DB2 11 for z/0S

Application Programming
Guide and Reference
for Java

<||IH

DB2 11 for z/0S

Application Programming
Guide and Reference
for Java

..ll

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1998, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information e e e e e e e e e e .. adix

Who should read this information .ix
DB2 Utilities Suite Lo s i
Terminology and citations. . . P b 4
Accessibility features for DB2 11 for z / OS I
How to send your comments oLux
How to read syntax diagrams . o.x

Chapter 1. Java application development for IBM dataservers1

Chapter 2. Supported drivers for JDBC and SQLJ.

JDBC driver and database version compatibility

DB2 for z/0OS and IBM Data Server Driver for JDBC and SQL] levels

DB2 for Linux, UNIX, and Windows and IBM Data Server Driver for JDBC and SQL] levels

0 Ul = W

Chapter 3. JDBC application programmlng e b

Example of a simple JDBC application . . . T |
How JDBC applications connect to a data source13
Connecting to a data source using the DriverManager 1nterface w1th the IBM Data Server Drlver for]DBC and
sQLy T 1o}
Connecting to a data source usmg the DataSource 1nterface23
How to determine which type of IBM Data Server Driver for JDBC and SQL] connect1v1ty to use25
JDBC connection objects . . . I)
Creating and deploying DataSource ob]ects el
Java packages for JDBC support . . . e e 28
Learning about a data source using DatabaseMetaData methods Ce 28
DatabaseMetaData methods for identifying the type of data source.30
Variables in JDBC applications G 0
Comments in a JDBC application ... 03
JDBC interfaces for executing SQL. G 72
Creating and modifying database objects usmg the Statement executeUpdate method G 74
Updating data in tables using the PreparedStatement.executeUpdate method33
JDBC executeUpdate methods against a DB2 for z/OS server.35
Making batch updates in JDBC applications . . N
Learning about parameters in a PreparedStatement usmg ParameterMetaData methods . 0]
Data retrieval in JDBC applications . . o |
Calling stored procedures in JDBC apphcatrons . e 7
LOBs in JDBC applications with the IBM Data Server Drlver for]DBC and SQL]63
ROWIDs in JDBC with the IBM Data Server Driver for JDBCand SQL]68
Update and retrieval of timestamps with time zone information in JDBC applications70
Distinct types in JDBC applicationso ... T78
Invocation of stored procedures with ARRAY parameters in]DBC apphcatlons 4"
Savepoints in JDBC applications . . . 0]
Retrieval of automatically generated keys in]DBC apphcatrons e < 4
Named parameter markers in JDBC applications 85
Providing extended client information to the data source w1th IBM Data Server Drlver for]DBC and SQL] only
methodso . .. 89
Providing extended chent 1nformat10n to the data source w1th chent 1nfo propertres]
Extended parameter information with the IBM Data Server Driver for JDBC and SQL]9%
Using DB2PreparedStatement methods or constants to provide extended parameter information 95
Using DB2ResultSet methods or DB2PreparedStatement constants to provide extended parameter 1nformat10n 96
XML data in JDBC applications. . . 1<
XML column updates in JDBC apphcatrons]
XML data retrieval in JDBC applications . . . e (0]
Invocation of routines with XML parameters in]ava apphcatrons e 0

© Copyright IBM Corp. 1998, 2013 iii

Binary XML format in Java applications

Java support for XML schema registration and removal .
Inserting data from file reference variables into tables in JDBC apphcatlons
Transaction control in JDBC applications

IBM Data Server Driver for JDBC and SQLJ 1solat10n levels .

Committing or rolling back JDBC transactions

Default JDBC autocommit modes.
Exceptions and warnings under the IBM Data Server Drlver for]DBC and SQL]

Handling an SQLException under the IBM Data Server Driver for JDBC and SQL]J .

Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQL]J.
Retrieving information from a BatchUpdateException .

Memory use for IBM Data Server Driver for IBM Data Server Drlver for]DBC and SQL] type 2 cormecthlty on

DB2 for z/OS
Disconnecting from data sources in]DBC apphcatlons

Chapter 4. SQLJ application programmlng
Example of a simple SQLJ application .
Connecting to a data source using SQLJ
SQL]J connection technique 1: JDBC DrlverManager mterface
SQLJ connection technique 2: JDBC DriverManager interface
SQLJ connection technique 3: JDBC DataSource interface .
SQLJ connection technique 4: JDBC DataSource interface .
SQLJ connection technique 5: Use a previously created connection context
SQLJ connection technique 6: Use the default connection .
Java packages for SQL]J support .
Variables in SQL]J applications.
Indicator variables in SQLJ appl1cat10ns
Comments in an SQL]J application .
SQL statement execution in SQLJ apphcatlons
Creating and modifying database objects in an SQL] apphcatlon . .
Performing positioned UPDATE and DELETE operations in an SQL]J apphcatlon.
Data retrieval in SQL]J applications . o . . .
Calling stored procedures in SQL]J apphcatlons . .
LOBs in SQL]J applications with the IBM Data Server Drlver for]DBC and SQL] .
SQLJ and JDBC in the same application - .
Controlling the execution of SQL statements in SQL] .
ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQL]
TIMESTAMP WITH TIME ZONE values in SQL] apphcatlons .
Distinct types in SQLJ applications . . .
Savepoints in SQL]J applications .
XML data in SQLJ applications
XML column updates in SQL]J apphcatlons
XML data retrieval in SQL]J applications
XMLCAST in SQL]J applications . .
Inserting data from file reference variables 1nt0 tables in SQL] apphcatlons
SQLJ utilization of SDK for Java Version 5 function.
Transaction control in SQL]J applications .
Setting the isolation level for an SQLJ transactlon
Committing or rolling back SQLJ transactions
Handling SQL errors and warnings in SQLJ apphcatlons
Handling SQL errors in an SQL]J application . .
Handling SQL warnings in an SQL]J application .
Closing the connection to a data source in an SQLJ apphcatlon

Chapter 5. Java stored procedures and user-defined functions .
Setting up the environment for Java routines .
Setting up the WLM application environment for]ava routmes
Runtime environment for Java routines. .
Moving from 31-bit Java routines to 64-bit Java routmes .
Defining Java routines and JAR files to DB2 .

iv Application Programming Guide and Reference for Java

. 106
. 107
. 110
. 112
. 112
. 113
. 113
. 114
. 117
. 120
. 121

. 123
. 124

. 125
. 125
. 127
. 127
. 129
. 130
. 132
. 133
. 134
. 134
. 135
. 136
. 140
. 140
. 141
. 141
. 151
. 161
. 164
. 166
. 170
. 170
. 172
. 173
. 174
. 175
. 176
. 178
. 179
. 180
. 181
. 183
. 184
. 184
. 184
. 185
. 185
. 186

. 189
. 189
. 190
. 193
. 196
. 198

Definition of a Java routine to DB2 .
Definition of a JAR file for a Java routine to DBZ

Java routine programming . . .
Differences between Java routlnes and stand alone]ava programs
Differences between Java routines and other routines .
Static and non-final variables in a Java routine
Writing a Java stored procedure to return result sets

Techniques for testing a Java routine

Chapter 6. Preparing and running JDBC and SQLJ programs
Program preparation for JDBC programs .
Program preparation for SQL] programs . .
Binding SQLJ applications to access multiple database servers .
Program preparation for Java routines . .
Preparation of Java routines with no SQLJ Clauses .
Preparation of Java routines with SQLJ clauses .
Creating JAR files for Java routines .
Running JDBC and SQLJ programs .

Chapter 7. JDBC and SQLJ reference information.
Data types that map to database data types in Java applications .
Date, time, and timestamp values that can cause problems in JDBC and SQL] apphcatrons
Data loss for timestamp data in JDBC and SQLJ applications .
Retrieval of special values from DECFLOAT columns in Java apphcatlons .
Use of PreparedStatement.setTimestamp to set values in TIMESTAMP WITH TIME ZONE columns
Properties for the IBM Data Server Driver for JDBC and SQLJ . .o
Common IBM Data Server Driver for JDBC and SQL]J properties for all supported database products
Common IBM Data Server Driver for JDBC and SQL]J properties for DB2 servers.
Common IBM Data Server Driver for JDBC and SQL]J properties for DB2 for z/OS and IBM Inforrmx
Common IBM Data Server Driver for JDBC and SQL]J properties for IBM Informix and DB2 Database for
Linux, UNIX, and Windows
IBM Data Server Driver for JDBC and SQL] propertles for DB2 Database for Llnux UNIX and Wlndows
IBM Data Server Driver for JDBC and SQL]J properties for DB2 for z/OS .
IBM Data Server Driver for JDBC and SQL]J properties for IBM Informix
IBM Data Server Driver for JDBC and SQLJ configuration properties.
Driver support for JDBC APIs . .
IBM Data Server Driver for JDBC and SQL] support for SQL escape syntax
SQLJ statement reference information .
SQLJ clause .
SQLJ host—expressmn
SQLJ implements-clause .
SQLJ with-clause . .
SQLJ connection- declaratlon clause .
SQL]J iterator-declaration-clause
SQLJ executable-clause .
SQLJ context-clause
SQLJ statement-clause
SQLJ SET- TRANSACTION—Clause
SQLJ assignment-clause .
SQLJ iterator-conversion-clause .
Interfaces and classes in the sqlj.runtime package
sqlj.runtime.ConnectionContext interface .
sqlj.runtime.ForUpdate interface .
sqlj.runtime.NamedIterator interface.
sqlj.runtime.Positionedlterator interface.
sqlj.runtime.ResultSetIterator interface .
sqlj.runtime.Scrollable interface
sqlj.runtime.AsciiStream class .
sqlj.runtime.BinaryStream class
sqlj.runtime.CharacterStream class

Contents

. 199
. 203
. 213
. 213
. 214
. 215
. 216
. 217

. 219
. 219
. 219
. 220
. 222
. 222
. 224
. 227
. 228

. 229
. 229
. 236
. 239
. 240
. 242
. 243
. 244
. 270
. 283

. 285
. 285
. 288
. 294
. 299
. 319
. 345
. 346
. 346
. 346
. 348
. 348
. 350
. 351
. 352
. 353
. 354
. 356
. 357
. 358
. 358
. 359
. 364
. 364
. 365
. 365
. 368
. 370
. 371
. 371

A\

sqlj.runtime.ExecutionContext class .
sqlj.runtime.SQLNullException class.
sqlj.runtime.StreamWrapper class.
sqlj.runtime.UnicodeStream class .

