base table,
INSERT and UPDATE operations that use the view are subject to the same
referential constraint as the base table. Likewise, if the base table of a view is a
parent table, DELETE operations that use the view are subject to the same rules as
DELETE operations on the base table. Read-only views cannot be used for insert,
update, and delete operations.
Related information:

Implementing DB2 views (DB2 Administration Guide)
“Creation of views” on page 237
“Referential constraints” on page 43
“Employee table (DSN8B10.EMP)” on page 134

CREATE VIEW (DB2 SQL)

30 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_viewimplementation.htm#db2z_viewimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createview.htm#db2z_sql_createview

DB2 schemas and schema qualifiers
The objects in a relational database are organized into sets called schemas. A
schema is a collection of named objects that provides a logical classification of
objects in the database. The first part of a schema name is the qualifier.

A schema provides a logical classification of objects in the database. The objects
that a schema can contain include tables, indexes, table spaces, distinct types,
functions, stored procedures, and triggers. An object is assigned to a schema when
it is created.

The schema name of the object determines the schema to which the object belongs.
A user object, such as a distinct type, function, procedure, sequence, or trigger
should not be created in a system schema, which is any one of a set of schemas that
are reserved for use by the DB2 subsystem.

When a table, index, table space, distinct type, function, stored procedure, or
trigger is created, it is given a qualified two-part name. The first part is the schema
name (or the qualifier), which is either implicitly or explicitly specified. The default
schema is the authorization ID of the owner of the plan or package. The second
part is the name of the object.

In previous versions, CREATE statements had certain restrictions when the value
of CURRENT SCHEMA was different from CURRENT SQLID value. Although
those restrictions no longer exist, you now must consider how to determine the
qualifier and owner when CURRENT SCHEMA and CURRENT SQLID contain
different values. The rules for how the owner is determined depend on the type of
object being created.

CURRENT SCHEMA and CURRENT SQLID affect only dynamic SQL statements.
Static CREATE statements are not affected by either CURRENT SCHEMA or
CURRENT SQLID.

The following table summarizes the effect of CURRENT SCHEMA in determining
the schema qualifier and owner for these objects:
v Alias
v Auxiliary table
v Created global temporary table
v Table
v View

Table 1. Schema qualifier and owner for objects

Specification of name for
new object being created

Schema qualifier of new
object Owner of new object

name (no qualifier) value of CURRENT
SCHEMA

value of CURRENT SQLID

abc.name (single qualifier) abc abc

......abc.name (multiple
qualifiers)

abc abc

The following table summarizes the effect of CURRENT SCHEMA in determining
the schema qualifier and owner for these objects:
v User-defined distinct type
v User-defined function

Chapter 2. DB2 concepts 31

v Procedure
v Sequence
v Trigger

Table 2. Schema qualifier and owner for additional objects

Specification of name for
new object being created

Schema qualifier of new
object Owner of new object

name (no qualifier) value of CURRENT
SCHEMA

value of CURRENT SQLID

abc.name (single qualifier) abc value of CURRENT SQLID

......abc.name (multiple
qualifiers)

abc value of CURRENT SQLID

Reserved schema names (DB2 SQL)

DB2 storage groups
DB2 storage groups are a set of volumes on disks that hold the data sets in which
tables and indexes are stored.

The description of a storage group names the group and identifies its volumes and
the VSAM (Virtual Storage Access Method) catalog that records the data sets. The
default storage group, SYSDEFLT, is created when you install DB2.

Within the storage group, DB2 does the following actions:
v Allocates storage for table spaces and indexes
v Defines the necessary VSAM data sets
v Extends and deletes VSAM data sets
v Alters VSAM data sets

All volumes of a given storage group must have the same device type. However,
parts of a single database can be stored in different storage groups.

DB2 can manage the auxiliary storage requirements of a database by using DB2
storage groups. Data sets in these DB2 storage groups are called DB2-managed data
sets.

These DB2 storage groups are not the same as storage groups that are defined by
the DFSMS storage management subsystem (DFSMSsms).

You have several options for managing DB2 data sets:
v Let DB2 manage the data sets. This option means less work for DB2 database

administrators.
After you define a DB2 storage group, DB2 stores information about it in the
DB2 catalog. (This catalog is not the same as the integrated catalog facility
catalog that describes DB2 VSAM data sets). The catalog table
SYSIBM.SYSSTOGROUP has a row for each storage group, and
SYSIBM.SYSVOLUMES has a row for each volume. With the proper
authorization, you can retrieve the catalog information about DB2 storage
groups by using SQL statements.
When you create table spaces and indexes, you name the storage group from
which space is to be allocated. You can also assign an entire database to a
storage group. Try to assign frequently accessed objects (indexes, for example) to

32 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_reservedschemanames.htm#db2z_reservedschemanames

fast devices, and assign seldom-used tables to slower devices. This approach to
choosing storage groups improves performance.
If you are authorized and do not take specific steps to manage your own
storage, you can still define tables, indexes, table spaces, and databases. A
default storage group, SYSDEFLT, is defined when DB2 is installed. DB2 uses
SYSDEFLT to allocate the necessary auxiliary storage. Information about
SYSDEFLT, as with any other storage group, is kept in the catalog tables
SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.
For both user-managed and DB2-managed data sets, you need at least one
integrated catalog facility (ICF) catalog; this catalog can be either a user catalog
or a master catalog. These catalogs are created with the ICF. You must identify
the catalog of the ICF when you create a storage group or when you create a
table space that does not use storage groups.

v Let SMS manage some or all the data sets, either when you use DB2 storage
groups or when you use data sets that you have defined yourself. This option
offers a reduced workload for DB2 database administrators and storage
administrators. You can specify SMS classes when you create or alter a storage
group.

v Define and manage your own data sets using VSAM Access Method Services.
This option gives you the most control over the physical storage of tables and
indexes.

Recommendation: Use DB2 storage groups and whenever you can, either
specifically or by default. Also use SMS managed DB2 storage groups whenever
you can.
Related tasks:

Choosing data page sizes for LOB data (DB2 Performance)

DB2 databases
DB2 databases are a set of DB2 structures that include a collection of tables, their
associated indexes, and the table spaces in which they reside. You define a
database by using the CREATE DATABASE statement.

Whenever a table space is created, it is explicitly or implicitly assigned to an
existing database. If you create a table space and do not specify a database name,
the table space is created in the default database, DSNDB04. In this case, DB2
implicitly creates a database or uses an existing implicitly created database for the
table. All users who have the authority to create table spaces or tables in database
DSNDB04 have authority to create tables and table spaces in an implicitly created
database. If the table space is implicitly created, and you do not specify the IN
clause in the CREATE TABLE statement, DB2 implicitly creates the database to
which the table space is assigned.

A single database, for example, can contain all the data that is associated with one
application or with a group of related applications. Collecting that data into one
database allows you to start or stop access to all the data in one operation. You can
also grant authorization for access to all the data as a single unit. Assuming that
you are authorized to access data, you can access data that is stored in different
databases.

Recommendation: Keep only a minimal number of table spaces in each database,
and a minimal number of tables in each table space. Excessive numbers of table
spaces and tables in a database can cause decreases in performance and

Chapter 2. DB2 concepts 33

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lobpagesize.htm#db2z_lobpagesize

manageability issues. If you reduce the number of table spaces and tables in a
database, you improve performance, minimize maintenance, increase concurrency,
and decrease log volume.

The following figure shows how the main DB2 data structures fit together. Two
databases, A and B, are represented as squares. Database A contains a table space
and two index spaces. The table space is segmented and contains tables A1 and
A2. Each index space contains one index, an index on table A1 and an index on
table A2. Database B contains one table space and one index space. The table space
is partitioned and contains table B1, partitions 1 through 4. The index space
contains one partitioning index, parts 1 - 4.

When you migrate to the current version, DB2 adopts the default database and
default storage group that you used in the previous version. You have the same
authority for the current version as you did in the previous version.

Reasons to define a database

In DB2 for z/OS, a database is a logical collection of table spaces and index spaces.
Consider the following factors when deciding whether to define a new database
for a new set of objects:
v You can start and stop an entire database as a unit; you can display the statuses

of all its objects by using a single command that names only the database.
Therefore, place a set of tables that are used together into the same database.
(The same database holds all indexes on those tables.)

v Some operations lock an entire database. For example, some phases of the
LOAD utility prevent some SQL statements (CREATE, ALTER, and DROP) from
using the same database concurrently. Therefore, placing many unrelated tables
in a single database is often inconvenient.

Database A

Database B

Table space 1 (segmented)

Table space 2
(partitioned)

Part 2

Part 4

Part 3

Partitioning
index Part 1

Index
on Table

A1

Index
on Table

A2

Index space Index space

Index space

Table A1 Table A2

Table B1
Part 1

Part 2

Part 3

Part 4

Figure 4. Data structures in a DB2 database

34 Introduction to DB2 for z/OS

When one user is executing a CREATE, ALTER, or DROP statement for a table,
no other user can access the database that contains that table. QMF™ users,
especially, might do a great deal of data definition; the QMF operations SAVE
DATA and ERASE data-object are accomplished by creating and dropping DB2
tables. For maximum concurrency, create a separate database for each QMF user.

v The internal database descriptors (DBDs) might become inconveniently large.
DBDs grow as new objects are defined, but they do not immediately shrink
when objects are dropped; the DBD space for a dropped object is not reclaimed
until the MODIFY RECOVERY utility is used to delete records of obsolete copies
from SYSIBM.SYSCOPY. DBDs occupy storage and are the objects of occasional
input and output operations. Therefore, limiting the size of DBDs is another
reason to define new databases.
“Creation of databases” on page 241

Storage structures
In DB2, a storage structure is a set of one or more VSAM data sets that hold DB2
tables or indexes. A storage structure is also called a page set.

The two primary types of storage structures in DB2 for z/OS are table spaces and
index spaces.
Related concepts:
“DB2 data structures” on page 24
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

Implementing DB2 indexes (DB2 Administration Guide)

DB2 table spaces
A DB2 table space is a set of volumes on disks that hold the data sets in which
tables are actually stored. All tables are kept in table spaces. A table space can have
one or more tables.

A table space can consist of a number of VSAM data sets. Data sets are VSAM
linear data sets (LDSs). Table spaces are divided into equal-sized units, called pages,
which are written to or read from disk in one operation. You can specify page sizes
(4 KB, 8 KB, 16 KB, or 32 KB in size) for the data; the default page size is 4 KB. As
a general rule, you should have only one table in each table space. It is also best to
keep only one table space in each database. If you must have more than one table
space in a database, keep no more than 20 table spaces in that database.

Data in most table spaces can be compressed, which can allow you to store more
data on each data page.

You can explicitly define a table space by using the CREATE TABLESPACE
statement, which can specify the database to which the table space belongs and the
storage group that it uses.

Alternatively, you can let DB2 implicitly create a table space for you by issuing a
CREATE TABLE statement that does not specify an existing table space. In this
case, DB2 assigns the table space to the default database and the default storage
group. If DB2 is operating in conversion mode, a segmented table space is created.
In new-function mode, DB2 creates a partition-by-growth table space.

Chapter 2. DB2 concepts 35

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceimplentation.htm#db2z_tablespaceimplentation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indeximplementation.htm#db2z_indeximplementation

The maximum number of partitions for a table space depends on the page size and
on the DSSIZE. The size of the table space depends on how many partitions are in
the table space and on the DSSIZE. The maximum number of partitions for a
partition-by-growth table space depends on the value that is specified for the
MAXPARTITIONS option of the CREATE TABLESPACE or ALTER TABLESPACE
statement.

When you create a table space, you can specify what type of table space is created.
DB2 supports different types of table spaces:

Universal table spaces
Provide better space management (for varying-length rows) and improved
mass delete performance by combining characteristics of partitioned and
segmented table space schemes. A universal table space can hold one table.

Partitioned table spaces
Divide the available space into separate units of storage called partitions.
Each partition contains one data set of one table.

Segmented table spaces
Divide the available space into groups of pages called segments. Each
segment is the same size. A segment contains rows from only one table.

Large object table spaces
Hold large object data such as graphics, video, or very large text strings. A
LOB table space is always associated with the table space that contains the
logical LOB column values.

Simple table spaces
Can contain more than one table. The rows of different tables are not kept
separate (unlike segmented table spaces).

Restriction: Starting in DB2 Version 9.1, you cannot create a simple table
space. Simple table spaces that were created with an earlier version of DB2
are still supported.

XML table spaces
Hold XML data. An XML table space is always associated with the table
space that contains the logical XML column value.

Related tasks:

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

ALTER TABLESPACE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)
Related information:

Implementing DB2 table spaces (DB2 Administration Guide)

DB2 index spaces
An index space is a DB2 storage structure that contains a single index.

When you create an index by using the CREATE INDEX statement, an index space
is automatically defined in the same database as the table. You can define a unique
name for the index space, or DB2 can derive a unique name for you. Under certain
circumstances, DB2 implicitly creates index spaces.

36 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_tablespaceimplentation.htm#db2z_tablespaceimplentation

DB2 hash spaces
A hash space is a defined disk space that organizes table data for hash access.

When you enable hash access on a table, DB2 requires a defined amount of disk
space to contain table data. You can specify the amount of disk space to allocate to
the hash space when you create a table or alter an existing table. The hash space
on a table must be large enough to contain new rows that are added to the table. If
a hash space is full, new rows are relocated to the overflow index, which reduces
the performance of hash access on that table. Hash spaces can contain only a single
table in a universal table space, and can be partitioned by range or partitioned by
growth.
Related tasks:

Managing space and page size for hash-organized tables (DB2 Performance)

Fine-tuning hash space and page size (DB2 Performance)

Creating tables that use hash organization (DB2 Administration Guide)

Altering tables to enable hash access (DB2 Administration Guide)

Organizing tables by hash for fast access to individual rows (DB2 Performance)

Monitoring hash access (DB2 Performance)
“Database design with hash access” on page 88
“Hash access paths” on page 274

DB2 system objects
Unlike the DB2 data structures that users create and access, DB2 controls and
accesses system objects.

DB2 has a comprehensive infrastructure that enables it to provide data integrity,
performance, and the ability to recover user data. In addition, Parallel Sysplex data
sharing uses shared system objects.
Related concepts:
“DB2 data structures” on page 24

DB2 catalog
DB2 maintains a set of tables that contain information about the data that DB2
controls. These tables are collectively known as the catalog.

The catalog tables contain information about DB2 objects such as tables, views, and
indexes. When you create, alter, or drop an object, DB2 inserts, updates, or deletes
rows of the catalog that describe the object.

The DB2 catalog consists of tables of data about everything defined to the DB2
system, including table spaces, indexes, tables, copies of table spaces and indexes,
and storage groups. The system database DSNDB06 contains the DB2 catalog.

When you create, alter, or drop any structure, DB2 inserts, updates, or deletes rows
of the catalog that describe the structure and tell how the structure relates to other
structures. For example, SYSIBM.SYSTABLES is one catalog table that records
information when a table is created. DB2 inserts a row into SYSIBM.SYSTABLES
that includes the table name, its owner, its creator, and the name of its table space
and its database.

Chapter 2. DB2 concepts 37

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managehashspace.htm#db2z_managehashspace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_estimatehashspacesize.htm#db2z_estimatehashspacesize
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_creatingtablesforhash.htm#db2z_creatingtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringtablesforhash.htm#db2z_alteringtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablinghashaccess.htm#db2z_enablinghashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_monitoringhashaccess.htm#db2z_monitoringhashaccess

To understand the role of the catalog, consider what happens when the EMP table
is created. DB2 records the following data:

Table information
To record the table name and the name of its owner, its creator, its type,
the name of its table space, and the name of its database, DB2 inserts a
row into the catalog.

Column information
To record information about each column of the table, DB2 inserts the
name of the table to which the column belongs, its length, its data type,
and its sequence number by inserting a row into the catalog for each
column of the table.

Authorization information
To record that the owner of the table has authorization to create the table,
DB2 inserts a row into the catalog.

Tables in the catalog are like any other database tables with respect to retrieval. If
you have authorization, you can use SQL statements to look at data in the catalog
tables in the same way that you retrieve data from any other table in the DB2
database. DB2 ensures that the catalog contains accurate object descriptions. If you
are authorized to access the specific tables or views on the catalog, you can
SELECT from the catalog, but you cannot use INSERT, UPDATE, DELETE,
TRUNCATE, or MERGE statements on the catalog.

The communications database (CDB) is part of the DB2 catalog. The CDB consists of
a set of tables that establish conversations with remote database management
systems (DBMSs). The distributed data facility (DDF) uses the CDB to send and
receive distributed data requests.

DB2 catalog tables (DB2 SQL)

DB2 directory
The DB2 directory contains information that DB2 uses during normal operation.

You cannot access the directory by using SQL, although much of the same
information is contained in the DB2 catalog, for which you can submit queries. The
structures in the directory are not described in the DB2 catalog.

The directory consists of a set of DB2 tables that are stored in table spaces in
system database DSNDB01. Each of the table spaces that are listed in the following
table is contained in a VSAM linear data set.

Table 3. Directory table spaces

Table space name Description

SCT02 Contains the internal form of SQL statements that
are contained in an application. If you bound a
plan with SQL statements in a prior release, DB2
created a structure in SCT02.

SPT01
Skeleton package

Contains the internal form of SQL statements that
are contained in a package.

SYSSPUXA Contains the contents of a package selection.

SYSSPUXB Contains the contents of a package explain block.

38 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_catalogtablesintro.htm#db2z_catalogtablesintro

Table 3. Directory table spaces (continued)

Table space name Description

SYSLGRNX
Log range

Tracks the opening and closing of table spaces,
indexes, or partitions. By tracking this information
and associating it with relative byte addresses
(RBAs) as contained in the DB2 log, DB2 can
reduce recovery time by reducing the amount of
log that must be scanned for a particular table
space, index, or partition.

SYSUTILX
System utilities

Contains a row for every utility job that is
running. The row persists until the utility is
finished. If the utility terminates without
completing, DB2 uses the information in the row
when you restart the utility.

DBD01
Database descriptor (DBD)

Contains internal information, called database
descriptors (DBDs), about the databases that exist
within the DB2 subsystem.

Each database has exactly one corresponding DBD
that describes the database, table spaces, tables,
table check constraints, indexes, and referential
relationships. A DBD also contains other
information about accessing tables in the database.
DB2 creates and updates DBDs whenever their
corresponding databases are created or updated.

SYSDBDXA Contains the contents of a DBD section.

Active and archive logs
DB2 records all data changes and other significant events in a log.

If you keep these logs, DB2 can re-create those changes for you in the event of a
failure or roll the changes back to a previous point in time.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies the contents of the active log to a disk or magnetic tape data
set called the archive log.

You can choose either single logging or dual logging.
v A single active log contains up to 93 active log data sets.
v With dual logging, the active log has twice the capacity for active log data sets,

because two identical copies of the log records are kept.

Each DB2 subsystem manages multiple active logs and archive logs. The following
facts are true about each DB2 active log:
v Each log can be duplexed to ensure high availability.
v Each active log data set is a VSAM linear data set (LDS).
v DB2 supports striped active log data sets.

Chapter 2. DB2 concepts 39

Related tasks:

Managing the log and the bootstrap data set (DB2 Administration Guide)
Related information:

Reading log records (DB2 Administration Guide)

Bootstrap data set
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS). This KSDS
contains information that is critical to DB2, such as the names of the logs. DB2 uses
information in the BSDS for system restarts and for any activity that requires
reading the log.

Specifically, the BSDS contains:
v An inventory of all active and archive log data sets that are known to DB2. DB2

uses this information to track the active and archive log data sets. DB2 also uses
this information to locate log records to satisfy log read requests during normal
DB2 system activity and during restart and recovery processing.

v A wrap-around inventory of all recent DB2 checkpoint activity. DB2 uses this
information during restart processing.

v The distributed data facility (DDF) communication record, which contains
information that is necessary to use DB2 as a distributed server or requester.

v Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during
installation DB2 automatically creates two copies of the BSDS and, if space permits,
places them on separate volumes.

The BSDS can be duplexed to ensure availability.
Related tasks:

Managing the log and the bootstrap data set (DB2 Administration Guide)

Buffer pools
Buffer pools are areas of virtual storage that temporarily store pages of table spaces
or indexes.

When an application program accesses a row of a table, DB2 places the page that
contains that row in a buffer. Access to data in this temporary storage is faster than
accessing data on a disk. If the required data is already in a buffer, the application
program does not need to wait for it to be retrieved from disk, so the time and
cost of retrieving the page is reduced.

Buffer pools require monitoring and tuning. Buffer pool sizes are critical to the
performance characteristics of an application or group of applications that access
data in those buffer pools.

You can specify default buffer pools for user data and for indexes. A special type
of buffer pool that is used only in Parallel Sysplex data sharing is the group buffer
pool, which resides in the coupling facility. Group buffer pools reside in a special
PR/SM™ LPAR logical partition called a coupling facility, which enables several DB2
subsystems to share information and control the coherency of data.

Buffer pools reside in the DB2 DBM1 primary address space. This option offers the
best performance. The maximum size of a buffer pool is 1 TB.

40 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_managebsds.htm#db2z_managebsds
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_logrecord.htm#db2z_logrecord
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_managebsds.htm#db2z_managebsds

Related tasks:

Tuning database buffer pools (DB2 Performance)

Calculating buffer pool size (DB2 Installation and Migration)

Enabling automatic buffer pool size management (DB2 Performance)

Data definition control support database
The data definition control support (DDCS) database refers to a user-maintained
collection of tables that are used by data definition control support to restrict the
submission of specific DB2 DDL (data definition language) statements to selected
application identifiers (plans or collections of packages).

This database is automatically created during installation. After this database is
created, you must populate the tables to use this facility. The system name for this
database is DSNRGFDB.

Resource limit facility tables
The resource limit facility enables you to control the amount of processor resources
that are used by SQL statements.

For example, you might choose to disable bind operations during critical
times of day to avoid contention with the DB2 catalog.

Resource limits apply to the following types of SQL statements:
v SELECT
v INSERT
v UPDATE
v MERGE
v TRUNCATE
v DELETE

Resource limits apply only to dynamic SQL statements. The resource limit facility
does not control static SQL statements regardless of whether they are issued locally
or remotely, and no limits apply to primary or secondary authorization IDs that
have installation SYSADM or installation SYSOPR authority.

You can establish a single limit for all users, different limits for individual users, or
both. You can choose to have these limits applied before the statement is executed
through predictive governing, or while a statement is running , through reactive
governing. You can also use reactive and predictive governing in combination. You
define these limits in one or more resource limit tables, named DSNRLSTxx or

DSNRLMTxx, depending on the monitoring purpose.

Chapter 2. DB2 concepts 41

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedbbufferpools.htm#db2z_tunedbbufferpools
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_calcbpsize.htm#db2z_calcbpsize
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enableautobpsize.htm#db2z_enableautobpsize

Related concepts:

Controlling the resource limit facility (DB2 Administration Guide)
Related tasks:

Setting limits for system resource usage by using the resource limit facility
(DB2 Performance)

Limiting resources for SQL statements reactively (DB2 Performance)

Limiting resources for SQL statements predictively (DB2 Performance)

Combining reactive and predictive governing (DB2 Performance)
Related reference:

Resource limit facility tables (DB2 Performance)

Work file database
Use the work file database as storage for processing SQL statements that require
working space, such as that required for a sort.

The work file database is used as storage for DB2 work files for processing SQL
statements that require working space (such as the space that is required for a
sort), and as storage for created global temporary tables and declared global
temporary tables.

DB2 creates a work file database and some table spaces in it for you at installation
time. You can create additional work file table spaces at any time. You can drop,
re-create, and alter the work file database or the table spaces in it, or both, at any
time.

In a non-data-sharing environment, the work file database is named DSNDB07. In
a data sharing environment, each DB2 member in the data sharing group has its
own work file database.

You can also use the work file database for all temporary tables.

DB2 and data integrity
Referential integrity ensures data integrity by enforcing rules with referential
constraints, check constraints, and triggers. You can rely on constraints and triggers
to ensure the integrity and validity of your data, rather than relying on individual
applications to do that work.

Constraints
Constraints are rules that control values in columns to prevent duplicate values or
set restrictions on data added to a table.

Constraints fall into the following three types:
v Unique constraints
v Referential constraints
v Check constraints

Unique constraints
A unique constraint is a rule that the values of a key are valid only if they are
unique in a table.

42 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_controlgovernor.htm#db2z_controlgovernor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reactivegovern.htm#db2z_reactivegovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predictgovern.htm#db2z_predictgovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_combinereactpredictgovern.htm#db2z_combinereactpredictgovern
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_resourcelimittables.htm#db2z_resourcelimittables

Unique constraints are optional and can be defined in the CREATE TABLE or
ALTER TABLE statements with the PRIMARY KEY clause or the UNIQUE clause.
The columns specified in a unique constraint must be defined as NOT NULL. A
unique index enforces the uniqueness of the key during changes to the columns of
the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as a primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.

Referential constraints
DB2 ensures referential integrity between your tables when you define referential
constraints.

Referential integrity is the state in which all values of all foreign keys are valid.
Referential integrity is based on entity integrity. Entity integrity requires that each
entity have a unique key. For example, if every row in a table represents
relationships for a unique entity, the table should have one column or a set of
columns that provides a unique identifier for the rows of the table. This column (or
set of columns) is called the parent key of the table. To ensure that the parent key
does not contain duplicate values, a unique index must be defined on the column
or columns that constitute the parent key. Defining the parent key is called entity
integrity.

A referential constraint is the rule that the nonnull values of a foreign key are valid
only if they also appear as values of a parent key. The table that contains the
parent key is called the parent table of the referential constraint, and the table that
contains the foreign key is a dependent of that table.

The relationship between some rows of the DEPT and EMP tables, shown in the
following figure, illustrates referential integrity concepts and terminology. For
example, referential integrity ensures that every foreign key value in the DEPT
column of the EMP table matches a primary key value in the DEPTNO column of
the DEPT table.

Chapter 2. DB2 concepts 43

Two parent and dependent relationships exist between the DEPT and EMP tables.
v The foreign key on the DEPT column establishes a parent and dependent

relationship. The DEPT column in the EMP table depends on the DEPTNO in
the DEPT table. Through this foreign key relationship, the DEPT table is the
parent of the EMP table. You can assign an employee to no department (by
specifying a null value), but you cannot assign an employee to a department
that does not exist.

v The foreign key on the MGRNO column also establishes a parent and dependent
relationship. Because MGRNO depends on EMPNO, EMP is the parent table of
the relationship, and DEPT is the dependent table.

You can define a primary key on one or more columns. A primary key that
includes two or more columns is called a composite key. A foreign key can also
include one or more columns. When a foreign key contains multiple columns, the
corresponding primary key must be a composite key. The number of foreign key
columns must be the same as the number of columns in the parent key, and the
data types of the corresponding columns must be compatible. (The sample project
activity table, DSN8B10.PROJACT, is an example of a table with a primary key on
multiple columns, PROJNO, ACTNO, and ACSTDATE.)

A table can be a dependent of itself; this is called a self-referencing table. For
example, the DEPT table is self-referencing because the value of the administrative
department (ADMRDEPT) must be a department ID (DEPTNO). To enforce the
self-referencing constraint, DB2 requires that a foreign key be defined.

Similar terminology applies to the rows of a parent-and-child relationship. A row
in a dependent table, called a dependent row, refers to a row in a parent table, called
a parent row. But a row of a parent table is not always a parent row—perhaps
nothing refers to it. Likewise, a row of a dependent table is not always a
dependent row—the foreign key can allow null values, which refer to no other
rows.

Referential constraints are optional. You define referential constraints by using
CREATE TABLE and ALTER TABLE statements.

Primary
key

Primary
key

Foreign
key

Foreign
key

DEPT

EMP

DEPTNO DEPTNAME MGRNO ADMRDEPT

C01 INFORMATION CENTER 000030 A00

D11 MANUFACTURING SYSTEMS 000060 D11

E21 SOFTWARE SUPPORT ------ D11

EMPNO LASTNAME DEPT JOB

000030 KWAN C01 MGR

000200 BROWN D11 DES

200340 ALONZO E21 FLD

Figure 5. Referential integrity of DEPT and EMP tables

44 Introduction to DB2 for z/OS

DB2 enforces referential constraints when the following actions occur:
v An INSERT statement is applied to a dependent table.
v An UPDATE statement is applied to a foreign key of a dependent table or to the

parent key of a parent table.
v A MERGE statement that includes an insert operation is applied to a dependent

table.
v A MERGE statement that includes an update operation is applied to a foreign

key of a dependent table or to the parent key of a parent table.
v A DELETE statement is applied to a parent table. All affected referential

constraints and all delete rules of all affected relationships must be satisfied in
order for the delete operation to succeed.

v The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

v The CHECK DATA utility is run.

Another type of referential constraint is an informational referential constraint. This
type of constraint is not enforced by DB2 during normal operations. An application
process should verify the data in the referential integrity relationship. An
informational referential constraint allows queries to take advantage of
materialized query tables.

The order in which referential constraints are enforced is undefined. To ensure that
the order does not affect the result of the operation, there are restrictions on the
definition of delete rules and on the use of certain statements. The restrictions are
specified in the descriptions of the SQL statements CREATE TABLE, ALTER
TABLE, INSERT, UPDATE, MERGE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:

parent key
A primary key or a unique key of a referential constraint.

parent table
A table that is a parent in at least one referential constraint. A table can be
defined as a parent in an arbitrary number of referential constraints.

dependent table
A table that is a dependent in at least one referential constraint. A table can
be defined as a dependent in an arbitrary number of referential constraints.
A dependent table can also be a parent table.

descendent table
A table that is a dependent of another table or a table that is a dependent
of a descendent table.

referential cycle
A set of referential constraints in which each associated table is a
descendent of itself.

parent row
A row that has at least one dependent row.

dependent row
A row that has at least one parent row.

descendent row
A row that is dependent on another row or a row that is a dependent of a
descendent row.

Chapter 2. DB2 concepts 45

self-referencing row
A row that is a parent of itself.

self-referencing table
A table that is both parent and dependent in the same referential
constraint. The constraint is called a self-referencing constraint.

The following rules provide referential integrity:

insert rule
A nonnull insert value of the foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is null
if any component of the value is null.

update rule
A nonnull update value of the foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is
treated as null if any component of the value is null.

delete rule
Controls what happens when a row of the parent table is deleted. The
choices of action, made when the referential constraint is defined, are
RESTRICT, NO ACTION, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values.

More precisely, the delete rule applies when a row of the parent table is the object
of a delete or propagated delete operation and that row has dependents in the
dependent table of the referential constraint. A propagated delete refers to the
situation where dependent rows are deleted when parent rows are deleted. Let P
denote the parent table, let D denote the dependent table, and let p denote a parent
row that is the object of a delete or propagated delete operation. If the delete rule
is:
v RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v CASCADE, the delete operation is propagated to the dependent rows of p in D.
v SET NULL, each nullable column of the foreign key of each dependent row of p

in D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a
delete rule of RESTRICT or NO ACTION or the deletion cascades to any of its
descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows
of these tables:
v If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is

involved in the operation but is not affected by the operation and the deletion
from the parent table P does not take place.

v If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation and rows of D might be updated during the operation.

v If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D might be deleted during the operation. If rows of D are
deleted, the delete operation on P is said to be propagated to D. If D is also a
parent table, the actions described in this list apply, in turn, to the dependents of
D.

46 Introduction to DB2 for z/OS

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P or a dependent of a table to which delete operations from P cascade.

“Department table (DSN8B10.DEPT)” on page 132
“Employee table (DSN8B10.EMP)” on page 134
“Project activity table (DSN8B10.PROJACT)” on page 140

Referential constraints (DB2 Application programming and SQL)

Check constraints
A check constraint is a rule that specifies the values that are allowed in one or more
columns of every row of a base table.

Like referential constraints, check constraints are optional and you define them by
using the CREATE TABLE and ALTER TABLE statements. The definition of a
check constraint restricts the values that a specific column of a base table can
contain.

A table can have any number of check constraints. DB2 enforces a check constraint
by applying the restriction to each row that is inserted, loaded, or updated. One
restriction is that a column name in a check constraint on a table must identify a
column of that table.

Example: You can create a check constraint to ensure that all employees earn a
salary of $30 000 or more:
CHECK (SALARY>= 30000)

Related concepts:

Check constraints (DB2 Application programming and SQL)

Triggers
A trigger defines a set of actions that are executed when a delete, insert, or update
operation occurs on a specified table or view. When an SQL operation is executed,
the trigger is activated. You can use triggers with referential constraints and check
constraints to enforce data integrity rules.

When an insert, load, update, or delete is executed, the trigger is activated.

You can use triggers along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
you can use them to do the following things:
v Update other tables
v Automatically generate or transform values for inserted or updated rows
v Invoke functions that perform operations both inside and outside of DB2

For example, assume that you need to prevent an update to a column when a new
value exceeds a certain amount. Instead of preventing the update, you can use a
trigger. The trigger can substitute a valid value and invoke a procedure that sends
a notice to an administrator about the attempted invalid update.

You can define triggers with the CREATE TRIGGER statement.

INSTEAD OF triggers are triggers that execute instead of the INSERT, UPDATE, or
DELETE statement that activates the trigger. Unlike other triggers, which are
defined on tables only, INSTEAD OF triggers are defined on views only. INSTEAD

Chapter 2. DB2 concepts 47

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_referentialconstraintsampapp.htm#db2z_referentialconstraintsampapp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkconstraintenforcement.htm#db2z_checkconstraintenforcement

OF triggers are particularly useful when the triggered actions for INSERT,
UPDATE, or DELETE statements on views need to be different from the actions for
SELECT statements. For example, an INSTEAD OF trigger can be used to facilitate
an update through a join query or to encode or decode data in a view.

Triggers move the business rule application logic into the database, which results
in faster application development and easier maintenance. The business rule is no
longer repeated in several applications, and the rule is centralized to the trigger.
DB2 checks the validity of the changes that any application makes to the salary
column, and you are not required to change application programs when the logic
changes.

“Creation of triggers” on page 247

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process
involves the execution of one or more programs, and it is the unit to which DB2
allocates resources and locks.

Different application processes might involve the execution of different programs,
or different executions of the same program. The means of initiating and
terminating an application process are dependent on the environment.

Locking, commit, and rollback
More than one application process might request access to the same data at the
same time. Furthermore, under certain circumstances, an SQL statement can
execute concurrently with a utility on the same table space. Locking is used to
maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously.

DB2 implicitly acquires locks to prevent uncommitted changes made by one
application process from being perceived by any other. DB2 will implicitly release
all locks it has acquired on behalf of an application process when that process
ends, but an application process can also explicitly request that locks be released
sooner. A commit operation releases locks acquired by the application process and
commits database changes made by the same process.

DB2 provides a way to back out uncommitted changes made by an application
process. This might be necessary in the event of a failure on the part of an
application process, or in a deadlock situation. An application process, however, can
explicitly request that its database changes be backed out. This operation is called
rollback.

The interface used by an SQL program to explicitly specify these commit and
rollback operations depends on the environment. If the environment can include
recoverable resources other than DB2 databases, the SQL COMMIT and
ROLLBACK statements cannot be used. Thus, these statements cannot be used in
an IMS, CICS, or WebSphere environment.

Unit of work
A unit of work is a recoverable sequence of operations within an application
process. A unit of work is sometimes called a logical unit of work.

48 Introduction to DB2 for z/OS

At any time, an application process has a single unit of work, but the life of an
application process can involve many units of work as a result of commit or full
rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work
is also initiated when the previous unit of work is ended by something other than
the end of the application process. A unit of work is ended by a commit operation,
a full rollback operation, or the end of an application process. A commit or rollback
operation affects only the database changes made within the unit of work it ends.
While these changes remain uncommitted, other application processes are unable
to perceive them unless they are running with an isolation level of uncommitted
read. The changes can still be backed out. Once committed, these database changes
are accessible by other application processes and can no longer be backed out by a
rollback. Locks acquired by DB2 on behalf of an application process that protects
uncommitted data are held at least until the end of a unit of work.

The initiation and termination of a unit of work define points of consistency within
an application process. A point of consistency is a claim by the application that the
data is consistent. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to
the second account is consistency reestablished. When both steps are complete, the
commit operation can be used to end the unit of work, thereby making the
changes available to other application processes. The following figure illustrates
this concept.

Unit of recovery
A DB2 unit of recovery is a recoverable sequence of operations executed by DB2 for
an application process.

If a unit of work involves changes to other recoverable resources, the unit of work
will be supported by other units of recovery. If relational databases are the only
recoverable resources used by the application process, then the scope of the unit of
work and the unit of recovery are the same and either term can be used.

Rolling back work
DB2 can back out all changes made in a unit of recovery or only selected changes.
Only backing out all changes results in a point of consistency.

Time
line

Point of
consistency

New point of
consistency

One unit of work

Database updates

Begin
unit of work

COMMIT;
End

unit of work

Figure 6. Unit of work with a commit operation

Chapter 2. DB2 concepts 49

Rolling back all changes

The SQL ROLLBACK statement without the TO SAVEPOINT clause specified
causes a full rollback operation. If such a rollback operation is successfully
executed, DB2 backs out uncommitted changes to restore the data consistency that
existed when the unit of work was initiated.

That is, DB2 undoes the work, as shown in the following figure:

Rolling back selected changes using savepoints

A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as
logic dictates, roll back only the changes that were made after a savepoint was set.

For example, part of a reservation transaction might involve booking an airline
flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
SQL RELEASE SAVEPOINT statement to delete a savepoint. The following figure
illustrates this concept.

Point of
consistency

New point of
consistency

Unit of work

Database updates

Begin
unit of work

Data is returned
to its initial state;
end unit of work

Back out updates

ROLLBACK,
failure, or
deadlock;

begin rollback

Time
line

Figure 7. Rolling back all changes from a unit of work

Unit of work

Begin
unit of work

Savepoint A COMMIT
End unit of work

Rollback to A;
database updates

made between
times T1 and T2
are rolled back

Time
line T 1 T 2

Figure 8. Rolling back changes to a savepoint within a unit of work

50 Introduction to DB2 for z/OS

Packages and application plans
A package contains control structures that DB2 uses when it runs SQL statements.
An application plan relates an application process to a local instance of DB2 and
specifies processing options.

Packages are produced during program preparation. You can think of the control
structures as the bound or operational form of SQL statements. All control
structures in a package are derived from the SQL statements that are embedded in
a single source program.

An application plan contains one or both of the following elements:
v A list of package names

DB2 applications require an application plan. Packages make application programs
more flexible and easier to maintain.

Example: The following figure shows an application plan that contains two
packages. Suppose that you decide to change the SELECT statement in package
AA to select data from a different table. In this case, you need to bind only

package AA again and not package AB.

In general, you create plans and packages by using the DB2 commands BIND
PLAN and BIND PACKAGE.

A trigger package is a special type of package that is created when you execute a
CREATE TRIGGER statement. A trigger package executes only when the trigger
with which it is associated is activated.

Packages for JDBC, SQLJ, and ODBC applications serve different purposes that you
can read more about later in this information.

Chapter 6, “Application programming for DB2,” on page 153
“Preparation process for an application program” on page 158

CREATE PROCEDURE (SQL - native) (DB2 SQL)

CREATE TRIGGER (DB2 SQL)

Plan A
Package AA

Package AB

.

.

.
SELECT * FROM.

.

.

TABLE1

.

.

.
SELECT * FROM TABLE2.

.

.

.

.

.

.
Package AA

.
Package AB

.

.

.

.

.

TABLE3

Figure 9. Application plan and packages

Chapter 2. DB2 concepts 51

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm#db2z_sql_createtrigger

SET CURRENT PACKAGE PATH (DB2 SQL)

SET CURRENT PACKAGESET (DB2 SQL)

Routines
A routine is an executable SQL object. The two types of routines are functions and
stored procedures.

Functions
A function is a routine that can be invoked from within other SQL statements and
that returns a value or a table.

Functions are classified as either SQL functions or external functions. SQL
functions are written using SQL statements, which are also known collectively as
SQL procedural language. External functions reference a host language program.
The host language program can contain SQL, but does not require SQL.

You define functions by using the CREATE FUNCTION statement. You can classify
functions as built-in functions, user-defined functions, or cast functions that are
generated for distinct types. Functions can also be classified as aggregate, scalar, or
table functions, depending on the input data values and result values.

A table function can be used only in the FROM clause of a statement. Table
functions return columns of a table and resemble a table that is created through a
CREATE TABLE statement. Table functions can be qualified with a schema name.

“Creation of user-defined functions” on page 248

Functions (DB2 SQL)

Stored procedures
A procedure, also known as a stored procedure, is a routine that you can call to
perform operations that can include SQL statements.

Procedures are classified as either SQL procedures or external procedures. SQL
procedures contain only SQL statements. External procedures reference a host
language program that might or might not contain SQL statements.

DB2 for z/OS supports the following types of SQL procedures:

External stored procedures
External stored procedures are procedures that are written in a host
language and can contain SQL statements. The source code for an external
stored procedure is separate from the definition. You can write an external
stored procedure in Assembler, C, C++, COBOL, Java, REXX, or PL/I. All
programs must be designed to run using Language Environment®. Your
COBOL and C++ stored procedures can contain object-oriented extensions.

External SQL procedures
External SQL procedures are procedures whose body is written in SQL.
DB2 supports them by generating an associated C program for each
procedure. All SQL procedures that were created prior to Version 9.1 are
external SQL procedures. Starting in Version 9.1, you can create an external
SQL procedure by specifying FENCED or EXTERNAL in the CREATE
PROCEDURE statement.

52 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentpackagepath.htm#db2z_sql_setcurrentpackagepath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentpackageset.htm#db2z_sql_setcurrentpackageset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlfunctionsintro.htm#db2z_sqlfunctionsintro

Native SQL procedures
Native SQL procedures are procedures whose body is written in SQL. For
native SQL procedures, DB2 does not generate an associated C program.
Starting in Version 9.1, all SQL procedures that are created without the
FENCED or EXTERNAL options in the CREATE PROCEDURE statement
are native SQL procedures. You can create native SQL procedures in one
step. Native SQL statements support more functions and usually provide
better performance than external SQL statements.

SQL control statements are supported in SQL procedures. Control statements are
SQL statements that allow SQL to be used in a manner similar to writing a
program in a structured programming language. SQL control statements provide
the capability to control the logic flow, declare and set variables, and handle
warnings and exceptions. Some SQL control statements include other nested SQL
statements.

SQL procedures provide the same benefits as procedures in a host language. That
is, a common piece of code needs to be written and maintained only once and can
be called from several programs.

SQL procedures provide additional benefits when they contain SQL statements. In
this case, SQL procedures can reduce or eliminate network delays that are
associated with communication between the client and server and between each
SQL statement. SQL procedures can improve security by providing a user the
ability to invoke only a procedure instead of providing them with the ability to
execute the SQL that the procedure contains.

You define procedures by using the CREATE PROCEDURE statement.
“Use of an application program as a stored procedure” on page 175

External stored procedures (DB2 Application programming and SQL)

SQL control statements for external SQL procedures (DB2 SQL)

SQL control statements for SQL routines (DB2 SQL)

Sequences
A sequence is a stored object that simply generates a sequence of numbers in a
monotonically ascending (or descending) order. A sequence provides a way to have
DB2 automatically generate unique integer primary keys and to coordinate keys
across multiple rows and tables.

A sequence can be used to exploit parallelization, instead of programmatically
generating unique numbers by locking the most recently used value and then
incrementing it.

Sequences are ideally suited to the task of generating unique key values. One
sequence can be used for many tables, or a separate sequence can be created for
each table requiring generated keys. A sequence has the following properties:
v Guaranteed, unique values, assuming that the sequence is not reset and does not

allow the values to cycle
v Monotonically increasing or decreasing values within a defined range
v Can increment with a value other than 1 between consecutive values (the default

is 1).

Chapter 2. DB2 concepts 53

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_externalsp.htm#db2z_externalsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlplexternalintro.htm#db2z_sqlplexternalintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlplnativeintro.htm#db2z_sqlplnativeintro

v Recoverable. If DB2 should fail, the sequence is reconstructed from the logs so
that DB2 guarantees that unique sequence values continue to be generated
across a DB2 failure.

Values for a given sequence are automatically generated by DB2. Use of DB2
sequences avoids the performance bottleneck that results when an application
implements sequences outside the database. The counter for the sequence is
incremented (or decremented) independently of the transaction. In some cases,
gaps can be introduced in a sequence. A gap can occur when a given transaction
increments a sequence two times. The transaction might see a gap in the two
numbers that are generated because there can be other transactions concurrently
incrementing the same sequence. A user might not realize that other users are
drawing from the same sequence. Furthermore, it is possible that a given sequence
can appear to have generated gaps in the numbers, because a transaction that
might have generated a sequence number might have rolled back or the DB2
subsystem might have failed. Updating a sequence is not part of a transaction's
unit of recovery.

A sequence is created with a CREATE SEQUENCE statement. A sequence can be
referenced using a sequence-reference. A sequence reference can appear most places
that an expression can appear. A sequence reference can specify whether the value
to be returned is a newly generated value, or the previously generated value.

Although there are similarities, a sequence is different than an identity column. A
sequence is an object, whereas an identity column is a part of a table. A sequence
can be used with multiple tables, but an identity column is tied to a single table.

CREATE SEQUENCE (DB2 SQL)

Support for high availability
Because DB2 provides support for high availability, frequently starting or stopping
DB2 is not necessary.

You can run DB2 for several weeks without stopping and starting the subsystem.
Some customers have managed to keep DB2 running continuously for several
years. One key to achieving high availability is to use data sharing. Data sharing
allows access to data even when one DB2 subsystem in a group is stopped.
Another key to high availability is the ability to get the DB2 subsystem back up
and running quickly after an unplanned outage.
v Some restart processing can occur concurrently with new work. Also, you can

choose to postpone some processing.
v During a restart, DB2 applies data changes from the log. This technique ensures

that data changes are not lost, even if some data was not written at the time of
the failure. Some of the process of applying log changes can run in parallel

v You can register DB2 to the Automatic Restart Manager of z/OS. This facility
automatically restarts DB2 if it goes down as a result of a failure.

54 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createsequence.htm#db2z_sql_createsequence

Related concepts:
“Backup, recovery, and restart” on page 292

Application processes and transactions
An application process involves running one or more programs. Different
application processes might involve running different programs or running the
same program at different times. When an application interacts with a DB2
database, a transaction begins.

Many different types of programs access DB2 data: user-written applications, SQL
statements that users enter dynamically, and even utilities. The single term that
describes any type of access to DB2 data is called an application process. All SQL
programs run as part of an application process.

A transaction is a sequence of actions between the application and the database; the
sequence begins when data in the database is read or written. A transaction is also
known as a unit of work.

Example: Consider what happens when you access funds in a bank account. A
banking transaction might involve the transfer of funds from one account to
another. During the transaction, an application program first subtracts the funds
from the first account, and then it adds the funds to the second account. Following
the subtraction step, the data is inconsistent. Consistency is reestablished after the
funds are added to the second account.

To ensure data consistency, DB2 uses a variety of techniques that include a commit
operation, a rollback operation, and locking.

When the subtraction and addition steps of the banking transaction are complete,
the application can use the commit operation to end the transaction, thereby
making the changes available to other application processes. The commit operation
makes the database changes permanent.

Consider what happens if more than one application process requests access to the
same data at the same time. Or, under certain circumstances, an SQL statement
might run concurrently with a utility on the same table space. DB2 uses locks to
maintain data integrity under these conditions to prevent, for example, two
application processes from updating the same row of data simultaneously.

DB2 acquires locks to prevent uncommitted changes that are made by one
application process from being perceived by any other. DB2 automatically releases
all locks that it has acquired on behalf of an application process when that process
ends, but an application process can also explicitly request that locks be released
sooner. A commit operation releases locks that an application process has acquired
and commits database changes that were made by the same process.

DB2 also provides a way to back out uncommitted changes that an application
process makes. A back out might be necessary in the event of a failure on the part
of an application process or in a deadlock situation. Deadlock occurs when
contention for the use of a resource, such as a table, cannot be resolved. An
application process, however, can explicitly request that its database changes be
backed out. This operation is called rollback. The interface that an SQL program
uses to explicitly specify these commit and rollback operations depends on the
environment. For example, in the JDBC environment, applications use commit and
rollback methods to commit or roll back transactions.

Chapter 2. DB2 concepts 55

Related concepts:
Chapter 6, “Application programming for DB2,” on page 153

Distributed data
Distributed data is data that resides on a DBMS other than your local system.

Your local DBMS is the one on which you bind your package. All other DBMSs are
remote.

Many businesses need to manage data from a wide variety of sources and
locations. A distributed environment provides the flexibility that is required to
allocate resources for data that is located at different sites or database management
systems (DBMSs) in a computer network.
Related concepts:
Chapter 11, “Distributed data access,” on page 313

Remote servers
A remote server can be physically remote, or it can be part of the same operating
system under which your local DBMS runs.

When you request services from a remote DBMS, the remote DBMS is a server, and
your local system is a requester or client. Conceptually, a server is like a food server
who takes food orders, delivers food, and provides other services to customers.
The customer is like the requester, or client. The purpose of the server is to provide
services to its clients.

A remote server can be truly remote in the physical sense (thousands of miles
away), or a remote server can be part of the same operating system under which
your local DBMS runs. This information generally assumes that your local DBMS is
an instance of DB2 for z/OS. A remote server can be another instance of DB2 for
z/OS or an instance of one of many other products.

The following figure shows the client/server environment.

Figure 10. Client/server processing environment

56 Introduction to DB2 for z/OS

Connectivity in distributed environments
Connectivity in the client/server environment enables communication between
applications and database systems on disparate operating systems.

Connectivity in the client/server environment requires an architecture that can
handle the stringent performance requirements of a transaction-based system and
the flexibility of a decision-support system by using ODBC or JDBC.

Using standard communication protocols, DB2 can bind and rebind packages at
other servers and run the statements in those packages. Communication protocols
are rules for managing the flow of data across a computer network just as traffic
lights and traffic rules manage the flow of car traffic. These protocols are invisible
to DB2 applications.

In a distributed environment, applications can connect to multiple databases on
different servers and can complete transactions, including commit and rollback
operations, at the same time. This type of connectivity is known as a distributed
unit of work.

pureXML
You can use pureXML® with your client applications to manage XML data in DB2
tables. You can store well-formed XML documents in their hierarchical form and
retrieve all or portions of those documents.

Because the stored XML data is fully integrated into the DB2 database system, you
can access and manage the XML data by using DB2 functions and capabilities.

To efficiently manage traditional SQL data types and XML data, DB2 uses two
distinct storage mechanisms. However, the underlying storage mechanism that is
used for a given data type is transparent to the application. The application does
not need to explicitly specify which storage mechanism to use, or to manage the
physical storage for XML and non-XML objects.

XML document storage
The XML column data type is provided for storage of XML data in DB2
tables. Most SQL statements support the XML data type. This enables you
to perform many common database operations with XML data, such as
creating tables with XML columns, adding XML columns to existing tables,
creating indexes over XML columns, creating triggers on tables with XML
columns, and inserting, updating, or deleting XML documents.

Alternatively, a decomposition stored procedure is provided so that you
can extract data items from an XML document and store those data items
in columns of relational tables, using an XML schema that is annotated
with instructions on how to store the data items.

XML document retrieval
You can use SQL to retrieve entire documents from XML columns, just as
you retrieve data from any other type of column. When you need to
retrieve portions of documents, you can specify XPath expressions, through
SQL with XML extensions (SQL/XML).

Application development
Application development support of XML enables applications to combine
XML and relational data access and storage. The following programming
languages support the XML data type:

Chapter 2. DB2 concepts 57

v Assembler
v C or C++ (embedded SQL or DB2 ODBC)
v COBOL
v Java (pureQuery, JDBC, or SQLJ)
v PL/I
v pureXML

Database administration
DB2 for z/OS database administration support for pureXML includes the
following items:

XML schema repository (XSR)
The XML schema repository (XSR) is a repository for all XML
schemas that are required to validate and process XML documents
that are stored in XML columns or that are decomposed into
relational tables.

Utility support
DB2 for z/OS utilities support the XML data type. The storage
structure for XML data and indexes is like the storage structure for
LOB data and indexes. As with LOB data, XML data is not stored
in the base table space, but it is stored in separate table spaces that
contain only XML data. The XML table spaces also have their own
index spaces. Therefore, the implications of using utilities for
manipulating, backing up, and restoring XML data and LOB data
are similar.

Performance
Indexing support is available for data stored in XML columns. The use of
indexes over XML data can improve the efficiency of queries that you issue
against XML documents. An XML index differs from a relational index in
that a relational index applies to an entire column, whereas an XML index
applies to part of the data in a column. You indicate which parts of an
XML column are indexed by specifying an XML pattern, which is a limited
XPath expression.

58 Introduction to DB2 for z/OS

Chapter 3. DB2 for z/OS architecture

z/OS and the IBM System z10®, System z9® 109, and zSeries® 890, and zSeries 990
systems offer architecture that provides qualities of service that are critical for
e-business.
Related concepts:
“DB2 data servers and environments” on page 7

z/Architecture and the z/OS operating system
z/OS, which is highly secure, scalable, and open, offers high-performance that
supports a diverse application execution environment. The tight integration that
DB2 has with the System z architecture and the z/OS environment creates a
synergy that allows DB2 to exploit advanced z/OS functions.

The z/OS operating system is based on 64-bit z/Architecture®. The robustness of
z/OS powers the most advanced features of the IBM System z10 and IBM System
z9 technology and the IBM eServer™ zSeries 990 (z990), 890 (z890), and servers,
enabling you to manage unpredictable business workloads.

DB2 gains a tremendous benefit from z/Architecture. The architecture of DB2 for
z/OS takes advantage of the key z/Architecture benefit: 64-bit virtual addressing
support. With 64-bit z/Architecture, DB2 gains an immediate scalability benefit.

The following z/Architecture features benefit DB2:

64-bit storage
Increased capacity of central memory from 2 GB to 16 exabytes eliminates
most storage constraints. 64-bit storage also allows for 16 exabytes of
virtual address space, a huge step in the continuing evolution of increased
virtual storage. In addition to improving DB2 performance, 64-bit storage
improves availability and scalability, and it simplifies storage management.

High-speed communication
HiperSockets enable high-speed TCP/IP communication across partitions
of the same System z server, for example, between Linux on System z and
DB2 for z/OS.

Dynamic workload management
The z/OS Workload Manager (WLM) provides solutions for managing
workload distribution, workload balancing, and distributing resources to
competing workloads. z/OS workload management is the combined
cooperation of various subsystems (CICS, IMS/ESA®, JES, APPC, TSO/E,
z/OS UNIX System Services, DDF, DB2, LSFM, and Internet Connection
Server) with z/OS workload management. The Intelligent Resource
Director (IRD) allows you to group logical partitions that are resident on
the same physical server, and in the same sysplex, into an LPAR cluster.
This gives Workload Manager the ability to manage resources across the
entire cluster of logical partitions.

Specialty engines
With special processors, such as the System z Integrated Information
Processor (zIIP), DB2 achieves higher degrees of query parallelism and
higher levels of transaction throughput. The zIIP is designed to improve

© Copyright IBM Corp. 2001, 2013 59

resource optimization and lower the cost of eligible workloads, enhancing
the role of the mainframe as the data hub of the enterprise.

In addition to the benefits of z/Architecture, DB2 takes advantage of many other
features of the z/OS operating system:

High security
z/OS and its predecessors have provided robust security for decades.
Security features deliver privacy for users, applications, and data, and
these features protect the integrity and isolation of running processes.
Current security functions have evolved to include comprehensive network
and transaction security that operates with many other operating systems.
Enhancements to the z/OS Security Server provide improved security
options, such as multilevel security. The System z environment offers
highly secure cryptographic functions and provides improved Secure
Sockets Layer (SSL) performance.

Open software technologies
z/OS supports the latest open software technologies that include
Enterprise JavaBeans, XML, and Unicode.

Cluster technology
The z/OS Parallel Sysplex provides cluster technology that achieves
availability 24 hours a day, 7 days a week. Cluster technology also
provides the capability for horizontal growth. Horizontal growth solves the
problems of performance overheads and system management issues that
you typically encounter when combining multiple machines to access the
same database. With horizontal growth, you achieve more scalability; your
system can grow beyond the confines of a single machine while your
database remains intact.

Solid-state drives
Solid-state drives (SSDs) are more reliable, consume less power, and
generate less heat than traditional hard disk drives (HDDs). SSDs can also
improve the performance of online transaction processing. SSDs are
especially efficient at performing random access requests, and they provide
greater throughput than HDDs. Some IBM System Storage® series allow a
combination of HDDs and SSDs.

Parallel Access Volume (PAV)
IBM Enterprise Storage Server® (ESS) exploits the Parallel Access Volume
and Multiple Allegiance features of z/OS and supports up to 256 I/Os per
logical disk volume. A single z/OS host can issue I/Os in parallel to the
same logical volume, and different hosts can issue I/Os to a shared
volume in parallel.

HyperPAV
HyperPAV is available on some IBM System Storage series. HyperPAV
helps applications to achieve equal or greater I/O performance than the
original PAV feature, but uses fewer z/OS resources.

Adaptive multi-stream prefetching
Adaptive multi-stream prefetching (AMP) is a sequential prefetching
algorithm that resolves cache pollution and prefetch waste for a cache that
is shared by multiple sequential request streams. AMP works well to
manage caches efficiently across a wide variety of workloads and cache
sizes.

Cache optimization
DB2 code and control structures are adapted to reduce cache misses.

60 Introduction to DB2 for z/OS

MIDAW
The System z environment also supports the Modified Indirect Data
Address Word (MIDAW) facility, which is designed to improve channel
utilization and throughput, and which can potentially reduce I/O response
times.

FICON® channels
These channels offer significant performance benefits for transaction
workloads. FICON features, such as a rapid data transfer rate (4 GB per
second), also result in faster table scans and improved utility performance.

High performance FICON
High Performance FICON (zHPF) is a new FICON protocol and system
I/O architecture which results in improvements for small block transfers to
disk using the device independent random access method.

System z instructions
DB2 can take advantage of the latest System z instructions. These
instructions can streamline specific processes and reduce the CPU
workload.

Increased System z10 page size
DB2 benefits greatly from the 1 MB page size of System z10. The increased
page size allows for DB2 buffer pool enhancements which can reduce the
CPU workload.

Improved hardware compression
Improved hardware compression has a positive impact on performance.
For example, utilities that run against compressed data run faster.

DB2 in the z/OS environment
DB2 operates as a formal subsystem of z/OS and works efficiently with other
z/OS subsystems and components.

DB2 operates as a formal subsystem of z/OS. A subsystem is a secondary or
subordinate system that is usually capable of operating independently of, or
asynchronously with, a controlling system. A DB2 subsystem is a distinct instance
of a relational DBMS. Its software controls the creation, organization, and
modification of a database and the access to the data that the database stores.

z/OS processes are separated into regions that are called address spaces. DB2 for
z/OS processes execute in several different address spaces, as indicated below.

Database services
ssnmDBM1 provides most database-related services. Most large storage
areas reside above the 2 GB bar in the ssnmDBM1 address space. With
64-bit virtual addressing to access these storage areas, DB2 can scale to
extremely large sizes.

System services
ssnmMSTR performs a variety of system-related functions.

Distributed data facility
ssnmDIST provides support for remote requests.

IRLM (internal resource lock manager)
IRLMPROC controls DB2 locking.

WLM-established
Zero to many address spaces for stored procedures and user-defined

Chapter 3. DB2 for z/OS architecture 61

functions. WLM-established address spaces are handled in order of priority
and are isolated from other stored procedures or user-defined functions
that run in other address spaces.

User address spaces
At least one, possibly several, of the following types of user address
spaces:
v TSO
v Batch
v CICS
v IMS dependent region
v IMS control region
v WebSphere

DB2 works efficiently with other z/OS subsystems and components, such as the
z/OS Security Server and the zSeries Parallel Sysplex environment.

DB2 utilities run in the z/OS batch or stored procedure environment. Applications
that access DB2 resources can run within the same z/OS system in the CICS, IMS,
TSO, WebSphere, stored procedure, or batch environments, or on other operating
systems. These applications can access DB2 resources by using the client/server
services of the DB2 distributed data facility (DDF). IBM provides attachment
facilities to connect DB2 to each of these environments.
Related concepts:
“DB2 attachment facilities” on page 64
“Distributed data facility” on page 68
“DB2 in a Parallel Sysplex environment” on page 69
“DB2 and the z/OS Security Server” on page 63

DB2 internal resource lock manager
The DB2 internal resource lock manager (IRLM) is both a separate subsystem and
an integral component of DB2. IRLM works with DB2 to control access to your
data.

IRLM is shipped with DB2, and each DB2 subsystem must have its own instance
of IRLM. You cannot share IRLM between DB2 subsystems or between DB2 and
IMS subsystems. IRLM is also shipped with IMS. If you run a DB2 data sharing
group, an IRLM group corresponds to that data sharing group.

IRLM works with DB2 to serialize access to your data. DB2 requests locks from
IRLM to ensure data integrity when applications, utilities, and commands attempt
to access the same data.

Recommendation: Always run with the latest level of IRLM.

IRLM requires some control and monitoring. The external interfaces to the IRLM
include:

Installation
Install IRLM when you install DB2. Consider that locks take up storage,
and adequate storage for IRLM is crucial to the performance of your
system.

62 Introduction to DB2 for z/OS

Another important performance item is to set WLM goals to maximize
response time and execution velocity for the IRLM address space above all
the other DB2 address spaces.

Commands
Some IRLM-specific z/OS commands enable you to modify parameters,
display information about the status of the IRLM and its storage use, and
start and stop IRLM.

Tracing
The DB2 trace facility enables you to trace lock interactions.

You can use z/OS trace commands or IRLMPROC options to control
diagnostic traces for IRLM. You normally use these traces under the
direction of IBM Software Support.

Related concepts:
“Improved performance through the use of locks” on page 260

DB2 and the z/OS Security Server
The z/OS Security Server prevents unauthorized system access and can protect
DB2 resources, such as tables. The z/OS Security Server is sometimes referred to as
RACF, which is one of its key components.

To control access to your z/OS system, you can use the Resource Access Control
Facility (RACF) component of the z/OS Security Server or an equivalent product.
When users begin sessions, the z/OS Security Server checks their identities to
prevent unauthorized system access. The z/OS Security Server provides effective
protection for DB2 data by permitting only DB2-managed access to DB2 data sets.

By using the z/OS Security Server, you can directly control most authorization to
DB2 objects, define authorization, or use multilevel security.

Recommendation: Use the z/OS Security Server to check the identity of DB2 users
and to protect DB2 resources.
Related concepts:
“Authorization and security mechanisms for data access” on page 280
Related information:

Security and auditing (DB2 Administration Guide)

DB2 and DFSMS
You can use the DFSMSdfp Storage Management Subsystem (SMS) to manage DB2
disk data sets.

The purpose of DFSMS is to automate as much as possible the management of
physical storage by centralizing control, automating tasks, and providing
interactive controls for system administrators. DFSMS can reduce user concerns
about physical details of performance, space, and device management.

Consult with your storage administrator about using DFSMS for DB2 private data,
image copies, and archive logs. Data that is especially performance-sensitive might
necessitate more manual control over data set placement.

Chapter 3. DB2 for z/OS architecture 63

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_securityintro.htm#db2z_securityintro

Table spaces or indexes with data sets larger than 4 GB require DFSMS-managed
data sets.

Extended partitioned data sets (PDSE), a feature of DFSMSdfp, are useful for
managing stored procedures that run in a stored procedures address space. PDSE
enables extent information for the load libraries to be dynamically updated,
reducing the need to start and stop the stored procedures address space.

DB2 attachment facilities
An attachment facility provides the interface between DB2 and another environment.
You can also begin DB2 sessions from other environments on clients such as
Microsoft Windows or UNIX by using interfaces like ODBC, JDBC, and SQLJ.

The following figure shows the z/OS attachment facilities with interfaces to DB2.

The z/OS environments include:
v WebSphere
v CICS (Customer Information Control System)
v IMS (Information Management System)
v TSO (Time Sharing Option)
v Batch

The z/OS attachment facilities include:
v CICS
v IMS
v TSO
v CAF (call attachment facility)
v RRS (Resource Recovery Services)

The attachment facilities work in the various environments as follows:
v WebSphere products that are integrated with DB2 include WebSphere

Application Server, WebSphere Studio, and Transaction Servers & Tools. In the
WebSphere environment, you can use the RRS attachment facility.

v CICS is an application server that provides online transaction management for
applications. In the CICS environment, you can use the CICS attachment facility
to access DB2.

v IMS is a database computing system. IMS includes the IMS hierarchical database
manager, the IMS transaction manager, and database middleware products that

Figure 11. Attachment facilities with interfaces to DB2

64 Introduction to DB2 for z/OS

provide access to IMS databases and transactions. In the IMS environment, you
can use the IMS attachment facility to access DB2.

v TSO provides interactive time-sharing capability from remote terminals. In the
TSO and batch environments, you can use the TSO, call attachment facility
(CAF), and Resource Recovery Services (RRS) attachment facilities to access DB2.

v Stored procedure environments are managed by the Workload Manager
component of z/OS. In a stored procedure environment, you can use the RRS
attachment facility

CICS attachment facility
The Customer Information Control System (CICS) Transaction Server provides the
CICS attachment facility, which lets you access DB2 from CICS.

CICS operations, application programming, and system administration and
operations organizations can use the CICS attachment facility.

CICS operations

After you start DB2, you can operate DB2 from a CICS terminal. You can
start and stop CICS and DB2 independently, and you can establish or
terminate the connection between them at any time. You can also allow
CICS to connect to DB2 automatically.

The CICS Transaction Server also provides CICS applications with access to
DB2 data while operating in the CICS environment. Any CICS application,
therefore, can access both DB2 data and CICS data. In the case of system
failure, CICS coordinates recovery of both DB2 data and CICS data.

The CICS attachment facility uses standard CICS command-level services
where needed.

Examples::
EXEC CICS WAIT EXEC CICS ABEND

A portion of the CICS attachment facility executes under the control of the
transaction issuing the SQL requests. Therefore these calls for CICS services
appear to be issued by the application transaction.

With proper planning, you can include DB2 in a CICS XRF recovery
scenario.

Application programming

Application programmers who write CICS command-level programs can
use the same data communication coding techniques to write the data
communication portions of application programs that access DB2 data.
Only the database portion of the programming changes. For the database
portions, programmers use SQL statements to retrieve or modify data in
DB2 tables.

To a CICS terminal user, application programs that access both CICS and
DB2 data appear identical to application programs that access only CICS
data.

DB2 supports this cross-product programming by coordinating recovery
resources with those of CICS. CICS applications can therefore access
CICS-controlled resources as well as DB2 databases.

Chapter 3. DB2 for z/OS architecture 65

Function shipping of SQL requests is not supported. In a CICS
multi-region operation (MRO) environment, each CICS address space can
have its own attachment to the DB2 subsystem. A single CICS region can
be connected to only one DB2 subsystem at a time.

System administration and operations

An authorized CICS terminal operator can issue DB2 commands to control
and monitor both the attachment facility and DB2 itself. Authorized
terminal operators can also start and stop DB2 databases.

Even though you perform DB2 functions through CICS, you need to have
the TSO attachment facility and ISPF to take advantage of the online
functions supplied with DB2 to install and customize your system. You
also need the TSO attachment to bind application plans and packages.

IMS attachment facility
The IMS attachment facility enables you to access DB2 from IMS.

The IMS attachment facility receives and interprets requests for access to DB2
databases by using exit routines that are part of IMS subsystems. An exit routine is
a program that runs as an extension of DB2 when it receives control from DB2 to
perform specific functions. Usually, IMS connects to DB2 automatically with no
operator intervention.

In addition to Data Language I (DL/I) and Fast Path calls, IMS applications can
make calls to DB2 by using embedded SQL statements. In the case of system
failure, IMS coordinates recovery of both DB2 data and IMS data.

With proper planning, you can include DB2 in an IMS Extended Recovery Facility
(XRF) recovery scenario.

With the IMS attachment facility, DB2 provides database services for IMS
dependent regions. DL/I batch support allows any authorized user to access both
IMS data and DB2 data in the IMS batch environment.

Application programming, system administration, and operations organizations
can use the CICS attachment facility.

Application programming

With the IMS attachment facility, DB2 provides database services for IMS
dependent regions. DL/I batch support allows users to access both IMS
data (DL/I) and DB2 data in the IMS batch environment, which includes:
v Access to DB2 and DL/I data from application programs.
v Coordinated recovery through a two-phase commit process.
v Use of the IMS extended restart (XRST) and symbolic checkpoint

(CHKP) calls by application programs to coordinate recovery with IMS,
DB2, and generalized sequential access method (GSAM) files.

IMS programmers who write the data communication portion of
application programs do not need to alter their coding technique to write
the data communication portion when accessing DB2; only the database
portions of the application programs change. For the database portions,
programmers code SQL statements to retrieve or modify data in DB2
tables.

66 Introduction to DB2 for z/OS

To an IMS terminal user, IMS application programs that access DB2 appear
identical to IMS.

DB2 supports this cross-product programming by coordinating database
recovery services with those of IMS. Any IMS program uses the same
synchronization and rollback calls in application programs that access DB2
data as they use in IMS application programs that access DL/I data.

Another aid for cross-product programming is the IMS DataPropagator
licensed program, which enables automatic updates to DB2 tables when
corresponding information in an IMS database is updated. This product
also enables automatic updates to an IMS database when a DB2 table is
updated.

System administration and operations

An authorized IMS terminal operator can issue DB2 commands to control
and monitor DB2. The terminal operator can also start and stop DB2
databases.

Even though you perform DB2 functions through IMS, you need the TSO
attachment facility and ISPF to take advantage of the online functions
supplied with DB2 to install and customize your system. You also need the
TSO attachment facility to bind application plans and packages.

TSO attachment facility
You can bind application plans and packages and run several online functions of
DB2 through the TSO attachment facility. TSO also enables authorized DB2 users
or jobs to create, modify, and maintain databases and application programs.

Using the TSO attachment facility, you can access DB2 by running in either
foreground or batch. You gain foreground access through a TSO terminal; you gain
batch access by invoking the TSO terminal monitor program (TMP) from a batch
job.

Most TSO applications must use the TSO attachment facility, which invokes the
DSN command processor. Two command processors are available:

DSN command processor
Provides an alternative method for running programs that access DB2 in a
TSO environment. This processor runs as a TSO command processor and
uses the TSO attachment facility.

DB2 Interactive (DB2I)
Consists of Interactive System Productivity Facility (ISPF) panels. ISPF has
an interactive connection to DB2, which invokes the DSN command
processor. Using DB2I panels, you can run SQL statements, commands,
and utilities.

Whether you access DB2 in foreground or batch, attaching through the TSO
attachment facility and the DSN command processor makes access easier. Together,
DSN and TSO provide services such as automatic connection to DB2, attention-key
support, and translation of return codes into error messages.

When using DSN services, your application must run under the control of DSN.
You invoke the DSN command processor from the foreground by issuing a
command at a TSO terminal. From batch, you first invoke TMP from within a
batch job, and you then pass commands to TMP in the SYSTSIN data set.

Chapter 3. DB2 for z/OS architecture 67

After DSN is running, you can issue DB2 commands or DSN subcommands.
However, you cannot issue a START DB2 command from within DSN. If DB2 is
not running, DSN cannot establish a connection. A connection is required so that
DSN can transfer commands to DB2 for processing.

Call attachment facility
The call attachment facility (CAF) provides an alternative connection for TSO and
batch applications that need tight control over the session environment.

Applications that use CAF can explicitly control the state of their connections to
DB2 by using connection functions that CAF supplies.

Resource Recovery Services attachment facility
The RRS feature of z/OS coordinates commit processing of recoverable resources
in a z/OS system. DB2 supports use of these services for DB2 applications that use
the RRS attachment facility (RRSAF), which DB2 provides.

The implementation of z/OS Resource Recovery Services (RRS) is based on the
same technology as that of CAF but offers additional capabilities. Use the RRS
attachment facility to access resources such as SQL tables, DL/I databases,
MQSeries® messages, and recoverable Virtual Storage Access Method (VSAM) files
within a single transaction scope. Programs that run in batch and TSO can use
RRSAF. You can use RRS with stored procedures and in a WebSphere environment.

The RRS attachment is required for stored procedures that run in a
WLM-established address space.

Distributed data facility
The distributed data facility (DDF) allows client applications that run in an
environment that supports DRDA to access data at DB2 servers. In addition, a DB2
application can access data at other DB2 servers and at remote relational database
systems that support DRDA.

DDF supports TCP/IP and Systems Network Architecture (SNA) network
protocols. DDF allows the DB2 server to act as a gateway for remote clients and
servers. A DB2 server can forward requests on behalf of remote clients to other
remote servers regardless of whether the requested data is on the DB2 server.

With DDF, you can have up to 150,000 connections to a single DB2 server at the
same time. You can only have up to 2000 threads running concurrently. A thread is
a DB2 structure that describes an application's connection and traces its progress.

DDF uses methods for transmitting query result tables that minimize network
traffic when you access distributed data. You can also use stored procedures to
reduce processor and elapsed-time costs of distributed access. A stored procedure is
user-written SQL program that a requester can invoke at the server. When you
encapsulate SQL statements to the DB2 server into a single message, many fewer
messages flow across the wire.

Local DB2 applications can also use stored procedures to take advantage of the
ability to encapsulate SQL statements that are shared among different applications.

In addition to optimizing message traffic, DDF enables you to transmit large
amounts of data efficiently by using the full bandwidth of the network.

68 Introduction to DB2 for z/OS

DDF also enables applications that run in a remote environment that supports
DRDA. These applications can use DDF to access data in DB2 servers. Examples of
application requesters include IBM DB2 Connect and other DRDA-compliant client
products.

The decision to access distributed data has implications for many DB2 activities:
application programming, data recovery, and authorization, to name a few.
Related concepts:
Chapter 11, “Distributed data access,” on page 313

DB2 in a Parallel Sysplex environment
The Parallel Sysplex is a key example of the synergy of DB2 and the IBM System z
environment.

DB2 takes advantage of the Parallel Sysplex environment with its superior
processing capabilities. When you have two or more processors sharing the same
data, you can:
v Maximize performance while minimizing cost
v Improve system availability and concurrency
v Configure your system environment more flexibly
v Grow your system incrementally

With data sharing, applications that run on more than one DB2 subsystem can read
from and write to the same set of data concurrently. This capability enables you to
continuously access DB2 data, even while a node is being upgraded with new
software.

DB2 subsystems that share data must belong to a DB2 data sharing group. A data
sharing group is a collection of one or more DB2 subsystems that access shared
DB2 data. Each DB2 subsystem that belongs to a particular data sharing group is a
member of that group. All members of a group use the same shared DB2 catalog.
The following figure shows an example of a data sharing group with three
members.

User
data

User
data

z/OS

DB2

z/OS

DB2

z/OS

DB2 DB2
catalog

Figure 12. A DB2 data sharing group

Chapter 3. DB2 for z/OS architecture 69

With a data sharing group, the number of threads that can connect to a DB2 server
multiplies by the number of subsystems in the group. For example, an
eight-member data sharing group can have over a million simultaneous threads
connect to a DB2 server.

With data sharing, you can grow your system incrementally by adding additional
central processor complexes and DB2 subsystems to the data sharing group. You
do not need to move part of the workload onto another system, alleviating the
need to manage copies of the data or to use distributed processing to access the
data.

You can configure your environment flexibly. For example, you can tailor each
z/OS image to meet the requirements for the user set on that image. For
processing that occurs during peak workload periods, you can bring up a dormant
DB2 to help process the work.
Related concepts:
Chapter 12, “Data sharing with your DB2 data,” on page 327

70 Introduction to DB2 for z/OS

Chapter 4. DB2 objects and their relationships

Logical data modeling and physical data modeling are two tasks that you need to
perform to design a DB2 database.

When you design any database, you need to answer many different questions. The
same is true when you design a DB2 database. How will you organize your data?
How will you create relationships between tables? How should you define the
columns in your tables? What type of table space should you use?

To design a database, you perform two general tasks. The first task is logical data
modeling, and the second task is physical data modeling. In logical data modeling,
you design a model of the data without paying attention to specific functions and
capabilities of the DBMS that stores the data. In fact, you could even build a
logical data model without knowing which DBMS you will use. Next comes the
task of physical data modeling. This is when you move closer to a physical
implementation. The primary purpose of the physical design stage is to optimize
performance while ensuring the integrity of the data.

This information begins with an introduction to the task of logical data modeling.
The logical data modeling topic focuses on the entity-relationship model and
provides an overview of the Unified Modeling Language (UML) and IBM Rational
Data Architect. The information ends with the task of physical database design.

After completing the logical and physical design of your database, you implement
the design.
Related concepts:
Chapter 7, “Implementation of your database design,” on page 181

Logical database design using entity-relationship modeling
Before you implement a database, you should plan or design it so that it satisfies
all requirements. This first task of designing a database is called logical design.
Related concepts:
“Logical database design with Unified Modeling Language” on page 83
“Physical database design” on page 84

Data modeling
Logical data modeling is the process of documenting the comprehensive business
information requirements in an accurate and consistent format.

Designing and implementing a successful database, one that satisfies the needs of
an organization, requires a logical data model. Analysts who do data modeling
define the data items and the business rules that affect those data items. The
process of data modeling acknowledges that business data is a vital asset that the
organization needs to understand and carefully manage.

Consider the following business facts that a manufacturing company needs to
represent in its data model:
v Customers purchase products.
v Products consist of parts.

© Copyright IBM Corp. 2001, 2013 71

v Suppliers manufacture parts.
v Warehouses store parts.
v Transportation vehicles move the parts from suppliers to warehouses and then

to manufacturers.

These are all business facts that a manufacturing company's logical data model
needs to include. Many people inside and outside the company rely on
information that is based on these facts. Many reports include data about these
facts.

Any business, not just manufacturing companies, can benefit from the task of data
modeling. Database systems that supply information to decision makers,
customers, suppliers, and others are more successful if their foundation is a sound
data model.

An overview of the data modeling process

You might wonder how people build data models. Data analysts can perform the
task of data modeling in a variety of ways. (This process assumes that a data
analyst is performing the steps, but some companies assign this task to other
people in the organization.) Many data analysts follow these steps:
1. Build critical user views.

Analysts begin building a logical data model by carefully examining a single
business activity or function. They develop a user view, which is the model or
representation of critical information that the business activity requires. (In a
later stage, the analyst combines each individual user view with all the other
user views into a consolidated logical data model.) This initial stage of the data
modeling process is highly interactive. Because data analysts cannot fully
understand all areas of the business that they are modeling, they work closely
with the actual users. Working together, analysts and users define the major
entities (significant objects of interest) and determine the general relationships
between these entities.

2. Add key business rules to user views.

Next, analysts add key detailed information items and the most important
business rules. Key business rules affect insert, update, and delete operations
on the data.

Example 1: A business rule might require that each customer entity have at
least one unique identifier. Any attempt to insert or update a customer
identifier that matches another customer identifier is not valid. In a data model,
a unique identifier is called a primary key.

3. Add detail to user views and validate them.

After the analysts work with users to define the key entities and relationships,
they add other descriptive details that are less vital. They also associate these
descriptive details, called attributes, to the entities.

Example 2: A customer entity probably has an associated phone number. The
phone number is a non-key attribute of the customer entity.
Analysts also validate all the user views that they have developed. To validate
the views, analysts use the normalization process and process models. Process
models document the details of how the business will use the data. You can read
more about process models and data models in other books on those subjects.

4. Determine additional business rules that affect attributes.

72 Introduction to DB2 for z/OS

Next, analysts clarify the data-driven business rules. Data-driven business rules
are constraints on particular data values. These constraints need to be true,
regardless of any particular processing requirements. Analysts define these
constraints during the data design stage, rather than during application design.
The advantage to defining data-driven business rules is that programmers of
many applications don't need to write code to enforce these business rules.

Example 3: Assume that a business rule requires that a customer entity have
either a phone number or an address, or both. If this rule doesn't apply to the
data itself, programmers must develop, test, and maintain applications that
verify the existence of one of these attributes.
Data-driven business requirements have a direct relationship with the data,
thereby relieving programmers from extra work.

5. Integrate user views.

In this last phase of data modeling, analysts combine the different user views
that they have built into a consolidated logical data model. If other data models
already exist in the organization, the analysts integrate the new data model
with the existing one. At this stage, analysts also strive to make their data
model flexible so that it can support the current business environment and
possible future changes.

Example 4: Assume that a retail company operates in a single country and that
business plans include expansion to other countries. Armed with knowledge of
these plans, analysts can build the model so that it is flexible enough to
support expansion into other countries.

Recommendations for logical data modeling

To build sound data models, analysts follow a well-planned methodology, which
includes:
v Working interactively with the users as much as possible.
v Using diagrams to represent as much of the logical data model as possible.
v Building a data dictionary to supplement the logical data model diagrams. (A

data dictionary is a repository of information about an organization's application
programs, databases, logical data models, users, and authorizations. A data
dictionary can be manual or automated.)

Data modeling: Some practical examples

To perform the data modeling task, you begin by defining your entities, the
significant objects of interest. Entities are the things about which you want to store
information. For example, you might want to define an entity for employees called
EMPLOYEE because you need to store information about everyone who works for
your organization. You might also define an entity, called DEPARTMENT, for
departments.

Next, you define primary keys for your entities. A primary key is a unique
identifier for an entity. In the case of the EMPLOYEE entity, you probably need to
store lots of information. However, most of this information (such as gender, birth
date, address, and hire date) would not be a good choice for the primary key. In
this case, you could choose a unique employee ID or number
(EMPLOYEE_NUMBER) as the primary key. In the case of the DEPARTMENT
entity, you could use a unique department number (DEPARTMENT_NUMBER) as
the primary key.

Chapter 4. DB2 objects and their relationships 73

After you decide on the entities and their primary keys, you can define the
relationships that exist between the entities. The relationships are based on the
primary keys. If you have an entity for EMPLOYEE and another entity for
DEPARTMENT, the relationship that exists is that employees are assigned to
departments.

After you define the entities, their primary keys, and their relationships, you can
define additional attributes for the entities. In the case of the EMPLOYEE entity,
you might define the following additional attributes:
v Birth date
v Hire date
v Home address
v Office phone number
v Gender
v Resume

You can read more about defining attributes later in this information.

Finally, you normalize the data.
Related concepts:
“Referential constraints” on page 43
“DB2 keys” on page 26
“Normalization to avoid redundancy” on page 79
“Entities for different types of relationships”

Entities for different types of relationships
In a relational database, separate entities must be defined for different types of
relationships.

In a relational database, you can express several types of relationships. Consider
the possible relationships between employees and departments. A given employee
can work in only one department; this relationship is one-to-one for employees. One
department usually has many employees; this relationship is one-to-many for
departments. Relationships can be one-to-many, many-to-one, one-to-one, or
many-to-many.

The type of a given relationship can vary, depending on the specific environment.
If employees of a company belong to several departments, the relationship
between employees and departments is many-to-many.

You need to define separate entities for different types of relationships. When
modeling relationships, you can use diagram conventions to depict relationships
by using different styles of lines to connect the entities.

One-to-one relationships
In database design, one-to-one relationships are bidirectional relationships, which
means that they are single-valued in both directions.

For example, an employee has a single resume; each resume belongs to only one
person. The following figure illustrates that a one-to-one relationship exists
between the two entities. In this case, the relationship reflects the rules that an
employee can have only one resume and that a resume can belong to only one
employee.

74 Introduction to DB2 for z/OS

One-to-many relationships
In database design, a one-to-many relationship occurs when one entity has a
multivalued relationship with another entity.

In the following figure, you see that a one-to-many relationship exists between two
entities—employee and department. This figure reinforces the business rules that a
department can have many employees, but that each individual employee can
work for only one department.

Many-to-many relationships
In database design, a many-to-many relationship is a relationship that is
multivalued in both directions.

The following figure illustrates this kind of relationship. An employee can work on
more than one project, and a project can have more than one employee assigned.

If you look at this information's example tables, you can find answers for the
following questions:
v What does Wing Lee work on?
v Who works on project number OP2012?

Both questions yield multiple answers. Wing Lee works on project numbers
OP2011 and OP2012. The employees who work on project number OP2012 are
Ramlal Mehta and Wing Lee.

Employee Resume
A resume is owned

by an employee

An employee
has a resume

Figure 13. Assigning one-to-one facts to an entity

Employee Department
One department can

have many employees

Many employees work
for one department

Figure 14. Assigning many-to-one facts to an entity

Employee Projects
Projects are worked on

by many employees

Employees work on
many projects

Figure 15. Assigning many-to-many facts to an entity

Chapter 4. DB2 objects and their relationships 75

Related reference:
“DB2 sample tables” on page 131

Application of business rules to relationships
Whether a given relationship is one-to-one, one-to-many, many-to-one, or
many-to-many, your relationships need to make good business sense.

Database designers and data analysts can be more effective when they have a good
understanding of the business. If they understand the data, the applications, and
the business rules, they can succeed in building a sound database design.

When you define relationships, you have a large influence on how smoothly your
business runs. If you perform this task poorly, your database and associated
applications are likely to have many problems, some of which might not manifest
themselves for years.

Attributes for entities
When you define attributes for entities, you generally work with the data
administrator to decide on names, data types, and appropriate values for the
attributes.
Related concepts:
“Entities for different types of relationships” on page 74

Naming conventions for attributes
Naming conventions for attributes help database designers ensure consistency
within an organization.

Most organizations have naming conventions. In addition to following these
conventions, data administrators also base attribute definitions on class words. A
class word is a single word that indicates the nature of the data that the attribute
represents.

Example: The class word NUMBER indicates an attribute that identifies the
number of an entity. Attribute names that identify the numbers of entities should
therefore include the class word of NUMBER. Some examples are
EMPLOYEE_NUMBER, PROJECT_NUMBER, and DEPARTMENT_NUMBER.

When an organization does not have well-defined guidelines for attribute names,
the data administrators try to determine how the database designers have
historically named attributes. Problems occur when multiple individuals are
inventing their own naming schemes without consulting each other.

Data types for attributes
A data type must be specified for each attribute.

Most organizations have well-defined guidelines for using the different data types.
Here is an overview of the main data types that you can use for the attributes of
your entities.

String Data that contains a combination of letters, numbers, and special
characters. String data types are listed below:
v CHARACTER: Fixed-length character strings. The common short name

for this data type is CHAR.
v VARCHAR: Varying-length character strings.

76 Introduction to DB2 for z/OS

v CLOB: Varying-length character large object strings, typically used when
a character string might exceed the limits of the VARCHAR data type.

v GRAPHIC: Fixed-length graphic strings that contain double-byte
characters.

v VARGRAPHIC: Varying-length graphic strings that contain double-byte
characters.

v DBCLOB: Varying-length strings of double-byte characters in a large
object.

v BINARY: A sequence of bytes that is not associated with a code page.
v VARBINARY: Varying-length binary strings.
v BLOB: Varying-length binary strings in a large object.
v XML: Varying-length string that is an internal representation of XML.

Numeric
Data that contains digits. Numeric data types are listed below:
v SMALLINT: for small integers.
v INTEGER: for large integers.
v BIGINT: for bigger values.
v DECIMAL(p,s) or NUMERIC(p,s), where p is precision and s is scale: for

packed decimal numbers with precision p and scale s. Precision is the
total number of digits, and scale is the number of digits to the right of
the decimal point.

v DECFLOAT: for decimal floating-point numbers.
v REAL: for single-precision floating-point numbers.
v DOUBLE: for double-precision floating-point numbers.

Datetime
Data values that represent dates, times, or timestamps. Datetime data types
are listed below:
v DATE: Dates with a three-part value that represents a year, month, and

day.
v TIME: Times with a three-part value that represents a time of day in

hours, minutes, and seconds.
v TIMESTAMP: Timestamps with a seven-part value that represents a date

and time by year, month, day, hour, minute, second, and microsecond.

Examples: You might use the following data types for attributes of the
EMPLOYEE entity:
v EMPLOYEE_NUMBER: CHAR(6)
v EMPLOYEE_LAST_NAME: VARCHAR(15)
v EMPLOYEE_HIRE_DATE: DATE
v EMPLOYEE_SALARY_AMOUNT: DECIMAL(9,2)

The data types that you choose are business definitions of the data type. During
physical database design you might need to change data type definitions or use a
subset of these data types. The database or the host language might not support all
of these definitions, or you might make a different choice for performance reasons.

For example, you might need to represent monetary amounts, but DB2 and many
host languages do not have a data type MONEY. In the United States, a natural
choice for the SQL data type in this situation is DECIMAL(10,2) to represent
dollars. But you might also consider the INTEGER data type for fast, efficient
performance.

Chapter 4. DB2 objects and their relationships 77

Related concepts:
“Column names” on page 190

Values for key attributes
When you design a database, you need to decide what values are acceptable for
the various attributes of an entity.

For example, you would not want to allow numeric data in an attribute for a
person's name. The data types that you choose limit the values that apply to a
given attribute, but you can also use other mechanisms. These other mechanisms
are domains, null values, and default values.

Domain

A domain describes the conditions that an attribute value must meet to be a valid
value. Sometimes the domain identifies a range of valid values. By defining the
domain for a particular attribute, you apply business rules to ensure that the data
makes sense.

Examples:

v A domain might state that a phone number attribute must be a 10-digit value
that contains only numbers. You would not want the phone number to be
incomplete, nor would you want it to contain alphabetic or special characters
and thereby be invalid. You could choose to use either a numeric data type or a
character data type. However, the domain states the business rule that the value
must be a 10-digit value that consists of numbers. Before finalizing this rule,
consider if you have a need for international phone numbers, which have
different formats.

v A domain might state that a month attribute must be a 2-digit value from 01 to
12. Again, you could choose to use datetime, character, or numeric data types for
this value, but the domain demands that the value must be in the range of 01
through 12. In this case, incorporating the month into a datetime data type is
probably the best choice. This decision should be reviewed again during
physical database design.

Null values

When you are designing attributes for your entities, you will sometimes find that
an attribute does not have a value for every instance of the entity. For example,
you might want an attribute for a person's middle name, but you can't require a
value because some people have no middle name. For these occasions, you can
define the attribute so that it can contain null values.

A null value is a special indicator that represents the absence of a value. The value
can be absent because it is unknown, not yet supplied, or nonexistent. The DBMS
treats the null value as an actual value, not as a zero value, a blank, or an empty
string.

Just as some attributes should be allowed to contain null values, other attributes
should not contain null values.

Example: For the EMPLOYEE entity, you might not want to allow the attribute
EMPLOYEE_LAST_NAME to contain a null value.

78 Introduction to DB2 for z/OS

Default values

In some cases, you might not want a specific attribute to contain a null value, but
you don't want to require that the user or program always provide a value. In this
case, a default value might be appropriate.

A default value is a value that applies to an attribute if no other valid value is
available.

Example: Assume that you don't want the EMPLOYEE_HIRE_DATE attribute to
contain null values and that you don't want to require users to provide this data. If
data about new employees is generally added to the database on the employee's
first day of employment, you could define a default value of the current date.
Related concepts:
Chapter 7, “Implementation of your database design,” on page 181

Normalization to avoid redundancy
Normalization helps you avoid redundancies and inconsistencies in your data. There
are several forms of normalization.

After you define entities and decide on attributes for the entities, you normalize
entities to avoid redundancy. An entity is normalized if it meets a set of constraints
for a particular normal form, which this information describes. Entities can be in
first, second, third, and fourth normal forms, each of which has certain rules that
are associated with it. In some cases, you follow these rules, and in other cases,
you do not follow them.

The rules for normal form are cumulative. In other words, for an entity to satisfy
the rules of second normal form, it also must satisfy the rules of first normal form.
An entity that satisfies the rules of fourth normal form also satisfies the rules of
first, second, and third normal form.

In the context of logical data modeling, an instance is one particular occurrence. An
instance of an entity is a set of data values for all the attributes that correspond to
that entity.

Example: The following figure shows one instance of the EMPLOYEE entity.

Related concepts:
“Database design with denormalization” on page 85

First normal form
A relational entity satisfies the requirement of first normal form if every instance of
the entity contains only one value, but never multiple repeating attributes.

EMPLOYEE

000010 CHRISTINE HAAS A00 1965-01-01 PRES 18 52750.00 4220.00

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

EMPLOYEE
_HIRE
_DATE

JOB
_NAME

EMPLOYEE
_YEARLY
_SALARY
_AMOUNT

COMMISSION
_AMOUNT

EDUCATION
_LEVEL

Figure 16. One instance of an entity

Chapter 4. DB2 objects and their relationships 79

Repeating attributes, often called a repeating group, are different attributes that are
inherently the same. In an entity that satisfies the requirement of first normal form,
each attribute is independent and unique in its meaning and its name.

Example: Assume that an entity contains the following attributes:
EMPLOYEE_NUMBER
JANUARY_SALARY_AMOUNT
FEBRUARY_SALARY_AMOUNT
MARCH_SALARY_AMOUNT

This situation violates the requirement of first normal form, because
JANUARY_SALARY_AMOUNT, FEBRUARY_SALARY_AMOUNT, and
MARCH_SALARY_AMOUNT are essentially the same attribute,
EMPLOYEE_MONTHLY_SALARY_AMOUNT.

Second normal form
An entity is in second normal form if each attribute that is not in the primary key
provides a fact that depends on the entire key.

A violation of the second normal form occurs when a nonprimary key attribute is a
fact about a subset of a composite key.

Example: An inventory entity records quantities of specific parts that are stored at
particular warehouses. The following figure shows the attributes of the inventory
entity.

Here, the primary key consists of the PART and the WAREHOUSE attributes
together. Because the attribute WAREHOUSE_ADDRESS depends only on the
value of WAREHOUSE, the entity violates the rule for second normal form. This
design causes several problems:
v Each instance for a part that this warehouse stores repeats the address of the

warehouse.
v If the address of the warehouse changes, every instance referring to a part that is

stored in that warehouse must be updated.
v Because of the redundancy, the data might become inconsistent. Different

instances could show different addresses for the same warehouse.
v If at any time the warehouse has no stored parts, the address of the warehouse

might not exist in any instances in the entity.

To satisfy second normal form, the information in the figure above would be in
two entities, as the following figure shows.

Figure 17. A primary key that violates second normal form

PART WAREHOUSE QUANTITY WAREHOUSE_ADDRESSWAREHOUSE

KeyKey

Figure 18. Two entities that satisfy second normal form

80 Introduction to DB2 for z/OS

Related concepts:
“DB2 keys” on page 26

Third normal form
An entity is in third normal form if each nonprimary key attribute provides a fact
that is independent of other non-key attributes and depends only on the key.

A violation of the third normal form occurs when a nonprimary attribute is a fact
about another non-key attribute.

Example: The first entity in the following figure contains the attributes
EMPLOYEE_NUMBER and DEPARTMENT_NUMBER. Suppose that a program or
user adds an attribute, DEPARTMENT_NAME, to the entity. The new attribute
depends on DEPARTMENT_NUMBER, whereas the primary key is on the
EMPLOYEE_NUMBER attribute. The entity now violates third normal form.

Changing the DEPARTMENT_NAME value based on the update of a single
employee, David Brown, does not change the DEPARTMENT_NAME value for
other employees in that department. The updated version of the entity in the
following figure illustrates the resulting inconsistency. Additionally, updating the
DEPARTMENT_NAME in this table does not update it in any other table that
might contain a DEPARTMENT_NAME column.

You can normalize the entity by modifying the EMPLOYEE_DEPARTMENT entity
and creating two new entities: EMPLOYEE and DEPARTMENT. The following
figure shows the new entities. The DEPARTMENT entity contains attributes for
DEPARTMENT_NUMBER and DEPARTMENT_NAME. Now, an update such as
changing a department name is much easier. You need to make the update only to
the DEPARTMENT entity.

Employee_Department table after update
Key

DAVID000200 BROWN D11 INSTALLATION MGMT

JENNIFER000220 LUTZ D11 MANUFACTURING SYSTEMS

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

DEPARTMENT
_NAME

RAMLAL000320 MEHTA E21 SOFTWARE SUPPORT

Employee_Department table before update
Key

DAVID000200 BROWN D11 MANUFACTURING SYSTEMS

JENNIFER000220 LUTZ D11 MANUFACTURING SYSTEMS

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

DEPARTMENT
_NAME

RAMLAL000320 MEHTA E21 SOFTWARE SUPPORT

Figure 19. The update of an unnormalized entity. Information in the entity has become
inconsistent.

Chapter 4. DB2 objects and their relationships 81

Fourth normal form
An entity is in fourth normal form if no instance contains two or more
independent, multivalued facts about an entity.

Example: Consider the EMPLOYEE entity. Each instance of EMPLOYEE could
have both SKILL_CODE and LANGUAGE_CODE. An employee can have several
skills and know several languages. Two relationships exist, one between employees
and skills, and one between employees and languages. An entity is not in fourth
normal form if it represents both relationships, as the following figure shows.

Instead, you can avoid this violation by creating two entities that represent both
relationships, as the following figure shows.

If, however, the facts are interdependent (that is, the employee applies certain
languages only to certain skills) you should not split the entity.

You can put any data into fourth normal form. A good rule to follow when doing
logical database design is to arrange all the data in entities that are in fourth

000200 DAVID BROWN

000329 RAMLAL MEHTA

000220 JENNIFER LUTZ

Key

D11 MANUFACTURING SYSTEMS

E21 SOFTWARE SUPPORT

Key

D11 000200

D11 000220

E21 000329

Key

Employee table

Department table

Employee_Department table

DEPARTMENT_NUMBER DEPARTMENT_NAME

EMPLOYEE_NUMBER EMPLOYEE_FIRST_NAME EMPLOYEE_LAST_NAME

DEPARTMENT_NUMBER EMPLOYEE_NUMBER

Figure 20. Normalized entities: EMPLOYEE, DEPARTMENT, and
EMPLOYEE_DEPARTMENT

E M P I D S K I L L _ C O D E L A N G UAG E _ C O D E S K I L L _ P R O F I C I E N C Y L A N G UAG E _ P R O F I C I E N C Y

Key

Figure 21. An entity that violates fourth normal form

EMPID SK ILL_CODE SK ILL_PROFIC IENCY EMPID LANGUAGE_CODE LANGUAGE_PROFIC IE NCY

Key Key

Figure 22. Entities that are in fourth normal form

82 Introduction to DB2 for z/OS

normal form. Then decide whether the result gives you an acceptable level of
performance. If the performance is not acceptable, denormalizing your design is a
good approach to improving performance.

Logical database design with Unified Modeling Language
UML modeling is based on object-oriented programming principals. UML defines a
standard set of modeling diagrams for all stages of developing a software system.

This information describes the entity-relationship model of database design.
Another model that you can use is Unified Modeling Language (UML). The Object
Management Group is a consortium that created the UML standard. This topic
provides a brief overview of UML.

The basic difference between the entity-relationship model and the UML model is
that, instead of designing entities as this information illustrates, you model objects.
Conceptually, UML diagrams are like the blueprints for the design of a software
development project.

Some examples of UML diagrams are listed below:

Class Identify high-level entities, known as classes. A class describes a set of
objects that have the same attributes. A class diagram shows the
relationships between classes.

Use case
Presents a high-level view of a system from the user's perspective. A use
case diagram defines the interactions between users and applications or
between applications. These diagrams graphically depict system behavior.
You can work with use-case diagrams to capture system requirements,
learn how the system works, and specify system behavior.

Activity
Models the workflow of a business process, typically by defining rules for
the sequence of activities in the process. For example, an accounting
company can use activity diagrams to model financial transactions.

Interaction
Shows the required sequence of interactions between objects. Interaction
diagrams can include sequence diagrams and collaboration diagrams.
v Sequence diagrams show object interactions in a time-based sequence

that establishes the roles of objects and helps determine class
responsibilities and interfaces.

v Collaboration diagrams show associations between objects that define
the sequence of messages that implement an operation or a transaction.

Component
Shows the dependency relationships between components, such as main
programs, and subprograms.

Many available tools from the WebSphere and Rational product families ease the
task of creating a UML model. Developers can graphically represent the
architecture of a database and how it interacts with applications using the
following UML modeling tools:
v WebSphere Business Integration Workbench, which provides a UML modeler for

creating standard UML diagrams.

Chapter 4. DB2 objects and their relationships 83

v A WebSphere Studio Application Developer plug-in for modeling Java and web
services applications and for mapping the UML model to the entity-relationship
model.

v Rational Rose® Data Modeler, which provides a modeling environment that
connects database designers who use entity-relationship modeling with
developers of OO applications.

v Rational Rapid Developer, an end-to-end modeler and code generator that
provides an environment for rapid design, integration, construction, and
deployment of web, wireless, and portal-based business applications.

v IBM Rational Data Architect (RDA) has rich functionality that gives data
professionals the ability to design a relational or federated database, and
perform impact analysis across models.

Similarities exist between components of the entity-relationship model and UML
diagrams. For example, the class structure corresponds closely to the entity
structure.

Using the modeling tool Rational Rose Data Modeler, developers use a specific
type of diagram for each type of development model:
v Business models—Use case diagram, activity diagram, sequence diagram
v Logical data models or application models—Class diagram
v Physical data models—Data model diagram

The logical data model provides an overall view of the captured business
requirements as they pertain to data entities. The data model diagram graphically
represents the physical data model. The physical data model uses the logical data
model's captured requirements, and applies them to specific DBMS languages.
Physical data models also capture the lower-level detail of a DBMS database.

Database designers can customize the data model diagram from other UML
diagrams, which enables them to work with concepts and terminology, such as
columns, tables, and relationships, with which they are already familiar.
Developers can also transform a logical data model into to a physical data model.

Because the data model diagram includes diagrams for modeling an entire system,
it enables database designers, application developers, and other development team
members to share and track business requirements throughout the development
process. For example, database designers can capture information, such as
constraints, triggers, and indexes directly on the UML diagram. Developers can
also transfer between object and data models and use basic transformation types
such as many-to-many relationships.
Related concepts:
“Logical database design using entity-relationship modeling” on page 71
“Physical database design”

Physical database design
The physical design of your database optimizes performance while ensuring data
integrity by avoiding unnecessary data redundancies. During physical design, you
transform the entities into tables, the instances into rows, and the attributes into
columns.

84 Introduction to DB2 for z/OS

After completing the logical design of your database, you now move to the
physical design. You and your colleagues need to make many decisions that affect
the physical design, some of which are listed below.
v How to translate entities into physical tables
v What attributes to use for columns of the physical tables
v Which columns of the tables to define as keys
v What indexes to define on the tables
v What views to define on the tables
v How to denormalize the tables
v How to resolve many-to-many relationships
v What designs can take advantage of hash access

Physical design is the time when you abbreviate the names that you chose during
logical design. For example, you can abbreviate the column name that identifies
employees, EMPLOYEE_NUMBER, to EMPNO. In DB2 for z/OS, you need to
abbreviate column names and table names to fit the physical constraint of a
30-byte maximum for column names and a 128-byte maximum for table names.

The task of building the physical design is a job that truly never ends. You need to
continually monitor the performance and data integrity characteristics of the
database as time passes. Many factors necessitate periodic refinements to the
physical design.

DB2 lets you change many of the key attributes of your design with ALTER SQL
statements. For example, assume that you design a partitioned table so that it
stores 36 months' worth of data. Later you discover that you need to extend that
design to 84 months' worth of data. You can add or rotate partitions for the current
36 months to accommodate the new design.

The remainder of this information includes some valuable information that can
help you as you build and refine the physical design of your database. However,
this task generally requires more experience with DB2 than most readers of this
introductory level information are likely to have.
Related concepts:
“Logical database design with Unified Modeling Language” on page 83
“Logical database design using entity-relationship modeling” on page 71

Database design with denormalization
The rules of normalization do not consider performance. In some cases, you need
to consider denormalization to improve performance.

During physical design, analysts transform the entities into tables and the
attributes into columns. Consider the example in “Second normal form” on page
80 again. The warehouse address column first appears as part of a table that
contains information about parts and warehouses. To further normalize the design
of the table, analysts remove the warehouse address column from that table.
Analysts also define the column as part of a table that contains information only
about warehouses.

Normalizing tables is generally the recommended approach. What if applications
require information about both parts and warehouses, including the addresses of
warehouses? The premise of the normalization rules is that SQL statements can
retrieve the information by joining the two tables. The problem is that, in some
cases, performance problems can occur as a result of normalization. For example,
some user queries might view data that is in two or more related tables; the result

Chapter 4. DB2 objects and their relationships 85

is too many joins. As the number of tables increases, the access costs can increase,
depending on the size of the tables, the available indexes, and so on. For example,
if indexes are not available, the join of many large tables might take too much
time. You might need to denormalize your tables. Denormalization is the intentional
duplication of columns in multiple tables, and it increases data redundancy.

Example 1: Consider the design in which both tables have a column that contains
the addresses of warehouses. If this design makes join operations unnecessary, it
could be a worthwhile redundancy. Addresses of warehouses do not change often,
and if one does change, you can use SQL to update all instances fairly easily.

Tip: Do not automatically assume that all joins take too much time. If you join
normalized tables, you do not need to keep the same data values synchronized in
multiple tables. In many cases, joins are the most efficient access method, despite
the overhead they require. For example, some applications achieve 44-way joins in
subsecond response time.

When you build your physical design, you and your colleagues need to decide
whether to denormalize the data. Specifically, you need to decide whether to
combine tables or parts of tables that are frequently accessed by joins that have
high-performance requirements. This is a complex decision about which this
information cannot give specific advice. To make the decision, you need to assess
the performance requirements, different methods of accessing the data, and the
costs of denormalizing the data. You need to consider the trade-off; is duplication,
in several tables, of often-requested columns less expensive than the time for
performing joins?

Recommendations:

v Do not denormalize tables unless you have a good understanding of the data
and the business transactions that access the data. Consult with application
developers before denormalizing tables to improve the performance of users'
queries.

v When you decide whether to denormalize a table, consider all programs that
regularly access the table, both for reading and for updating. If programs
frequently update a table, denormalizing the table affects performance of update
programs because updates apply to multiple tables rather than to one table.

In the following figure, information about parts, warehouses, and warehouse
addresses appear in two tables, both in normal form.

The following figure illustrates the denormalized table.

Resolving many-to-many relationships is a particularly important activity because
doing so helps maintain clarity and integrity in your physical database design. To

Figure 23. Two tables that satisfy second normal form

Figure 24. Denormalized table

86 Introduction to DB2 for z/OS

resolve many-to-many relationships, you introduce associative tables, which are
intermediate tables that you use to tie, or associate, two tables to each other.

Example 2: Employees work on many projects. Projects have many employees. In
the logical database design, you show this relationship as a many-to-many
relationship between project and employee. To resolve this relationship, you create
a new associative table, EMPLOYEE_PROJECT. For each combination of employee
and project, the EMPLOYEE_PROJECT table contains a corresponding row. The
primary key for the table would consist of the employee number (EMPNO) and
the project number (PROJNO).

Another decision that you must make relates to the use of repeating groups.

Example 3: Assume that a heavily used transaction requires the number of wires
that are sold by month in a specific year. Performance factors might justify
changing a table so that it violates the rule of first normal form by storing
repeating groups. In this case, the repeating group would be: MONTH, WIRE. The
table would contain a row for the number of sold wires for each month (January
wires, February wires, March wires, and so on).

Recommendation: If you decide to denormalize your data, document your
denormalization thoroughly. Describe, in detail, the logic behind the
denormalization and the steps that you took. Then, if your organization ever needs
to normalize the data in the future, an accurate record is available for those who
must do the work.
Related concepts:
“Creation of indexes” on page 221
Chapter 8, “DB2 performance management,” on page 251
“First normal form” on page 79
“Normalization to avoid redundancy” on page 79

Customized data views
A view offers an alternative way of describing data that exists in one or more
tables.

Some users might find that no single table contains all the data that they need;
rather, the data might be scattered among several tables. Furthermore, one table
might contain more data than users want to see or more than you want to
authorize them to see. For those situations, you can create views.

You might want to use views for a variety of reasons:
v To limit access to certain kinds of data

You can create a view that contains only selected columns and rows from one or
more tables. Users with the appropriate authorization on the view see only the
information that you specify in the view definition.

Example: You can define a view on the EMP table to show all columns except
for SALARY and COMM (commission). You can grant access to this view to
people who are not managers because you probably don't want them to have
access to this kind of information.

v To combine data from multiple tables
You can create a view that uses one of the set operators, UNION, INTERSECT,
or EXCEPT, to logically combine data from intermediate result tables.

Chapter 4. DB2 objects and their relationships 87

Additionally, you can specify either DISTINCT (the default) or ALL with a set
operator. You can query a view that is defined with a set operator as if it were
one large result table.

Example: Assume that three tables contain data for a time period of one month.
You can create a view that is the UNION ALL of three fullselects, one for each
month of the first quarter of 2004. At the end of the third month, you can view
comprehensive quarterly data.

You can create a view any time after the underlying tables exist. The owner of a
set of tables implicitly has the authority to create a view on them. A user with
administrative authority at the system or database level can create a view for any
owner on any set of tables. If they have the necessary authority, other users can
also create views on a table that they didn't create.
Related concepts:
“Authorization and security mechanisms for data access” on page 280
“A view that combines information from several tables” on page 238

Database design with indexes
You can use indexes to optimize data access, to ensure uniqueness, and to enable
clustering.

If you are involved in the physical design of a database, you work with other
designers to determine what columns and expressions you should index. You use
process models that describe how different applications are going to access the
data. This information is very important when you decide on indexing strategies to
ensure adequate performance.

The main purposes of an index are:

To optimize data access
In many cases, access to data is faster with an index than without an
index. If the DBMS uses an index to find a row in a table, the scan can be
faster than when the DBMS scans an entire table.

To ensure uniqueness
A table with a unique index cannot have two rows with the same values in
the column or columns that form the index key.

Example: If payroll applications use employee numbers, no two employees
can have the same employee number.

To enable clustering
A clustering index keeps table rows in a specified sequence to minimize
page access for a set of rows. When a table space is partitioned, rows are
clustered within each partition. Clustering can be in the same order as the
partitioning.

Example: If the partition is on the month and the clustering index is on
the name, the rows are clustered on the name within the month.

In general, users of the table are unaware that an index is in use. DB2 decides
whether to use the index to access the table.

Database design with hash access
You can use hash access to optimize data access for certain kinds of tables.

88 Introduction to DB2 for z/OS

If you are involved in the physical design of a database, you work with other
designers to determine when to enable hash access on tables.

The main purposes of hash organization is to optimize data access. If your
programs regularly access a single row in a table and the table has a unique
identifier for each row, you can use hash access to directly retrieve the data from
individual rows without scanning the index or the table space for the matching
equal predicate. Hash access is faster and more efficient than table scans and index
scans, but tables that have hash access enabled require more disk space. Hash
access requires that tables have at least one column with values that are unique to
each row.
Related concepts:
“DB2 hash spaces” on page 37
“Hash access paths” on page 274

Hash access (ACCESSTYPE='H', 'HN', or 'MH') (DB2 Performance)
Related tasks:

Organizing tables by hash for fast access to individual rows (DB2 Performance)

Creating tables that use hash organization (DB2 Administration Guide)

Altering tables to enable hash access (DB2 Administration Guide)

Monitoring hash access (DB2 Performance)

Managing space and page size for hash-organized tables (DB2 Performance)

Chapter 4. DB2 objects and their relationships 89

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_hashaccesstype.htm#db2z_hashaccesstype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablinghashaccess.htm#db2z_enablinghashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_creatingtablesforhash.htm#db2z_creatingtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringtablesforhash.htm#db2z_alteringtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_monitoringhashaccess.htm#db2z_monitoringhashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managehashspace.htm#db2z_managehashspace

90 Introduction to DB2 for z/OS

Chapter 5. SQL: The language of DB2

There are many different types of SQL statements. These statements have different
purposes, coding, and occasions for their use.

Ways to access data
You can retrieve data by using the SQL statement SELECT to specify a result table
that can be derived from one or more tables.

In this information, examples of SQL statements illustrate how to code and use
each clause of the SELECT statement to query a table. Examples of more advanced
queries explain how to fine-tune your queries by using functions and expressions
and how to query multiple tables with more complex statements that include
unions, joins, and subqueries. The best way to learn SQL is to develop SQL
statements like these examples and then execute them dynamically using a tool
such as DB2 QMF for Workstation.

The data that is retrieved through SQL is always in the form of a table. Like the
tables from which you retrieve the data, a result table has rows and columns. A

program fetches this data one or more rows at a time.

Example: Consider this SELECT statement:
SELECT LASTNAME, FIRSTNME

FROM EMP
WHERE DEPT = ’D11’
ORDER BY LASTNAME;

This SELECT statement returns the following result table:
LASTNAME FIRSTNME
======== ========
BROWN DAVID
LUTZ JENNIFER
STERN IRVING

Many of the examples in this information are based on the sample tables, which
represent sample information about a computer company.
Related concepts:
Chapter 2, “DB2 concepts,” on page 21

Ways to select data from columns
Several techniques are available for selecting columns from a database for your
result tables.

There are several ways to select data from the columns in your table, but you must
follow good practices for SELECT statements to guarantee good performance.
When you write a SELECT statement, you must select only the rows and columns
that your program needs, which reduces your CPU load and memory usage.

© Copyright IBM Corp. 2001, 2013 91

Selection of some columns

Select the columns that you want by specifying the name of each column. All
columns appear in the order that you specify, not in their order in the table.

Example: Notice that the DEPT table contains the DEPTNO column before the
MGRNO column. Consider the following query:
SELECT MGRNO, DEPTNO
FROM DSN8B10.DEPT
WHERE ADMRDEPT = ’A00’;

The result table looks like the following example:
MGRNO DEPTNO
====== ======
000010 A00
000020 B01
000030 C01
------ D01
000050 E01

This SELECT statement retrieves data that is contained in the two specified
columns of each row in the DEPT table. You can select data from up to 750
columns with a single SELECT statement.

Selection of all columns

You do not need to know the column names to select DB2 data. Use an asterisk (*)
in the SELECT clause to retrieve all columns from each selected row of the
specified table. DB2 selects the columns in the order that the columns are declared
in that table. Hidden columns, such as ROWID columns and XML document ID
columns, are not included in the result of the SELECT * statement.

Example: Consider this query:
SELECT *
FROM DSN8A10.DEPT
WHERE ADMRDEPT = ’A00’;

The result table looks like the following example:
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
====== ======== ===== ======== ========
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
E01 SUPPORT SERVICES 000050 A00

This SELECT statement retrieves data from each column of each retrieved row of
the DEPT table. Because the example does not specify a WHERE clause, the
statement retrieves data from all rows.

92 Introduction to DB2 for z/OS

In this example, the fifth row contains a null value because no manager is
identified for this department. Null values are displayed as dashes.

The SELECT * statement is most appropriate when used with dynamic SQL and
view definitions. Avoid using SELECT * in static SQL. You write static SQL
applications when you know the number of columns that your application returns.
That number can change outside your application. If a change occurs to the table,
you need to update the application to reflect the changed number of columns in
the table.

Use the SELECT * statement only when it is necessary to retrieve all the columns
in each retrieved row of your table. Selecting specific columns give your query a
higher filter that can retrieve your results more efficiently.

Elimination of duplicate rows

The DISTINCT keyword removes redundant duplicate rows from your result table
so that each row contains unique data. The following query uses the DISTINCT
keyword to list the department numbers of the different administrative
departments:

SELECT DISTINCT ADMRDEPT
FROM DSN8B10.DEPT;

The result table looks like the following example:
ADMRDEPT
========
A00
D11
E01

You can use more than one DISTINCT keyword in a single query.

Selection of derived columns and naming the resulting columns

You can select columns that are derived from a constant, an expression, or a
function. With the AS clause, you can name resulting columns. This keyword is
useful for a column that is derived from an expression or a function.

Example: In the following query, the expression SALARY+COMM is named
TOTAL_SAL:
SELECT EMPNO, (SALARY + COMM) AS TOTAL_SAL
FROM DSN8B10.EMP;

The result table looks like the following example:
EMPNO TOTAL_SAL
====== =========
000290 16567.00

Chapter 5. SQL: The language of DB2 93

000310 17172.00
200310 17172.00
000260 18630.00
000300 19170.00
000210 19732.00...

This query selects data from all rows in the EMP table, calculates the result of the
expression, and returns the columns in the order that the SELECT statement
indicates. In the result table, any derived columns, such as (SALARY + COMM) in
this example, do not have names. You can use the AS clause to give names to
unnamed columns.

To order the rows in the result table by the values in a derived column, specify a
name for the column by using the AS clause and use that name in the ORDER BY
clause.

Related concepts:
Chapter 6, “Application programming for DB2,” on page 153
“Ways to filter the number of returned rows” on page 102
“Retrieving and excluding rows with null values” on page 103
“Ways to order rows” on page 110
Related reference:

select-statement (DB2 SQL)

How a SELECT statement works
SQL statements, including SELECT, are made up a series of clauses that are
defined by SQL as being executed in a logical order. SELECT statements allow
users to definite and organize information that is retrieved from a specified table.

The following clause list shows the logical order of clauses in a statement:
1. FROM
2. WHERE
3. GROUP BY
4. HAVING
5. SELECT
6. ORDER BY

In addition:
v Subselects are processed from the innermost to the outermost subselect. A

subselect in a WHERE clause or a HAVING clause of another SQL statement is
called a subquery.

v The ORDER BY clause can be included in a subselect, a fullselect, or in a
SELECT statement.

v If you use an AS clause to define a name in the outermost SELECT clause, only
the ORDER BY clause can refer to that name. If you use an AS clause in a
subselect, you can refer to the name that it defines outside the subselect.

94 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

Example 1: Consider this SELECT statement, which is not valid:
SELECT EMPNO, (SALARY + COMM) AS TOTAL_SAL

FROM EMP
WHERE TOTAL_SAL> 50000;

The WHERE clause is not valid because DB2 does not process the AS TOTAL_SAL
portion of the statement until after the WHERE clause is processed. Therefore, DB2
does not recognize the name TOTAL_SAL that the AS clause defines.

Example 2: The following SELECT statement, however, is valid because the
ORDER BY clause refers to the column name TOTAL_SAL that the AS clause
defines:
SELECT EMPNO, (SALARY + COMM) AS TOTAL_SAL

FROM EMP
ORDER BY TOTAL_SAL;

Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)
Related reference:

select-statement (DB2 SQL)

SQL functions and expressions
You can use functions and expressions to control the appearance and values of
rows and columns in your result tables. DB2 offers many built-in functions,
including aggregate functions and scalar functions.

A built-in function is a function that is supplied with DB2 for z/OS.

Concatenation of strings
You can concatenate strings by using the CONCAT operator or the CONCAT
built-in function.

When the operands of two strings are concatenated, the result of the expression is

a string. The operands of concatenation must be compatible strings.

Example: Consider this query:
SELECT LASTNAME CONCAT ’,’ CONCAT FIRSTNME

FROM EMP;

This SELECT statement concatenates the last name, a comma, and the first name of
each result row. The result table looks like this:
================
HAAS,CHRISTINE
THOMPSON,MICHAEL
KWAN,SALLY
STERN,IRVING...

Alternative syntax for the SELECT statement shown above is as follows:

Chapter 5. SQL: The language of DB2 95

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

SELECT LASTNAME CONCAT(CONCAT(LASTNAME,’,’),FIRSTNME)
FROM EMP;

In this case, the SELECT statement concatenates the last name and then
concatenates that result to the first name.

Related reference:

CONCAT (DB2 SQL)

select-statement (DB2 SQL)

Calculation of values in one or more columns
You can perform calculations on numeric or datetime data.

The numeric data types are binary integer, floating-point, and decimal. The
datetime data types are date, time, and timestamp.

You can retrieve calculated values, just as you display column values, for selected

rows.

Example: Consider this query:
SELECT EMPNO,

SALARY / 12 AS MONTHLY_SAL,
SALARY / 52 AS WEEKLY_SAL
FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’;

The result table looks like the following example:
EMPNO MONTHLY_SAL WEEKLY_SAL
===== =========== ==========
000010 4395.83333333 1014.42307692
000110 3875.00000000 894.23076923
000120 2437.50000000 562.50000000
200010 3875.00000000 894.23076923
200120 2437.50000000 562.50000000

The result table displays the monthly and weekly salaries of employees in
department A00. If you prefer results with only two digits to the right of the
decimal point, you can use the DECIMAL function.

Example: To retrieve the department number, employee number, salary, and
commission for those employees whose combined salary and commission is greater
than $45 000, write the query as follows:
SELECT WORKDEPT, EMPNO, SALARY, COMM

FROM DSN8B10.EMP
WHERE SALARY + COMM > 45000;

The result table looks like following example:
DEPT EMPNO SALARY COMM
==== ====== ======== =======
A00 000010 52750.00 4220.00
A00 000110 46500.00 3720.00
A00 200010 46500.00 4220.00

96 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_concat.htm#db2z_bif_concat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

Related concepts:
“Scalar functions” on page 98

Calculation of aggregate values
You can use the SQL aggregate functions to calculate values that are based on
entire columns of data. The calculated values are from only the rows that satisfy
the WHERE clause and are therefore selected.

An aggregate function is an operation that derives its result by using values from
one or more rows. An aggregate function is also known as a column function. The
argument of an aggregate function is a set of values that are derived from an
expression.

You can use the following aggregate functions:
SUM Returns the total value.
MIN Returns the minimum value.
AVG Returns the average value.
MAX Returns the maximum value.
COUNT

Returns the number of selected rows.
COUNT_BIG

Returns the number of rows or values in a set of rows or values. The result
can be greater than the maximum value of an integer.

XMLAGG
Returns a concatenation of XML elements from a collection of XML
elements.

Example 1: This query calculates, for department A00, the sum of employee
salaries, the minimum, average, and maximum salary, and the count of employees
in the department:
SELECT SUM(SALARY) AS SUMSAL,

MIN(SALARY) AS MINSAL,
AVG(SALARY) AS AVGSAL,
MAX(SALARY) AS MAXSAL,
COUNT(*) AS CNTSAL

FROM EMP
WHERE DEPT = ’A00’;

The result table looks like this:

You can use (*) in the COUNT and COUNT_BIG functions. In this example,
COUNT(*) returns the rows that DB2 processes based on the WHERE clause.

Example 2: This query counts the number of employees that are described in the
EMP table:
SELECT COUNT(*)

FROM EMP;

You can use DISTINCT with the SUM, AVG, COUNT, and COUNT_BIG functions.
DISTINCT means that the selected function operates on only the unique values in
a column.

SUMSAL MINSAL AVGSAL MAXSAL CNTSAL
========= ======== ============== ======== ======
128500.00 29250.00 42833.33333333 52750.00 3

Chapter 5. SQL: The language of DB2 97

Example 3: This query counts the different jobs in the EMP table:
SELECT COUNT(DISTINCT JOB)

FROM EMP;

Aggregate functions like COUNT ignore nulls in the values on which they operate.
The preceding example counts distinct job values that are not null.

Note: Do not use DISTINCT with the MAX and MIN functions because using it
does not affect the result of those functions.

You can use SUM and AVG only with numbers. You can use MIN, MAX, COUNT,
and COUNT_BIG with any built-in data type.
Related reference:

DECIMAL or DEC (DB2 SQL)

Scalar functions
DB2 offers many different scalar functions, including the CHAR, DECIMAL, and
NULLIF scalar functions.

Like an aggregate function, a scalar function produces a single value. Unlike the
argument of an aggregate function, an argument of a scalar function is a single

value.

Example: YEAR: This query, which uses the YEAR scalar function, returns the year
in which each employee in a particular department was hired:
SELECT YEAR(HIREDATE) AS HIREYEAR

FROM EMP
WHERE DEPT = ’A00’;

The result table looks like this:
HIREYEAR
========

1975
1990
1985

The YEAR scalar function produces a single scalar value for each row of EMP that
satisfies the search condition. In this example, three rows satisfy the search
condition, so YEAR results in three scalar values.

DB2 offers many different scalar functions, including CHAR, DECIMAL, and
NULLIF.

CHAR
The CHAR function returns a string representation of the input value.

Example: CHAR: The following SQL statement sets the host variable
AVERAGE to the character string representation of the average employee
salary:
SELECT CHAR(AVG(SALARY))

INTO :AVERAGE
FROM EMP;

98 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_decimal.htm#db2z_bif_decimal

DECIMAL
The DECIMAL function returns a decimal representation of the input
value.

Example: DECIMAL: Assume that you want to change the decimal data
type to return a value with a precision and scale that you prefer. The
following example represents the average salary of employees as an
eight-digit decimal number (the precision) with two of these digits to the
right of the decimal point (the scale):
SELECT DECIMAL(AVG(SALARY),8,2)

FROM EMP;

The result table looks like this:
==========

32602.30

NULLIF
NULLIF returns a null value if the two arguments of the function are
equal. If the arguments are not equal, NULLIF returns the value of the first
argument.

Example: NULLIF: Suppose that you want to calculate the average
earnings of all employees who are eligible to receive a commission. All
eligible employees have a commission of greater than 0, and ineligible
employees have a value of 0 for commission:
SELECT AVG(SALARY+NULLIF(COMM,0))

AS "AVERAGE EARNINGS"
FROM EMP;

The result table looks like this:
AVERAGE EARNINGS
================

35248.8461538

Specifying a simple expression for the sum of the salary and commission in the
select list would include all employees in the calculation of the average. To avoid
including those employees who do not earn a commission in the average, you can
use the NULLIF function to return a null value instead. The result of adding a null
value for the commission to SALARY is itself a null value, and aggregate functions,
like AVG, ignore null values. Therefore, this use of NULLIF inside AVG causes the
query to exclude each row in which the employee is not eligible for a commission.
Related reference:

Scalar functions (DB2 SQL)

Nested functions
Scalar and aggregate functions can be nested in several ways.

You can nest functions in the following ways:

v Scalar functions within scalar functions

Example: Suppose that you want to know the month and day of hire for a
particular employee in department D11. Suppose that you also want the result in
USA format (mm/dd/yyyy). Use this query:

Chapter 5. SQL: The language of DB2 99

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_scalarfunctionsintro.htm#db2z_scalarfunctionsintro

SELECT SUBSTR((CHAR(HIREDATE, USA)),1,5)
FROM EMP
WHERE LASTNAME = ’BROWN’ AND DEPT = ’D11’;

The result table looks like this:
=====
03/03

v Scalar functions within aggregate functions
In some cases, you might need to invoke a scalar function from within an

aggregate function.

Example: Suppose that you want to know the average number of years of
employment for employees in department A00. Use this query:
SELECT AVG(DECIMAL(YEAR(CURRENT DATE - HIREDATE)))

FROM EMP
WHERE DEPT = ’A00’;

The result table looks like this:
=======
20.6666

The actual form of the result, 20.6666, depends on how you define the host
variable to which you assign the result.

v Aggregate functions within scalar functions

Example: Suppose that you want to know the year in which the last employee
was hired in department E21. Use this query:
SELECT YEAR(MAX(HIREDATE))

FROM EMP
WHERE DEPT = ’E21’;

The result table looks like this:
====
2002

Related concepts:
“Date, time, and timestamp data types” on page 194

Aggregate functions (DB2 SQL)
Related reference:

Scalar functions (DB2 SQL)

User-defined functions
User-defined functions are small programs that you can write to perform an
operation. You can use a user-defined function wherever you can use a built-in
function.

The CREATE FUNCTION statement is used to explicitly create a user-defined
function.

100 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_aggregatefunctionsintro.htm#db2z_aggregatefunctionsintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_scalarfunctionsintro.htm#db2z_scalarfunctionsintro

Example: Assume that you define a distinct type called US_DOLLAR. You might
want to allow instances of US_DOLLAR to be added. You can create a user-defined
function that uses a built-in addition operation and takes instances of US_DOLLAR
as input. This function, called a sourced function, requires no application coding.
Alternatively, you might create a more complex user-defined function that can take
a US_DOLLAR instance as input and then convert from U.S. dollars to another
currency.

You name the function and specify its semantics so that the function satisfies your
specific programming needs. You can use a user-defined function wherever you
can use a built-in function.
Related concepts:
“Creation of user-defined functions” on page 248

User-defined functions (DB2 SQL)

CASE expressions
You can use a CASE expression to execute SQL expressions in several different
ways depending on the value of a search condition.

One use of a CASE expression is to replace the values in a result table with more

meaningful values.

Example: Suppose that you want to display the employee number, name, and
education level of all field representatives in the EMP table. Education levels are
stored in the EDL column as small integers, but you want to replace the values in
this column with more descriptive phrases. Use the following query:
SELECT EMPNO, FIRSTNME, LASTNAME,

CASE
WHEN EDL<=12 THEN ’HIGH SCHOOL OR LESS’
WHEN EDL>12 AND EDL<=14 THEN ’JUNIOR COLLEGE’
WHEN EDL>14 AND EDL<=17 THEN ’FOUR-YEAR COLLEGE’
WHEN EDL>17 THEN ’GRADUATE SCHOOL’
ELSE ’UNKNOWN’

END
AS EDUCATION
FROM EMP
WHERE JOB=’FLD’;

The result table looks like following example:
EMPNO FIRSTNME LASTNAME EDUCATION
====== ======== ======== =================
000320 RAMLAL MEHTA FOUR-YEAR COLLEGE
000330 WING LEE JUNIOR COLLEGE
200340 ROY ALONZO FOUR-YEAR COLLEGE

The CASE expression replaces each small integer value of EDL with a description
of the amount of each field representative's education. If the value of EDL is null,
the CASE expression substitutes the word UNKNOWN.

Another use of a CASE expression is to prevent undesirable operations, such as
division by zero, from being performed on column values.

Example: If you want to determine the ratio of employee commissions to their
salaries, you can execute this query:
SELECT EMPNO, DEPT,

COMM/SALARY AS "COMMISSION/SALARY",
FROM EMP;

Chapter 5. SQL: The language of DB2 101

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_userdefinedfunctionssql.htm#db2z_userdefinedfunctionssql

This SELECT statement has a problem, however. If an employee has not earned
any salary, a division-by-zero error occurs. By modifying the following SELECT
statement with a CASE expression, you can avoid division by zero:
SELECT EMPNO, DEPT,

(CASE WHEN SALARY=0 THEN NULL
ELSE COMM/SALARY
END) AS "COMMISSION/SALARY"
FROM EMP;

The CASE expression determines the ratio of commission to salary only if the
salary is not zero. Otherwise, DB2 sets the ratio to a null value.

Related reference:

CASE expressions (DB2 SQL)

Ways to filter the number of returned rows
A variety of different comparison operators in the predicate of a WHERE clause let
you filter the number of returned rows.

You can use a WHERE clause to select the rows that are of interest to you. For
example, suppose you want to select only the rows that represent the employees
who earn a salary greater than $40 000. A WHERE clause specifies a search
condition. A search condition is the criteria that DB2 uses to select rows. For any
given row, the result of a search condition is true, false, or unknown. If the search
condition evaluates to true, the row qualifies for additional processing. In other
words, that row can become a row of the result table that the query returns. If the
condition evaluates to false or unknown, the row does not qualify for additional
processing.

A search condition consists of one or more predicates that are combined through the
use of the logical operators AND, OR, and NOT. An individual predicate specifies
a test that you want DB2 to apply to each row, for example, SALARY> 40000.
When DB2 evaluates a predicate for a row, it evaluates to true, false, or unknown.
Results are unknown only if a value (called an operand) of the predicate is null. If
a particular employee's salary is not known (and is set to null), the result of the
predicate SALARY> 40000 is unknown.

You can use a variety of different comparison operators in the predicate of a
WHERE clause, as shown in the following table.

Table 4. Comparison operators used in conditions

Type of
comparison Specified with... Example of predicate with comparison

Equal to null IS NULL COMM IS NULL

Equal to = DEPTNO = 'X01'

Not equal to <> DEPTNO <> 'X01'

Less than < AVG(SALARY) < 30000

Less than or equal to <= SALARY <= 50000

Greater than > SALARY> 25000

Greater than or equal to >= SALARY>= 50000

Similar to another value LIKE NAME LIKE ' or STATUS LIKE 'N_'

102 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_caseexpression.htm#db2z_caseexpression

Table 4. Comparison operators used in conditions (continued)

Type of
comparison Specified with... Example of predicate with comparison

At least one of two
predicates

OR HIREDATE < '2000-01-01' OR SALARY < 40000

Both of two predicates AND HIREDATE < '2000-01-01' AND SALARY < 40000

Between two values BETWEEN SALARY BETWEEN 20000 AND 40000

Equals a value in a set IN (X, Y, Z) DEPTNO IN ('B01', 'C01', 'D11')

Compares a value to
another value

DISTINCT value 1 IS DISTINCT from value 2

Note: Another predicate, EXISTS, tests for the existence of certain rows. The result of the predicate is true if the
result table that is returned by the subselect contains at least one row. Otherwise, the result is false.

The XMLEXISTS predicate can be used to restrict the set of rows that a query returns, based on the values in XML
columns. The XMLEXISTS predicate specifies an XPath expression. If the XPath expression returns an empty
sequence, the value of the XMLEXISTS predicate is false. Otherwise, XMLEXISTS returns true. Rows that correspond
to an XMLEXISTS value of true are returned.

You can also search for rows that do not satisfy one of the predicates by using the
NOT keyword before the specified predicate.
Related concepts:

Predicates (DB2 SQL)
Related tasks:

Using predicates efficiently (DB2 Performance)
Related reference:

Summary of predicate processing (DB2 Performance)

where-clause (DB2 SQL)

Retrieving and excluding rows with null values
A null value indicates the absence of a column value in a row. A null value is not
the same as zero or all blanks. You can retrieve or exclude rows that contain a null
value in a specific row.

Example 1: You can use a WHERE clause to retrieve rows that contain a null value
in a specific column. Specify:
WHERE column-name IS NULL

Example 2: You can also use a predicate to exclude null values. Specify:
WHERE column-name IS NOT NULL

You cannot use the equal sign to retrieve rows that contain a null value. (WHERE
column-name = NULL is not allowed.)

Chapter 5. SQL: The language of DB2 103

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_predicatesoverview.htm#db2z_predicatesoverview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicaterules.htm#db2z_predicaterules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_summarypredicateprocessing.htm#db2z_summarypredicateprocessing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause

Equalities and inequalities
You can use an equal sign (=), various inequality symbols, and the NOT keyword
to specify search conditions in the WHERE clause.
Related tasks:

Using predicates efficiently (DB2 Performance)
Related reference:

Basic predicate (DB2 SQL)

where-clause (DB2 SQL)

How to test for equality:

You can use an equal sign (=) to select rows for which a specified column contains
a specified value.

To select only the rows where the department number is A00, use WHERE DEPT =
'A00' in your SELECT statement:
SELECT FIRSTNME, LASTNAME

FROM EMP
WHERE DEPT = ’A00’;

This query retrieves the first and last name of each employee in department A00.

How to test for inequalities:

You can use inequality operators to specify search conditions in your SELECT
statements.

You can use the following inequalities to specify search conditions:
<> < <= > >=

Example: To select all employees that were hired before January 1, 2001, you can
use this query:
SELECT HIREDATE, FIRSTNME, LASTNAME

FROM EMP
WHERE HIREDATE < ’2001-01-01’;

This SELECT statement retrieves the hire date and name for each employee that
was hired before 2001.

How to test for equality or inequality in a set of columns:

You can use the equal operator or the not equal operator to test whether a set of
columns is equal or not equal to a set of values.

Example 1: To select the rows in which the department number is A00 and the
education level is 14, you can use this query:

104 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicaterules.htm#db2z_predicaterules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_basicpredicate.htm#db2z_basicpredicate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause

SELECT FIRSTNME, LASTNAME
FROM EMP
WHERE (DEPT, EDL) = (’A00’, 14);

Example 2: To select the rows in which the department number is not A00, or the
education level is not 14, you can use this query:
SELECT FIRSTNME, LASTNAME

FROM EMP
WHERE (DEPT, EDL) <> (’A00’, 14);

How to test for a false condition:

You can use the NOT keyword to test for a false condition.

You can use the NOT keyword to select all rows for which the predicate is false
(but not rows for which the predicate is unknown). The NOT keyword must

precede the predicate.

Example: To select all managers whose compensation is not greater than $40 000,
use:
SELECT DEPT, EMPNO

FROM EMP
WHERE NOT (SALARY + COMM)> 40000 AND JOB = ’MGR’
ORDER BY DEPT;

The following table contrasts WHERE clauses that use a NOT keyword with
comparison operators and WHERE clauses that use only comparison operators.
The WHERE clauses are equivalent.

Table 5. Equivalent WHERE clauses

Using NOT Equivalent clause without NOT

WHERE NOT DEPTNO = 'A00' WHERE DEPTNO <> 'A00'

WHERE NOT DEPTNO < 'A00' WHERE DEPTNO>= 'A00'

WHERE NOT DEPTNO> 'A00' WHERE DEPTNO <= 'A00'

WHERE NOT DEPTNO <> 'A00' WHERE DEPTNO = 'A00'

WHERE NOT DEPTNO <= 'A00' WHERE DEPTNO> 'A00'

WHERE NOT DEPTNO>= 'A00' WHERE DEPTNO < 'A00'

You cannot use the NOT keyword directly preceding equality and inequality
comparison operators.

Example: The following WHERE clause results in an error:
Wrong:
WHERE DEPT NOT = ’A00’

Example: The following two clauses are equivalent:
Correct:
WHERE MGRNO NOT IN (’000010’, ’000020’)
WHERE NOT MGRNO IN (’000010’, ’000020’)

Chapter 5. SQL: The language of DB2 105

Similarities of character data
You can use the LIKE predicate to specify a character string that is similar to the
column value of rows that you want to select.

A LIKE pattern must match the character string in its entirety.
v Use a percent sign (%) to indicate any string of zero or more characters.
v Use an underscore (_) to indicate any single character.

You can also use NOT LIKE to specify a character string that is not similar to the
column value of rows that you want to select.

How to select values similar to a string of unknown characters

The percent sign (%) means “any string or no string.”

Example: The following query selects data from each row for employees with the
initials D B:
SELECT FIRSTNME, LASTNAME, DEPT

FROM EMP
WHERE FIRSTNME LIKE ’D%’ AND LASTNAME LIKE ’B

Example: The following query selects data from each row of the department table,
where the department name contains “CENTER” anywhere in its name:
SELECT DEPTNO, DEPTNAME

FROM DEPT
WHERE DEPTNAME LIKE ’

Example: Assume that the DEPTNO column is a three-character column of fixed
length. You can use the following search condition to return rows with department
numbers that begin with E and end with 1:
...WHERE DEPTNO LIKE ’E%1’;

In this example, if E1 is a department number, its third character is a blank and
does not match the search condition. If you define the DEPTNO column as a
three-character column of varying length instead of fixed length, department E1
would match the search condition. Varying-length columns can have any number
of characters, up to and including the maximum number that was specified when
the column was created.

Example: The following query selects data from each row of the department table,
where the department number starts with an E and contains a 1:
SELECT DEPTNO, DEPTNAME

FROM DEPT
WHERE DEPTNO LIKE ’E

How to select a value similar to a single unknown character

The underscore (_) means “any single character.”

106 Introduction to DB2 for z/OS

Example: Consider the following query:
SELECT DEPTNO, DEPTNAME

FROM DEPT
WHERE DEPTNO LIKE ’E_1’;

In this example, 'E_1' means E, followed by any character, followed by 1. (Be
careful: '_' is an underscore character, not a hyphen.) 'E_1' selects only
three-character department numbers that begin with E and end with 1; it does not
select the department number 'E1'.

Related concepts:
“String data types” on page 191

Multiple conditions
You can use the AND and OR operators to combine predicates and search for data
based on multiple conditions.

Use the AND operator to specify that a search must satisfy both of the conditions.
Use the OR operator to specify that the search must satisfy at least one of the

conditions.

Example: This query retrieves the employee number, hire date, and salary for each
employee who was hired before 1998 and earns a salary of less than $35 000 per
year:
SELECT EMPNO, HIREDATE, SALARY

FROM EMP
WHERE HIREDATE < ’1998-01-01’ AND SALARY < 35000;

Example: This query retrieves the employee number, hire date, and salary for each
employee who either was hired before 1998, or earns a salary less than $35 000 per
year or both

Note: :
SELECT EMPNO, HIREDATE, SALARY

FROM EMP
WHERE HIREDATE < ’1998-01-01’ OR SALARY < 35000;

How to use parentheses with AND and OR

If you use more than two conditions with the AND or OR operators, you can use
parentheses to specify the order in which you want DB2 to evaluate the search
conditions. If you move the parentheses, the meaning of the WHERE clause can
change significantly.

Example: This query retrieves the row of each employee that satisfies at least one
of the following conditions:
v The employee's hire date is before 1998 and salary is less than $40 000.
v The employee's education level is less than 18.

Chapter 5. SQL: The language of DB2 107

SELECT EMPNO
FROM EMP
WHERE (HIREDATE < ’1998-01-01’ AND SALARY < 40000) OR (EDL < 18);

Example: This query retrieves the row of each employee that satisfies both of the
following conditions:
v The employee's hire date is before 1998.
v The employee's salary is less than $40 000 or the employee's education level is

less than 18.
SELECT EMPNO

FROM EMP
WHERE HIREDATE < ’1998-01-01’ AND (SALARY < 40000 OR EDL < 18);

Example: This query retrieves the employee number of each employee that
satisfies one of the following conditions:
v Hired before 1998 and salary is less than $40 000.
v Hired after January 1, 1998, and salary is greater than $40 000.
SELECT EMPNO

FROM EMP
WHERE (HIREDATE < ’1998-01-01’ AND SALARY < 40000)
OR (HIREDATE> ’1998-01-01’ AND SALARY> 40000);

How to use NOT with AND and OR

When you use NOT with AND and OR, the placement of the parentheses is
important.

Example: The following query retrieves the employee number, education level,
and job title of each employee who satisfies both of the following conditions:
v The employee's salary is less than $50 000.
v The employee's education level is less than 18.
SELECT EMPNO, EDL, JOB

FROM EMP
WHERE NOT (SALARY>= 50000) AND (EDL < 18);

In this query, the NOT operator affects only the first search condition (SALARY>=
50000).

Example: The following query retrieves the employee number, education level,
and job title of each employee who satisfies at least one of the following
conditions:
v The employee's salary is less than or equal to $50,000.
v The employee's education level is less than or equal to 18.
SELECT EMPNO, EDL, JOB

FROM EMP
WHERE NOT (SALARY> 50000 AND EDL> 18);

To negate a set of predicates, enclose the entire set in parentheses and precede the
set with the NOT keyword.

108 Introduction to DB2 for z/OS

Ranges of values
You can use BETWEEN to select rows in which a column has a value within two
limits.

Specify the lower boundary of the BETWEEN predicate first, and then specify the

upper boundary. The limits are inclusive.

Example: Suppose that you specify the following WHERE clause in which the
value of the column-name column is an integer:
WHERE column-name BETWEEN 6 AND 8

DB2 selects all rows whose column-name value is 6, 7, or 8. If you specify a range
from a larger number to a smaller number (for example, BETWEEN 8 AND 6), the
predicate never evaluates to true.

Example: This query retrieves the department number and manager number of
each department whose number is between C00 and D31:
SELECT DEPTNO, MGRNO

FROM DEPT
WHERE DEPTNO BETWEEN ’C00’ AND ’D31’;

You can also use NOT BETWEEN to select rows in which a column has a value
that is outside the two limits.

Values in a list
You can use the IN predicate to select each row that has a column value that is
equal to one of several listed values.

In the values list after the IN predicate, the order of the items is not important and
does not affect the ordering of the result. Enclose the entire list of values in

parentheses, and separate items by commas; the blanks are optional.

Example: The following query retrieves the department number and manager
number for departments B01, C01, and D11:
SELECT DEPTNO, MGRNO

FROM DEPT
WHERE DEPTNO IN (’B01’, ’C01’, ’D11’);

Using the IN predicate gives the same results as a much longer set of conditions
that are separated by the OR keyword.

Example: You can alternatively code the WHERE clause in the SELECT statement
in the previous example as:
WHERE DEPTNO = ’B01’ OR DEPTNO = ’C01’ OR DEPTNO = ’D11’;

However, the IN predicate saves coding time and is easier to understand.

Example: The following query finds the projects that do not include employees in
department C01 or E21:

Chapter 5. SQL: The language of DB2 109

SELECT PROJNO, PROJNAME, RESPEMP
FROM PROJ
WHERE DEPTNO NOT IN (’C01’, ’E21’);

Related concepts:

(ACCESSTYPE='N' or 'IN') (DB2 Performance)
Related reference:

IN predicate (DB2 SQL)

Ways to order rows
You can use the ORDER BY clause to retrieve rows in a specific order.

Using ORDER BY is the only way to guarantee that your rows are in the sequence
in which you want them. This information demonstrates how to use the ORDER
BY clause.
Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)
Related reference:

order-by-clause (DB2 SQL)

Sort key
You can specify the order of selected rows by using sort keys that you identify in
the ORDER BY clause.

A sort key can be a column name, an integer that represents the number of a
column in the result table, or an expression. You can identify more than one
column.

You can list the rows in ascending or descending order. Null values are included
last in an ascending sort and first in a descending sort.

DB2 sorts strings in the collating sequence that is associated with the encoding
scheme of the table. DB2 sorts numbers algebraically and sorts datetime values
chronologically.
Related reference:

order-by-clause (DB2 SQL)

Ascending order
You can retrieve results in ascending order by specifying ASC in the ORDER BY
clause of your SELECT statement.

Example: The following query retrieves the employee numbers, last names, and
hire dates of employees in department A00 in ascending order of hire dates:
SELECT EMPNO, LASTNAME, HIREDATE

FROM EMP
WHERE DEPT = ’A00’
ORDER BY HIREDATE ASC;

110 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_inlistaccess.htm#db2z_inlistaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_inpredicate.htm#db2z_inpredicate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause

The result table looks like this:
EMPNO LASTNAME HIREDATE
====== ========= ==========
000010 HAAS 1975-01-01
200010 HEMMINGER 1985-01-01
000120 CONNOR 1990-12-05

This SELECT statement shows the seniority of employees. ASC is the default
sorting order.

Related reference:

order-by-clause (DB2 SQL)

Descending order
You can retrieve results in descending order by specifying DESC in the ORDER BY
clause.

Example: This query retrieves department numbers, last names, and employee
numbers in descending order of department number:
SELECT DEPT, LASTNAME, EMPNO

FROM EMP
WHERE JOB = ’SLS’
ORDER BY DEPT DESC;

The result table looks like this:
DEPT LASTNAME EMPNO
==== ========= ======
C01 NICHOLLS 000140
A00 HEMMINGER 200010
A00 CONNOR 000120

Related reference:

order-by-clause (DB2 SQL)

Sort keys with multiple columns
You can specify more than one column name in the ORDER BY clause to order
rows by the values in more than one column.

When several rows have the same first ordering column value, those rows are in
order of the second column that you identify in the ORDER BY clause, and then

on the third ordering column, and so on.

Example: Consider this query:
SELECT JOB, EDL, LASTNAME

FROM EMP
WHERE DEPT = ’A00’
ORDER BY JOB, EDL;

The result table looks like the following example:

Chapter 5. SQL: The language of DB2 111

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause

JOB EDL LASTNAME
==== === ==========
PRES 18 HAAS
SLS 14 CONNOR
SLS 18 HEMMINGER

Related reference:

order-by-clause (DB2 SQL)

Sort keys with expressions
You can specify an expression with operators as the sort key for the result table of
a SELECT statement.

When you specify an expression with operators as the sort key, the query to which

ordering is applied must be a subselect.

Example: The following query is a part of a subselect. The query retrieves the
employee numbers, salaries, commissions, and total compensation (salary plus
commission) for employees with a total compensation greater than 40000. Order
the results by total compensation:
SELECT EMPNO, SALARY, COMM, SALARY+COMM AS "TOTAL COMP"

FROM EMP
WHERE SALARY+COMM> 40000
ORDER BY SALARY+COMM;

The result table looks like the following example:
EMPNO SALARY COMM TOTAL COMP
====== ======== ======= ==========
000030 38250.00 3060.00 41310.00
000020 41250.00 3300.00 44550.00
200010 46500.00 4220.00 50720.00
000010 52750.00 4220.00 56970.00

Related reference:

order-by-clause (DB2 SQL)

Ways to summarize group values
You can use the GROUP BY clause to summarize group values.

Use GROUP BY to group rows by the values of one or more columns. You can
then apply aggregate functions to each group. You can use an expression in the
GROUP BY clause to specify how to group the rows.

Except for the columns that are named in the GROUP BY clause, the SELECT
statement must specify any other selected columns as an operand of one of the
aggregate functions.

Example: This query lists, for each department, the lowest and highest education
level within that department: The result table looks like this:
SELECT DEPT, MIN(EDL), MAX(EDL)

FROM EMP
GROUP BY DEPT;

112 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause

DEPT
==== == ==
A00 14 18
B01 18 18
C01 18 20
D11 16 18
E21 14 16

If a column that you specify in the GROUP BY clause contains null values, DB2
considers those null values to be equal, and all nulls form a single group.

Within the SELECT statement, the GROUP BY clause follows the FROM clause and
any WHERE clause, and it precedes the HAVING and ORDER BY clauses.

You can also group the rows by the values of more than one column.

Example: This query finds the average salary for employees with the same job in
departments D11 and E21:
SELECT DEPT, JOB, AVG(SALARY) AS AVG_SALARY

FROM EMP
WHERE DEPT IN (’D11’, ’E21’)
GROUP BY DEPT, JOB;

The result table looks like this:
DEPT JOB AVG_SALARY
==== === ==============
D11 DES 28790.00000000
D11 MGR 32250.00000000
E21 FLD 23053.33333333

In this example, DB2 groups the rows first by department number and next
(within each department) by job before deriving the average salary value for each
group.

Example: This query finds the average salary for all employees that were hired in
the same year. You can use the following subselect to group the rows by the year
of hire:
SELECT AVG(SALARY), YEAR(HIREDATE)

FROM EMP
GROUP BY YEAR(HIREDATE);

Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)
Related reference:

group-by-clause (DB2 SQL)

order-by-clause (DB2 SQL)

select-statement (DB2 SQL)

Ways to merge lists of values
There are several ways to use the UNION keyword for merging lists of values.

A union is an SQL operation that combines the results of two SELECT statements
to form a single result table. When DB2 encounters the UNION keyword, it
processes each SELECT statement to form an interim result table. DB2 then

Chapter 5. SQL: The language of DB2 113

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_groupbyclause.htm#db2z_sql_groupbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_orderbyclause.htm#db2z_sql_orderbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

combines the interim result table of each statement. If you use UNION to combine
two columns with the same name, the corresponding column of the result table
inherits that name.

You can use the UNION keyword to obtain distinct rows in the result table of a
union, or you can use UNION with the optional keyword ALL to obtain all rows,
including duplicates.

How to eliminate duplicates

Use UNION to eliminate duplicates when merging lists of values that are obtained
from several tables. The following example combines values from the EMP table
and the EMPPROJACT table.

Example 1: List the employee numbers of all employees for which either of the
following statements is true:
v The department number of the employee begins with 'D'.
v The employee is assigned to projects whose project numbers begin with 'MA'.
SELECT EMPNO FROM EMP

WHERE DEPT LIKE ’D%’
UNION
SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO LIKE ’MA

The result table looks like the following example:
EMPNO
======
000010
000020
000060
000200
000220

The result is the union of two result tables, one formed from the EMP table, the
other formed from the EMPPROJACT table. The result, a one-column table, is a list
of employee numbers. The entries in the list are distinct.