IBM Data Server Driver for JDBC and SQL]J extensmns to]DBC
DBBatchUpdateException interface .
DB2BaseDataSource class
DB2Binder class
DB2BlobFileReference class
DB2CallableStatement interface
DB2ClientRerouteServerList class.
DB2ClobFileReference class.
DB2Connection interface ..
DB2ConnectionPoolDataSource class
DB2DatabaseMetaData interface .
DB2Diagnosable interface
DB2DataSource class .
DB2Driver class .
DB2ExceptionFormatter class .
DB2FileReference class
DB2JCCPlugin class .
DB2ParameterMetaData 1r1terface
DB2PooledConnection class
DB2PoolMonitor class .
DB2PreparedStatement mterface .
DB2ResultSet interface .
DB2ResultSetMetaData interface .
DB2RowlID interface .
DB2SimpleDataSource class
DB2Sqlca class . .
DB2Statement interface .
DB2SystemMonitor interface
DB2TraceManager class . .
DB2TraceManagerMXBean 1r1terface .
DB2Types class . o
DB2XADataSource class .
DB2Xml interface .
DBZXmlAsBlobFrleReference class
DB2XmlAsClobFileReference class
DBTimestamp class .

JDBC differences between versions of the IBM Data Server Drrver for]DBC and SQL]

Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values .

Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
SQLSTATE:s issued by the IBM Data Server Driver for JDBC and SQLJ .
How to find IBM Data Server Driver for JDBC and SQLJ version and environment 1nformat10n
Commands for SQLJ program preparation.
sqlj - SQLJ translator .
db2sqljcustomize - SQLJ profrle custormzer
db2sqljbind - SQLJ profile binder.
db2sqljprint - SQL]J profile printer

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ

Installing the IBM Data Server Driver for JDBC and SQLJ as part of a DB2 installation .
Jobs for loading the IBM Data Server Driver for JDBC and SQL]J libraries
Environment variables for the IBM Data Server Driver for JDBC and SQL]J .
Customization of IBM Data Server Driver for JDBC and SQL] configuration properties.

Enabling the DB2-supplied stored procedures used by the IBM Data Server Driver for]DBC and SQL]

DB2Binder utility . .

DB2LobTableCreator utlhty .

Verify the installation of the IBM Data Server Drlver for]DBC and SQL]
Upgrading the IBM Data Server Driver for JDBC and SQL]J to a new version .

vi Application Programming Guide and Reference for Java

. 372
. 381
. 381
. 382
. 383
. 385
. 386
. 391
. 392
. 393
. 399
. 401
. 401
. 421
. 423
. 424
. 425
. 426
. 427
. 427
. 428
. 429
. 430
. 432
. 435
. 450
. 454
. 455
. 455
. 456
. 457
. 459
. 462
. 466
. 469
. 469
. 471
. 474
. 474
. 475
. 477
. 484
. 485
. 492
. 494
. 495
. 495
. 498
. 509
. 514

. 515
. 515
. 516
. 516
. 518
. 519
. 522
. 529
. 530
. 532

Installing the z/OS Application Connectivity to DB2 for z/OS feature53
Jobs for loading the z/OS Application Connectivity to DB2 for z/OS hbrarres -b34
Environment variables for the z/OS Application Connectivity to DB2 for z/OS feature53

Chapter 9. Setting the DB2 for z/OS appllcatlon compatlblllty for your JDBC and SQLJ
applications e s 537

Chapter 10. Security under the IBM Data Server Driver for JDBCand SQLJ 539

User ID and password security under the IBM Data Server Driver for JDBCand SQLJ.540
User ID-only security under the IBM Data Server Driver for JDBC and SQLJbh43
Encrypted password, user ID, or data security under the IBM Data Server Driver for]DBC and SQL]54
Kerberos security under the IBM Data Server Driver for JDBC and SQL]b47
IBM Data Server Driver for JDBC and SQL]J trusted context support550
IBM Data Server Driver for JDBC and SQLJ support for SSL52

Configuring connections under the IBM Data Server Driver for]DBC and SQL] to use SSLb53

Configuring the Java Runtime Environment to use SSLbHM
IBM Data Server Driver for JDBC and SQL]J support for certificate authentlcatlon . N 1 74
Security for preparing SQLJ applications with the IBM Data Server Driver for JDBC and SQL]b58

Chapter 11. Java client support for high availability on IBM data servers. 561

Java client support for high availability for connections to DB2 for Linux, UNIX, and Windows servers 562
Configuration of DB2 for Linux, UNIX, and Windows automatic client reroute support for Java clients . . . 563
Example of enabling DB2 for Linux, UNIX, and Windows automatic client reroute support in Java
applications 566
Configuration of DB2 for L1nux UNIX and W1ndows workload balanc1ng support for]ava chents 567

Example of enabling DB2 for Linux, UNIX, and Windows workload balancing support in Java applications 568
Operation of automatic client reroute for connections to DB2 for Linux, UNIX, and Windows from Java clients 569

Operation of alternate group support for connections to DB2 for Linux, UNIX, and Windows 574
Operation of workload balancing for connections to DB2 for Linux, UNIX, and Windows 578
Application programming requirements for high availability for connections to DB2 for Linux, UNIX and
Windows servers . . - V4
Client affinities for DB2 for L1nux UNIX and W1ndows58
Java client support for high availability for connections to IBM Inforrmx serversDb83
Configuration of IBM Informix high-availability support for Java clients.58
Example of enabling IBM Informix high availability support in Java applications.587
Operation of automatic client reroute for connections to IBM Informix from Java clients 589
Operation of workload balancing for connections to IBM Informix from Java clients. 593
Application programming requirements for high availability for connections from Java clients to IBM Informlx
servers . . L
Client affinities for connectlons to IBM Informrx frorn]ava chents Lo59%
Java client direct connect support for high availability for connections to DB2 for z / OS servers.Db598
Configuration of Sysplex workload balancing and automatic client reroute for Java clients 600
Example of enabling DB2 for z/OS Sysplex workload balancing and automatic client reroute in Java
applications 602
Operation of Sysplex workload balanc1ng for connectlons from]ava chents to DB2 for z/ OS servers 605
Operation of automatic client reroute for connections from Java clients to DB2 for z/OS 606
Application programming requirements for high availability for connections from Java clients to DB2 for
z/OS servers 606
Failover support with IBM Data Server Drlver for]DBC and SQL] type 2 connecthlty on DB2 for z / OS ... 607

Chapter 12. JDBC and SQLJ connection poolingsupport 609
Chapter 13. IBM Data Server Driver for JDBC and SQLJ statement caching. 611
Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4 connectlwty JDBC and

SQLJ distributed transaction support. 613
Example of a distributed transaction that uses JTA methods.6l4

Contents Vil

Chapter 15. JDBC and SQLJ global transaction support .

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ
DB2Jcc - IBM Data Server Driver for JDBC and SQL]J diagnostic utility . . .

Examples of using configuration properties to start a JDBC trace .

Example of a trace program under the IBM Data Server Driver for]DBC and SQL]

Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support

Chapter 17. Tracing IBM Data Server Driver for JDBC and SQLJ C/C++ native driver
code .

db2jcctrace - Format IBM Data Server Drlver for]DBC and SQL] trace data for C / C++ native drlver code .

Chapter 18. System monitoring for the IBM Data Server Driver for JDBC and SQLJ
Information resources for DB2 for z/OS and related products

Notices
Programming interface 1nforrnat1on .
Trademarks . . .
Privacy policy con51derat10ns .

Glossary

Index .

viii Application Programming Guide and Reference for Java

. 619

621

. 623
. 625
. 627
. 630

. 635
. 635

637

. 641

. 643
. 644
. 645
. 645

. 647

. 649

About this information

This information describes DB2® for z/OS® support for Java™. This support lets
you access relational databases from Java application programs.

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In Versions 8 and 9, most utility
functions were available in conversion mode. However, for Version 11, most utility
functions work only in new-function mode.

Who should read this information

This information is for the following users:

* DB2 for z/OS application developers who are familiar with Structured Query
Language (SQL) and who know the Java programming language.

* DB2 for z/OS system programmers who are installing JDBC and SQL] support.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:

* 1114047/1114213: USE OF DFSORT BY DB2 UTILITIES
* 1113495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE
These informational APARs are periodically updated.
Related information
[DB2 utilities packaging (Utility Guide)|

Terminology and citations

When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®
Refers to any of the following products:
« IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS

© Copyright IBM Corp. 1998, 2013 ix

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

e IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
¢ IBM DB2 Performance Expert for Multiplatforms and Workgroups
 IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.
IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0S Security Server.

Accessibility features for DB2 11 for z/0S

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:

* Keyboard-only operation.

¢ Interfaces that are commonly used by screen readers and screen magnifiers.
* Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information
Online documentation for DB2 11 for z/OS is available in the Information

Management Software for z/OS Solutions Information Center, which is available at
the following website: [http:/ /pic.dhe.ibm.com/infocenter/dzichelp /v2r2 /index.jsp|

IBM and accessibility

See the IBM Accessibility Center at [http: / /www.ibm.com /abld for more information
about the commitment that IBM has to accessibility.

X Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:

* Send your comments by email to [db2zinfo@us.ibm.com|and include the name of
the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

* You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at |nttp:/ /pic.dhe.ibm.com/infocenter /dzichelp/v2r2 /index.jsp}

How to read syntax diagrams

Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/0OS documentation:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

A\
A

»>—required_item

* Optional items appear below the main path.

»>—required_item |_o _| <
ptional_item

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

v
A

ptional_item
»>—required_item |—0 —l

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequ ired choicel ><
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

About this information X1

mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

xii

v
A

»>—required_item
i:(o)ptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

default_choice
»>—required_item |_ _| <
i:optional_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item— —repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

B

»»—required_item—

repeatable_item

Y
A

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

v
A

»—required_item—| fragment-name i

fragment-name:

f—required_item I
|—optional_name—I

With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Application Programming Guide and Reference for Java

Chapter 1. Java application development for IBM data servers

The DB2 and IBM Informix® database systems provide driver support for client
applications and applets that are written in Java.

You can access data in DB2 and IBM Informix database systems using JDBC, SQL,
or pureQuery®.

JDBC

JDBC is an application programming interface (API) that Java applications use to
access relational databases. IBM data server support for JDBC lets you write Java
applications that access local DB2 or IBM Informix data or remote relational data
on a server that supports DRDA®.

SQLJ

SQL]J provides support for embedded static SQL in Java applications. SQL] was
initially developed by IBM, Oracle, and Tandem to complement the dynamic SQL
JDBC model with a static SQL model.

For connections to DB2, in general, Java applications use JDBC for dynamic SQL
and SQLJ for static SQL.

For connections to IBM Informix, SQL statements in JDBC or SQL] applications run
dynamically.