How to retain duplicates

If you want to keep duplicates in the result of a union, specify the optional
keyword ALL after the UNION keyword.

Example 1: Replace the UNION keyword in the previous example with UNION
ALL:
SELECT EMPNO FROM EMP

WHERE DEPT LIKE ’D%’
UNION ALL
SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO LIKE ’MA

The result table looks like the following example:
EMPNO
======
000220
000200

114 Introduction to DB2 for z/OS

000060
000010
000020
000010

Now, 000010 is included in the list more than once because this employee works in
a department that begins with 'D' and also works on a project that begins with
'MA'.
Related reference:

fullselect (DB2 SQL)

Ways to specify search conditions
You can use the HAVING clause in a variety of ways to specify search conditions.

Use HAVING to specify a search condition that each retrieved group must satisfy.
The HAVING clause acts like a WHERE clause for groups, and it can contain the
same kind of search conditions that you can specify in a WHERE clause. The
search condition in the HAVING clause tests properties of each group rather than

properties of individual rows in the group.

Example: Consider this query:
SELECT DEPT, AVG(SALARY) AS AVG_SALARY

FROM EMP
GROUP BY DEPT
HAVING COUNT(*)> 1
ORDER BY DEPT;

The result table looks like this:
DEPT AVG_SALARY
==== ==============
A00 42833.33333333
C01 31696.66666666
D11 29943.33333333
E21 23053.33333333

The HAVING COUNT(*)> 1 clause ensures that only departments with more than
one member are displayed. (In this case, department B01 is not displayed because
it consists of only one employee.)

Example: You can use the HAVING clause to retrieve the average salary and
minimum education level of employees that were hired after 1990 and who report
to departments in which the education level of all employees is greater than or
equal to 14. Assuming that you want results only from departments A00 and D11,

the following SQL statement tests the group property, MIN(EDL):
SELECT DEPT, AVG(SALARY) AS AVG_SALARY,

MIN(EDL) AS MIN_EDL
FROM EMP
WHERE HIREDATE>= ’1990-01-01’ AND DEPT IN (’A00’, ’D11’)
GROUP BY DEPT
HAVING MIN(EDL)>= 14;

The result table looks like this:

Chapter 5. SQL: The language of DB2 115

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fullselect.htm#db2z_sql_fullselect

DEPT AVG_SALARY MIN_EDL
==== ============== =======
A00 29250.00000000 14
D11 29943.33333333 16

When you specify both GROUP BY and HAVING, the HAVING clause must follow
the GROUP BY clause in the syntax. A function in a HAVING clause can include
multiple occurrences of the DISTINCT clause. You can also connect multiple
predicates in a HAVING clause with AND and OR, and you can use NOT for any
predicate of a search condition.
Related concepts:
“Ways to summarize group values” on page 112
Related reference:

having-clause (DB2 SQL)

select-statement (DB2 SQL)

where-clause (DB2 SQL)

Ways to join data from more than one table
When you want to see information from multiple tables, you can use a SELECT
statement. SELECT statements can retrieve and join column values from two or
more tables into a single row. The retrieval is based on a specified condition,
typically of matching column values.

The main ingredient of a join is, typically, matching column values in rows of each
table that participates in the join. The result of a join associates rows from one
table with rows from another table. Depending on the type of join operation, some
rows might be formed that contain column values in one table that do not match
column values in another table.

A joined-table specifies an intermediate result table that is the result of either an
inner join or an outer join. The table is derived by applying one of the join
operators—INNER, FULL OUTER, LEFT OUTER, or RIGHT OUTER—to its
operands.

DB2 supports inner joins and outer joins (left, right, and full).

DB2 supports inner joins and outer joins (left, right, and full).

Inner join
Combines each row of the left table with each row of the right table,
keeping only the rows in which the join condition is true.

Outer join
Includes the rows that are produced by the inner join, plus the missing
rows, depending on the type of outer join:

Left outer join
Includes the rows from the left table that were missing from the
inner join.

Right outer join
Includes the rows from the right table that were missing from the
inner join.

116 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_havingclause.htm#db2z_sql_havingclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause

Full outer join
Includes the rows from both tables that were missing from the
inner join.

The majority of examples in this topic use two example tables: the parts table
(PARTS) and the products table (PRODUCTS), which consist of hardware supplies.

The following figure shows that each row in the PARTS table contains data for a
single part: the part name, the part number, and the supplier of the part.

The following figure shows that each row in the PRODUCTS table contains data
for a single product: the product number, name, and price.

The following figure shows the ways to combine the PARTS and PRODUCTS
tables by using outer join functions. The illustration is based on a subset of
columns in each table.

SUPPLIER

ACWF

WESTERN_CHEM
BATEMAN

PLASTIK_CORP

ACE_STEEL

PART

WIRE

OIL

MAGNETS

PLASTIC

BLADES

PROD#

10

160

10

30

205

PARTS

Figure 25. Example PARTS table

PROD#

505

30

205

10

PRODUCT

SCREWDRIVER

RELAY

SAW

GENERATOR

PRICE

3.70

7.55

18.90

45.75

PRODUCTS

Figure 26. Example PRODUCTS table

Chapter 5. SQL: The language of DB2 117

An inner join consists of rows that are formed from the PARTS and PRODUCTS
tables, based on matching the equality of column values between the PROD#
column in the PARTS table and the PROD# column in the PRODUCTS table. The
inner join does not contain any rows that are formed from unmatched columns
when the PROD# columns are not equal.

You can specify joins in the FROM clause of a query. Data from the rows that
satisfy the search conditions are joined from all the tables to form the result table.

The result columns of a join have names if the outermost SELECT list refers to
base columns. However, if you use a function (such as COALESCE) to build a
column of the result, that column does not have a name unless you use the AS
clause in the SELECT list.
Related reference:

select-statement (DB2 SQL)

Inner join
You can use an inner join in a SELECT statement to retrieve only the rows that
satisfy the join conditions on every specified table.

You can request an inner join, by running a SELECT statement in which you
specify the tables that you want to join the FROM clause and specify a WHERE
clause or an ON clause to indicate the join condition. The join condition can be any
simple or compound search condition that does not contain a subquery reference.

In the simplest type of inner join, the join condition is column1=column2.

Example: You can join the PARTS and PRODUCTS tables on the PROD# column
to form a table of parts with their suppliers and the products that use the parts.
Consider the two following SELECT statements:

PARTS

Unmatched
row

Unmatched
rowMatches

PRODUCTS

Left outer join Full outer join Right outer join

PART PROD#

WIRE 10

MAGNETS 10

BLADES 205

PLASTIC 30

OIL 160

PROD# PRICE

505 3.70

10 45.75

205 18.90

30 7.55

PART PROD# PRICE

WIRE 10 45.75

MAGNETS 10 45.75

BLADES 205 18.90

PLASTIC 30 7.55

OIL 160 -----

PART PROD# PRICE

WIRE 10 45.75

MAGNETS 10 45.75

BLADES 205 18.90

PLASTIC 30 7.55

OIL 160 -----

----- 505 3.70

PART PROD# PRICE

WIRE 10 45.75

MAGNETS 10 45.75

BLADES 205 18.90

PLASTIC 30 7.55

------ 505 3.70

Figure 27. Outer joins of two tables. Each join is on column PROD#.

118 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

Either of these statements gives this result:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== =========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
BLADES ACE_STEEL 205 SAW
PLASTIC PLASTIK_CORP 30 RELAY

Notice three things about this example:
v One part in the PARTS table (OIL) has a product number (160) that is not in the

PRODUCTS table. One product (505, SCREWDRIVER) has no parts listed in the
PARTS table. OIL and SCREWDRIVER do not appear in the result of the join.

v Explicit syntax expresses that this join is an inner join. You can use INNER JOIN
in the FROM clause instead of the comma. ON (rather than WHERE) specifies
the join condition when you explicitly join tables in the FROM clause.

v If you do not specify a WHERE clause in the first form of the query, the result
table contains all possible combinations of rows for the tables that are identified
in the FROM clause. You can obtain the same result by specifying a join

condition that is always true in the second form of the query.

Example: Consider this query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON 1=1;

The number of rows in the result table is the product of the number of rows in
each table:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ===========
WIRE ACWF 10 SCREWDRIVER
WIRE ACWF 10 RELAY
WIRE ACWF 10 SAW
WIRE ACWF 10 GENERATOR
OIL WESTERN_CHEM 160 SCREWDRIVER
OIL WESTERN_CHEM 160 RELAY
OIL WESTERN_CHEM 160 SAW
OIL WESTERN_CHEM 160 GENERATOR...

You can specify more complicated join conditions to obtain different sets of results.

Example: To eliminate the suppliers that begin with the letter A from the table of
parts, suppliers, product numbers, and products, write a query like the following
example:

Chapter 5. SQL: The language of DB2 119

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE ’A%’;

The result of the query is all rows that do not have a supplier that begins with A:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== =========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example: This example joins the PROJ table to itself by using an inner join. The
query returns the number and name of each major project, followed by the number
and name of the project that is part of it:
SELECT A.PROJNO AS "MAJOR PROJ",

A.PROJNAME AS "MAJOR PROJ NAME",
B.PROJNO AS "PROJ #",
B.PROJNAME AS "PROJ NAME"

FROM PROJ A, PROJ B
WHERE A.PROJNO=B.MAJPROJ;

In this example, A indicates the first instance of table PROJ, and B indicates a
second instance of this table. The join condition is such that the value in column
PROJNO in table PROJ A must be equal to a value in column MAJPROJ in table
PROJ B.

The result table looks like the following example:
MAJOR PROJ MAJOR PROJ NAME PROJ # PROJ NAME
========== =============== ====== ====================
AD3100 ADMIN SERVICES AD3110 GENERAL AD SYSTEMS
AD3110 GENERAL AD SYSTEMS AD3111 PAYROLL PROGRAMMING
AD3110 GENERAL AD SYSTEMS AD3112 PERSONNEL PROGRAMMG
AD3110 GENERAL AD SYSTEMS AD3113 ACCOUNT.PROGRAMMING
MA2100 WELD LINE AUTOMATION MA2110 W L PROGRAMMING
MA2110 W L PROGRAMMING MA2111 W L PROGRAM DESIGN
MA2110 W L PROGRAMMING MA2112 W L ROBOT DESIGN
MA2110 W L PROGRAMMING MA2113 W L PROD CONT PROGS
OP1000 OPERATION SUPPORT OP1010 OPERATION
OP2000 GEN SYSTEMS SERVICES OP2010 SYSTEMS SUPPORT
OP2010 SYSTEMS SUPPORT OP2011 SCP SYSTEMS SUPPORT
OP2010 SYSTEMS SUPPORT OP2012 APPLICATIONS SUPPORT
OP2010 SYSTEMS SUPPORT OP2013 DB/DC SUPPORT
MA2100 WELD LINE AUTOMATION PL2100 WELD LINE PLANNING

In this example, the comma in the FROM clause implicitly specifies an inner join,
and it acts the same as if the INNER JOIN keywords had been used. When you
use the comma for an inner join, you must specify the join condition in the
WHERE clause. When you use the INNER JOIN keywords, you must specify the
join condition in the ON clause.

120 Introduction to DB2 for z/OS

Related concepts:
“Ways to access data” on page 91
“Subqueries” on page 123
Related reference:

select-statement (DB2 SQL)

Left outer join
The LEFT OUTER JOIN clause lists rows from the left table even if there are no
matching rows on right table.

As in an inner join, the join condition of a left outer join can be any simple or

compound search condition that does not contain a subquery reference.

Example: To include rows from the PARTS table that have no matching values in
the PRODUCTS table and to include prices that exceed $10.00, run this query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT, PRICE

FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD#=PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks like the following example:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========= =====
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
OIL WESTERN_CHEM 160 --------- -----
BLADES ACE_STEEL 205 SAW 18.90
PLASTIC PLASTIK_CORP 30 --------- -----

Because the PARTS table can have rows that are not matched by values in the
joined columns and because the PRICE column is not in the PARTS table, rows in
which the PRICE value does not exceed $10.00 are included in the result of the
join, but the PRICE value is set to null.

In this result table, the row for PROD# 160 has null values on the right two
columns because PROD# 160 does not match another product number. PROD# 30
has null values on the right two columns because the price of PROD# 30 is less
than $10.00.

Related concepts:
“Subqueries” on page 123
Related reference:

select-statement (DB2 SQL)

Right outer join
The RIGHT OUTER JOIN clause lists rows from the right table even if there are no
matching rows on left table.

As in an inner join, the join condition of a right outer join can be any simple or

compound search condition that does not contain a subquery reference.

Chapter 5. SQL: The language of DB2 121

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

Example: To include rows from the PRODUCTS table that have no matching
values in the PARTS table and to include only prices that exceed $10.00, run this
query:
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT, PRICE

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#
WHERE PRODUCTS.PRICE>10.00;

The result table looks like the following example:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========== =====
MAGNETS BATEMAN 10 GENERATOR 45.75
WIRE ACWF 10 GENERATOR 45.75
BLADES ACE_STEEL 205 SAW 18.90

Because the PRODUCTS table cannot have rows that are not matched by values in
the joined columns and because the PRICE column is in the PRODUCTS table,
rows in which the PRICE value does not exceed $10.00 are not included in the
result of the join.

Related reference:

select-statement (DB2 SQL)

Full outer join
The FULL OUTER JOIN clause results in the inclusion of rows from two tables. If a
value is missing when rows are joined, that value is null in the result table.

The join condition for a full outer join must be a search condition that compares
two columns. The predicates of the search condition can be combined only with

AND. Each predicate must have the form 'expression = expression'.

Example 1: This query performs a full outer join of the PARTS and PRODUCTS
tables:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks like this:
PART SUPPLIER PROD# PRODUCT
======== ============ ===== ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
OIL WESTERN_CHEM 160 -----------
BLADES ACE_STEEL 205 SAW
PLASTIC PLASTIK_CORP 30 RELAY
------- ------------ ----- SCREWDRIVER

Using COALESCE

This function can be particularly useful in full outer join operations because it
returns the first nonnull value. For example, notice that the result in the example
above is null for SCREWDRIVER, even though the PRODUCTS table contains a
product number for SCREWDRIVER. If you select PRODUCTS.PROD# instead,

122 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

PROD# is null for OIL. If you select both PRODUCTS.PROD# and PARTS.PROD#,
the result contains two columns, and both columns contain some null values.

Example 2: You can merge data from both columns into a single column,
eliminating the null values, by using the COALESCE function. Consider this query
with the same PARTS and PRODUCTS tables:
SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

This statement gives this result:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
OIL WESTERN_CHEM 160 -----------
BLADES ACE_STEEL 205 SAW
PLASTIC PLASTIK_CORP 30 RELAY
------- ------------ 505 SCREWDRIVER

The AS clause AS PRODNUM provides a name for the result of the COALESCE
function.

Related reference:

select-statement (DB2 SQL)

Subqueries
You can use a subquery to narrow a search condition that is based on information
in an interim table.

A subquery is a nested SQL statement, or subselect, that contains a SELECT
statement within the WHERE or HAVING clause of another SQL statement. You
can also code more complex subqueries, such as correlated subqueries and
subqueries with quantified predicates.

You can use a subquery when you need to narrow your search condition that is
based on information in an interim table. For example, you might want to find all
employee numbers in one table that also exist for a given project in a second table.

Example: Suppose that you want a list of the employee numbers, names, and
commissions of all employees that work on a particular project, such as project
number IF2000. The first part of the SELECT statement is easy to write:
SELECT EMPNO, LASTNAME, COMM

FROM EMP
WHERE EMPNO...

Chapter 5. SQL: The language of DB2 123

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

However, you cannot go further because the EMP table does not include project
number data. You do not know which employees are working on project IF2000
without issuing another SELECT statement against the EMPPROJACT table.

You can use a subselect to solve this problem. The SELECT statement that

surrounds the subquery is the outer SELECT.

Example: This query expands the SELECT statement that started in the previous
example to include a subquery:
SELECT EMPNO, LASTNAME, COMM

FROM EMP
WHERE EMPNO IN

(SELECT EMPNO
FROM EMPPROJACT
WHERE PROJNO = ’IF2000’);

To better understand what happens as a result from this SQL statement, imagine
that DB2 goes through the following process:
1. DB2 evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO
FROM EMPPROJACT
WHERE PROJNO = ’IF2000’);

The result is the following interim result table:
EMPNO
======
000140
000140
000030

2. The interim result table then serves as a list in the search condition of the outer
SELECT. Effectively, DB2 runs this SELECT statement:
SELECT EMPNO, LASTNAME, COMM

FROM EMP
WHERE EMPNO IN
(’000140’, ’000030’);

The result table looks like this:
EMPNO LASTNAME COMM
===== ======== =======
000140 NICHOLLS 2274.00
000030 KWAN 3060.00

Ways to access DB2 data that is not in a table
You can access DB2 data even if it is not in a table.

This method of data access can be accomplished in two ways.
v Set the contents of a host variable to the value of an expression by using the SET

host-variable assignment statement.

Example:
EXEC SQL SET :HVRANDVAL = RAND(:HVRAND);

v In addition, you can use the VALUES INTO statement to return the value of an
expression in a host variable.

Example:

124 Introduction to DB2 for z/OS

EXEC SQL VALUES RAND(:HVRAND)
INTO :HVRANDVAL;

Related concepts:
“Data access with host variables” on page 163

Ways to modify data
You can use SQL statements to add, modify, merge, and remove data in existing
tables. You can use the INSERT, UPDATE, MERGE, TRUNCATE, and DELETE
statements to manipulate DB2 data.

If you insert, update, merge, or delete data, you can retrieve the data immediately.
If you open a cursor and then modify data, you see the modified data only in
some circumstances.

Any modifications must maintain the integrity of table relationships. DB2 ensures
that an insert, update, or delete operation does not violate any referential
constraint or check constraint that is defined on a table.

Before modifying data in your tables, create duplicate tables for testing purposes
so that the original table data remains intact. Assume that you created two new
tables, NEWDEPT and NEWEMP, that duplicate the DEPT and EMP tables.
Related concepts:
“Use of check constraints to enforce validity of column values” on page 202

Insert statements
You can use an INSERT statement to add new rows to a table or view.

You can use an INSERT statement to take the following actions:
v Specify the values to insert in a single row. You can specify constants, host

variables, expressions, DEFAULT, or NULL.
v Use host variable arrays in the VALUES clause of the INSERT FOR n ROWS

statement to insert multiple rows into a table.
v Include a SELECT statement in the INSERT statement to tell DB2 that another

table or view contains the data for the new row or rows.

You can add new data to an existing table in other ways, too. You might need to
add large amounts of data to an existing table. Some efficient options include
copying a table into another table, writing an application program that enters data

into a table, and using the DB2 LOAD utility to enter data.

Suppose that you want to add a new row to the NEWDEPT table. Use this INSERT
statement:
INSERT INTO NEWDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT)

VALUES (’E31’, ’PUBLISHING’, ’000020’, ’D11’);

After inserting the new department row into the NEWDEPT table, you can use a
SELECT statement to see what the modified table looks like. Use this query:
SELECT *

FROM NEWDEPT
WHERE DEPTNO LIKE ’E%’
ORDER BY DEPTNO;

Chapter 5. SQL: The language of DB2 125

The result table gives you the new department row that you inserted for
department E31 and the existing departments with a department number
beginning in E.
DEPTNO DEPTNAME MGRNO ADMRDEPT
====== ================ ====== ========
E21 SOFTWARE SUPPORT ------ D11
E31 PUBLISHING 000020 D11

Related concepts:
Chapter 6, “Application programming for DB2,” on page 153
Related reference:

INSERT (DB2 SQL)

where-clause (DB2 SQL)

Update statements
You can change the data in a table by using the UPDATE statement or the MERGE
statement.

The UPDATE statement modifies zero or more rows of a table, depending on how
many rows satisfy the search condition that you specify in the WHERE clause.

You can use an UPDATE or MERGE statement to specify the values that are to be
updated in a single row. You can specify constants, host variables, expressions,
DEFAULT, or NULL. Specify NULL to remove a value from a row's column
(without removing the row).

Suppose that an employee gets a promotion. To update several items of the
employee's data in the NEWEMP table that reflects the move, use this UPDATE
statement:
UPDATE NEWEMP

SET JOB = ’MGR’,
DEPT = ’E21’
WHERE EMPNO = ’100125’;

Related reference:

UPDATE (DB2 SQL)

where-clause (DB2 SQL)

Merge statements
The MERGE statement updates a target with specified input data.

The target of a MERGE statement can be a table or a view. Rows in the target that
match the input data are updated as specified, and rows that do not exist in the
target are inserted. You also can use a MERGE statement with host variable arrays
to insert and update data. The MERGE statement can also update underlying
tables or views of a fullselect.

126 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.htm#db2z_sql_insert
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.htm#db2z_sql_update
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause

Related reference:

MERGE (DB2 SQL)

where-clause (DB2 SQL)

Delete statements
You can use the DELETE statement to remove entire rows from a table.

The DELETE statement removes zero or more rows of a table, depending on how
many rows satisfy the search condition that you specify in the WHERE clause. If
you omit a WHERE clause from a DELETE statement, DB2 removes all rows from
the table or view you name. Therefore, use the DELETE statement carefully. The

DELETE statement does not remove specific columns from the row.

Consider this DELETE statement:
DELETE FROM NEWEMP

WHERE EMPNO = ’000060’;

This DELETE statement deletes each row in the NEWEMP table that has employee
number 000060.

Related reference:

MERGE (DB2 SQL)

where-clause (DB2 SQL)

Truncate statements
You can use the TRUNCATE statement to delete all rows for base tables or
declared global temporary tables.

You can embed a TRUNCATE statement in an application program or issue it
interactively. TRUNCATE statements are executable statements that you can
prepare dynamically. To truncate a table, you must have the proper authorization
or be the owner of the table. The TRUNCATE statement must not be confused
with the TRUNCATE function.

This example empties an unused inventory table regardless of any existing triggers
and returns its allocated space.

TRUNCATE TABLE INVENTORY
DROP STORAGE
IGNORE DELETE TRIGGERS;

Chapter 5. SQL: The language of DB2 127

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.htm#db2z_sql_merge
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_merge.htm#db2z_sql_merge
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause

Related reference:

TRUNCATE (DB2 SQL)

where-clause (DB2 SQL)

Ways to execute SQL
You can execute, or run, SQL statements in applications or interactively. The
method of preparing an SQL statement for execution and the persistence of its
operational form distinguish static SQL from dynamic SQL.

Static SQL
You can use static SQL when you know before run time what SQL statements your
application needs to run.

The source form of a static SQL statement is embedded within an application
program that is written in a host programming language, such as C. The statement
is prepared before the program is executed, and the operational form of the
statement persists beyond the execution of the program.
Related concepts:

Differences between static and dynamic SQL (DB2 Application programming
and SQL)

Dynamic SQL
You can use dynamic SQL when you do not know the content of an SQL statement
when you write a program or before you run it.

Dynamic SQL statements are constructed and prepared at run time. These
statements are more flexible than static SQL statements.

You can use IBM pureQuery to add static functionality to dynamic SQL. IBM
pureQuery features an intuitive API and enables SQL access to databases or
in-memory Java objects. You can also use Data Studio pureQuery Runtime to
enable flexible static SQL deployment for DB2.
Related concepts:

Differences between static and dynamic SQL (DB2 Application programming
and SQL)

DB2 ODBC
DB2 ODBC (Open Database Connectivity) is an application programming interface
(API) that enables C and C++ application programs to access relational databases.

This interface offers an alternative to using embedded static SQL and a different
way of performing dynamic SQL. Through the interface, an application invokes a
C function at execution time to connect to a data source, to dynamically issue SQL
statements, and to retrieve data and status information.

DB2 access for Java: SQLJ, JDBC, pureQuery
SQLJ, JDBC, and pureQuery are methods for accessing DB2 data from applications
that are written in the Java programming language.

128 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_truncate.htm#db2z_sql_truncate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differencesstaticdynamic.htm#db2z_differencesstaticdynamic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differencesstaticdynamic.htm#db2z_differencesstaticdynamic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differencesstaticdynamic.htm#db2z_differencesstaticdynamic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differencesstaticdynamic.htm#db2z_differencesstaticdynamic

In general, Java applications use SQLJ for static SQL, and they use JDBC for
dynamic SQL. IBM pureQuery provides benefits to both static and dynamic SQL.
Related concepts:
“Use of Java to execute static and dynamic SQL” on page 172

Interactive SQL
Interactive SQL refers to SQL statements that you submit to DB2 by using a query
tool, such as DB2 QMF for Workstation.

The easiest and most efficient way to run SQL is to use a query tool. DB2 Query
Management Facility™ (QMF) for Workstation is a popular query tool that lets you
enter and run your SQL statements easily. This topic acquaints you with using DB2
QMF for Workstation to create and run SQL statements. DB2 QMF for Workstation
simplifies access to DB2 from a workstation. In fact, QMF for Workstation was
built for DB2.

Although this topic focuses on DB2 QMF for Workstation, other options are
available. You can use DB2 QMF for WebSphere to enter and run SQL statements
from your web browser or use DB2 QMF for TSO/CICS to enter and run SQL
statements from TSO or CICS. In addition, you can enter and run SQL statements
at a TSO terminal by using the SPUFI (SQL processor using file input) facility.
SPUFI prepares and executes these statements dynamically. All of these tools
prepare and dynamically execute the SQL statements.

The DB2 QMF family of technologies establish pervasive production and sharing of
business intelligence for information-oriented tasks in the organization. DB2 QMF
offers many strengths, including the following:
v Support for functionality in the DB2 database, including long names, Unicode,

and SQL enhancements
v Drag-and-drop capability for building OLAP analytics, SQL queries, pivot tables,

and other business analysis and reports
v Executive dashboards and data visual solutions that offer visually rich,

interactive functionality and interfaces for data analysis
v Support for DB2 QMF for WebSphere, a tool that turns any web browser into a

zero-maintenance, thin client for visual on demand access to enterprise DB2 data
v Re-engineered cross-platform development environment
v New security model for access control and personalization

The visual solutions previously provided by DB2 QMF Visionary are now included
in the core DB2 QMF technology.

In addition to DB2 QMF for Workstation, which this topic describes, the DB2 QMF
family includes the following editions:
v DB2 QMF Enterprise Edition provides the entire DB2 QMF family of

technologies, enabling enterprise-wide business information across user and
database operating systems. This edition consists of:
– DB2 QMF for TSO/CICS
– DB2 QMF High Performance Option (HPO)
– DB2 QMF for Workstation
– DB2 QMF for WebSphere
– DataQuant for Workstation
– DataQuant for Workstation

Chapter 5. SQL: The language of DB2 129

v DB2 QMF Classic Edition supports users who work with traditional mainframe
terminals and emulators (including WebSphere Host On Demand) to access DB2
databases. This edition consists of DB2 QMF for TSO/CICS.

Use of DB2 Query Management Facility for Workstation
DB2 Query Management Facility (QMF) for Workstation is a tool that helps you
build and manage powerful queries without requiring previous experience with
SQL.

With the query-related features of DB2 QMF for Workstation, you can perform the
following tasks:
v Build powerful queries without knowing SQL
v Analyze query results online, including OLAP analysis
v Edit query results to update DB2 data
v Format traditional text-based reports and reports with rich formatting
v Display charts and other complex visuals
v Send query results to an application of your choice
v Develop applications using robust API commands

How SQL statements are entered and processed

You can create your SQL statements using DB2 QMF for Workstation in several
ways:
v Use the Database Explorer window to easily find and run saved queries that

everyone at the same database server can share.
v If you know SQL, type the SQL statement directly in the window.
v If you don't know SQL, use the prompted or diagram interface to build the SQL

statement.

The Database Explorer presents the objects that are saved on a server in a tree
structure. By expanding and collapsing branches, you can easily locate and use
saved queries. You can open the selected query and see the SQL statements or run
the query.

If you need to build a new query, you can enter the SQL statements directly in the
query window, or you can create the SQL statements using diagrams or prompts.
As you build a query by using diagrams or prompts, you can open a view to see
the SQL that is being created.

How you can work with query results

When you finish building the query, you can click the Run Query button to
execute the SQL statements. After you run the query, DB2 QMF for Workstation
returns the query results in an interactive window.

The query results are formatted by the comprehensive formatting options of DB2
QMF for Workstation. A robust expression language lets you conditionally format
query results by retrieved column values. You can add calculated columns to the
query results and group data columns on both axes with or without summaries.
You can also use extensive drag-and-drop capabilities to easily restructure the
appearance of the query results.

In addition to formatting the query results, you can perform the following actions:
v Create traditional text-based reports or state-of-the-art reports with rich

formatting.

130 Introduction to DB2 for z/OS

v Display query results by using charts and other complex visuals.
v Share reports by storing them on the database server.
v Send query results to various applications such as Microsoft Excel or Lotus®

1-2-3®.
Related reference:

DB2 QMF Version 10 information

DB2 sample tables
Much of the DB2 information refers to or relies on the DB2 sample tables. As a
group, the tables include information that describes employees, departments,
projects, and activities, and they make up a sample application that exemplifies
many of the features of DB2.

The sample storage group, databases, table spaces, tables, and views are created
when you run the installation sample jobs DSNTEJ1 and DSNTEJ7. DB2 sample
objects that include LOBs are created in job DSNTEJ7. All other sample objects are
created in job DSNTEJ1. The CREATE INDEX statements for the sample tables are
not shown here; they, too, are created by the DSNTEJ1 and DSNTEJ7 sample jobs.

Authorization on all sample objects is given to PUBLIC in order to make the
sample programs easier to run. You can review the contents of any table by
executing an SQL statement, for example SELECT * FROM DSN8B10.PROJ. For
convenience in interpreting the examples, the department and employee tables are
listed in full.

Activity table (DSN8B10.ACT)
The activity table describes the activities that can be performed during a project.

The activity table resides in database DSN8D11A and is created with the following
statement:
CREATE TABLE DSN8B10.ACT

(ACTNO SMALLINT NOT NULL,
ACTKWD CHAR(6) NOT NULL,
ACTDESC VARCHAR(20) NOT NULL,
PRIMARY KEY (ACTNO))

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Chapter 5. SQL: The language of DB2 131

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.qmf10.doc/qmfhome.htm

Content of the activity table

The following table shows the content of the columns in the activity table.

Table 6. Columns of the activity table

Column Column name Description

1 ACTNO Activity ID (the primary key)

2 ACTKWD Activity keyword (up to six characters)

3 ACTDESC Activity description

The activity table has the following indexes.

Table 7. Indexes of the activity table

Name On column Type of index

DSN8B10.XACT1 ACTNO Primary, ascending

DSN8B10.XACT2 ACTKWD Unique, ascending

Relationship to other tables

The activity table is a parent table of the project activity table, through a foreign
key on column ACTNO.

Department table (DSN8B10.DEPT)
The department table describes each department in the enterprise and identifies its
manager and the department to which it reports.

The department table resides in table space DSN8D11A.DSN8S11D and is created
with the following statement:
CREATE TABLE DSN8B10.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO))

IN DSN8D11A.DSN8S11D
CCSID EBCDIC;

Because the department table is self-referencing, and also is part of a cycle of
dependencies, its foreign keys must be added later with the following statements:
ALTER TABLE DSN8B10.DEPT

FOREIGN KEY RDD (ADMRDEPT) REFERENCES DSN8B10.DEPT
ON DELETE CASCADE;

ALTER TABLE DSN8B10.DEPT
FOREIGN KEY RDE (MGRNO) REFERENCES DSN8B10.EMP

ON DELETE SET NULL;

132 Introduction to DB2 for z/OS

Content of the department table

The following table shows the content of the columns in the department table.

Table 8. Columns of the department table

Column Column name Description

1 DEPTNO Department ID, the primary key.

2 DEPTNAME A name that describes the general activities of the
department.

3 MGRNO Employee number (EMPNO) of the department
manager.

4 ADMRDEPT ID of the department to which this department
reports; the department at the highest level reports
to itself.

5 LOCATION The remote location name.

The following table shows the indexes of the department table.

Table 9. Indexes of the department table

Name On column Type of index

DSN8B10.XDEPT1 DEPTNO Primary, ascending

DSN8B10.XDEPT2 MGRNO Ascending

DSN8B10.XDEPT3 ADMRDEPT Ascending

The following table shows the content of the department table.

Table 10. DSN8B10.DEPT: department table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 ----------------

B01 PLANNING 000020 A00 ----------------
C01 INFORMATION CENTER 000030 A00 ----------------
D01 DEVELOPMENT CENTER ------ A00 ----------------
E01 SUPPORT SERVICES 000050 A00 ----------------
D11 MANUFACTURING SYSTEMS 000060 D01 ----------------
D21 ADMINISTRATION SYSTEMS 000070 D01 ----------------
E11 OPERATIONS 000090 E01 ----------------
E21 SOFTWARE SUPPORT 000100 E01 ----------------
F22 BRANCH OFFICE F2 ------ E01 ----------------
G22 BRANCH OFFICE G2 ------ E01 ----------------
H22 BRANCH OFFICE H2 ------ E01 ----------------
I22 BRANCH OFFICE I2 ------ E01 ----------------
J22 BRANCH OFFICE J2 ------ E01 ----------------

The LOCATION column contains null values until sample job DSNTEJ6 updates
this column with the location name.

Chapter 5. SQL: The language of DB2 133

Relationship to other tables

The department table is self-referencing: the value of the administering department
must be a valid department ID.

The department table is a parent table of the following :
v The employee table, through a foreign key on column WORKDEPT
v The project table, through a foreign key on column DEPTNO

The department table is a dependent of the employee table, through its foreign key
on column MGRNO.

Employee table (DSN8B10.EMP)
The sample employee table identifies all employees by an employee number and
lists basic personnel information.

The employee table resides in the partitioned table space
DSN8D11A.DSN8S11E. Because this table has a foreign key that references DEPT,
that table and the index on its primary key must be created first. Then EMP is
created with the following statement:
CREATE TABLE DSN8B10.EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) CONSTRAINT NUMBER CHECK

(PHONENO >= ’0000’ AND
PHONENO <= ’9999’) ,

HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO) ,
FOREIGN KEY RED (WORKDEPT) REFERENCES DSN8B10.DEPT

ON DELETE SET NULL)
EDITPROC DSN8EAE1
IN DSN8D11A.DSN8S11E
CCSID EBCDIC;

Content of the employee table

The following table shows the type of content of each of the columns in the
employee table. The table has a check constraint, NUMBER, which checks that the
four-digit phone number is in the numeric range 0000 to 9999.

Table 11. Columns of the employee table

Column Column name Description

1 EMPNO Employee number (the primary key)

2 FIRSTNME First name of employee

3 MIDINIT Middle initial of employee

134 Introduction to DB2 for z/OS

Table 11. Columns of the employee table (continued)

Column Column name Description

4 LASTNAME Last name of employee

5 WORKDEPT ID of department in which the employee works

6 PHONENO Employee telephone number

7 HIREDATE Date of hire

8 JOB Job held by the employee

9 EDLEVEL Number of years of formal education

10 SEX Sex of the employee (M or F)

11 BIRTHDATE Date of birth

12 SALARY Yearly salary in dollars

13 BONUS Yearly bonus in dollars

14 COMM Yearly commission in dollars

The following table shows the indexes of the employee table.

Table 12. Indexes of the employee table

Name On column Type of index

DSN8B10.XEMP1 EMPNO Primary, partitioned, ascending

DSN8B10.XEMP2 WORKDEPT Ascending

The following table shows the first half (left side) of the content of the employee
table. (Table 14 on page 136 shows the remaining content (right side) of the
employee table.)

Table 13. Left half of DSN8B10.EMP: employee table. Note that a blank in the MIDINIT column is an actual value of "
" rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000010 CHRISTINE I HAAS A00 3978 1965-01-01
000020 MICHAEL L THOMPSON B01 3476 1973-10-10
000030 SALLY A KWAN C01 4738 1975-04-05
000050 JOHN B GEYER E01 6789 1949-08-17
000060 IRVING F STERN D11 6423 1973-09-14
000070 EVA D PULASKI D21 7831 1980-09-30
000090 EILEEN W HENDERSON E11 5498 1970-08-15
000100 THEODORE Q SPENSER E21 0972 1980-06-19
000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16
000120 SEAN O'CONNELL A00 2167 1963-12-05
000130 DOLORES M QUINTANA C01 4578 1971-07-28
000140 HEATHER A NICHOLLS C01 1793 1976-12-15
000150 BRUCE ADAMSON D11 4510 1972-02-12
000160 ELIZABETH R PIANKA D11 3782 1977-10-11
000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15
000180 MARILYN S SCOUTTEN D11 1682 1973-07-07
000190 JAMES H WALKER D11 2986 1974-07-26
000200 DAVID BROWN D11 4501 1966-03-03
000210 WILLIAM T JONES D11 0942 1979-04-11
000220 JENNIFER K LUTZ D11 0672 1968-08-29

Chapter 5. SQL: The language of DB2 135

Table 13. Left half of DSN8B10.EMP: employee table (continued). Note that a blank in the MIDINIT column is an
actual value of " " rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1969-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER E11 8997 1967-03-24
000290 JOHN R PARKER E11 4502 1980-05-30
000300 PHILIP X SMITH E11 2095 1972-06-19
000310 MAUDE F SETRIGHT E11 3332 1964-09-12
000320 RAMLAL V MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5698 1947-05-05
200010 DIAN J HEMMINGER A00 3978 1965-01-01
200120 GREG ORLANDO A00 2167 1972-05-05
200140 KIM N NATZ C01 1793 1976-12-15
200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15
200220 REBA K JOHN D11 0672 1968-08-29
200240 ROBERT M MONTEVERDE D21 3780 1979-12-05
200280 EILEEN R SCHWARTZ E11 8997 1967-03-24
200310 MICHELLE F SPRINGER E11 3332 1964-09-12
200330 HELENA WONG E21 2103 1976-02-23
200340 ROY R ALONZO E21 5698 1947-05-05

(Table 13 on page 135 shows the first half (right side) of the content of employee
table.)

Table 14. Right half of DSN8B10.EMP: employee table

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000010) PRES 18 F 1933-08-14 52750.00 1000.00 4220.00
(000020) MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00
(000030) MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00
(000050) MANAGER 16 M 1925-09-15 40175.00 800.00 3214.00
(000060) MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
(000070) MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00
(000090) MANAGER 16 F 1941-05-15 29750.00 600.00 2380.00
(000100) MANAGER 14 M 1956-12-18 26150.00 500.00 2092.00
(000110) SALESREP 19 M 1929-11-05 46500.00 900.00 3720.00
(000120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(000130) ANALYST 16 F 1925-09-15 23800.00 500.00 1904.00
(000140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(000150) DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00
(000160) DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00
(000170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(000180) DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00
(000190) DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00
(000200) DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00
(000210) DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00
(000220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(000230) CLERK 14 M 1935-05-30 22180.00 400.00 1774.00
(000240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00

136 Introduction to DB2 for z/OS

Table 14. Right half of DSN8B10.EMP: employee table (continued)

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000250) CLERK 15 M 1939-11-12 19180.00 400.00 1534.00
(000260) CLERK 16 F 1936-10-05 17250.00 300.00 1380.00
(000270) CLERK 15 F 1953-05-26 27380.00 500.00 2190.00
(000280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(000290) OPERATOR 12 M 1946-07-09 15340.00 300.00 1227.00
(000300) OPERATOR 14 M 1936-10-27 17750.00 400.00 1420.00
(000310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(000320) FIELDREP 16 M 1932-08-11 19950.00 400.00 1596.00
(000330) FIELDREP 14 M 1941-07-18 25370.00 500.00 2030.00
(000340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00
(200010) SALESREP 18 F 1933-08-14 46500.00 1000.00 4220.00
(200120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(200140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(200170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(200220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(200240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(200280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(200310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(200330) FIELDREP 14 F 1941-07-18 25370.00 500.00 2030.00
(200340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

Relationship to other tables

The employee table is a parent table of:
v The department table, through a foreign key on column MGRNO
v The project table, through a foreign key on column RESPEMP

The employee table is a dependent of the department table, through its foreign key
on column WORKDEPT.

Employee photo and resume table
(DSN8B10.EMP_PHOTO_RESUME)

The sample employee photo and resume table complements the employee table.

Each row of the photo and resume table contains a photo of the employee,
in two formats, and the employee's resume. The photo and resume table resides in
table space DSN8D11A.DSN8S11E. The following statement creates the table:
CREATE TABLE DSN8B10.EMP_PHOTO_RESUME

(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(500K),
BMP_PHOTO BLOB(100K),
RESUME CLOB(5K))
PRIMARY KEY (EMPNO)

IN DSN8D11L.DSN8S11B
CCSID EBCDIC;

DB2 requires an auxiliary table for each LOB column in a table. The following
statements define the auxiliary tables for the three LOB columns in
DSN8B10.EMP_PHOTO_RESUME:

Chapter 5. SQL: The language of DB2 137

CREATE AUX TABLE DSN8B10.AUX_BMP_PHOTO
IN DSN8D11L.DSN8S11M
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN BMP_PHOTO;

CREATE AUX TABLE DSN8B10.AUX_PSEG_PHOTO
IN DSN8D11L.DSN8S11L
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN PSEG_PHOTO;

CREATE AUX TABLE DSN8B10.AUX_EMP_RESUME
IN DSN8D11L.DSN8S11N
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN RESUME;

Content of the employee photo and resume table

The following table shows the content of the columns in the employee photo and
resume table.

Table 15. Columns of the employee photo and resume table

Column Column name Description

1 EMPNO Employee ID (the primary key).

2 EMP_ROWID Row ID to uniquely identify each row of the table.
DB2 supplies the values of this column.

3 PSEG_PHOTO Employee photo, in PSEG format.

4 BMP_PHOTO Employee photo, in BMP format.

5 RESUME Employee resume.

The following table shows the indexes for the employee photo and resume table.

Table 16. Indexes of the employee photo and resume table

Name On column Type of index

DSN8B10.XEMP_PHOTO_RESUME EMPNO Primary, ascending

The following table shows the indexes for the auxiliary tables that support the
employee photo and resume table.

Table 17. Indexes of the auxiliary tables for the employee photo and resume table

Name On table Type of index

DSN8B10.XAUX_BMP_PHOTO DSN8B10.AUX_BMP_PHOTO Unique

DSN8B10.XAUX_PSEG_PHOTO DSN8B10.AUX_PSEG_PHOTO Unique

DSN8B10.XAUX_EMP_RESUME DSN8B10.AUX_EMP_RESUME Unique

Relationship to other tables

The employee photo and resume table is a parent table of the project table,
through a foreign key on column RESPEMP.

138 Introduction to DB2 for z/OS

Project table (DSN8B10.PROJ)
The sample project table describes each project that the business is currently
undertaking. Data that is contained in each row of the table includes the project
number, name, person responsible, and schedule dates.

The project table resides in database DSN8D11A. Because this table has foreign
keys that reference DEPT and EMP, those tables and the indexes on their primary
keys must be created first. Then PROJ is created with the following statement:

CREATE TABLE DSN8B10.PROJ
(PROJNO CHAR(6) PRIMARY KEY NOT NULL,
PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT

’PROJECT NAME UNDEFINED’,
DEPTNO CHAR(3) NOT NULL REFERENCES

DSN8B10.DEPT ON DELETE RESTRICT,
RESPEMP CHAR(6) NOT NULL REFERENCES

DSN8B10.EMP ON DELETE RESTRICT,
PRSTAFF DECIMAL(5, 2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6))

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Because the project table is self-referencing, the foreign key for that constraint must
be added later with the following statement:
ALTER TABLE DSN8B10.PROJ

FOREIGN KEY RPP (MAJPROJ) REFERENCES DSN8B10.PROJ
ON DELETE CASCADE;

Content of the project table

The following table shows the content of the columns of the project table.

Table 18. Columns of the project table

Column Column name Description

1 PROJNO Project ID (the primary key)

2 PROJNAME Project name

3 DEPTNO ID of department responsible for the project

4 RESPEMP ID of employee responsible for the project

5 PRSTAFF Estimated mean number of persons that are
needed between PRSTDATE and PRENDATE to
complete the whole project, including any
subprojects

6 PRSTDATE Estimated project start date

7 PRENDATE Estimated project end date

8 MAJPROJ ID of any project of which this project is a part

The following table shows the indexes for the project table:

Chapter 5. SQL: The language of DB2 139

Table 19. Indexes of the project table

Name On column Type of index

DSN8B10.XPROJ1 PROJNO Primary, ascending

DSN8B10.XPROJ2 RESPEMP Ascending

Relationship to other tables

The table is self-referencing: a non-null value of MAJPROJ must be a valid project
number. The table is a parent table of the project activity table, through a foreign
key on column PROJNO. It is a dependent of the following tables:
v The department table, through its foreign key on DEPTNO
v The employee table, through its foreign key on RESPEMP

Project activity table (DSN8B10.PROJACT)
The sample project activity table lists the activities that are performed for each
project.

The project activity table resides in database DSN8D11A. Because this table has
foreign keys that reference PROJ and ACT, those tables and the indexes on their
primary keys must be created first. Then PROJACT is created with the following
statement:

CREATE TABLE DSN8B10.PROJACT
(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),
FOREIGN KEY RPAP (PROJNO) REFERENCES DSN8B10.PROJ

ON DELETE RESTRICT,
FOREIGN KEY RPAA (ACTNO) REFERENCES DSN8B10.ACT

ON DELETE RESTRICT)
IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Content of the project activity table

The following table shows the content of the columns of the project activity table.

Table 20. Columns of the project activity table

Column Column name Description

1 PROJNO Project ID

2 ACTNO Activity ID

3 ACSTAFF Estimated mean number of employees that are
needed to staff the activity

4 ACSTDATE Estimated activity start date

5 ACENDATE Estimated activity completion date

140 Introduction to DB2 for z/OS

The following table shows the index of the project activity table:

Table 21. Index of the project activity table

Name On columns Type of index

DSN8B10.XPROJAC1 PROJNO, ACTNO,
ACSTDATE

primary, ascending

Relationship to other tables

The project activity table is a parent table of the employee to project activity table,
through a foreign key on columns PROJNO, ACTNO, and EMSTDATE. It is a
dependent of the following tables:
v The activity table, through its foreign key on column ACTNO
v The project table, through its foreign key on column PROJNO
Related reference:
“Activity table (DSN8B10.ACT)” on page 131
“Project table (DSN8B10.PROJ)” on page 139

Employee-to-project activity table (DSN8B10.EMPPROJACT)
The sample employee-to-project activity table identifies the employee who
performs an activity for a project, tells the proportion of the employee's time that is
required, and gives a schedule for the activity.

The employee-to-project activity table resides in database DSN8D11A. Because this
table has foreign keys that reference EMP and PROJACT, those tables and the
indexes on their primary keys must be created first. Then EMPPROJACT is created
with the following statement:
CREATE TABLE DSN8B10.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2) ,
EMSTDATE DATE ,
EMENDATE DATE ,
FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

REFERENCES DSN8B10.PROJACT
ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN8B10.EMP
ON DELETE RESTRICT)

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Content of the employee-to-project activity table

The following table shows the content of the columns in the employee-to-project
activity table.

Table 22. Columns of the employee-to-project activity table

Column Column name Description

1 EMPNO Employee ID number

Chapter 5. SQL: The language of DB2 141

Table 22. Columns of the employee-to-project activity table (continued)

Column Column name Description

2 PROJNO Project ID of the project

3 ACTNO ID of the activity within the project

4 EMPTIME A proportion of the employee's full time (between
0.00 and 1.00) that is to be spent on the activity

5 EMSTDATE Date the activity starts

6 EMENDATE Date the activity ends

The following table shows the indexes for the employee-to-project activity table:

Table 23. Indexes of the employee-to-project activity table

Name On columns Type of index

DSN8B10.XEMPPROJACT1 PROJNO, ACTNO,
EMSTDATE, EMPNO

Unique, ascending

DSN8B10.XEMPPROJACT2 EMPNO Ascending

Relationship to other tables

The employee-to-project activity table is a dependent of the following tables:
v The employee table, through its foreign key on column EMPNO
v The project activity table, through its foreign key on columns PROJNO, ACTNO,

and EMSTDATE.
Related reference:
“Employee table (DSN8B10.EMP)” on page 134
“Project activity table (DSN8B10.PROJACT)” on page 140

Unicode sample table (DSN8B10.DEMO_UNICODE)
The Unicode sample table is used to verify that data conversions to and from
EBCDIC and Unicode are working as expected.

The table resides in database DSN8D11A, and is defined with the following
statement:
CREATE TABLE DSN8B10.DEMO_UNICODE

(LOWER_A_TO_Z CHAR(26) ,
UPPER_A_TO_Z CHAR(26) ,
ZERO_TO_NINE CHAR(10) ,
X00_TO_XFF VARCHAR(256) FOR BIT DATA)

IN DSN8D81E.DSN8S81U
CCSID UNICODE;

142 Introduction to DB2 for z/OS

Content of the Unicode sample table

The following table shows the content of the columns in the Unicode sample table:

Table 24. Columns of the Unicode sample table

Column Column Name Description

1 LOWER_A_TO_Z Array of characters, 'a' to 'z'

2 UPPER_A_TO_Z Array of characters, 'A' to 'Z'

3 ZERO_TO_NINE Array of characters, '0' to '9'

4 X00_TO_XFF Array of characters, x'00' to x'FF'

This table has no indexes.

Relationship to other tables

This table has no relationship to other tables.

Relationships among the sample tables
Relationships among the sample tables are established by foreign keys in
dependent tables that reference primary keys in parent tables.

The following figure shows relationships among the sample tables. You can find
descriptions of the columns with the descriptions of the tables.

CASCADE

CASCADE
RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

EMP_PHOTO_RESUME

Figure 28. Relationships among tables in the sample application

Chapter 5. SQL: The language of DB2 143

Related reference:
“Activity table (DSN8B10.ACT)” on page 131
“Department table (DSN8B10.DEPT)” on page 132
“Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME)” on page
137
“Employee table (DSN8B10.EMP)” on page 134
“Employee-to-project activity table (DSN8B10.EMPPROJACT)” on page 141
“Project activity table (DSN8B10.PROJACT)” on page 140
“Project table (DSN8B10.PROJ)” on page 139
“Unicode sample table (DSN8B10.DEMO_UNICODE)” on page 142

Views on the sample tables
DB2 creates a number of views on the sample tables for use in the sample
applications.

The following table indicates the tables on which each view is defined and the
sample applications that use the view. All view names have the qualifier DSN8B10.

Table 25. Views on sample tables

View name On tables or views Used in application

VDEPT DEPT
Organization
Project

VHDEPT DEPT Distributed organization

VEMP EMP
Distributed organization
Organization
Project

VPROJ PROJ Project

VACT ACT Project

VPROJACT PROJACT Project

VEMPPROJACT EMPPROJACT Project

VDEPMG1
DEPT
EMP

Organization

VEMPDPT1
DEPT
EMP

Organization

VASTRDE1 DEPT

VASTRDE2
VDEPMG1
EMP

Organization

VPROJRE1
PROJ
EMP

Project

VPSTRDE1
VPROJRE1
VPROJRE2

Project

VPSTRDE2 VPROJRE1 Project

144 Introduction to DB2 for z/OS

Table 25. Views on sample tables (continued)

View name On tables or views Used in application

VFORPLA
VPROJRE1
EMPPROJACT

Project

VSTAFAC1
PROJACT
ACT

Project

VSTAFAC2
EMPPROJACT
ACT
EMP

Project

VPHONE
EMP
DEPT

Phone

VEMPLP EMP Phone

The following SQL statement creates the view named VDEPT.
CREATE VIEW DSN8B10.VDEPT

AS SELECT ALL DEPTNO ,
DEPTNAME,
MGRNO ,
ADMRDEPT

FROM DSN8B10.DEPT;

The following SQL statement creates the view named VHDEPT.
CREATE VIEW DSN8B10.VHDEPT

AS SELECT ALL DEPTNO ,
DEPTNAME,
MGRNO ,
ADMRDEPT,
LOCATION

FROM DSN8B10.DEPT;

The following SQL statement creates the view named VEMP.
CREATE VIEW DSN8B10.VEMP

AS SELECT ALL EMPNO ,
FIRSTNME,
MIDINIT ,
LASTNAME,
WORKDEPT

FROM DSN8B10.EMP;

The following SQL statement creates the view named VPROJ.
CREATE VIEW DSN8B10.VPROJ

AS SELECT ALL
PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,
PRSTDATE, PRENDATE, MAJPROJ

FROM DSN8B10.PROJ ;

The following SQL statement creates the view named VACT.

Chapter 5. SQL: The language of DB2 145

CREATE VIEW DSN8B10.VACT
AS SELECT ALL ACTNO ,

ACTKWD ,
ACTDESC

FROM DSN8B10.ACT ;

The following SQL statement creates the view named VPROJACT.
CREATE VIEW DSN8B10.VPROJACT

AS SELECT ALL
PROJNO,ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM DSN8B10.PROJACT ;

The following SQL statement creates the view named VEMPPROJACT.
CREATE VIEW DSN8B10.VEMPPROJACT

AS SELECT ALL
EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE, EMENDATE
FROM DSN8B10.EMPPROJACT ;

The following SQL statement creates the view named VDEPMG1.
CREATE VIEW DSN8B10.VDEPMG1

(DEPTNO, DEPTNAME, MGRNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT
FROM DSN8B10.DEPT LEFT OUTER JOIN DSN8B10.EMP
ON MGRNO = EMPNO ;

The following SQL statement creates the view named VEMPDPT1.
CREATE VIEW DSN8B10.VEMPDPT1

(DEPTNO, DEPTNAME, EMPNO, FRSTINIT, MIDINIT,
LASTNAME, WORKDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, SUBSTR(FIRSTNME, 1, 1), MIDINIT,
LASTNAME, WORKDEPT
FROM DSN8B10.DEPT RIGHT OUTER JOIN DSN8B10.EMP
ON WORKDEPT = DEPTNO ;

The following SQL statement creates the view named VASTRDE1.
CREATE VIEW DSN8B10.VASTRDE1

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME, ’1’,
D2.DEPTNO,D2.DEPTNAME,D2.MGRNO,D2.FIRSTNME,D2.MIDINIT,
D2.LASTNAME
FROM DSN8B10.VDEPMG1 D1, DSN8B10.VDEPMG1 D2
WHERE D1.DEPTNO = D2.ADMRDEPT ;

The following SQL statement creates the view named VASTRDE2.
CREATE VIEW DSN8B10.VASTRDE2

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME,’2’,
D1.DEPTNO,D1.DEPTNAME,E2.EMPNO,E2.FIRSTNME,E2.MIDINIT,
E2.LASTNAME
FROM DSN8B10.VDEPMG1 D1, DSN8B10.EMP E2
WHERE D1.DEPTNO = E2.WORKDEPT;

146 Introduction to DB2 for z/OS

The following figure shows the SQL statement that creates the view named
VPROJRE1.

The following SQL statement creates the view named VPSTRDE1.
CREATE VIEW DSN8B10.VPSTRDE1

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P2.PROJNO,P2.PROJNAME,P2.RESPEMP,P2.FIRSTNME,P2.MIDINIT,
P2.LASTNAME

FROM DSN8B10.VPROJRE1 P1,
DSN8B10.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ ;

The following SQL statement creates the view named VPSTRDE2.
CREATE VIEW DSN8B10.VPSTRDE2

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME

FROM DSN8B10.VPROJRE1 P1
WHERE NOT EXISTS

(SELECT * FROM DSN8B10.VPROJRE1 P2
WHERE P1.PROJNO = P2.MAJPROJ) ;

The following SQL statement creates the view named VFORPLA.
CREATE VIEW DSN8B10.VFORPLA

(PROJNO,PROJNAME,RESPEMP,PROJDEP,FRSTINIT,MIDINIT,LASTNAME)
AS SELECT ALL

F1.PROJNO,PROJNAME,RESPEMP,PROJDEP, SUBSTR(FIRSTNME, 1, 1),
MIDINIT, LASTNAME
FROM DSN8B10.VPROJRE1 F1 LEFT OUTER JOIN DSN8B10.EMPPROJACT F2
ON F1.PROJNO = F2.PROJNO;

The following SQL statement creates the view named VSTAFAC1.
CREATE VIEW DSN8B10.VSTAFAC1

(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE,ENDATE, TYPE)
AS SELECT ALL

PA.PROJNO, PA.ACTNO, AC.ACTDESC,’ ’, ’ ’, ’ ’, ’ ’,
PA.ACSTAFF, PA.ACSTDATE,
PA.ACENDATE,’1’

FROM DSN8B10.PROJACT PA, DSN8B10.ACT AC
WHERE PA.ACTNO = AC.ACTNO ;

The following SQL statement creates the view named VSTAFAC2.

CREATE VIEW DSN8B10.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ)
AS SELECT ALL

PROJNO,PROJNAME,DEPTNO,EMPNO,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ
FROM DSN8B10.PROJ, DSN8B10.EMP
WHERE RESPEMP = EMPNO ;

Figure 29. VPROJRE1

Chapter 5. SQL: The language of DB2 147

CREATE VIEW DSN8B10.VSTAFAC2
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE, ENDATE, TYPE)
AS SELECT ALL

EP.PROJNO, EP.ACTNO, AC.ACTDESC, EP.EMPNO,EM.FIRSTNME,
EM.MIDINIT, EM.LASTNAME, EP.EMPTIME, EP.EMSTDATE,
EP.EMENDATE,’2’

FROM DSN8B10.EMPPROJACT EP, DSN8B10.ACT AC, DSN8B10.EMP EM
WHERE EP.ACTNO = AC.ACTNO AND EP.EMPNO = EM.EMPNO ;

The following SQL statement creates the view named VPHONE.
CREATE VIEW DSN8B10.VPHONE

(LASTNAME,
FIRSTNAME,
MIDDLEINITIAL,
PHONENUMBER,
EMPLOYEENUMBER,
DEPTNUMBER,
DEPTNAME)

AS SELECT ALL LASTNAME,
FIRSTNME,
MIDINIT ,
VALUE(PHONENO,’ ’),
EMPNO,
DEPTNO,
DEPTNAME

FROM DSN8B10.EMP, DSN8B10.DEPT
WHERE WORKDEPT = DEPTNO;

The following SQL statement creates the view named VEMPLP.
CREATE VIEW DSN8B10.VEMPLP

(EMPLOYEENUMBER,
PHONENUMBER)

AS SELECT ALL EMPNO ,
PHONENO

FROM DSN8B10.EMP ;

Storage of sample application tables
Normally, related data is stored in the same database.

The following figure shows how the sample tables are related to databases and
storage groups. Two databases are used to illustrate the possibility.

148 Introduction to DB2 for z/OS

In addition to the storage group and databases that are shown in the preceding
figure, the storage group DSN8G11U and database DSN8D11U are created when
you run DSNTEJ2A.

Storage group for sample application data
Sample application data is stored in storage group DSN8G110. The default storage
group, SYSDEFLT, which is created when DB2 is installed, is not used to store
sample application data.

The storage group that is used to store sample application data is defined by the
following statement:
CREATE STOGROUP DSN8G110

VOLUMES (DSNV01)
VCAT DSNC110;

Databases for sample application data
Sample application data is stored in several different databases. The default
database that is created when DB2 is installed is not used to store the sample
application data.

DSN8D11P is the database that is used for tables that are related to
programs. The other databases are used for tables that are related to applications.
The databases are defined by the following statements:
CREATE DATABASE DSN8D11A

STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D11P
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

Storage group:

Databases:

Table
spaces:

DSN8G 0vr

DSN8D A
application

data

vr DSN8D P
common for

programming
tables

vr

DSN8S D
department

table

vr DSN8S E
employee

table

vr

Separate
spaces for

other
application

tables

DSN8S P
common for

programming
tables

vr

vr is a 2-digit version identifer.

LOB spaces
for employee

photo and
resume table

DSN8D L
LOB application

data

vr

Figure 30. Relationship among sample databases and table spaces

Chapter 5. SQL: The language of DB2 149

CREATE DATABASE DSN8D11L
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D11E
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID UNICODE;

CREATE DATABASE DSN8D11U
STOGROUP DSN8G11U
CCSID EBCDIC;

Table spaces for sample application data
The table spaces that are not explicitly defined are created implicitly in the
DSN8D11A database, using the default space attributes.

The following SQL statements explicitly define a series of table spaces.
CREATE TABLESPACE DSN8S11D

IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11E
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

NUMPARTS 4
(PART 1 USING STOGROUP DSN8G110

PRIQTY 12
SECQTY 12,

PART 3 USING STOGROUP DSN8G110
PRIQTY 12
SECQTY 12)

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
COMPRESS YES
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11B
IN DSN8D11L
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE
LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

150 Introduction to DB2 for z/OS

CREATE LOB TABLESPACE DSN8S11M
IN DSN8D11L
LOG NO;

CREATE LOB TABLESPACE DSN8S11L
IN DSN8D11L
LOG NO;

CREATE LOB TABLESPACE DSN8S11N
IN DSN8D11L
LOG NO;

CREATE TABLESPACE DSN8S11C
IN DSN8D11P
USING STOGROUP DSN8G110

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11P
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE ROW
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11R
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11S
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81Q
IN DSN8D81P
USING STOGROUP DSN8G810

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE PAGE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81U
IN DSN8D81E
USING STOGROUP DSN8G810

Chapter 5. SQL: The language of DB2 151

PRIQTY 5
SECQTY 5
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID UNICODE;

152 Introduction to DB2 for z/OS

Chapter 6. Application programming for DB2

DB2 supports a wide variety of choices for designing and coding application
programs. Application design choices range from single-tier to multitier
applications, and a wide range of options for tools and languages are available for
developing applications.

Programmers have a wide variety of choices for designing their database
applications. Those choices range from single-tier applications, in which the logic
and data all reside on zSeries, to multitier applications. A complex multitier
application might have a browser client with business application logic for data
access that runs on a middle-tier web application server and database logic that
runs with the database server as stored procedures.

You have a wide range of options for the architecture of your application and the
tools and languages that you use for development. Writing an application program
varies for each programming language and for each style of application. This
information does not attempt to teach you how to become an application
programmer. Rather, it covers the general coding concepts that you need to know
that are specific to DB2 for z/OS. You can apply these concepts to the various
languages. The information explains several different techniques that you can use
to write an application program for DB2.

Details are given primarily for the portions of the application that run on z/OS.
Client applications that run on other operating systems and that access DB2 for
z/OS data are discussed briefly.
Related concepts:
“Performance information for SQL application programming” on page 157
Related tasks:

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

Writing DB2 applications (DB2 Application programming and SQL)

Programming applications for performance (DB2 Performance)

Development of DB2 applications in integrated development
environments

In an integrated development environment (IDE), can use various tools and
languages to develop applications that access DB2 for z/OS data.

Whether developing desktop or web-based applications, DB2 offers options for
working with multiple programming languages, application development styles,
and operating systems. DB2 provides tools for developing applications in both the
Java and the Microsoft development environments. The three primary areas of DB2
development support in integrated development environments are with WebSphere
Studio, Microsoft Visual Studio, and IBM Optim Development Studio.

WebSphere Studio
DB2 integration with WebSphere Studio provides server-side development
for stored procedures and user-defined functions, and integration with the

© Copyright IBM Corp. 2001, 2013 153

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_writedb2application.htm#db2z_writedb2application
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance

J2EE development environment. This IDE helps you to develop server-side
functions, J2EE applications, and web service applications within the same
development environment.

Microsoft Visual Studio
Integration with Microsoft Visual Studio provides integration of DB2
application and server-side development. In this IDE, application
programmers can build applications that use Microsoft support.

IBM Optim Development Studio
IBM Optim Development Studio is an integrated database development
environment that is designed for application developers and database
administrators. You can use IBM Optim Development Studio to develop
and test routines, generate and deploy data-centric web services, create and
run SQL and XQuery queries, and develop and optimize Java applications.
IBM Optim Development Studio is designed to work with IBM Optim
pureQuery Runtime.

Rational Developer for System z
Rational Developer for System z can improve efficiency, and helps with
integrated mixed workload or composite development. By using Rational
Developer for System z, you can accelerate the development of your web
applications, traditional COBOL and PL/I applications, web services, and
XML-based interfaces.

Access from these tools is through commonly used APIs including JDBC and
ODBC, OLE DB, ADO.NET, and ADO. With these access options, application
programmers can use a number of other current development tools, including
basic editor and command-line support, for developing DB2 applications.
Related concepts:
“Use of development tools to create a stored procedure” on page 179

WebSphere Studio Application Developer
IBM WebSphere Studio Application Developer provides end-to-end support for
developing applications that access DB2.

The WebSphere Studio family provides a robust suite of tools for application and
web development. A key tool for application development is WebSphere Studio
Application Developer, which replaces its predecessor, IBM VisualAge® for Java.

With WebSphere Studio Application Developer, you can build J2EE applications
with JSP (JavaServer Page) files and EJB (Enterprise JavaBeans) components, create
web service applications, and generate XML documents.
Related concepts:
“Web-based applications and WebSphere Studio Application Developer” on page
308

DB2 Development add-in for Visual Studio .NET
You can use the DB2 Development add-in for Microsoft Visual Studio .NET to
enhance integration with the Microsoft Visual Studio .NET development
environment.

The add-in features make it easy for application programmers to work with DB2
servers and to develop DB2 routines and objects.

154 Introduction to DB2 for z/OS

The key add-in features enable developers to perform the following tasks:
v Build DB2 server-side objects

DB2 Connect provides a DB2 .NET Data Provider, which enables .NET
applications to access DB2 for z/OS and workstation (Windows, UNIX, and
Linux) operating systems.
Using the Solution Explorer, developers can use script files for building objects
that include routines, triggers, tables, and views.

v Access and manage DB2 data connections
The IBM Explorer provides access to IBM database connections and enables
developers to perform the following tasks:
– Work with multiple DB2 connections
– View object properties
– Retrieve and update data from tables and views
– View source code for DB2 procedures and functions
– Generate ADO .NET code using a drag-and-drop technique

For information about using ADO .NET for applications that connect to DB2
for z/OS, see the IBM DB2 Database for Linux, UNIX, and Windows
Information Center.

v Launch DB2 development and administration tools
These tools include Data Studio Administrator, Replication Center, Command
Center, Task Center, Journal, and DB2 Information Center.

Related reference:

ADO.NET application development

ADO.NET development for IBM Data Servers

Workstation application development tools
A wide variety of tools are available for performing tasks such as querying a
database. These tools include ODBC-based tools such as Lotus Approach, Microsoft
Access, Microsoft Visual Basic, Microsoft Excel, and many others.

The ODBC-based tools provide a simpler alternative to developing applications
than using a high-level programming language. QMF for Windows provides access
to DB2 data for these tools. With all of these tools, you can specify DB2 for z/OS
as the database to access.
Related concepts:
“Use of DB2 Query Management Facility for Workstation” on page 130

Programming languages and methods for developing application
programs

You can use a wide variety of programming languages and techniques to develop
application programs for DB2 for z/OS. In addition, several methods are available
for communicating with DB2.

You can choose among the following programming languages:
v APL2
v C
v C++
v C#
v COBOL
v Fortran

Chapter 6. Application programming for DB2 155

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.swg.im.dbclient.adonet.doc/doc/c0024472.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.swg.im.dbclient.adonet.doc/doc/c0010470.html

v High-level Assembler (part of the z/OS operating system)
v Java
v .NET
v Perl
v PHP
v PL/I
v Python
v REXX
v Ruby on Rails
v Smalltalk
v SQL Procedure Language
v TOAD for DB2
v Visual Basic

You can use any of the following programming methods:

Static SQL
The source form of a static SQL statement is embedded within an
application program that is written in a traditional programming language.
(Traditional programming languages include C, C++, COBOL, Fortran,
PL/I, and Assembler.) Static SQL is a good choice when you know what
statements an application needs to execute before the application runs.

Dynamic SQL
Unlike static SQL, dynamic statements are constructed and prepared at run
time. Dynamic SQL is a good choice when you do not know the format of
an SQL statement when you write a program. It is also a good choice
when the program needs to generate part or all of an SQL statement based
on input from its users.

ODBC
ODBC is an application programming interface (API) that C and C++
application programs can use to access relational databases. ODBC is well
suited to the client/server environment.

pureQuery
pureQuery is a high-performance data access platform for Java applications
that makes it easier to develop, optimize, secure, and manage data access.

SQLJ and JDBC
Like ODBC and C++, the SQLJ and JDBC Java interfaces let you write
portable application programs that are independent of any one database
product.
v SQLJ application support lets you write static SQL applications in the

Java programming language. With SQLJ, you can embed SQL statements
in your Java applications.

v JDBC application support lets you write dynamic SQL applications in
the Java programming language. JDBC is similar to ODBC, but it is
designed specifically for use with Java.

156 Introduction to DB2 for z/OS

Related concepts:
“Use of an application program as a stored procedure” on page 175
“Dynamic SQL applications” on page 169
“Use of Java to execute static and dynamic SQL” on page 172
“Use of ODBC to execute dynamic SQL” on page 171
“Static SQL applications” on page 161
Related tasks:

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

Performance information for SQL application programming
Efficient applications are an important first step to good system and application
performance. As you code applications that access data in DB2, consider
performance objectives in your application design.

The following topics can help you understand how application programmers can
consider performance as they write applications that access data in DB2 for z/OS.

Concurrency and programming

The goal is to program and prepare applications in a way that:
v Protects the integrity of the data that is being read or updated from being

changed by other applications.
v Minimizes the length of time that other access to the data is prevented.

For more information about DB2 concurrency and recommendations for improving
concurrency in your application programs, see the following topics:
v “Concurrency recommendations for application designers” on page 266
v Concurrency and locks (DB2 Performance)
v Improving concurrency (DB2 Performance)
v Improving concurrency in data sharing environments (DB2 Data Sharing

Planning and Administration)

Writing efficient queries

The predicates, subqueries, and other structures in SQL statements affect the access
paths that DB2 uses to access the data.

For information about how to write SQL statements that access data efficiently, see
the following topics:
v “Ways to improve query performance” on page 267
v Writing efficient SQL queries (DB2 Performance)

Analyzing access paths

By analyzing the access path that DB2 uses to access the data for an SQL
statement, you can discover potential problems. You can use this information to
modify your statement to perform better.

For information about how you can use EXPLAIN tables, and SQL optimization
tools, to analyze the access paths for your SQL statements, see the following topics:

Chapter 6. Application programming for DB2 157

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_concurrencyandlocksdefined.htm#db2z_concurrencyandlocksdefined
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf

v Investigating access path problems (DB2 Performance)
v “Using EXPLAIN to understand the access path” on page 273
v Investigating SQL performance by using EXPLAIN (DB2 Performance)
v Interpreting data access by using EXPLAIN (DB2 Performance)
v EXPLAIN tables (DB2 Performance)
v EXPLAIN (DB2 SQL)
v Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths
v Generating visual representations of access plans

Distributed data access performance

The goal is to reduce the amount of network traffic that is required to access the
distributed data, and to manage the use of system resources such as distributed
database access threads and connections.

For information about improving the performance of applications that access
distributed data, see the following topics:
v “Ways to reduce network traffic” on page 320
v Managing DB2 threads (DB2 Performance)
v Improving performance for applications that access distributed data (DB2

Performance)
v Improving performance for SQL statements in distributed applications (DB2

Performance)

Stored procedures performance

For information about stored procedures and DB2 performance, see the following
topics:
v Implementing DB2 stored procedures (DB2 Administration Guide)
v Improving the performance of stored procedures and user-defined functions

(DB2 Performance)
Related concepts:
“Structured query language” on page 21
Chapter 6, “Application programming for DB2,” on page 153
Related tasks:

Programming applications for performance (DB2 Performance)

Planning for and designing DB2 applications (DB2 Application programming
and SQL)

Preparation process for an application program
How you prepare an application program to run depends on the type of
application. The program preparation steps for applications vary based on the type
of programming language that is used.

DB2 applications require different methods of program preparation, depending on
the type of the application.

Applications that contain embedded static or dynamic SQL statements
DB2 applications embed SQL statements in traditional language programs.
To use these programs, you must follow the typical preparation steps

158 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managethreads.htm#db2z_managethreads
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementstoredprocedure.htm#db2z_implementstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_planapplications.htm#db2z_planapplications

(compile, link-edit, and run) as well as the DB2 precompile and bind steps.
Some languages can be precompiled and compiled in a single step by a
coprocessor.

Applications in interpreted languages, such as REXX and APL2
REXX procedures use dynamic SQL. You do not precompile, compile,
link-edit, or bind DB2 REXX procedures before you run them.

Applications that contain ODBC calls
These applications pass dynamic SQL statements as arguments. You do not
precompile or bind ODBC applications. ODBC applications use a standard
set of functions to execute SQL statements and related services at run time.

Java applications, which can contain JDBC calls or embedded SQL statements
Preparing a Java program that contains only JDBC methods is the same as
preparing any other Java program. You can prepare the program using the
javac command. JDBC applications do not require the precompile or bind
steps.

You can use IBM pureQuery can create and prepare Java applications. IBM
pureQuery enables SQL access to databases or Java objects that are in
memory and facilitates SQL best practices.

Preparing an SQLJ program requires a precompile step and a bind step.

The following program preparations steps are required by traditional programming
languages.

Precompile
Before you compile or assemble a traditional language program, you must
prepare the SQL statements that are embedded in the program. The DB2
precompiler prepares SQL statements for C, COBOL, Fortran, PL/I, and
Assembler applications. Because most compilers do not recognize SQL
statements, you must use the DB2 precompiler before you compile the
program to prevent compiler errors. The precompiler scans the program
and returns modified source code, which you can then compile and
link-edit.

As an alternative, you can use a host language DB2 coprocessor for C,
C++, COBOL, and PL/I as you compile your program. The DB2
coprocessor performs DB2 precompiler functions at compile time.

The main output from the precompiler is a database request module (DBRM).
A DBRM is a data set that contains SQL statements and host variable
information that is extracted from the source program during program
preparation. The purpose of a DBRM is to communicate your SQL requests
to DB2 during the bind process.

Bind Before your DB2 application can run, you must use the BIND command to
bind the DBRM to a package. For example, you might decide to put certain
SQL statements together in the same program in order to precompile them
into the same DBRM and then bind them into a single package. When the
program runs, DB2 uses a timestamp to verify that the program matches
the correct plan or package.

A collection is a group of associated packages. Binding packages into
package collections allows you to add packages to an existing application
plan without needing to bind the entire plan again. If you include a
collection name in the package list when you bind a plan, any package that
is in the collection becomes available to the plan. The collection can even

Chapter 6. Application programming for DB2 159

be empty when you first bind the plan. Later, you can add packages to the
collection and drop or replace existing packages without binding the plan
again.

The CURRENT PACKAGE PATH special register specifies a value that
identifies a list of collections that DB2 uses when resolving references to
packages that you use to run SQL statements.

Compile, link-edit
To enable your application to interface with the DB2 subsystem, you must
use a link-edit procedure to build an executable load module that satisfies
the requirements of your environment (such as CICS, IMS, TSO, or batch).
The load module is a program unit that is loaded into main storage for
execution.

Run After you complete the preceding steps, you can run your DB2 application.
A number of methods are available for preparing an application to run.
You can:
v Use DB2 Interactive (DB2I) panels, which lead you step by step from

preparing the program to running the program.
v Submit an application in the TSO foreground or in batch in the TSO

background.
v Start the program preparation command list (CLIST) in TSO foreground

or batch.
v Use the DSN command processor.
v Use JCL procedures that you include in your data sets (such as

SYS1.PROCLIB) at DB2 installation time.

You can also precompile and prepare an application program by using a
DB2-supplied procedure. DB2 has a unique procedure for each supported
language.