Because SQLJ can inter-operate with JDBC, an application program can use JDBC
and SQL]J within the same unit of work.

pureQuery

pureQuery is a high-performance data access platform that makes it easier to
develop, optimize, secure, and manage data access. It consists of:

* Application programming interfaces that are built for ease of use and for
simplifying the use of best practices

1

* Development tools, which are delivered in IBM InfoSphere® Optim "™
Development Studio, for Java and SQL development

* A runtime, which is delivered in IBM InfoSphere Optim pureQuery Runtime, for
optimizing and securing database access and simplifying management tasks

With pureQuery, you can write Java applications that treat relational data as
objects, whether that data is in databases or JDBC DataSource objects. Your
applications can also treat objects that are stored in in-memory Java collections as
though those objects are relational data. To query or update your relational data or
Java objects, you use SQL.

For more information on pureQuery, see the Integrated Data Management
Information Center.

© Copyright IBM Corp. 1998, 2013 1

Related concepts:

(Chapter 2, “Supported drivers for JDBC and SQLJ],” on page 3]
Related reference:

[[[BM Data Studio Information Center (IBM Data Studio, IBM Optim Database]
[Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)|

2 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp

Chapter 2. Supported drivers for JDBC and SQLJ

The DB2 product includes support for two types of JDBC driver architecture.

According to the JDBC specification, there are four types of JDBC driver
architectures:

Type 1
Drivers that implement the JDBC API as a mapping to another data access AP],
such as Open Database Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability. The DB2 database
system does not provide a type 1 driver.

Type 2
Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Because of the native code, their portability is limited.

Type 3
Drivers that use a pure Java client and communicate with a data server using a
data-server-independent protocol. The data server then communicates the
client's requests to the data source. The DB2 database system does not provide
a type 3 driver.

Type 4
Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

DB2 for z/OS supports the IBM Data Server Driver for JDBC and SQLJ, which
combines type 2 and type 4 JDBC implementations. The driver is packaged in the
following way:

¢ db2jcc.jar and sqlj.zip for JDBC 3.0 and earlier support

* db2jcc4.jar and sqlj4.zip for JDBC 4.0 or later, and JDBC 3.0 or earlier support

You control the level of JDBC support that you want by specifying the appropriate
set of files in the CLASSPATH.

IBM Data Server Driver for JDBC and SQLJ (type 2 and type 4)

The IBM Data Server Driver for JDBC and SQL]J is a single driver that includes
JDBC type 2 and JDBC type 4 behavior. When an application loads the IBM Data
Server Driver for JDBC and SQLJ, a single driver instance is loaded for type 2 and
type 4 implementations. The application can make type 2 and type 4 connections
using this single driver instance. The type 2 and type 4 connections can be made
concurrently. IBM Data Server Driver for JDBC and SQL]J type 2 driver behavior is
referred to as IBM Data Server Driver for JDBC and SQLJ type 2 connectivity. IBM
Data Server Driver for JDBC and SQLJ type 4 driver behavior is referred to as IBM
Data Server Driver for [DBC and SQL] type 4 connectivity.

Two versions of the IBM Data Server Driver for JDBC and SQL]J are available. IBM
Data Server Driver for JDBC and SQL] version 3.5x is JDBC 3.0-compliant. IBM
Data Server Driver for JDBC and SQL]J version 4.x is compliant with JDBC 4.0 or
later.

© Copyright IBM Corp. 1998, 2013 3

The IBM Data Server Driver for JDBC and SQLJ supports these JDBC and SQLJ

functions:

* Version 3.5x supports all of the methods that are described in the JDBC 3.0
specifications.

* Version 4.x supports all of the methods that are described in the JDBC 4.0 or
later specifications.

* SQLJ application programming interfaces, as defined by the SQL]J standards, for
simplified data access from Java applications.

+ Connections that are enabled for connection pooling. WebSphere® Application
Server or another application server does the connection pooling.

* Connections to a data server from Java user-defined functions and stored
procedures use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
only. Applications that call user-defined functions or stored procedures can use
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity or IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity to connect to a data server.

* Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java
Transaction API (JTA) specifications, which conform to the X/Open standard for
distributed transactions (Distributed Transaction Processing: The XA Specification,
available from http://www.opengroup.org) (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity to DB2 for z/OS environment, Version 7 or later,
or to DB2 for Linux, UNIX, and Windows).

In general, you should use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity for Java programs that run on the same z/OS system or zSeries
logical partition (LPAR) as the target DB2 subsystem. Use IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity for Java programs that run on a different
z/0OS system or LPAR from the target DB2 subsystem.

For z/0S systems or LPARs that do not have DB2 for z/OS, the z/OS Application
Connectivity to DB2 for z/OS optional feature can be installed to provide IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity to a DB2 for Linux,
UNIX, and Windows data server.

To use the IBM Data Server Driver for JDBC and SQL]J, you need Java 2
Technology Edition, V5 or later.

Related concepts:

“Environment variables for the z/OS Application Connectivity to DB2 for z/OS|
feature” on page 535|

JDBC driver and database version compatibility

The compatibility of a particular version of the IBM Data Server Driver for JDBC
and SQLJ with a database version depends on the type of driver connectivity that
you are using and the type of data source to which you are connecting.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity

The IBM Data Server Driver for JDBC and SQLJ is always downward compatible
with DB2 databases at the previous release level. For example, IBM Data Server
Driver for JDBC and SQL] type 4 connectivity from the IBM Data Server Driver for
JDBC and SQL]J version 3.61, which is shipped with DB2 for Linux, UNIX, and
Windows Version 9.7 Fix Pack 3, to a DB2 for Linux, UNIX, and Windows Version
8 database is supported.

4 Application Programming Guide and Reference for Java

The IBM Data Server Driver for JDBC and SQLJ is upward compatible with the
next version of a DB2 database if the applications under which the driver runs use
no new features. For example, IBM Data Server Driver for JDBC and SQL]J type 4
connectivity from the IBM Data Server Driver for JDBC and SQL]J version 2.x,
which is shipped with DB2 for z/OS Version 8, to a DB2 for z/OS Version 9.1
database is supported, if the applications under which the driver runs contain no
DB2 for z/OS Version 9.1 features.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to IBM Informix is
supported only for IBM Informix Version 11 and later.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type
2 connectivity

In general, IBM Data Server Driver for JDBC and SQLJ type 2 connectivity is
intended for connections to the local database system, using the driver version that
is shipped with that database version. For example, version 3.6x of the IBM Data
Server Driver for JDBC and SQLJ is shipped with DB2 for Linux, UNIX, and
Windows Version 9.5 and Version 9.7, and DB2 for z/OS Version 8 and later.

However, for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a
local DB2 for Linux, UNIX, and Windows database, the database version can be
one version earlier or one version later than the DB2 for Linux, UNIX, and
Windows version with which the driver was shipped. For IBM Data Server Driver
for JDBC and SQLJ type 2 connectivity to a local DB2 for z/OS subsystem, the
subsystem version can be one version later than the DB2 for z/OS version with
which the driver was shipped.

If the database version to which your applications are connecting is later than the
database version with which the driver was shipped, the applications cannot use
features of the later database version.

Related concepts:

(Chapter 2, “Supported drivers for JDBC and SQLJ],” on page 3|

DB2 for z/0OS and IBM Data Server Driver for JDBC and SQLJ levels

Each version of the IBM Data Server Driver for JDBC and SQL]J is shipped as a
DB2 for z/OS APAR.

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/0S Version 10 APARs

The following table lists the major 4.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 10 APAR that delivered the initial
release of each version.

Table 1. IBM Data Server Driver for JDBC and SQLJ 4.x versions and corresponding DB2 for
z/OS Version 10 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 10 APAR/PTF
4.13 PM47801/UK76380

412 PM32361/UK66666

411 Version 10 GA

Chapter 2. Supported drivers for JDBC and SQL] 5

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 10 APAR that delivered the initial
release of each version.

Table 2. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 10 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 10 APAR/PTF
3.63 PM47803/UK76374

3.62 PM32360/UK66662

3.61 Version 10 GA

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/0S Version 9 APARs

The following table lists the major 4.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 9 APAR that delivered the initial
release of each version.

Table 3. IBM Data Server Driver for JDBC and SQLJ 4.x versions and corresponding DB2 for
z/OS Version 9 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 9 APAR/PTF
413 PM47801/UK76381
412 PM32361/UK66665
411 PM25195/UK62191
49 PM15293/UK57688
4.8 PMO02862/UK52963
47 PK87569/UK48782
43 PK75093/UK43777

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQL]J and the DB2 for z/OS Version 9 APAR that delivered the initial
release of each version.

Table 4. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 9 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 9 APAR/PTF
3.63 PM47803/UK76376
3.62 PM32360/UK66664
3.61 PM25194/UK62189
3.59 PM15292 /UK57685
3.58 PK93123/UK52962
3.57 PK87567 /UK48236
3.53 PK71020/UK42554
3.52 PK65069/UK39205
3.51 PK68428 /UK38507

6 Application Programming Guide and Reference for Java

Table 4. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/0OS Version 9 APARs (continued)

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 9 APAR/PTF
3.6 PK49868/UK32181
34 PK46324 /UK29044
3.3 PK36170/UK22777

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/0OS Version 8 APARs

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 8 APAR that delivered the initial
release of each version.

Table 5. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 8 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 8 APAR/PTF
3.63 PM47803/UK76375

3.62 PM32360/UK66663

3.61 PM26574/UK64542

3.58 PK93123/UK52961

3.57 PK87567 /UK48235

3.53 PK71020/UK42553

3.52 PK65069 /UK39204

The following table lists the major 2.x versions of the IBM Data Server Driver for
JDBC and SQLJ and theDB2 for z/OS Version 8 APAR APAR that delivered the
initial release of each version.

Table 6. IBM Data Server Driver for JDBC and SQLJ 2.x versions and corresponding DB2 for
z/OS Version 8 APARs

IBM Data Server Driver for JDBC and SQL]J

version DB2 for z/OS Version 8 APAR/PTF
2.11 PK54969 /UK35429
2.10 PK25139/UK18527
29 PK19585/UK14851
2.8 PK18158/UK12333
2.7 PK13108/UK11330

Chapter 2. Supported drivers for JDBC and SQLJ 7

Related information:

[[[BM Data Server Driver for JDBC and SQL]J Versions and DB2 for z/OS APARs|

DB2 for Linux, UNIX, and Windows and IBM Data Server Driver for
JDBC and SQLJ levels

Each version of DB2 for Linux, UNIX, and Windows is shipped with a JDBC 3
version and a JDBC 4 version of the IBM Data Server Driver for JDBC and SQL]J.

The following table lists the DB2 for Linux, UNIX, and Windows versions and
corresponding IBM Data Server Driver for JDBC and SQLJ versions. You can use
this information to determine the level of DB2 for Linux, UNIX, and Windows or
DB2 Connect'" that is associated with the IBM Data Server Driver for JDBC and
SQLJ instance under which a client program is running.