160 Introduction to DB2 for z/OS

DB2 Bind Manager tool

The DB2 Bind Manager tool helps application programmers:
v Predict whether a bind of a DBRM results in a changed access path
v Run access path checks on a batch of DBRMs
v Eliminate unnecessary bind steps between application programs and the

database
v Compare DBRMs to subsystems and load modules

DB2 Path Checker tool

The DB2 Path Checker helps you increase the stability of your DB2 environments
and avoid painful and costly disruptions. The DB2 Path Checker can help you
discover and correct unwanted and unexpected access path changes before you are
notified about them.
Related tasks:

Preparing an application to run on DB2 for z/OS (DB2 Application
programming and SQL)

Static SQL applications
For most DB2 users, static SQL provides a straightforward, efficient path to DB2
data.

Bind

Source Program

Coprocessor Language

DBRM

Package

Load module

Compile

Link edit

Precompile

Object program

Figure 31. Overview of the program preparation process for applications that contain
embedded SQL. The DB2 coprocessor can combine the precompile and compile steps for
certain languages.

Chapter 6. Application programming for DB2 161

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_prepareapplication.htm#db2z_prepareapplication
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_prepareapplication.htm#db2z_prepareapplication

The source form of a static SQL statement is embedded within an application
program that is written in a traditional programming language such as C. The
statement is prepared before the program is executed, and the operational form of
the statement persists beyond the execution of the program. You can use static SQL
when you know before run time what SQL statements your application needs to
run.

When you use static SQL, you cannot change the form of SQL statements unless
you make changes to the program. However, you can increase the flexibility of
those statements by using host variables. Using static SQL and host variables is

more secure than using dynamic SQL.

Example: Assume that you are coding static SQL in a COBOL program. The
following UPDATE statement can update the salary of any employee. When you
write your program, you know that salaries must be updated, but you do not
know until run time whose salaries should be updated, and by how much.
01 IOAREA.

02 EMPID PIC X(06).
02 NEW-SALARY PIC S9(7)V9(2) COMP-3....

(Other declarations)
READ CARDIN RECORD INTO IOAREA

AT END MOVE ’N’ TO INPUT-SWITCH....
(Other COBOL statements)
EXEC SQL

UPDATE EMP
SET SALARY = :NEW-SALARY
WHERE EMPNO = :EMPID

END-EXEC.

The UPDATE statement does not change, nor does its basic structure, but the input
can change the results of the UPDATE statement.

Basic SQL coding concepts apply to traditional programming languages: C, C++,
COBOL, Fortran, PL/I, and Assembler.

Suppose that you are writing an application program to access data in a DB2
database. When your program executes an SQL statement, the program needs to
communicate with DB2. When DB2 finishes processing an SQL statement, DB2
sends back a return code, called the SQL return code. Your program should test the
return code to examine the results of the operation.

Unique instructions and details apply to each language.
Related concepts:
“Static SQL” on page 128

Declaration of table and view definitions
Declaring table or view definitions is optional, but they offer several advantages.
You can declare a table or view by including an SQL DECLARE statement in your
program.

Before your program issues SQL statements that retrieve, update, delete, or insert
data, you must declare the tables and views that your program accesses. Declaring

162 Introduction to DB2 for z/OS

tables or views is not required; however, declaring them offers advantages such as
documenting application programs and providing the precompiler with

information that is used to check your embedded SQL statements.

Example: The DECLARE TABLE statement (written in COBOL) for the DEPT table
looks like the following example:
EXEC SQL

DECLARE DEPT TABLE
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL)

END-EXEC.

For each traditional language, you delimit an SQL statement in your program
between EXEC SQL and a statement terminator. In the preceding example, the
EXEC SQL and END-EXEC delimit the SQL statement in a COBOL program.

As an alternative to coding the DECLARE statement yourself, you can use the DB2
subcomponent DCLGEN, the declarations generator.
Related reference:

DECLARE STATEMENT (DB2 SQL)

Data access with host variables
You can use host variables, host variable arrays, and host structures in your
application program to exchange data between the application and the DBMS.

A host variable is a data item that you declare in a program for use within an SQL
statement. You can:
v Retrieve data into the host variable for your application program's use.
v Place data into the host variable to insert into a table or to change the contents

of a row.
v Use the data in the host variable when evaluating a WHERE or HAVING clause.
v Assign the value in the host variable to a special register. A special register is a

storage area that DB2 defines for a process to hold information that SQL
statements can reference.

Example 1: The CURRENT SQLID special register contains the SQL
authorization ID of a process, which is set in an SQL statement. DB2 replaces the
register name with the value of the authorization ID when the SQL statement
runs.

v Use the host variable to indicate a null value

How you code a host variable varies according to the programming language that
you use. Some languages require a separate declaration section for SQL variables.
In this case, you can code the BEGIN and END DECLARE SECTION statements in
an application program wherever variable declarations can appear according to the
rules of the host language. A host variable declaration section starts with the
BEGIN DECLARE SECTION statement and ends with the END DECLARE
SECTION statement. The host variable must be preceded with a :hostvar

Chapter 6. Application programming for DB2 163

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarestatement.htm#db2z_sql_declarestatement

The INTO clause of the SELECT statement names one or more host variables to
contain the returned column values. For host variables and host variable arrays,
the named variables correspond one-to-one with the list of column names in the
SELECT list.

The example that follows uses a host variable to retrieve a single row of data.

Example 2: Suppose that you want to retrieve the EMPNO, LASTNAME, and
DEPT column values from a single row in the EMP table. You can define a host
variable in your program to hold each column. The host variable consists of the
local variable name, preceded by a colon. You then can name the data areas with
an INTO clause, as shown:
EXEC SQL

SELECT EMPNO, LASTNAME, DEPT
INTO :CBLEMPNO, :CBLNAME, :CBLDEPT
FROM EMP
WHERE EMPNO = :EMPID

END-EXEC.

You must declare the host variables CBLEMPNO, CBLNAME, and CBLDEPT in
the data declaration portion of the program. The data types of the host variables
must be compatible with the SQL data types of the columns EMPNO,
LASTNAME, and DEPT of the EMP table.

Suppose that you don't know how many rows DB2 will return, or you expect more
than one row to return. In either case, you must use an alternative to the SELECT
... INTO statement. Using a DB2 cursor, an application can process a set of rows
and retrieve rows from the result table.
Related concepts:
“Row retrieval with a cursor” on page 165

Host variables (DB2 Application programming and SQL)

References to host variables (DB2 SQL)

Data access with host variable arrays
A host variable array is a data array that is declared in a host language for use
within an SQL statement. You can retrieve data into host variable arrays for use by
your application program. You can also place data into host variable arrays to
insert rows into a table.

You can specify host variable arrays in C, C++, COBOL, or PL/I. Each host
variable array contains values for a column, and each element of the array
corresponds to a value for a column. You must declare the array in the host

program before you use it.

Example: The following statement uses the main host variable array, COL1, and
the corresponding indicator array, COL1IND. Assume that COL1 has 10 elements.
The first element in the array corresponds to the first value, and so on. COL1IND
must have at least 10 entries.

164 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_hostvariablearraystructure.htm#db2z_hostvariablearraystructure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_refs2hostvars.htm#db2z_refs2hostvars

EXEC SQL
SQL FETCH FIRST ROWSET FROM C1 FOR 5 ROWS

INTO :COL1 :COL1IND
END-EXEC.

Related concepts:

Host variables (DB2 Application programming and SQL)

Data access with host structures
A host structure is a group of host variables that an SQL statement can refer to by
using a single name. When the host language environment allows it, you can use
host language statements to define the host structures.

Example 1: Assume that your COBOL program includes the following SQL
statement:
EXEC SQL

SELECT EMPNO, FIRSTNME, LASTNAME, DEPT
INTO :EMPNO, :FIRSTNME, :LASTNAME, :WORKDEPT
FROM VEMP
WHERE EMPNO = :EMPID

END-EXEC.

Now assume that you want to avoid listing the host variables in the preceding
example.

Example 2: You can substitute the name of a structure, such as :PEMP, that
contains :EMPNO, :FIRSTNME, :LASTNAME, and :DEPT:
EXEC SQL

SELECT EMPNO, FIRSTNME, LASTNAME, WORKDEPT
INTO :PEMP
FROM VEMP
WHERE EMPNO = :EMPID

END-EXEC.

You can declare a host structure in your program. You can also use DCLGEN to
generate a COBOL record description, PL/I structure declaration, or C structure
declaration that corresponds to the columns of a table.
Related concepts:

Host variables (DB2 Application programming and SQL)

Row retrieval with a cursor
DB2 has a mechanism called a cursor. Using a cursor is like keeping your finger on
a particular line of text on a printed page.

In DB2, an application program uses a cursor to point to one or more rows in a set
of rows that are retrieved from a table. You can also use a cursor to retrieve rows
from a result set that is returned by a stored procedure. Your application program
can use a cursor to retrieve rows from a table.

Chapter 6. Application programming for DB2 165

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_hostvariablearraystructure.htm#db2z_hostvariablearraystructure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_hostvariablearraystructure.htm#db2z_hostvariablearraystructure

You can retrieve and process a set of rows that satisfy the search condition of an
SQL statement. When you use a program to select the rows, the program processes
one or more rows at a time.

The SELECT statement must be within a DECLARE CURSOR statement and
cannot include an INTO clause. The DECLARE CURSOR statement defines and
names the cursor, identifying the set of rows to retrieve with the SELECT
statement of the cursor. This set of rows is referred to as the result table.

After the DECLARE CURSOR statement executes, you process the result table of a
cursor as follows:
1. Open the cursor before you retrieve any rows.

To tell DB2 that you are ready to process the first row of the result table, have
your program issue the OPEN statement. DB2 then uses the SELECT statement
within the DECLARE CURSOR statement to identify a set of rows. If you use
host variables in that SELECT statement, DB2 uses the current value of the
variables to select the rows.

2. Use a FETCH statement to retrieve one or more rows.
The simplest form of the FETCH statement retrieves a single row of the result
table by using a row-positioned cursor. At any point in time, a row-positioned
cursor retrieves at most a single row from the result table into host variables.
You can use a FETCH statement to retrieve more than one row of the result
table by using a cursor that is enabled to process rowsets. A rowset is a set of
rows that is retrieved through a multiple-row fetch.
When your program issues a row-positioned FETCH statement, DB2 uses the
cursor to point to a row in the result table, making it the current row. DB2 then
moves the current row contents into the program host variables that you
specified in the INTO clause of the FETCH statement. The FETCH statement
moves the cursor. You can use host variable arrays and return multiple rows of
data with a single FETCH statement.

3. Close the cursor when the end-of-data condition occurs.
If you finish processing the rows of the result table and you want to use the
cursor again, issue a CLOSE statement to close the cursor.

Recommendation: Explicitly close the cursor when you finish using it.

Your program can have several cursors. Each cursor has the following
requirements:
v DECLARE CURSOR statement to define the cursor
v OPEN and CLOSE statements to open and close the cursor
v FETCH statement to retrieve rows from the result table of the cursor

You must declare host variables before you refer to them in a DECLARE CURSOR
statement. To define and identify a set of rows that are to be accessed with a
cursor, issue a DECLARE CURSOR statement. The DECLARE CURSOR statement
names a cursor and specifies a SELECT statement. The SELECT statement defines
the criteria for the rows that belong in the result table.

You can use cursors to fetch, update, or delete one or more rows of a table, but
you cannot use them to insert a row into a table.

Suppose that your program examines data about people in department D11 and
keeps the data in the EMP table. The following examples show the SQL statements

166 Introduction to DB2 for z/OS

that you must include in a COBOL program to define and use a cursor. In these
examples, the program uses the cursor to process a set of rows from the EMP

table.

Example: Define the cursor: The following statement defines a cursor named
THISEMP:
EXEC SQL

DECLARE THISEMP CURSOR FOR
SELECT EMPNO, LASTNAME,
DEPT, JOB
FROM EMP
WHERE DEPT = ’D11’

FOR UPDATE OF JOB
END-EXEC.

Example: Open the cursor: The following statement opens the cursor:
EXEC SQL

OPEN THISEMP
END-EXEC.

Example: Use the cursor to retrieve a row: The following statement uses the
cursor, THISEMP, to retrieve a row:
EXEC SQL

FETCH THISEMP
INTO :EMP-NUM, :NAME2,
:DEPT, :JOB-NAME

END-EXEC.

Example: Update the current row using the cursor: The following statement uses
the cursor, THISEMP, to update the JOB value for specific employees in
department D11:
EXEC SQL

UPDATE EMP
SET JOB = :NEW-JOB
WHERE CURRENT OF THISEMP

END-EXEC.

Example: Close the cursor: The following statement closes the cursor:
EXEC SQL

CLOSE THISEMP
END-EXEC.

If the cursor is not scrollable, each fetch positions the cursor at the next sequential
row, or set of rows. A scrollable cursor can scroll forward and backward, and can be
repositioned at the beginning, at the end, or at a relative offset point. Applications
can use a powerful set of SQL statements to fetch data by using a cursor in
random order. Scrollable cursors are especially useful for screen-based applications.
You can specify that the data in the result table is to remain static. For example, an
accounting application can require that data is to remain constant, whereas an
airline reservation system application must display the latest flight availability
information.

You can also define options on the DECLARE CURSOR statement that specify how
sensitive a scrollable cursor is to changes in the underlying data when inserts,
updates, or deletes occur.

Chapter 6. Application programming for DB2 167

v A sensitive cursor is sensitive to changes that are made to the database after the
result table is generated. For example, when an application executes positioned
UPDATE and DELETE statements with the cursor, those changes are visible in
the result table.

v An insensitive cursor is not sensitive to inserts, updates, or deletes that are made
to the underlying rows of a result table after the result table is generated. For
example, the order of the rows and the values for each row of the result table do
not change after the application opens the cursor.

To indicate that a cursor is scrollable, you declare it with the SCROLL keyword.

Example: The following example shows a declaration for an insensitive scrollable
cursor:
EXEC SQL DECLARE C1 INSENSITIVE SCROLL CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPT
ORDER BY DEPTNO

END-EXEC.

To use this cursor to fetch the fifth row of the result table, you can use a FETCH
statement like the following example:
EXEC SQL FETCH ABSOLUTE +5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

DB2 for z/OS provides another type of cursor called a dynamic scrollable cursor.
With a dynamic scrollable cursor, applications can scroll directly on a base table
while accessing the most current data.
Related reference:

DECLARE CURSOR (DB2 SQL)

FETCH (DB2 SQL)

Ways to check the execution of SQL statements
DB2 offers several ways to check the execution of SQL statements in an program.

A program that includes SQL statements can have an area that is set apart for
communication with DB2—an SQL communication area (SQLCA). When DB2
processes an SQL statement in your program, it places return codes in the
SQLSTATE and SQLCODE host variables or in corresponding fields of the SQLCA.
The return codes indicate whether the statement executed successfully or failed.

Recommendation: Because the SQLCA is a valuable problem-diagnosis tool,
include the necessary instructions to display some of the information that is in the
SQLCA in your application programs.

You can use a GET DIAGNOSTICS statement or a WHENEVER statement in your
program to supplement checking SQLCA fields after each SQL statement runs.
v The GET DIAGNOSTICS statement returns diagnostic information about the last

SQL statement that was executed. You can request specific types of diagnostic
information or all available diagnostic information about a statement. For
example, the GET DIAGNOSTICS statement returns the number of rows that are
affected by a data insert, update, or delete.

168 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarecursor.htm#db2z_sql_declarecursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetch.htm#db2z_sql_fetch

v The WHENEVER statement allows you to specify what to do if a general
condition is true. DB2 checks the SQLCA and continues processing your
program. If an error, exception, or warning results when an SQL statement is
executed, DB2 branches to another area in your program. The program can then
examine the SQLSTATE or SQLCODE to react specifically to the error or
exception.

Related reference:

GET DIAGNOSTICS (DB2 SQL)

WHENEVER (DB2 SQL)

Dynamic SQL applications
With dynamic SQL, DB2 prepares and executes the SQL statements within a
program while the program is running. Dynamic SQL is a good choice when you
do not know the format of an SQL statement before you write or run a program.
Related concepts:
“Dynamic SQL” on page 128

Types of dynamic SQL
Four types of dynamic SQL are available.

Embedded dynamic SQL
Your application puts the SQL source in host variables and includes
PREPARE and EXECUTE statements that tell DB2 to prepare and run the
contents of those host variables at run time. You must precompile and bind
programs that include embedded dynamic SQL.

Interactive SQL
A user enters SQL statements through an interactive tool, such as DB2
QMF for Windows. DB2 prepares and executes those statements as
dynamic SQL statements.

Deferred embedded SQL
Deferred embedded SQL statements are neither fully static nor fully
dynamic. Like static statements, deferred embedded SQL statements are
embedded within applications; however, like dynamic statements, they are
prepared at run time. DB2 processes the deferred embedded SQL
statements with bind-time rules. For example, DB2 uses the authorization
ID and qualifier (that are determined at bind time) as the plan or package
owner.

Dynamic SQL executed through ODBC or JDBC functions
Your application contains ODBC function calls that pass dynamic SQL
statements as arguments. You do not need to precompile and bind
programs that use ODBC function calls.

JDBC application support lets you write dynamic SQL applications in Java.

Chapter 6. Application programming for DB2 169

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.htm#db2z_sql_getdiagnostics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whenever.htm#db2z_sql_whenever

Related concepts:
“How authorization IDs control data access” on page 281
“Dynamic SQL” on page 128
“Use of Java to execute static and dynamic SQL” on page 172
“Use of ODBC to execute dynamic SQL” on page 171

Dynamic SQL (DB2 Application programming and SQL)

Dynamic SQL programming concepts
An application that uses dynamic SQL generates an SQL statement in the form of a
character string or accepts an SQL statement as input.

Depending on the needs of the application, you might be able to simplify the
programming. Try to plan the application so that it does not use SELECT
statements, or so that it uses only those statements that return a known number of
values of known data types. In general, more complex dynamic programs are those
in which you do not know in advance about the SQL statements that the
application issues. An application typically takes these steps:
1. Translates the input data into an SQL statement.
2. Prepares the SQL statement to execute and acquires a description of the result

table (if any).
3. Obtains, for SELECT statements, enough main storage to contain retrieved data.
4. Executes the statement or fetches the rows of data.
5. Processes the returned information.
6. Handles SQL return codes.

Example:

This example shows a portion of a C program that dynamically issues SQL
statements to DB2. Assume that you are writing a program to keep an inventory of
books. The table that you need to update depends on input to your program. This
example shows how you can build an SQL statement and then call DB2 to execute
it.
/***/
/* Determine which table to update, then build SQL */
/* statement dynamically into ’stmt’ variable. */
/***/

strcpy(stmt,"UPDATE ");

EXEC SQL SELECT TYPE INTO :book_type FROM BOOK_TYPES WHERE
TITLE=:bktitle;

IF (book_type==’FICTION’) strcpy(table_name,"FICTION_BOOKS");
ELSE strcpy(table_name,"NON_FICTION_BOOKS");

strcat(stmt,table_name);
strcat(stmt,
" SET INVENTORY = INVENTORY-1 WHERE TITLE = :bktitle");

/***/
/* PREPARE and EXECUTE the statement */
/***/
EXEC SQL PREPARE OBJSTMT FROM :stmt;
EXEC SQL EXECUTE OBJSTMT;

170 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_dynamicsqlapp.htm#db2z_dynamicsqlapp

Related concepts:
“Use of ODBC to execute dynamic SQL”

Dynamic SQL (DB2 Application programming and SQL)

Use of ODBC to execute dynamic SQL
Open Database Connectivity (ODBC) lets you access data through ODBC function
calls in your application. The ODBC interface eliminates the need for precompiling
and binding your application and increases the portability of your application.

The ODBC interface is specifically designed for C and C++ applications to access
relational databases. Applications that use the ODBC interface might be executed
on a variety of data sources without being compiled against each of the databases.
ODBC ideally suits the client/server environment in which the target data source
might be unknown when the application is built.

You execute SQL statements by passing them to DB2 through an ODBC function
call. The function calls allow an application to connect to the data source, issue
SQL statements, and receive returned data and status information.

You can prepare an SQL statement by calling the ODBC SQLPrepare() function.
You then execute the statement by calling the ODBC SQLExecute() function. In
both cases, the application does not contain an embedded PREPARE or EXECUTE
statement. You can execute the statement, without preparation, by passing the
statement to the ODBC SQLExecDirect() function.

Another advantage of ODBC access is that it can help hide the differences between
system catalogs of different database servers. Unlike embedded SQL, DB2 ODBC
provides a consistent interface for applications to query and retrieve system catalog
information across the DB2 Database family of database management systems. This
capability reduces the need to write catalog queries that are specific to each

database server. DB2 ODBC can return result tables to those programs.

Example:

This example shows a portion of an ODBC program for keeping an inventory of
books.
/***/
/* Determine which table to update */
/***/
rc = SQLBindParameter(hStmt,

1,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
50,
0,
bktitle,
sizeof(bktitle),
&bktitle_len);

if(rc != SQL_SUCCESS) goto dberror;

rc = SQLExecDirect(hStmt,
"SELECT TYPE FROM BOOK_TYPES WHERE TITLE=?"
SQL_NTS);

if(rc != SQL_SUCCESS) goto dberror;

Chapter 6. Application programming for DB2 171

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_dynamicsqlapp.htm#db2z_dynamicsqlapp

rc = SQLBindCol(hStmt,
1,
SQL_C_CHAR,
book_type,
sizeof(book_type),
&book_type_len);

if(rc != SQL_SUCCESS) goto dberror;

rc = SQLFetch(hStmt);
if(rc != SQL_SUCCESS) goto dberror;

rc = SQLCloseCursor(hStmt);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* Update table */
/***/
strcpy((char *)update_sqlstmt, (char *)"UPDATE ");
if(strcmp((char *)book_type, (char *)"FICTION") == 0)
{

strcat((char *)update_sqlstmt, (char *)"FICTION_BOOKS");
}
else
{

strcpy((char *)update_sqlstmt, (char *)"NON_FICTION_BOOKS");
}
strcat((char *)update_sqlstmt,

(char *)" SET INVENTORY = INVENTORY-1 WHERE TITLE = ?");

rc = SQLPrepare(hStmt, update_sqlstmt, SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

rc = SQLExecute(hStmt);
if(rc != SQL_SUCCESS) goto dberror;

rc = SQLEndTran(SQL_HANDLE_DBC, hDbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

Related concepts:
“Dynamic SQL programming concepts” on page 170

Use dynamic SQL statement caching (DB2 Programming for ODBC)

Use of Java to execute static and dynamic SQL
DB2 for z/OS supports SQLJ and JDBC. In general, Java applications use SQLJ for
static SQL, JDBC for dynamic SQL, and PureQuery for both static and dynamic
SQL.

By using the Java programming language you gain the following key advantages:
v You can write an application on any Java-enabled platform and run it on any

platform to which the Java Development Kit (JDK) is ported.
v You can develop an application once and run it anywhere, which offers the

following potential benefits:
– Reduced development costs
– Reduced maintenance costs
– Reduced systems managements costs
– Flexibility in supporting diverse hardware and software configurations

The following table shows some of the major differences between SQLJ and JDBC.

172 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_hndynsc.htm#db2z_hndynsc

Table 26. Comparison of SQLJ and JDBC

SQLJ characteristics JDBC characteristics

SQLJ follows the static SQL model and offers
performance advantages over JDBC.

JDBC follows the dynamic SQL model.

SQLJ source programs are smaller than
equivalent JDBC programs because SQLJ
automatically generates certain code that
developers must include in JDBC programs.

JDBC source programs are larger than
equivalent SQLJ programs because certain
code that the developer must include in
JDBC programs is generated automatically by
SQLJ.

SQLJ checks data-types during the program
preparation process and enforces strong
typing between table columns and Java host
expressions.

JDBC passes values to and from SQL tables
without checking data types at compile time.

In SQLJ programs, you can embed Java host
expressions in SQL statements.

JDBC requires a separate statement for each
bind variable and specifies the binding by
position number.

SQLJ provides the advantages of static SQL
authorization checking. With SQLJ, the
authorization ID under which SQL
statements run is the plan or package owner.
DB2 checks the table privileges at bind time.

Because JDBC uses dynamic SQL, the
authorization ID under which SQL
statements run is not known until run time,
so no authorization checking of table
privileges can occur until run time.

SQLJ support
DB2 for z/OS includes SQLJ, which provides support for embedding static SQL
statements in Java applications and servlets. Servlets are application programs that
are written in Java and that run on a web server.

Because SQLJ coexists with JDBC, an application program can create a JDBC
connection and then use that connection to run dynamic SQL statements through
JDBC and embedded static SQL statements through SQLJ.

A group of companies that includes Oracle, Hewlett Packard, and IBM, initially
developed SQLJ to complement the dynamic SQL JDBC model with a static SQL
model.

The SQLJ coding to update the salary of any employee is as follows:
#sql [myConnCtxt] { UPDATE EMP

SET SALARY = :newSalary
WHERE EMPNO = :empID };

By using SQLJ you gain the following advantages:
v Portable applications across platforms and database management systems.
v Strong typing, with compile and bind-time checking to ensure that applications

are well designed for the database.
v Superior performance, manageability, and authorization checking of static SQL.
v Improved programmer productivity and easier maintenance. In comparison to a

JDBC application, the resulting program is typically shorter and easier to
understand.

v Familiarity for programmers who use embedded SQL in other traditional
programming languages.

Chapter 6. Application programming for DB2 173

Related concepts:
Chapter 7, “Implementation of your database design,” on page 181

JDBC support
DB2 for z/OS supports applications that use Sun Microsystems JDBC interfaces to
access DB2 data by using dynamic SQL. Support for JDBC enables organizations to
write Java applications that access local DB2 data, and access remote relational
data on a server that supports DRDA.

Sun Microsystems developed the JDBC specifications. The JDBC specifications
define a set of APIs (based on ODBC) that allow Java applications to access
relational data. The APIs provide a generic interface for writing applications that
run on multiple platforms and can access any SQL database. The APIs are defined
within 16 classes, and they support basic SQL functions for connecting to a
database, running SQL statements, and processing results. Together, these interfaces
and classes represent the JDBC capabilities by which a Java application can access

relational data.

This example shows a portion of a JDBC program for that keeps an inventory of
books.
/***/
/* Determine which table to update, then build SQL */
/* statement dynamically. */
/***/
String tableName = null;
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT TYPE FROM " +
" BOOK_TYPES WHERE " +
" TITLE = \"" + bkTitle + "\"");
if (rs.next())
{

if (rs.getString(1).equalsIgnoreCase("FICTION"))
tableName = "FICTION_BOOKS";

else
tableName = "NON_FICTION_BOOKS";

/***/
/* PREPARE and EXECUTE the statement */
/***/
stmt.executeUpdate("UPDATE " + tableName + " SET INVENTORY = INVENTORY-1 " +
"WHERE TITLE = \"" + bkTitle + "\"");
}
rs.close();
stmt.close();

DB2 for z/OS support for JDBC offers a number of advantages for accessing DB2
data:
v JDBC combines the benefit of running your applications in a z/OS environment

with the portability and ease of writing Java applications.
v The JDBC interface offers the ability to change between drivers and access

various databases without recoding your Java program.
v JDBC applications do not require precompiles or binds.

174 Introduction to DB2 for z/OS

v JDBC provides a consistent interface for applications to query and retrieve
system catalog information across the DB2 Database family of database
management systems. This capability reduces the need to write catalog queries
that are specific to each database server.

Related concepts:
“Dynamic SQL programming concepts” on page 170
“Use of ODBC to execute dynamic SQL” on page 171

Use of an application program as a stored procedure
A stored procedure is a compiled program that can execute SQL statements.

Stored procedures are stored at theDB2 local or remote server where they run. A
typical stored procedure contains two or more SQL statements and some
manipulative or logical processing in a program. A client application program uses
the SQL CALL statement to invoke the stored procedure.

Consider using stored procedures for a client/server application that does at least
one of the following things:
v Executes multiple remote SQL statements.

Remote SQL statements can result in several send and receive operations across
the network, which increases processor costs and elapsed times.
Stored procedures can encapsulate many SQL statements into a single message
to the DB2 server. The network traffic of stored procedures is a single send and
receive operation for a series of SQL statements.
Locks on DB2 tables are not held across network transmissions, which reduces
contention for resources at the server.

v Accesses tables from a dynamic SQL environment in which table privileges for
the application that is running are undesirable.
Stored procedures allow static SQL authorization from a dynamic environment.

v Accesses host variables for which you want to check security and integrity.
Stored procedures remove SQL applications from the workstation, preventing
workstation users from manipulating the contents of sensitive SQL statements
and host variables.

v Creates a result set of rows to return to the client application.
Related concepts:

Stored procedures (DB2 Application programming and SQL)
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)

Languages used to create stored procedures
Stored procedures can be written in a variety of programming languages from
object-oriented programming languages to traditional programming languages.

You can write stored procedures in the following programming languages:

Java If you have more experience writing applications in an object-oriented
programming environment, you might want to create stored procedures by
using Java

SQL procedural language
If your application consists entirely of SQL statements, some simple control

Chapter 6. Application programming for DB2 175

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_storedprocedure.htm#db2z_storedprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation

flow logic, and no complex application logic, you might choose to create
your stored procedures by using the SQL procedural language.

REXX You can create stored procedures by using REXX programs that can
contain dynamic SQL. DBAs and programmers generally use REXX for
administrative tasks.

Traditional programming languages: C, C++, COBOL, PL/I, and Assembler
All traditional language programs must be designed to run using
Language Environment. COBOL and C++ stored procedures can contain
object-oriented extensions.

The program that calls the stored procedure can be in any language that supports
the SQL CALL statement. ODBC and JDBC applications can use an escape clause
to pass a stored procedure call to DB2.
Related concepts:
“Use of Java to execute static and dynamic SQL” on page 172
“Use of the SQL procedural language to create a stored procedure” on page 178

Stored procedure processing
There are several steps to stored procedure processing.

The following figure illustrates processing without stored procedures.

The following figure illustrates processing with stored procedures.

Client DB2 for z/OS

EXEC SQL SELECT …

EXEC SQL UPDATE …

EXEC SQL INSERT …
Perform SQL processing

Perform SQL processing

Perform SQL processing

Figure 32. Processing without stored procedures. An application embeds SQL statements
and communicates with the server separately for each statement.

176 Introduction to DB2 for z/OS

Figure notes:

v The workstation application uses the SQL CONNECT statement to create a conversation
with DB2.

v DB2 creates a DB2 thread to process SQL requests. A thread is the DB2 structure that
describes the connection of an application and traces application progress.

v The SQL statement CALL tells the DB2 server that the application is going to run a stored
procedure. The calling application provides the necessary arguments.

v DB2 processes information about the request and loads the stored procedure program.

v The stored procedure executes SQL statements.

One of the SQL statements opens a cursor that has been declared WITH RETURN. This
action causes a result set to be returned to the workstation application.

v The stored procedure assigns values to the output parameters and exits. Control returns
to the DB2 stored procedures region and goes from there to the DB2 subsystem.

v Control returns to the calling application, which receives the output parameters and the
result set.

The application can call other stored procedures, or it can execute additional SQL
statements. DB2 receives and processes the COMMIT or ROLLBACK request. The commit
or rollback operation covers all SQL operations that the application or the stored
procedure executes during the unit of work, unless the procedure is defined with the
AUTONOMOUS option. Autonomous procedures execute in a separate unit of work from
the calling application.

If the application involves IMS or CICS, similar processing occurs. This processing is
based on the IMS or CICS synchronization model, rather than on an SQL COMMIT or
ROLLBACK statement.

Figure 33. Processing with stored procedures. The same series of SQL statements uses a
single send or receive operation.

Chapter 6. Application programming for DB2 177

|
|
|
|
|

Related concepts:

Stored procedures (DB2 Application programming and SQL)
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)

Use of the SQL procedural language to create a stored
procedure

With SQL procedural language, you can write stored procedures that consist
entirely of SQL statements.

An SQL procedure can include declarations of variables, conditions, cursors, and
handlers. The SQL procedure can also include flow control, assignment statements,
and traditional SQL for defining and manipulating relational data. These
extensions provide a procedural language for writing stored procedures, and they
are consistent with the Persistent Stored Modules portion of the SQL standard.

Example: This example shows a simple SQL procedure (the syntax for the
CREATE PROCEDURE statement shows only a portion of the statement clauses):

CREATE PROCEDURE ITERATOR() LANGUAGE SQL
BEGIN

..
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR;
DECLARE CONTINUE HANDLER FOR not_found (2)

SET at_end = 1;
OPEN c1;
ftch_loop1: LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept; (1)
IF at_end = 1 THEN

LEAVE ftch_loop1; (3)
ELSEIF v_dept = ’D01’ THEN
INSERT INTO department (deptno, deptname, admrdept)

VALUES (’NEW’, v_deptname, v_admdept);
END IF;

END LOOP;
CLOSE c1;

END

In this example:
v Processing goes through ftch_loop1, assuming that a row is found.
v The first time that the FETCH does not find a row, processing goes to the

HANDLER (1).
v The HANDLER sets the at_end flag. Because the procedure uses a CONTINUE

HANDLER, processing continues at the next step after the FETCH (2).
v Processing continues with the CLOSE SQL statement (3).

178 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_storedprocedure.htm#db2z_storedprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation

Related concepts:

Stored procedures (DB2 Application programming and SQL)
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)

Use of development tools to create a stored procedure
Workstation-based development tools can help you create, install, and test stored
procedures for DB2 for z/OS.

Stored procedures are portable across the entire family of DB2 servers including
DB2 for z/OS, DB2 for i, and DB2 for Linux, UNIX, and Windows. If a DB2
subsystem is configured for the creation of SQL and Java stored procedures, you
can create these stored procedures with the tools that are available in DB2 Data
Studio. These tools also provide steps for building and installing DB2 Java stored
procedures on distributed systems. These tools also support read-only access to
user-defined functions, triggers, tables, and views.

For more information about how to create stored procedures with development
tools, see IBM Data Studio and Integrated Data Management information center.
Related reference:

Working with stored procedures in Data Studio

Create, test, and deploy a DB2 SQL procedure with Integrated Data
Management Tools

Developing DB2 for z/OS stored procedures with Integrated Data Managment
Tools

Setup of the stored procedure environment
Setting up the stored procedure environment includes establishing the stored
procedure environment and defining your stored procedure to DB2. Typically, a
system administrator customizes the environment, and an application programmer
defines the stored procedure.

Before a stored procedure can run, you must define it to DB2. Use the SQL
CREATE PROCEDURE statement to define a stored procedure to DB2. To alter the
definition, use the ALTER PROCEDURE statement.

Preparation of a stored procedure
You must consider several factors before you use a stored procedure.

A stored procedure can consist of more than one program, each with its own
package. Your stored procedure can call other programs, stored procedures, or
user-defined functions. Use the facilities of your programming language to call
other programs.

If the stored procedure calls other programs that contain SQL statements, each of
those called programs must have a DB2 package. The owner of the package or
plan that contains the CALL statement must have EXECUTE authority for all
packages that the other programs use.

When a stored procedure calls another program, DB2 determines which collection
the program package belongs to.

Chapter 6. Application programming for DB2 179

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_storedprocedure.htm#db2z_storedprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.routines.doc/topics/csp.html
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.routines.tutorial.doc/topics/routines_introduction.html
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.routines.tutorial.doc/topics/routines_introduction.html
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.routines.doc/topics/czossp.html
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.routines.doc/topics/czossp.html

Related tasks:

Creating a stored procedure (DB2 Application programming and SQL)

How applications can call stored procedures
You can use the SQL CALL statement to call a stored procedure and to pass a list
of arguments to that procedure.

An application program can call a stored procedure in the following ways:
v Execute the CALL statement locally, or send the CALL statement to a server. The

application executes a CONNECT statement to connect to the server. The
application then executes the CALL statement, or it uses a three-part name to
identify and implicitly connect to the server where the stored procedure is
located.

v After connecting to a server, combine CALL statements with other SQL
statements. To execute the CALL statement, you can either execute the CALL
statement statically or use an escape clause in an ODBC or JDBC application to
pass the CALL statement to DB2.

To execute a stored procedure, you need two types of authorization:
v Authorization to execute the stored procedure
v Authorization to execute the stored procedure package and any packages that

are in the stored procedure package

If the owner of the stored procedure has authority to execute the packages, the
person who executes the packages does not need the authority.

The authorizations that you need depend on whether the name of the stored
procedure is explicitly specified on the CALL statement or is contained in a host
variable.

If the stored procedure invokes user-defined functions or triggers, you need
additional authorizations to execute the user-defined function, the trigger, and the
user-defined function packages.
Related concepts:

Example of a simple stored procedure (DB2 Application programming and
SQL)
Related tasks:

Calling a stored procedure from your application (DB2 Application
programming and SQL)

180 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createsp.htm#db2z_createsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_xmpsimplesp.htm#db2z_xmpsimplesp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_xmpsimplesp.htm#db2z_xmpsimplesp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_callspfromapp.htm#db2z_callspfromapp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_callspfromapp.htm#db2z_callspfromapp

Chapter 7. Implementation of your database design

After building a logical design and physical design of your relational database and
collecting the processing requirements, you can move to the implementation stage.
In general, implementing your physical design involves defining the various
objects and enforcing the constraints on the data relationships.

The objects in a relational database are organized into sets called schemas. A
schema provides a logical classification of objects in the database. The schema
name is used as the qualifier of SQL objects such as tables, views, indexes, and
triggers.

This information explains the task of implementing your database design in a way
that most new users will understand. When you actually perform the task, you
might perform the steps in a different order.

You define, or create, objects by executing SQL statements. This information
summarizes some of the naming conventions for the various objects that you can
create. Also in this information, you will see examples of the basic SQL statements
and keywords that you can use to create objects in a DB2 database. (This
information does not document the complete SQL syntax.)

Tip: When you create DB2 objects (such as tables, table spaces, views, and
indexes), you can precede the object name with a qualifier to distinguish it from
objects that other people create. (For example, MYDB.TSPACE1 is a different table
space than YOURDB.TSPACE1.) When you use a qualifier, avoid using SYS as the
first three characters. If you do not specify a qualifier, DB2 assigns a qualifier for
the object.
Related concepts:
Chapter 4, “DB2 objects and their relationships,” on page 71

Creation of tables
Designing tables that many applications use is a critical task. Table design can be
difficult because you can represent the same information in many different ways.
This information briefly describes how tables are created and altered, and how
authorization is controlled.

You create tables by using the SQL CREATE TABLE statement. At some point after
you create and start using your tables, you might need to make changes to them.
The ALTER TABLE statement lets you add and change columns, add or drop a
primary key or foreign key, add or drop table check constraints, or add and change
partitions. Carefully consider design changes to avoid or reduce the disruption to
your applications.

If you have DBADM (database administration) authority, you probably want to
control the creation of DB2 databases and table spaces. These objects can have a
big impact on the performance, storage, and security of the entire relational
database. In some cases, you also want to retain the responsibility for creating
tables. After designing the relational database, you can create the necessary tables
for application programs. You can then pass the authorization for their use to the
application developers, either directly or indirectly, by using views.

© Copyright IBM Corp. 2001, 2013 181

However, if you want to, you can grant the authority for creating tables to those
who are responsible for implementing the application. For example, you probably
want to authorize certain application programmers to create tables if they need
temporary tables for testing purposes.

Some users in your organization might want to use DB2 with minimum assistance
or control. You can define a separate storage group and database for these users
and authorize them to create whatever data objects they need, such as tables.
Related concepts:
“Authorization and security mechanisms for data access” on page 280
Chapter 4, “DB2 objects and their relationships,” on page 71

Types of tables
In DB2, you store user data in tables. DB2 supports several types of tables, each of
which has its own purpose and characteristics.

DB2 supports the following types of tables:

archive table
A table that stores rows that are deleted from another table.

archive-enabled table
A table that has an associated archive table. When rows are deleted from
an archive-enabled table, DB2 can automatically insert those rows into an
archive table.

auxiliary table
A table created with the SQL statement CREATE AUXILIARY TABLE and
used to hold the data for a column that is defined in a base table.

base table
The most common type of table in DB2. You create a base table with the
SQL CREATE TABLE statement. The DB2 catalog table,
SYSIBM.SYSTABLES, stores the description of the base table. The table
description and table data are persistent. All programs and users that refer
to this type of table refer to the same description of the table and to the
same instance of the table.

clone table
A table that is structurally identical to a base table. You create a clone table
by using an ALTER TABLE statement for the base table that includes an
ADD CLONE clause. The clone table is created in a different instance of
the same table space as the base table, is structurally identical to the base
table in every way, and has the same indexes, before triggers, and LOB
objects. In the DB2 catalog, the SYSTABLESPACE table indicates that the
table space has only one table in it, but SYSTABLESPACE.CLONE indicates
that a clone table exists. Clone tables can be created only in a
range-partitioned or partition-by-growth table space that is managed by
DB2. The base and clone table each have separate underlying VSAM data
sets (identified by their data set instance numbers) that contain
independent rows of data.

empty table
A table with zero rows.

history table
A history table is used by DB2 to store historical versions of rows from the
associated system-period temporal table.

182 Introduction to DB2 for z/OS

|
|

|
|
|
|

materialized query table
A table, which you define with the SQL CREATE TABLE statement, that
contains materialized data that is derived from one or more source tables.
Materialized query tables are useful for complex queries that run on large
amounts of data. DB2 can precompute all or part of such queries and use
the precomputed, or materialized, results to answer the queries more
efficiently. Materialized query tables are commonly used in data
warehousing and business intelligence applications.

Several DB2 catalog tables, including SYSIBM.SYSTABLES and
SYSIBM.SYSVIEWS, store the description of the materialized query table
and information about its dependency on a table, view, or function. The
attributes that define a materialized query table tell DB2 whether the table
is:
v System-maintained or user-maintained.
v Refreshable: All materialized tables can be updated with the REFRESH

TABLE statement. Only user-maintained materialized query tables can
also be updated with the LOAD utility and the UPDATE, INSERT, and
DELETE SQL statements.

v Enabled for query optimization: You can enable or disable the use of a
materialized query table in automatic query rewrite.

Materialized query tables can be used to improve the performance of
dynamic SQL queries. If DB2 determines that a portion of a query could be
resolved using a materialized query table, the query might be rewritten by
DB2 to use the materialized query table. This decision is based in part on
the settings of the CURRENT REFRESH AGE and the CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION special registers.

result table
A table that contains a set of rows that DB2 selects or generates, directly or
indirectly, from one or more base tables in response to an SQL statement.
Unlike a base table or a temporary table, a result table is not an object that
you define using a CREATE statement.

sample table
One of several tables shipped with the DB2 licensed program that contains
sample data. Many examples in this information are based on sample
tables.

temporal tables
A temporal table is a table that records the period of time when a row is
valid.

DB2 supports two types of periods, which are the system period
(SYSTEM_TIME) and the application period (BUSINESS_TIME). The
system period consists of a pair of columns with system-maintained values
that indicates the period of time when a row is valid. The application
period consists of a pair of columns with application-maintained values
that indicates the period of time when a row is valid.

system-period temporal table
A system-period temporal table is a base table that is defined with
system-period data versioning. You can modify an existing table to
become a system-period temporal table by specifying the ADD
PERIOD SYSTEM_TIME clause on the ALTER TABLE statement.
After creating a history table that corresponds to the system-period
temporal table, you can define system-period data versioning on

Chapter 7. Implementation of your database design 183

the table by issuing the ALTER TABLE ADD VERSIONING
statement with the USE HISTORY table clause.

application-period temporal table
An application-period temporal table is a base table that includes
an application period (BUSINESS_TIME). You can modify an
existing table to become an application-period temporal table by
specifying the ADD PERIOD BUSINESS_TIME clause on the
ALTER TABLE statement.

bitemporal table
A bitemporal table is a table that is both a system-period temporal
table and an application-period temporal table. You can use a
bitemporal table to keep application period information and
system-based historical information. Therefore, you have a lot of
flexibility in how you query data based on periods of time.

temporary table
A table that is defined by the SQL statement CREATE GLOBAL
TEMPORARY TABLE or DECLARE GLOBAL TEMPORARY TABLE to
hold data temporarily. Temporary tables are especially useful when you
need to sort or query intermediate result tables that contain many rows,
but you want to store only a small subset of those rows permanently.

created global temporary table
A table that you define with the SQL CREATE GLOBAL
TEMPORARY TABLE statement. The DB2 catalog table,
SYSIBM.SYSTABLES, stores the description of the created
temporary table. The description of the table is persistent and
shareable. However, each individual application process that refers
to a created temporary table has its own distinct instance of the
table. That is, if application process A and application process B
both use a created temporary table named TEMPTAB:
v Each application process uses the same table description.
v Neither application process has access to or knowledge of the

rows in the other application instance of TEMPTAB.

declared global temporary table
A table that you define with the SQL DECLARE GLOBAL
TEMPORARY TABLE statement. The DB2 catalog does not store a
description of the declared temporary table. Therefore, the
description and the instance of the table are not persistent.
Multiple application processes can refer to the same declared
temporary table by name, but they do not actually share the same
description or instance of the table. For example, assume that
application process A defines a declared temporary table named
TEMP1 with 15 columns. Application process B defines a declared
temporary table named TEMP1 with five columns. Each
application process uses its own description of TEMP1; neither
application process has access to or knowledge of rows in the other
application instance of TEMP1.

XML table
A special table that holds only XML data. When you create a table with an
XML column, DB2 implicitly creates an XML table space and an XML table
to store the XML data.

184 Introduction to DB2 for z/OS

These different types of tables differ in other ways that this topic does not
describe.
Related concepts:
“Creation of large objects” on page 240
“Creation of materialized query tables” on page 188
“Archive-enabled tables and archive tables”
Related reference:
“DB2 sample tables” on page 131

Archive-enabled tables and archive tables
If you have a table that contains a significant amount of historical data that is not
often referenced, consider creating archive tables. An archive table is a table that
stores older rows from another table.

The original table is called an archive-enabled table. DB2 can automatically store
rows that are deleted from an archive-enabled table in an associated archive table.
When you query an archive-enabled table, you can specify whether you want
those queries to include data from the archive table.

Archive tables have the following advantages:
v DB2 can manage historical data for you. You do not have to manually move

data to a separate table.
v Because rows that are infrequently accessed are stored in a separate table, you

can potentially improve the performance of queries against the archive-enabled
table.

v You can modify queries to include or exclude archive table data without having
to change the SQL statement and prepare the application again. Instead, you can
control the scope of the query with a global variable.

v You can store archive tables on a lower-cost device to reduce operating costs.

To create an archive table, follow the instructions in Creating an archive table (DB2
Administration Guide).

When you query an archive-enabled table, you can specify whether you want the
query to consider rows in the archive table. You do not have to modify the SQL.
Instead, you can control the scope of the query by setting the
SYSIBMADM.GET_ARCHIVE global variable and the ARCHIVESENSITIVE bind
option as follows:

Table 27. Scope of queries against archive-enabled tables

ARCHIVESENSITIVE value
SYSIBMADM.GET_ARCHIVE
value

Effect on the scope of the
query

YES Y DB2 considers the archive
table rows

NO Y DB2 does not consider the
archive table rowsYES N

NO N

You can later remove the relationship between the archive-enabled table and the
archive table. To remove this relationship, issue the ALTER TABLE statement for

Chapter 7. Implementation of your database design 185

|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

||

|
|
|
|
|

|||
|

|||
|||

||
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createarchivetable.htm#db2z_createarchivetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createarchivetable.htm#db2z_createarchivetable

the archive-enabled table and specify the DISABLE ARCHIVE clause. Both tables
still exist, but the relationship is removed.
Related reference:

References to built-in global variables (DB2 SQL)

ARCHIVESENSITIVE bind option (DB2 Commands)

Creation of base tables
You use the CREATE TABLE statement to create a base table that you have
designed.

When you create a table, DB2 records a definition of the table in the DB2 catalog.
Creating a table does not store the application data. You can put data into the table
by using several methods, such as the LOAD utility or the INSERT statement.

Example: The following CREATE TABLE statement creates the EMP table, which is
in a database named MYDB and in a table space named MYTS:
CREATE TABLE EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
DEPT CHAR(3) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDL SMALLINT ,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS;

The preceding CREATE TABLE statement shows the definition of multiple
columns.

Related concepts:
“Definition of columns in a table” on page 190
Related reference:

CREATE TABLE (DB2 SQL)

Creation of temporary tables
Temporary tables can help you identify a small subset of rows from an
intermediate result table that you want to store permanently. The two types of
temporary tables are created temporary tables and declared temporary tables.

You can use temporary tables to sort large volumes of data and to query that data.
Then, when you have identified the smaller number of rows that you want to store
permanently, you can store them in a base table. The two types of temporary tables
in DB2 are the created temporary table and the declared temporary table. The
following topics describe how to define each type.

Created temporary table

Sometimes you need a permanent, shareable description of a table but need to
store data only for the life of an application process. In this case, you can define

186 Introduction to DB2 for z/OS

|
|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_refs2builtinglobalvars.htm#db2z_refs2builtinglobalvars
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptarchivesensitive.htm#db2z_bindoptarchivesensitive
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

and use a created temporary table. DB2 does not log operations that it performs on
created temporary tables; therefore, SQL statements that use them can execute
more efficiently. Each application process has its own instance of the created
temporary table.

Example: The following statement defines a created temporary table, TEMPPROD:
CREATE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIALNO CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOSTAMT DECIMAL(8,2) ,
MFGDEPTNO CHAR(3) ,
MARKUPPCT SMALLINT ,
SALESDEPTNO CHAR(3) ,
CURDATE DATE NOT NULL);

Declared temporary table

Sometimes you need to store data for the life of an application process, but you do
not need a permanent, shareable description of the table. In this case, you can
define and use a declared temporary table.

Unlike other DB2 DECLARE statements, DECLARE GLOBAL TEMPORARY
TABLE is an executable statement that you can embed in an application program
or issue interactively. You can also dynamically prepare the statement.

When a program in an application process issues a DECLARE GLOBAL
TEMPORARY TABLE statement, DB2 creates an empty instance of the table. You
can populate the declared temporary table by using INSERT statements, modify
the table by using searched or positioned UPDATE or DELETE statements, and
query the table by using SELECT statements. You can also create indexes on the
declared temporary table. The definition of the declared temporary table exists as
long as the application process runs.

Example: The following statement defines a declared temporary table, TEMP_EMP.
(This example assumes that you have already created the WORKFILE database and
corresponding table space for the temporary table.)
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2) ,
COMM DECIMAL(9, 2));

If specified explicitly, the qualifier for the name of a declared temporary table,
must be SESSION. If the qualifier is not specified, it is implicitly defined to be
SESSION.

At the end of an application process that uses a declared temporary table, DB2
deletes the rows of the table and implicitly drops the description of the table.

Chapter 7. Implementation of your database design 187

Related concepts:

Temporary tables (DB2 Application programming and SQL)
Related reference:

CREATE GLOBAL TEMPORARY TABLE (DB2 SQL)

DECLARE GLOBAL TEMPORARY TABLE (DB2 SQL)

Creation of materialized query tables
Materialized query tables improve the performance of complex queries that operate
on large amounts of data.

Using a materialized query table, DB2 pre-computes the results of data that is
derived from one or more tables. When you submit a query, DB2 can use the
results that are stored in a materialized query table rather than compute the results
from the underlying source tables on which the materialized query table is defined.
If the rewritten query is less costly, DB2 chooses to optimize the query by using
the rewritten query, a process called automatic query rewrite.

To take advantage of automatic query rewrite, you must define, populate, and
periodically refresh the materialized query table. You use the CREATE TABLE

statement to create a table as a materialized query table.

Example: The following CREATE TABLE statement defines a materialized query
table named TRANSCNT. TRANSCNT summarizes the number of transactions in
table TRANS by account, location, and year:
CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS

(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT(*)
FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the
REFRESH DEFERRED clause, defines the table as a materialized query table.

Related tasks:

Dropping, re-creating, or converting a table space (DB2 Administration Guide)

Creation of a table with table-controlled partitioning
Table-controlled partitioning does not require an index for partitioning and is
defined by PARTITION clauses on the CREATE TABLE statement.

When you define a partitioning index on a table in a partitioned table space, you
specify the partitioning key and the limit key values in the PARTITION clause of
the CREATE INDEX statement. This type of partitioning is known as
index-controlled partitioning. Because the index is created separately from the
associated table, you cannot insert data into the table until the partitioning index is
created.

188 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_temptable.htm#db2z_temptable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createglobaltemptable.htm#db2z_sql_createglobaltemptable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declareglobaltemptable.htm#db2z_sql_declareglobaltemptable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_converttablespace.htm#db2z_converttablespace

DB2 also supports a method called table-controlled partitioning for defining table
partitions. You can use table-controlled partitioning instead of index-controlled
partitioning.

With table-controlled partitioning, you identify column values that delimit partition
boundaries with the PARTITION BY clause and the PARTITION ENDING AT
clause of the CREATE TABLE statement. When you use this type of partitioning,

an index is not required for partitioning.

Example: Assume that you need to create a large transaction table that includes
the date of the transaction in a column named POSTED. You want to keep the
transactions for each month in a separate partition. To create the table, use the
following statement:
CREATE TABLE TRANS

(ACCTID ...,
STATE ...,
POSTED ...,
... , ...)
PARTITION BY (POSTED)
(PARTITION 1 ENDING AT (’01/31/2003’),
PARTITION 2 ENDING AT (’02/28/2003’),
...
PARTITION 13 ENDING AT (’01/31/2004’));

Related concepts:
“Partitioning indexes” on page 233

Creation of temporal tables
A temporal table is a table that records the period of time when a row is valid.

You can create application-period temporal tables and system-period temporal
tables. An application-period temporal table includes an application period, which is a
period in which you maintain the beginning and ending values for a row. A
system-period temporal table has a system period, and you can define system-period
data versioning on the table to manage historical and current table data. A
bitemporal table is a table that is both a system-period temporal table and an
application-period temporal table.

System-period data versioning specifies that old rows are archived into another table.
The table that contains the current active rows of a table is called the
system-period temporal table. The table that contains the archived rows is called
the history table. When you define a base table to use system-period data
versioning or when you define system-period data versioning on an existing table,
you must create a history table. You must specify a name for the history table and
create a table space to hold that table.

When you update or delete data in a system-period temporal table, DB2 inserts the
previous row values and column values into the history table. You can query a
system-period temporal table with timestamp criteria to retrieve previous data
values. You can specify the timestamp criteria in the query or by using special
registers. You also can specify the length of time that the historical data is stored.

Chapter 7. Implementation of your database design 189

|
|
|
|
|

You can use system-period data versioning instead of developing your own
programs for maintaining multiple versions of data within a database. With DB2,
system-period data versioning is a more efficient method for maintaining
versioned data.
Related concepts:

Temporal tables (DB2 Administration Guide)
Related tasks:

Querying temporal tables (DB2 Administration Guide)

Definition of columns in a table
A column definition has two basic components, the column name and the data
type. There are several factors that you need to consider when you define columns
in a table.

The two basic components of the column definition are the name and the data
type. A column contains values that have the same data type. If you are familiar
with the concepts of records and fields, you can think of a value as a field in a
record. A value is the smallest unit of data that you can manipulate with SQL. For
example, in the EMP table, the EMPNO column identifies all employees by a
unique employee number. The HIREDATE column contains the hire dates for all
employees. You cannot overlap columns.

Online schema enhancements provide flexibility that lets you change a column
definition. Carefully consider the decisions that you make about column
definitions. After you implement the design of your tables, you can change a
column definition with minimal disruption of applications.

Throughout the implementation phase of database design, refer to the complete
descriptions of SQL statement syntax and usage for each SQL statement that you
work with.

Column names
Following column naming guidelines that are developed for your organization
ensures that you make good choices that are consistent.

Generally, the database administrator (DBA) is involved in determining the names
of attributes (or columns) during the physical database design phase. To make the
right choices for column names, DBAs follow the guidelines that the data
administrators developed.

Sometimes columns need to be added to the database after the design is complete.
In this case, DB2 rules for unique column names must be followed. Column names
must be unique within a table, but you can use the same column name in different
tables. Try to choose a meaningful name to describe the data in a column to make
your naming scheme intuitive. The maximum length of a column name is 30 bytes.

Data types
Every column in every DB2 table has a data type. The data type influences the
range of values that the column can have and the set of operators and functions
that apply to it.

190 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_temporaltables.htm#db2z_temporaltables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_queryingtemporaltables.htm#db2z_queryingtemporaltables

You specify the data type of each column at the time that you create the table. You
can also change the data type of a table column. The new data type definition is
applied to all data in the associated table when the table is reorganized.

Some data types have parameters that further define the operators and functions
that apply to the column. DB2 supports both IBM-supplied data types and
user-defined data types. The data types that IBM supplies are sometimes called
built-in data types.

In DB2 for z/OS, user-defined data types are called distinct types.
Related concepts:
“Data types for attributes” on page 76
“Distinct types” on page 197

String data types
DB2 supports several types of string data: character strings, graphic strings, and
binary strings.

Character strings contain text and can be either a fixed-length or a varying-length.
Graphic strings contain graphic data, which can also be either a fixed-length or a
varying-length. Binary strings contain strings of binary bytes and can be either a
fixed-length or a varying-length. All of these types of string data can be
represented as large objects.

The following table describes the different string data types and indicates the range
for the length of each string data type.

Table 28. String data types

Data type Denotes a column of...

CHARACTER(n) Fixed-length character strings with a length of n bytes. n must be
greater than 0 and not greater than 255. The default length is 1.

VARCHAR(n) Varying-length character strings with a maximum length of n bytes.
n must be greater than 0 and less than a number that depends on
the page size of the table space. The maximum length is 32704.

CLOB(n) Varying-length character strings with a maximum of n characters. n
cannot exceed 2 147 483 647. The default length is 1M.

GRAPHIC(n) Fixed-length graphic strings that contain n double-byte characters. n
must be greater than 0 and less than 128. The default length is 1.

VARGRAPHIC(n) Varying-length graphic strings. The maximum length, n, must be
greater than 0 and less than a number that depends on the page
size of the table space. The maximum length is 16352.

DBCLOB(n) Varying-length strings of double-byte characters with a maximum of
n double-byte characters. n cannot exceed 1 073 741 824. The
default length is 1M.

BINARY(n) Fixed-length or varying-length binary strings with a length of n
bytes. n must be greater than 0 and not greater than 255. The
default length is 1.

VARBINARY(n) Varying-length binary strings with a length of n bytes. The length of
n must be greater than 0 and less than a number that depends on
the page size of the table space. The maximum length is 32704.

BLOB(n) Varying-length binary strings with a length of n bytes. n cannot
exceed 2 147 483 647. The default length is 1M.

Chapter 7. Implementation of your database design 191

In most cases, the content of the data that a column is to store dictates the data
type that you choose.

Example: The DEPT table has a column, DEPTNAME. The data type of the
DEPTNAME column is VARCHAR(36). Because department names normally vary
considerably in length, the choice of a varying-length data type seems appropriate.
If you choose a data type of CHAR(36), for example, the result is a lot of wasted,
unused space. In this case, DB2 assigns all department names, regardless of length,
the same amount of space (36 bytes). A data type of CHAR(6) for the employee
number (EMPNO) is a reasonable choice because all values are fixed-length values
(6 bytes).

Fixed-length and variable-length character strings

Using VARCHAR saves disk space, but it incurs a 2-byte overhead cost for
each value. Using VARCHAR also requires additional processing for
varying-length rows. Therefore, using CHAR is preferable to VARCHAR,
unless the space that you save by using VARCHAR is significant. The
savings are not significant if the maximum column length is small or if the
lengths of the values do not have a significant variation.

Recommendation: Generally, do not define a column as VARCHAR(n) or
CLOB(n) unless n is at least 18 characters.

String subtypes

If an application that accesses your table uses a different encoding scheme
than your DBMS uses, the following string subtypes can be important:

BIT Does not represent characters.

SBCS Represents single-byte characters.

MIXED
Represents single-byte characters and multibyte characters.

String subtypes apply only to CHAR, VARCHAR, and CLOB data types.
However, the BIT string subtype is not allowed for the CLOB data type.

Graphic and mixed data

When columns contain double-byte character set (DBCS) characters, you can
define them as either graphic data or mixed data.

Graphic data can be either GRAPHIC, VARGRAPHIC, or DBCLOB. Using
VARGRAPHIC saves disk space, but it incurs a 2-byte overhead cost for
each value. Using VARGRAPHIC also requires additional processing for
varying-length rows. Therefore, using GRAPHIC data is preferable to using
VARGRAPHIC unless the space that you save by using VARGRAPHIC is
significant. The savings are not significant if the maximum column length
is small or if the lengths of the values do not vary significantly.

Recommendation: Generally, do not define a column as VARGRAPHIC(n)
unless n is at least 18 double-byte characters (which is a length of 36
bytes).

Mixed-data character string columns can contain both single-byte character set
(SBCS) and DBCS characters. You can specify the mixed-data character
string columns as CHAR, VARCHAR, or CLOB with MIXED DATA.

192 Introduction to DB2 for z/OS

Recommendation: If all of the characters are DBCS characters, use the
graphic data types. (Kanji is an example of a language that requires DBCS
characters.) For SBCS characters, use mixed data to save 1 byte for every
single-byte character in the column.

Related concepts:
“Encoding schemes for string data” on page 198

Numeric data types
DB2 supports several types of numeric data types, each of which has its own
characteristics.

For numeric data, use numeric columns rather than string columns. Numeric
columns require less space than string columns, and DB2 verifies that the data has
the assigned type.

Example: Assume that DB2 calculates a range between two numbers. If the values
have a string data type, DB2 assumes that the values can include all combinations
of alphanumeric characters. In contrast, if the values have a numeric data type,
DB2 can calculate a range between the two values more efficiently.

The following table describes the numeric data types.

Table 29. Numeric data types

Data type Denotes a column of...

SMALLINT Small integers. A small integer is binary integer with a precision of
15 bits. The range is -32768 to +32767.

INTEGER or
INT

Large integers. A large integer is binary integer with a precision of 31
bits. The range is -2147483648 to +2147483647.

BIGINT Big integers. A big integer is a binary integer with a precision of 63
bits. The range of big integers is -9223372036854775808 to
+9223372036854775807.

DECIMAL or
NUMERIC

A decimal number is a packed decimal number with an implicit
decimal point. The position of the decimal point is determined by
the precision and the scale of the number. The scale, which is the
number of digits in the fractional part of the number, cannot be
negative or greater than the precision. The maximum precision is 31
digits.

All values of a decimal column have the same precision and scale.
The range of a decimal variable or the numbers in a decimal
column is -n to +n, where n is the largest positive number that can
be represented with the applicable precision and scale. The
maximum range is 1 - 10³¹ to 10³¹ - 1.

DECFLOAT A decimal floating-point value is an IEEE 754r number with a decimal
point. The position of the decimal point is stored in each decimal
floating-point value. The maximum precision is 34 digits.

The range of a decimal floating-point number is either 16 or 34
digits of precision; the exponent range is respectively 10-383 to
10+384 or 10-6143 to 10+6144.

REAL A single-precision floating-point number is a short floating-point
number of 32 bits. The range of single-precision floating-point
numbers is approximately -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive
value is about 5.4E-079.

Chapter 7. Implementation of your database design 193

Table 29. Numeric data types (continued)

Data type Denotes a column of...

DOUBLE A double-precision floating-point number is a long floating-point
number of 64-bits. The range of double-precision floating-point
numbers is approximately -7.2E+75 to 7.2E+75. In this range, the
largest negative value is about -5.4E-79, and the smallest positive
value is about 5.4E-079.

Note: zSeries and z/Architecture use the System/390® format and support IEEE
floating-point format.

For integer values, SMALLINT INTEGER, or BIGINT (depending on the range of
the values) is generally preferable to DECIMAL.

You can define an exact numeric column as an identity column. An identity column
has an attribute that enables DB2 to automatically generate a unique numeric value
for each row that is inserted into the table. Identity columns are ideally suited to
the task of generating unique primary-key values. Applications that use identity
columns might be able to avoid concurrency and performance problems that
sometimes occur when applications implement their own unique counters.

Date, time, and timestamp data types
Although storing dates and times as numeric values is possible, using datetime
data types is recommended. The datetime data types are DATE, TIME, and
TIMESTAMP.

The following table describes the data types for dates, times, and timestamps.

Table 30. Date, time, and timestamp data types

Data type Denotes a column of...

DATE A date is a three-part value representing a year, month, and day in
the range of 0001-01-01 to 9999-12-31.

TIME A time is a three-part value representing a time of day in hours,
minutes, and seconds, in the range of 00.00.00 to 24.00.00.

TIMESTAMP A timestamp is a seven-part value representing a date and time by
year, month, day, hour, minute, second, and microsecond, in the
range of 0001-01-01-00.00.00.000000000 to 9999-12-31-
24.00.00.000000000 with nanosecond precision. Timestamps can also
hold timezone information.

DB2 stores values of datetime data types in a special internal format. When you
load or retrieve data, DB2 can convert it to or from any of the formats in the
following table.

Table 31. Date and time format options

Format name Abbreviation Typical date Typical time

International Standards
Organization

ISO 2003-12-25 13.30.05

IBM USA standard USA 12/25/2003 1:30 PM

IBM European standard EUR 25.12.2003 13.30.05

Japanese Industrial Standard
Christian Era

JIS 2003-12-25 13:30:05

194 Introduction to DB2 for z/OS

Example 1: The following query displays the dates on which all employees were
hired, in IBM USA standard form, regardless of the local default:
SELECT EMPNO, CHAR(HIREDATE, USA) FROM EMP;

When you use datetime data types, you can take advantage of DB2 built-in
functions that operate specifically on datetime values, and you can specify
calculations for datetime values.

Example 2: Assume that a manufacturing company has an objective to ship all
customer orders within five days. You define the SHIPDATE and ORDERDATE
columns as DATE data types. The company can use datetime data types and the
DAYS built-in function to compare the shipment date to the order date. Here is
how the company might code the function to generate a list of orders that have
exceeded the five-day shipment objective:
DAYS(SHIPDATE) — DAYS(ORDERDATE)> 5

As a result, programmers do not need to develop, test, and maintain application
code to perform complex datetime arithmetic that needs to allow for the number of
days in each month.

You can use the following sample user-defined functions (which come with DB2)
to modify the way dates and times are displayed.
v ALTDATE returns the current date in a user-specified format or converts a

user-specified date from one format to another.
v ALTTIME returns the current time in a user-specified format or converts a

user-specified time from one format to another.

At installation time, you can also supply an exit routine to make conversions to
and from any local standard.

When loading date or time values from an outside source, DB2 accepts any of the
date and time format options that are listed in this information. DB2 converts valid
input values to the internal format. For retrieval, a default format is specified at
DB2 installation time. You can subsequently override that default by using a
precompiler option for all statements in a program or by using the scalar function
CHAR for a particular SQL statement and by specifying the format that you want.

XML data type
The XML data type is used to define columns of a table that store XML values.
This pureXML data type provides the ability to store well-formed XML documents
in a database.

All XML data is stored in the database in an internal representation. Character data
in this internal representation is in the UTF-8 encoding scheme.

XML values that are stored in an XML column have an internal representation that
is not a string and not directly comparable to string values. An XML value can be
transformed into a serialized string value that represents the XML document by
using the XMLSERIALIZE function or by retrieving the value into an application
variable of an XML, string, or binary type. Similarly, a string value that represents

Chapter 7. Implementation of your database design 195

an XML document can be transformed to an XML value by using the XMLPARSE
function or by storing a value from a string, binary, or XML application data type
in an XML column.

The size of an XML value in a DB2 table has no architectural limit. However,
serialized XML data that is stored in or retrieved from an XML column is limited
to 2 GB.

Validation of an XML document against an XML schema, typically performed
during INSERT or UPDATE into an XML column, is supported by the XML
schema repository (XSR). If an XML column has an XML type modifier, documents
that are inserted into the column or updated in the column are automatically
validated against an XML schema.

Large object data types
You can use large object data types to store audio, video, images, and other files
that are larger than 32 KB.

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a storage limit
of 32 KB. However, applications often need to store large text documents or
additional data types such as audio, video, drawings, images, and a combination
of text and graphics. For data objects that are larger than 32 KB, you can use the
corresponding large object (LOB) data types to store these objects.

DB2 provides three data types to store these data objects as strings of up to 2 GB
in size:

Character large objects (CLOBs)
Use the CLOB data type to store SBCS or mixed data, such as documents
that contain single character set. Use this data type if your data is larger
(or might grow larger) than the VARCHAR data type permits.

Double-byte character large objects (DBCLOBs)
Use the DBCLOB data type to store large amounts of DBCS data, such as
documents that use a DBCS character set.

Binary large objects (BLOBs)
Use the BLOB data type to store large amounts of noncharacter data, such
as pictures, voice, and mixed media.

If your data does not fit entirely within a data page, you can define one or more
columns as LOB columns. An advantage to using LOBs is that you can create
user-defined functions that are allowed only on LOB data types.
Related concepts:
“Creation of large objects” on page 240

Large objects (LOBs) (DB2 SQL)

ROWID data type
You use the ROWID data type to uniquely and permanently identify rows in a
DB2 subsystem.

DB2 can generate a value for the column when a row is added, depending on the
option that you choose (GENERATED ALWAYS or GENERATED BY DEFAULT)
when you define the column. You can use a ROWID column in a table for several
reasons.
v You can define a ROWID column to include LOB data in a table.

196 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_lobsintro.htm#db2z_lobsintro

v You can use direct-row access so that DB2 accesses a row directly through the
ROWID column. If an application selects a row from a table that contains a
ROWID column, the row ID value implicitly contains the location of the row. If
you use that row ID value in the search condition of subsequent SELECT
statements, DB2 might be able to navigate directly to the row.

Related concepts:

ROWID columns (DB2 Application programming and SQL)

Direct row access (PRIMARY_ACCESSTYPE='D') (DB2 Performance)
Related tasks:

Specifying direct row access by using row IDs (DB2 Application programming
and SQL)
Related reference:

ROWID (DB2 SQL)

Distinct types
A distinct type is a user-defined data type that is based on existing built-in DB2
data types.

A distinct type is internally the same as a built-in data type, but DB2 treats them
as a separate and incompatible type for semantic purposes.

Defining your own distinct type ensures that only functions that are explicitly
defined on a distinct type can be applied to its instances.

Example 1: You might define a US_DOLLAR distinct type that is based on the
DB2 DECIMAL data type to identify decimal values that represent United States
dollars. The US_DOLLAR distinct type does not automatically acquire the
functions and operators of its source type, DECIMAL.

Although you can have different distinct types that are based on the same built-in
data types, distinct types have the property of strong typing. With this property,
you cannot directly compare instances of a distinct type with anything other than
another instance of that same type. Strong typing prevents semantically incorrect
operations (such as explicit addition of two different currencies) without first
undergoing a conversion process. You define which types of operations can occur
for instances of a distinct type.

If your company wants to track sales in many countries, you must convert the

currency for each country in which you have sales.

Example 2: You can define a distinct type for each country. For example, to create
US_DOLLAR types and CANADIAN_DOLLAR types, you can use the following
CREATE DISTINCT TYPE statements:
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2);
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2);

Example 3: After you define distinct types, you can use them in your CREATE
TABLE statements:
CREATE TABLE US_SALES

(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL_AMOUNT US_DOLLAR);

Chapter 7. Implementation of your database design 197

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_rowidcolumns.htm#db2z_rowidcolumns
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_directrowaccess.htm#db2z_directrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_specifydirectrowaccess.htm#db2z_specifydirectrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_specifydirectrowaccess.htm#db2z_specifydirectrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_rowid.htm#db2z_bif_rowid

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL_AMOUNT CANADIAN_DOLLAR);

User-defined functions support the manipulation of distinct types.
Related concepts:
“Encoding schemes for string data”

Encoding schemes for string data
For string data, all characters are represented by a common encoding
representation (Unicode, ASCII, or EBCDIC). Encoding schemes apply to string
data types and to distinct types that are based on string types.

Multinational companies that engage in international trade often store data from
more than one country in the same table. Some countries use different coded
character set identifiers. DB2 for z/OS supports the Unicode encoding scheme,
which represents many different geographies and languages. If you need to
perform character conversion on Unicode data, the conversion is more likely to
preserve all of your information.

In some cases, you might need to convert characters to a different encoding
representation. The process of conversion is known as character conversion. Most
users do not need a knowledge of character conversion. When character conversion
does occur, it does so automatically and a successful conversion is invisible to the
application and users.
Related concepts:
“Distinct types” on page 197
“String data types” on page 191

How DB2 compares data types
DB2 compares values of different types and lengths.

A comparison occurs when both values are numeric, both values are character
strings, or both values are graphic strings. Comparisons can also occur between
character and graphic data or between character and datetime data if the character
data is a valid character representation of a datetime value. Different types of
string or numeric comparisons might have an impact on performance.

Null and default values
Null values and default values are useful in situations where the content of some
columns cannot be specified when you create table columns.

Null values
Some columns cannot have a meaningful value in every row. DB2 uses a special
value indicator, the null value, to stand for an unknown or missing value. A null
value is a special value that DB2 interprets to mean that no data is present.

If you do not specify otherwise,DB2 allows any column to contain null values.
Users can create rows in the table without providing a value for the column.

198 Introduction to DB2 for z/OS

Using the NOT NULL clause enables you to disallow null values in the column.

Primary keys must be defined as NOT NULL.

Example: The table definition for the DEPT table specifies when you can use a
null value. Notice that you can use nulls for the MGRNO column only:
CREATE TABLE DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

IN MYDB.MYTS;

Before you decide whether to allow nulls for unknown values in a particular
column, you must be aware of how nulls affect results of a query:
v Nulls in application programs

Nulls do not satisfy any condition in an SQL statement other than the special IS
NULL predicate. DB2 sorts null values differently than non-null values. Null
values do not behave like other values. For example, if you ask DB2 whether a
null value is larger than a given known value, the answer is UNKNOWN. If you
then ask DB2 whether a null value is smaller than the same known value, the
answer is still UNKNOWN.
If getting a value of UNKNOWN is unacceptable for a particular column, you
could define a default value instead. Programmers are familiar with the way
default values behave.

v Nulls in a join operation
Nulls need special handling in join operations. If you perform a join operation
on a column that can contain null values, consider using an outer join.

Related concepts:
“Ways to join data from more than one table” on page 116
“Values for key attributes” on page 78

Default values
DB2 defines some default values, and you define others (by using the DEFAULT
clause in the CREATE TABLE or ALTER TABLE statement).

If a column is defined as NOT NULL WITH DEFAULT or if you do not specify
NOT NULL, DB2 stores a default value for a column whenever an insert or load
does not provide a value for that column. If a column is defined as NOT NULL,
DB2 does not supply a default value.

DB2–defined default values

DB2 generates a default value for ROWID columns. DB2 also determines default
values for columns that users define with NOT NULL WITH DEFAULT, but for
which no specific value is specified, as shown in the following table.

Chapter 7. Implementation of your database design 199

Table 32. DB2-defined default values for data types

For columns of... Data types Default

Numbers SMALLINT, INTEGER,
BIGINT, DECIMAL,
NUMERIC, REAL, DOUBLE,
DECFLOAT, or FLOAT

0

Fixed-length strings CHAR or GRAPHIC

BINARY

Blanks

Hexadecimal zeros

Varying-length strings VARCHAR, CLOB,
VARGRAPHIC, DBCLOB,
VARBINARY, or BLOB

Empty string

Dates DATE CURRENT DATE

Times TIME CURRENT TIME

Timestamps TIMESTAMP CURRENT TIMESTAMP

ROWIDs ROWID DB2-generated

User-defined default values

You can specify a particular default value, such as:
DEFAULT ’N/A’

When you choose a default value, you must be able to assign it to the data type of
the column. For example, all string constants are VARCHAR. You can use a
VARCHAR string constant as the default for a CHAR column even though the
type isn't an exact match. However, you could not specify a default value of 'N/A'
for a column with a numeric data type.

In the next example, the columns are defined as CHAR (fixed length). The special
registers (USER and CURRENT SQLID) that are referenced contain varying length
values.

Example: If you want a record of each user who inserts any row of a table, define
the table with two additional columns:
PRIMARY_ID CHAR(8) WITH DEFAULT USER,
SQL_ID CHAR(8) WITH DEFAULT CURRENT SQLID,

You can then create a view that omits those columns and allows users to update
the view instead of the base table. DB2 then adds, by default, the primary
authorization ID and the SQLID of the process.

When you add columns to an existing table, you must define them as nullable or
as not null with default. Assume that you add a column to an existing table and
specify not null with default. If DB2 reads from the table before you add data to
the column, the column values that you retrieve are the default values. With few
exceptions, the default values for retrieval are the same as the default values for
insert.

Default values for ROWID

DB2 always generates the default values for ROWID columns.

200 Introduction to DB2 for z/OS

Related concepts:
“Authorization and security mechanisms for data access” on page 280

Comparison of null values and default values
Using a null value is easier and better than using a default value in some
situations.

Suppose that you want to find out the average salary for all employees in a
department. The salary column does not always need to contain a meaningful
value, so you can choose between the following options:
v Allowing null values for the SALARY column
v Using a nonnull default value (such as, 0)

By allowing null values, you can formulate the query easily, and DB2 provides the
average of all known or recorded salaries. The calculation does not include the
rows that contain null values. In the second case, you probably get a misleading
answer unless you know the nonnull default value for unknown salaries and
formulate your query accordingly.

The following figure shows two scenarios. The table in the figure excludes salary
data for employee number 200440, because the company just hired this employee
and has not yet determined the salary. The calculation of the average salary for
department E21 varies, depending on whether you use null values or nonnull
default values.
v The left side of the figure assumes that you use null values. In this case, the

calculation of average salary for department E21 includes only the three
employees (000320, 000330, and 200340) for whom salary data is available.

v The right side of the figure assumes that you use a nonnull default value of zero
(0). In this case, the calculation of average salary for department E21 includes all
four employees, although valid salary information is available for only three
employees.

As you can see, only the use of a null value results in an accurate average salary
for department E21.

Chapter 7. Implementation of your database design 201

Null values are distinct in most situations so that two null values are not equal to

each other.

Example: The following example shows how to compare two columns to see if
they are equal or if both columns are null:
WHERE E1.DEPT IS NOT DISTINCT FROM E2.DEPT

Use of check constraints to enforce validity of column values
You can use check constraints to ensure that only values from the domain for the
column or attribute are allowed.

As a result of using check constraints, programmers do not need to develop, test,
and maintain application code that performs these checks.

You can choose to define check constraints by using the SQL CREATE TABLE
statement or ALTER TABLE statement. For example, you might want to ensure that
each value in the SALARY column of the EMP table contains more than a certain
minimum amount.

DB2 enforces a check constraint by applying the relevant search condition to each
row that is inserted, updated, or loaded. An error occurs if the result of the search
condition is false for any row.

Use of check constraints to insert rows into tables
When you use the INSERT statement or the MERGE statement to add a row to a
table, DB2 automatically enforces all check constraints for that table. If the data
violates any check constraint that is defined on that table, DB2 does not insert the
row.

SELECT DEPT, AVG(SALARY)
FROM EMP
GROUP BY DEPT;

With null value With default value of 0

DEPT
====
.
.
.
E21

DEPT
====.
.
.
E21

AVG(SALARY)
===========

.

.

.

AVG(SALARY)
===========

.

.

.
17290.00

EMPNO DEPT SALARY

000320 E21 19950.00

000330 E21 25370.00

200340 E21 23840.00

200440 E21 --------

EMPNO DEPT SALARY

000320 E21 19950.00

000330 E21 25370.00

200340 E21 23840.00

200440 E21 0.00

23053.33
(Average of
nonnull salaries)

Figure 34. When nulls are preferable to default values

202 Introduction to DB2 for z/OS

Example 1: Assume that the NEWEMP table has the following two check
constraints:
v Employees cannot receive a commission that is greater than their salary.
v Department numbers must be between '001' to '100,' inclusive.

Consider this INSERT statement, which adds an employee who has a salary of
$65 000 and a commission of $6 000:
INSERT INTO NEWEMP

(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES (’100125’, ’MARY’, ’SMITH’,’055’, ’SLS’, 65000.00, 6000.00);

The INSERT statement in this example succeeds because it satisfies both
constraints.

Example 2: Consider this INSERT statement:
INSERT INTO NEWEMP

(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES (’120026’, ’JOHN’, ’SMITH’,’055’, ’DES’, 5000.00, 55000.00);

The INSERT statement in this example fails because the $55 000 commission is
higher than the $5 000 salary. This INSERT statement violates a check constraint
on NEWEMP.

Use of check constraints to update tables
DB2 automatically enforces all check constraints for a table when you use the
UPDATE statement or the MERGE statement to change a row in the table. If the
intended update violates any check constraint that is defined on that table, DB2
does not update the row.

Example: Assume that the NEWEMP table has the following two check
constraints:
v Employees cannot receive a commission that is greater than their salary.
v Department numbers must be between '001' to '100,' inclusive.

Consider this UPDATE statement:
UPDATE NEWEMP

SET DEPT = ’011’
WHERE FIRSTNME = ’MARY’ AND LASTNAME= ’SMITH’;

This update succeeds because it satisfies the constraints that are defined on the
NEWEMP table.

Example: Consider this UPDATE statement:
UPDATE NEWEMP

SET DEPT = ’166’
WHERE FIRSTNME = ’MARY’ AND LASTNAME= ’SMITH’;

This update fails because the value of DEPT is '166,' which violates the check
constraint on NEWEMP that DEPT values must be between '001' and '100.'

Chapter 7. Implementation of your database design 203

Row design
Record size is an important consideration in the design of a table. In DB2, a record
is the storage representation of a row.

DB2 stores records within pages that are 4 KB, 8 KB, 16 KB, or 32 KB in size.
Generally, you cannot create a table with a maximum record size that is greater
than the page size. No other absolute limit exists, but you risk wasting storage
space if you ignore record size in favor of implementing a good theoretical design.

If the record length is larger than the page size, increase the page size or consider
using a large object (LOB) data type or an XML data type.
Related concepts:
“Large object data types” on page 196
“pureXML” on page 57

Record lengths and pages
The sum of the lengths of all the columns is the record length. The length of data
that is physically stored in the table is the record length plus DB2 overhead for
each row and each page. You can choose various page sizes for record lengths that
best fit your needs.

If row sizes are very small, use the 4 KB page size. Use the default of 4-KB page
sizes when access to your data is random and typically requires only a few rows
from each page.

Some situations require larger page sizes. DB2 provides three larger page sizes of 8
KB, 16 KB, and 32 KB to allow for longer records. For example, when the size of
individual rows is greater than 4-KB, you must use a larger page size. In general,
you can improve performance by using pages for record lengths that best suit your
needs.

Designs that waste space
If a table space contains large records that use up most of the page size and cannot
fit additional records, that database design wastes space.

In general, space is wasted in a table space that contains only records that are
slightly longer than half a page because a page can hold only one record. If you
can reduce the record length to just under half a page, you need only half as many
pages. Similar considerations apply to records that are just over a third of a page, a
quarter of a page, and so on. In these situations, you can use compression or
increase the page size.

Creation of table spaces
DB2 supports different types of table spaces, including: universal, segmented,
partitioned, XML, and large object (LOB) table spaces. Each type of table space has
its own advantages and disadvantages, which you should consider when you
choose the table space that best suits your needs.

DB2 divides table spaces into equal-sized units, called pages, which are written to
or read from disk in one operation. You can specify page sizes for the data; the
default page size is 4 KB. If DB2 implicitly created the table space, DB2 chooses the
page size based on a row-size algorithm.

204 Introduction to DB2 for z/OS

Recommendation: Use partitioned table spaces for all table spaces that are referred
to in queries that can take advantage of query parallelism. Otherwise, use
segmented table spaces for other queries.
Related concepts:
“DB2 table spaces” on page 35
Related reference:

Examples of table space definitions (DB2 Administration Guide)

Types of DB2 table spaces
DB2 supports different types of table spaces. Each type of table space serves
different purposes and has different characteristics.

DB2 table spaces can be segmented, partitioned, or both segmented and partitioned
(universal).

Universal table spaces
You can combine the benefits of segmented space management with partitioned
table space organization by using universal table spaces. A universal table space is a
combination of partitioned and segmented table space schemes.

You can alter existing table spaces to universal table spaces by using the ALTER
TABLESPACE statement. If your database contains any simple table spaces, you
should alter them to universal table spaces as soon as possible.

Some of the benefits of universal table spaces are:
v Range-partitioned functionality
v Partition-by-growth functionality
v Better space management as it relates to varying-length rows because a

segmented space-map page has more information about free space than a
partitioned space-map page

v Improved mass delete performance because mass delete in a segmented table
space organization tends to be faster than in other types of table space
organizations

v Table scans that are localized to segments
v Immediate reuse of all or most of the segments of a table after the table is

dropped or mass deleted

Restrictions:

v Universal table spaces cannot be created in the work file database.
v Universal table spaces require more space map pages, compared to table spaces

that are partitioned (non-universal).

Chapter 7. Implementation of your database design 205

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions

Related concepts:
“Partitioned table (non-universal) spaces” on page 209
“Segmented (non-universal) table spaces” on page 207
Related tasks:

Creating a table space explicitly (DB2 Administration Guide)

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

CREATE TABLESPACE (DB2 SQL)

Partition-by-growth table spaces:

Partition-by-growth table spaces let you partition according to data growth, which
enables segmented tables to be partitioned as they grow, without the need for key
ranges.

Partition-by-growth table spaces are universal table spaces that can hold a single
table. The space in a partition-by-growth table space is divided into separate
partitions. Partition-by-growth table spaces are best used when a table is expected
to exceed 64 GB and does not have a suitable partitioning key for the table.

Partition-by-growth table spaces are like single-table DB2-managed segmented
table spaces. DB2 manages partition-by-growth table spaces and automatically
adds a new partition when more space is needed to satisfy an insert. The table
space begins as a single-partition table space and automatically grows, as needed,
as more partitions are added to accommodate data growth. Partition-by-growth
table spaces can grow up to 128 TB. The maximum size is determined by the
MAXPARTITIONS and DSSIZE values that you specified and the page size.

Although a partition-by-growth table space is partitioned, it has segmented
organization and segmented space management capabilities within each partition.
Unlike a nonsegmented structure, the segmented structure provides better space
management and mass delete capabilities. The partitioning structure allows DB2
utilities to continue partition-level operations and parallelism capabilities.

Restrictions: The following restrictions apply to partition-by-growth table spaces:
v The PART option of the LOAD utility is not supported.
v The REBALANCE option of the REORG utility is not supported.
v The default SEGSIZE value 32.
v Table spaces must be DB2-managed (not user-managed) so that DB2 has the

freedom to create data sets as partitions become full.
v Partitions cannot be explicitly added, rotated, or altered. Therefore, ALTER

TABLE ROTATE PARTITION and ALTER TABLE ALTER PARTITION statements
cannot target a partition of a partition-by-growth table space.

v XML spaces are always implicitly defined by DB2.
v A nonpartitioning index (NPI) always uses a 5 byte record identifier (RID).
v Partitioned indexes are not supported.

206 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

Related tasks:

Creating a table space explicitly (DB2 Administration Guide)
Related reference:

ALTER TABLE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

Range-partitioned universal table spaces:

Range-partitioned universal table spaces use a segmented table space organization and
are based on partitioning ranges.

A range-partitioned universal table space contains a single table, which makes it
similar to a table space that is non-universal partitioned table space. You can create
an index of any type on a table in a range-partitioned table space.

You can implement range-partitioned universal table spaces by specifying the
NUMPARTS keyword, or both keywords SEGSIZE and NUMPARTS on a CREATE
TABLESPACE statement. After the table space is created, activities that are already
allowed on partitioned (non-universal) or segmented (non-universal) table spaces
are allowed on the range-partitioned universal table space. You can specify
partition ranges for a range-partitioned universal table space on a subsequent
CREATE TABLE statement.

If you create a table space by specifying NUMPARTS without specifying the
SEGSIZE or MAXPARTITIONS options, DB2 creates a range-partitioned universal
table space. The default table space SEGSIZE value is 32.
Related tasks:

Creating a table space explicitly (DB2 Administration Guide)
Related reference:

CREATE TABLESPACE (DB2 SQL)

Segmented (non-universal) table spaces
A table space that is segmented is useful for storing more than one table, especially
relatively small tables. The pages hold segments, and each segment holds records
from only one table.

Segmented table spaces hold a maximum of 64 GB of data and can contain one or
more VSAM data sets. A table space can be larger if either of the following
conditions is true:
v The table space is a partitioned table space that you create with the DSSIZE

option.
v The table space is a LOB table space.

Table space pages can be 4 KB, 8 KB, 16 KB, or 32 KB in size. The pages hold
segments, and each segment holds records from only one table. Each segment
contains the same number of pages, and each table uses only as many segments as
it needs.

When you run a statement that searches all the rows for one table, DB2 does not
need to scan the entire table space. Instead, DB2 can scan only the segments of the
table space that contain that table. The following figure shows a possible

Chapter 7. Implementation of your database design 207

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

organization of segments in a segmented table space.

When you use an INSERT statement, a MERGE statement, or the LOAD utility to
insert records into a table, records from the same table are stored in different
segments. You can reorganize the table space to move segments of the same table
together.

Definition of a segmented (non-universal) table space

A non-universal segmented table space consists of segments that hold the records
of one table. You define a segmented table space by using the CREATE
TABLESPACE statement with a SEGSIZE clause. If you use this clause, the value
that you specify represents the number of pages in each segment. The value must
be a multiple of 4 (from 4 to 64). The choice of the value depends on the size of
the tables that you store. The following table summarizes the recommendations for
SEGSIZE.

Table 33. Recommendations for SEGSIZE

Number of pages SEGSIZE recommendation

≤ 28 4 to 28

> 28 < 128 pages 32

≥ 128 pages 64

Another clause of the CREATE TABLESPACE statement is LOCKSIZE TABLE. This
clause is valid only for tables that are in segmented table spaces. DB2, therefore,
can acquire locks that lock a single table, rather than the entire table space.

If you want to leave pages of free space in a segmented table space, you must have
at least one free page in each segment. Specify the FREEPAGE clause with a value
that is less than the SEGSIZE value.

Example: If you use FREEPAGE 30 with SEGSIZE 20, DB2 interprets the value of
FREEPAGE as 19, and you get one free page in each segment.

Restriction: If you are creating a segmented table space for use by declared
temporary tables, you cannot specify the FREEPAGE or LOCKSIZE clause.

Characteristics of segmented (non-universal) table spaces

Segmented table spaces share the following characteristics:
v When DB2 scans all the rows for one table, only the segments that are assigned

to that table need to be scanned. DB2 does not need to scan the entire table
space. Pages of empty segments do not need to be fetched.

Segment
1

Table A

Segment
2

Table B

Segment
3

Table C

Segment
4

Table A

Segment
5

Table B

. . .

Figure 35. A possible organization of segments in a segmented table space

208 Introduction to DB2 for z/OS

v When DB2 locks a table, the lock does not interfere with access to segments of
other tables.

v When DB2 drops a table, its segments become available for reuse immediately
after the drop is committed without waiting for an intervening REORG utility
job.

v When all rows of a table are deleted, all segments except the first segment
become available for reuse immediately after the delete is committed. No
intervening REORG utility job is necessary.

v A mass delete, which is the deletion of all rows of a table, operates much more
quickly and produces much less log information.

v If the table space contains only one table, segmenting it means that the COPY
utility does not copy pages that are empty. The pages might be empty as a result
of a dropped table or a mass delete.

v Some DB2 utilities, such as LOAD with the REPLACE option, RECOVER, and
COPY, operate on only a table space or a partition, not on individual segments.
Therefore, for a segmented table space, you must run these utilities on the entire
table space. For a large table space, you might notice availability problems.

v Maintaining the space map creates some additional overhead.

Creating fewer table spaces by storing several tables in one table space can help
you avoid reaching the maximum number of concurrently open data sets. Each
table space requires at least one data set. A maximum number of concurrently
open data sets is determined during installation. Using fewer table spaces reduces
the time that is spent allocating and deallocating data sets.
Related concepts:
Chapter 8, “DB2 performance management,” on page 251
“Use of free space in data and index storage” on page 257
“Guidelines for data reorganization” on page 257
“Ways to improve performance for multiple users” on page 260
Related tasks:

Creating a table space explicitly (DB2 Administration Guide)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

CREATE TABLESPACE (DB2 SQL)

Partitioned table (non-universal) spaces
A table space that is partitioned stores a single table. DB2 divides the table space
into partitions.

The partitions are based on the boundary values that are defined for specific
columns. Utilities and SQL statements can run concurrently on each partition.

In the following figure, each partition contains one part of a table.

Chapter 7. Implementation of your database design 209

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

Definition of partitioned (non-universal) table spaces

If you create a table space by specifying NUMPARTS without specifying the
SEGSIZE or MAXPARTITIONS options, DB2 creates a range-partitioned universal
table space instead of a partitioned table space that is not segmented. The default
table space SEGSIZE value is 32.

Recommendation: Convert your existing partitioned and not segmented table
spaces to range-partitioned universal table spaces as soon as possible.

Characteristics of partitioned (non-universal) table spaces

Partitioned (non-universal) table spaces share the following characteristics:
v You can plan for growth. When you define a partitioned table space, DB2

usually distributes the data evenly across the partitions. Over time, the
distribution of the data might become uneven as inserts and deletes occur.
You can rebalance data among the partitions by redefining partition boundaries
with no impact to availability. You can also add a partition to the table and to
each partitioned index on the table; the new partition becomes available
immediately.

v You can spread a large table over several DB2 storage groups or data sets. The
partitions of the table do not all need to use the same storage group.

v Partitioned table spaces let a utility job work on part of the data while allowing
other applications to concurrently access data on other partitions. In that way,
several concurrent utility jobs can, for example, load all partitions of a table
space concurrently. Because you can work on part of your data, some of your
operations on the data might require less time.

v You can use separate jobs for mass update, delete, or insert operations instead of
using one large job; each smaller job can work on a different partition.
Separating the large job into several smaller jobs that run concurrently can
reduce the elapsed time for the whole task.
If your table space uses nonpartitioned indexes, you might need to modify the
size of data sets in the indexes to avoid I/O contention among concurrently
running jobs. Use the PIECESIZE parameter of the CREATE INDEX or the
ALTER INDEX statement to modify the sizes of the index data sets.

v You can put frequently accessed data on faster devices. Evaluate whether table
partitioning or index partitioning can separate more frequently accessed data
from the remainder of the table. You can put the frequently accessed data in a
partition of its own. You can also use a different device type.

v You can take advantage of parallelism for certain read-only queries. When DB2
determines that processing is likely to be extensive, it can begin parallel
processing of more than one partition at a time. Parallel processing (for
read-only queries) is most efficient when you spread the partitions over different
disk volumes and allow each I/O stream to operate on a separate channel.

Partition 1
Key range A-L

Partition 2
Key range M-Z

Figure 36. Pages in a partitioned table space

210 Introduction to DB2 for z/OS

Use the Parallel Sysplex data sharing technology to process a single read-only
query across many DB2 subsystems in a data sharing group. You can optimize
Parallel Sysplex query processing by placing each DB2 subsystem on a separate
central processor complex.

v Partitioned table space scans are sometimes less efficient than table space scans
of segmented table spaces.

v DB2 opens more data sets when you access data in a partitioned table space
than when you access data in other types of table spaces.

v Nonpartitioned indexes and data-partitioned secondary indexes are sometimes a
disadvantage for partitioned tables spaces.

Related concepts:
Chapter 12, “Data sharing with your DB2 data,” on page 327
“Partition-by-growth table spaces” on page 206
“Range-partitioned universal table spaces” on page 207
“Assignment of table spaces to physical storage” on page 218
Related tasks:

Creating a table space explicitly (DB2 Administration Guide)

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

CREATE INDEX (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

EA-enabled table spaces and index spaces
You can enable partitioned table spaces for extended addressability (EA), a
function of DFSMS. The term for table spaces and index spaces that are enabled for
extended addressability is EA-enabled.

You must use EA-enabled table spaces or index spaces if you specify a maximum
partition size (DSSIZE) that is larger than 4 GB in the CREATE TABLESPACE
statement.

Both EA-enabled and non-EA-enabled partitioned table spaces can have only one
table and up to 4096 partitions. The following table summarizes the differences.

Table 34. Differences between EA-enabled and non-EA-enabled table spaces

EA-enabled table spaces Non-EA-enabled table spaces

Holds up to 4096 partitions of 64 GB Holds up to 4096 partitions of 4 GB

Created with any valid value of DSSIZE DSSIZE cannot exceed 4 GB

Data sets are managed by SMS Data sets are managed by VSAM or SMS

Requires setup No additional setup

Chapter 7. Implementation of your database design 211

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

Related tasks:

Creating EA-enabled table spaces and index spaces (DB2 Administration
Guide)

Creating a table space explicitly (DB2 Administration Guide)
Related reference:

CREATE TABLESPACE (DB2 SQL)

Large object table spaces
Large object (LOB) table spaces (also known as auxiliary table spaces) hold large
object data, such as graphics, video, or large text strings. If your data does not fit
entirely within a data page, you can define one or more columns as LOB columns.

LOB objects can do more than store large object data. If you define your LOB
columns for infrequently accessed data, a table space scan on the remaining data in
the base table is potentially faster because the scan generally includes fewer pages.

A LOB table space always has a direct relationship with the table space that
contains the logical LOB column values. The table space that contains the table
with the LOB columns is, in this context, the base table space. LOB data is logically
associated with the base table, but it is physically stored in an auxiliary table that
resides in a LOB table space. Only one auxiliary table can exist in a large object
table space. A LOB value can span several pages. However, only one LOB value is
stored per page.

You must have a LOB table space for each LOB column that exists in a table. For
example, if your table has LOB columns for both resumes and photographs, you
need one LOB table space (and one auxiliary table) for each of those columns. If
the base table space is a partitioned table space, you need one LOB table space for
each LOB in each partition.

If the base table space is not a partitioned table space, each LOB table space is
associated with one LOB column in the base table. If the base table space is a
partitioned table space, each partition of the base table space is associated with a
LOB table space. Therefore, if the base table space is a partitioned table space, you
can store more LOB data for each LOB column.

The following table shows the approximate amount of LOB data that you can store
for a LOB column in each of the different types of base table spaces.

Table 35. Base table space types and approximate maximum size of LOB data for a LOB
column

Base table space type
Maximum (approximate) LOB data for
each column

Segmented 16 TB

Partitioned, with NUMPARTS up to 64 1000 TB

Partitioned with DSSIZE, NUMPARTS up to 254 4000 TB

Partitioned with DSSIZE, NUMPARTS up to 4096 64000 TB

Recommendations:

v Consider defining long string columns as LOB columns when a row does not fit
in a 32 KB page. Use the following guidelines to determine if a LOB column is a
good choice:

212 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createeatablespacesandindexes.htm#db2z_createeatablespacesandindexes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createeatablespacesandindexes.htm#db2z_createeatablespacesandindexes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

– Defining a long string column as a LOB column might be better if the
following conditions are true:
- Table space scans are normally run on the table.
- The long string column is not referenced often.
- Removing the long string column from the base table is likely to improve

the performance of table space scans.
– LOBs are physically stored in another table space. Therefore, performance for

inserting, updating, and retrieving long strings might be better for non-LOB
strings than for LOB strings.

v Consider specifying a separate buffer pool for large object data.
Related concepts:
“Creation of large objects” on page 240
Related tasks:

Creating a table space explicitly (DB2 Administration Guide)

Choosing data page sizes for LOB data (DB2 Performance)

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

CREATE TABLESPACE (DB2 SQL)

XML table spaces
An XML table space stores an XML table.

An XML table space is implicitly created when an XML column is added to a base
table. If the base table is partitioned, one partitioned table space exists for each
XML column of data. An XML table space is always associated with the table space
that contains the logical XML column value. In this context, the table space that
contains the table with the XML column is called the base table space.
Related concepts:
“How DB2 implicitly creates an XML table space” on page 214
Related tasks:

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

CREATE TABLESPACE (DB2 SQL)

Simple table spaces
A simple table space is neither partitioned nor segmented. Although you cannot
create simple table spaces, DB2 can still use existing simple table spaces.

If you have any simple table spaces in your database, you should alter them to a
preferred type of table space with the ALTER TABLESPACE statement. If a simple
table space contains only one table, alter it to a universal table space.

You cannot create simple table spaces, but you can alter data, update data, or
retrieve data from simple table spaces. If you implicitly create a table space or
explicitly create a table space without specifying the SEGSIZE, NUMPARTS, or

Chapter 7. Implementation of your database design 213

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_createtablespaces.htm#db2z_createtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lobpagesize.htm#db2z_lobpagesize
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

MAXPARTITIONS options, DB2 creates a segmented table space instead of a
simple table space. By default, the segmented table space has a SEGSIZE value of 4
and a LOCKSIZE value of ROW.
Related concepts:
“Segmented (non-universal) table spaces” on page 207
Related tasks:

Dropping, re-creating, or converting a table space (DB2 Administration Guide)

Choosing data page sizes (DB2 Performance)
Related reference:

Examples of table space definitions (DB2 Administration Guide)

How DB2 implicitly creates a table space
You do not need to create a table space before you create a table. You only need to
create a table space explicitly when you define a declared temporary table or if you
manage all of your own data sets.

DB2 generates a table space only if you use the CREATE TABLE statement without
specifying an existing table space name. If the table contains a LOB column and
SQLRULES are STD, DB2 also creates the LOB table space, the auxiliary table, and
an auxiliary index. DB2 also creates all underlying XML objects. In this case, DB2
uses the default storage group, SYSDEFLT.

If you create a table space implicitly, DB2 uses defaults for the space allocation
attributes. The default values of PRIQTY and SECQTY specify the space allocation
for the table space. If the value of the TSQTY subsystem parameter is nonzero, it
determines the default values for PRIQTY and SECQTY. If the value of TSQTY is
zero, the default values for PRIQTY and SECQTY are determined as described in
the CREATE TABLESPACE statement.

When you do not specify a table space name in a CREATE TABLE statement (and
the table space is created implicitly), DB2 derives the table space name from the
name of your table according to the following rules:
v The table space name is the same as the table name if the following conditions

apply:
– No other table space or index space in the database already has that name.
– The table name has no more than eight characters.
– The characters are all alphanumeric, and the first character is not a digit.

v If another table space in the database already has the same name as the table,
DB2 assigns a name of the form xxxxnyyy, where xxxx is the first four characters
of the table name, and nyyy is a single digit and three letters that guarantee
uniqueness.

DB2 stores this name in the DB2 catalog in the SYSIBM.SYSTABLESPACE table
along with all the other table space names.
Related concepts:

Coding guidelines for implicitly defined table spaces (DB2 Administration
Guide)

How DB2 implicitly creates an XML table space
When you create an XML column in a table, DB2 implicitly creates an XML table
space. DB2 also creates an XML table to store the XML data, and a node ID.

214 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_converttablespace.htm#db2z_converttablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exampletablespacedefinitions.htm#db2z_exampletablespacedefinitions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implicitlydefinedtablespaces.htm#db2z_implicitlydefinedtablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implicitlydefinedtablespaces.htm#db2z_implicitlydefinedtablespaces

Each XML column has its own table space. The XML table space does not have
limit keys. The XML data resides in the partition number that corresponds to the
partition number of the base row.

Tables that contain XML columns also have the following implicitly created objects:
v A hidden column to store the document ID.

The document ID is a DB2 generated value that uniquely identifies a row. The
document ID is used to identify documents within the XML table. The document
ID is common for all XML columns, and its value is unique within the table.

v A unique index on the document ID (document ID index).
The document ID index points to the base table RID. If the base table space is
partitioned, the document ID index is a non-partitioned secondary index (NPSI).

v The base table has an indicator column for each XML column containing a null
bit, invalid bit, and a few reserved bytes.

The XML table space inherits several attributes from the base table space, such as:
v LOG
v CCSID
v LOCKMAX

If an edit procedure is defined on the base table, the XML table inherits the edit
procedure.

If the base table space is a partition-by-growth table space, the DSSIZE of the XML
table space is 4 GB. Otherwise, the DSSIZE of the XML table space is based on a
combination of the DSSIZE and the page size of the base table space.
Related reference:

ALTER TABLE (DB2 SQL)

CREATE TABLE (DB2 SQL)

Storage structure for XML data
The storage structure for XML data is similar to the storage structure for LOB data.

As with LOB data, the table that contains an XML column (the base table) is in a
different table space from the table that contains the XML data.

The storage structure depends on the type of table space that contains the base
table.

The following table describes the table space organization for XML data.

Table 36. Organization of base table spaces and corresponding XML table spaces

Base table space
organization

XML table space
organization Notes

Simple Partition-by-growth
universal

Segmented Partition-by-growth
universal

Partitioned Range-partitioned
universal

If a base table row moves to a new
partition, the XML document also
moves to a new partition.

Chapter 7. Implementation of your database design 215

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

Table 36. Organization of base table spaces and corresponding XML table
spaces (continued)

Base table space
organization

XML table space
organization Notes

Range-partitioned universal1 Range-partitioned
universal

If a base table row moves to a new
partition, the XML document also
moves to a new partition.

Partition-by-growth
universal1

Partition-by-growth
universal

An XML document can span more
than one partition. The base table
space and the XML table space grow
independently.

Note:

1. This table space organization supports XML versions.

The following figure demonstrates the relationship between segmented table spaces
for base tables with XML columns and the corresponding XML table spaces and
tables. The relationships are similar for simple base table spaces and
partition-by-growth universal base table spaces. This figure represents XML
columns that do not support XML versions.

The following figure demonstrates the relationship between partitioned table
spaces for base tables with XML columns and the corresponding XML table spaces
and tables. The relationships are similar for range-partitioned universal base table
spaces. This figure represents XML columns that do not support XML versions.

Segmented base
table space

Document ID index

Columns:
DB2_GENERATED-
DOC_ID_FOR_XML
XMLCOL1
XMLCOL2

Base
table

Node ID
index

Partition-by-growth
table space for
XMLCOL1

Columns:
DOCID
MIN_NODEID
XMLDATA

Table for
XMLCOL1

XML
index

Node ID
index

Partition-by-growth
table space for
XMLCOL2

Columns:
DOCID
MIN_NODEID
XMLDATA

Table for
XMLCOL2

XML
index

Figure 37. XML storage structure for a base table in a segmented table space

216 Introduction to DB2 for z/OS

When you create a table with XML columns or ALTER a table to add XML
columns, the DB2 database server implicitly creates the following objects:
v A table space and table for each XML column. The data for an XML column is

stored in the corresponding table.
DB2 creates the XML table space and table in the same database as the table that
contains the XML column (the base table). The XML table space is in the Unicode
UTF-8 encoding scheme.
If the base table contains XML columns that support XML versions, each XML
table contains two more columns than an XML table for an XML column that
does not support XML versions. Those columns are named START_TS and
END_TS, and they have the BINARY(8) data type if the page format is basic
6-byte format and BINARY(10) data type if the page format is extended 10-byte
format. START_TS contains the RBA or LRSN of the logical creation of an XML

Partitioned base table
space with two partitions.
Table has two XML
columns.

Document ID index
(non-partitioning)

Columns:
DB2_GENERATED-
DOC_ID_FOR_XML
XMLCOL1
XMLCOL2

Base table
Partition 1

Base table
Partition 2

Range-partitioned table space with
partitions for XMLCOL1

Columns:
DOCID
MIN_NODEID
XMLDATA

XML table
Partition 1

XML table
Partition 2

Columns:
DB2_GENERATED-
DOC_ID_FOR_XML
XMLCOL1
XMLCOL2

Node ID index
(non-partitioning, extended)

Node ID index
(non-partitioning, extended)

XML index

XML index

Columns:
DOCID
MIN_NODEID
XMLDATA

Columns:
DOCID
MIN_NODEID
XMLDATA
Columns:
DOCID
MIN_NODEID
XMLDATA

XML table
Partition 1

XML table
Partition 2

Range-partitioned table space with
partitions for XMLCOL2

Figure 38. XML storage structure for a base table in a partitioned table space

Chapter 7. Implementation of your database design 217

|
|
|
|
|
|

record. END_TS contains the RBA or LRSN of the logical deletion of an XML
record. START_TS and END_TS identify the rows in the XML table that make up
a version of an XML document.

v An document ID column in the base table, named
DB2_GENERATED_DOCID_FOR_XML, with data type BIGINT.
DB2_GENERATED_DOCID_FOR_XML holds a unique document identifier for
the XML columns in a row. One DB2_GENERATED_DOCID_FOR_XML column
is used for all XML columns.
The DB2_GENERATED_DOCID_FOR_XML column has the GENERATED
ALWAYS attribute. Therefore, a value in this column cannot be NULL.
If the base table space supports XML versions, the length of the XML indicator
column is eight bytes longer that the XML indicator column in a base table space
that does not support XML versions.

v An index on the DB2_GENERATED_DOCID_FOR_XML column.
This index is known as a document ID index.

v An index on each XML table that DB2 uses to maintain document order, and
map logical node IDs to physical record IDs.
This index is known as a node ID index. The node ID index is an extended,
nonpartitioning index.
If the base table space supports XML versions, the index key for the node ID
index contains two more columns than the index key for a node ID index for a
base table space that does not support XML versions. Those columns are named
START_TS and END_TS, and they have the BINARY(8) data type.

You can perform limited SQL operations, such as the following ones, on the
implicitly created objects:
v Alter the following attributes of the XML table space:

– SEGSIZE
– BUFFERPOOL
– STOGROUP
– PCTFREE
– GBPCACHE

v Alter any of the attributes of the document ID index or node ID index, except
these:
– CLUSTER
– PADDED
– Number of columns (ADD COLUMN is not allowed)

See the ALTER TABLE, ALTER TABLESPACE, and ALTER INDEX topics for a
complete list of operations that you can perform on these objects.

Assignment of table spaces to physical storage
You can store table spaces and index spaces in user-managed storage,
SMS-managed storage, or in DB2-managed storage groups. (A storage group is a set
of disk volumes.)

If you do not use SMS, you need to name the DB2 storage groups when you create
table spaces or index spaces. DB2 allocates space for these objects from the named
storage group. You can assign different partitions of the same table space to
different storage groups.

Recommendation: Use products in the IBM Storage Management Subsystem
(SMS) family, such as Data Facility SMS (DFSMS), to manage some or all of your

218 Introduction to DB2 for z/OS

|
|
|

|
|
|
|

data sets. Organizations that use SMS to manage DB2 data sets can define storage
groups with the VOLUMES(*) clause. You can also assign management class, data
class, and storage class attributes. As a result, SMS assigns a volume to the table
spaces and index spaces in that storage group.

The following figure shows how storage groups work together with the various
DB2 data structures.

To create a DB2 storage group, use the SQL statement CREATE STOGROUP. Use
the VOLUMES(*) clause to specify the SMS management class (MGMTCLAS), SMS
data class (DATACLAS), and SMS storage class (STORCLAS) for the DB2 storage
group.

After you define a storage group, DB2 stores information about it in the DB2
catalog. The catalog table SYSIBM.SYSSTOGROUP has a row for each storage
group, and SYSIBM.SYSVOLUMES has a row for each volume in the group.

The process of installing DB2 includes the definition of a default storage group,
SYSDEFLT. If you have authorization, you can define tables, indexes, table spaces,
and databases. DB2 uses SYSDEFLT to allocate the necessary auxiliary storage. DB2

Database A

Database B

Table space 1 (segmented)

Table space 2
(partitioned)

Part 2

Part 4

Part 3

Partitioning
index Part 1

Index
on Table

A1

Index
on Table

A2

Index space Index space

Index space

Table A1 Table A2

Table B1
Part 1

Part 2

Part 3

Part 4

Storage group G1

Storage group G2

Volume 3

Volume 2
Volume 3

Volume 2

Volume 1
(Disk)

Volume 1
(Disk)

Figure 39. Hierarchy of DB2 structures

Chapter 7. Implementation of your database design 219

stores information about SYSDEFLT and all other storage groups in the catalog
tables SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.

Recommendation: Use storage groups whenever you can, either explicitly or
implicitly (by using the default storage group). In some cases, organizations need
to maintain closer control over the physical storage of tables and indexes. These
organizations choose to manage their own user-defined data sets rather than using
storage groups. Because this process is complex, this information does not describe
the details.

Example: Consider the following CREATE STOGROUP statement:
CREATE STOGROUP MYSTOGRP

VOLUMES (*)
VCAT ALIASICF;

This statement creates storage group MYSTOGRP. The asterisk (*) on the
VOLUMES clause indicates that SMS is to manage your storage group. The VCAT
clause identifies ALIASICF as the name or alias of the catalog of the integrated
catalog facility that the storage group is to use. The catalog of the integrated
catalog facility stores entries for all data sets that DB2 creates on behalf of a storage
group.

IBM Storage Management Subsystem

DB2 for z/OS includes the Storage Management Subsystem (SMS) capabilities. A
key product in the SMS family is the Data Facility Storage Management Subsystem
(DFSMS). DFSMS can automatically manage all the data sets that DB2 uses and
requires. If you use DFSMS to manage your data sets, the result is a reduced
workload for DB2 database administrators and storage administrators.

You can experience the following benefits by using DFSMS:
v Simplified data set allocation
v Improved allocation control
v Improved performance management
v Automated disk space management
v Improved management of data availability
v Simplified data movement

DB2 database administrators can use DFSMS to achieve all their objectives for data
set placement and design. To successfully use DFSMS, DB2 database administrators
and storage administrators need to work together to ensure that the needs of both
groups are satisfied.

220 Introduction to DB2 for z/OS

Related concepts:
“DB2 storage groups” on page 32
Related tasks:

Choosing data page sizes (DB2 Performance)
Related reference:

CREATE STOGROUP (DB2 SQL)

Creation of indexes
Indexes provide efficient access to table data, but can require additional processing
when you modify data in a table.

When you create a table that contains a primary key or a unique constraint, you
must create a unique index for the primary key and for each unique constraint.
DB2 marks the table definition as incomplete until the explicit creation of the
required enforcing indexes, which can be created implicitly depending on whether
the table space was created implicitly, the schema processor, or the CURRENT
RULES special register. If the required indexes are created implicitly, the table
definition is not marked as incomplete.

You can also choose to use indexes because of access requirements.

Using indexes involves a trade-off. A greater number of indexes can
simultaneously improve the performance of a certain transaction and require
additional processing for inserting, updating, and deleting index keys.

After you create an index, DB2 maintains the index, but you can perform necessary
maintenance, such as reorganizing it or recovering it, as necessary.
Related concepts:

Indexes on table columns (DB2 Administration Guide)

Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX') (DB2
Performance)
Related tasks:

Designing indexes for performance (DB2 Performance)
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

Types of indexes
You can use indexes to improve the performance of data access. The various types
of indexes have different features that you should consider when creating a
particular type.

You typically determine which type of index you need to define after you define a
table.

An index can have many different characteristics. Index characteristics fall into two
broad categories: general characteristics that apply to indexes on all tables and
specific characteristics that apply to indexes on partitioned tables only. The
following table summarizes these categories.

Chapter 7. Implementation of your database design 221

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_pagesizerecommendations.htm#db2z_pagesizerecommendations
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createstogroup.htm#db2z_sql_createstogroup
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indexesoncolumns.htm#db2z_indexesoncolumns
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_indexaccess.htm#db2z_indexaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_indexaccess.htm#db2z_indexaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_evaluateindexesperf.htm#db2z_evaluateindexesperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indeximplementation.htm#db2z_indeximplementation

Table 37. Index types for general, partitioned, and universal table spaces

Table or table
space type Index type

General (applies to
all indexes)

v Unique indexes

v Clustering indexes

v Padded indexes

v Not padded indexes

v expression-based index

v XML indexes

v Compressed indexes

Partitioned v Partitioning indexes

v Data-partitioned secondary indexes

v Non-partitioned secondary indexes

v Compressed indexes

Universal v Partitioning indexes (range-partitioned universal only)

v Data-partitioned secondary indexes (range-partitioned universal
only)

v Non-partitioned secondary indexes

v Compressed indexes

Related concepts:
“Index keys” on page 223
Related information:

Implementing DB2 indexes (DB2 Administration Guide)

How indexes can help to avoid sorts
DB2 can use indexes to avoid sorts when processing queries with the ORDER BY
clause.

When a query contains an ORDER BY clause, DB2 looks for indexes that satisfy
the order in the query. For DB2 to be able to use an index to access ordered data,
you must define an index on the same columns as specified in the ORDER BY
clause.

Forward index scan
For DB2 to use a forward index scan, the ordering must be exactly the
same as in the ORDER BY clause.

Backward index scan
For DB2 to use a backward index scan, the ordering must be exactly the
opposite of what is requested in the ORDER BY clause.

Example 1: For example, if you define an index by specifying DATE DESC, TIME
ASC as the column names and order, DB2 can use this same index for both of the
following ORDER BY clauses:
v Forward scan for ORDER BY DATE DESC, TIME ASC
v Backward scan for ORDER BY DATE ASC, TIME DESC

222 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indeximplementation.htm#db2z_indeximplementation

You do not need to create two indexes for the two ORDER BY clauses. DB2 can
use the same index for both forward index scan and backward index scan.

In addition to forward and backward scans, you have the option to create indexes
with a pseudo-random order. This ordering option is useful when ascending
insertions or hotspots cause contention within the indexes. Indexes created with
the RANDOM option do not support range scans. They do support equality

lookups.

Example 2: Suppose that the query includes a WHERE clause with a predicate of
the form COL=constant. For example:
...
WHERE CODE = ’A’
ORDER BY CODE, DATE DESC, TIME ASC

DB2 can use any of the following index keys to satisfy the ordering:
v CODE, DATE DESC, TIME ASC
v CODE, DATE ASC, TIME DESC
v DATE DESC, TIME ASC
v DATE ASC, TIME DESC

DB2 can ignore the CODE column in the ORDER BY clause and the index because
the value of the CODE column in the result table of the query has no effect on the
order of the data. If the CODE column is included, it can be in any position in the
ORDER BY clause and in the index.

Index keys
The usefulness of an index depends on the design of its key, which you can create
at the time you create the index.

An index key is the set of columns or expressions derived from a set of columns in
a table that is used to determine the order of index entries. A table can have more
than one index, and an index key can use one or more columns. An index key is a
column or an ordered collection of columns on which you define an index. Good
key candidates are columns or expressions that you use frequently in operations
that select, join, group, and order data.

All index keys do not need to be unique. For example, an index on the SALARY
column of the EMP table allows duplicates because several employees can earn the
same salary.

The usefulness of an index depends on its key. Columns and expressions that you
use frequently in performing selection, join, grouping, and ordering operations are
good key candidates.

A composite key is a key that is built on 2 to 64 columns.

Tip: In general, try to create an index that is selective because the more selective
an index is, the more efficient it is. An efficient index contains multiple columns, is
ordered in the same sequence as the SQL statement, and is used often in SQL
statements.

Chapter 7. Implementation of your database design 223

The following list identifies some things you should remember when you are
defining index keys.
v Update an index after data columns are updated, inserted, or deleted.
v Define as few indexes as possible on a column that is updated frequently

because every change to the column data must be reflected in each index.
v Consider using a composite key, which might be more useful than a key on a

single column when the comparison is for equality. A single multicolumn index
is more efficient when the comparison is for equality and the initial columns are
available. However, for more general comparisons, such as A > value AND B >
value, multiple indexes might be more efficient.

v Improve performance by using indexes.

Example 1: This example creates a unique index on the EMPPROJACT table. A
composite key is defined on two columns, PROJNO and STDATE.
CREATE UNIQUE INDEX XPROJAC1

ON EMPPROJACT
(PROJNO ASC,

STDATE ASC)...

Example 2: This composite key is useful when you need to find project
information by start date. Consider a SELECT statement that has the following
WHERE clause:
WHERE PROJNO=’MA2100’ AND STDATE=’2004-01-01’

This SELECT statement can execute more efficiently than if separate indexes are
defined on PROJNO and on STDATE.

Related concepts:
“Query and application performance analysis” on page 269

General index attributes
You typically determine which type of index you need to define after you define a
table space. An index can have many different attributes.

Index attributes fall into two broad categories: general attributes that apply to
indexes on all tables and specific attributes that apply to indexes on partitioned
tables only. The following table summarizes these categories.

Table 38. Index attributes

Table or table space type Index attribute

Any v Unique or nonunique

v Clustering or nonclustering

v Padded or not padded

v Exclude nulls

Partitioned v Partitioning

v Secondary

224 Introduction to DB2 for z/OS

|

This topic explains the types of indexes that apply to all tables. Indexes that apply
to partitioned tables only are covered separately.
Related concepts:
“Partitioned table index attributes” on page 232

Unique indexes
DB2 uses unique indexes to ensure that no identical key values are stored in a
table.

When you create a table that contains a primary key, you must create a unique
index for that table on the primary key. DB2 marks the table as unavailable until
the explicit creation of the required indexes.

Restrict access with unique indexes

You can also use indexes to meet access requirements.

Example 1: A good candidate for a unique index is the EMPNO column of the
EMP table. The following figure shows a small set of rows from the EMP table and
illustrates the unique index on EMPNO.

DB2 uses this index to prevent the insertion of a row to the EMP table if its
EMPNO value matches that of an existing row. The preceding figure illustrates the
relationship between each EMPNO value in the index and the corresponding page
number and row. DB2 uses the index to locate the row for employee 000030, for
example, in row 3 of page 1.

If you do not want duplicate values in the key column, create a unique index by
using the UNIQUE clause of the CREATE INDEX statement.

Example 2: The DEPT table does not allow duplicate department IDs. Creating a
unique index, as the following example shows, prevents duplicate values.
CREATE UNIQUE INDEX MYINDEX

ON DEPT (DEPTNO);

EMPNO Page Row EMPNO

1 200140 NATZ

2 2 000320 RAMLAL

3 000200 BROWN

1 200340 ALONZO

3 2 000140 NICHOLLS

3 000060 STERN

1 000220 LUTZ

000030 1 2 000330 LEE

000060 3 000030 KWAN

000140

000200

000220

000330

200140

000320

200340

LASTNAME JOB DEPT

Index on
EMP table EMP table

DES

FLD

MGR

ANL

FLD

DES

FLD

SLS

MGR

D11

E21

C01

C01

E21

D11

E21

C01

D11

Figure 40. A unique index on the EMPNO column

Chapter 7. Implementation of your database design 225

The index name is MYINDEX, and the indexed column is DEPTNO.

If a table has a primary key (as the DEPT table has), its entries must be unique.
DB2 enforces this uniqueness by defining a unique index on the primary key
columns, with the index columns in the same order as the primary key columns.

Before you create a unique index on a table that already contains data, ensure that
no pair of rows has the same key value. If DB2 finds a duplicate value in a set of
key columns for a unique index, DB2 issues an error message and does not create
the index.

If an index key allows nulls for some of its column values, you can use the
WHERE NOT NULL clause to ensure that the non-null values of the index key are
unique.

Unique indexes are an important part of implementing referential constraints
among the tables in your DB2 database. You cannot define a foreign key unless the
corresponding primary key already exists and has a unique index defined on it.

When not to use a unique index

In some cases you might not want to use a unique index. You can improve the
performance of data access when the values of the columns in the index are not
necessarily unique by creating a default index.

When you create a default index, DB2 allows you to enter duplicate values in a
key column.

For example, assume that more than one employee is named David Brown.
Consider an index that is defined on the FIRSTNME and LASTNAME columns of
the EMP table.

CREATE INDEX EMPNAME ON EMP (FIRSTNME, LASTNAME);

This is an example of an index that can contain duplicate entries.

Tip: Do not create this type of index on very small tables because scans of the
tables are more efficient than using indexes.

INCLUDE columns

Unique indexes can include additional columns that are not part of a unique
constraint. Those columns are called INCLUDE columns. When you specify
INCLUDE columns in a unique index, queries can use the unique index for
index-only access. Including these columns can eliminate the need to maintain
extra indexes that are used solely to enable index-only access.

226 Introduction to DB2 for z/OS

Related reference:

CREATE INDEX (DB2 SQL)

Nonunique indexes
You can use nonunique indexes to improve the performance of data access when
the values of the columns in the index are not necessarily unique.

Recommendation: Do not create nonunique indexes on very small tables, because
scans of the tables are more efficient than using indexes.

To create nonunique indexes, use the SQL CREATE INDEX statement. For
nonunique indexes, DB2 allows users and programs to enter duplicate values in a

key column.

Example: Assume that more than one employee is named David Brown. Consider
an index that is defined on the FIRSTNME and LASTNAME columns of the EMP
table.
CREATE INDEX EMPNAME

ON EMP (FIRSTNME, LASTNAME);

This index is an example of a nonunique index that can contain duplicate entries.

Related tasks:

Designing indexes for performance (DB2 Performance)
Related reference:

CREATE INDEX (DB2 SQL)

Clustering indexes
A clustering index determines how rows are physically ordered (clustered) in a table
space. Clustering indexes provide significant performance advantages in some
operations, particularly those that involve many records. Examples of operations
that benefit from clustering indexes include grouping operations, ordering
operations, and comparisons other than equal.

You can define a clustering index on a partitioned table space or on a segmented
table space. On a partitioned table space, a clustering index can be a partitioning
index or a secondary index. If a clustering index on a partitioned table is not a
partitioning index, the rows are ordered in cluster sequence within each data
partition instead of spanning partitions. (Prior to Version 8 of DB2 UDB for z/OS,
the partitioning index was required to be the clustering index.)

Restriction: An expression based index or an XML index cannot be a clustering
index.

When a table has a clustering index, an INSERT statement causes DB2 to insert the
records as nearly as possible in the order of their index values. The first index that
you define on the table serves implicitly as the clustering index unless you
explicitly specify CLUSTER when you create or alter another index. For example, if
you first define a unique index on the EMPNO column of the EMP table, DB2
inserts rows into the EMP table in the order of the employee identification number
unless you explicitly define another index to be the clustering index.

Chapter 7. Implementation of your database design 227

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_evaluateindexesperf.htm#db2z_evaluateindexesperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex

Although a table can have several indexes, only one index can be a clustering
index. If you do not define a clustering index for a table, DB2 recognizes the first
index that is created on the table as the implicit clustering index when it orders
data rows.

Tip:

v Always define a clustering index. Otherwise, DB2 might not choose the key that
you would prefer for the index.

v Define the sequence of a clustering index to support high-volume processing of
data.

You use the CLUSTER clause of the CREATE INDEX or ALTER INDEX statement

to define a clustering index.

Example: Assume that you often need to gather employee information by
department. In the EMP table, you can create a clustering index on the DEPTNO
column.
CREATE INDEX DEPT_IX

ON EMP
(DEPTNO ASC)
CLUSTER;

As a result, all rows for the same department are probably close together. DB2 can
generally access all the rows for that department in a single read. (Using a
clustering index does not guarantee that all rows for the same department are
stored on the same page. The actual storage of rows depends on the size of the
rows, the number of rows, and the amount of available free space. Likewise, some
pages may contain rows for more than one department.)

The following figure shows a clustering index on the DEPT column of the EMP
table; only a subset of the rows is shown.

Suppose that you subsequently create a clustering index on the same table. In this
case, DB2 identifies it as the clustering index but does not rearrange the data that
is already in the table. The organization of the data remains as it was with the
original nonclustering index that you created. However, when the REORG utility

Index on
EMP table EMP table

DEPT Page Row DEPT EMPNO LASTNAME JOB

1 C01 000030 KWAN MGR

3 2 C01 000140 NICHOLLS SLS

3 C01 200140 NATZ ANL

1 D11 000060 STERN

3 2 D11 000200 BROWN

3 D11 000220 LUTZ

1 E21 000330 LEE FLD

3 2 E21 000320 RAMLAL FLD

3 E21 200340 ALONZO FLD

C01

D11

E21

MGR

DES

DES

Figure 41. A clustering index on the EMP table

228 Introduction to DB2 for z/OS

reorganizes the table space, DB2 clusters the data according to the sequence of the
new clustering index. Therefore, if you know that you want a clustering index, you
should define the clustering index before you load the table. If that is not possible,
you must define the index and then reorganize the table. If you create or drop and
re-create a clustering index after loading the table, those changes take effect after a
subsequent reorganization.
Related reference:
“Employee table (DSN8B10.EMP)” on page 134

CREATE INDEX (DB2 SQL)

Indexes that exclude NULL keys
You can exclude NULL keys from an index to reduce the size of an index and
improve the performance of an index.

Some table values are never used in queries and are unnecessary in an index.
NULL key columns add to index size and can reduce the performance of index
scans. If you exclude NULL key columns from an index, DB2 only creates index
entries for key columns that are not null. You can specify that an index excludes
null keys when you create an index with the CREATE INDEX statement.

A NULL key in an index is not the same as a null foreign key.
Related reference:

CREATE INDEX (DB2 SQL)

Indexes that are padded or not padded
The NOT PADDED and PADDED options of the CREATE INDEX and ALTER
INDEX statements specify how varying-length string columns are stored in an
index.

You can choose not to pad varying-length string columns in the index to their
maximum length (the default), or you can choose to pad them.

If you specify the NOT PADDED clause on a CREATE INDEX statement,
any varying-length columns in the index key are not padded to their maximum
length. If an existing index key includes varying-length columns, you can consider
altering the index to use the NOT PADDED clause. However, using the NOT
PADDED clause on the ALTER INDEX statement to change the padding places the
index in the REBUILD-pending (RBDP) state. You should rebuild the index to

remove the RBDP state.

Using the NOT PADDED clause has the following advantages:
v DB2 can use index-only access for the varying-length columns within the index

key, which enhances performance.
v DB2 stores only actual data, which reduces the storage requirements for the

index key.

However, using the NOT PADDED clause might also have the following
disadvantages:
v Index key comparisons are slower because DB2 must compare each pair of

corresponding varying-length columns individually instead of comparing the
entire key when the columns are padded to their maximum length.

Chapter 7. Implementation of your database design 229

|
|
|

|
|
|
|
|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex

v DB2 stores an additional 2-byte length field for each varying-length column.
Therefore, if the length of the padding (to the maximum length) is less than or
equal to 2 bytes, the storage requirements could actually be greater for
varying-length columns that are not padded.

Tip: Use the NOT PADDED clause to implement index-only access if your
application typically accesses varying-length columns.

To control whether varying length columns are padded by default, use the PAD
INDEXES BY DEFAULT option on installation panel DSNTIPE.
Related reference:

CREATE INDEX (DB2 SQL)

Expression-based indexes
By using the expression-based index capability of DB2, you can create an index
that is based on a general expression. You can enhance query performance if DB2
chooses the expression-based index.

Use expression-based indexes when you want an efficient evaluation of queries
that involve a column-expression. In contrast to simple indexes, where index keys
consist of a concatenation of one or more table columns that you specify, the index
key values are not the same as values in the table columns. The values have been
transformed by the expressions that you specify.

You can create the index by using the CREATE INDEX statement. If an index is
created with the UNIQUE option, the uniqueness is enforced against the values
that are stored in the index, not against the original column values.

DB2 does not use expression-based indexes for queries that use sensitive static
scrollable cursors.
Related concepts:

Expressions (DB2 SQL)
“Index keys” on page 223
Related reference:

CREATE INDEX (DB2 SQL)

Compression of indexes
You can reduce the amount of space that an index occupies on disk by
compressing the index.

The COMPRESS YES/NO clause of the ALTER INDEX and CREATE INDEX
statements allows you to compress the data in an index and reduce the size of the
index on disk. However, index compression is heavily data-dependent, and some
indexes might contain data that does not yield significant space savings.
Compressed indexes might also use more real and virtual storage than
non-compressed indexes. The amount of additional real and virtual storage that is
required depends on the compression ratio that is used for the compressed keys,
the amount of free space, and the amount of space that is used by the key map.

You can choose 8 KB, 16 KB, and 32 KB buffer pool page sizes for the index. Use
the DSN1COMP utility on existing indexes to estimate the appropriate page size
for new indexes. Choosing a 32 KB buffer pool instead of a 16 KB or an 8 KB
buffer pool accommodates a potentially higher compression ratio, but this choice

230 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_expressionsintro.htm#db2z_expressionsintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex

also increases the potential to use more storage. Estimates for index space savings
from the DSN1COMP utility, either on the true index data or some similar index
data, are not exact.

If I/O is needed to read an index, the CPU degradation for a index scan is
probably relatively small, but the CPU degradation for random access is likely to
be very significant.

CPU degradation for deletes and updates is significant even if no read I/O is
necessary.
Related reference:

ALTER INDEX (DB2 SQL)

CREATE INDEX (DB2 SQL)

XML index attributes
You can create an index on an XML column for efficient evaluation of Xpath
expressions to improve performance during queries on XML documents.

In contrast to simple relational indexes where index keys are composed of one or
more table columns that you specified, an XML index uses a particular Xpath
expression to index paths and values in XML documents stored in a single XML
column.

In an XML index, only the attribute nodes, text nodes, or element nodes that match
the XML path expression are actually indexed. Because an XML index only indexes
the nodes that match the specific Xpath and not the document itself, two more key
fields are added to the index to form the composite index key. The addition key
fields, which identify the XML document and the node position within the
document, are displayed in the catalog. These fields are not involved in uniqueness
checking for unique indexes.

Use the CREATE INDEX statement with the XMLPATTERN keyword to create an
XML index. You must also specify the XML path to be indexed. An index key is
then formed by concatenating the values extracted from the node in the XML
document that satisfy the specified XML path with the document and node ID.

You specify a data type for every XML index. XML indexes support the data types
VARCHAR, DECFLOAT, DATE, and TIMESTAMP(12). You can use the IGNORE
INVALID VALUES or REJECT INVALID VALUES clause to control whether DB2
inserts values into a table when those values are not compatible with the index
data type.

When you index an XML column with XMLPATTERN, only the parts of the
document that satisfy the XML path expression are indexed. Because multiple parts
of the document might satisfy the Xpath that you specified in the XMLPATTERN,
multiple index key entries might be generated and inserted into the index during
the insertion of a single document.

Only one XML index specification is allowed per CREATE INDEX statement.
However, you can create an XML index with multiple keys, or create multiple
XML indexes on an XML column.

Restriction: Partitioned XML indexes are not currently supported

Chapter 7. Implementation of your database design 231

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterindex.htm#db2z_sql_alterindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex

Example 1: If you want to search for a specific employee's last name (name/last)
on the employee elements, you can create an index on the XML path
'/department/emp/name/last' using the following CREATE INDEX statement:
CREATE INDEX EMPINDEX ON DEPARTMENT (DEPTDOCS)

GENERATE KEYS USING XMLPATTERN ’/department/emp/name/last’
AS SQL VARCHAR(20)

After the EMPINDEX index is created successfully, several entries will be
populated in the catalog tables.

Example 2: You can create two XML indexes with the same path expression by
using different data types for each. This enables you to choose how you want to
interpret the result of the expression as multiple data types. For example, the value
'12345' has a character representation but it can also be interpreted as the number
12 345. If you want to index the path '/department/emp/@id' as both a character
string and a number, then you must create two indexes, one for the VARCHAR
data type and one for the DECFLOAT data type. The values in the document are
cast to the specified data type for the index.

Partitioned table index attributes
A partitioned index is an index that is physically partitioned. Both partitioning
indexes and secondary indexes can be partitioned.

Before Version 8, when you created a table in a partitioned table space, you
defined a partitioning index and one or more secondary indexes. The partitioning
index was also the clustering index, and the only partitioned index.
Nonpartitioning indexes, referred to as secondary indexes, were not partitioned.

For index-controlled partitioning, the physical structure of an index depends on
whether a partitioning index is involved. However, when you calculate storage for
an index, the more important issue is whether the index is unique. When you
consider the order in which rows are stored, you need to consider which index is
the clustering index. For index-controlled partitioning, a partitioning index is also
the clustering index. For index-controlled partitioning, use a partitioning index to
tell DB2 how to divide data in a partitioned table space among the partitions.

In table-controlled partitioning, define the partitioning scheme for the table by
using the PARTITION BY clause of the CREATE TABLE statement.

For partitioned tables, the following characteristics apply:
v Indexes that are defined on a partitioned table are classified according to their

logical attributes and physical attributes.
– The logical attribute of an index on a partitioned table pertains to whether the

index can be seen as a logically partitioning index.
– The physical attribute of an index on a partitioned table pertains to whether

the index is physically partitioned.
v A partitioning index can be partitioned or nonpartitioned.
v Any index, except for an expression-based index or an XML index, can be a

clustering index. You can define only one clustering index on a table.

The following figure illustrates the difference between a partitioned and a
nonpartitioned index.

232 Introduction to DB2 for z/OS

Indexes on a partitioned table can be categorized, based on logical index attributes,
into partitioning indexes, and into secondary indexes.
Related concepts:
“Creation of a table with table-controlled partitioning” on page 188

Partitioning indexes
For index-controlled partitioning, a partitioning index is an index that defines the
partitioning scheme of a table space. A partitioning index is based on the
PARTITION clause for each partition in the CREATE INDEX statement. For
table-controlled partitioning, a partitioning index is optional.

The columns that you specify for the partitioning index are the key columns. The
PARTITION clause for each partition defines ranges of values for the key columns.
The ranges partition the table space and the corresponding partitioning index
space.

Before DB2 Version 8, when you defined a partitioning index on a table in a
partitioned table space, you specified the partitioning key and the limit key values
in the PART VALUES clause of the CREATE INDEX statement. This type of
partitioning is referred to as index-controlled partitioning. Beginning with DB2
Version 8, you can define table-controlled partitioning with the CREATE TABLE
statement. Table-controlled partitioning is designed to eventually replace
index-controlled partitioning.

Example: Assume that a table contains state area codes, and you need to
create a partitioning index to sequence the area codes across partitions. You can
use the following SQL statements to create the table and the partitioning index:

Partitioned tablePartitioned index Non-partitioned index

P4

P2

P3

407
408
430
415

510
512
530
561

310
321
323
351

Figure 42. Comparison of partitioned and nonpartitioned index

Chapter 7. Implementation of your database design 233

CREATE TABLE AREA_CODES
(AREACODE_NO INTEGER NOT NULL,
STATE CHAR (2) NOT NULL,
...
PARTITION BY (AREACODE_NO ASC)
...

CREATE INDEX AREACODE_IX1 ON AREA_CODES (AREACODE_NO)
CLUSTER (...

PARTITION 2 ENDING AT (400),
PARTITION 3 ENDING AT (500),
PARTITION 4 ENDING AT (600)),
...);

The following figure illustrates the partitioning index on the AREA_CODES table.

Restriction: You cannot create a partitioning index in a partition-by-growth table
space.

Secondary indexes
In table-based partitioning, an index that is not a partitioning index is a secondary
index. A secondary index can be partitioned or nonpartitioned. You can create an
index on a table to enforce a uniqueness constraint, to cluster data, or to provide
access paths to data for queries.

The usefulness of an index depends on the columns in its key and on the
cardinality of the key. Columns that you use frequently in performing selection,
join, grouping, and ordering operations are good candidates for keys. In addition,
the number of distinct values in an index key for a large table must be sufficient
for DB2 to use the index for data retrieval; otherwise, DB2 could choose to perform
a table space scan.

310
321
323
351

407
408
430
415

510
512
530
561

310 CA
321 FL
323 CA
351 MA

407 FL
408 CA
430 TX
415 CA

510 CA
512 TX
530 CA
561 FL

AREACODES tableAREACODE_IX

P4

P2

P3

Figure 43. Partitioning index on the AREA_CODES table

234 Introduction to DB2 for z/OS

Restriction: An XML index cannot be partitioned.

DB2 supports two types of secondary indexes: data-partitioned secondary indexes
(DPSI) and nonpartitioned secondary indexes (NPSI).

Data-partitioned secondary indexes:

A data-partitioned secondary index (DPSI) is a nonpartitioning index that is
physically partitioned according to the partitioning scheme of the table.

You can create a data-partitioned secondary index only on a table that resides in a
partitioned table space. The data-partitioned secondary index is partitioned
according to the partitioning scheme of the underlying data. That is, the index
entries that reference data in physical partition 1 of a table reside in physical
partition 1 of the index, and so on.

Restriction: You cannot create a DPSI for a partition-by-growth table space or an
XML index.

Characteristics of DPSIs include:
v A DPSI has as many partitions as the number of partitions in the table space.
v Each DPSI partition contains keys for the rows of the corresponding table space

partition only. For example, if the table space has three partitions, the keys in
DPSI partition 1 reference only the rows in table space partition 1; the keys in
DPSI partition 2 reference only the rows in table space partition 2, and so on.

You define a DPSI with the PARTITIONED keyword. If the leftmost columns of the
index that you specify with the PARTITIONED keyword match the partitioning
columns, DB2 creates the index as a DPSI only if the collating sequence of the
matching columns is different.

The use of data-partitioned secondary indexes promotes partition independence
and therefore provides the following performance advantages, among others:
v Eliminates contention between parallel LOAD PART jobs that target different

partitions of a table space
v Facilitates partition-level operations such as adding a new partition or rotating a

partition to be the last partition
v Improves the recovery time of secondary indexes on partitioned table spaces

However, the use of data-partitioned secondary indexes does not always improve
the performance of queries. For example, for queries with predicates that reference
only the columns in the key of the DPSI, DB2 must probe each partition of the
index for values that satisfy the predicate.

Data-partitioned secondary indexes provide performance advantages for queries
that meet the following criteria:
v The query has predicates on DPSI columns.
v The query contains additional predicates on the partitioning columns of the table

that limit the query to a subset of the partitions in the table.

Example: Consider the following SELECT statement:

Chapter 7. Implementation of your database design 235

SELECT STATE FROM AREA_CODES
WHERE AREACODE_NO *<= 300 AND STATE = 'CA’;

This query makes efficient use of the data-partitioned secondary index. The
number of key values that need to be searched is limited to the key values of the
qualifying partitions. If a nonpartitioned secondary query, there may be a more
comprehensive index scan of the key values.

Related concepts:

Page range screening (PAGE_RANGE='Y') (DB2 Performance)

Efficient queries for tables with data-partitioned secondary indexes (DB2
Performance)

Table space scan access (ACCESSTYPE='R' and PREFETCH='S') (DB2
Performance)

Nonpartitioned secondary indexes:

A nonpartitioned secondary index is any index that is not defined as a partitioning
index or a partitioned index. A nonpartitioned secondary index has one index
space that contains keys for the rows of all partitions of the table space.

You can create a nonpartitioned secondary index on a table that resides in a
partitioned table space. However, this action is not possible on nonpartitioned table
spaces.

Nonpartitioned secondary indexes provide performance advantages for queries
that meet the following criteria:
v The query does not contain predicates on the partitioning columns of the table

that limit the query to a small subset of the partitions in the table.
v The query qualifications match the index columns.
v The SELECT list columns are included in the index (for index-only access).

Example: Consider the following SELECT statement:
SELECT STATE FROM AREA_CODES
WHERE AREACODE_NO <= 300 AND STATE > 'CA’;

This query makes efficient use of the nonpartitioned secondary index on columns
AREACODE_NO and STATE, partitioned by STATE. The number of key values
that need to be searched is limited to scanning the index key values lower than or
equal to 300.

Example of data-partitioned and nonpartitioned secondary indexes:

Referring to an example can help you understand the advantages of using
data-partitioned and nonpartitioned secondary indexes.

This example creates a data-partitioned secondary index (DPSIIX2) and a
nonpartitioned secondary index (NPSIIX3) on the AREA_CODES table.

236 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_scanlimit2parts.htm#db2z_scanlimit2parts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_writequery4dpsitable.htm#db2z_writequery4dpsitable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_writequery4dpsitable.htm#db2z_writequery4dpsitable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tablespacescanaccess.htm#db2z_tablespacescanaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tablespacescanaccess.htm#db2z_tablespacescanaccess

Important: The AREA_CODES table must be partitioned on something other than
the STATE column for these indexes to be secondary indexes.

You can use the following SQL statements to create these secondary indexes:
CREATE INDEX DPSIIX2 ON AREA_CODES (STATE) PARTITIONED;
CREATE INDEX NPSIIX3 ON AREA_CODES (STATE);

The following figure illustrates what the data-partitioned secondary index and
nonpartitioned secondary index on the AREA_CODES table look like.

Data-partitioned secondary indexes provide advantages over nonpartitioned
secondary indexes for utility processing. For example, utilities such as COPY,
REBUILD INDEX, and RECOVER INDEX can operate on physical partitions rather
than logical partitions because the keys for a given data partition reside in a single
data-partitioned secondary index DPSI partition. This method can provide greater
availability.

Creation of views
When you design your database, you might need to give users access to only
certain pieces of data. You can give users controlled access by designing and using
views.

Use the CREATE VIEW statement to define and name a view. Unless you
specifically list different column names after the view name, the column names of
the view are the same as the column names of the underlying table. When you

P4

P2

P3

AREACODES tableDPSIIX2 NPSIX3

CA

FL

MA

TX

CA

FL

MA

CA

FL

TX

CA

FL

TX

310 CA

321 FL

323 CA

351 MA

407 FL

408 CA

430 TX

415 CA

510 CA

512 TX

530 CA

561 FL

Figure 44. Data-partitioned secondary index and nonpartitioned secondary index on AREA_CODES table

Chapter 7. Implementation of your database design 237

create different column names for your view, remember the naming conventions
that you established when designing the relational database.

A SELECT statement describes the information in the view. The SELECT statement
can name other views and tables, and it can use the WHERE, GROUP BY, and
HAVING clauses. It cannot use the ORDER BY clause or name a host variable.
Related concepts:
“DB2 views” on page 28
“Customized data views” on page 87

A view on a single table
You can create views on individual tables when you need to limit access to
particular columns.

Example: Assume that you want to create a view on the DEPT table. Of the four
columns in the table, the view needs only three: DEPTNO, DEPTNAME, and
MGRNO. The order of the columns that you specify in the SELECT clause is the
order in which they appear in the view:
CREATE VIEW MYVIEW AS

SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPT;

Example: In the preceding example, no column list follows the view name,
MYVIEW. Therefore, the columns of the view have the same names as those of the
DEPT table on which it is based. You can execute the following SELECT statement
to see the view contents:
SELECT * FROM MYVIEW;

The result table looks like this:
DEPTNO DEPTNAME MGRNO
====== ===================== ======
A00 CHAIRMANS OFFICE 000010
B01 PLANNING 000020
C01 INFORMATION CENTER 000030
D11 MANUFACTURING SYSTEMS 000060
E21 SOFTWARE SUPPORT ------

A view that combines information from several tables
You can create a view that contains a union of more than one table. A union of
more than one table is called a join.

DB2 provides two types of joins—an outer join and an inner join. An outer join
includes rows in which the values in the join columns don't match, and rows in
which the values match. An inner join includes only rows in which matching

values in the join columns are returned.

Example: The following example is an inner join of columns from the DEPT and
EMP tables. The WHERE clause limits the view to just those columns in which the
MGRNO in the DEPT table matches the EMPNO in the EMP table:

238 Introduction to DB2 for z/OS

CREATE VIEW MYVIEW AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPT, EMP
WHERE EMP.EMPNO = DEPT.MGRNO;

The result of executing this CREATE VIEW statement is an inner join view of two
tables, which is shown below:
DEPTNO MGRNO LASTNAME ADMRDEPT
====== ====== ======== ========
A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00
D11 000060 STERN D11

Example: Suppose that you want to create the view in the preceding example, but
you want to include only those departments that report to department A00.
Suppose also that you prefer to use a different set of column names. Use the
following CREATE VIEW statement:
CREATE VIEW MYVIEWA00

(DEPARTMENT, MANAGER, EMPLOYEE_NAME, REPORT_TO_NAME)
AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM EMP, DEPT
WHERE EMP.EMPNO = DEPT.MGRNO
AND ADMRDEPT = ’A00’;

You can execute the following SELECT statement to see the view contents:
SELECT * FROM MYVIEWA00;

When you execute this SELECT statement, the result is a view of a subset of the
same data, but with different column names, as follows:
DEPARTMENT MANAGER EMPLOYEE_NAME REPORT_TO_NAME
========== ======= ============= ==============
A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00

Related concepts:
“Ways to merge lists of values” on page 113

Inserts and updates of data through views
If you define a view on a single table, you can refer to the name of a view in
insert, update, or delete operations. If the view is complex or involves multiple
tables, you must define an INSTEAD OF trigger before that view can be referenced
in an INSERT, UPDATE, MERGE, or DELETE statement. This information explains
how the simple case is dealt with, where DB2 makes an insert or update to the
base table.

To ensure that the insert or update conforms to the view definition, specify the
WITH CHECK OPTION clause. The following example illustrates some

undesirable results of omitting that check.

Example: Suppose that you define a view, V1, as follows:
CREATE VIEW V1 AS

SELECT * FROM EMP
WHERE DEPT LIKE ’D%’

Chapter 7. Implementation of your database design 239

A user with the SELECT privilege on view V1 can see the information from the
EMP table for employees in departments whose IDs begin with D. The EMP table
has only one department (D11) with an ID that satisfies the condition.

Assume that a user has the INSERT privilege on view V1. A user with both
SELECT and INSERT privileges can insert a row for department E01, perhaps
erroneously, but cannot select the row that was just inserted.

The following example shows an alternative way to define view V1.

Example: You can avoid the situation in which a value that does not match the
view definition is inserted into the base table. To do this, instead define view V1 to
include the WITH CHECK OPTION clause:
CREATE VIEW V1 AS SELECT * FROM EMP

WHERE DEPT LIKE ’D%’ WITH CHECK OPTION;

With the new definition, any insert or update to view V1 must satisfy the predicate
that is contained in the WHERE clause: DEPT LIKE 'D%'. The check can be
valuable, but it also carries a processing cost; each potential insert or update must
be checked against the view definition. Therefore, you must weigh the advantage
of protecting data integrity against the disadvantage of the performance
degradation.

Related tasks:

Inserting, updating, and deleting data in views by using INSTEAD OF triggers
(DB2 Application programming and SQL)

Changing data by using views that reference temporal tables (DB2
Administration Guide)
Related reference:

CREATE VIEW (DB2 SQL)

Creation of large objects
Defining large objects to DB2 is different than defining other types of data and
objects.

These are the basic steps for defining LOBs and moving the data into DB2:
1. Define a column of the appropriate LOB type.

When you create a table with a LOB column, or alter a table to add a LOB
column, defining a ROWID column is optional. If you do not define a ROWID
column, DB2 defines a hidden ROWID column for you. Define only one
ROWID column, even if multiple LOB columns are in the table.
The LOB column holds information about the LOB, not the LOB data itself. The
table that contains the LOB information is called the base table, which is
different from the common base table. DB2 uses the ROWID column to locate
your LOB data. You can define the LOB column and the ROWID column in a
CREATE TABLE or ALTER TABLE statement. If you are adding a LOB column
and a ROWID column to an existing table, you must use two ALTER TABLE
statements. If you add the ROWID after you add the LOB column, the table has
two ROWIDs; a hidden one and the one that you created. DB2 ensures that the
values of the two ROWIDs are always the same.