Table 7. DB2 for Linux, UNIX, and Windows fix pack levels and versions of the IBM Data
Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQL]J

DB2 version and fix pack level versionl

DB2 Version 10.5 Fix Pack 1

3.67.xx, 417 .xx

DB2 Version 10.5

3.66.xx, 4.16.xx

DB2 Version 10.1 Fix Pack 2

3.65.xx, 4.15.xx

DB2 Version 10.1 Fix Pack 1

3.64.xx, 4.14.xx

DB2 Version 10.1

3.63.xx, 4.13.xx

DB2 Version 9.7 Fix Pack 6

3.64.xx, 4.14.xx

DB2 Version 9.7 Fix Pack 5

3.63.xx, 4.13.xx

DB2 Version 9.7 Fix Pack 4

3.62.xx, 4.12.xx

DB2 Version 9.7 Fix Pack 2 3.59.xx, 4.9.xx
DB2 Version 9.7 Fix Pack 1 3.58.xx, 4.8.xx
DB2 Version 9.7 3.57.xx, 4.7 .xx
DB2 Version 9.5 Fix Pack 7 3.61.xx, 4.8.xx
DB2 Version 9.5 Fix Pack 6 3.58.xx, 4.8.xx
DB2 Version 9.5 Fix Pack 5 3.57.xx, 4.7 .xx
DB2 Version 9.5 Fix Pack 3 and Fix Pack 4 3.53.xx, 4.3.xx
DB2 Version 9.5 Fix Pack 2 3.52.xx, 4.2.xx
DB2 Version 9.5 Fix Pack 1 3.51.xx, 4.1.xx
DB2 Version 9.5 3.50.xx, 4.0.xx
DB2 Version 9.1 Fix Pack 5 and later 3.7.xx
DB2 Version 9.1 Fix Pack 4 3.6.xx
DB2 Version 9.1 Fix Pack 3 3.4.xx
DB2 Version 9.1 Fix Pack 2 3.3.xx
DB2 Version 9.1 Fix Pack 1 3.2.xx
DB2 Version 9.1 3.1.xx

8 Application Programming Guide and Reference for Java

https://www.ibm.com/support/docview.wss?uid=swg21428742

Table 7. DB2 for Linux, UNIX, and Windows fix pack levels and versions of the IBM Data
Server Driver for JDBC and SQLJ (continued)

IBM Data Server Driver for JDBC and SQL]J
DB2 version and fix pack level versionll

Note:
1. All driver versions are of the form n.m.xx. n.m stays the same within a GA level or a fix
pack level. xx changes when a new version of the IBM Data Server Driver for JDBC and

SQL]J is introduced through an APAR fix.

You can find more detailed information about IBM Data Server Driver for JDBC
and SQLJ and DB2 for Linux, UNIX, and Windows versions at the following URL:

[http://www.ibm.com/support/docview.wss?&uid=swg21363866|

Chapter 2. Supported drivers for JDBC and SQL] 9

http://www.ibm.com/support/docview.wss?&uid=swg21363866

10 Application Programming Guide and Reference for Java

Chapter 3. JDBC application programming

Writing a JDBC application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:

* Access the Java packages that contain JDBC methods.

¢ Declare variables for sending data to or retrieving data from DB2 tables.
¢ Connect to a data source.

e Execute SQL statements.

¢ Handle SQL errors and warnings.

 Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks is somewhat different.

Example of a simple JDBC application

A simple JDBC application demonstrates the basic elements that JDBC applications
need to include.

Figure 1. Simple JDBC application
import java.sql.*; 1]

public class EzJava

{
public static void main(String[] args)
{
String urlPrefix = "jdbc:db2:";
String url;
String user;
String password;
String empNo; 2
Connection con;
Statement stmt;
ResultSet rs;

System.out.printin ("#%** Enter class EzJava");

// Check the that first argument has the correct form for the portion
// of the URL that follows jdbc:db2:,

// as described

// in the Connecting to a data source using the DriverManager

// interface with the IBM Data Server Driver for JDBC and SQLJ topic.
// For example, for IBM Data Server Driver for

// JDBC and SQLJ type 2 connectivity,

// args[0] might be MVSIDB2M. For

// type 4 connectivity, args[0] might

// be //stlmvs1:10110/MVS1DB2M.

if (args.length!=3)

{
System.err.printin ("Invalid value. First argument appended to "+
"jdbc:db2: must specify a valid URL.");
System.err.printin ("Second argument must be a valid user ID.");
System.err.printin ("Third argument must be the password for the user ID.");

© Copyright IBM Corp. 1998, 2013 11

System.exit(1);
1
url = urlPrefix + args[0];
user = args[1];
password = args[2];

try
{
// Load the driver
Class.forName("com.ibm.db2.jcc.DB2Driver");

System.out.printIn("**+* Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
con = DriverManager.getConnection (url, user, password);
// Commit changes manually

con.setAutoCommit(false);

System.out.printin("**** Created a JDBC connection to the data source");

// Create the Statement
stmt = con.createStatement(); [4a |
System.out.printin("**+* Created JDBC Statement object");

// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); [4b |
System.out.printIn("*x+* Created JDBC ResultSet object");

// Print all of the employee numbers to standard output device
while (rs.next()) {
empNo = rs.getString(1);
System.out.printIn("Employee number = " + empNo);
}
System.out.printIn("*x+* Fetched all rows from JDBC ResultSet");
// Close the ResultSet
rs.close();
System.out.printIn("*x+% Closed JDBC ResultSet");

// Close the Statement
stmt.close();
System.out.printin("*x+* Closed JDBC Statement");

// Connection must be on a unit-of-work boundary to allow close
con.commit();
System.out.printin ("#%%* Transaction committed");

// Close the connection

con.close(); 6|

System.out.printIn("**+* Disconnected from data source");

System.out.printin("+*** JDBC Exit from class EzJava - no errors");

}

catch (ClassNotFoundException e)

{
System.err.printin("Could not load JDBC driver");
System.out.printin("Exception: " + e);
e.printStackTrace();

}

catch(SQLException ex) B
{
System.err.printIn("SQLException information");
while(ex!=null) {
System.err.printin ("Error msg: " + ex.getMessage());
System.err.printin ("SQLSTATE: " + ex.getSQLState());
System.err.printin ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException(); // For drivers that support chained exceptions

12 Application Programming Guide and Reference for Java

}

}
} // End main
} // End EzJava

Notes to |Figure 1 on page 11}

Note Description

1 This statement imports the java.sql package, which contains the JDBC core APL
For information on other Java packages that you might need to access, see "Java
packages for JDBC support".

2 String variable empNo performs the function of a host variable. That is, it is
used to hold data retrieved from an SQL query. See "Variables in JDBC
applications" for more information.

3a and 3b These two sets of statements demonstrate how to connect to a data source using
one of two available interfaces. See "How JDBC applications connect to a data
source” for more details.

Step 3a (loading the JDBC driver) is not necessary if you use JDBC 4.0 or later.

4a and 4b These two sets of statements demonstrate how to perform a SELECT in JDBC.
For information on how to perform other SQL operations, see "JDBC interfaces
for executing SQL".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling an
SQLException under the IBM Data Server Driver for JDBC and SQL]J". For
information on handling SQL warnings, see "Handling an SQLWarning under
the IBM Data Server Driver for JDBC and SQLJ".

6 This statement disconnects the application from the data source. See
"Disconnecting from data sources in JDBC applications".

Related concepts:

[“How JDBC applications connect to a data source”]

[‘/TDBC interfaces for executing SQL” on page 32|

[“Variables in JDBC applications” on page 30|

[‘Java packages for JDBC support” on page 28|
Related tasks:
“Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQL]J”]

on page 120|

[‘Disconnecting from data sources in JDBC applications” on page 124

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must be
connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.

Connections to IBM Informix databases can use type 4 connectivity.

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Chapter 3. JDBC application programming 13

Java application

DriverManager
or
DataSource

JDBC driver*

Local database
or DB2
subsystem

Database
server

*Java byte code executed under JVM,
and native code

Figure 2. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 2
connectivity

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQL] type 4 connectivity.

Java application

DriverManager
or
DataSource
JDBC driver*
DRDA
Database

server

*Java byte code executed under JVM

Figure 3. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity

Application Programming Guide and Reference for Java

Related tasks:

[‘Connecting to a data source using SQL]” on page 127

“Connecting to a data source using the DriverManager interface with the IBM Data|

Server Driver for JDBC and SQLJ"|

Connecting to a data source using the DriverManager
interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

Procedure

The steps for establishing a connection are:

1.

Load the JDBC driver by invoking the Class.forName method.

If you are using JDBC 4.0 or later, you do not need to explicitly load the JDBC
driver.

For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by
invoking the Class.forName method with the following argument:
com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following
argument instead:

COM.ibm.db20s390.sq1j.jdbc.DB2SQLJDriver

The following code demonstrates loading the IBM Data Server Driver for JDBC
and SQLJ:

try {
// Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager
Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
}

The catch block is used to print an error if the driver is not found.
Connect to a data source by invoking the DriverManager.getConnection
method.

You can use one of the following forms of getConnection:

getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

For IBM Data Server Driver for JDBC and SQL] type 4 connectivity, the
getConnection method must specify a user ID and password, through
parameters or through property values.

The url argument represents a data source, and indicates what type of JDBC
connectivity you are using.

The info argument is an object of type java.util.Properties that contains a set
of driver properties for the connection. Specifying the info argument is an
alternative to specifying property=value; strings in the URL. See "Properties for
the IBM Data Server Driver for JDBC and SQLJ" for the properties that you can
specity.

There are several ways to specify a user ID and password for a connection:

Chapter 3. JDBC application programming 15

¢ Use the form of the getConnection method that specifies url with
property=value; clauses, and include the user and password properties in the
URL.

* Use the form of the getConnection method that specifies user and password.

* Use the form of the getConnection method that specifies info, after setting the
user and password properties in a java.util.Properties object.