2. Create a table space and table to hold the LOB data.

240 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_modifyviewdatainsteadoftriggers.htm#db2z_modifyviewdatainsteadoftriggers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_modifyviewdatainsteadoftriggers.htm#db2z_modifyviewdatainsteadoftriggers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createview.htm#db2z_sql_createview

For LOB data, the table space is called a LOB table space, and a table is called
an auxiliary table. If your base table is nonpartitioned, you must create one
LOB table space and one auxiliary table for each LOB column. If your base
table is partitioned, you must create one LOB table space and one auxiliary
table for each LOB column in each partition. For example, you must create
three LOB table spaces and three auxiliary tables for each LOB column if your
base table has three partitions. Create these objects by using the CREATE LOB
TABLESPACE and CREATE AUXILIARY TABLE statements.

3. Create an index on the auxiliary table.
Each auxiliary table must have exactly one index in which each index entry
refers to a LOB. Use the CREATE INDEX statement for this task.

4. Put the LOB data into DB2.
If the total length of a LOB column and the base table row is less than 32 KB,
you can use the LOAD utility to put the data in DB2. You can also use SQL to
put LOB data into DB2 that is less than 32KB. Even though the data resides in
the auxiliary table, the LOAD utility statement or SQL statement that changes
data specifies the base table. Using INSERT or MERGE statements can be
difficult because your application needs enough storage to hold the entire value
that goes into the LOB column.

Example: Assume that you must define a LOB table space and an auxiliary table
to hold employee resumes. You must also define an index on the auxiliary table.
You must define the LOB table space in the same database as the associated base
table. Assume that EMP_PHOTO_RESUME is a base table. This base table has a
LOB column named EMP_RESUME. You can use statements like this to define the
LOB table space, the auxiliary table space, and the index:
CREATE LOB TABLESPACE RESUMETS

IN MYDB
LOG NO;

COMMIT;
CREATE AUXILIARY TABLE EMP_RESUME_TAB

IN MYDB.RESUMETS
STORES EMP_PHOTO_RESUME
COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;

COMMIT;

You can use the LOG clause to specify whether changes to a LOB column in the
table space are to be logged. The LOG NO clause in the preceding CREATE LOB
TABLESPACE statement indicates that changes to the RESUMETS table space are
not to be logged.

Creation of databases
When you define a DB2 database, you name an eventual collection of tables,
associated indexes, and the table spaces in which they are to reside.

When you decide whether to define a new database for a new set of objects or use
an existing database, consider the following facts:
v You can start and stop an entire database as a unit. You can display the status of

all objects in the database by using a single command that names only the

Chapter 7. Implementation of your database design 241

database. Therefore, place a set of related tables into the same database. (The
same database holds all indexes on those tables.)

v If you want to improve concurrency and memory use, keep the number of tables
in a single database relatively small (maximum of 20 tables). For example, with
fewer tables, DB2 performs a reorganization in a shorter length of time.

v Having separate databases allows data definitions to run concurrently and also
uses less space for control blocks.

To create a database, use the CREATE DATABASE statement. A name for a
database is an unqualified identifier of up to eight characters. A DB2 database
name must not be the same as the name of any other DB2 database.

In new-function mode, if you do not specify the IN clause on the CREATE TABLE
statement, DB2 implicitly creates a database. The following list shows the names
for an implicit database when the maximum value of the sequence
SYSIBM.DSNSEQ_IMPLICITDB is 10000:

DSN00001, DSN00002, DSN00003, ..., DSN09999, and DSN10000

Example: The following example shows a valid database name:

Object Name
Database

MYDB

This CREATE DATABASE statement creates the database MYDB:
CREATE DATABASE MYDB

STOGROUP MYSTOGRP
BUFFERPOOL BP8K4
INDEXBP BP4;

The STOGROUP, BUFFERPOOL, and INDEXBP clauses that this example shows
establish default values. You can override these values on the definitions of the
table space or index space.

Related reference:

CREATE DATABASE (DB2 SQL)

Creation of relationships with referential constraints
Referential integrity is a condition in which all intended references from data in
one table column to data in another table column are valid. By using referential
constraints, you can define relationships between entities that you define in DB2.

Organizations that choose to enforce referential constraints have at least one thing
in common. They need to ensure that values in one column of a table are valid
with respect to other data values in the database.

Examples:

v A manufacturing company wants to ensure that each part in a PARTS table
identifies a product number that equals a valid product number in the
PRODUCTS table.

242 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase

v A company wants to ensure that each value of DEPT in the EMP table equals a
valid DEPTNO value in the DEPT table.

If the DBMS did not support referential integrity, programmers would need to
write and maintain application code that validates the relationship between the
columns. Some programs might not enforce business rules, even though it is
recommended.

This programming task can be complex because of the need to make sure that only
valid values are inserted or updated in the columns. When the DBMS supports
referential integrity, as DB2 does, programmers avoid some complex programming
tasks and can be more productive in their other work.
Related tasks:

Using referential integrity for data consistency (Managing Security)

How DB2 enforces referential constraints
This information describes what DB2 does to maintain referential integrity.

You define referential constraints between a foreign key and its parent key. Before
you start to define the referential relationships and constraints, you should
understand what DB2 does to maintain referential integrity. You should understand
the rules that DB2 follows when users attempt to modify information in columns
that are involved in referential constraints.

To maintain referential integrity, DB2 enforces referential constraints in response to
any of the following events:
v An insert to a dependent table
v An update to a parent table or dependent table
v A delete from a parent table
v Running the CHECK DATA utility or the LOAD utility on a dependent table

with the ENFORCE CONSTRAINTS option

When you define the constraints, you have the following choices:

CASCADE
DB2 propagates the action to the dependents of the parent table.

NO ACTION
An error occurs, and DB2 takes no action.

RESTRICT
An error occurs, and DB2 takes no action.

SET NULL
DB2 places a null value in each nullable column of the foreign key that is
in each dependent of the parent table.

DB2 does not enforce referential constraints in a predefined order. However, the
order in which DB2 enforces constraints can affect the result of the operation.
Therefore, you should be aware of the restrictions on the definition of delete rules
and on the use of certain statements. The restrictions relate to the following SQL
statements: CREATE TABLE, ALTER TABLE, INSERT, UPDATE, MERGE, and
DELETE.

You can use the NOT ENFORCED option of the referential constraint definition in
a CREATE TABLE or ALTER TABLE statement to define an informational

Chapter 7. Implementation of your database design 243

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_usereferential4consistent.htm#db2z_usereferential4consistent

referential constraint. You should use this type of referential constraint only when
an application process verifies the data in a referential integrity relationship.

Insert rules
The insert rules for referential integrity apply to parent and dependent tables.

The following insert rules for referential integrity apply to parent and dependent
tables:
v For parent tables: You can insert a row at any time into a parent table without

taking any action in the dependent table. For example, you can create a new
department in the DEPT table without making any change to the EMP table. If
you are inserting rows into a parent table that is involved in a referential
constraint, the following restrictions apply:
– A unique index must exist on the parent key.
– You cannot enter duplicate values for the parent key.
– You cannot insert a null value for any column of the parent key.

v For dependent tables: You cannot insert a row into a dependent table unless a
row in the parent table has a parent key value that equals the foreign key value
that you want to insert. You can insert a foreign key with a null value into a
dependent table (if the referential constraint allows this), but no logical
connection exists if you do so. If you insert rows into a dependent table, the
following restrictions apply:
– Each nonnull value that you insert into a foreign key column must be equal

to some value in the parent key.
– If any field in the foreign key is null, the entire foreign key is null.
– If you drop the index that enforces the parent key of the parent table, you

cannot insert rows into either the parent table or the dependent table.

Example: Your company doesn't want to have a row in the PARTS table unless the
PROD# column value in that row matches a valid PROD# in the PRODUCTS table.
The PRODUCTS table has a primary key on PROD#. The PARTS table has a
foreign key on PROD#. The constraint definition specifies a RESTRICT constraint.
Every inserted row of the PARTS table must have a PROD# that matches a PROD#
in the PRODUCTS table.

Update rules
The update rules for referential integrity apply to parent and dependent tables.

The following update rules for referential integrity apply to parent and dependent
tables:
v For parent tables: You cannot change a parent key column of a row that has a

dependent row. If you do, the dependent row no longer satisfies the referential
constraint, so DB2 prohibits the operation.

v For dependent tables: You cannot change the value of a foreign key column in a
dependent table unless the new value exists in the parent key of the parent
table.

Example: When an employee transfers from one department to another, the
department number for that employee must change. The new value must be the
number of an existing department, or it must be null. You should not be able to
assign an employee to a department that does not exist. However, in the event of a
company reorganization, employees might temporarily not report to a valid
department. In this case, a null value is a possibility.

244 Introduction to DB2 for z/OS

If an update to a table with a referential constraint fails, DB2 rolls back all changes
that were made during the update.

Delete rules
Delete rules, which are applied to parent and dependent tables, are an important
part of DB2 referential integrity.

The following delete rules for referential integrity apply to parent and dependent
tables:

For parent tables
For any particular relationship, DB2 enforces delete rules that are based on
the choices that you specify when you define the referential constraint.

For dependent tables
At any time, you can delete rows from a dependent table without acting
on the parent table.

To delete a row from a table that has a parent key and dependent tables, you must
obey the delete rules for that table. To succeed, the DELETE must satisfy all delete
rules of all affected relationships. The DELETE fails if it violates any referential
constraint.

Example 1: Consider the parent table in the department-employee relationship.
Suppose that you delete the row for department C01 from the DEPT table. That
deletion affects the information in the EMP table about Sally Kwan, Heather
Nicholls, and Kim Natz, who work in department C01.

Example 2: Consider the dependent in the department-employee relationship.
Assume that an employee retires and that a program deletes the row for that
employee from the EMP table. The DEPT table is not affected.

Construction of a referential structure
When you build a referential structure, you need to create a set of tables and
indexes in the correct order.

During logical design, you express one-to-one relationships and one-to-many
relationships as if the relationships are bi-directional. For example:
v An employee has a resume, and a resume belongs to an employee (one-to-one

relationship).
v A department has many employees, and each employee reports to a department

(one-to-many relationship).

During physical design, you restate the relationship so that it is unidirectional; one
entity becomes an implied parent of the other. In this case, the employee is the
parent of the resume, and the department is the parent of the assigned employees.

During logical design, you express many-to-many relationships as if the
relationships are both bidirectional and multivalued. During physical design,
database designers resolve many-to-many relationships by using an associative
table. The relationship between employees and projects is a good example of how
referential integrity is built. This is a many-to-many relationship because
employees work on more than one project, and a project can have more than one
employee assigned.

Chapter 7. Implementation of your database design 245

Example: To resolve the many-to-many relationship between employees (in the
EMP table) and projects (in the PROJ table), designers create a new associative
table, EMP_PROJ, during physical design. EMP and PROJ are both parent tables to
the child table, EMP_PROJ.

When you establish referential constraints, you must create parent tables with at
least one unique key and corresponding indexes before you can define any
corresponding foreign keys on dependent tables.
Related concepts:
“Database design with denormalization” on page 85
“Entities for different types of relationships” on page 74
Related tasks:

Using referential integrity for data consistency (Managing Security)

Tables in a referential structure
In a referential structure, you can create table spaces in any order. Using a model
for the structure can be helpful.

You can create table spaces in any order. However, you need to create the table
spaces before you perform the following steps. (This procedure uses the DEPT and

EMP tables.)
1. Create the DEPT table and define its primary key on the DEPTNO column. The

PRIMARY KEY clause of the CREATE TABLE statement defines the primary
key.

Example:
CREATE TABLE DEPT

...
PRIMARY KEY (DEPTNO);

2. Create the EMP table and define its primary key as EMPNO and its foreign key
as DEPT. The FOREIGN KEY clause of the CREATE TABLE statement defines
the foreign key.

Example:
CREATE TABLE EMP

...
PRIMARY KEY (EMPNO)
FOREIGN KEY (DEPT)

REFERENCES DEPT (DEPTNO)
ON DELETE SET NULL;

3. Alter the DEPT table to add the definition of its foreign key, MGRNO.

Example:
ALTER TABLE DEPT

FOREIGN KEY (MGRNO)
REFERENCES EMP (EMPNO)
ON DELETE RESTRICT;

246 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_usereferential4consistent.htm#db2z_usereferential4consistent

Related tasks:

Using referential integrity for data consistency (Managing Security)

Creation of exception tables
Before you load tables that are involved in a referential constraint or check
constraint, you need to create exception tables. An exception table contains the rows
that the CHECK DATA utility identified because they violate referential constraints
or check constraints.
Related reference:

Exception tables for the CHECK DATA utility (DB2 Utilities)

Creation of triggers
You can use triggers to define and enforce business rules that involve different
states of the data. Triggers automatically execute a set of SQL statements whenever
a specified event occurs. These statements validate and edit database changes, read
and modify the database, and invoke functions that perform various operations.

Triggers are optional. You define triggers by using the CREATE TRIGGER
statement.

Example: Assume that the majority of your organization's salary increases are less
than or equal to 10 percent. Assume also that you need to receive notification of
any attempts to increase a value in the salary column by more than that amount.
To enforce this requirement, DB2 compares the value of a salary before a salary
increase to the value that would exist after a salary increase. You can use a trigger
in this case. Whenever a program updates the salary column, DB2 activates the
trigger. In the triggered action, you can specify that DB2 is to perform the
following actions:
v Update the value in the salary column with a valid value, rather than preventing

the update altogether.
v Notify an administrator of the attempt to make an invalid update.

As a result of using a trigger, the notified administrator can decide whether to
override the original salary increase and allow a larger-than-normal salary increase.

Recommendation: For rules that involve only one condition of the data, consider
using referential constraints and check constraints rather than triggers.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance. In the previous example, which limits salary increases, the logic is in
the database, rather than in an application. DB2 checks the validity of the changes
that any application makes to the salary column. In addition, if the logic ever
changes (for example, to allow 12 percent increases), you don't need to change the
application programs.

Chapter 7. Implementation of your database design 247

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_usereferential4consistent.htm#db2z_usereferential4consistent
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_createexceptiontables.htm#db2z_createexceptiontables

Related concepts:
“Triggers” on page 47

Creation of user-defined functions
You can create your own functions in DB2 to simplify your queries.

There are three primary types of user-defined functions.

Sourced functions
Functions that are based on existing functions.

External functions
Functions that are developed by users.

SQL functions
Functions that are defined to the database by use of SQL statements only.

External user-defined functions can return a single value or a table of values.
v External functions that return a single value are called user-defined scalar

functions.
v External functions that return a table are called user-defined table functions.

User-defined functions, like built-in functions or operators, support the

manipulation of distinct types.

The following two examples demonstrate how to define and use both a
user-defined function and a distinct type.

Example 1: Suppose that you define a table called EUROEMP. One column of this
table, EUROSAL, has a distinct type of EURO, which is based on DECIMAL(9,2).
You cannot use the built-in AVG function to find the average value of EUROSAL
because AVG operates on built-in data types only. You can, however, define an
AVG function that is sourced on the built-in AVG function and accepts arguments
of type EURO:
CREATE FUNCTION AVG(EURO)

RETURNS EURO
SOURCE SYSIBM.AVG(DECIMAL);

Example 2: You can then use this function to find the average value of the
EUROSAL column:
SELECT AVG(EUROSAL) FROM EUROEMP;

The next two examples demonstrate how to define and use an external
user-defined function.

Example 3: Suppose that you define and write a function, called REVERSE, to
reverse the characters in a string. The definition looks like the following example:
CREATE FUNCTION REVERSE(VARCHAR(100))

RETURNS VARCHAR(100)
EXTERNAL NAME ’REVERSE’
PARAMETER STYLE SQL
LANGUAGE C;

Example 4: You can then use the REVERSE function in an SQL statement wherever
you would use any built-in function that accepts a character argument, as shown
in the following example:

248 Introduction to DB2 for z/OS

SELECT REVERSE(:CHARSTR)
FROM SYSDUMMY1;

Although you cannot write user-defined aggregate functions, you can define
sourced user-defined aggregate functions that are based on built-in aggregate
functions. This capability is useful in cases where you want to refer to an existing
user-defined function by another name or where you want to pass a distinct type.

The next two examples demonstrate how to define and use a user-defined table
function.

Example 5: You can define and write a user-defined table function that users can
invoke in the FROM clause of a SELECT statement. For example, suppose that you
define and write a function called BOOKS. This function returns a table of
information about books on a specified subject. The definition looks like the
following example:
CREATE FUNCTION BOOKS (VARCHAR(40))

RETURNS TABLE (TITLE_NAME VARCHAR(25),
AUTHOR_NAME VARCHAR(25),
PUBLISHER_NAME VARCHAR(25),
ISBNNO VARCHAR(20),
PRICE_AMT DECIMAL(5,2),
CHAP1_TXT CLOB(50K))

LANGUAGE COBOL
PARAMETER STYLE SQL
EXTERNAL NAME BOOKS;

Example 6: You can then include the BOOKS function in the FROM clause of a
SELECT statement to retrieve the book information, as shown in the following
example:
SELECT B.TITLE_NAME, B.AUTHOR_NAME, B.PUBLISHER_NAME, B.ISBNNO

FROM TABLE(BOOKS(’Computers’)) AS B
WHERE B.TITLE_NAME LIKE ’%COBOL%’;

Related concepts:
“User-defined functions” on page 100

Chapter 7. Implementation of your database design 249

250 Introduction to DB2 for z/OS

Chapter 8. DB2 performance management

Managing the performance of a DB2 subsystem involves understanding a wide
range of system components. You need to understand the performance of those
components, how to monitor the components, and how to identify problem areas.

System resources, database design, and query performance are among the many
performance issues to consider, and each of these factors influences the others. For
example, a well-designed query does not run efficiently if system resources are not
available when it needs to run.

To manage DB2 performance, you need to establish performance objectives and
determine whether objects, resources, and processes are meeting your performance
expectations. Tips and guidelines help you tune your DB2 subsystem to improve
performance. Several tools are available to make performance analysis easier for
you.

Initial steps for performance management
The first step in managing DB2 performance is understanding performance issues.
You need to know how to recognize different types of performance problems and
to know what tools are available to help you solve them.

Performance objectives
Establishing performance objectives can help you make good choices as you work
with DB2. Although performance objectives vary for every business, how your site
defines good DB2 performance depends on data processing needs and priorities.

In all cases, performance objectives must be realistic, understandable, and
measurable. Typical objectives include values for:
v Acceptable response time (a duration within which some percentage of all

applications have completed)
v Average throughput (the total number of transactions or queries that complete

within a given time)
v System availability, including mean time to failure and the durations of

downtimes

Objectives such as these define the workload for the system and determine the
requirements for resources, which include processor speed, amount of storage,
additional software, and so on.

Example: An objective might be that 90% of all response times on a local network
during a prime shift are under 2 seconds. Another objective might be that the
average response time does not exceed 6 seconds, even during peak periods. (For
remote networks, response times are substantially higher.)

Often, though, available resources limit the maximum acceptable workload, which
requires that you revise the objectives.

© Copyright IBM Corp. 2001, 2013 251

Related concepts:

Setting reasonable performance objectives (DB2 Performance)

Application design for performance
Designing the database and applications to be as efficient as possible is an
important first step to good system and application performance. As you code
applications, consider performance objectives in your application design.

Some factors that affect the performance of applications include how the program
uses host variables and what bind options you choose. In turn, those factors affect
how long DB2 takes to determine an access path for the SQL statements in the
application.

Later in this information you can read about locking and concurrency, including
recommendations for database and application design that improve performance.

After you run an application, you need to decide if it meets your performance
objectives. You might need to test and debug the application to improve its
performance.
Related concepts:
“Performance information for SQL application programming” on page 157
“Performance objectives” on page 251

Setting reasonable performance objectives (DB2 Performance)

Investigating SQL performance by using EXPLAIN (DB2 Performance)

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Programming applications for performance (DB2 Performance)

Improving concurrency (DB2 Performance)

Programming for concurrency (DB2 Performance)

Generating visual representations of access plans

Origin of performance problems
After running an application, if you determine that it does not meet your
performance objectives, you need to determine the origin of the problem. This
information describes how you identify performance problems and what tools can
help you.

To identify a performance problem, you begin by looking at the overall system
before you decide that you have a problem in DB2. In general, look closely to see
why application processes are progressing slowly or why a given resource is being
heavily used.

Within DB2, the performance problem is usually either poor response time or an
unexpected and unexplained high use of resources. Check factors such as total
processor usage, disk activity, and memory usage.

First, get a picture of task activity, from classes 1, 2, and 3 of the accounting trace.
DB2 provides a trace facility that lets you monitor and collect detailed information

252 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setperformanceobjectives.htm#db2z_setperformanceobjectives
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setperformanceobjectives.htm#db2z_setperformanceobjectives
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

about DB2, including performance and statistical information. Then, focus on
specific activities, such as specific application processes or a specific time interval.
You might see problems such as these:
v Slow response time. You can collect detailed information about a single slow

task, a problem that can occur for several reasons. For example, users might be
trying to do too much work with certain applications, and the system simply
cannot do all the work that they want done.

v Real storage constraints. Applications progress more slowly than expected
because of paging interrupts. The constraints result in delays between successive
requests that are recorded in the DB2 trace.

If you identify a performance problem in DB2, you can look at specific reports.
Reports give you information about:
v Whether applications are able to read from buffer pools rather than from disk
v Whether and how long applications must wait to write to disk or wait for a lock
v Whether applications are using more than the usual amount of resources

DB2 also provides several tools that help you analyze performance.
Related concepts:
“The role of buffer pools in caching data” on page 254
“Ways to improve performance for multiple users” on page 260
“Tools for performance analysis”

DB2 trace output (DB2 Performance)

DB2 trace (DB2 Performance)

Tools for performance analysis
DB2 provides several workstation tools to simplify performance analysis.

Workstation tools for performance analysis include:
v IBM Data Studio
v Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
v DB2 Buffer Pool Analyzer
v DB2 SQL Performance Analyzer
v DB2 Query Monitor

DB2 also provides a monitoring tool, EXPLAIN.

OMEGAMON DB2 Performance Expert

IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS integrates
performance monitoring, reporting, buffer pool analysis, and a performance
warehouse function into one tool. It provides a single-system overview that
monitors all subsystems and instances across many different platforms in a
consistent way.

OMEGAMON DB2 Performance Expert includes the function of OMEGAMON
DB2 Performance Monitor (DB2 PM). Features of the tool include:
v Combined information from EXPLAIN and from the DB2 catalog.
v Displays of access paths, indexes, tables, table spaces, plans, packages, DBRMs,

host variable definitions, ordering, table access sequences, join sequences, and
lock types.

Chapter 8. DB2 performance management 253

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdb2trace.htm#db2z_interpretdb2trace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usdb2trace2monitorperf.htm#db2z_usdb2trace2monitorperf

v An immediate "snapshot" view of DB2 for z/OS activities that the online
monitor provides. The monitor allows for exception processing while the system
is operational.

DB2 Performance Expert has offerings that support DB2 for z/OS on System z, and
DB2 for Linux, Unix, and Windows on Microsoft Windows, HP-UX, Sun's Solaris,
IBM AIX and Linux).
Related concepts:
“The role of buffer pools in caching data”
“Tools that help you improve query performance” on page 268

Ways to move data efficiently through the system
As data progresses through a DB2 subsystem, it moves from disk to memory and
to the user or to applications. You need to tune the system resources and objects
such as buffer pools, table spaces, and indexes, that contain data to keep the flow
of data efficient.

The role of buffer pools in caching data
Buffer pools are a key element of DB2 performance, and help you to avoid delays
when retrieving data.

DB2 can retrieve a page from a buffer pool faster than it can from disk. When data
is already in a buffer, an application program avoids the delay of waiting for DB2
to retrieve the data from disk.

DB2 lets you use up to 50 buffer pools that contain 4 KB pages and up to 10 buffer
pools each that contain 8 KB, 16 KB, and 32 KB pages.

The following figure shows buffer pools with 4 KB and 8 KB pages. The number of
pages that a buffer pool contains depends on the size of the buffer pool.

At any time, pages in a virtual buffer pool can be in use, updated, or available.
v In-use pages are currently being read or updated. The data that they contain is

available for use by other applications.

. .
.

. .
.

KB

4 KB4 KB

KB

4 KB

4 KB4 KB

4 KB4 KB

4 KB4 KB

4 KB

4 KB

4 KB

8 KB

8 KB

8 KB

B

8 KB

B

BP49

BP3

BP2

BP1

BP0 BP8K0

BP8K1

BP8K2

BP8K3

BP8K9

Figure 45. Buffer pools with 4 KB and 8 KB pages

254 Introduction to DB2 for z/OS

v Updated pages contain data that has changed but is not yet written to disk.
v Available pages are ready for use. An incoming page of new data can overwrite

available pages.

To avoid disk I/O, you can use updated and available pages that contain data.

When data in the buffer changes, that data must eventually be written back to
disk. Because DB2 does not need to write the data to disk right away, the data can
remain in the buffer pool for other uses. The data remains in the buffer until DB2
decides to use the space for another page. Until that time, applications can read or
change the data without a disk I/O operation.

The key factor that affects the performance of buffer pools is their size. The
method that DB2 uses to access buffer pools also affects performance.

Buffer pool size

The size of buffer pools is critical to the performance characteristics of an
application or a group of applications that access data in those buffer pools.

Tuning your buffer pools can improve the response time and throughput for your
applications and provide optimum resource utilization. For example, applications
that do online transaction processing are more likely to need large buffer pools
because they often need to reaccess data. In that case, storing large amounts of
data in a buffer pool enables applications to access data more efficiently.

By making buffer pools as large as possible, you can achieve the following benefits:
v Fewer I/O operations result, which means faster access to your data.
v I/O contention is reduced for the most frequently used tables and indexes.
v Sort speed is increased because of the reduction in I/O contention for work files.

You can use the ALTER BUFFERPOOL command to change the size and other
characteristics of a buffer pool at any time while DB2 is running. Use the DISPLAY
BUFFERPOOL and ALTER BUFFERPOOL commands to gather buffer pool
information and change buffer pool sizes.

DB2 Buffer Pool Analyzer for z/OS helps database administrators manage buffer
pools more efficiently by providing information about current buffer pool behavior
and by using simulation to anticipate future behavior. Using this tool, you can take
advantage of these features:
v Collection of data about virtual buffer pool activity
v Comprehensive reporting of the buffer pool activity
v Simulated buffer pool usage
v Reports and simulation results
v Expert analysis that is available through an easy-to-use wizard

DB2 Buffer Pool Analyzer capabilities are included in OMEGAMON DB2
Performance Expert.

Efficient page access

DB2 determines when to use a method called sequential prefetch to read data pages
faster. With sequential prefetch, DB2 determines in advance that a set of data pages
is about to be used. DB2 then reads the set of pages into a buffer with a single I/O

Chapter 8. DB2 performance management 255

operation. The prefetch method is always used for table space scans and is
sometimes used for index scans. Prefetching is performed concurrently with other
application I/O operations.

In addition to a predetermined sequential prefetch, DB2 also supports dynamic
prefetch. A dynamic prefetch is a more robust and flexible method that is based on
sequential detection.
Related concepts:
“Buffer pools” on page 40
“Tools for performance analysis” on page 253

The effect of data compression on performance
In many cases, compressing the data in a table space significantly reduces the
amount of disk space that is needed to store data. Compressing data can also help
improve buffer pool performance. For example, you can store more data in a buffer
pool, and DB2 can scan large amounts of data more easily.

With compressed data, performance improvements depend on the SQL workload
and the amount of compression. You might see some of the following benefits:
v Higher buffer pool hit ratios. The hit ratio measures how often a page is

accessed without requiring an I/O operation.
v Fewer operations in which DB2 accesses a data page.

The compression ratio that you achieve depends on the characteristics of your
data. Compression can work well for large table spaces. With small table spaces,
the process of compressing data can negate the space savings that compression
provides.

Consider these factors when deciding whether to compress data:
v DB2 compresses data one row at a time. If DB2 determines that compressing the

row yields no savings, the row is not compressed. The closer that the average
row length is to the actual page size, the less efficient compression can be.

v Compressing data costs processing time. Although decompressing data costs less
than compressing data, the overall cost depends on the patterns in your data.

If the compression ratio is less than 10%, compression is not beneficial and,
therefore, is not recommended. You can use the DSN1COMP utility to determine
the probable effectiveness of compressing your data.

You use the COMPRESS clause of the CREATE TABLESPACE and ALTER
TABLESPACE statements to compress data in a table space, data in a partition of a
partitioned table space, or data in indexes. You cannot compress data in LOB table
spaces.

256 Introduction to DB2 for z/OS

Related concepts:

Deciding whether to compress data (DB2 Performance)
Related tasks:

Compressing your data (DB2 Performance)

Compressing indexes (DB2 Performance)
Related reference:

DSN1COMP (DB2 Utilities)

How data organization can affect performance
To achieve optimal performance for table spaces and indexes, you need to keep
data organized efficiently. The use of space and the organization of data in a table
space and the associated indexes sometimes affects performance.
Related tasks:

Maintaining data organization (DB2 Performance)

Use of free space in data and index storage
An important factor that affects how well your table spaces and indexes perform is
the amount of available free space. Free space refers to the amount of space that
DB2 leaves free in a table space or index when data is loaded or reorganized.

Freeing pages or portions of pages can improve performance, especially for
applications that perform high-volume inserts or that update varying-length
columns. When you specify a sufficient amount of free space, you trade the
amount of used disk space for the performance of certain SQL statements. For
example, inserting new rows into free space is faster than splitting index pages.

You use the FREEPAGE and PCTFREE clauses of the CREATE and ALTER
TABLESPACE and INDEX statements to set free space values.
Related tasks:

Reserving free spaces for indexes (DB2 Performance)

Reserving free space for table spaces (DB2 Performance)
Related reference:

CREATE TABLESPACE (DB2 SQL)

ALTER TABLESPACE (DB2 SQL)

CREATE INDEX (DB2 SQL)

ALTER INDEX (DB2 SQL)

Guidelines for data reorganization
You must consider several factors before you reorganize your data.

You must run the REORG utility only when you determine that data needs to be
reorganized. If application performance is not degraded, you might not need to
reorganize data. Even when some statistics indicate that data is becoming
unorganized, a REORG utility job is not always required, unless the lack of
organization exceeds a specified threshold.

In the following situations, data reorganization is advisable:

Chapter 8. DB2 performance management 257

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_decide2compressdata.htm#db2z_decide2compressdata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressindexes.htm#db2z_compressindexes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_dsn1comp.htm#db2z_utl_dsn1comp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reorgindextablespaces.htm#db2z_reorgindextablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespaceindex.htm#db2z_reservefreespaceindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reservefreespacetable.htm#db2z_reservefreespacetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterindex.htm#db2z_sql_alterindex

Data is in REORG-pending status

When table spaces or partitions are in REORG-pending (REORP) status, you cannot
select, insert, update, or delete data. You must reorganize table spaces or partitions
when REORG-pending status imposes this restriction.

You can use the DISPLAY DATABASE RESTRICT command to identify the table spaces
and partitions that need to be reorganized.

Data is in advisory REORG-pending status

After you change table or index definitions, consider reorganizing data to improve
performance. After you change data types or column lengths by using ALTER
TABLE statements, DB2 places the table space that contains the modified data in
advisory REORG-pending (AREO*) status. The table space is in AREO* status
because the existing data is not immediately converted to its new definition.
Reorganizing the table space prevents possible performance degradation.

Recommendation: When data is in REORG-pending or AREO* status, use the
REORG utility with the SCOPE PENDING option to automatically reorganize
partitions. With this option, you do not need to first identify which partitions need
to be reorganized or to customize the REORG control statement.

Data is skewed

When you use partitioned table spaces, you might sometimes find that data is out
of balance, or skewed. When data is skewed, performance can be negatively
affected because of contention for I/O and other resources. You might also have a
situation in which some partitions are approaching their maximum size, and other
partitions have excess space.

You can correct the skewed data by redistributing the data across partitions.

Related information:

Redistributing data in partitioned table spaces (DB2 Administration Guide)

Data is unorganized or fragmented

When data becomes unorganized or fragmented, you need to consider
reorganizing your table spaces and index spaces.

You need to consider the following situations to evaluate when data reorganization
is necessary:

Unused space

In simple table spaces, dropped tables use space that is not reclaimed until
you reorganize the table space. Consider running REORG if the percentage
of space that is occupied by rows of dropped tables is greater than 10%.
The PERCDROP value in the SYSIBM.SYSTABLEPART catalog table
identifies this percentage.

Page gaps
Indexes can have multiple levels of pages. An index page that contains
pairs of keys and identifiers and that points directly to data is called a leaf
page.

258 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_rebalancedatainpartition.htm#db2z_rebalancedatainpartition

Deleting index keys can result in page gaps within leaf pages. Gaps can
also occur when DB2 inserts an index key that does not fit onto a full
page. Sometimes DB2 detects sequential inserts and splits the index pages
asymmetrically to improve space usage and reduce split processing. You
can improve performance even more by choosing the appropriate page size
for index pages. If page gaps occur, consider running the REORG utility.

The LEAFNEAR and LEAFFAR columns of SYSIBM.SYSINDEXPART store
information about the organization of physical leaf pages by indicating the
number of pages that are not in an optimal position.

I/O activity
You can determine when I/O activity on a table space might be increasing.
A large number (relative to previous values that you received) for the
NEARINDREF or the FARINDREF option indicates an increase in I/O
activity. Consider a reorganization when the sum of NEARINDREF and
FARINDREF values exceeds 10%.

The NEARINDREF and FARINDREF values in the
SYSIBM.SYSTABLEPART and SYSIBM.SYSTABLEPART_HIST catalog tables
identify the number of reallocated rows.

Recommendation: When increased I/O activity occurs, use a non-zero
value for the PCTFREE clause of the table space definition. The PCTFREE
clause specifies what percentage of each page in a table space or index is
left free when data is loaded or reorganized. PCTFREE is a better choice
than FREEPAGE.

Clustering
You can determine if clustering is becoming degraded. Clustering becomes
degraded when the rows of a table are not stored in the same order as the
entries of its clustering index. A large value for the FAROFFPOSF option
might indicate poor clustering. Reorganizing the table space can improve
performance. Although less critical, a large value for the NEAROFFPOSF
option can also indicate that reorganization might improve performance.
The FAROFFPOSF and NEAROFFPOSF values in the
SYSIBM.SYSINDEXPART and SYSIBM.SYSINDEXPART_HIST catalog
tables identify the number of rows that are far from and near to optimal
position.

REORG thresholds
You can use the RUNSTATS, REORG, REBUILD INDEX, and LOAD
utilities to collect statistics that describe the fragmentation of table spaces
and indexes. These statistics can help you decide when to run the REORG
utility to improve performance or reclaim space.

You can set up your REORG job in accordance with threshold limits that
you set for relevant statistics from the catalog. The OFFPOSLIMIT and
INDREFLIMIT options specify when to run REORG on table spaces. When
a REORG job runs with these options, it queries the catalog for relevant
statistics. The REORG job does not occur unless one of the thresholds that
you specify is exceeded. You can also specify the REPORTONLY option to
produce a report that tells you whether a REORG job is recommended.

Chapter 8. DB2 performance management 259

Related tasks:

Maintaining data organization (DB2 Performance)
Related reference:

REORG-pending status (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REORG INDEX (DB2 Utilities)

RUNSTATS (DB2 Utilities)

LOAD (DB2 Utilities)

SYSIBM.SYSTABLEPART table (DB2 SQL)

SYSIBM.SYSINDEXPART table (DB2 SQL)

Ways to improve performance for multiple users
Locking ensures the integrity and accuracy of data. However, locking is sometimes
too restrictive and can cause slow performance and poor concurrency.
Understanding how locking works can help you make good decisions for
performance. Locking is critical to performance, and also provides
recommendations for promoting concurrency.

DB2 uses locks on user data. The main reason for using locks is to ensure the
integrity, or accuracy, of the data. Without locks, one user might be retrieving a
specific data item while another user might be changing that data. The result is
that the first user retrieves inaccurate data. In the DB2 for z/OS environment,
which includes vast amounts of data and large numbers of users and transactions,
the prospect of inaccurate data is unacceptable. Therefore, DB2 for z/OS provides
comprehensive locking to ensure data integrity.

Despite the importance of data integrity, locking can sometimes be too restrictive.
If an application process locks too much data, other users, utilities, and application
processes must wait for the locked data. This situation results in poor concurrency.
Concurrency is the ability of more than one application process to access the same
data at essentially the same time. DB2 for z/OS handles the trade-off between
concurrency and data integrity to maximize concurrency without sacrificing the
integrity of the data.
Related concepts:

Lock contention (DB2 Performance)
Related tasks:

Improving concurrency (DB2 Performance)

Improved performance through the use of locks
DB2 uses locks on various data objects.

Locks can be placed on rows, pages, tables, table space segments, table space
partitions, entire table spaces, and databases. When an application acquires a lock,
the application “holds” or “owns” the lock.

DB2 uses of the lock modes to determine whether one lock is compatible with
another. Some lock modes do not exclude all other users. For example, assume that
application process A holds a lock on a table space that process B also wants to

260 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reorgindextablespaces.htm#db2z_reorgindextablespaces
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_reorgpendingstatus.htm#db2z_reorgpendingstatus
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgtablespace.htm#db2z_utl_reorgtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgindex.htm#db2z_utl_reorgindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_runstats.htm#db2z_utl_runstats
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsystableparttable.htm#db2z_sysibmsystableparttable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysindexparttable.htm#db2z_sysibmsysindexparttable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockcontention.htm#db2z_lockcontention
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency

access. DB2 requests, on behalf of process B, a lock of some particular mode. If the
mode of the lock for process A permits the lock requested by process B, the modes
of the two locks are said to be compatible. However, if the two locks are not
compatible, process B cannot proceed. It must wait until process A releases its lock,
and until all other existing incompatible locks are released.

The following lock modes provide different degrees of protection:

S lock (share)
The lock owner and any concurrent processes can read, but not change, the
locked page or row. Concurrent processes can acquire S or U locks on the
page or row or might read data without acquiring a page or row lock

U lock (update)
The lock owner can read, but not change, the locked page or row.
Concurrent processes can acquire S-locks or might read data without
acquiring a page or row lock, but no concurrent process can acquire a
U-lock.

U locks reduce the chance of deadlocks when the lock owner is reading a
page or row to determine whether to change it. The owner can start with
the U lock and then promote the lock to an X lock to change the page or
row.

X lock (exclusive)
The lock owner can read or change the locked page or row. A concurrent
process cannot acquire S, U, or X locks on the page or row. However,
concurrent processes, such as those processes bound with the
CURRENTDATA(NO) or ISOLATION(UR) bind options or running with
YES specified for the EVALUNC subsystem parameter, can read the data
without acquiring a page or row lock.

The following shows whether page locks of any two modes, or row locks of any
two modes are compatible. No question of compatibility arises between page and
row locks, because a table space cannot use both page and row locks.

Table 39. Compatibility matrix of page lock and row lock modes

Lock mode Share (S-lock) Update (U-lock) Exclusive (X-lock)

Share (S-lock) Yes Yes No

Update (U-lock) Yes No No

Exclusive (X-lock) No No No

The share, update, and exclusive locks apply to row or page locks. These facts
apply only to application processes that acquire an intent lock on the table space
and the table, if the table is in a segmented table space.

When a page or row is locked, the table, partition, or table space that contains it is
also locked. This intent lock indicates the plan that the application process has for
accessing the data. In that case, the table, partition, or table space lock has one of
the intent modes: either IS for intent share, IX for intent exclusive, or SIX for share with
intent exclusive.

Compatibility for table space locks is slightly more complex that for page and row
locks.

Chapter 8. DB2 performance management 261

Locks are important for maintaining concurrency in the DB2 environment.
However, locks might cause several types of contention situations that degrade DB2
performance, including suspension, timeout, and deadlock.

Suspension
An application encounters suspension when it requests a lock that is already
held by another application process and cannot be shared. The suspended
process temporarily stops running. A suspended process resumes when all
processes that hold the conflicting lock release them or the requesting
process experiences a timeout or deadlock and the process resumes and
handles an error condition.

Timeout
An application process encounters a timeout when it terminates because of
a suspension that exceeds a preset interval. DB2 terminates the process,
issues messages, and returns error codes. Commit and rollback operations
do not timeout. The STOP DATABASE command, however, can time out,
in which case DB2 sends messages to the console. When this happens DB2
retries the STOP DATABASE command as many as 15 times.

Deadlock
A deadlock occurs when two or more application processes each hold locks
on resources that the others need and without which they cannot proceed.
After a preset time interval, DB2 can roll back the current unit of work for
one of the processes or request a process to terminate. In that way, DB2
frees the locks and allows the remaining processes to continue.

Although some locking problems can occur, you can avoid system and application
locking problems.

The following scenarios illustrate the importance of locks.

Scenario: Avoidance of the loss of updated data

Two users, Kathy and Frank, are both trying to access the same DB2 table. Here is
what happens:
1. Kathy reads the data value, 100, into a host variable.
2. Frank reads the same column value into a host variable.
3. Kathy adds 10 to the host variable value and saves the new value, 110, in the

DB2 table column.
4. Frank adds 20 to the host variable value and saves the new value, 120, in the

DB2 table column.

This scenario does not use locking. It shows that the updated value in the column
depends on which user commits the data first. If Kathy commits first, the updated
column value is 120, and Kathy's update is lost. If Frank commits first, the updated
column value is 110, and Frank's update is lost.

The scenario changes if it includes locking. When you read the process below,
assume the use of an updatable cursor. Here is what happens:
1. Kathy reads column value 100 into a host variable with the intention of

updating the value. DB2 then grants an update lock to Kathy.
2. Frank wants to read the same column value into a host variable with the

intention of updating the value. According to the compatibility matrix in the
table above, DB2 does not grant Frank an update lock (U-lock) on the DB2

262 Introduction to DB2 for z/OS

object that contains column value 100. Therefore, Frank must wait to read the
column value until Kathy releases the lock.

3. Kathy adds 10 to the host variable value and wants to save the new value, 110,
in the DB2 table column. At this point, DB2 changes the U-lock to an exclusive
lock (X-lock) on the DB2 object that contains the column value.

4. Kathy commits the change. DB2 then releases the X-lock on the DB2 object that
contains the column value. Next, DB2 grants the U-lock to Frank on the same
object (unless Frank timed out while waiting for access). The host variable that
Frank specified now contains the updated value of 110.

5. Frank adds 20 to the host variable value and wants to save the new value, 130,
in the table column. DB2 changes the U-lock to an X-lock on the DB2 object
that contains the column value.

6. Frank commits the change. DB2 then releases the X-lock on the DB2 object that
contains the column value.

If this scenario did not include updatable cursors, DB2 would grant a share lock
(S-lock) to Kathy instead of a U-lock in step 1. DB2 would also grant an S-lock to
Frank in step 2. When both Kathy and Frank try to update the column value, they
would encounter a deadlock. When a deadlock occurs, DB2 decides whether to roll
back Kathy's work or Frank's work. A rollback occurs when DB2 reverses a change
that an individual application process tried to make. If DB2 rolls back Kathy's
changes, Kathy releases the locks, and Frank can then complete the process.
Conversely, if DB2 rolls back Frank's changes, Frank releases the locks, and Kathy
can complete the process.

Application programs can minimize the risk of deadlock situations by using the
FOR UPDATE OF clause in the DECLARE CURSOR statement. The program does
not actually acquire the U-lock until any other U-locks or X-locks on the data
object are released.

Scenario: Avoidance of read access to uncommitted data

Two users, Kathy and Frank, are both trying to access the same DB2 table.
1. Kathy updates the value of 100 to 0 in the DB2 table column.
2. Frank reads the updated value of 0 and makes program decisions based on that

value.
3. Kathy cancels the process and changes the value of 0 back to 100 for the DB2

table column.

This scenario does not include locks. It shows that Frank made an incorrect
program decision. As a result, the business data in the database might be
inaccurate.

When this scenario includes locking, this is what happens:
1. Kathy attempts to update the value of 100 to 0 in the table column. DB2 grants

an X-lock to Kathy on the DB2 object that contains the column value that
requires an update.

2. Frank tries to read the updated column value so that he can make program
decisions based on that value. DB2 does not allow Frank to read the updated
column value of 0. Frank tries to acquire an S-lock on the DB2 object that
currently has the X-lock. Frank must wait until Kathy commits or rolls back the
work.

Chapter 8. DB2 performance management 263

3. Kathy cancels the process and changes the value of 0 back to the original value
of 100 for the DB2 table column. DB2 makes the actual change to the data and
releases the X-lock for Kathy. DB2 then grants the S-lock to Frank on the DB2
object that contains the column value. Frank then reads the value of 100.

When the scenario includes locks, Frank reads the correct data and can therefore
make the correct program decision. As a result, the business data in the database is
accurate.

Scenario: Avoidance of updates between multiple reads within a
unit of work

In this scenario, Kathy wants to read the same data twice. No other program or
user can change the data between the two reads.

Assume that Kathy uses the following SQL statement:
SELECT * FROM EMP

WHERE SALARY>
(SELECT AVG(SALARY) FROM EMP);

This SQL statement reads the EMP table twice:
1. It calculates the average of the values in the SALARY column of all rows in the

table.
2. It finds all rows in the EMP table that have a value in the SALARY column that

exceeds the average value.

If Kathy does not lock the data between the two read processes, another user can
update the EMP table between the two read processes. This update can lead to an
incorrect result for Kathy.

Kathy could use DB2 locks to ensure that no changes to the table occur in between
the two read processes. Kathy can choose from these options:
v Using the package or plan isolation level of repeatable read (RR) or using the

WITH RR clause in the SQL SELECT statement.

v

v Locking the table in share or exclusive mode, using one of these statements:
– LOCK TABLE EMP IN SHARE MODE
– LOCK TABLE EMP IN EXCLUSIVE MODE

264 Introduction to DB2 for z/OS

Related concepts:

Concurrency and locks (DB2 Performance)

Lock modes (DB2 Performance)

Lock contention (DB2 Performance)
Related tasks:

Programming for concurrency (DB2 Performance)

Designing databases for concurrency (DB2 Performance)

Improved performance through concurrency control
Concurrency control relies the on isolation level and current data options of
applications to determined how much to isolate different applications that access
the same data from each other. Too much isolation might result in contention,
whereas too little isolation might result in non-current data being returned to
applications.

The ISOLATION option of an application specifies the degree to which operations
are isolated from the possible effects of other operations that act concurrently. The
ISOLATION options specified how soon DB2 can release S and U locks on rows or
pages. Regardless of the isolation level that you specify, outstanding claims on DB2
objects can inhibit the execution of DB2 utilities or commands.

The CURRENTDATA option of an application specifies whether data currency is
required for read-only and ambiguous cursors when the ISOLATION(CS) option is
used. This option enables a trade-off between the improved ability of multiple
applications to access the same data concurrently and the risk that non-current
data might be returned to the application.

The basic recommendation is to bind most applications with the ISOLATION(CS)
and CURRENTDATA(NO) options. ISOLATION(CS) typically enables DB2 to
release acquired locks as soon as possible. The CURRENTDATA(NO) typically
enables DB2 to acquire the fewest number of locks, for better lock avoidance.

DB2 provides the following isolation levels:

Cursor stability (CS)
The ISOLATION (CS) or cursor stability option allows maximum
concurrency with data integrity. Under the ISOLATION (CS) option, a
transaction holds locks only on its uncommitted changes and on the
current row of each of its cursors.

Uncommitted read (UR)
The ISOLATION (UR) or uncommitted read option allows an application to
read while acquiring few locks, at the risk of reading uncommitted data.
UR isolation applies only to the following read-only operations: SELECT,
SELECT INTO, or FETCH from a read-only result table.

Read stability (RS)
The ISOLATION (RS) or read stability option enables an application to read
the same pages or rows more than once and prevents updates or deletes to
qualifying rows by other processes. However, other applications can insert
or update rows that did not satisfy the search condition of the original
application.

Chapter 8. DB2 performance management 265

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_concurrencyandlocksdefined.htm#db2z_concurrencyandlocksdefined
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockmode.htm#db2z_lockmode
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_lockcontention.htm#db2z_lockcontention
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_designdb4concurrency.htm#db2z_designdb4concurrency

Repeatable read (RR)
The ISOLATION (RR) or repeatable read option allows the application to
read the same pages or rows more than once without allowing any update,
insert, or delete operations by other processes. All accessed rows or pages
are locked, even if they do not satisfy the predicate. Under the ISOLATION
(RR) option, the data that an application references cannot be updated by
any other applications before the application reaches a commit point.

DB2 uses and depends on locks because of the requirement for data integrity.
However, locks are sometimes the cause of problems with contention, such as
deadlocks, timeouts, and suspensions. To minimize these problems and promote
concurrency, database designers and application designers can take a variety of
actions.
Related tasks:

Improving concurrency (DB2 Performance)

Choosing an ISOLATION option (DB2 Performance)

Designing databases for concurrency (DB2 Performance)

Specifying the size of locks for a table space (DB2 Performance)

Programming for concurrency (DB2 Performance)
Related reference:

BIND and REBIND options (DB2 Commands)

Concurrency recommendations for database designers
Database designers can take certain general actions to promote concurrency
without compromising data integrity.

Procedure

To promote concurrency without compromising data integrity, use any of the
following approaches:
v Keep like things together in the database.
v Keep unlike things apart from each other in the database.
v Use LOCKSIZE ANY or PAGE as a design default. Consider LOCKSIZE ROW

only when applications encounter significant lock contention, including deadlock
and timeout.

v Examine small tables, looking for opportunities to improve concurrency by
reorganizing data or changing the locking approach.

v Partition secondary indexes to promote partition independence and reduce lock
contention.

v Minimize update activity that moves rows across partitions.
v Store fewer rows of data in each data page.
Related tasks:

Designing databases for concurrency (DB2 Performance)

Improving concurrency (DB2 Performance)

Concurrency recommendations for application designers
Application designers can take certain general actions to promote concurrency
without compromising data integrity.

266 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_chooseisolationoption.htm#db2z_chooseisolationoption
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_designdb4concurrency.htm#db2z_designdb4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_uselocksizeclause.htm#db2z_uselocksizeclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_designdb4concurrency.htm#db2z_designdb4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency

Procedure

To promote concurrency without compromising data integrity, use any of the
following approaches:
v Program applications to access data in the same order.
v Commit work as soon as doing so is practical, to avoid unnecessary lock

contention, even in read-only applications.
v Include logic in your application program to retry after a deadlock or timeout to

attempt recovery from the contention situation without assistance.
v Bind most applications with the ISOLATION(CS) and CURRENTDATA(NO)

options. These options enable DB2 to release locks early and avoid taking locks
in many cases.

v Use global transactions, which enables DB2 and other transaction managers to
participate in a single transaction and thereby share the same locks and access
the same data.

Related tasks:

Programming for concurrency (DB2 Performance)

Improving concurrency (DB2 Performance)

Ways to improve query performance
Access paths have a significant impact on DB2 performance. DB2 chooses access
paths, but you can use tools to understand how access paths affect performance in
certain situations.

An access path is the path that DB2 uses to locate data that is specified in SQL
statements. An access path can be indexed or sequential.

Two important factors in the performance of an SQL statement are the amount of
time that DB2 uses to determine the access path at run time and the efficiency of
the access path. DB2 determines the access path for a statement either when you
bind the plan or package that contains the SQL statement or when the SQL
statement executes.

The time at which DB2 determines the access path depends on whether the
statement is executed statically or dynamically and whether the statement contains
input host variables.

The access path that DB2 chooses determines how long the SQL statement takes to
run. For example, to execute an SQL query that joins two tables, DB2 has several
options. DB2 might make any of the following choices to process those joins:
v Scan the PARTS table for every row that matches a row in the PRODUCTS table.
v Scan the PRODUCTS table for every row that matches a row in the PARTS table.
v Sort both tables in PROD# order; then merge the ordered tables to process the

join.

Choosing the best access path for an SQL statement depends on a number of
factors. Those factors include the content of any tables that the SQL statement
queries and the indexes on those tables.

DB2 also uses extensive statistical information about the database and resource use
to make the best access choices.

Chapter 8. DB2 performance management 267

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency

In addition, the physical organization of data in storage affects how efficiently DB2
can process a query.
Related tasks:

Writing efficient SQL queries (DB2 Performance)

Maintaining data organization and statistics (DB2 Performance)

Programming applications for performance (DB2 Performance)

Tools that help you improve query performance
Several performance analysis tools can help you improve SQL performance.

These tools include:
v IBM Data Studio, a workstation tool that includes tools for analyzing EXPLAIN

output
v OMEGAMON DB2 Performance Expert, a tool which can help you with SQL

performance
v EXPLAIN, a DB2 monitoring tool
v DB2 SQL Performance Analyzer, a tool that provides you with an extensive

analysis of SQL queries without executing them.

IBM Data Studio

IBM Data Studio is a set of tools that help you to perform a wide range of
database management activities, including query performance tuning.

DB2 EXPLAIN

DB2 EXPLAIN is a monitoring tool that produces the following information:
v A plan, package, or SQL statement when it is bound. The output appears in a

table that you create, called a plan table.
v The estimated cost of executing a SELECT, INSERT, UPDATE, or DELETE

statement. The output appears in a table that you create, called a statement table.
v User-defined functions that are referred to in an SQL statement, including the

specific function name and schema. The output appears in a table that you
create, called a function table.

DB2 SQL Performance Analyzer

DB2 SQL Performance Analyzer provides you with an extensive analysis of SQL
queries without executing them. This analysis aids you in tuning your queries to
achieve maximum performance. DB2 SQL Performance Analyzer helps you reduce
the escalating costs of database queries by estimating their cost before execution.

Using DB2 SQL Performance Analyzer helps you:
v Estimate how long queries are likely to take
v Prevent queries from running too long
v Analyze new access paths
v Code queries efficiently using hints and tips that the tool provides

268 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintainstatsdataorg.htm#db2z_maintainstatsdataorg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance

Related concepts:

Investigating SQL performance by using EXPLAIN (DB2 Performance)

Interpreting data access by using EXPLAIN (DB2 Performance)
“IBM Data Studio” on page 277
Related tasks:

Investigating access path problems (DB2 Performance)
Related reference:

Facilities and tools for DB2 performance monitoring (DB2 Performance)

EXPLAIN (DB2 SQL)

EXPLAIN tables (DB2 Performance)

InfoSphere Optim Query Workload Tuner

Query and application performance analysis
Performance analysis for queries and applications begins by answering some basic
questions.

To improve query performance and application performance, you need to answer
some basic questions to determine how well your queries and applications
perform.

Are the catalog statistics up-to-date?

Keeping object statistics current is an important activity. DB2 needs those statistics
to choose an optimal access path to data.

The RUNSTATS utility collects statistics about DB2 objects. These statistics are
stored in the DB2 catalog. DB2 uses this information during the bind process to
choose an access path. If you do not use RUNSTATS and then rebind your
packages or plans, DB2 does not have the information that it needs to choose the
most efficient access path. Lack of statistical information can result in unnecessary
I/O operations and excessive processor consumption.

Recommendation: Run RUNSTATS at least once for each table and its associated
indexes. How often you rerun the utility depends on how current you need the
catalog data to be. If data characteristics of a table vary significantly over time, you
must keep the catalog current with those changes. RUNSTATS is most beneficial
when you run it on the following objects:
v Table spaces that contain frequently accessed tables
v Tables that are involved in sort operations
v Tables with many rows
v Tables that are queried by SELECT statements that include many search

arguments
v Tables with indexes

Related information:

Investigating access path problems (DB2 Performance)
Maintaining statistics in the catalog (DB2 Performance)
RUNSTATS (DB2 Utilities)

Chapter 8. DB2 performance management 269

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usetools2monitorperformance.htm#db2z_usetools2monitorperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.nav.doc/topics/helpindex_qt.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maintaincatalogstatistics.htm#db2z_maintaincatalogstatistics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_runstats.htm#db2z_utl_runstats

Does the estimated filter factor match the filtering at run time?

DB2 uses estimated filter factors to choose efficient access paths. When the
estimated and actual filtering differs, DB2 might choose an access path that
performs poorly because the cost estimates are inaccurate. When the estimated and
actual factors differ, you might collect more statistics or reoptimize statements at
run time to improve access path selection.

Related information:

Predicate filter factors (DB2 Performance)
Investigating access path problems (DB2 Performance)
Reoptimizing SQL statements at run time (DB2 Performance)
Overriding predicate selectivities at the statement level (DB2 Performance)

Is the query coded as simply and efficiently as possible?

Ensure that the SQL query is coded as simply and efficiently as possible. Make
sure that:
v Unused columns are not selected.
v No unneeded ORDER BY or GROUP BY clauses are in the query.
v No unneeded predicates are in the query.

Related information:

Writing efficient SQL queries (DB2 Performance)
Coding SQL statements to avoid unnecessary processing (DB2 Performance)
Using predicates efficiently (DB2 Performance)

Are you using materialized query tables?

Define materialized query tables to improve the performance of dynamic queries
that operate on large amounts of data and that involve multiple joins. DB2
generates the results of all or parts of the queries in advance and stores the results
in materialized query tables. DB2 determines when using precomputed results is
likely to optimize the performance of dynamic queries.

Related information:

Using materialized query tables to improve SQL performance (DB2
Performance)

Is access through an index?

An index provides efficient access to data. DB2 uses different types of index scans,
each of which affects performance differently. Sometimes DB2 can avoid a sort by
using an index.

If a query is satisfied by using only the index, DB2 uses a method called index-only
access.
v For a SELECT operation, if all the columns that are needed for the query can be

found in the index, DB2 does not need to access the table.
v For an UPDATE or DELETE operation, an index-only scan can be performed to

search for qualifying rows to update or delete. After the qualifying rows are
identified, DB2 must retrieve those rows from the table space before they are
updated or deleted.

270 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicatefilterfactor.htm#db2z_predicatefilterfactor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managereopt.htm#db2z_managereopt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createselecthint.htm#db2z_createselecthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_predicaterules.htm#db2z_predicaterules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usemqtimprovesqlperf.htm#db2z_usemqtimprovesqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usemqtimprovesqlperf.htm#db2z_usemqtimprovesqlperf

Other types of index scans that DB2 might use are matching or nonmatching index
scans.
v In a matching index scan, the query uses predicates that match the index

columns. Predicates provide filtering; DB2 needs to access only specific index
and data pages.

v In a nonmatching index scan, DB2 reads all index keys and their rows of data.
This type of scan is less likely to provide an efficient access path than a
matching index scan.

In addition to providing selective access to data, indexes can also order data, and
sometimes they eliminate the need for sorting. You can avoid some sorts if index
keys are in the order that is needed by ORDER BY, GROUP BY, a join operation, or
DISTINCT in an aggregate function. When you want to prevent a sort, consider
creating an index on the columns that are necessary to provide that ordering.

Related information:

Index access (ACCESSTYPE is 'I', 'IN', 'I1', 'N', 'MX', or 'DX') (DB2 Performance)
Indexes on table columns (DB2 Administration Guide)

Is a table space scan used?

When index access is not possible, DB2 uses a table space scan. DB2 typically uses
the sequential prefetch method to scan table spaces.

Example: Assume that table T has no index on column C1. DB2 uses a table space
scan in the following example:
SELECT * FROM T WHERE C1 = VALUE;

In this case, every row in table T must be examined to determine if the value of C1
matches the given value.

A table space scan on a partitioned table space can be more efficient than a scan on
a nonpartitioned table space. DB2 can take advantage of the partitions by limiting
the scan of data in a partitioned table space to one or more partitions.

Related information:

Table space scan access (ACCESSTYPE='R' and PREFETCH='S') (DB2
Performance)
Sequential prefetch (PREFETCH='S') (DB2 Performance)

Are sorts performed?

Minimizing the need for DB2 to use sorts to process a query can result in better
performance. In general, try to create indexes that match the predicates in your
queries before trying to avoid sorts in your queries.

Related information:

Sorts of data (DB2 Performance)
Sort access (DB2 Performance)

Chapter 8. DB2 performance management 271

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_indexaccess.htm#db2z_indexaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_indexesoncolumns.htm#db2z_indexesoncolumns
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tablespacescanaccess.htm#db2z_tablespacescanaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tablespacescanaccess.htm#db2z_tablespacescanaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sprefetch.htm#db2z_sprefetch
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sorts4data.htm#db2z_sorts4data
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sortaccess.htm#db2z_sortaccess

Is data accessed or processed in parallel?

Parallel processing applies to read-only queries. DB2 can use parallel I/O and CPU
operations to improve performance. For example, DB2 can use multiple parallel
operations to access data from a table or index. The response time for
data-intensive or processor-intensive queries can be reduced.

Related information:

Programming for parallel processing (DB2 Performance)

Are host variables used?

When you specify the bind option REOPT(VARS), DB2 determines the access paths
at both bind time and run time for statements that contain one or more host
variables, parameter markers, or special registers. At run time, DB2 uses the values
in those variables to determine access paths.

DB2 spends extra time determining the access path for statements at run time. But
if DB2 finds a better access path using the variable values, you might see an
overall performance improvement.

For static SQL applications with host variables, if you specify REOPT(VARS), DB2
determines the access path at bind time and again at run time, using the values of
input variables.

For static SQL applications with no host variables, DB2 determines the access path
when you bind the plan or package. This situation yields the best performance
because the access path is already determined when the program runs.

For applications that contain dynamic SQL statements with host variables, using
REOPT(VARS) is the recommended approach for binding.

Related information:

Reoptimizing SQL statements at run time (DB2 Performance)

Are dynamic SQL statements used?

For dynamic SQL statements, DB2 determines the access path at run time, when
the statement is prepared.

When an application performs a commit operation, it must issue another PREPARE
statement if that SQL statement is to be executed again. For a SELECT statement,
the ability to declare a cursor WITH HOLD provides some relief but requires that
the cursor be open at the commit point. Using the WITH HOLD option also causes
some locks to be held for any objects that the prepared statement depends on.
Also, the WITH HOLD option offers no relief for SQL statements that are not
SELECT statements.

You can use the dynamic statement cache to decrease the number of times that
those dynamic statements must be prepared. Using the dynamic statement cache is
useful when you execute the same SQL statement often.

DB2 can save prepared dynamic statements in a cache. The cache is a DB2-wide
cache that all application processes can use to store and retrieve prepared dynamic
statements. After an SQL statement is prepared and is automatically stored in the

272 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_program4parallelprocess.htm#db2z_program4parallelprocess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managereopt.htm#db2z_managereopt

cache, subsequent prepare requests for that same SQL statement can use the
statement in the cache to avoid the costly preparation process. Different threads,
plans, or packages can share cached statements.

The SELECT, UPDATE, INSERT, and DELETE statements are eligible for caching.

Related information:

Held and non-held cursors (DB2 Application programming and SQL)
Related concepts:

Interpreting data access by using EXPLAIN (DB2 Performance)
“IBM Data Studio” on page 277
Related tasks:

Programming applications for performance (DB2 Performance)

Investigating access path problems (DB2 Performance)

Generating visual representations of access plans
Related reference:

EXPLAIN (DB2 SQL)

InfoSphere Optim Query Workload Tuner

Using EXPLAIN to understand the access path
You can use the EXPLAIN statement to determine the access paths for the SELECT
parts of your statements.

This information describes what EXPLAIN provides and how you can obtain
information from EXPLAIN. The information in the plan table can help you when
you need to perform the following tasks:
v Determine the access path that DB2 chooses for a query
v Design databases, indexes, and application programs
v Determine when to rebind an application

For each access to a single table, EXPLAIN indicates whether DB2 uses index
access or a table space scan. For indexes, EXPLAIN indicates how many indexes
and index columns are used and what I/O methods are used to read the pages.
For joins of tables, EXPLAIN indicates the join method and type, the order in
which DB2 joins the tables, and the occasions when and reasons why it sorts any
rows.

The following steps summarize how to obtain information from EXPLAIN:
1. Create the plan table.

Before you can use EXPLAIN, you must create a plan table to hold the results
of EXPLAIN.

2. Populate the plan table.
You can populate the plan table by executing the SQL statement EXPLAIN. You
can also populate a plan table when you bind or rebind a plan or package by
specifying the option EXPLAIN(YES). EXPLAIN obtains information about the
access paths for all explainable SQL statements in a package or in the DBRMs
of a plan.

3. Select information from the plan table.

Chapter 8. DB2 performance management 273

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_heldnonheldcursor.htm#db2z_heldnonheldcursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.nav.doc/topics/helpindex_qt.html

Several processes can insert rows into the same plan table. To understand
access paths, you must retrieve the rows for a particular query in an
appropriate order.

EXPLAIN helps you answer questions about query performance; the answers give
you the information that you need to make performance improvements. EXPLAIN
indicates whether DB2 used an index to access data, whether sorts were
performed, whether parallel processing was used, and so on.

As you gain experience working with DB2, you can use the plan table to give
optimization hints to DB2 that influence access path selection.

Note: Although EXPLAIN is useful for obtaining access path information, it
requires a great amount of background knowledge about DB2. However, analysis
tools are available, such as the access plan graph feature of IBM Data Studio, that
can assist you with access path analysis.
Related concepts:
“Tools that help you improve query performance” on page 268

Investigating SQL performance by using EXPLAIN (DB2 Performance)

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Investigating access path problems (DB2 Performance)

Generating visual representations of access plans
Related reference:

EXPLAIN tables (DB2 Performance)

EXPLAIN (DB2 SQL)

EXPLAIN bind option (DB2 Commands)

IBM Data Studio product overview
Related information:

Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths

Hash access paths
Hash access paths allow DB2 to directly access a single row in a table and avoid
scanning the table or index.

DB2 can generate a hash access path from the equal predicate of an SQL statement
that fetches only a single row of a table. This access method is faster and more
efficient than scanning the table or the index.

Hash access can reduce the query access time and the CPU load for queries that
require access to a single row. However, tables that are enabled for hash access
might require as much as twice the amount of disk space as tables that are not
organized for hash access.

You can enable hash access on tables when you create new table spaces. You can
also alter existing tables to enable hash access. However, hash access is available
only on universal table spaces that are partitioned by growth or partitioned by
range. You can enable hash access on tables that have indexes, but DB2 does not
allow hash access on tables on which clustering is enabled.

274 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptexplain.htm#db2z_bindoptexplain
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.ds.nav.doc/topics/helpindex_ds.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html

Related concepts:

Hash access (ACCESSTYPE='H', 'HN', or 'MH') (DB2 Performance)
“DB2 hash spaces” on page 37
Related tasks:

Organizing tables by hash for fast access to individual rows (DB2 Performance)

Creating tables that use hash organization (DB2 Administration Guide)

Altering tables to enable hash access (DB2 Administration Guide)

Monitoring hash access (DB2 Performance)

Managing space and page size for hash-organized tables (DB2 Performance)
Related information:

Hash access (DB2 10 for z/OS Performance Topics)

Hash access (DB2 10 for z/OS Technical Overview)

Chapter 8. DB2 performance management 275

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_hashaccesstype.htm#db2z_hashaccesstype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_enablinghashaccess.htm#db2z_enablinghashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_creatingtablesforhash.htm#db2z_creatingtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringtablesforhash.htm#db2z_alteringtablesforhash
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_monitoringhashaccess.htm#db2z_monitoringhashaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managehashspace.htm#db2z_managehashspace
http://www.redbooks.ibm.com/redbooks/SG247942/wwhelp/wwhimpl/js/html/wwhelp.htm?href=4-4.htm
http://www.redbooks.ibm.com/redbooks/SG247892/wwhelp/wwhimpl/js/html/wwhelp.htm?href=13-15.htm

276 Introduction to DB2 for z/OS

Chapter 9. Management of DB2 operations

Management of a DB2 subsystem on a daily basis requires performing a wide
range of tasks. For example, you need to manage authorizations and be prepared
to recover from any potential errors or problems.

When you manage a DB2 environment on a daily basis, you need to issue DB2
commands, run DB2 utilities, manage authorizations, and be prepared to recover
from potential errors or problems. In addition, you probably want to take
advantage of the high availability capabilities that are related to DB2, including the
following capabilities:
v You can bind application plans and packages online. By using packages, you can

change and rebind smaller units. Using package versions permits binding while
the applications continue to run.

v You can define and change databases and authorizations online.
v You can change buffer pool sizes online.
v You can use utilities to reorganize indexes, table spaces, or partitions of indexes

or table spaces.
v You can use the data sharing functions of DB2, which enable several DB2

subsystems to process applications on shared data. Although the different
subsystems share data, they appear as a single DB2 subsystem to users.
Applications can be rerouted to avoid outages if one of the subsystems must be
taken down for maintenance.

Several management tools are available to help you easily perform many of the
tasks that are associated with daily operations of a DB2 subsystem.

Tools that help you manage DB2
DB2 provides a variety of tools that simplify the tasks that you need to do to
manage DB2.

IBM Data Studio
IBM Data Studio can help you manage DB2.

IBM Data Studio is a tool that helps you perform a wide range of daily activities.
You can use IBM Data Studio to manage DB2 databases on different operating
systems.

You can use IBM Data Studio to administer DB2 instances, DB2 for z/OS
subsystems, databases, and database objects. You can also run utilities that
reorganize or load your data in your existing DB2 for z/OS databases.

© Copyright IBM Corp. 2001, 2013 277

Related concepts:
“Use of development tools to create a stored procedure” on page 179
Related reference:

IBM Data Studio Information Center (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)

DB2 Administration Tool
The DB2 Administration Tool simplifies many of the administrative tasks that are
required to maintain your DB2 subsystem.

You can use this tool to perform the following tasks:
v Manage your DB2 environments efficiently with a comprehensive set of

functions
v Display and interpret objects in the DB2 catalog and perform catalog

administration tasks
v Change and update presented data quickly and easily
v Use alter and migrate functions
Related reference:

DB2 Administration Tool

DB2 Interactive
DB2 for z/OS DB2 provides Interactive System Productivity Facility (ISPF) panels
that you can use to perform most DB2 tasks interactively.

The DB2 panels make up a DB2 facility called DB2 Interactive (DB2I). You can also
use command-line processing to work with DB2 Interactive.
Related tasks:

Submitting work by using DB2I (DB2 Administration Guide)

DB2 command line processor
You can use the command line processor to issue SQL statements, bind DBRMs
that are stored in HFS files, and call stored procedures.

The command line processor on DB2 for z/OS is a Java application that runs
under Unix System Services. The command line processor automatically directs
output to the standard output device, and notifies the user of successful or
unsuccessful commands.

Use of commands and utilities to control DB2 operations
You can control most operations by using DB2 commands, and you can perform
maintenance tasks by using DB2 utilities.

DB2 commands
You can use commands to perform the tasks that are required to control and
maintain your DB2 subsystem.

You can enter commands at a terminal, a z/OS console, or through an
APF-authorized program or application that uses the instrumentation facility
interface (IFI).

278 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.adb10.doc.ug/adbhome.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_submitworkdb2i.htm#db2z_submitworkdb2i

To enter a DB2 command from an authorized z/OS console, use a subsystem
command prefix (composed of one to eight characters) at the beginning of the
command. The default subsystem command prefix is -DSN1, which you can change

when you install or migrate DB2.

Example: The following command starts the DB2 subsystem that is associated with
the command prefix -DSN1:
-DSN1 START DB2

In addition to DB2 commands, you might need to use other types of commands,
which fall into the following categories:
v CICS commands, which control CICS connections and enable you to start and

stop connections to DB2 and display activity on the connections
v IMS commands, which control IMS connections and enable you to start and stop

connections to DB2 and display activity on the connections
v TSO commands, which enable you to perform TSO tasks
v IRLM commands which enable you to start, stop, and change the internal

resource lock manager (IRLM)

To enter a DB2 command from an authorized z/OS console, you use a subsystem
command prefix (composed of 1 to 8 characters) at the beginning of the command.
Related reference:

-START DB2 (DB2) (DB2 Commands)

DB2 utilities
You can use utilities to perform the tasks that are required to control and maintain
your DB2 subsystem.

You can use DB2 utilities to perform many of the tasks that are required to
maintain DB2 data. Those tasks include loading a table, copying a table space, or
recovering a database to some previous point in time.

The offline utilities run as batch jobs that are independent of DB2. To run offline
utilities, you use DB2JCL (job control language). DB2 interactive (DB2I) provides a
simple way to prepare the job control language (JCL) for those jobs and to perform
many other operations by entering values on panels. DB2I runs under TSO using
ISPF services.

A utility control statement tells a particular utility what task to perform. To run a
utility job, you enter the control statement in a data set that you use for input.
Then you invoke DB2I and select UTILITIES on the DB2I Primary Option Menu. In
some cases, you might need other data sets; for example, the LOAD utility requires
an input data set that contains the data that is to be loaded.

You can also use the following IBM DB2 tools to manage utilities:

DB2 Automation Tool
A tool that enables database administrators to focus more on database
optimization, automates maintenance tasks, and provides statistical history
reports for trend analysis and forecasting.

Chapter 9. Management of DB2 operations 279

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startdb2.htm#db2z_cmd_startdb2

DB2 High Performance Unload
A high-speed DB2 utility that unloads DB2 tables from either a table space
or a backup of the database.

DB2 Cloning Tool
A tool that quickly clones a DB2 subsystem, creating the equivalent of a
production environment that you can use to test new features and
functions.

Related concepts:

Introduction to the DB2 utilities (DB2 Utilities)

Management of data sets
In DB2 for z/OS, one way that you manage data sets is by using Storage
Management Subsystem (SMS).

Table spaces or indexes that exceed 4 GB in size require SMS-managed data sets.
Other table spaces and indexes can be stored in user-managed data sets or in
DB2-managed storage groups.
Related concepts:
“DB2 and DFSMS” on page 63
“Assignment of table spaces to physical storage” on page 218

Authorization and security mechanisms for data access
Authorization is an important part of controlling DB2. The security and
authorization mechanisms that control access to DB2 data are both direct and
indirect.

DB2 performs direct security checks of user IDs and passwords before users gain
access through DDF. All other attachment facilities require that the user
authenticate with DDF before attaching to DB2. DB2 security mechanisms include
specific objects, privileges on those objects, and some privileges that provide
broader authority. DB2 also controls data access indirectly with authorization
checks at bind time and run time for application plans and packages.

Authorization

You probably noticed references to authorization in this information. For example,
you must be authorized to run SQL statements that create and alter DB2 objects.
Even when users run a SELECT statement to query table information, their
authorization might limit what they see. The user might see data only in a subset
of columns that are defined in a view. Views provide a good variety of security
controls.

Before you issue DB2 commands, run utilities, run application packages and plans,
or use most other DB2 functions, you need the appropriate authorization or
privilege. For example, to make changes to a table, you need authorization to
access that table. A privilege allows an action on an object. For example, to insert
data into a table requires the privilege to insert data.

GRANT and REVOKE statements provide access control for DB2 objects. Privileges
and authorities can be granted to authorization IDs and roles in many
combinations, and they can also be revoked.

280 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_introutilities.htm#db2z_introutilities

You can use the RACF component or an equivalent product to control access to
DB2 objects. This is the best option if you want the z/OS security administrator to
manage access to data instead for the database administrator.

Security

Due to the need for greater data security and demands for improved corporate
accountability, the federal government and certain industries have developed laws
and regulations to guide many corporate processes. The expectation to comply
with these laws and regulations is likely to increase in the future. DB2 for z/OS
support of roles and trusted contexts help in the area of compliance by enforcing
data accountability at the data level. Instead of using a single user ID for all
database requests, application servers can provide an user ID with no performance
penalty associated with the request.
Related concepts:
“DB2 and the z/OS Security Server” on page 63
Related information:

Security and auditing (DB2 Administration Guide)

How authorization IDs control data access
One of the ways that DB2 controls access to data is through the use of identifiers.
A set of one or more DB2 identifiers, called authorization IDs, represents every
process that connects to or signs on to DB2.

Authorization IDs come in three types:

Primary authorization ID
As a result of assigning authorization IDs, every process has exactly one
ID, called the primary authorization ID. Generally, the primary authorization
ID identifies a process. For example, statistics and performance trace
records use a primary authorization ID to identify a process.

Secondary authorization ID
All other IDs are secondary authorization IDs. A secondary authorization ID,
which is optional, can hold additional privileges that are available to the
process. For example, you could use a secondary authorization ID for a
z/OS Security Server group.