Examples

Example: Establishing a connection and setting the user ID and password in a URL:

String url = "jdbc:db2://myhost:5021/mydb:" +
"user=dbadm;password=dbadm;";

// Set URL for data source
Connection con = DriverManager.getConnection(url);
// Create connection

Example: Establishing a connection and setting the user ID and password in user and
password parameters:
String url = "jdbc:db2://myhost:5021/mydb";
// Set URL for data source
String user = "dbadm";
String password = "dbadm";
Connection con = DriverManager.getConnection(url, user, password);
// Create connection

Example: Establishing a connection and setting the user ID and password in a
Java.util.Properties object:
Properties properties = new Properties(); // Create Properties object
properties.put("user", "dbadm"); // Set user ID for connection
properties.put("password", "dbadm"); // Set password for connection
String url = "jdbc:db2://myhost:5021/mydb";

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

URL format for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity

If you are using type 4 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 4 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
syntax

> jdbc:db2: —//—server—l_——l—/—databasc |_ <
Ejdbc:dej:net:— :—port :—| connection-options ’J

jdbc:ids:

connection-options:

f |
I—property=value;—| |—| special-registers 'J |—| global-variables 'J |—| query-acceleration 'J

16 Application Programming Guide and Reference for Java

special-registers:

| \\
specialRegisters—=

global-variables:

1
s
Y special-register-name=special-register- value——;J

| L
globalSessionVariables—=—Y-global-variable-name=global-variable-value——;—

query-acceleration:

- | |

Notes:

LqueryAcce] eration—=

NONE: J I
ENABLE
ENABLE WITH FAILBACK—
ELIGIBLE

ALL

1 property=value pairs, the special-registers string, and the global-variables string can be specified in

any order.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
option descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:
The meanings of the initial portion of the URL are:

jdbc:db2:
Indicates that the connection is to a DB2 for z/OS, DB2 for Linux,
UNIX, and Windows.

jdbc:db2: can also be used for a connection to an IBM Informix
database, for application portability.
jdbc:db2j:net:
Indicates that the connection is to a remote IBM Cloudscape server.
jdbc:ids:
Indicates that the connection is to an IBM Informix data source.

jdbc:informix-sqli: also indicates that the connection is to an IBM
Informix data source, but jdbc:ids: should be used.

server
The domain name or IP address of the data source.

port
The TCP/IP server port number that is assigned to the data source. This is an
integer between 0 and 65535. The default is 446.

database
A name for the data source.

Chapter 3. JDBC application programming 17

e If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in the DB2 location
name must be uppercase characters. The IBM Data Server Driver for JDBC
and SQLJ does not convert lowercase characters in the database value to
uppercase for IBM Data Server Driver for JDBC and SQL] type 4
connectivity.

You can determine the location name by executing the following SQL
statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

e If the connection is to a DB2 for z/OS server or a DB2 for i server, all
characters in database must be uppercase characters.

e If the connection is to a DB2 for Linux, UNIX, and Windows server, database
is the database name that is defined during installation.

e If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

e If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

property=values;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource. TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource. TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:
String url =

"jdbc:db2://sysmvsl.st1.ibm.com:5021/STLEC1" +

":user=dbadm;password=dbadm;" +

"tracelLevel=" +

(com.ibm.db2.jcc.DB2BaseDataSource. TRACE_ALL) + ";";

Connection con =

java.sql.DriverManager.getConnection(url);

specialRegisters=special-register-name=special-register-value,...special-
register-name=special-register-value
A list of special register settings for the JDBC connection. You can specify one
or more special register name and value pairs. Special register name and value
pairs must be delimited by commas (,). The last pair must end with a
semicolon (;). For example:
String url =
"jdbc:db2://sysmvsl.st1.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"specialRegisters=CURRENT_PATH=SYSIBM,CURRENT CLIENT_USERID=test" + ";";

Connection con =
java.sql.DriverManager.getConnection(url);

For special registers that can be set through IBM Data Server Driver for JDBC

and SQLJ Connection properties, if you set a special register value in a URL
string using specialRegisters, and you also set that value in a

18 Application Programming Guide and Reference for Java

Jjava.util.Properties object using the following form of getConnection, the
special register is set to the value from the URL string.

getConnection(String url, java.util.Properties info);

You can specify only one value for each special register using the
specialRegisters parameter. For special registers that take multiple values, such
as CURRENT PATH, CURRENT PACKAGE PATH, CURRENT PACKAGESET,
you can specify multiple values for a special register by using the DataSource
interface and the DB2DataSource.setSpecialRegisters method.

globalSessionVariables=session-variable-name=session-variable-
value,...session-variable-name=session-variable-value

A list of session variable settings for the JDBC connection. You can specify one
or more session variable name and value pairs.

Session variable settings apply only to DB2 for z/OS Version 11 or later data
servers.

Session variable name and value pairs must be delimited by commas (,). The
last pair must end with a semicolon (;). For example:
String url =
"jdbc:db2://sysmvsl.st1.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"globalSessionVariables=SESSION.TEST=FAILED,SYSIBMADM.GET_ARCHIVE=Y" + ";";
Connection con =
java.sql.DriverManager.getConnection(url);

queryAcceleration=value;

Changes the value of the CURRENT QUERY ACCELERATION special register.
Possible values are:

NONE
Specifies that no query acceleration is done.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If there is an accelerator failure while a query is
running, or the accelerator returns an error, DB2 returns a negative
SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the
PREPARE or first OPEN for the query, DB2 executes the query without the
accelerator. If the accelerator returns an error during a FETCH or a
subsequent OPEN, DB2 returns the error to the user, and does not execute
the query.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are executed by DB2.
If there is an accelerator failure while a query is running, or the accelerator
returns an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are not executed by
DB2, and an SQL error is returned. If there is an accelerator failure while a

Chapter 3. JDBC application programming 19

query is running, or the accelerator returns an error, DB2 returns a
negative SQLCODE to the application.

Related reference:

[‘DB2DataSource class” on page 425|

URL format for IBM Data Server Driver for JDBC and SQLJ type
2 connectivity

If you are using type 2 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 2 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL
syntax

jdbc—:—db2—:—database »<
jdbc—:—db20s390—:—database |——| connection-options ’J
jdbc—:—db20s390sq1j—:—database—
jdbc—:—default—:—connection

jdbc—:—db20s390—: _|
jdbc—:—db20s390sq1j—: L‘ connection-options 'J

connection-options:

f |
I—proper‘ty=value;J |—| special-registers 'J |—| global-variables 'J |—| query-acceleration 'J

special-registers:

[\\ J 1
specialRegisters—=—"—special-register-name=special-register-value——;

global-variables:

[\\ J 1
globalSessionVariables—=—Y-global-variable-name=global-variable-value——;

query-acceleration:

I l—queryAcce]eration = NONE ;—l I
ENABLE
ENABLE WITH FAILBACK—
ELIGIBLE
ALL
Notes:

1 property=value pairs, the special-registers string, and the global-variables string can be specified in
any order.

20 Application Programming Guide and Reference for Java

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL
options descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db20s390: or jdbc:db20s390sqlj: or
jdbc:default:connection
The meanings of the initial portion of the URL are:

jdbc:db2: or jdbc:db20s390: or jdbc:db20s390sqlj:
Indicates that the connection is to a DB2 for z/OS or DB2 for Linux,
UNIX, and Windows server. jdbc:db20s390: and jdbc:db20s390sq]j: are
for compatibility of programs that were written for older drivers, and
apply to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS only.

jdbc:default:connection
Indicates that the URL is for a connection to the local subsystem
through a DB2 thread that is controlled by CICS, IMS, or the Java
stored procedure environment.

database
A name for the database server.

 database is a location name that is defined in the SYSIBM.LOCATIONS
catalog table.

All characters in the DB2 location name must be uppercase characters.
However, for a connection to a DB2 for z/OS server, the IBM Data Server
Driver for JDBC and SQLJ converts lowercase characters in the database
value to uppercase.

property=values;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jecc. DB2BaseDataSource. TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc. DB2BaseDataSource. TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:
String url =

"jdbc:db2:STLEC1" +

":user=dbadm;password=dbadm;" +

“tracelevel=" +

(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

Connection con =

java.sql.DriverManager.getConnection(url);

specialRegisters=special-register-name=special-register-value,...special-
register-name=special-register-value
A list of special register settings for the JDBC connection. You can specify one
or more special register name and value pairs. Special register name and value
pairs must be delimited by commas (,). The last pair must end with a
semicolon (;). For example:
String url =
"jdbc:db2:STLEC1" +
":user=dbadm;password=dbadm;" +

Chapter 3. JDBC application programming 21

"specialRegisters=CURRENT_PATH=SYSIBM,CURRENT CLIENT_ USERID=test" + ";";
Connection con =
java.sql.DriverManager.getConnection(url);

For special registers that can be set through IBM Data Server Driver for JDBC
and SQL]J Connection properties, if you set a special register value in a URL
string using specialRegisters, and you also set that value in a
Jjava.util.Properties object using the following form of getConnection, the
special register is set to the value from the URL string.

getConnection(String url, java.util.Properties info);

If you specify a special register that is supported on the data server, but you
specify a value that is not supported on the data server, the IBM Data Server
Driver for JDBC and SQL] returns an error. If you specify a special register that
is not supported on the data server, the driver returns a warning.

You can specify only one value for each special register using the
specialRegisters parameter. For special registers that take multiple values, such
as CURRENT PATH, CURRENT PACKAGE PATH, CURRENT PACKAGESET,
you can specify multiple values for a special register by using the DataSource
interface and the DB2DataSource.setSpecialRegisters method.

globalSessionVariables=global-variable-name=global-variable-
value,...global-variable-name=global-variable-value

A list of global variable settings for the JDBC connection. You can specify one
or more global variable name and value pairs.

global variable settings apply only to DB2 for z/OS Version 11 or later data
servers.

global variable name and value pairs must be delimited by commas (,). The
last pair must end with a semicolon (;). For example:
String url =
"jdbc:db2:STLEC1" +
":user=dbadm;password=dbadm;" +
"globalSessionVariables=SESSION.TEST=FAILED,SYSIBMADM.GET_ARCHIVE=Y" + ";";
Connection con =
java.sql.DriverManager.getConnection(url);

queryAcceleration=value;

Changes the value of the CURRENT QUERY ACCELERATION special register.
Possible values are:

NONE
Specifies that no query acceleration is done.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If there is an accelerator failure while a query is
running, or the accelerator returns an error, DB2 returns a negative
SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the
PREPARE or first OPEN for the query, DB2 executes the query without the
accelerator. If the accelerator returns an error during a FETCH or a
subsequent OPEN, DB2 returns the error to the user, and does not execute
the query.

22 Application Programming Guide and Reference for Java

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are executed by DB2.
If there is an accelerator failure while a query is running, or the accelerator
returns an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are not executed by
DB2, and an SQL error is returned. If there is an accelerator failure while a
query is running, or the accelerator returns an error, DB2 returns a
negative SQLCODE to the application.

Related reference:

[“DB2DataSource class” on page 425

Connecting to a data source using the DataSource interface

If your applications need to be portable among data sources, you should use the
DataSource interface.

About this task

Using DriverManager to connect to a data source reduces portability because the
application must identify a specific JDBC driver class name and driver URL. The
driver class name and driver URL are specific to a JDBC vendor, driver
implementation, and data source.

When you connect to a data source using the DataSource interface, you use a
DataSource object.

The simplest way to use a DataSource object is to create and use the object in the
same application, as you do with the DriverManager interface. However, this
method does not provide portability.