CURRENT SQLID
One ID (either primary or secondary) is designated as the CURRENT
SQLID. The CURRENT SQLID holds the privileges that are exercised when
certain dynamic SQL statements run. You can set the CURRENT SQLID to
the primary ID or to any of the secondary IDs. If an authorization ID of a
process has system administration (SYSADM) authority, the process can set
its CURRENT SQLID to any authorization ID. You can change the value of
the CURRENT SQLID during your session.

Example: If ALPHA is your primary authorization ID or one of your
secondary authorization IDs, you can make it the CURRENT SQLID by
issuing this SQL statement:
SET CURRENT SQLID = ’ALPHA’;

Chapter 9. Management of DB2 operations 281

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_securityintro.htm#db2z_securityintro

Related concepts:
“How authorization IDs hold privileges and authorities”
“Ways to control access to DB2 objects through explicit privileges and authorities”
on page 286
“Ways to control access to data” on page 285

How authorization IDs hold privileges and authorities
DB2 controls access to its objects by using a set of privileges. Each privilege allows
an action on some object.

The following figure shows the primary ways within DB2 to give access to data to
an ID.

IDs can hold privileges that allow them to take certain actions or be prohibited
from doing so. DB2 privileges provide extremely precise control.

Related privileges
DB2 defines sets of related privileges, called administrative authorities. By
granting an administrative authority to an ID, you grant all the privileges
that are associated with it, in one statement.

Object privileges
Ownership of an object carries with it a set of related privileges on the
object. An ID can own an object that it creates, or it can create an object
that another ID is to own. Creation and ownership of objects are separately
controlled.

ID

Privilege:
controlled by explicit
granting and revoking

Ownership:
controlled by privileges
needed to create objects

Plan and package execution:
controlled by privilege
to execute

Data

Security label:
controlled by multilevel security

Role:
controlled by trusted context

Figure 46. Granting access to data within DB2

282 Introduction to DB2 for z/OS

Application plan and package privileges
The privilege to execute an application plan or a package deserves special
attention. Executing a plan or package implicitly exercises all the privileges
that the plan or package owner needed when binding it. Therefore,
granting the privilege to execute can provide a detailed set of privileges
and can eliminate the need to grant other privileges separately.

Example: Assume that an application plan issues the INSERT and SELECT
statement on several tables. You need to grant INSERT and SELECT
privileges only to the plan owner. Any authorization ID that is
subsequently granted the EXECUTE privilege on the plan can perform
those same INSERT and SELECT statements through the plan. You don't
need to explicitly grant the privilege to perform those statements to that
ID.

Security labels
Multilevel security restricts access to an object or a row based on the
security label of the object or row and the security label of the user.

Roles A role is a database entity that groups together one or more privileges. A
role is available only when the process is running in a trusted context. A
trusted context is a database entity that is based on a system authorization
ID and a set of connection trust attributes. You can create and use a trusted
context to establish a trusted connection between DB2 and an external
entity, such as a middleware server.

Users are associated with a role in the definition of a trusted context. A
trusted context can have a default role, specific roles for individual users,
or no roles at all.

Related concepts:
“How authorization IDs hold privileges and authorities” on page 282
“Ways to control access to DB2 objects through explicit privileges and authorities”
on page 286
“Ways to control access to data” on page 285
Related information:

Security and auditing (DB2 Administration Guide)

Ways to control access to DB2 subsystems
DB2 for z/OS performs security checks to authenticate users before they gain
access to DB2 data. A variety of authentication mechanisms are supported by DB2
requesters and accepted by DB2 servers.

Authentication occurs when the CONNECT statement is issued to connect the
application process to the designated server. The server or the local DB2 subsystem
checks the authorization ID and password to verify that the user is authorized to
connect to the server.

You can use RACF or the z/OS Security Server to authenticate users that access a
DB2 database.
Related concepts:
“DB2 and the z/OS Security Server” on page 63

Local DB2 access
A local DB2 user is subject to several security checks.

Chapter 9. Management of DB2 operations 283

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_securityintro.htm#db2z_securityintro

For example, when DB2 runs under TSO and use the TSO logon ID as the DB2
primary authorization ID, that ID is verified with a password when the user logs
on.

When the server is the local DB2 subsystem, RACF verifies the password and
checks whether the authorization ID is allowed to use the DB2 resources that are
defined to RACF. If an exit routine is defined, RACF or the z/OS Security Server
perform additional security checking.

Remote DB2 access
When the server is not the local DB2 subsystem, multiple security checks occur.
v The local security manager at the server verifies the DB2 primary authorization

ID and password. A subsequent verification determines whether the
authorization ID is allowed to access DB2.

v Security options for SNA or TCP/IP protocols are checked in the
communications database (CDB).

DDF supports TCP/IP and SNA communication protocols in a distributed
environment. As a requester or a server, DB2 chooses how to send or accept
authentication mechanisms, based on which network protocol is used. DB2 uses
SNA security mechanisms for SNA network connections and DRDA security
mechanisms for TCP/IP or Kerberos network connections.

DRDA security options provide the following support for encrypting sensitive
data:
v DB2 for z/OS servers can provide secure, high-speed data encryption and

decryption.
v DB2 for z/OS requesters have the option of encrypting user IDs and passwords

when requesters connect to remote servers. Requesters can also encrypt
security-sensitive data when communicating with servers so that the data is
secure when traveling over the network.

You can use RACF or a similar security subsystem to perform authentication.
RACF can:
v Verify a remote authorization ID associated with a connection by checking the

ID against its password.
v Verify whether the authorization ID is allowed to access DB2 through a remote

connection.
v Verify whether the authorization ID is allowed to access DB2 from a specific

remote site.
v Generate PassTickets, an alternative to passwords, on the sending side. A

PassTicket lets a user gain access to a host system without sending the RACF
password across the network.

Kerberos security

As a server, DB2 supports Kerberos security for authenticating remote users. The
authentication mechanisms are encrypted Kerberos tickets rather than user IDs and
passwords.

You can establish DB2 for z/OS support for Kerberos authentication through the
z/OS Security Server. Kerberos is also a network security option for DB2 Connect
clients.

284 Introduction to DB2 for z/OS

Communications database

The DB2 communications database contains a set of DB2 catalog tables that let you
control aspects of remote requests. DB2 uses this database to obtain information
about connections with remote systems.

Workstation access

When a workstation client accesses a DB2 for z/OS server, DB2 Connect passes all
authentication information from the client to the server. Workstation clients can
encrypt user IDs and passwords when they issue a CONNECT statement. Database
connection services (DCS) authentication must be set to DCS_ENCRYPT.

An authentication type for each instance determines user verification. The
authentication type is stored in the database manager configuration file at the
server. The following authentication types are allowed with DB2 Connect:

CLIENT
The user ID and password are validated at the client.

SERVER
The user ID and password are validated at the database server.

SERVER_ENCRYPT
The user ID and password are validated at the database server, and
passwords are encrypted at the client.

KERBEROS
The client logs onto the server by using Kerberos authentication.

Ways to control access to data
DB2 enables you to control data access. Access to data includes a user who is
engaged in an interactive terminal session. For example, access can be from a
remote server, from an IMS or a CICS transaction, or from a program that runs in
batch mode.

This information discusses different methods of data access control in DB2. In this
information, the term process is used to represent all forms of access to data.

The following figure suggests several routes from a process to DB2 data, with
controls on every route.

Chapter 9. Management of DB2 operations 285

The first method, access control within DB2, uses identifiers (IDs) to control access
to DB2 objects. The process must first satisfy the security requirements to access
the DB2 subsystem. When the process is within the DB2 subsystem, DB2 checks
various IDs to determine whether the process can access DB2 objects. These IDs
(primary authorization ID, secondary authorization ID, and SQL ID) are described.
If the process has the necessary ID or IDs, it can access DB2 objects, including DB2
data.

The second method, data set protection, is not controlled within DB2. The process
goes through data set protection outside of DB2. If the process satisfies the
protection criteria, it reaches the DB2 data.
Related concepts:
“How authorization IDs control data access” on page 281
“How authorization IDs hold privileges and authorities” on page 282
“Ways to control access to DB2 objects through explicit privileges and authorities”

Managing access through authorization IDs and roles (Managing Security)

Ways to control access to DB2 objects through explicit
privileges and authorities

You can control access to DB2 user data by granting, not granting, or revoking
explicit privileges and authorities.

An explicit privilege is a named privilege that is granted with the GRANT statement
or that is revoked with the REVOKE statement. An administrative authority is a set
of privileges, often encompassing a related set of objects. Authorities often include
privileges that are not explicit, have no name, and cannot be individually granted,
such as the ability to terminate any utility job.

Explicit privileges

Explicit privileges provide detailed control. For example, assume that a user needs
to select, insert, and update data in a table. To complete these actions, the user
needs the SELECT, INSERT, and UPDATE privilege on the table.

Explicit privileges are available for these objects:

Figure 47. DB2 data access control

286 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_idbasedobjectaccess.htm#db2z_idbasedobjectaccess

v Buffer pools
v Collections
v Databases
v Distinct types
v JARs (a Java Archive, which is a file format for aggregating many files into one

file)
v Packages
v Plans
v Routines (functions and procedures)
v Schemas
v Sequences
v Storage groups
v Systems
v Tables
v Table spaces
v Views

Administrative authorities

Privileges are grouped into administrative authorities. Those authorities form a
hierarchy. Each authority includes a specific group of privileges. The administrative
authorities fall into the categories of system, database, and collection authorities.
The highest-ranking administrative authority is SYSADM. Each level of authority
includes the privileges of all lower-ranking authorities.

The following system authorities are ranked from highest to lowest:

SYSADM

System administration authority includes all DB2 privileges (except for a
few that are reserved for installation), which are all grantable to others.

You can limit the ability of SYSADM to manage access to roles. You can
also limit the ability of SYSADM to grant and revoke authorities and
privileges.

SYSCTRL
System control authority includes most SYSADM privileges, but it excludes
the privileges to read or change user data.

SYSOPR
System operator authority includes the privileges to issue most DB2
commands and to terminate any utility job.

The following database authorities are ranked from highest to lowest:

DBADM
Database administration authority includes the privileges to control a
specific database. Users with DBADM authority can access tables and alter
or drop table spaces, tables, or indexes in that database.

DBCTRL
Database control authority includes the privileges to control a specific
database and run utilities that can change data in the database.

DBMAINT
Database maintenance authority includes the privileges to work with
certain objects and to issue certain utilities and commands in a specific
database.

Chapter 9. Management of DB2 operations 287

Additional administrative authorities include the following:

ACCESSCTRL
Access control authority allows SECADM to delegate the ability to grant
and revoke object privileges and most administrative authorities.

DATAACCESS
Data access authority controls DBA access to user data in DB2.

EXPLAIN
EXPLAIN authority allows a user to issue EXPLAIN, PREPARE, and
DESCRIBE statements without requiring the privilege to execute the
statement.

PACKADM
Package administrator authority gives access to designated collections.

SECADM
Security administrator authority allows a user to manage access to a table
in DB2, but cannot create, alter or drop a table.

SQLADM
SQL administrator authority provides the ability to monitor and tune SQL
without any additional privileges.

Related concepts:
“How authorization IDs control data access” on page 281
“How authorization IDs hold privileges and authorities” on page 282

Row-level and column-level access control
You can use row-level and column-level access control to restrict access to certain
types of information that require additional security.

Row-level and column-level access controls can help you to protect sensitive
information and comply with government regulations for security and privacy.
These access controls work with explicit privileges and administrative authorities.
If you use row-level or column-level access control, view level access control is
unnecessary.

DB2 restricts access to columns and rows based upon individual user permissions.
When DB2 is in new function mode, the SECADMIN authority manages the
privacy and security policies that are associated with individual tables. The
SECADMIN authority also grants and revokes access privileges to specific rows
and columns. Row-level and column-level access control affects all users and
database administrators.

Row-level and column-level access control provides the following advantages:
v Integration within the database system
v Database level security
v SQL enforced security that does not require other products to monitor access
v Access that is managed by the DB2 security administrator
v Multiple access levels based on users, groups, or roles
v Row-level and column-level access control with filtering and data masking
v No requirement to filter sensitive data at the application level

288 Introduction to DB2 for z/OS

Use of multilevel security to control access
DB2 provides a powerful security scheme called multilevel security. Multilevel
security is a security policy that classifies data and users according to a system of
hierarchical security levels and nonhierarchical security categories.

Multilevel security prevents unauthorized users from accessing information at a
higher classification than their authorization, and it prevents users from
declassifying information.

Using multilevel security, you can define security for DB2 objects and perform
other checks, including row-level security checks. Row-level security checks control
which users have authorization to view, modify, or perform actions on table rows.
With multilevel security, you do not need to use special views or database
variables to control security at the row level.

You can create a security label for a table row by defining a column in the
CREATE TABLE or ALTER TABLE statement as the security label. As each row is
accessed, DB2 uses RACF to compare the security label of the row and the user to
determine if the user has appropriate authorization to access the row. Row-level
security checks occur whenever a user issues a SELECT, INSERT, UPDATE, or
DELETE statement to access a table with a security-label column or runs a utility
request for data in a row that is protected by a security label.
Related reference:

Implementing multilevel security with DB2 (Managing Security)

Use of views to control access
The table privileges DELETE, INSERT, SELECT, and UPDATE can also be granted
on a view. By creating a view and granting privileges on it, you can give an ID
access to only a specific subset of data. This capability is sometimes called field-level
access control or field-level sensitivity.

Example: Suppose that you want a particular ID, say MATH110, to be able to
extract certain data from the EMP table for statistical investigation. To be exact,
suppose that you want to allow access to data like this:
v From columns HIREDATE, JOB, EDL, SALARY, COMM (but not an employee's

name or identification number)
v Only for employees that were hired after December 15, 1996
v Only for employees with an education level of 14 or higher
v Only for employees whose job is not MGR or PRS

You can create and name a view that shows exactly that combination of data:

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDL, SALARY, COMM

FROM EMP
WHERE HIREDATE> ’1996-12-15’ AND EDLEVEL>= 14
AND JOB IS DISTINCT FROM ’MGR’ AND JOB IS DISTINCT FROM ’PRS’;

Then you can use the GRANT statement to grant the SELECT privilege on the
view SALARIES to MATH110:

Chapter 9. Management of DB2 operations 289

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_implementmls4db2.htm#db2z_implementmls4db2

GRANT SELECT ON SALARIES TO MATH110;

Now, MATH110 can run SELECT statements that query only the restricted set of
data.
Related concepts:
“A view that combines information from several tables” on page 238

Use of grant and revoke privileges to control access
The SQL GRANT statement lets you grant explicit privileges to authorization IDs.
The REVOKE statement lets you take them away. Only a privilege that has been
explicitly granted can be revoked.

Granting privileges is very flexible. For example, consider table privileges. You can
grant all the privileges on a table to an ID. Alternatively, you can grant separate,
specific privileges that allow that ID to retrieve data from the table, insert rows,
delete rows, or update specific columns. By granting or not granting those
privileges on views of the table, you can effectively determine exactly what action
an ID can or cannot take on the table.

You can use the GRANT statement to assign privileges as follows:
v Grant privileges to a single ID or to several IDs in one statement.
v Grant a specific privilege on one object in a single statement, grant a list of

privileges, or grant privileges over a list of objects.
v Grant ALL, for all the privileges of accessing a single table or for all privileges

that are associated with a specific package.

Examples of grant privileges

The following examples show how to grant some system privileges, use privileges,
and table privileges.

Grant example 1: To grant the privileges of system operator authority to user
NICHOLLS, the system administrator uses the following statement:
GRANT SYSOPR TO NICHOLLS;

Assume that your business decides to associate job tasks with authorization IDs.

Grant example 2: In the following examples, PKA01 is the ID of a package
administrator, and DBA01 is the ID of a database administrator. Suppose that the
system administrator uses the ADMIN authorization ID, which has SYSADM
authority, to issue the following GRANT statements:
v GRANT PACKADM ON COLLECTION GOLFS TO PKA01 WITH GRANT OPTION;

This statement grants PACKADM authority to PKA01. PKA01 acquires package
privileges on all packages in the collection named GOLFS and the CREATE IN
privilege on that collection. In addition, specifying WITH GRANT OPTION
gives PKA01 the ability to grant those privileges to others.

v GRANT CREATEDBA TO DBA01;

CREATEDBA grants DBA01 the privilege to create databases, and DBA01
acquires DBADM authority over those databases.

v GRANT USE OF STOGROUP SG1 TO DBA01 WITH GRANT OPTION;

290 Introduction to DB2 for z/OS

This statement allows DBA01 to use storage group SG1 and to grant that
privilege to others.

v GRANT USE OF BUFFERPOOL BP0, BP1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use buffer pools BP0 and BP1 and to grant that
privilege to others.

Grant example 3: The following examples show specific table privileges that you
can grant to users.
v GRANT SELECT ON DEPT TO PUBLIC;

This statement grants SELECT privileges on the DEPT table. Granting the select
privilege to PUBLIC gives the privilege to all users at the current server.

v GRANT UPDATE (EMPNO,DEPT) ON TABLE EMP TO NATZ;

This statement grants UPDATE privileges on columns EMPNO and DEPT in the
EMP table to user NATZ.

v GRANT ALL ON TABLE EMP TO KWAN,ALONZO WITH GRANT OPTION;

This statement grants all privileges on the EMP table to users KWAN and
ALONZO. The WITH GRANT OPTION clause allows these two users to grant
the table privileges to others.

Examples of revoke privileges

The same ID that grants a privilege can revoke it by issuing the REVOKE
statement. If two or more grantors grant the same privilege to an ID, executing a
single REVOKE statement does not remove the privilege for that ID. To remove the
privilege, each ID that explicitly granted the privilege must explicitly revoke it.

Here are some examples of revoking privileges that were previously granted.

Revoke example 1:

v REVOKE SYSOPR FROM NICHOLLS;

This statement revokes SYSOPR authority from user NICHOLLS.
v REVOKE UPDATE ON EMP FROM NATZ;

This statement revokes the UPDATE privilege on the EMP table from NATZ.
v REVOKE ALL ON TABLE EMP FROM KWAN,ALONZO;

This statement revokes all privileges on the EMP table from users KWAN and
ALONZO.

An ID with SYSADM or SYSCTRL authority can revoke privileges that are granted
by other IDs.

Revoke example 2: A user with SYSADM or SYSCTRL authority can issue the
following statements:
v REVOKE CREATETAB ON DATABASE DB1 FROM PGMR01 BY ALL;

In this statement, the CREATETAB privilege that user PGMR01 holds is revoked
regardless of who or how many people explicitly granted this privilege to this
user.

v REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMR01 BY DBUTIL1;

Chapter 9. Management of DB2 operations 291

This statement revokes privileges that are granted by DBUTIL1 and leaves intact
the same privileges if they were granted by any other ID.

Revoking privileges can be more complicated. Privileges can be revoked as the
result of a cascade revoke. In this case, revoking a privilege from a user can also
cause that privilege to be revoked from other users.
Related reference:

GRANT (DB2 SQL)

REVOKE (DB2 SQL)

Backup, recovery, and restart
Although high availability of data is a goal for all DB2 subsystems, unplanned
outages are difficult to avoid entirely. A good backup, recovery, and restart
strategy, however, can reduce the elapsed time of an unplanned outage.

To reduce the probability and duration of unplanned outages, you should
periodically back up and reorganize your data to maximize the availability of data
to users and programs.

Many factors affect the availability of the databases. Here are some key points to
be aware of:
v You should understand the options of utilities such as COPY and REORG.

– You can recover online such structures as table spaces, partitions, data sets, a
range of pages, a single page, and indexes.

– You can recover table spaces and indexes at the same time to reduce recovery
time.

– With some options on the COPY utility, you can read and update a table
space while copying it.

v I/O errors have the following affects:
– I/O errors on a range of data do not affect availability to the rest of the data.
– If an I/O error occurs when DB2 is writing to the log, DB2 continues to

operate.
– If an I/O error is on the active log, DB2 moves to the next data set. If the

error is on the archive log, DB2 dynamically allocates another data set.
v Documented disaster recovery methods are crucial in the case of disasters that

might cause a complete shutdown of your local DB2 subsystem.
v If DB2 is forced to a single mode of operations for the bootstrap data set or logs,

you can usually restore dual operation while DB2 continues to run.

DB2 provides extensive methods for recovering data after errors, failures, or even
disasters. You can recover data to its current state or to an earlier state. The units
of data that can be recovered are table spaces, indexes, index spaces, partitions,
and data sets. You can also use recovery functions to back up an entire DB2
subsystem or data sharing group.

Development of backup and recovery procedures is critical in preventing costly
and time-consuming data losses. In general, ensure that the following procedures
are in place:

292 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grant.htm#db2z_sql_grant
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_revoke.htm#db2z_sql_revoke

v Create a point of consistency.
v Restore system and data objects to a point of consistency.
v Back up and recover the DB2 catalog and your data.
v Recover from out-of-space conditions.
v Recover from a hardware or power failure.
v Recover from a z/OS component failure.

In addition, your site should have a procedure for recovery at a remote site in case
of disaster.

Specific problems that require recovery might be anything from an unexpected
user error to the failure of an entire subsystem. A problem can occur with
hardware or software; damage can be physical or logical. Here are a few examples:
v If a system failure occurs, a restart of DB2 restores data integrity. For example, a

DB2 subsystem or an attached subsystem might fail. In either case, DB2
automatically restarts, backs out uncommitted changes, and completes the
processing of committed changes.

v If a media failure (such as physical damage to a data storage device) occurs, you
can recover data to the current point.

v If data is logically damaged, the goal is to recover the data to a point in time
before the logical damage occurred. For example, if DB2 cannot write a page to
disk because of a connectivity problem, the page is logically in error.

v If an application program ends abnormally, you can use utilities, logs, and image
copies to recover data to a prior point in time.

Recovery of DB2 objects requires adequate image copies and reliable log data sets.
You can use a number of utilities and some system structures for backup and
recovery. For example, the REPORT utility can provide some of the information
that is needed during recovery. You can also obtain information from the bootstrap
data set (BSDS) inventory of log data sets.
Related tasks:

Recovering from different DB2 for z/OS problems (DB2 Administration Guide)
Related reference:

COPY (DB2 Utilities)

RECOVER (DB2 Utilities)

REORG TABLESPACE (DB2 Utilities)

REPORT (DB2 Utilities)
Related information:

Operation and recovery (DB2 Administration Guide)

Backup and recovery resources and tools
DB2 relies on the log and the BSDS to record data changes as they occur. The log
and BSDS provide critical information during recovery. Other important tools that
you need for backup and recovery of data are several of the DB2 utilities.

Log usage

The DB2 log registers data changes and significant events as they occur. DB2
writes each log record to the active log, which is a disk data set. When the active

Chapter 9. Management of DB2 operations 293

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_recoverprocedures.htm#db2z_recoverprocedures
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_copy.htm#db2z_utl_copy
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_recover.htm#db2z_utl_recover
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_reorgtablespace.htm#db2z_utl_reorgtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_report.htm#db2z_utl_report
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

log data set is full, DB2 copies its contents to the archive log, which is a disk or a
tape data set. This process is called offloading.

The archive log can consist of up to 10000 data sets. Each archive log is a
sequential data set (physical sequential) that resides on a disk or magnetic tape
volume.

With DB2, you can choose either single logging or dual logging. A single active log
contains up to 93 active log data sets. With dual logging, DB2 keeps two identical
copies of the log records. Dual logging is the better choice for increased
availability.

Bootstrap data set usage

The bootstrap data set (BSDS) is a repository of information about the data sets that
contain the log. The BSDS contains the following information:
v An inventory of all active and archive log data sets that are known to DB2.

DB2 records data about the log data set in the BSDS each time a new archive log
data set is defined or an active log data set is reused. The BSDS inventory
includes the time and date that the log was created, the data set name, its status,
and other information. DB2 uses this information to track the active and archive
log data sets. DB2 also uses this information to locate log records for log read
requests that occur during normal DB2 subsystem activity and during restart
and recovery processing.

v An inventory of all recent checkpoint activity that DB2 uses during restart
processing.

v A distributed data facility (DDF) communication record.
v Information about buffer pools.

Because the BSDS is essential to recovery in the event of a subsystem failure, DB2
automatically creates two copies of the BSDS during installation. If possible, DB2
places the copies on separate volumes.

Utilities that support backup and recovery

The following utilities are commonly used for backup and recovery:
v COPY, QUIESCE, MERGECOPY, and BACKUP SYSTEM for backup
v RECOVER, REBUILD INDEX, REPORT, and RESTORE SYSTEM for recovery

In general, you use these utilities to prepare for recovery and to restore data. Each
utility plays a role in the backup and recovery process.

COPY The COPY utility creates up to four image copies of table spaces, indexes,
and data sets.

The two types of image copies are as follows:
v Full image copy: A copy of all pages in a table space, partition, data set,

or index space.
v Incremental image copy: A copy of only the table space pages that have

changed since the last use of the COPY utility.

While COPY is running, you can use a SHRLEVEL option to control
whether other programs can access or update the table space or index.
v SHRLEVEL REFERENCE gives other programs read-only access.

294 Introduction to DB2 for z/OS

v SHRLEVEL CHANGE allows other programs to change the table space
or index space.

In general, the more often that you make image copies, the less time that
recovery takes. However, if you make frequent image copies, you also
spend more time making copies.

The RECOVER utility uses these copies when recovering a table space or
index space to the most recent point in time or to a previous point in time.
The catalog table SYSIBM.SYSCOPY records information about image
copies.

QUIESCE
The QUIESCE utility establishes a single point of consistency, called a
quiesce point, for one or more page sets. To establish regular recovery points
for subsequent point-in-time recovery, you must run QUIESCE frequently
between regular executions of COPY.

MERGECOPY
The MERGECOPY utility merges image copies that the COPY utility
produced or inline copies that the LOAD or REORG utilities produced.
MERGECOPY can merge several incremental copies of a table space to
make one incremental copy. It can also merge incremental copies with a
full image copy to make a new full image copy.

BACKUP SYSTEM
The online BACKUP SYSTEM utility invokes z/OS DFSMShsm (Version 1
Release 5 or above). BACKUP SYSTEM copies the volumes on which the
DB2 data and the DB2 log information reside for a non-data sharing DB2
subsystem or a DB2 data sharing group.

RECOVER
The RECOVER utility recovers data to the current state or to a previous
point in time by restoring a copy, and then by applying log records.

REBUILD INDEX
The REBUILD INDEX utility reconstructs indexes from the table that they
reference.

REPORT
The REPORT utility provides information that is needed to recover a table
space, an index, or a table space and all of its indexes. You can also use the
REPORT utility to obtain recovery information about the catalog.

RESTORE SYSTEM
The online RESTORE SYSTEM utility invokes z/OS DFSMShsm (Version 1
Release 5 or above). RESTORE SYSTEM uses data that is copied by the
BACKUP SYSTEM utility.

You can also use the following IBM DB2 and IMS tools in various backup and
recovery situations:

IBM Application Recovery Tool for IMS and DB2 Databases
A tool that simplifies and coordinates the recovery of both IMS and DB2
data to a common point, reducing the time and cost of data recovery and
availability.

DB2 Archive Log Accelerator
A tool that reduces the overhead that is associated with database log
management to balance the increases in archive log growth.

Chapter 9. Management of DB2 operations 295

DB2 Change Accumulation Tool
A tool that quickly restores database objects with precision and minimal
disruption, setting the scope and specificity of image copy creation through
the use of control cards.

DB2 Log Analysis Tool
A tool that provides you with a powerful tool to ensure high availability
and complete control over data integrity. This tool allows you to monitor
data changes by automatically building reports of changes that are made to
database tables.

DB2 Object Restore
A tool that enables you to recover valuable data assets by quickly restoring
dropped objects without down time, even if they no longer exist in the
DB2 catalog. Such dropped objects might include databases, table spaces,
tables, indexes, data, and table authorizations.

Related information:

Operation and recovery (DB2 Administration Guide)

DB2 restart
A key to the perception of high availability is getting the DB2 subsystem restarted
quickly after an unplanned outage.
v Some restart processing can occur concurrently with new work. Also, you can

choose to postpone some processing.
v During a restart, DB2 applies data changes from its log that was not written at

the time of failure. Some of this process can be run in parallel.
v You can register DB2 to the Automatic Restart Manager of OS/390. This facility

automatically restarts DB2 should it go down as a result of a failure.
Related information:

Operation and recovery (DB2 Administration Guide)

Regular backups and data checks
Scheduling backups and data checks on a regular basis is important. Your site
must have a schedule in place to periodically check data for damage and
consistency. You must also check storage structures for efficient use, and gather
information to tune your DB2 subsystem for optimal performance.

Specifically, schedule the following activities:
v Take frequent backups to prepare for potential recovery situations. You must

regularly take full or incremental image copies of DB2 data structures and DB2
subsystem structures.

v Use the CHECK utility periodically or after a conditional restart or recovery to
ensure data consistency and to ensure that data is not damaged. A conditional
restart lets you skip a portion of log processing during DB2 restart.
– The CHECK DATA utility checks table spaces for violations of referential and

check constraints and reports that information. You must run CHECK DATA
after a conditional restart or a point-in-time recovery on all table spaces in
which parent and dependent tables might not be synchronized. You can also
run CHECK DATA to:
- Check the consistency between a LOB table space or XML table space and

its base table space.
- Check the validity of the contents of an XML table space.

296 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

– The CHECK INDEX utility tests whether indexes are consistent with the data
that they index. You must run CHECK INDEX after a conditional restart or a
point-in-time recovery on all table spaces with indexes that might not be
consistent with the data. You must also use CHECK INDEX before running
CHECK DATA to ensure that the indexes that CHECK DATA uses are valid.

v Run the REORG utility when data needs to be organized and balanced in index
spaces and table spaces.

v Use the RUNSTATS utility to gather statistics about DB2 objects. DB2 uses these
statistics to select the most efficient access path to data.

Related concepts:
“Guidelines for data reorganization” on page 257
Related information:

Operation and recovery (DB2 Administration Guide)

Control of database changes and data consistency
Before you can fully understand how backup and recovery works, you need to be
familiar with how DB2 keeps data consistent as changes to data occur.

The processes that ensure data consistency include commit and rollback operations
and locks. This information provides an overview of how commit and rollback
operations achieve a point of data consistency, and explains how DB2 maintains
consistency when data is exchanged between servers.
Related information:

Operation and recovery (DB2 Administration Guide)

Commit and rollback of transactions
At any time, an application process might consist of a single transaction. However
the life of an application process can involve many transactions as a result of
commit or rollback operations.

A transaction begins when data is read or written. A transaction ends with a
COMMIT or ROLLBACK statement or with the end of an application process.
v The COMMIT statement commits the database changes that were made during

the current transaction, making the changes permanent.
DB2 holds or releases locks that are acquired on behalf of an application process,
depending on the isolation level in use and the cause of the lock.

v The ROLLBACK statement backs out, or cancels, the database changes that are
made by the current transaction and restores changed data to the state before the
transaction began.

The initiation and termination of a transaction define points of consistency within an
application process. A point of consistency is a time when all recoverable data that
an application program accesses is consistent with other data. The following figure
illustrates these concepts.

Chapter 9. Management of DB2 operations 297

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

When a rollback operation is successful, DB2 backs out uncommitted changes to
restore the data consistency that existed when the unit of work was initiated. That
is, DB2 undoes the work, as shown in the following figure. If the transaction fails,
the rollback operations begins.

An alternative to cancelling a transaction is to roll back changes to a savepoint. A
savepoint is a named entity that represents the state of data at a particular point in
time during a transaction. You can use the ROLLBACK statement to back out
changes only to a savepoint within the transaction without ending the transaction.

Savepoint support simplifies the coding of application logic to control the
treatment of a collection of SQL statements within a transaction. Your application
can set a savepoint within a transaction. Without affecting the overall outcome of
the transaction, application logic can undo the data changes that were made since
the application set the savepoint. The use of savepoints makes coding applications
more efficient because you don't need to include contingency and what-if logic in
your applications.

Now that you understand the commit and rollback process, the need for frequent
commits in your program becomes apparent.

Time
line

Point of
consistency

New point of
consistency

One transaction

Database updates

Begin
transaction

COMMIT;
End

transaction

Figure 48. A transaction with a commit operation

Point of
consistency

New point of
consistency

Transaction

Database updates

Begin
transaction

Data is returned
to its initial state;
end transaction

Back out updates

ROLLBACK,
failure, or
deadlock;

begin rollback

Time
line

Figure 49. Rolling back changes from a transaction

298 Introduction to DB2 for z/OS

Related concepts:
“Application processes and transactions” on page 55
Related information:

Operation and recovery (DB2 Administration Guide)

Coordinated updates for consistency between servers
In a distributed system, a transaction might occur at more than one server. To
ensure data consistency, each subsystem that participates in a single transaction
must coordinate update operations. Transactions must be either committed or
backed out.

DB2 uses a two-phase commit process with a wide variety of resources, such as
relational databases that are accessed through DRDA. DB2 support for two-phase
commit can also be used from a number of different application environments.
DB2 can work with other z/OS transaction management environments, such as
IMS and CICS, and in UNIX environments, Microsoft Windows applications, and
WebSphere Application Server.

With two-phase commit, you can update a DB2 table and data in non-DB2
databases within the same transaction. The process is under the control of one of
the subsystems, called the coordinator. The other systems that are involved are the
participants. For example, IMS, CICS, or RRS is always the coordinator in
interactions with DB2, and DB2 is always the participant. DB2 is always the
coordinator in interactions with TSO and, in that case, completely controls the
commit process. In interactions with other DBMSs, including other DB2
subsystems, your local DB2 subsystems can be either the coordinator or a
participant.
Related concepts:
“How updates are coordinated across distributed systems” on page 319
Related information:

Operation and recovery (DB2 Administration Guide)

Events in the recovery process
DB2 can recover a page set by using a backup copy.

The DB2 recovery log contains a record of all changes that were made to the page
set. If the data needs to be recovered, DB2 restores the backup copy and applies
the log changes to the page set from the point of the backup copy.

To recover a page set, the RECOVER utility typically uses these items:
v A full image copy; which is a complete copy of the page set.
v For table spaces only, any later incremental image copies that summarizes all

changes that were made to the table space since the time that the previous
image copy was made.

v All log records for the page set that were created since the most recent image
copy.

The following figure shows an overview of a recovery process that includes one
complete cycle of image copies.

Chapter 9. Management of DB2 operations 299

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

The SYSIBM.SYSCOPY catalog table can record many complete cycles. The
RECOVER utility uses information in the SYSIBM.SYSCOPY catalog table for the
following purposes:
v To restore the page set with data in the most recent full image copy
v For table spaces only, to apply all the changes that are summarized in any later

incremental image copies
v To apply all changes to the page set that are registered in the log, beginning

with the most recent image copy

If the log was damaged or discarded, or if data was changed erroneously and then
committed, you can recover to a particular point in time. This type of recovery
limits the range of log records that the RECOVER utility is to apply.
Related information:

Operation and recovery (DB2 Administration Guide)

Optimization of availability during backup and recovery
Because backup and recovery affects data availability, you should understand the
implications of various activities, including running utilities, logging, archiving,
disaster recovery, and DB2 restart.

Running utilities

v To reduce recovery time, you can use the RECOVER utility to recover a
list of objects in parallel.

v To reduce copy time, you use the COPY utility to make image copies of
a list of objects in parallel.

Logging

v To speed recovery, place active or archive logs on disk. If you have
enough space, use more active logs and larger active logs.

v Make the buffer pools and the log buffers large enough to be efficient.
v If DB2 is forced to a single mode of operation for the bootstrap data set

or logs, you can usually restore dual operation while DB2 continues to
run. Dual active logging improves recovery capability in the event of a
disk failure. You can place copies of the active log data sets and the
bootstrap data sets on different disk units.

v If an I/O error occurs when DB2 is writing to the log, DB2 continues to
operate. If the error is on the active log, DB2 moves to the next data set.
If the error is on the archive log, DB2 dynamically allocates another
archive log data set.

Restart
Many recovery processes involve restarting DB2. You can minimize DB2
restart time after an outage to get the DB2 subsystem up and running
quickly.

Time
line

Incremental
image
copy 2

Incremental
image
copy 1

Full
image
copyLog start

Figure 50. Overview of DB2 recovery

300 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

v For non-data-sharing systems, you can limit backout activity during DB2
restart. You can postpone the backout of long-running transactions until
after the DB2 subsystem is operational.

v Some restart processing can occur concurrently with new work. You can
choose to postpone some processing to get DB2 running more quickly.

v During a restart, DB2 applies data changes from the log. This technique
ensures that data changes are not lost, even if some data was not written
at the time of the failure. Some of the work to apply log changes can run
in parallel.

v You can register DB2 with the Automatic Restart Manager of z/OS. This
facility automatically restarts DB2 in the event of a failure.

Archiving
If you archive to tape, be sure that you have enough tape drives. DB2 then
does not need to wait for an available drive on which to mount an archive
tape during recovery.

Recommendation: For fast recovery, keep at least 24 hours of logs in the
active logs, and keep as many archive logs as possible (48 hours of logs,
for example) on disk. Archiving to disk and letting HSM (Hierarchical
Storage Management) migrate to tape is a good practice.

Disaster recovery
In the case of a disaster that causes a complete shutdown of your local
DB2 subsystem, your site needs to ensure that documented procedures are
available for disaster recovery. For example, a procedure for off-site
recovery keeps your site prepared.

Optionally, you can use DFSMShsm to automatically manage space and data
availability among storage devices in your system. For example, DFSMShsm
manages disk space by moving data sets that have not been used recently to less
expensive storage. DFSMShsm makes data available for recovery by automatically
copying new or changed data sets to tape or disk.
Related information:

Operation and recovery (DB2 Administration Guide)

Chapter 9. Management of DB2 operations 301

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_operationrecovery.htm#db2z_operationrecovery

302 Introduction to DB2 for z/OS

Chapter 10. DB2 and the web

DB2 provides many benefits to companies that operate on the web.

The web changed the way that companies conduct business. Corporations, both
large and small, use websites to describe the services and products they provide.
Shipping companies enable customers to track the progress of their shipments
online. Bank customers can view their accounts and initiate online transactions
from the comfort of their homes. Companies routinely distribute information about
company programs, policies, and news, by using company-wide intranets.
Individual investors submit online buy and sell orders through their brokerages
every day. Online retailing continues to increase in popularity. Buyers use
specialized software for the following types of business-to-business transactions:
v Track procurement activity
v Intelligently select preferred suppliers
v Electronically initiate business-to-business transactions with suppliers

These are just a few examples of the many ways that businesses are benefitting
from the power of the web by transforming themselves into On-Demand
businesses.

The world of On-Demand business might seem a bit like a jigsaw puzzle. Before
you work on a puzzle, you want to know what the picture on the puzzle should
look like when you are finished. Likewise, before building or working on an
On-Demand business application, you must have a high-level understanding of the
overall environment. You must also know something about the various products
and tools in that environment. Developing and implementing your application
probably involves products and tools on more than one operating system (such as
z/OS, Linux, and Windows operating systems).

You can use the following products, tools, and languages in an e-business
environment:
v Rational product family
v IBM Data Studio
v IMS
v DB2 product family
v CICS
v Web services
v Web browsers
v WebSphere product family, including WebSphere Information integration

products
v DB2 Database Add-ins for Visual Studio
v Languages: C, C++, C#, COBOL, Java, .NET, PHP, Perl, PL/I, Python, Ruby on

Rails, TOAD, and Visual Basic

Access to data is central to the vast majority of On-Demand business applications.
Likewise, the business logic, which transforms data into information or which
defines a business transaction, is another key component. Many organizations
already store a large amount of mission-critical data in DB2 for z/OS. They also
typically have a considerable investment in application programs that access and

© Copyright IBM Corp. 2001, 2013 303

manipulate this data. Companies that are thinking about moving parts of their
business to the web face the challenge of determining how to build on their
existing base of data and business logic and how to expand the usefulness of this
base by using the web.

The IBM premier application server, WebSphere Application Server, helps
companies to enable their data and business logic for the web. WebSphere
Application Server supports server-side programming, which you will learn more
about in this information.

By using web-based products and tools, companies can build, deploy, and manage
portable On-Demand business applications.

Web application environment
Web-based applications run on a web application server and access data on an
enterprise information system, such as a DB2 database server. The components of
web-based applications are spread across multiple tiers, or layers.

This information describe the various components and architectural characteristics
of web applications and the role that DB2 plays in the web application
environment.

In general, the user interface is on the first tier, the application programs are on the
middle tier, and the data sources that are available to the application programs are
on the enterprise information system tier. Developing web-based applications
across a multitiered architecture is referred to as server-side programming.

Writing server-side programs is complicated and requires a detailed understanding
of web server interfaces. Fortunately, application servers, such as WebSphere
Application Server, are available to simplify this task. Each of these application
servers defines a development environment for web applications and provides a
run time environment in which the web applications can execute. The application
server code, which provides the run time environment, supports the appropriate
interface for interacting with the web server. With application servers, you can
write programs for the application server's run time environment. Developers of
these programs can focus on the business logic of the web application, rather than
on making the application work with a web server.

Components of web-based applications
All web-based database applications have three primary components: A web
browser (or client), a web application server, and a database server.

Web-based database applications rely on a database server, which provides the
data for the application. The database server sometimes also provides business
logic in the form of stored procedures. Stored procedures can offer significant
performance advantages, especially in a multi-tiered architecture. In addition to
database servers, other enterprise information system components include IMS
databases, WebSphere MQ messages, and CICS records.

The clients handle the presentation logic, which controls the way in which users
interact with the application. In some cases, the client validates user-provided
input. Web applications sometimes integrate Java applets into the client-side logic
to improve the presentation layer.

304 Introduction to DB2 for z/OS

Applet
A Java program that is part of a Hypertext Markup Language (HTML)
page. (HTML is the standard method for presenting web data to users.)
Applets work with Java-enabled browsers, such as Microsoft Internet
Explorer; they are loaded when the HTML page is processed.

Web application servers manage the business logic. The business logic, typically
written in Java, supports multitiered applications. The web application server can
manage requests from a variety of remote clients. The web application layer might
include JavaServer Pages (JSP) files, Java servlets, Enterprise JavaBeans (EJB)
components, or web services.

JSP A technology that provides a consistent way to extend web server
functionality and create dynamic web content. The web applications that
you develop with JSP technology are server and platform independent.

Servlet
A Java program that responds to client requests and generates responses
dynamically.

EJB A component architecture for building distributed applications with the
Java programming model. Server transactional components are reusable
and provide portability across application servers.

Web services
Self-contained, modular applications that provide an interface between the
provider and the consumer of application resources. You can read more
about web services later in this information.

Architectural characteristics of web-based applications
Some web-based applications use a two-tier architecture, and others use an n-tier
architecture that consists of three or more tiers.

Two-tier architecture
In a two-tier architecture, the client is on the first tier. The database server
and web application server reside on the same server machine, which is
the second tier. This second tier serves the data and executes the business
logic for the web application. Organizations that favor this architecture
typically prefer to consolidate their application capabilities and database
server capabilities on a single tier. The second tier is responsible for
providing the availability, scalability, and performance characteristics for
the organization's web environment.

n-tier architecture
In an n-tier architecture, application objects are distributed across multiple
logical tiers, typically three or four.

In a three-tier architecture, the database server does not share a server
machine with the web application server. The client is on the first tier, as it
is in a two-tier architecture. On the third tier, the database server serves the
data. For performance reasons, the database server typically uses stored
procedures to handle some of the business logic. The application server
resides on the second tier. The application server handles the portion of the
business logic that does not require the functionality that the database
server provides. In this approach, hardware and software components of
the second and third tiers share responsibility for the availability,
scalability, and performance characteristics of the web environment.

Chapter 10. DB2 and the web 305

In a four-tier architecture, more than one logical tier can exist within the
middle tier or within the enterprise information system tier. For example:
v The middle tier might consist of more than one web server.

Alternatively, an intermediate firewall can separate the web server from
the application server in the middle tier.

v A database server on tier three can be the data source for a web server
on the middle tier, and another database server on tier four is the data
source for a database server on tier three.

If you survey all the web applications that are available today, you would find
many variations. For example, the database servers can run on various platforms,
as can the clients. Designers of web applications use various tools, which affect
how the applications work and how they look. Different companies choose
different tools. The puzzle pieces that comprise one company's puzzles end up
being different from the puzzles of other companies.

In many cases, the client and server for a web application are on different
operating systems. The client, for example, can be on a workstation-based
operating system, such as Windows XP or UNIX. The server for the application can
also be on a workstation-based server, or it can be on an enterprise server, such as
z/OS. The following figure shows the two-tier connectivity between a
workstation-based client and both types of servers.

Browser

Windows, Linux,
or UNIX

Client system

First tier

Windows, Linux,
or UNIX

HTTP

HTTP

Web server
Database server

Web server
Database server

z/OS

Second tier

Figure 51. Two-tier connectivity between a workstation-based client and different database
servers

306 Introduction to DB2 for z/OS

The browser uses Hypertext Transfer Protocol (HTTP) to forward user requests to a
second-tier server machine. (HTTP is a communication protocol that the web uses.)
The web server on the second tier invokes the local database server to satisfy the
data requirements of the application.

The following figure illustrates the use of an n-tier architecture. In this example,
two web servers are installed on the middle tier: an HTTP server, such as the IBM
HTTP Server, and a web application server, such as WebSphere Application Server.
The application server supports the various components that might be running on
the middle tier (JSP files, servlets, EJB, and web services). Each of these
components performs functions that support client applications.

In the WebSphere Application Server environment, a device on tier one, such as a
browser, can use HTTP to access the HTTP server on the middle tier. The HTTP
server can then render output that is produced by JSPs, servlets, and other
components that run in a WebSphere Application Server environment. The JSPs or
servlets can use JDBC, SQLJ, or EJB (indirectly) to access data at a DB2 database
server on the third tier.

Benefits of DB2 for z/OS as a server
For each type of architecture, DB2 for z/OS offers a robust solution for web
applications.

Specifically, using DB2 for z/OS as a database server for a web application
provides the following advantages:
v Exceptional scalability. The volume of transactions on any web application

varies. Transaction loads can increase, or spike, at different times of the day, on
different days of the month, or at different times of the year. Transaction loads
also tend to increase over time. In a Parallel Sysplex environment, DB2 for z/OS
can handle the full range of transaction loads with little or no impact on
performance. Any individual user is generally unaware of how busy the system
is at a given point in time.

Web browser

Client tier Middle tier EIS tier

Database
servers

DB2

DB2

HTTP
Web

server

JDBC

SQLJ

Servlets
& JSPs

EJBs

WebSphere
Application

Server

Web
services

Figure 52. n-tier connectivity with a workstation-based client, two web servers, and different
database servers

Chapter 10. DB2 and the web 307

v High degree of availability. When DB2 for z/OS runs in a Parallel Sysplex
environment, the availability of data and applications is very high. If one DB2
subsystem is unavailable, for example, because of maintenance, other DB2
subsystems in the Sysplex take over the workload. Users are unaware that part
of the system is unavailable because they have access to the data and
applications that they need.

v Ability to manage a mixed workload. DB2 for z/OS effectively and efficiently
manages priorities of a mixed workload as a result of its tight integration with
z/OS Workload Manager.

v Protection of data integrity. Users of DB2 for z/OS can benefit from the
product's well-known strength in the areas of security and reliability.

Web-based applications and WebSphere Studio Application Developer
The WebSphere Studio Application Developer offers features that developers can
use to create web-based applications.

WebSphere Studio Application Developer is designed for developers of Java and
J2EE applications who require integrated web, XML, and web services support.
This tool includes many built-in facilities and plug-ins that ease the task of
accessing data stored in DB2 databases. (A plug-in is the smallest unit of function
that can be independently developed and delivered.)

Each WebSphere Studio product offers the same integrated development
environments and a common base of tools. Each product builds on the function of
another product with additional plug-in tools. For example, WebSphere Studio
Application Developer includes all WebSphere Studio Site Developer function plus
plug-ins for additional function such as Enterprise JavaBeans support.

WebSphere Studio Site Developer
Offers a visual development environment that makes collaboration easy for
web development teams.

WebSphere Studio Application Developer
Provides a development environment for developers of Java applications
and adds tools for developing EJB applications.

WebSphere Studio Application Developer Integrated Edition
Includes WebSphere Studio Application Developer function and adds tools
for integration with back-end systems.

WebSphere Studio Enterprise Developer
Includes WebSphere Studio Application Developer Integrated Edition
function and additional function such as z/OS application development
tools.

WebSphere Studio Application Developer provides an IDE for building, testing,
debugging, and implementing many different components. Those components
include databases, web, XML, and Java components. Java components include Java
J2EE applications, JSP files, EJBs, servlets, and applets.

Because WebSphere Studio Application Developer is portable across operating
systems, applications that you develop with WebSphere Studio Application
Developer are highly scalable. This means that you can develop the applications on
one system (such as AIX) and run them on much larger systems (such as z/OS).

308 Introduction to DB2 for z/OS

WebSphere Studio Application Developer supports the Java 2 Enterprise Edition
(J2EE) server model. J2EE is a set of specifications for working with multi-tiered
applications on the J2EE platform. The J2EE platform includes services, APIs, and
protocols for developing multi-tiered, web-based applications. The following figure
shows a multi-tiered application development environment that supports web
applications and J2EE applications.

Each WebSphere Studio product uses perspectives. A perspective is a set of views,
editors, and tools that developers use to manipulate resources. You can use some
of these perspectives to access DB2 databases.

Data perspective
Developers use the data perspective to manage the database definitions
and connections that they need for application development. You can
connect to DB2 databases and import database definitions, schemas, tables,
stored procedures, SQL user-defined functions, and views. WebSphere
Studio Application Developer provides an SQL editor that helps you create
and modify SQL statements.

Using the data perspective, developers can create the following types of
DB2 routines:
v SQL and Java stored procedures
v SQL user-defined functions
v User-defined functions that read or receive messages from WebSphere

MQ message queues

When developers write stored procedures that use JDBC or SQL, they can
then create a wrapper for the stored procedure as JavaBeans or as a
method within a session EJB. Wrapping a stored procedure avoids
duplicating its business logic in other components and might result in a
performance benefit. (A wrapper encapsulates an object and alters the
interface or behavior of the object in some way. Session beans are enterprise
beans that exist during one client/server session only.)

J2EE perspective
Developers work with the J2EE perspective to create EJB applications for
accessing DB2. The J2EE perspective supports EJB 1.1 and EJB 2.0. This
perspective provides graphical tools for viewing and editing DB2 schemas
that help developers map entity EJBs to DB2 tables. Entity beans are
enterprise beans that contain persistent data.

Servlets

EJBs

JSPs

Client
Browser

Client-side
presentation

Server-side
presentation

First tier Third tierSecond tier

Server-side
business logic

Server-side
data logic

Fourth tier

Databases

Figure 53. Web application development environment

Chapter 10. DB2 and the web 309

WebSphere Studio Application Developer also provides a feature that
automatically generates a session EJB method to invoke a DB2 stored
procedure.

Web perspective
Developers use the web perspective to generate web pages from SQL
statements. WebSphere Studio Application Developer provides a tag library
of JSP actions for database access. A tag library defines custom tags that are
used throughout a document. Using the JSP tag libraries, developers can
run SQL statements and stored procedures. They can easily update or
delete the result sets that the SQL statements or stored procedures return.

Web services perspective
Developers use a built-in XML editor to create XML files for building DB2
web service applications based on SQL statements.

Related concepts:
“Development of DB2 applications in integrated development environments” on
page 153

XML and DB2
You can use XML in a DB2 database. XML, which stands for Extensible Markup
Language, is a text-based tag language. Its style is similar to HTML, except that
XML users can define their own tags.

The explosive growth of the Internet was a catalyst for the development and
industry-wide acceptance of XML. Because of the dramatic increase of on demand
business applications, organizations need to exchange data in a robust, open
format. The options that were available before the development of XML were
Standard Generalized Markup Language (SGML) and HTML. SGML is too
complex for wide use on the web. HTML is good for the presentation of web
pages, but it is not designed for the easy exchange of information. XML has
emerged as a useful and flexible simplification of SGML that enables the definition
and processing of documents for exchanging data between businesses, between
applications, and between systems.

You can think of HTML as a way of communicating information between
computers and people. You can think of XML as a way of communicating
information between computers. You can convert XML to HTML so that people can
view the information.

Benefits of using XML with DB2 for z/OS
Organizations can gain a number of benefits by using XML with DB2 for z/OS,
including improved customer relationships, optimized internal operations,
maximized partnerships, and choices in tools and software.

With XML, organizations can gain these benefits:

Improved customer relationships
XML lets you deliver personalized information to customers, enable new
distribution channels, and respond faster to customer needs.

Optimized internal operations
With XML, you can drive business data from your existing systems to the
Web. XML enables you to automate transactions that do not require human
interaction.

310 Introduction to DB2 for z/OS

Maximized partnerships
Because of the widespread use of XML in the industry, you can easily
share information with suppliers, buyers, and partners.

Tools and software
You can take advantage of many XML tools and software, such as
WebSphere Studio, XML parsers and processors, and the SQL/XML
publishing function.

XML vocabularies exist for specific industries to help organizations in those
industries standardize their use of XML. An XML vocabulary is an XML description
that is designed for a specific purpose. Widespread industry use of XML has
resulted in more effective and efficient business-to-business transactions.

Ways to use XML with DB2 for z/OS
Organizations use XML for document processing and for publishing information
on the web. There are various publishing functions and tools that help you
integrate XML with DB2 data.

To integrate XML with DB2 data, you can use the SQL/XML publishing functions.
The native XML, or pureXML, support in DB2 offers efficient and versatile
capabilities for managing your XML data. DB2 stores and processes XML in its
inherent hierarchical format, avoiding the performance and flexibility limitations
that occur when XML is stored as text in CLOBs or mapped to relational tables.

SQL/XML publishing functions allow applications to generate XML data from
relational data. XML is a popular choice when you want to send DB2 data to
another system or to another application in a common format. You can choose
from one of several ways to publish XML documents:
v Use SQL/XML functions that are integrated with DB2.

DB2 integrates SQL/XML publishing functions into the DB2 product. A set of
SQL built-in functions allows applications to generate XML data from DB2 data
with high performance. The SQL/XML publishing functions can reduce
application development efforts in generating XML for data integration,
information exchange, and web services.

v Take advantage of DB2 web services support.
Web services provide a way for programs to invoke other programs, typically on
the Internet, that transmit input parameters and generate results as XML.

v Use a tool to code XML.
WebSphere Studio provides a development environment for publishing XML
documents from relational data.

Related concepts:
“pureXML” on page 57
“SOA, XML, and web services”

SOA, XML, and web services
XML data is a key ingredient for solutions that are based on service-oriented
architecture (SOA). You can leverage XML-based SOA applications to build
XML-based web services.

Web services are sets of business functions that applications or other web services
can invoke over the Internet. A web service performs a useful service on behalf of
a requester. That service can span across many businesses and industries.

Chapter 10. DB2 and the web 311

Example: Assume that an airline reservation system is a web service. By offering
this service, the airline makes it easier for its customers to integrate the service into
their travel-planning applications. A supplier can also use the service to make its
inventory and pricing information accessible to its buyers.

Web services let you access data from a variety of databases and Internet locations.
DB2 can act as a web services requester, enabling DB2 applications to invoke web
services through SQL. DB2 can also act as a web services provider through DB2
WORF (web services object run time framework), in conjunction with WebSphere
Application Server, enabling you to access DB2 data and stored procedures as web
services.

The functions that web services perform can be anything from simple requests to
complicated business processes. You can define a basic web service by using
standard SQL statements.

Using XML for data exchange, web services support the interaction between a
service provider and a service requester that is independent of platforms and
programming languages. The web services infrastructure includes these basic
elements:

Simple Object Access Protocol (SOAP)
SOAP uses XML messages for exchanging information between service
providers and service requesters. SOAP defines components of web
services, which include XML messages, data types that applications use,
and remote procedure calls and responses.

Web Services Description Language (WSDL)
WSDL describes what a web service can do, where the service resides, and
how to invoke the service. WSDL specifies an XML vocabulary that
contains all information that is needed for integration and that automates
communication between web services applications.

Universal Description, Discovery, and Integration (UDDI)
UDDI provides a registry of business information, analogous to a
telephone directory, that users and applications use to find required web
services.

Representational State Transfer (REST)
You can use REST with the IBM Data Studio Developer tooling for Data
Web Services. If you use REST bindings, you can invoke your web services
with the following methods:
v HTTP GET
v HTTP POST
v HTTP POST in XML
v JSON

You can use WebSphere products to build web service applications. WebSphere
Studio provides tools for creating web services that include WSDL interfaces and
publishing directly to a UDDI registry.

312 Introduction to DB2 for z/OS

Chapter 11. Distributed data access

Distributed computing environments typically involve requests from users at one
DBMS client that are processed by a DBMS server. The server DBMS is typically
remote to the client. Certain programming techniques and performance
implications apply to distributed computing environments.

The DB2 distributed environment supports both a two-tier and a multitier
architecture.

A DBMS, whether local or remote, is known to your DB2 subsystem by its location
name. Remote systems use the location name, or an alias location name, to access a
DB2 subsystem. You can define a maximum of eight location names for a DB2
subsystem.

The location name of the DB2 subsystem is defined in the BSDS during DB2
installation. The communications database (CDB) records the location name and
the network address of a remote DBMS. The CDB is a set of tables in the DB2
catalog.

The primary method that DB2 uses for accessing data at a remote server is based
on Distributed Relational Database Architecture (DRDA).

If your application performs updates to two or more DBMSs, a transaction
manager coordinates the two-phase commit process and guarantees that units of
work are consistently committed or rolled back. IfDB2 requests updates to two or
more DBMSs, DB2 acts as the transaction manager. The distributed commit
protocols that are used on the network connection dictate whether both DBMSs
can perform updates or whether updates are restricted to a single DBMS.

The examples that follow show statements that you can use to access distributed

data.

Example 1: To access data at a remote server, write statements like the following
example:
EXEC SQL

CONNECT TO CHICAGO;
SELECT * FROM IDEMP01.EMP

WHERE EMPNO = ’000030’;

You can also accomplish the same task by writing the query like the following
example:
SELECT * FROM CHICAGO.IDEMP01.EMP

WHERE EMPNO = ’000030’;

Before you can execute either query at location CHICAGO, you must bind a
package at the CHICAGO server.

Example 2: You can call a stored procedure to access data at a remote server. Your
program executes these statements:

© Copyright IBM Corp. 2001, 2013 313

EXEC SQL
CONNECT TO ATLANTA;

EXEC SQL
CALL procedure_name (parameter_list);

The parameter list is a list of host variables that is passed to the stored procedure
and into which it returns the results of its execution. The stored procedure must
exist at location ATLANTA.

Related concepts:
“Distributed data” on page 56
“Data distribution and Web access” on page 5
“Effects of distributed data on program preparation” on page 318
“Web application environment” on page 304
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Ways to implement distributed data in programs
You can connect to a remote server in different ways. You can code an application
that uses DRDA to access data at a remote location by using either CONNECT
statements or three-part names and aliases.

Using either method, you must bind the DBRMs for the SQL statements that are to
execute at the server to packages that reside at the server.
v At the local DB2 subsystem, use the BIND PLAN command to build an

application plan.
v At the remote location, use the BIND PACKAGE command to build an

application package that uses the local application plan.
Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

Explicit CONNECT statements
Using CONNECT statements provides application portability across all DB2 clients
and requires the application to manage connections.

With the CONNECT statement, an application program explicitly connects to each
server. You must bind the DBRMs for the SQL statements that are to execute at the
server to packages that reside at that server.

The application connects to each server based on the location name in the
CONNECT statement. You can explicitly specify a location name, or you can
specify a location name in a host variable. Issuing the CONNECT statement
changes the special register CURRENT SERVER to show the location of the new

server.

Example: Assume that an application includes a program loop that reads a
location name, connects to the location, and executes an INSERT statement. The
application inserts a new location name into a host variable, LOCATION_NAME,
and executes the following statements:

314 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol

EXEC SQL
CONNECT TO :LOCATION_NAME;

EXEC SQL
INSERT INTO IDP101.PROJ VALUES (:PROJNO, :PROJNAME, :DEPTNO,
:RESPEMP, :MAJPROJ);

The host variables match the declaration for the PROJ table.

DB2 guarantees the consistency of data across a distributed transaction. To keep
the data consistent at all locations, the application commits the work only after the
program loop executes for all locations. Either every location commits the INSERT,
or, if a failure prevents any location from inserting, all other locations roll back the
INSERT.
Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

Three-part names
Using three-part object names and aliases provides the application with location
transparency; objects can move to a new location without requiring changes to the
application. Instead, the DBMS manages the underlying connections.

You can use three-part names to access data at a remote location, including tables
and views. Using a three-part name, or an alias, an application program implicitly
connects to each server. With these access methods, the database server controls
where the statement executes.

A three-part name consists of:
v A LOCATION name that uniquely identifies the remote server that you want to

access
v An AUTHORIZATION ID that identifies the owner of the object (the table or

view) at the location that you want to access
v An OBJECT name that identifies the object at the location that you want to

access

Example: This example shows how an application uses a three-part name in
INSERT, PREPARE, and EXECUTE statements. Assume that the application obtains
a location name, 'SAN_JOSE'. Next, it creates the following character string:
INSERT INTO SAN_JOSE.IDP101.PROJ VALUES (?,?,?,?,?)

The application assigns the character string to the variable INSERTX, and then
executes these statements:
EXEC SQL

PREPARE STMT1 FROM :INSERTX;
EXEC SQL

EXECUTE STMT1 USING :PROJNO, :PROJNAME, :DEPTNO, :RESPEMP, :MAJPROJ;

The host variables match the declaration for the PROJ table.

Recommendation: If you plan to port your application from a z/OS server to
another server, you should not use three-part names. For example, a client

Chapter 11. Distributed data access 315

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol

application might connect to a z/OS server and then issue a three part-name for an
object that resides on a Linux server. DB2 for z/OS is the only server that
automatically forwards SQL requests that reference objects that do not reside on
the connected server.

A convenient alternative approach is to use aliases when creating character strings
that become prepared statements, instead of using full three-part names.
Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

Aliases
An alias is a substitute for the three-part name of a table or view.

An alias can be defined at a local server and can refer to a table or view that is at
the current server or a remote server. The alias name can be used wherever the
table name or view name can be used to refer to the table or view in an SQL
statement.

Suppose that data is occasionally moved from one DB2 subsystem to another.
Ideally, users who query that data are not affected when this activity occurs. They
always want to log on to the same system and access the same table or view,
regardless of where the data resides. You can achieve this result by using an alias
for an object name.

An alias can be a maximum of 128 characters, qualified by an owner ID. You use

the CREATE ALIAS and DROP ALIAS statements to manage aliases.

Note: Assume that you create an alias as follows:
CREATE ALIAS TESTTAB FOR USIBMSTODB22.IDEMP01.EMP;

If a user with the ID JONES dynamically creates the alias, JONES owns the alias,
and you query the table like this:
SELECT SUM(SALARY), SUM(BONUS), SUM(COMM)

FROM JONES.TESTTAB;

The object for which you are defining an alias does not need to exist when you
execute the CREATE ALIAS statement. However, the object must exist when a
statement that refers to the alias executes.

When you want an application to access a server other than the server that is
specified by a location name, you do not need to change the location name.
Instead, you can use a location alias to override the location name that an
application uses to access a server. As a result, a DB2 for z/OS requester can access
multiple DB2 databases that have the same name but different network addresses.
Location aliases allow easier migration to a DB2 server and minimize application
changes.

After you create an alias, anyone who has authority over the object that the alias is
referencing can use that alias. A user does not need a separate privilege to use the
alias.

316 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol

Related reference:

CREATE ALIAS (DB2 SQL)

Comparison of three-part names and aliases
Three-part names and aliases have their own unique advantages. Understanding
the differences and advantages helps you make good choices for your distributed
environment.

You can always use three-part names to reference data at another remote server.
The advantage of three-part names is that they allow application code to run at
different DB2 locations without the additional overhead of maintaining aliases.
However, if the table locations change, you must also change the affected
applications.

The advantage of aliases is that they allow you to move data around without
needing to modify application code or interactive queries. However, if you move a
table or view, you must drop the aliases that refer to those tables or views. Then,
you can re-create the aliases with the new location names.
Related concepts:
“Aliases” on page 316

Ways that other tasks are affected by distributed data
When you operate in a distributed environment, you need to consider how the
environment affects planning and programming activities.

Effects of distributed data on planning
When you work in a distributed environment, you need to consider how
authorization works and the cost of running SQL statements.

The appropriate authorization ID must have authorization at a remote server to
connect to and to use resources at that server.

You can use the resource limit facility at the server to govern distributed dynamic
SQL statements. Using this facility, a server can govern how much of its resources
a given package can consume by using DRDA access.

Effects of distributed data on programming
There are several effects that you must be aware of when you write programs for a
distributed environment.

Keep in mind the following considerations when you write programs that are used
in a distributed environment:
v Stored procedures

If you use DRDA access, your program can call stored procedures. Stored
procedures behave like subroutines that can contain SQL statements and other
operations.

v Three-part names and multiple servers
Assume that a statement runs at a remote server (server 1). That statement uses
a three-part name or an alias that resolves to a three-part name. The statement
includes a location name of a different server (server 2). To ensure that access to
the second remote server is by DRDA access, bind the package that contains the
three-part name at the second server.

Chapter 11. Distributed data access 317

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createalias.htm#db2z_sql_createalias

v SQL differences at servers other than DB2 for z/OS
With explicit connections, a program that uses DRDA access can use SQL
statements that a remote server supports, even if the local server does not
support them. A program that uses three-part object names cannot execute
non-z/OS SQL.

Effects of distributed data on program preparation
In a distributed data environment, several items affect precompile and bind
options that are used for DRDA access and package resolution.

The following table lists the z/OS precompiler options that are relevant to
preparing a package that is to be run using DRDA access.

Table 40. DB2 precompiler options for DRDA access

z/OS precompiler options Usage

CONNECT Use CONNECT(2) to allow your application program
to make updates at more than one DBMS.

SQL Use SQL(ALL) for binding a package to a non-z/OS
server; otherwise, use SQL(DB2).

Usually, binding a package to run at a remote location is like binding a package to
run at your local DB2 subsystem. Binding a plan to run the package is like binding
any other plan. The following table gives you guidelines for which z/OS bind
options to choose when binding a package and planning to run using DRDA
access.

Table 41. z/OS bind options for DRDA access

z/OS bind options Usage

DEFER(PREPARE) For dynamic SQL, use DEFER(PREPARE) to send
PREPARE and EXECUTE statements together over
the network to improve performance.

SQLERROR Use SQLERROR(CONTINUE) to create a package
even if the bind process finds SQL errors.

SQLRULES Use SQLRULES(DB2) for more flexibility in coding
your applications, particularly for LOB data, and to
improve performance.

JDBC, SQLJ, and ODBC use different methods for binding packages that involve
less preparation for accessing a z/OS server.

The CURRENT PACKAGE PATH special register provides a benefit for
applications that use DRDA from a z/OS requester. The package collection ID is
resolved at the server. Applications on the server can take advantage of the list of

collections, and network traffic is minimal.

Example: Assume that five packages exist and that you want to invoke the first
package at the server. The package names are SCHEMA1.PKG1, SCHEMA2.PKG2,
SCHEMA3.PKG3, SCHEMA4.PKG4, and SCHEMA5.PKG5. Rather than issuing a
SET CURRENT PACKAGESET statement to invoke each package, you can use a
single SET statement if the server supports the CURRENT PACKAGE PATH
special register:
SET CURRENT PACKAGE PATH = SCHEMA1, SCHEMA2, SCHEMA3, SCHEMA4, SCHEMA5;

318 Introduction to DB2 for z/OS

Related concepts:
“Preparation process for an application program” on page 158

How updates are coordinated across distributed systems
Various products are available to work with DB2 to coordinate updates across a
distributed transaction. DB2 coordinates updates at servers that support different
types of connections.
Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

DB2 transaction manager support
DB2 supports a wide range of transaction manager products to coordinate updates
across a distributed transaction. A distributed transaction typically involves
multiple recoverable resources, such as DB2 tables, MQSeries messages, and IMS
databases.

Application environments that use DB2 Connect to access DB2 remotely can use
the following transaction manager products:
v WebSphere Application Server
v CICS
v IBM TXSeries (CICS and Encina)
v WebSphere MQ
v Microsoft Transaction Server (MTS)
v Java applications that support Java Transaction API (JTA) and Enterprise

JavaBeans (EJBs)
v BEA (Tuxedo and WebLogic)
v Other transaction manager products that support standard XA protocols

The XA interface is a bidirectional interface between a transaction manager and
resource managers that provides coordinated updates across a distributed
transaction. The Open Group defined XA protocols based on the specification
Distributed TP: The XA Specification.

Application environments that access DB2 locally can use the following transaction
manager products:
v WebSphere Application Server
v CICS transaction server
v IMS

For application environments that do not use a transaction manager, DB2
coordinates updates across a distributed transaction by using DRDA-protected
connections.
Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

Servers that support two-phase commit
Updates in a two-phase commit situation are coordinated if they must all commit
or all roll back in the same unit of work.

Chapter 11. Distributed data access 319

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol

Example: You can update an IMS database and a DB2 table in the same unit of
work. Suppose that a system or communication failure occurs between committing
the work on IMS and on DB2. In that case, the two programs restore the two
systems to a consistent point when activity resumes.

DB2 coordinates commits even when a connection is using one-phase commit in a
distributed transaction. In this case, however, only one location can perform an
update.
Related concepts:
“Coordinated updates for consistency between servers” on page 299

The DRDA database protocol (DB2 Installation and Migration)

Servers that do not support two-phase commit
In a distributed transaction, DB2 can coordinate a mixture of two-phase and
one-phase connections.

You cannot have coordinated updates with a DBMS that does not implement
two-phase commit. You can, however, achieve the effect of coordinated updates
when you access a server that does not implement two-phase commit; such a
server is called a restricted system.

DB2 prevents you from updating both a restricted system and any other system in
the same unit of work. In this context, update includes the statements INSERT,
DELETE, UPDATE, CREATE, ALTER, DROP, GRANT, REVOKE, and RENAME.

You can achieve the effect of coordinated updates with a restricted system. You
must first update one system and commit that work, and then update the second
system and commit its work. However, suppose that a failure occurs after the first
update is committed and before the second update is committed. No automatic
provision is available to bring the two systems back to a consistent point. Your
program must handle that task.

When you access a mixture of systems, some of which might be restricted, you can
take the following actions to ensure data integrity:
v Read from any of the systems at any time.
v Update any one system many times in one unit of work.
v Update many systems, including CICS or IMS, in one unit of work if no system

is a restricted system. If the first system you update is not restricted, any
attempt to update a restricted system within a unit of work results in an error.

v Update one restricted system in a unit of work. You can do this action only if
you do not try to update any other system in the same unit of work. If the first
system that you update is restricted, any attempt to update another system
within that unit of work results in an error.

Related concepts:

The DRDA database protocol (DB2 Installation and Migration)

Ways to reduce network traffic
The key to improving performance in a network computing environment is to
minimize network traffic.

320 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_drdadatabaseprotocol.htm#db2z_drdadatabaseprotocol

Stored procedures are an excellent method for sending many SQL statements in a
single network message and, as a result, running many SQL statements at the DB2
server. This topic introduces you to other ways to improve performance when
accessing remote servers.
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Improvements in query efficiency
Queries almost always execute faster on a local server than they do when the same
query is sent to a remote server. To increase efficiency when accessing remote
servers, try to write queries that send few messages over the network.

For example:
v Reduce the number of columns and rows in the result table that is returned to

your application. Keep your SELECT lists as short as possible. Creative use of
the clauses WHERE, GROUP BY, and HAVING can eliminate unwanted data at
the remote server.

v Use FOR READ ONLY. For example, retrieving thousands of rows as a
continuous stream is reasonable. Sending a separate message for each one can be
much slower.

v When possible, do not bind application plans and packages with
ISOLATION(RR). If your application does not need to refer again to rows it
reads once, another isolation level might reduce lock contention and message
overhead during COMMIT processing.

v Minimize the use of parameter markers.
When your program uses DRDA access, DB2 can streamline the processing of
dynamic queries that do not have parameter markers. However, parameter
markers are needed for effective dynamic statement caching.
When a DB2 requester encounters a PREPARE statement for such a query, it
anticipates that the application is going to open a cursor. The requester therefore
sends the server a single message that contains a combined request for
PREPARE, DESCRIBE, and OPEN. A DB2 server that receives this message
sequence returns a single reply message sequence that includes the output from
the PREPARE, DESCRIBE, and OPEN operations. As a result, the number of
network messages that are sent and received for these operations is reduced
from two to one.

Chapter 11. Distributed data access 321

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Choosing an ISOLATION option (DB2 Performance)
Related reference:

group-by-clause (DB2 SQL)

having-clause (DB2 SQL)

read-only-clause (DB2 SQL)

where-clause (DB2 SQL)

PREPARE (DB2 SQL)

Reduction in the volume of messages
DB2 capabilities that combine multiple rows of data during fetch and insert
operations can significantly reduce the number of messages that are sent across the
network. Those capabilities include block fetch and rowset fetches and inserts.
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Block fetch
You can use block fetch to retrieve a set of rows and transmit them all in one
message over the network.

DB2 uses a block fetch to group the rows that an SQL query retrieves into as large a
“block” of rows as can fit in a message buffer, and then transmits the block over
the network. By sending multiple rows in a block, DB2 avoids sending a message
for every row.

A block fetch is used only with cursors that do not update data.

DB2 can use two different types of block fetch:

Limited block fetch
An operation that optimizes data transfer by minimizing the number of
messages that are transmitted from the requester whenever a remote fetch
operation is performed.

Continuous block fetch
An operation that optimizes data transfer by minimizing the number of
messages that are transmitted from the requester to retrieve the entire
result set. In addition, overlapped processing is performed at the requester
and the server.

To use block fetch, DB2 must determine that the cursor is not used for update or
delete. You can indicate in your program by adding the clause FOR READ ONLY
or FOR FETCH ONLY to the query. If you do not specify FOR READ ONLY or
FOR FETCH ONLY, the way in which DB2 uses the cursor determines whether it
uses block fetch. For scrollable cursors, the sensitivity of the cursor and the bind
options affect whether DB2 can use block fetch.

322 Introduction to DB2 for z/OS

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_chooseisolationoption.htm#db2z_chooseisolationoption
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_groupbyclause.htm#db2z_sql_groupbyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_havingclause.htm#db2z_sql_havingclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_readonlyclause.htm#db2z_sql_readonlyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whereclause.htm#db2z_sql_whereclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

Related concepts:

Limited block fetch (DB2 Performance)

Continuous block fetch (DB2 Performance)
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Ensuring block fetch (DB2 Performance)
Related reference:

read-only-clause (DB2 SQL)

DECLARE CURSOR (DB2 SQL)

Rowset fetches and inserts
For rowset-positioned cursors, when the cursor is opened for rowset processing,
the answer set is returned in a single query block. The query block contains exactly
the number of rows that are specified for the rowset.

Because a rowset is returned in a single query block, the size of a rowset is limited
to 10 MB. This rowset size minimizes the impact to the network when retrieving a
large rowset with a single fetch operation.

Rowset-positioned cursors also allow multiple-row inserts. The INSERT statement,
in addition to the FOR n ROWS clause, inserts multiple rows into a table or view,
by using values that host-variable arrays provide. With multiple-row inserts, rather
than INSERT statements being sent for each individual insert, all insert data is sent
in a single network message.
Related concepts:
“Row retrieval with a cursor” on page 165
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Optimization for large and small result sets
Several options on the SELECT statement let you limit the number of rows that are
returned to a client program.