The best way to use a DataSource object is for your system administrator to create
and manage it separately, using WebSphere Application Server or some other tool.
The program that creates and manages a DataSource object also uses the Java
Naming and Directory Interface (JNDI) to assign a logical name to the DataSource
object. The JDBC application that uses the DataSource object can then refer to the
object by its logical name, and does not need any information about the underlying
data source. In addition, your system administrator can modify the data source
attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this
URL on the web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see "Creating and deploying
DataSource objects".

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the
DataSource interface to obtain connections.

Chapter 3. JDBC application programming 23

Procedure

To obtain a connection using a DataSource object that the system administrator has
already created and assigned a logical name to, follow these steps:

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of
the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is
associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.
You can use one of the following forms of the getConnection method:

getConnection();
getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the
connection that are different from the ones that were specified when the
DataSource was deployed.

Examples

Example of obtaining a connection using a DataSource object that was created by the
system administrator: In this example, the logical name of the data source that you
need to connect to is jdbc/sampledb. The numbers to the right of selected
statements correspond to the previously-described steps.

import java.sql.=*;
import javax.naming.=;
import javax.sql.*;

Context ctx=new InitialContext();
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");
Connection con=ds.getConnection();

Figure 4. Obtaining a connection using a DataSource object

Example of creating and using a DataSource object in the same application:

Figure 5. Creating and using a DataSource object in the same application

import java.sql.=; // JDBC base
import javax.sql.=; // Addtional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ |H
// interfaces
DB2SimpleDataSource dbds=new DB2SimpleDataSource();
dbds.setDatabaseName("dblocl"); K]
// Assign the Tocation name
dbds.setDescription("Our Sample Database");
// Description for documentation
dbds.setUser("john");
// Assign the user ID
dbds.setPassword("dbadm");
// Assign the password
Connection con=dbds.getConnection(); 4]
// Create a Connection object

Note Description
1 Import the package that contains the implementation of the DataSource interface.

24 Application Programming Guide and Reference for Java

Note Description

2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM Data
Server Driver for JDBC and SQL] implementations of the DataSource interface. See
"Creating and deploying DataSource objects” for information on DB2's DataSource
implementations.

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign
attributes to the DB2SimpleDataSource object. See "Properties for the IBM Data
Server Driver for JDBC and SQLJ" for information about the attributes that you
can set for a DB2SimpleDataSource object under the IBM Data Server Driver for
JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds
represents.

Related tasks:
[“Connecting to a data source using SQLJ” on page 127

How to determine which type of IBM Data Server Driver for
JDBC and SQLJ connectivity to use

The IBM Data Server Driver for JDBC and SQL] supports two types of
connectivity: type 2 connectivity and type 4 connectivity.

For the DriverManager interface, you specify the type of connectivity through the
URL in the DriverManager.getConnection method. For the DataSource interface,
you specify the type of connectivity through the driverType property.

The following table summarizes the differences between type 2 connectivity and
type 4 connectivity:

Table 8. Comparison of IBM Data Server Driver for JDBC and SQLJ type 2 connectivity and IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity

IBM Data Server Driver for JDBC IBM Data Server Driver for JDBC

and SQL]J type 2 connectivity and SQLJ type 4 connectivity

Function support support

Performance Better for accessing a local DB2 server Better for accessing a remote DB2

server

Installation Requires installation of native Requires installation of Java classes
libraries in addition to Java classes only

Stored procedures Can be used to call or execute stored Can be used only to call stored
procedures procedures

Distributed transaction processing Not supported Supported

(XA)

J2EE 1.4 compliance Compliant Compliant

CICS environment Supported Not supported

IMS environment Supported Not supported

The following points can help you determine which type of connectivity to use.

Use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity under these
circumstances:

* Your JDBC or SQL]J application runs locally most of the time.
Local applications have better performance with type 2 connectivity.

* You are running a Java stored procedure.

Chapter 3. JDBC application programming 25

A stored procedure environment consists of two parts: a client program, from
which you call a stored procedure, and a server program, which is the stored
procedure. You can call a stored procedure in a JDBC or SQLJ program that uses
type 2 or type 4 connectivity, but you must run a Java stored procedure using
type 2 connectivity.

* Your application runs in the CICS environment or IMS environment.

Use IBM Data Server Driver for JDBC and SQLJ type 4 connectivity under these
circumstances:

* Your JDBC or SQLJ application runs remotely most of the time.
Remote applications have better performance with type 4 connectivity.

* You are using IBM Data Server Driver for JDBC and SQLJ connection
concentrator and Sysplex workload balancing support.

JDBC connection objects

When you connect to a data source by either connection method, you create a
Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:

* Create Statement, PreparedStatement, and CallableStatement objects for
executing SQL statements. These are discussed in "Executing SQL statements in
JDBC applications".

* Gather information about the data source to which you are connected. This
process is discussed in "Learning about a data source using DatabaseMetaData
methods".

* Commit or roll back transactions. You can commit transactions manually or
automatically. These operations are discussed in "Commit or roll back a JDBC
transaction".

* Close the connection to the data source. This operation is discussed in
"Disconnecting from data sources in JDBC applications".

Related concepts:

[“IDBC interfaces for executing SQL” on page 32|
Related tasks:
[‘Learning about a data source using DatabaseMetaData methods” on page 28|

[“Committing or rolling back JDBC transactions” on page 113

[‘Disconnecting from data sources in JDBC applications” on page 124

Creating and deploying DataSource objects

JDBC versions starting with version 2.0 provide the DataSource interface for
connecting to a data source. Using the DataSource interface is the preferred way to
connect to a data source.

About this task

Using the DataSource interface involves two parts:

* Creating and deploying DataSource objects. This is usually done by a system
administrator, using a tool such as WebSphere Application Server.

* Using the DataSource objects to create a connection. This is done in the
application program.

26 Application Programming Guide and Reference for Java

This topic contains information that you need if you create and deploy the
DataSource objects yourself.

The IBM Data Server Driver for JDBC and SQLJ provides the following DataSource
implementations:

com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection
pooling. You can use this implementation with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource, which supports connection
pooling. You can use this implementation with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and
distributed transactions. The connection pooling is provided by WebSphere
Application Server or another application server. You can use this
implementation only with IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

Procedure

To create and deploy a DataSource object, you need to perform these tasks:

1. Create an instance of the appropriate DataSource implementation.

2. Set the properties of the DataSource object.

3. Register the object with the Java Naming and Directory Interface (JNDI)
naming service.

Example

The following example shows how to perform these tasks.

import java.sql.=; // JDBC base
import javax.naming.x*; // JINDI Naming Services
import javax.sql.=; // Additional methods for JDBC

import com.ibm.db2.jcc.*; // IBM Data Server Driver for

// JDBC and SQLJ
// implementation of JDBC
// standard extension APIs

DB2SimpleDataSource dbds = new com.ibm.db2.jcc.DB2SimpleDataSource();

dbds.setDatabaseName("db21oc1"); 2|
dbds.setDescription("Our Sample Database");

dbds.setUser("john");

dbds.setPassword ("mypw") ;

Context ctx=new InitialContext(); 3
Ctx.bind("jdbc/sampledb",dbds); 4

Figure 6. Example of creating and deploying a DataSource object

Note Description

1 Creates an instance of the DB2SimpleDataSource class.

2 This statement and the next three statements set values for properties of this
DB2SimpleDataSource object.

3 Creates a context for use by JNDL

Chapter 3. JDBC application programming 27

Note Description
4 Associates DBSimple2DataSource object dbds with the logical name jdbc/sampledb.
An application that uses this object can refer to it by the name jdbc/sampledb.

Related tasks:
[“Connecting to a data source using the DataSource interface” on page 23

Related reference:
[“Properties for the IBM Data Server Driver for JDBC and SQLJ]” on page 243

Java packages for JDBC support

Before you can invoke JDBC methods, you need to be able to access all or parts of
various Java packages that contain those methods.

You can do that either by importing the packages or specific classes, or by using
the fully-qualified class names. You might need the following packages or classes
for your JDBC program:

java.sql
Contains the core JDBC APIL.

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains methods for producing server-side applications using Java

com.ibm.db2.jcc
Contains the implementation of JDBC for the IBM Data Server Driver for
JDBC and SQLJ.

Related concepts:

[“Example of a simple JDBC application” on page 11|

Learning about a data source using DatabaseMetaData methods

The DatabaseMetaData interface contains methods that retrieve information about a
data source. These methods are useful when you write generic applications that
can access various data sources.

About this task

In generic applications that can access various data sources, you need to test
whether a data source can handle various database operations before you execute
them. For example, you need to determine whether the driver at a data source is at
the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

* Features that the data source supports, such as the ANSI SQL level

* Specific information about the JDBC driver, such as the driver level

e Limits, such as the maximum number of columns that an index can have

* Whether the data source supports data definition statements (CREATE, ALTER,
DROP, GRANT, REVOKE)

* Lists of objects at the data source, such as tables, indexes, or procedures

* Whether the data source supports various JDBC functions, such as batch updates
or scrollable ResultSets

28 Application Programming Guide and Reference for Java

A list of scalar functions that the driver supports
Procedure

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.
2. Invoke DatabaseMetaData methods to get information about the data source.
3. If the method returns a ResultSet:

a. In aloop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX
methods.

b. Invoke the close method to close the ResultSet object.

Examples

Example: The following code demonstrates how to use DatabaseMetaData methods

to determine the driver version, to get a list of the stored procedures that are

available at the data source, and to get a list of datetime functions that the driver

supports. The numbers to the right of selected statements correspond to the
previously-described steps.

Figure 7. Using DatabaseMetaData methods to get information about a data source

Connection con;
DatabaseMetaData dbmtadta;
ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

String dtfnList;

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object
mtadtaint = dmtadta.getDriverVersion(); 2
// Check the driver version
System.out.printIn("Driver version: " + mtadtaint);
rs = dbmtadta.getProcedures(null, null, "%");
// Get information for all procedures
while (rs.next()) { // Position the cursor
procSchema = rs.getString("PROCEDURE_SCHEM");
// Get procedure schema
procName = rs.getString("PROCEDURE_NAME");
// Get procedure name
System.out.printin(procSchema + "." + procName);
// Print the qualified procedure name
1

dtfnList = dbmtadta.getTimeDateFunctions();

// Get list of supported datetime functions
System.out.printIn("Supported datetime functions:");
System.out.printIn(dtfnList); // Print the Tist of datetime functions
rs.close(); // Close the ResultSet

Chapter 3. JDBC application programming

29

Related reference:
[‘Driver support for JDBC APIs” on page 319

DatabaseMetaData methods for identifying the type of data

source

You can use the DatabaseMetaData.getDatabaseProductName and
DatabaseMetaData.getProductVersion methods to identify the type and level of the
database manager to which you are connected, and the operating system on which
the database manager is running.

DatabaseMetaData.getDatabaseProductName returns a string that identifies the
database manager and the operating system. The string has one of the following
formats:

database-product
database-product/operating-system

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductName.

Table 9. Examples of DatabaseMetaData.getDatabaseProductName values

getDatabaseProductName value Database product

DB2 DB2 for z/OS

DB2/LINUXX8664 DB2 for Linux, UNIX, and Windows on Linux on x86
IBM Informix/UNIX64 IBM Informix on UNIX

DatabaseMetaData.getDatabaseVersionName returns a string that contains the
database product indicator and the version number, release number, and
maintenance level of the data source.

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductVersion.

Table 10. Examples of DatabaseMetaData.getDatabaseProductVersion values

getDatabaseProductVersion value Database product version

DSN09015 DB2 for z/OS Version 9.1 in new-function mode
SQL09010 DB2 for Linux, UNIX, and Windows Version 9.1
IFX11100 IBM Informix Version 11.10

Variables in JDBC applications

As in any other Java application, when you write JDBC applications, you declare
variables. In Java applications, those variables are known as Java identifiers.

Some of those identifiers have the same function as host variables in other
languages: they hold data that you pass to or retrieve from database tables.
Identifier empNo in the following code holds data that you retrieve from the
EMPNO table column, which has the CHAR data type.

String empNo;

// Execute a query and generate a ResultSet instance

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");

30 Application Programming Guide and Reference for Java

while (rs.next()) {
String empNo = rs.getString(1);
System.out.printIn("Employee number = " + empNo);

}

Your choice of Java data types can affect performance because DB2 picks better
access paths when the data types of your Java variables map closely to the DB2
data types.

Related concepts:

[“Example of a simple JDBC application” on page 11|

Related reference:

[“Data types that map to database data types in Java applications” on page 229|

Comments in a JDBC application

To document your JDBC program, you need to include comments. You can use
Java comments outside of JDBC methods and Java or SQL comments in SQL
statement strings.

You can include Java comments outside JDBC methods, wherever the Java
language permits them. Within an SQL statement string in a JDBC method call,
you can use comments in the following places:

e For connections to DB2 data servers or Informix data servers, comments can be:

— Anywhere in the SQL statement string, and enclosed in /* and */ pairs. /*
and */ pairs can be nested.

— At the end of the SQL statement string, and preceded by two hyphens (--).

* For connections to Informix data servers only, comments can be enclosed in left
curly bracket ({) and right curly bracket (}) pairs.

Restriction: A comment that is enclosed in a { and } pair is not valid if either of
the following conditions is true:

— The SQL statement string is not a stored procedure call, the SQL statement
string is preceded and followed by comments that are enclosed in { and }
pairs, and the comment at the beginning of the SQL statement string begins
with the word call.

— The SQL statement string is a stored procedure call, and the comment {call} is
at the beginning of the escape syntax for the stored procedure call.

— The comment contains any of the following characters:
- Single quotation mark ()
- Double quotation mark (")
- Left curly bracket ({)
- Right curly bracket (})
e
— The comment can be interpreted as SQL escape syntax. Comments that begin
with the following characters can be interpreted as SQL escape syntax:
- d followed by a space
- t followed by a space
- ts followed by a space
- escape followed by a space
- 0oj followed by a space
- fn followed by a space

For example, the following SQL statement strings are not valid:

Chapter 3. JDBC application programming 31

"{call comment at beginning} select * from systables {ending comment}"
"{{call} call mysp(?, ?2)}"

JDBC interfaces for executing SQL

You execute SQL statements in a traditional SQL program to update data in tables,
retrieve data from the tables, or call stored procedures. To perform the same
functions in a JDBC program, you invoke methods.

Those methods are defined in the following interfaces:

* The Statement interface supports all SQL statement execution. The following
interfaces inherit methods from the Statement interface:

— The PreparedStatement interface supports any SQL statement containing
input parameter markers. Parameter markers represent input variables. The
PreparedStatement interface can also be used for SQL statements with no
parameter markers.

With the IBM Data Server Driver for JDBC and SQL]J, the PreparedStatement
interface can be used to call stored procedures that have input parameters
and no output parameters, and that return no result sets. However, the
preferred interface is CallableStatement.

— The CallableStatement interface supports the invocation of a stored
procedure.

The CallableStatement interface can be used to call stored procedures with
input parameters, output parameters, or input and output parameters, or no
parameters. With the IBM Data Server Driver for JDBC and SQLJ, you can
also use the Statement interface to call stored procedures, but those stored
procedures must have no parameters.

* The ResultSet interface provides access to the results that a query generates.
The ResultSet interface has the same purpose as the cursor that is used in SQL
applications in other languages.

Related tasks:
“Creating and modifying database objects using the Statement.executeUpdate

method”|

“Retrieving data from tables using the Statement.executeQuery method” on page|
41

“Updating data in tables using the PreparedStatement.executeUpdate method” on|

page 3§|

“Retrieving data from tables using the PreparedStatement.executeQuery method”|

on page 42|

Related reference:
[“Driver support for JDBC APIs” on page 319

Creating and modifying database objects using the
Statement.executeUpdate method

The Statement.executeUpdate is one of the JDBC methods that you can use to
update tables and call stored procedures.

About this task
You can use the Statement.executeUpdate method to do the following things:

e Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,
REVOKE

32 Application Programming Guide and Reference for Java

e Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain
parameter markers.

* With the IBM Data Server Driver for JDBC and SQLJ, execute the CALL
statement to call stored procedures that have no parameters and that return no
result sets.

Procedure

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeUpdate method to perform the SQL operation.
3. Invoke the Statement.close method to close the Statement object.

Example

Suppose that you want to execute this SQL statement:
UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'

The following code creates Statement object stmt, executes the UPDATE statement,
and returns the number of rows that were updated in numUpd. The numbers to the
right of selected statements correspond to the previously-described steps.

Connection con;
Statement stmt;
int numUpd;

stmt = con.createStatement(); // Create a Statement object
numUpd = stmt.executeUpdate(
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'"); E
// Perform the update
stmt.close(); // Close Statement object

Figure 8. Using Statement.executeUpdate

Related reference:
[“Driver support for JDBC APIs” on page 319

Updating data in tables using the
PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update DB2 tables with
constant values. However, updates often need to involve passing values in
variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate
method.

About this task

With the IBM Data Server Driver for JDBC and SQLJ, you can also use
PreparedStatement.executeUpdate to call stored procedures that have input
parameters and no output parameters, and that return no result sets.

DB2 for z/OS does not support dynamic execution of the CALL statement. For
calls to stored procedures that are on DB2 for z/OS data sources, the parameters
can be parameter markers or literals, but not expressions. The following types of
literals are supported:

e Integer

* Double

Chapter 3. JDBC application programming 33

e Decimal

e Character

* Hexadecimal
* Graphic

For calls to stored procedures that are on IBM Informix data sources, the
PreparedStatement object can be a CALL statement or an EXECUTE PROCEDURE
statement.

When you execute an SQL statement many times, you can get better performance
by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table
for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'

Suppose that you want to generalize the operation to update the employee table
for any set of phone numbers and employee numbers. You need to replace the
constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?
Variables of this form are called parameter markers.
Procedure

To execute an SQL statement with parameter markers, you need to perform these

steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the input
variables.

This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you useIBM Data Server Driver for JDBC
and SQLJ-only methods to pass values to the input parameters.

3. Invoke the PreparedStatement.executeUpdate method to update the table with
the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Example
The following code performs the previous steps to update the phone number to

'4657' for the employee with employee number '000010". The numbers to the right
of selected statements correspond to the previously-described steps.

34 Application Programming Guide and Reference for Java

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

// Create a PreparedStatement object E
pstmt.setString(1,"4657"); // Assign first value to first parameter
pstmt.setString(2,"000010"); // Assign first value to second parameter
numUpd = pstmt.executeUpdate(); // Perform first update
pstmt.setString(1,"4658"); // Assign second value to first parameter
pstmt.setString(2,"000020"); // Assign second value to second parameter
numUpd = pstmt.executeUpdate(); // Perform second update
pstmt.close(); // Close the PreparedStatement object 4]

Figure 9. Using PreparedStatement.executeUpdate for an SQL statement with parameter
markers

You can also use the PreparedStatement.executeUpdate method for statements that
have no parameter markers. The steps for executing a PreparedStatement object
with no parameter markers are similar to executing a PreparedStatement object
with parameter markers, except you skip step The following example
demonstrates these steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");
// Create a PreparedStatement object [}
numUpd = pstmt.executeUpdate(); // Perform the update 3
pstmt.close(); // Close the PreparedStatement object [

Figure 10. Using PreparedStatement.executeUpdate for an SQL statement without parameter
markers

Related tasks:
[“Using named parameter markers with PreparedStatement objects” on page 86|

Related reference:
[“Driver support for JDBC APIs” on page 319

JDBC executeUpdate methods against a DB2 for z/OS server

The JDBC standard states that the executeUpdate method returns a row count or 0.
However, if the executeUpdate method is executed against a DB2 for z/OS server,
it can return a value of -1.

For executeUpdate statements against a DB2 for z/OS server, the value that is
returned depends on the type of SQL statement that is being executed:

* For an SQL statement that can have an update count, such as an INSERT,
UPDATE, DELETE, or MERGE statement, the returned value is the number of
affected rows. It can be:

— A positive number, if a positive number of rows are affected by the operation,
and the operation is not a mass delete on a segmented table space.

— 0, if no rows are affected by the operation.
— -1, if the operation is a mass delete on a segmented table space.

e For an SQL CALL statement, a value of -1 is returned, because the data source
cannot determine the number of affected rows. Calls to getUpdateCount or
getMoreResults for a CALL statement also return -1.

Chapter 3. JDBC application programming 35

* For any other SQL statement, a value of -1 is returned.
Related tasks:

“Creating and modifying database objects using the Statement.executeUpdate
method” on page 32|

Making batch updates in JDBC applications

With batch updates, instead of updating rows of a table one at a time, you can
direct JDBC to execute a group of updates at the same time. Statements that can be
included in the same batch of updates are known as batchable statements.

About this task

If a statement has input parameters or host expressions, you can include that
statement only in a batch that has other instances of the same statement. This type
of batch is known as a homogeneous batch. If a statement has no input parameters,
you can include that statement in a batch only if the other statements in the batch
have no input parameters or host expressions. This type of batch is known as a
heterogeneous batch. Two statements that can be included in the same batch are
known as batch compatible.

Use the following Statement methods for creating, executing, and removing a
batch of SQL updates:

* addBatch

* executeBatch

e clearBatch

Use the following PreparedStatement and CallableStatement method for creating a
batch of parameters so that a single statement can be executed multiple times in a
batch, with a different set of parameters for each execution.