Enabling a DB2 client to request that multiple query blocks on each transmission
can reduce network activity and improve performance significantly for applications
that use DRDA access to download large amounts of data.

You can specify a large value of n in the OPTIMIZE FOR n ROWS clause of a
SELECT statement to increase the number of DRDA query blocks that a DB2 server
returns in each network transmission for a nonscrollable cursor.

If n is greater than the number of rows that fit in a single DRDA query block, the
OPTIMIZE FOR n ROWS clause lets the DRDA client request multiple blocks of
query data on each network transmission instead of requesting another block when
the first block is full. This use of the OPTIMIZE FOR n ROWS clause is intended
for applications that open a cursor and download large amounts of data. The
OPTIMIZE FOR n ROWS clause does not affect scrollable cursors.

Chapter 11. Distributed data access 323

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_limitedblockfetch.htm#db2z_limitedblockfetch
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_continuousblockfetchintro.htm#db2z_continuousblockfetchintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_ensureblockfetch.htm#db2z_ensureblockfetch
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_readonlyclause.htm#db2z_sql_readonlyclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarecursor.htm#db2z_sql_declarecursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

When a client does not need all the rows from a potentially large result set,
preventing the DB2 server from returning all the rows for a query can reduce
network activity and improve performance significantly for DRDA applications.
You can use either the OPTIMIZE FOR n ROWS clause or the FETCH FIRST n
ROWS ONLY clause of a SELECT statement to limit the number of rows that are
returned to a client program.
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)

Fetching a limited number of rows (DB2 Performance)
Related reference:

optimize-clause (DB2 SQL)

fetch-first-clause (DB2 SQL)

Performance improvements for dynamic SQL
There are several techniques that can help you to improve performance for
dynamic SQL applications.

You can improve performance for dynamic SQL applications in a distributed
environment in the following ways:
v Use pureQuery to execute SQL.

With pureQuery you can redirect dynamic queries to become static. You can also
use pureQuery to lock in access plans, and choose an execution mode of either
static or dynamic.

v Enable dynamic statement caching.
You can use dynamic statement caching to give more static functionality to
dynamic SQL statements. Dynamic statement caching saves statements that are
already prepared and reuses them when identical statements are called. Dynamic
statements can be cached when they have passed the authorization checks if the
dynamic statement caching is enabled on your system.

v Use the REOPT command.
You can also use the REOPT command to control when an SQL statement
optimizes its access path. This makes the SQL statement behave more statically
or dynamically and allows you to customize when and how to optimize your
SQL statements.

v Specify the DEFER(PREPARE) option.
DB2 does not prepare a dynamic SQL statement until the statement runs. For
dynamic SQL that is used in DRDA access, consider specifying the
DEFER(PREPARE) option when you bind or rebind your plans or packages.
When a dynamic SQL statement accesses remote data, the PREPARE and
EXECUTE statements can be transmitted together over the network together and
processed at the remote server. The remote server can then send responses to
both statements to the local subsystem together, thereby reducing network
traffic.

v Eliminate the WITH HOLD option.
Defining a cursor WITH HOLD requires sending an extra network message to
close the cursor. You can improve performance by eliminating the WITH HOLD

324 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_fetchfirstnrows.htm#db2z_fetchfirstnrows
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_optimizeforclause.htm#db2z_sql_optimizeforclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetchfirstclause.htm#db2z_sql_fetchfirstclause

option when your application doesn't need to hold cursors open across a
commit. This recommendation is particularly true for dynamic SQL applications.

Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Chapter 11. Distributed data access 325

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

326 Introduction to DB2 for z/OS

Chapter 12. Data sharing with your DB2 data

The data sharing function of DB2 for z/OS enables applications that run on more
than one DB2 for z/OS subsystem to read from and write to the same set of data
concurrently.

DB2 subsystems that share data must belong to a DB2 data sharing group, which
runs on a zSeries Parallel Sysplex cluster. A data sharing group is a collection of one
or more DB2 subsystems that access shared DB2 data.

A Parallel Sysplex is a cluster of z/OS systems that communicate and cooperate
with each other. The Parallel Sysplex is a highly sophisticated cluster architecture.
It consists of two key pieces of technology:

Coupling facility
Provides specialized hardware, specialized high-speed links and adaptors,
and a shared, nonvolatile electronic storage for fast intersystem data
sharing protocols.

Sysplex Timer®

Provides a common time source across all the systems in the cluster,
thereby delivering an efficient way to provide log-record sequencing and
event ordering across the different systems.

The coupling facility and the Sysplex Timer are exclusive to the System z
environment. They provide strong performance and scalability in a multisystem
clustered DBMS environment with shared disks.

Each DB2 subsystem that belongs to a particular data sharing group is a member of
that group. All members of a data sharing group use the same shared DB2 catalog.

You can use some capabilities that are described in this information regardless of
whether you share data. The term data sharing environment refers to a situation in
which a data sharing group is defined with at least one member. In a
non-data-sharing environment, no group is defined.
Related concepts:
“Availability and scalability for large businesses” on page 1

Advantages of DB2 data sharing
You can use data sharing to enhance the capabilities of DB2.

DB2 data sharing improves DB2 availability, enables scalable growth, and provides
more flexible ways to configure your environment. You don't need to change SQL
in your applications to use data sharing, although you might need to do some
tuning for optimal performance.

© Copyright IBM Corp. 2001, 2013 327

Related concepts:

Advantages of DB2 data sharing (DB2 Data Sharing Planning and
Administration)

Improved availability of data
DB2 data sharing helps you meet your service objective by improving availability
during both planned and unplanned outages.

As the following figure illustrates, if one subsystem fails, users can access their
DB2 data from another subsystem. Transaction managers are informed that DB2 is
down and can switch new user work to another DB2 subsystem in the group. For
unplanned outages, the z/OS automatic restart manager can automate restart and
recovery.

Although the increased availability of DB2 has some performance cost, the
overhead for interprocessor communication and caching changed data is
minimized. DB2 provides efficient locking and caching mechanisms and uses
coupling facility hardware. A coupling facility is a special logical partition that runs
the coupling facility control program. It provides high-speed caching, list
processing, and locking functions in a Sysplex. The DB2 structures in the coupling
facility benefit from high availability. The coupling facility uses automatic structure
rebuild and duplexing of the structures that are used for caching data.
Related concepts:

Advantages of DB2 data sharing (DB2 Data Sharing Planning and
Administration)

Scalable growth
As you move more data processing into a DB2 environment, your processing needs
can exceed the capacity of a single system. Data sharing might relieve that
constraint.

DB2 for z/OS is optimized to use your existing hardware more efficiently and
manage a larger workload. DB2 now has more 64 bit storage, and supports more

CPC 1
DB2A

CPC 2
DB2B

Data

Figure 54. How data sharing improves availability during outages. If a DB2 subsystem or the
entire central processor complex (CPC) fails, work can be routed to another system.

328 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing

concurrent threads than previous versions. These improvements greatly increase
the capabilities of a single system, which reduces the cost of new hardware,
software, and maintenance. However, there are several ways to scale the
capabilities of your system to meet your business needs.

Without data sharing

Without DB2 data sharing, you have the following options:
v Copy the data, or split the data into separate DB2 subsystems.

This approach requires that you maintain separate copies of the data. No
communication takes place among DB2 subsystems, and the DB2 catalog is not
shared.

v Install another DB2 subsystem, and rewrite applications to access the original
data as distributed data.
This approach might relieve the workload on the original DB2 subsystem, but it
requires changes to your applications and has performance overhead of its own.
Nevertheless, for DB2 subsystems that are separated by great distance or for a
DB2 subsystem that needs to share data with a system that outside the data
sharing group, the distributed data facility is still your only option.

v Install a larger processor and move data and applications to that machine.
This option can be expensive. In addition, this approach requires your system to
come down while you move to the new, larger machine.

With data sharing

With DB2 data sharing, you can take advantage of the following benefits:

Incremental growth
The Parallel Sysplex cluster can grow incrementally. You can add a new
DB2 subsystem onto another central processor complex and access the
same data through the new DB2 subsystem. You no longer need to manage
copies or distribute data. All DB2 subsystems in the data sharing group
have concurrent read-write access, and all DB2 subsystems use a single
DB2 catalog.

Workload balancing
DB2 data sharing provides flexibility for growth and workload balancing.
With the partitioned data approach to parallelism (sometimes called the
shared-nothing architecture), a one-to-one relationship exists between a
particular DBMS and a segment of data. By contrast, data in a DB2 data
sharing environment does not need to be redistributed when you add a
new subsystem or when the workload becomes unbalanced. The new DB2
member has the same direct access to the data as all other existing
members of the data sharing group.

DB2 works closely with the z/OS Workload Manager (WLM) to ensure
that incoming work is optimally balanced across the systems in the cluster.
WLM manages workloads that share system resources and have different
priorities and resource-use characteristics.

Example: Assume that large queries with a low priority are running on the
same system as online transactions with a higher priority. WLM can ensure
that the queries do not monopolize resources and do not prevent the
online transactions from achieving acceptable response times. WLM works
in both a single-system and a multisystem (data sharing) environment.

Chapter 12. Data sharing with your DB2 data 329

Capacity when you need it
A data sharing configuration can handle your peak loads. You can start
data sharing members to handle peak loads, such as end-of-quarter
processing, and then stop them when the peak passes.

You can take advantage of all these benefits, whether your workloads are for
online transaction processing (OLTP), or a mixture of OLTP, batch, and queries.

Higher transaction rates

Data sharing gives you opportunities to put more work through the system. As the
following figure illustrates, you can run the same application on more than one
DB2 subsystem to achieve transaction rates that are higher than are possible on a
single subsystem.

Related concepts:

Advantages of DB2 data sharing (DB2 Data Sharing Planning and
Administration)

Flexible configurations
When you use DB2 data sharing, you can configure your system environment
much more flexibly.

As the following figure shows, you can have more than one DB2 data sharing
group on the same z/OS Sysplex. You might, for example, want one group for
testing and another for production data.

Data

Saturated system Growth

CPC 1
DB2A

CPC 2
DB2B

Figure 55. How data sharing enables growth. You can move some of your existing DB2 workload onto another central
processor complex (CPC).

330 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing

You can also run multiple members on the same z/OS image (not shown in this
figure).

Flexible operational systems

The following figure shows how, with data sharing, you can have query user
groups and online transaction user groups on separate z/OS images. This
configuration lets you tailor each system specifically for that user set, control
storage contention, and provide predictable levels of service for that set of users.
Previously, you might have needed to manage separate copies of data to meet the
needs of different user groups.

User
data

User
data

z/OS Parallel Sysplex

User
data

User
data

User
data DB2

catalog

z/OS

DB2

z/OS

DB2

z/OS

DB2

z/OS

DB2

DB2 group 1

DB2 group 2

Non-sharing DB2

z/OS

DB2

z/OS

DB2

DB2
catalog

DB2
catalog

Figure 56. A possible configuration of DB2 data sharing groups. Although this example shows one DB2 for each z/OS
system, your environment could have more.

Chapter 12. Data sharing with your DB2 data 331

Flexible decision support systems

The following figure shows two different decision support configurations. A typical
configuration separates the operational data from the decision support data. Use
this configuration when the operational system has environmental requirements
that are different from those of the decision support system. The decision support
system might be in a different geographical area, or security requirements might be
different for the two systems.

DB2 offers another option—a combination configuration. A combination configuration
combines your operational and decision support systems into a single data sharing
group and offers these advantages:
v You can occasionally join decision support data and operational data by using

SQL.
v You can reconfigure the system dynamically to handle fluctuating workloads.

For example, you might choose to dedicate CPCs to decision support processing
or operational processing at different times of the day or year.

v You can reduce the cost of computing:
– The infrastructure that is used for data management is already in place.
– You can create a prototype of a decision support system in your existing

system and then add processing capacity as the system grows.

z/OS

DB2
query

z/OS

DB2
online

z/OS

DB2
online

Table
space

X

Table
space

X

Table
space

X

Without data sharing

Table
space

X

z/OS

DB2
query

z/OS

DB2
online

z/OS

DB2
online

With data sharing

Figure 57. Flexible configurations with DB2 data sharing. Data sharing lets each set of users access the same data,
which means that you no longer need to manage multiple copies.

332 Introduction to DB2 for z/OS

To set up a combination configuration, separate decision support data from
operational data as much as possible. Buffer pools, disks, and control units that
you use in your decision support system must be separate from those that you use
in your operational system. This separation greatly minimizes any negative
performance impact on the operational system.

If you are unable to maintain that level of separation or if you have separated your
operational data for other reasons such as security, using a separate decision
support system is your best option.

Flexibility to manage shared data

Data sharing can simplify the management of applications that must share some
set of data, such as a common customer table. Maybe these applications were split
in the past for capacity or availability reasons. But with the split architecture, the
shared data must be kept in synch across the multiple systems (that is, by
replicating data).

Data sharing gives you the flexibility to configure these applications into a single
DB2 data sharing group and to maintain a single copy of the shared data that can
be read and updated by multiple systems with good performance. This option is

Operational system
(Data sharing group)

Decision support system
(Data sharing group)

Operational
data

Decision
support

data

DB2

DB2
DB2

DB2

DB2
DB2

DB2

DB2
DB2

DB2

DB2
DB2

CPC

CPC
CPC

CPC

CPC
CPC

CPC

CPC
CPC

CPC

CPC
CPC

Cleanse and
denormalize

Operational
data

Decision
support

data

Combination configuration
(Data sharing group)

Typical configuration

Operational system

Decision support system

Heavy
access

Heavy
access

Cleanse and
denormalize

Light
access

Light
access

DB2DB2DB2 DB2

CPCCPC CPC CPC

Figure 58. Flexible configurations for decision support. DB2 data sharing lets you configure your systems in the way
that works best within your environment.

Chapter 12. Data sharing with your DB2 data 333

especially powerful when businesses undergo mergers or acquisitions or when
data centers are consolidated.
Related concepts:

Advantages of DB2 data sharing (DB2 Data Sharing Planning and
Administration)

Protected investments in people and skills
Your investment in people and skills is protected when you use DB2 data sharing
because existing SQL interfaces and attachments remain intact when sharing data.

You can bind a package or plan on one DB2 subsystem and run that package or
plan on any other DB2 subsystem in a data sharing group.
Related concepts:

Advantages of DB2 data sharing (DB2 Data Sharing Planning and
Administration)

How DB2 protects data consistency in a data sharing environment
Applications can access data from any DB2 subsystem in a data sharing group.
Many subsystems can potentially read and write the same data. DB2 uses special
data sharing mechanisms for locking and caching to ensure data consistency.

When multiple members of a data sharing group have opened the same table
space, index space, or partition, and at least one of them has opened it for writing,
the data is said to be of inter-DB2 read-write interest to the members. (Sometimes
this information uses the term inter-DB2 interest.) To control access to data that is of
inter-DB2 interest, whenever the data is changed, DB2 caches it in a storage area
that is called a group buffer pool (GBP).

DB2 dynamically detects inter-DB2 interest, which means that DB2 can invoke
intersystem data sharing protocols only when data is actively read-write shared
between members. DB2 can detect when data is not actively intersystem read-write
shared. In these cases, data sharing locking or caching protocols are not needed,
which can result in better performance.

When inter-DB2 read-write interest exists in a particular table space, index, or
partition, this inter-DB2 read-write interest is dependent on the group buffer pool, or
group buffer pool dependent.

You define group buffer pools by using coupling facility resource management
(CFRM) policies.

The following figure shows the mapping that exists between a group buffer pool
and the buffer pools of the group members. For example, each DB2 subsystem has
a buffer pool named BP0. For data sharing, you must define a group buffer pool
(GBP0) in the coupling facility that maps to buffer pool BP0. GBP0 is used for
caching the DB2 catalog table space and its index, and any other table spaces,
indexes, or partitions that use buffer pool BP0.

334 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_advantagesdatasharing.htm#db2z_advantagesdatasharing

The same group buffer pool cannot reside in more than one coupling facility
(unless it is duplexed).

When a particular page of data is changed, DB2 caches that page in the group
buffer pool. The coupling facility invalidates any image of the page that might
exist in the buffer pools that are associated with each member. Then, when another
DB2 subsystem subsequently requests that same data, that DB2 subsystem looks
for the data in the group buffer pool.

Performance benefits
The coupling facility provides fast, global locking operations for
concurrency control. The Parallel Sysplex offers the following performance
and scalability benefits:
v Changed pages are written synchronously to the coupling facility,

without the process switching that is associated with disk I/O.
v Buffer invalidation signals are sent and processed without causing any

processor interrupts, unlike message-passing techniques.
v A fast hardware instruction detects invalidated buffers, and the coupling

facility can refresh invalidated buffers synchronously with no process
switching overhead, unlike disk I/O.

Performance options to fit your application's needs
Although the default behavior is to cache only the updated data, you also
have options of caching all or none of your data. You even have the option
to cache large object (LOB) data.

Related concepts:

How DB2 protects data consistency (DB2 Data Sharing Planning and
Administration)

How updates are made in a data sharing environment
There are several steps to the update process in a data sharing environment.

Buffer pool 0

Buffer pool 1

Buffer pool n

Buffer pool 0

Buffer pool 1

Buffer pool n

DB2A DB2BCoupling facility

Data

Group buffer
pool 0

Group buffer
pool n

Group buffer
pool 1

Figure 59. Relationship of buffer pools to group buffer pools. One group buffer pool exists for all buffer pools of the
same name.

Chapter 12. Data sharing with your DB2 data 335

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_protectdataconsistency.htm#db2z_protectdataconsistency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_protectdataconsistency.htm#db2z_protectdataconsistency

You might be interested to know what happens to a page of data as it goes
through the update process. The most recent version of the data page is shaded in
the illustrations. This scenario also assumes that the group buffer pool is used for
caching only the changed data (the default behavior) and that it is duplexed for
high availability. Duplexing is the ability to write data to two instances of a group
buffer pool structure: a primary group buffer pool and a secondary group buffer pool.

Suppose, that as the following figure shows, an application issues an UPDATE
statement from DB2A and that the data does not reside in the member's buffer
pool or in the group buffer pool. In this case, DB2A must retrieve the data from
disk and update the data in its own buffer pool. Simultaneously, DB2A gets the
appropriate locks to prevent another member from updating the same data at the
same time. After the application commits the update, DB2A releases the
corresponding locks. The changed data page remains in DB2A's buffer pool.
Because no other DB2 subsystem shares the table at this time, DB2 does not use
data sharing processing for DB2A's update.

Next, suppose that another application, which runs on DB2B, needs to update that
same data page. (See the following figure.) DB2 knows that inter-DB2 interest
exists, so when DB2A commits the transaction, DB2 writes the changed data page
to the primary group buffer pool. The write to the backup (secondary) group
buffer pool is overlapped with the write to the primary group buffer pool. DB2B
then retrieves the data page from the primary group buffer pool.

GBP4

DB2A DB2B DB2C

BP4 BP4 BP4

UPDATE EMP
SET JOB = 'DES'
WHERE EMPNO = '000140'

Coupling facility Coupling facility

GBP4-SEC

Shared disks

Figure 60. Data is read from disk and updated by an application that runs on DB2A

336 Introduction to DB2 for z/OS

After the application that runs on DB2B commits the update, DB2B moves a copy
of the data page into the group buffer pool (both primary and secondary), and the
data page is invalidated in DB2A's buffer pool. (See the following figure.)
Cross-invalidation occurs from the primary group buffer pool.

DB2A DB2B DB2C

BP4 BP4 BP4

UPDATE EMP
SET DEPTNO = 'E21'
WHERE EMPNO = '000140'

Coupling facility

GBP4-SEC

Coupling facility Shared disks

Figure 61. How DB2B updates the same data page. When DB2B references the page, it gets the most current version
of the data from the primary group buffer pool.

Chapter 12. Data sharing with your DB2 data 337

Now, as the following figure shows, when DB2A needs to read the data, the data
page in its own buffer pool is not valid. Therefore, it reads the latest copy from the
primary group buffer pool.

Shared disks

DB2A DB2B DB2C

BP4 BP4 BP4

Coupling facility

GBP4-SEC

Coupling facility

COMMIT

Figure 62. The updated page is written to the group buffer pool. The data page is invalidated in DB2A's buffer pool.

SELECT JOB
FROM EMP
WHERE EMPNO = '000140'

Coupling facility

GBP4-SEC

Shared disks

DB2A DB2B DB2C

BP4 BP4 BP4

Coupling facility

GBP4

Figure 63. DB2A reads data from the group buffer pool

338 Introduction to DB2 for z/OS

Unlike disk-sharing systems that use traditional disk I/O and message-passing
techniques, the coupling facility offers these advantages:
v The group buffer pool interactions are CPU-synchronous. CPU-synchronous

interactions provide good performance by avoiding process-switching overhead
and by maintaining good response times.

v The cross-invalidation signals do not cause processor interrupts on the receiving
systems; the hardware handles them. The signals avoid process-switching
overhead and CPU cache disruptions that can occur if processor interrupts are
needed to handle the incoming cross-invalidations.

Related concepts:

How an update happens (DB2 Data Sharing Planning and Administration)

How DB2 writes changed data to disk in a data sharing environment
Periodically, DB2 must write changed pages from the group buffer pool to disk.
This process is called castout. The castout process runs in the background without
interfering with transactions.

Suppose that DB2A is responsible for casting out the changed data. That data must
first pass through DB2A's address space because no direct connection exists
between the coupling facility and disk. (See the following figure.) This data passes
through a private buffer, not through the DB2 buffer pools.

When a group buffer pool is duplexed, data is not cast out from the secondary
group buffer pool to disk. When a set of pages is written to disk from the primary
group buffer pool, DB2 deletes those pages from the secondary group buffer pool.

Coupling facility

GBP4-SEC

Shared disks

DB2A DB2B DB2C

BP4 BP4 BP4

Coupling facility

GBP4

Figure 64. Writing data to disk

Chapter 12. Data sharing with your DB2 data 339

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_howupdatehappens.htm#db2z_howupdatehappens

Related concepts:

How DB2 writes changed data to disk (DB2 Data Sharing Planning and
Administration)

Ways that other tasks are affected by data sharing
Because data sharing does not change the application interface, application
programmers and users have no new tasks. However, some programming,
operational, and administrative tasks are unique to the data sharing environment.

The following tasks are unique to the data sharing environment:
v Establishing a naming convention for groups, group members, and resources
v Assigning new members to a data sharing group
v Merging catalog information when data from existing DB2 subsystems moves

into a data sharing group

Because the DB2 catalog is shared, data definition, authorization, and control is the
same as for non-data-sharing environments. An administrator needs to ensure that
every object has a unique name, considering that existing data might be merged
into a group. The data needs to reside on shared disks.

Ways that availability is affected by data sharing
Data sharing can provide data availability during an outage, maintain coupling
facility availability, and duplex group buffer pools.

Availability during an outage

A significant availability benefit during a planned or unplanned outage of a DB2
group member is that DB2 data remains available through other group members.
Some common situations when you might plan for an outage include applying
software maintenance, changing a system parameter, or migrating to a new release.
For example, during software maintenance, you can apply the maintenance to one
member at a time, which leaves other DB2 members available to do work.

Coupling facility availability

When planning your data sharing configuration for the highest availability, you
must monitor the physical protection of the coupling facility and the structures
within the coupling facility.

For high availability, you must have at least two coupling facilities. One of
coupling facility must be physically isolated. The isolated coupling facility must
reside in a CPC that does not also contain a DB2 member that is connected to
structures in that coupling facility. With at least two coupling facilities, you can
avoid a single point of failure.

Duplexing group buffer pools

With more than one coupling facility, you can also consider duplexing the group
buffer pools. With duplexing, a secondary group buffer pool is available on
standby in another coupling facility, ready to take over if the primary group buffer
pool structure fails or if a connectivity failure occurs.

340 Introduction to DB2 for z/OS

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_writeschangeddata.htm#db2z_writeschangeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_writeschangeddata.htm#db2z_writeschangeddata

Running some or all of your group buffer pools in duplex mode is one way to
achieve high availability for group buffer pools across many types of failures,
including lost connections and damaged structures.

Chapter 12. Data sharing with your DB2 data 341

342 Introduction to DB2 for z/OS

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 2001, 2013 343

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

344 Introduction to DB2 for z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2001, 2013 345

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you to learn about and plan to use DB2 11 for
z/OS. This information also documents General-use Programming Interface and
Associated Guidance Information provided by DB2 11 for z/OS.

346 Introduction to DB2 for z/OS

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the

Notices 347

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

348 Introduction to DB2 for z/OS

http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 2001, 2013 349

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

350 Introduction to DB2 for z/OS

Index

Numerics
64-bit storage 59

A
access control

data set protection 285
multilevel security 289
outside DB2 285
within DB2 285

access paths 274
defined 267
determining 273
using EXPLAIN 268

accessibility
keyboard x
shortcut keys x

active logs 39
activity sample table 131
address spaces 61
administrative authority 286
aggregate functions 97

aggregate values
calculating 97

nesting scalar functions 99
aliases 316

compared to three-part names 317
ALTDATE user-defined function

sample 194
ALTER INDEX statement 209
ALTER PROCEDURE statement 179
ALTER TABLE statement 181

check constraints
defining 202

DEFAULT clause 199
referential structures 246

ALTTIME user-defined function
sample 194

AND operator
described 107
using NOT with 107
using parentheses with 107

application designers
promoting concurrency 265

application development tools
Data Studio 13
Rational Application Developer for WebSphere

Software 13
Rational Developer for System z 13
WebSphere Studio Application Developer 13

application packages
privileges 286

application performance
analyzing 269

application plans 51
privileges 282, 286

application processes 48, 55
application programming

performance
for application programmers 157

application programming (continued)
performance (continued)

recommendations 157
performance recommendations 157

application programs
bind 158
compile 158
CURRENT PACKAGE PATH special register 158
data communication coding 65
database request module (DBRM) 158
link-edit 158
load module 158
package 158
precompile 158
precompiler 158
preparing 158
recovery 48
running 158
special registers 158
using as stored procedures 175
writing 153, 155

integrated development environments 153
application-period temporal tables 182, 189
archive logs 39
archive table

description 185
archive tables 182
archive-enabled table

description 185
archive-enabled tables 182
ARCHIVESENSITIVE bind option

effect 185
AS clause 91
ASCII

encoding schemes 198
Assembler 155

stored procedures
programming 175

use with static SQL 162
associative tables 85
attachment facilities 64
attributes

choosing data types 76
default values 78
domains

defining 78
naming 76
null values 78
values

determining 78
authentication

CONNECT statement 285
mechanisms 284

authorization hierarchy 286
authorization IDs 281

CURRENT SQLID 281
explicit privileges 286
primary 281
privileges 280, 282

administrative authority 282
application plans 282

© Copyright IBM Corp. 2001, 2013 351

authorization IDs (continued)
privileges (continued)

authorization hierarchy 286
granting 290
objects 282
packages 282
related privileges 282
revoking 290

secondary 281
three-part names 315

authorized program facility (APF) 278
automatic query rewrite 188
Automatic Restart Manager 300
auxiliary tables 182
availability features 1
AVG function 97

B
backup and recovery

BACKUP SYSTEM utility 293
backups and data checks

scheduling 296
bootstrap data set (BSDS) 293
commit operations 297
coordinators 299
COPY utility 292
data consistency 297
database changes 297
disaster recovery 300
log usage 293
maintaining consistency 299
optimizing availability 300
overview 292
participants 299
RECOVER utility 292, 299
REORG utility 292
REPORT utility 292
rollback operations 297
tools 293
utilities 293

base table spaces 212
base tables 182

creating 186
binding

options 318
SQL statements 21

BIT string subtype 191
bitemporal tables 182, 189
BLOB

length 191
LOB data type 196

block fetch 322
continuous 322
improving performance 322
limited 322

bootstrap data set (BSDS)
overview 40
usage 293

buffer pools 254
described 40
size 254

business intelligence 4
business partners 6
business rules

applying to relationships 76
enforcing 42, 47, 247

business rules (continued)
triggers 47

C
C 155

stored procedures
programming 175

use with static SQL 162
C++ 155

stored procedures
programming 175

use with static SQL 162
caching data 254
CAF (Call Attachment Facility) 68
Call Level Interface (CLI) 23
CALL statement

execution methods 180
stored procedures

invoking 175, 180
CASE expressions 101
castout process 339
catalog tables 37

SYSIBM.SYSCOPY 299
SYSIBM.SYSDATABASE 241
SYSIBM.SYSINDEXPART 257
SYSIBM.SYSTABLEPART 257
SYSIBM.SYSTABLES 182
SYSIBM.SYSTABLESPACE 214

catalogs 37
CDB (communications database) 37
character strings 106, 191
check constraints 42, 47, 202

column values
enforcing validity 202

inserting rows into tables 202
updating tables 203

CHECK DATA utility 243, 247, 296
CHECK INDEX utility 296
CHECK utility 296
CICS (Customer Information Control System)

attachment facility 65
commands 278
operating

recovery from system failure 65
XRF (extended recovery facility) 65

CLI (Call Level Interface) 23
client APIs

DB2 Database Add-Ins for Visual Studio 18
JDBC 18
ODBC 18
SQLJ 18
web services 18

CLOB 191
LOB data type 196

cluster technology 1
DB2 product support 9
Parallel Sysplex 59, 327

clustering indexes
implementing 227
performance considerations 257

clusters 9
COALESCE function 122
COBOL 155

stored procedures
programming 175

use with static SQL 162

352 Introduction to DB2 for z/OS

column definitions 190
components of

datetime data types 194
ROWID data type 196
string data types 191

distinct types 197
large object (LOB) data types 196

column functions 97
columns 190

as sort keys 110
calculating values 96
choosing a data type 191
values

enforcing validity 202
commands 278

prefixes 278
commit operations 48, 55

points of consistency 297
COMMIT statement 297
communications database (CDB) 37, 284
comparison operators 105
complex queries 328
composite keys 27
COMPRESS clause

ALTER TABLESPACE statement 256
compression of data 256
concepts 21
concurrency

application design
concurrency recommendations 267

basic recommendations
for application designers 267
for database designers 266

database design
concurrency recommendations 266

locking 260
concurrency control 265

promoting
application designers 265
database designers 265

CONNECT statement 180
authenticating users 283
DRDA access 313
explicit 314

constraints
types 42

continuous block fetch 322
continuous operation

restart processing 296
coordinating updates

transaction manager support 319
two-phase commit

servers not supporting 320
servers supporting 320

COPY utility 207, 293
COUNT function 97
coupling facility 328, 334

coupling facility resource management (CFRM)
policies 334

CREATE ALIAS statement 316
CREATE AUXILIARY TABLE statement 240
CREATE DATABASE statement 33

INDEXBP clause 241
CREATE DISTINCT TYPE statement 197
CREATE FUNCTION statement 100
CREATE GLOBAL TEMPORARY TABLE statement 182
CREATE INDEX statement 209, 225, 227

CREATE INDEX statement (continued)
CLUSTER clause 227
ENDING AT clause 233
NOT PADDED clause 229
PADDED clause 229

CREATE LOB TABLE statement 240
CREATE PROCEDURE statement 179
CREATE SEQUENCE statement 53
CREATE STOGROUP statement 218
CREATE TABLE statement 181

base tables
creating 186

BUFFERPOOL clause 241
check constraints

defining 202
DEFAULT clause 199
FOREIGN KEY clause 246
LOB columns, defining 240
NOT NULL clause 198
PARTITION BY clause 188, 232
PARTITION ENDING AT clause 188
PRIMARY KEY clause 246
table spaces

creating implicitly 214
XML table spaces

creating implicitly 215
CREATE TABLESPACE statement

COMPRESS clause 256
DSSIZE clause 209, 211
EA-enabled index spaces 211
EA-enabled table spaces 211
LOCKSIZE ANY clause 265
LOCKSIZE TABLE clause 207
NUMPARTS clause 212
partitioned table spaces 209
segmented table spaces 207
SEGSIZE clause 207

CREATE VIEW statement 237, 238
WITH CHECK OPTION clause 239

created temporary tables 186
defining 186

CURRENT PACKAGE PATH special register 158
CURRENT SQLID 281
cursor stability (CS) 265
cursors 165

row-positioned 165, 323
scrollable 165
WITH HOLD option 324

Customer Information Control System (CICS)
attachment facility 65

D
data

accessing
not in a table 124
with host structures 165
with host variable arrays 164
with host variables 163

controlling access 285
joining 116
modifying 125, 126, 127
reorganizing 257

guidelines 257
selecting from columns 91
updating 126

Index 353

data access
authorization IDs 281, 285

CURRENT SQLID 281
primary 281
privileges 282
secondary 281

controlling access 285
with views 289

on demand business, and 303
data access control

data set protection 285
outside DB2 285
within DB2 285

data caching 254
data checks

scheduling 296
data compression 256
Data Facility Storage Management Subsystem (DFSMS) 209
Data Language I (DL/I)

batch features 66
data mining 4
data modeling

diagrams 83
entity-relationship model 71, 83
examples 71
overview 71
recommendations 71
tools 83
Unified Modeling Language (UML) 83

data organization
performance 257

data reorganization
clustering 257
free space 257
I/O activity 257
page gaps 257
REORG utility thresholds 257
unused space 257

data replication 17
data servers

middleware components 14
data set protection 285
data sets

managing 280
data sharing 327, 328

advantages 327, 334
availability 340

coupling facility availability 340
duplexing group buffer pools 340
during an outage 340

changed data 339
coupling facility 328
data consistency 334
environment 1, 327
flexible configurations 330
flexible decision support systems 330
flexible operational systems 330
improved availability 328
managing shared data 330
Parallel Sysplex environment 327
scalable growth 328

transaction rates 328
tasks affected by 340

data sharing environments
update process 336

data sharing groups 69, 327
data sources 11

data structures
databases 33
hash spaces 37
hierarchy 24
index spaces 36
indexes 26
keys 27
table spaces 35
tables 182
types 24
views 29

Data Studio 13, 153, 277
data types 76

BIGINT 193
BLOB 191, 196
built-in 191
CHAR 191, 194
CLOB 196
comparing 198
datetime 76, 194
DBCLOB 196
distinct types 197
GRAPHIC 191
large object (LOB) 196
numeric 76, 193
ROWID 196
SMALLINT 193
string 76, 191

encoding schemes 198
string subtypes 191
VARCHAR 191, 196

compared to CHAR 191
VARGRAPHIC 191

storage limit 196
XML 195

data warehousing 4
data-partitioned secondary index (DPSI) 235, 236
database connection services (DCS) 285
database descriptors 38

contents 38
database design

hash access 89
implementing 181
indexes 88, 221
large objects 240
logical 71

entity-relationship model 71
Unified Modeling Language (UML) 83

logical data modeling 71
physical 85

entity-relationship model 85
physical data modeling 71
referential constraints 242
table spaces 204
tables 181

database designers
promoting concurrency 265

Database Explorer 130
database request module (DBRM) 51
databases

creating 33, 241
default databases 33
lock operations 33
overview 33
starting 33
stopping 33
users who need their own 33

354 Introduction to DB2 for z/OS

DataPropagator NonRelational (DPropNR) 66
DATE data type 194
datetime data types 76, 194
DB2 .NET Data Provider 154
DB2 Administration Tool 278
DB2 Automation Tool 279
DB2 Bind Manager 158
DB2 Buffer Pool Analyzer 253
DB2 Cloning Tool 279
DB2 commands 278
DB2 Connect 15

authentication mechanisms 285
DB2 Connect Enterprise Edition 15
DB2 Connect Personal Edition 5, 15
remote servers

accessing 319
requester to remote server 5

DB2 Control Center 6
DB2 data servers

DB2 for i 9
DB2 for Linux, UNIX, and Windows 9
DB2 for z/OS 9

DB2 Data Studio Administrator 11
DB2 Database

distributed editions 8
DB2 Database Add-Ins for Visual Studio 18
DB2 Database Personal Edition 9
DB2 databases 33
DB2 Development Add-Ins for Visual Studio .NET

integrated development environments 154
DB2 Enterprise Server Edition 8
DB2 Everyplace 9
DB2 Express Edition 8
DB2 for i 8, 9
DB2 for Linux, UNIX, and Windows 8, 9
DB2 High Performance Unload 279
DB2 information management 6

components 6
content management 6
DB2 databases 6
IBM strategy 6

DB2 Interactive (DB2I) 67, 278, 279
DB2 operations

managing 277
DB2 Optimization Expert 268
DB2 Path Checker 158
DB2 Performance Manager 253
DB2 Personal Edition 8
DB2 QMF Classic Edition 130
DB2 QMF Distributed Edition 130
DB2 QMF Enterprise Edition 130
DB2 QMF for Workstation 130

Database Explorer feature 130
query results 130
query-related features 130
SQL statements

entering and processing 130
DB2 Query Management Facility (QMF) 33, 130
DB2 Query Monitor 253
DB2 SQL Performance Analyzer 253, 268
DB2 subsystems

restarting 296, 300
scenarios 1

DB2 tools 11
DB2 utilities

overview 279
DB2 UTILITIES panel 279

DB2 Workgroup Server Edition 8
DB2-defined defaults 199
DB2I (DB2 Interactive) 279

panels 67
DBADM authority 181, 286
DBCLOB 191

LOB data type 196
DBCTRL authority 286
DBD01 directory table space

contents 38
DBMAINT authority 286
DDCS (data definition control support)

database 41
DDL (Data Definition Language) 21
deadlocks 55, 260

locks 48
uncommitted changes 48

DECFLOAT data type 193
DECIMAL data type 193
DECIMAL function 96, 98
DECLARE CURSOR statement 165
DECLARE GLOBAL TEMPORARY TABLE statement 182,

186
DECLARE statement 186
DECLARE TABLE statement 162
declared temporary tables 182

defining 186
default database (DSNDB04)

defining 33
default values 78, 198, 199

compared to null values 201
DB2-defined defaults 199
ROWID data type 199
user-defined default values 199

deferred embedded SQL 23, 169
DELETE statement

delete rules 245
role in caching 269
usage 127

denormalization 85
department sample table 132
dependent rows 43
dependent tables 43
development tools

IBM Data Studio 179, 277
Integrated Data Management 179

DFSMS (Data Facility Storage Management Subsystem) 63
DFSMSdfp

partitioned data set extended (PDSE) 63
DFSMShsm 300
directory 38

table space names 38
disability x
DISABLE ARCHIVE clause

in ALTER TABLE STATEMENT 185
disaster recovery 300
DISPLAY DATABASE RESTRICT command 257
DISTINCT keyword 91, 97
distinct types 197
distributed data 56

accessing 313
communication protocols 284
communications database (CDB) 313
Distributed Relational Database Architecture

(DRDA) 313
effects on planning 317
effects on program preparation 317, 318

Index 355

distributed data (continued)
accessing (continued)

effects on programming 317
planning considerations 317
remote servers 314
resource limit facility 317

block fetch 322
connectivity 57
coordinating updates 299, 319

transaction manager support 319
two-phase commit 320

dynamic SQL performance 324
network messages 322

minimizing 321
remote servers 56
rowset fetch 322

distributed data facility (DDF) 5, 68
distributed environments 313
Distributed Relational Database Architecture (DRDA) 68

connectivity 57
remote servers

accessing 313
security options 284
web access 5

distributed unit of work 57
DML (Data Manipulation Language) 21
domains 78
DOUBLE data type 193
double-byte character set (DBCS) 191
DPropNR (DataPropagator NonRelational) 66
DPSI (data-partitioned secondary index) 235, 236
DSN command of TSO

command processor
invoking 67

DSN command processor 67
invoking 67

DSN1COMP utility 256
DSNDB04 default database 33
dual logging 39
duplicates

eliminating 91, 113
retaining 113

dynamic scrollable cursors 165
dynamic SQL 22, 128, 155

applications 169
examples 170
writing 170

description 23
embedded 169
executing

with Java 172
with JDBC functions 169
with ODBC functions 169, 171

interactive 169
performance 324
types 169

E
EA-enabled index spaces 211
EA-enabled table spaces 211
EBCDIC

encoding schemes 198
embedded dynamic SQL 169
employee photo and resume sample table 137
employee sample table 134
employee-to-project activity sample table 141

ENABLE ARCHIVE clause
in ALTER TABLE STATEMENT 185

encoding schemes
ASCII 198
EBCDIC 198
Unicode 198

ENDING AT clause 233
Enterprise Storage Server (ESS) 59
entities

defining attributes 76
defining for relationships 74
normalizing 79

entity integrity 43
equality

selecting rows 104
set of columns

testing 104
testing 104

ETL capabilities
WebSphere DataStage 18
WebSphere QualityStage 18

exclusive lock (X-lock) 260
EXECUTE statement 171
exit routines 66
EXPLAIN statement

access paths
determining 273

EXPLAIN tool 253, 268
explicit privileges 286
expression-based 230
expression-based index 230
expressions 95

indexes 230
external functions 248
external SQL procedures 52
external stored procedures 52

F
federated database support

defined 11
WebSphere Information Integrator 16

fetch operations
block fetch 322
multiple-row fetch 165, 322
rowset fetches 323

FETCH statement 165
FICON channels 59
field-level access control 289
field-level sensitivity 289
first normal form 80
foreign keys 27
Fortran 155, 162
fourth normal form 82
FREEPAGE clause

data storage 257
index storage 257
segmented table space 207

FROM clause 94, 116
full image copies 293
full outer joins 116

examples 122
functions 52, 95

CHAR function 98
MAX function 97
SQLExecDirect() function 171
SQLPrepare() function 171

356 Introduction to DB2 for z/OS

functions (continued)
SUM function 97

G
general-use programming information, described 347
GET DIAGNOSTICS statement 168
GRANT statement 290
GRAPHIC data type 191
graphic strings 191
group buffer pools

described 40
duplexing 336, 340
GBP-dependent 334

GROUP BY clause 115
queries

simplifying 269
usage 112

GUPI symbols 347

H
hash access 37, 89, 274
hash spaces 37
HAVING clause 94, 115
high availability 54
history tables 182
host structures

accessing data 165
host variable arrays

accessing data 164
host variables

accessing data 124, 163
role in application performance 269

HTML (Hypertext Markup Language) 304
HTTP (Hypertext Transfer Protocol) 305

I
I/O activity

table spaces 257
IBM Data Studio 277

integrated development environments 153
IBM Database Enterprise Developer Edition 8
IBM Information Agenda 6
IBM Information Management 6

components 6
IBM Informix 8
identity columns 193
implicitly created objects

for XML columns 215
implicitly created table spaces

overview 214
IMS (Information Management System)

application programming 66
attachment facility 66
commands 278
connecting to DB2 66
recovery from system failure 66
system administration 66

IN predicate 109
incremental image copies 293
index attributes 224
index keys 223
index spaces 36
index types 221

index types (continued)
unique indexes 231

indexes 26, 221, 230
access through 269
attributes 224

partitioned tables 232
backward index scan 222
clustering 227
compressing 230
creating 221
defining

with composite keys 223
forward index scan 222
indexes

data-partitioned secondary index (DPSI) 234
nonpartitioned secondary index (NPSI) 234

nonpartitioned 232
nonunique 227
not padded

advantages 229
disadvantages 229
index-only access 229
varying-length columns 229

NULL keys
excluding 229

padded 229
partitioned 232
partitioning 233
secondary 232

data-partitioned secondary index (DPSI) 234, 235, 236
nonpartitioned secondary index (NPSI) 234, 236

selecting columns 88
selecting expressions 88
sorts

avoiding 222, 269
unique 225

inequality
selecting rows 104
set of columns

testing 104
testing 104

Information Agenda 6
information integration technology 6
inner joins 118, 238
insensitive scrollable cursors 165
INSERT privilege 286
INSERT statement 125

base tables
creating 186

check constraints 202
clustering indexes 227
referencing views 239
role in caching 269
segmented table spaces 207

INTEGER data type 193
integrated development environments 153

DB2 Development Add-In for Microsoft Visual Studio
.NET 154

IBM Data Studio 153
Microsoft Visual Studio 153
WebSphere Studio 153
WebSphere Studio Application Developer 154
workstation application development tools 155

Intelligent Resource Director (IRD) 59
intent lock 260
interactive SQL 23, 129, 169
Interactive System Productivity Facility (ISPF) 278, 279

Index 357

interim result tables 113
IRLM (internal resource lock manager) 62

administering 62
commands 278

IS NULL predicate 198
isolation levels 265

cursor stability (CS) 265
read stability (RS) 265
repeatable read (RR) 265
uncommitted read (UR) 265

ISPF (Interactive System Productivity Facility)
DB2 considerations 67
requirements 66
system administration 67
tutorial panels 279

J
J2EE

WebSphere Application Server 15
Java 155

dynamic SQL
executing 172

EJB 304
JDK (Java Development Kit) 174
JSP 304
servlets 304
static SQL

executing 172
stored procedures

programming 175
support 18

JCL 279
JDBC 23, 155

advantages 174
compared to SQLJ 172, 174
examples 174
middleware 18
programming method 129
static SQL applications

dynamic SQL applications 174
joins 238

example tables 116
full outer joins 116, 122
inner joins 118
left outer joins 116, 121
overview 116
right outer joins 116, 121

JSPs 304

K
Kerberos security 284
keys

composite keys 27
foreign keys 27
parent keys 27
primary keys 27
sort keys 110
unique keys 27

L
large object table spaces 35
large objects (LOBs)

creation of 240

large objects (LOBs) (continued)
data types 196

leaf pages 257
left outer joins 116, 121
LIKE predicate 106
limited block fetch 322
Linux 9
LOAD utility

base tables
creating 186

collecting statistics 257
referential constraints

enforcing 243
segmented table spaces 207

LOB table spaces 212
local area networks (LANs) 10
LOCATION names

three-part names 315
locking 55

concurrency
promoting 260

deadlocks 260
exclusive lock (X-lock) 260
performance

improving 260
scenarios 260
share lock (S-lock) 260
suspension 260
timeout 260
update lock (U-lock) 260

locks 48
log range directory 38
logical data modeling 71
logical database design 71

attributes
choosing data types 76
naming 76
values 78

business rules
applying to relationships 76

data modeling 71
examples 71
recommendations 71
Unified Modeling Language (UML) 83

entities
defining attributes 76
defining for relationships 74
normalizing 79

many-to-many relationships 75
many-to-one relationships 75
one-to-many relationships 75
one-to-one relationships 74

logs 39
archiving 300
recovery usage 300

M
management tools

DB2 Data Studio Administrator 11
DB2 family 11
DB2 tools 11

many-to-one relationships 75
materialized query tables

creating 188
implementing 182
performance 269

358 Introduction to DB2 for z/OS

merge statements 126
MERGECOPY utility 293
Microsoft Access 155
Microsoft Excel 155
Microsoft Visual Basic 155
Microsoft Visual Studio 153
Microsoft Visual Studio .NET 154
middleware components 14, 18
MIN function 97
mixed data character string columns 191
MIXED string subtype 191
multilevel security 289
multiple-row fetch

defined 322
improving performance 322

N
n-tier architecture 305
naming attributes 76
native SQL procedures 52
network messages

minimizing 321
nonpartitioned secondary index (NPSI) 234, 236
nonunique indexes 227
normalization 79

avoiding redundancy 79
first normal form 80
fourth normal form 82
second normal form 80
third normal form 81

NOT keyword
with comparison operators 105

NOT operator
described 107
using with AND and OR 107

NPSI (nonpartitioned secondary index) 234, 236
NULL keys

excluding 229
null values 78, 198

compared to default values 201
excluding rows 103
retrieving rows 103
usage 198

NULLIF function 98
numeric data types 76, 193

DECIMAL 193
DOUBLE 193
identity columns 193
INTEGER 193
REAL 193
SMALLINT 193

O
Object Management Group 83
OBJECT names

three-part names 315
object privileges 282
ODBC (Open Database Connectivity) 23, 128, 155

dynamic SQL
executing 171

examples 171
middleware 18

offloading 293
OMEGAMON 253

on demand business
described 303

one-to-many relationships 75
one-to-one relationships 74
Open Database Connectivity (ODBC) 23, 128
open standards 20
operating environments

DB2 59
mobile 9
z/OS 59

operational form
SQL statements 21

operations tools
DB2 Administration Tool 278
DB2 Cloning Tool 279

Optimization Service Center for DB2 for z/OS 268
OPTIMIZE FOR n ROWS clause

SELECT statement 323
OR operator

described 107
using NOT with 107
using parentheses with 107

ORDER BY clause 110
column names

specifying 110
expressions

specifying 112
more than one column

specifying 111
rows

ascending order 110
descending order 111

sorts
avoiding 222

ordering column 110
outer joins 238

P
PACKADM authority 286, 290
packages 51

binding
DEFER(PREPARE) option 324

DRDA access
bind options 318
precompiler options 318

privileges 282
page access 254
page gaps 257
page sets 35
page sizes 204
pages 204
Palm Operating System

DB2 Everyplace 9
parallel processing 269
Parallel Sysplex 1

benefits 334
coupling facility 327
environment 69, 327
group buffer pool 40
Sysplex Timer 327

parent keys 27, 43
parent rows 43
parent tables 43
partition-by-growth table spaces 206
partitioned data set extended (PDSE) 63

Index 359

partitioned data sets
managing 63

partitioned indexes 232
partitioned table spaces 35, 209

rebalancing data 257
partitioned tables

index attributes 232
partitioning

table-controlled 188
partitioning indexes 233
PCTFREE clause 257
performance

application design 252
concurrency control 265
data organization 257
locking 260
managing 251
performance analysis tools 253
performance objectives 251
problem determination 252
problems 251
query performance

access paths 267
analyzing 269
described 267
EXPLAIN 268

performance analysis tools
Optimization Service Center for DB2 for z/OS 253

performance objectives
requirements 251

performance tools
DB2 Buffer Pool Analyzer 253
DB2 Optimization Expert 268
DB2 Performance Expert 253
DB2 Query Monitor 253
DB2 SQL Performance Analyzer 253, 268
Optimization Service Center for DB2 for z/OS 268

physical data modeling 71
physical database design 85

associative tables 85
customizing views 87
denormalization of tables 85
determining what columns to index 88
determining what expressions to index 88

PL/I 155
stored procedures

programming 175
use with static SQL 162

plan tables 273
points of consistency 49
precompiler options 318
predicates 102
prefetch

sequential 254
PREPARE statement 269
primary authorization IDs 281
primary group buffer pools 336
primary keys 27
privileges 280

administrative authority 282
application plans 282
authorization hierarchy 286
explicit 286
granting 290
held by authorization IDs 282
object 282
packages 282

privileges (continued)
related 282
revoking 290
roles 282
security labels 282

procedures
external SQL procedures 52
external stored procedures 52
native SQL procedures 52

programming interface information, described 347
programming languages 155
project activity sample table 140
project sample table 139
pureXML 57

Q
QMF (Query Management Facility)

See DB2 Query Management Facility (QMF) 130
QMF for Workstation

See DB2 QMF for Workstation 130
queries

coding 269
query performance

access paths 267
accessing remote servers 321
analyzing 269
block fetch 322
DB2 SQL Performance Analyzer 268
described 267
FETCH FIRST n ROWS ONLY 323
Optimization Service Center for DB2 for z/OS 268
OPTIMIZE FOR n ROWS 323
result sets

optimizing 323
rowset-positioned cursors 323

QUIESCE utility 293

R
range-partitioned universal table spaces 207
Rational Data Architect 83
Rational Rapid Developer 83
Rational Rose Data Modeler 83
read stability (RS) 265
REAL data type 193
REBUILD INDEX utility 257, 293
record identifiers (RIDs) 225, 257
record lengths 204

page sizes 204
records 204
RECOVER utility 293

recovering page sets 299
segmented table spaces 207

recovery
restoring data consistency 48
See backup and recovery 299
unit of 49

recovery planning
continuous operation 54

referential constraints 42, 43
delete rules 245
enforcing 243
enforcing business rules 42
exception tables 247
implementing 242

360 Introduction to DB2 for z/OS

referential constraints (continued)
insert rules 244
loading tables 247
referential structures 246

building 245
update rules 244

referential integrity 43
delete rules 245
enforcing 243
exception tables 247
implementing 242
insert rules 244
loading tables 247
referential structures 246

building 245
update rules 244

referential structures 246
building 245

related privileges 282
remote servers

accessing 314
explicit CONNECT statements 314
three-part names 315
with aliases 316

DB2 Connect 319
described 56
DRDA access 313
query efficiency 321

REORG utility
collecting statistics 257
reorganizing data

guidelines 257
segmented table spaces 207
thresholds 257

REORG-pending status 257
repeatable read (RR) 265
replication 17
REPORT utility 293
Representational State Transfer (REST) 311
requesters 56
Resource Access Control Facility (RACF) 63
resource limit facility (governor)

database 41
restart 300
restart processing 296
RESTORE SYSTEM utility 293
result columns

naming 91
result sets

optimizing 323
result tables 182

interim 113
REVOKE statement 290
REXX 155

stored procedures
programming 175

use with static SQL 162
right outer joins 116, 121
rollback operations 48, 55

savepoints 297
ROLLBACK statement 297
routines

types 52
ROWID data type 196

default values 199
rows

deleting 127

rows (continued)
description 21
designing 204

wasted space 204
inserting

with check constraints 202
ordering 110
page sizes 204
record lengths 204
results

ascending order 110
descending order 111

rowsets 165, 323
RRS (Resource Recovery Services) 68
RUNSTATS utility

collecting statistics 257
system tuning 296

S
sample applications

databases 149
storage 148
storage groups 149
structure 148

sample tables 131
DSN8B10.ACT (activity) 131
DSN8B10.DEMO_UNICODE (Unicode sample) 142
DSN8B10.DEPT (department) 132
DSN8B10.EMP (employee) 134
DSN8B10.EMP_PHOTO_RESUME (employee photo and

resume) 137
DSN8B10.EMPPROJACT (employee-to-project

activity) 141
DSN8B10.PROJ (project) 139
PROJACT (project activity) 140
relationships 143
storage 148
views 144

savepoints 297
SBCS string subtype 191
scalability features 1
scalable growth

with data sharing 328
without data sharing 328

scalar functions 98
CHAR 98
DECIMAL 98
nesting aggregate functions 99
NULLIF 98
user-defined 248
YEAR 98

schema names 31
schema qualifiers 31
schemas 31, 181
scrollable cursors

dynamic 165
insensitive 165
sensitive 165

SCT02 table space 38
search conditions

specifying 115
second normal form 80
secondary authorization IDs 281
secondary group buffer pools 336
secondary indexes

data-partitioned secondary index (DPSI) 235, 236

Index 361

secondary indexes (continued)
nonpartitioned secondary index (NPSI) 236

security
authentication 283
authentication mechanisms 284
authorization IDs 280
communications database (CDB) 284
controlling access

with views 289
DB2 subsystems

accessing 283
field-level access control 289
field-level sensitivity 289
Kerberos 284
local access

security checks 283
multilevel security 289
privileges 280
RACF 283
remote access

security checks 283
Resource Access Control Facility (RACF) 63
z/OS Security Server 59, 63, 283

segmented table spaces 35
characteristics 207
defining 207
EA-enabled index spaces 209, 211
EA-enabled table spaces 209, 211
implementing 207

SELECT privilege 286
SELECT statement 91

BETWEEN predicate 109
OPTIMIZE FOR n ROWS clause 323
processing 94, 237
role in caching 269

selecting data from columns
SELECT clause 91

SELECT * 91
SELECT column-name 91
SELECT expression 91

self-referencing tables 43
sensitive scrollable cursors 165
sequences 53
sequential prefetch 254
server-side programming

described 304
using WebSphere Application Server 304

servers 56
DB2 for z/OS

benefits 307
local access 284
remote access 284

with DRDA 313
workstation access 285

service-oriented architecture (SOA) 311
servlets 304
SGML (Standard Generalized Markup Language) 310
share lock (S-lock) 260
shared-nothing architecture 328
shortcut keys

keyboard x
Simple Object Access Protocol (SOAP) 311
simple table spaces 35, 213
single logging 39
single-byte character set (SBCS) 191
SKCT (skeleton cursor table) 38
skeleton cursor table (SKCT) 38

skeleton package table (SKPT) 38
SKPT (skeleton package table) 38
Smalltalk programming language 155
solid-state drives 59
sort keys 110
sorts 269

avoiding 222
sourced functions 248
SPT01 table space 38
SQL (structured query language)

executing 128
SQL (Structured Query Language)

Call Level Interface (CLI) 23
deferred embedded 23
dynamic 22
interactive 23
JDBC 23
Open Database Connectivity (ODBC) 23
SQLJ 23
static 22

SQL communication area (SQLCA) 168
SQL functions 248
SQL procedural language

example 178
SQL statements

binding 21
execution

checking 168
operational form 21

SQL/OLB 23
SQLCA (SQL communication area) 168
SQLExecute() function 171
SQLJ 23, 155

compared to JDBC 172, 174
dynamic SQL applications 173
examples 173
middleware 18
programming method 129
static SQL applications 173

SQLPrepare() function 171
statement tables 273
static SQL 22, 128, 155

applications
overview 162
writing 162

checking execution 168
DECLARE TABLE statement 162
executing

with Java 172
host structures

accessing data 165
host variable arrays

accessing data 164
host variables

accessing data 163
rows

retrieving 165
table definitions 162
view definitions 162

storage
64-bit 59
assigning table spaces 218
Intelligent Resource Director (IRD) 59
SMS-managed 218
Storage Management Subsystem (SMS) 218

storage groups 32, 218
for sample applications 149

362 Introduction to DB2 for z/OS

Storage Management Subsystem (SMS) 63, 209, 218
storage structures

index spaces 35
table spaces 35

stored procedures
authorization requirements 180
calling 180
CREATE PROCEDURE statement 178
creating

programming languages 175
with development tools 179

developing
with tools 179

environment 179
external SQL procedures 52
external stored procedures 52
FETCH statement 178
native SQL procedures 52
preparing 179
processing with 176
processing without 176
using application programs 175
writing

SQL procedural language 178
string data types 76, 191

encoding schemes 198
strings

concatenating 95
structured query language (SQL) 91

AND operator 107
binding 21
DB2 Query Management Facility (QMF) 130
executing 128

dynamic SQL 128
from a workstation 129
interactive SQL 129
JDBC 129
ODBC 128
SQLJ 129
static SQL 128

GROUP BY clause 112, 115
HAVING clause 115
joins

full outer joins 116, 122
inner joins 118
left outer joins 116, 121
right outer joins 116, 121

modifying data
DELETE statement 127
INSERT statement 125

NOT operator
described 107
using with AND and OR 107

operational form 21
OR operator

described 107
using NOT with 107
using parentheses with 107

ORDER BY clause 94, 110, 111
expressions 112
more than one column 111
specifying column names 110

procedural language 175
result tables 21
UNION keyword 113

eliminating duplicates 113
retaining duplicates 113

structured query language (SQL) (continued)
UPDATE statement

modifying data 126
using NOT with 107
using parentheses with 107
WHERE clause

aggregate functions 97
filtering rows 102
processing order in SELECT statement 94

writing queries 91
aggregate functions 97
AS clause 91
calculating aggregate values 97
calculating values in columns 96
CASE expressions 101
column functions 97
CONCAT keyword 95
DECIMAL function 96, 98
DISTINCT keyword 91, 97
eliminating duplicate rows 91
functions and expressions 95
naming result columns 91
predicates 102
processing SELECT statements 94
scalar functions 98
search condition 102
selecting data from columns 91
subqueries 94, 123
subselects 94
user-defined functions 100

structures
hierarchy 218

subqueries 94, 123
subselects 94
subsystems

DB2 61
z/OS 61

SYSADM authority 286, 290
SYSCTRL authority 286, 290
SYSIBM.SYSCOPY catalog table 299
SYSIBM.SYSDATABASE catalog table 241
SYSIBM.SYSINDEXPART catalog table 257
SYSIBM.SYSSTOGROUP catalog table 218
SYSIBM.SYSTABLEPART catalog table 257
SYSIBM.SYSTABLES catalog table 182
SYSIBM.SYSTABLESPACE catalog table 214
SYSIBM.SYSVOLUMES catalog table 218
SYSIBMADM.GET_ARCHIVE global variable

effect 185
SYSLGRNX directory table

table space 38
SYSOPR authority 286, 290
Sysplex Timer 327
system objects 37
system resources

tuning 254
system schemas 31
system structures

active logs 39
archive logs 39
bootstrap data set (BSDS) 40
buffer pools 40
catalog tables 37
catalogs 37

system-period data versioning 189
system-period temporal tables 182, 189
Systems Network Architecture (SNA) 10, 68

Index 363

SYSUTILX directory table space 38

T
table functions

user-defined 248
table spaces

assigning to physical storage 218
creating 204
for sample applications 150
implicitly created 214

default database 214
default name 214
default space allocation 214
default storage group 214

large object 35, 212
partition-by-growth 206
partitioned 35, 209
range-partitioned 207
scanning 269
segmented 35

defining 207
EA-enabled index spaces 211
EA-enabled table spaces 211

simple 35, 213
types 205
universal 35, 205
XML 35, 213, 215

table-controlled partitioning 188
tables

application-period temporal 182
archive 182
archive-enabled 182
associative 85
auxiliary 182
base 182
bitemporal 182
column definitions 190

choosing a data type 191
components 190

created temporary tables 186
creating 181
declared temporary tables 186
denormalization 85
dependent 43
example tables

DEPT 91
EMP 91
EMPPROJACT 91
PARTS 116
PRODUCTS 116
PROJ 91

exception tables 247
history 182
inserting rows

check constraints 202
joining 238
materialized query 182
overview 25
plan tables 273
referential structures 246
result 182
rows

deleting 127
self-referencing 43
statement tables 273
system-period data versioning 189

tables (continued)
system-period temporal 182
temporal 182, 189
temporary 182
types 182
updating with check constraints 203

TCP/IP 10, 68
temporal tables 182

creating 189
temporary tables 182

creating 186
third normal form 81
threads 68, 176
three-part names 315

compared to aliases 317
TIME data type 194
Time Sharing Option (TSO)

attachment facility 65
TIMESTAMP data type 194
tools

backup and recovery 293
DB2 Administration Tool 278
DB2 Automation Tool 279
DB2 Bind Manager 158
DB2 High Performance Unload 279
DB2 Interactive (DB2I) 278
DB2 operations 277
DB2 Path Checker 158
described 277

transaction manager products 319
transactions 55
triggers

creating 247
overview 47

TRUNCATE statement 127
truncate statements 127
trusted context 282
TSO (Time Sharing Option)

application programs
batch 67
foreground 67

attachment facility 65, 67
CLIST commands 278
DB2 considerations 67
requirements 66

two-phase commit 299
servers not supporting 320
servers supporting 320

two-tier architecture 305

U
uncommitted read (UR) 265
Unicode

encoding schemes 198
sample table 142

Unified Modeling Language (UML) 83
tools

Rational Data Architect 83
Rational Rapid Developer 83
Rational Rose Data Modeler 83
WebSphere Business Integration Workbench 83
WebSphere Studio Application Developer 83

UNION keyword 113
duplicates

eliminating 113
retaining 113

364 Introduction to DB2 for z/OS

unique constraints 42, 43
unique indexes 27, 231

implementing 225
unique keys 27
unit of recovery 48, 49
unit of work 49, 55

ending 49
initiating 49

Universal Description, Discovery, and Integration (UDDI) 311
universal table spaces 35

overview 205
update lock (U-lock) 260
UPDATE privilege 286
UPDATE statement

modifying data 126
role in caching 269
updates and check constraints 203

updates
coordinating 319

user-defined default values 199
user-defined functions

creating 248
external 248
overview 100
samples 194

ALTDATE 194
ALTTIME 194

sourced 248
SQL 248
writing queries 100

user-defined scalar functions 248
user-defined table functions 248
utilities 279

V
varying-length columns 106
view definitions

single table 238
views

accessing data 289
creating 237
customizing 87
inserting data 239
joining data 238
overview 29
updating data 239

Visual Basic (Microsoft) 155
VOLUMES clause 218

W
warehouse management 6
web applications

developing 13, 308
web services

XML 311
Web Services Description Language (WSDL) 311
WebSphere Application Server 15, 304
WebSphere Business Integration Workbench 83
WebSphere DataStage

ETL capabilities 18
WebSphere Host Integration 16
WebSphere Information Integrator 11, 16
WebSphere MQ 319
WebSphere products 14

WebSphere QualityStage
ETL capabilities 18

WebSphere Studio Application Developer
developing web applications 13, 308
integrated development environments 154
UML data modeling 83

WebSphere Studio product family 16, 153
WHENEVER statement 168
WHERE clause

aggregate functions 97
filtering rows 102
processing order in SELECT statement 94

wide area networks (WANs) 10
WITH HOLD 269
work file database

description 42
Workload Manager (WLM) 307, 328
workstation application development tools 155
World Wide Web 303

X
XML (Extensible Markup Language) 195, 310

benefits 310
DB2 for z/OS support 57
publishing functions 311
pureXML 57
SQL/XML functions 311
usage 310, 311
web services support 310, 311

XML column
implicitly created objects 215

XML data
storage structure 215

XML support 311
XML table spaces 35, 213

creating implicitly 215

Z
z/Architecture 59
z/OS Security Server 63

Index 365

366 Introduction to DB2 for z/OS

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4058-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
In

tro
du

ct
io

n
to

DB
2

fo
rz

/O
S

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments

	Chapter 1. An overview of DB2 and Information Management
	Scenarios for using DB2
	Availability and scalability for large businesses
	Critical business information for decision makers
	Data distribution and Web access

	The IBM Information Agenda
	DB2 data servers and environments
	Enterprise servers
	DB2 Database distributed editions
	DB2 on smaller-scale servers
	Personal, mobile, and pervasive environments
	Multiple transaction and application environments
	DB2 and network communication
	Clients supported by DB2 data servers
	Sources of data

	Information Management tools
	Application development tools
	Middleware components
	IBM Data Studio
	IBM Rational Portfolio Manager
	DB2 Connect
	WebSphere Application Server
	WebSphere Studio
	WebSphere Host Integration
	Federated database support through WebSphere Information Integrator
	Data replication through InfoSphere Replication Server
	WebSphere DataStage
	WebSphere QualityStage

	Client application programming interfaces
	Open standards

	Chapter 2. DB2 concepts
	Structured query language
	Static SQL
	Dynamic SQL
	Deferred embedded SQL
	Interactive SQL
	SQL Call Level Interface and Open Database Connectivity
	Java database connectivity and embedded SQL for Java

	DB2 data structures
	DB2 tables
	DB2 indexes
	DB2 keys
	DB2 views
	DB2 schemas and schema qualifiers
	DB2 storage groups
	DB2 databases

	Storage structures
	DB2 table spaces
	DB2 index spaces

	DB2 hash spaces
	DB2 system objects
	DB2 catalog
	DB2 directory
	Active and archive logs
	Bootstrap data set
	Buffer pools
	Data definition control support database
	Resource limit facility tables
	Work file database

	DB2 and data integrity
	Constraints
	Unique constraints
	Referential constraints
	Check constraints

	Triggers

	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Unit of recovery
	Rolling back work
	Packages and application plans

	Routines
	Functions
	Stored procedures

	Sequences
	Support for high availability
	Application processes and transactions
	Distributed data
	Remote servers
	Connectivity in distributed environments

	pureXML

	Chapter 3. DB2 for z/OS architecture
	z/Architecture and the z/OS operating system
	DB2 in the z/OS environment
	DB2 internal resource lock manager
	DB2 and the z/OS Security Server
	DB2 and DFSMS
	DB2 attachment facilities
	CICS attachment facility
	IMS attachment facility
	TSO attachment facility
	Call attachment facility
	Resource Recovery Services attachment facility

	Distributed data facility
	DB2 in a Parallel Sysplex environment

	Chapter 4. DB2 objects and their relationships
	Logical database design using entity-relationship modeling
	Data modeling
	Entities for different types of relationships
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships

	Application of business rules to relationships
	Attributes for entities
	Naming conventions for attributes
	Data types for attributes
	Values for key attributes

	Normalization to avoid redundancy
	First normal form
	Second normal form
	Third normal form
	Fourth normal form

	Logical database design with Unified Modeling Language
	Physical database design
	Database design with denormalization
	Customized data views
	Database design with indexes
	Database design with hash access

	Chapter 5. SQL: The language of DB2
	Ways to access data
	Ways to select data from columns
	How a SELECT statement works
	SQL functions and expressions
	Concatenation of strings
	Calculation of values in one or more columns
	Calculation of aggregate values
	Scalar functions
	Nested functions
	User-defined functions
	CASE expressions

	Ways to filter the number of returned rows
	Retrieving and excluding rows with null values
	Equalities and inequalities
	Similarities of character data
	Multiple conditions
	Ranges of values
	Values in a list

	Ways to order rows
	Sort key
	Ascending order
	Descending order
	Sort keys with multiple columns
	Sort keys with expressions

	Ways to summarize group values
	Ways to merge lists of values
	Ways to specify search conditions
	Ways to join data from more than one table
	Inner join
	Left outer join
	Right outer join
	Full outer join

	Subqueries
	Ways to access DB2 data that is not in a table

	Ways to modify data
	Insert statements
	Update statements
	Merge statements
	Delete statements
	Truncate statements

	Ways to execute SQL
	Static SQL
	Dynamic SQL
	DB2 ODBC
	DB2 access for Java: SQLJ, JDBC, pureQuery
	Interactive SQL
	Use of DB2 Query Management Facility for Workstation

	DB2 sample tables
	Activity table (DSN8B10.ACT)
	Department table (DSN8B10.DEPT)
	Employee table (DSN8B10.EMP)
	Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME)
	Project table (DSN8B10.PROJ)
	Project activity table (DSN8B10.PROJACT)
	Employee-to-project activity table (DSN8B10.EMPPROJACT)
	Unicode sample table (DSN8B10.DEMO_UNICODE)
	Relationships among the sample tables
	Views on the sample tables
	Storage of sample application tables
	Storage group for sample application data
	Databases for sample application data
	Table spaces for sample application data

	Chapter 6. Application programming for DB2
	Development of DB2 applications in integrated development environments
	WebSphere Studio Application Developer
	DB2 Development add-in for Visual Studio .NET
	Workstation application development tools

	Programming languages and methods for developing application programs
	Performance information for SQL application programming
	Preparation process for an application program
	Static SQL applications
	Declaration of table and view definitions
	Data access with host variables
	Data access with host variable arrays
	Data access with host structures
	Row retrieval with a cursor
	Ways to check the execution of SQL statements

	Dynamic SQL applications
	Types of dynamic SQL
	Dynamic SQL programming concepts
	Use of ODBC to execute dynamic SQL

	Use of Java to execute static and dynamic SQL
	SQLJ support
	JDBC support

	Use of an application program as a stored procedure
	Languages used to create stored procedures
	Stored procedure processing
	Use of the SQL procedural language to create a stored procedure
	Use of development tools to create a stored procedure
	Setup of the stored procedure environment
	Preparation of a stored procedure
	How applications can call stored procedures

	Chapter 7. Implementation of your database design
	Creation of tables
	Types of tables
	Archive-enabled tables and archive tables
	Creation of base tables
	Creation of temporary tables
	Creation of materialized query tables
	Creation of a table with table-controlled partitioning
	Creation of temporal tables

	Definition of columns in a table
	Column names
	Data types
	String data types
	Numeric data types
	Date, time, and timestamp data types
	XML data type
	Large object data types
	ROWID data type
	Distinct types
	Encoding schemes for string data
	How DB2 compares data types

	Null and default values
	Null values
	Default values
	Comparison of null values and default values

	Use of check constraints to enforce validity of column values
	Use of check constraints to insert rows into tables
	Use of check constraints to update tables

	Row design
	Record lengths and pages
	Designs that waste space

	Creation of table spaces
	Types of DB2 table spaces
	Universal table spaces
	Segmented (non-universal) table spaces
	Partitioned table (non-universal) spaces
	EA-enabled table spaces and index spaces
	Large object table spaces
	XML table spaces
	Simple table spaces

	How DB2 implicitly creates a table space
	How DB2 implicitly creates an XML table space
	Storage structure for XML data

	Assignment of table spaces to physical storage

	Creation of indexes
	Types of indexes
	How indexes can help to avoid sorts
	Index keys
	General index attributes
	Unique indexes
	Nonunique indexes
	Clustering indexes
	Indexes that exclude NULL keys
	Indexes that are padded or not padded
	Expression-based indexes
	Compression of indexes

	XML index attributes
	Partitioned table index attributes
	Partitioning indexes
	Secondary indexes

	Creation of views
	A view on a single table
	A view that combines information from several tables
	Inserts and updates of data through views

	Creation of large objects
	Creation of databases
	Creation of relationships with referential constraints
	How DB2 enforces referential constraints
	Insert rules
	Update rules
	Delete rules

	Construction of a referential structure
	Tables in a referential structure
	Creation of exception tables

	Creation of triggers
	Creation of user-defined functions

	Chapter 8. DB2 performance management
	Initial steps for performance management
	Performance objectives
	Application design for performance
	Origin of performance problems
	Tools for performance analysis

	Ways to move data efficiently through the system
	The role of buffer pools in caching data
	The effect of data compression on performance
	How data organization can affect performance
	Use of free space in data and index storage
	Guidelines for data reorganization

	Ways to improve performance for multiple users
	Improved performance through the use of locks
	Improved performance through concurrency control
	Concurrency recommendations for database designers
	Concurrency recommendations for application designers

	Ways to improve query performance
	Tools that help you improve query performance
	Query and application performance analysis
	Using EXPLAIN to understand the access path
	Hash access paths

	Chapter 9. Management of DB2 operations
	Tools that help you manage DB2
	IBM Data Studio
	DB2 Administration Tool
	DB2 Interactive
	DB2 command line processor

	Use of commands and utilities to control DB2 operations
	DB2 commands
	DB2 utilities

	Management of data sets
	Authorization and security mechanisms for data access
	How authorization IDs control data access
	How authorization IDs hold privileges and authorities
	Ways to control access to DB2 subsystems
	Local DB2 access
	Remote DB2 access

	Ways to control access to data
	Ways to control access to DB2 objects through explicit privileges and authorities
	Row-level and column-level access control
	Use of multilevel security to control access
	Use of views to control access
	Use of grant and revoke privileges to control access

	Backup, recovery, and restart
	Backup and recovery resources and tools
	DB2 restart
	Regular backups and data checks
	Control of database changes and data consistency
	Commit and rollback of transactions
	Coordinated updates for consistency between servers

	Events in the recovery process
	Optimization of availability during backup and recovery

	Chapter 10. DB2 and the web
	Web application environment
	Components of web-based applications
	Architectural characteristics of web-based applications
	Benefits of DB2 for z/OS as a server

	Web-based applications and WebSphere Studio Application Developer
	XML and DB2
	Benefits of using XML with DB2 for z/OS
	Ways to use XML with DB2 for z/OS

	SOA, XML, and web services

	Chapter 11. Distributed data access
	Ways to implement distributed data in programs
	Explicit CONNECT statements
	Three-part names
	Aliases
	Comparison of three-part names and aliases

	Ways that other tasks are affected by distributed data
	Effects of distributed data on planning
	Effects of distributed data on programming
	Effects of distributed data on program preparation

	How updates are coordinated across distributed systems
	DB2 transaction manager support
	Servers that support two-phase commit
	Servers that do not support two-phase commit

	Ways to reduce network traffic
	Improvements in query efficiency
	Reduction in the volume of messages
	Block fetch
	Rowset fetches and inserts

	Optimization for large and small result sets
	Performance improvements for dynamic SQL

	Chapter 12. Data sharing with your DB2 data
	Advantages of DB2 data sharing
	Improved availability of data
	Scalable growth
	Flexible configurations
	Protected investments in people and skills

	How DB2 protects data consistency in a data sharing environment
	How updates are made in a data sharing environment
	How DB2 writes changed data to disk in a data sharing environment
	Ways that other tasks are affected by data sharing
	Ways that availability is affected by data sharing

	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