* addBatch

Restrictions on executing statements in a batch:

* If you try to execute a SELECT statement in a batch, a BatchUpdateException is
thrown.

* ACallableStatement object that you execute in a batch can contain output
parameters. However, you cannot retrieve the values of the output parameters. If
you try to do so, a BatchUpdateException is thrown.

* You cannot retrieve ResultSet objects from a CallableStatement object that you
execute in a batch. A BatchUpdateException is not thrown, but the getResultSet
method invocation returns a null value.

Procedure

To make batch updates, follow one of the following sets of steps.

* To make batch updates using several statements with no input parameters,
follow these basic steps:
1. For each SQL statement that you want to execute in the batch, invoke the
addBatch method.
2. Invoke the executeBatch method to execute the batch of statements.
3. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the
array that the executeBatch invocation returns. This number does not
include rows that were affected by triggers or by referential integrity
enforcement.

36 Application Programming Guide and Reference for Java

b. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

* To make batch updates using a single statement with several sets of input
parameters, follow these basic steps:

1.

2.
3.

6.

If the batched statement is a searched UDPATE, searched DELETE, or
MERGE statement, set the autocommit mode for the connection to false.

Invoke the prepareStatement method to create a PreparedStatement object.
For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.

b. Invoke the addBatch method to add the set of input parameters to the

batch.

Invoke the executeBatch method to execute the statements with all sets of
parameters.

If no errors occurred:
a. Get the number of rows that were updated by each execution of the SQL

statement from the array that the executeBatch invocation returns. The
number of affected rows does not include rows that were affected by
triggers or by referential integrity enforcement.

If the following conditions are true, the IBM Data Server Driver for JDBC

and SQLJ returns Statement.SUCCESS NO_INFO (-2), instead of the number

of rows that were affected by each SQL statement:

— The application is connected to a subsystem that is in DB2 for z/OS
Version 8 new-function mode, or later.

— The application is using Version 3.1 or later of the IBM Data Server
Driver for JDBC and SQL]J.

— The IBM Data Server Driver for JDBC and SQL]J uses multi-row
INSERT operations to execute batch updates.

This occurs because with multi-row INSERT, the database server executes

the entire batch as a single operation, so it does not return results for

individual SQL statements.

. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

. If the PreparedStatement object returns automatically generated keys, call

DB2PreparedStatement.getDBGeneratedKeys to retrieve an array of
ResultSet objects that contains the automatically generated keys.

Check the length of the returned array. If the length of the returned array
is 0, an error occurred during retrieval of the automatically generated
keys.

If errors occurred, process the BatchUpdateException.

Example

In the following code fragment, two sets of parameters are batched. An UPDATE
statement that takes two input parameters is then executed twice, once with each
set of parameters. The numbers to the right of selected statements correspond to

the previously-described steps.

Chapter 3. JDBC application programming 37

try {

PreparedStatement preps = conn.prepareStatement (
"UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); %
ps.setString(1,mgrnuml);
ps.setString(2,deptnuml);
ps.addBatch();

ps.setString(1,mgrnum?2);
ps.setString(2,deptnum2);
ps.addBatch();
int [] numUpdates=ps.executeBatch();
for (int i=0; i < numUpdates.length; i++) {
if (numUpdates[i] == SUCCESS_NO_INFQ)
System.out.printIn("Execution " + i +
": unknown number of rows updated");
else
System.out.printin("Execution " + i +
"successful: " numUpdates[i] + " rows updated");

conn.commit();
} catch(BatchUpdateException b) {
// process BatchUpdateException
1

In the following code fragment, a batched INSERT statement returns automatically
generated keys.

import java.sql.*;

import com.ibm.db2.jcc.*;
Connection conn;

try {

PreparedStatement ps = conn.prepareStatement (I!
"INSERT INTO DEPT (DEPTNO, DEPTNAME, ADMRDEPT) " +
"VALUES (?7,?2,?)",

Statement.RETURN_GENERATED_KEYS);

ps.setString(1,"X01");

ps.setString(2,"Finance");

ps.setString(3,"A00");

ps.addBatch();

ps.setString(1,"Y01");

ps.setString(2,"Accounting");

ps.setString(3,"A00");
ps.addBatch();

int [] numUpdates=preps.executeBatch(); 4]

for (int i=0; i < numUpdates.length; i++) { [5a |
if (numUpdates[i] == SUCCESS_NO_INFO)
System.out.printin("Execution " + i +
": unknown number of rows updated");
else
System.out.printin("Execution " + i +
"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); H
ResultSet[] resultList =
((DB2PreparedStatement)ps) .getDBGeneratedKeys(); [5¢]
if (resultList.length != 0) {
for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {
java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value

38 Application Programming Guide and Reference for Java

System.out.printIn("Automatically generated key value =
+ idColVar);

}
}
else {
System.out.printin("Error retrieving automatically generated keys");

}
} catch(BatchUpdateException b) a
// process BatchUpdateException

}

In the following code fragment, a batched UPDATE statement returns
automatically generated keys. The code names the DEPTNO column as an
automatically generated key, updates two rows in the DEPT table in a batch, and
retrieves the values of DEPTNO for the updated rows. The numbers to the right of
selected statements correspond to the previously described steps.

import java.sql.*;

import com.ibm.db2.jcc.*;

Connection conn;

String[] agkNames = {"DEPTNO"};

try {
conn.setAutoCommit(false); 1
PreparedStatement ps = conn.prepareStatement (2

"UPDATE DEPT SET DEPTNAME=? " +

"WHERE DEPTNO=?",agkNames);
ps.setString(1,"X01");
ps.setString(2,"Planning");
ps.addBatch();
ps.setString(1,"Y01");
ps.setString(2,"Bookkeeping");
ps.addBatch();

w w
o -]

int [] numUpdates=ps.executeBatch();

for (int i=0; i < numUpdates.length; i++) { R
if (numUpdates[i] == SUCCESS_NO_INFO)
System.out.printin("Execution " + i +
": unknown number of rows updated");

else
System.out.printIn("Execution " + i +
"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); H

ResultSet[] resultList =
((DB2PreparedStatement)ps).getDBGeneratedKeys(); H
if (resultList.length != 0) {
for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {
String deptNoKey = rs.getString(1);
// Get automatically generated key
// value
System.out.printIn("Automatically generated key value =
+ deptNoKey) ;

}
}
else {

System.out.printin("Error retrieving automatically generated keys");
}

Chapter 3. JDBC application programming 39

1
catch(BatchUpdateException b) { 6|

// process BatchUpdateException
}

Related tasks:
“Making batch updates in SQLJ applications” on page 146

“Retrieving information from a BatchUpdateException” on page 121|

“Making batch queries in JDBC applications” on page 44

“Committing or rolling back JDBC transactions” on page 113)|

Learning about parameters in a PreparedStatement using
ParameterMetaData methods

The IBM Data Server Driver for JDBC and SQLJ includes support for the
ParameterMetaData interface. The ParameterMetaData interface contains methods
that retrieve information about the parameter markers in a PreparedStatement
object.

About this task

ParameterMetaData methods provide the following types of information:

* The data types of parameters, including the precision and scale of decimal
parameters.

* The parameters' database-specific type names. For parameters that correspond to
table columns that are defined with distinct types, these names are the distinct
type names.

* Whether parameters are nullable.

* Whether parameters are input or output parameters.

e Whether the values of a numeric parameter can be signed.

* The fully-qualified Java class name that PreparedStatement.setObject uses
when it sets a parameter value.

Procedure

To invoke ParameterMetaData methods, you need to perform these basic steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a
ParameterMetaData object.

3. Invoke ParameterMetaData.getParameterCount to determine the number of
parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

Example

The following code demonstrates how to use ParameterMetaData methods to
determine the number and data types of parameters in an SQL UPDATE statement.

The numbers to the right of selected statements correspond to the
previously-described steps.

40 Application Programming Guide and Reference for Java

Connection con;
ParameterMetaData pmtadta;
int mtadtacnt;
String sqlType;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object
pmtadta = pstmt.getParameterMetaData(); 2
// Create a ParameterMetaData object
mtadtacnt = pmtadta.getParameterCount();
// Determine the number of parameters
System.out.printIn("Number of statement parameters: " + mtadtacnt);
for (int i = 1; 1 <= mtadtacnt; i++) {
sqlType = pmtadta.getParameterTypeName(i); 4]
// Get SQL type for each parameter
System.out.printIn("SQL type of parameter " + i " is " + sqlType);
}

pstmt.close(); // Close the PreparedStatement

Figure 11. Using ParameterMetaData methods to get information about a PreparedStatement

Related reference:
[“Driver support for JDBC APIs” on page 319

Data retrieval in JDBC applications

In JDBC applications, you retrieve data using ResultSet objects. A ResultSet
represents the result set of a query.

Retrieving data from tables using the Statement.executeQuery
method

To retrieve data from a table using a SELECT statement with no parameter
markers, you can use the Statement.executeQuery method.

About this task

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
Statement.executeQuery method to retrieve a result set from a stored procedure
call, if that stored procedure returns only one result set. If the stored procedure
returns multiple result sets, you need to use the Statement.execute method.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet
in which you can only move forward, one row at a time. The IBM Data Server
Driver for JDBC and SQL]J also supports updatable and scrollable ResultSets.

Procedure

To retrieve rows from a table using a SELECT statement with no parameter
markers, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the
SELECT statement in a ResultSet object.

Chapter 3. JDBC application programming 41

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.
XXX represents a data type.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you
have finished using that object.

Example

The following code demonstrates how to retrieve all rows from the employee table.
The numbers to the right of selected statements correspond to the
previously-described steps.

String empNo;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object 1
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); 2

// Get the result table from the query
while (rs.next()) { // Position the cursor
empNo = rs.getString(1); // Retrieve only the first column value
System.out.printIn("Employee number = " + empNo);

// Print the column value

}
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement

Figure 12. Using Statement.executeQuery

Related reference:
[‘Driver support for JDBC APIs” on page 319

Retrieving data from tables using the
PreparedStatement.executeQuery method

To retrieve data from a table using a SELECT statement with parameter markers,
you use the PreparedStatement.executeQuery method.

About this task

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
PreparedStatement.executeQuery method to retrieve a result set from a stored
procedure call, if that stored procedure returns only one result set and has only
input parameters. If the stored procedure returns multiple result sets, you need to
use the PreparedStatement.execute method.

You can also use the PreparedStatement.executeQuery method for statements that

have no parameter markers. When you execute a query many times, you can get
better performance by creating the SQL statement as a PreparedStatement.

42 Application Programming Guide and Reference for Java

Procedure

To retrieve rows from a table using a SELECT statement with parameter markers,
you need to perform these steps:

1.

Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

Invoke PreparedStatement.setXXX methods to pass values to the input
parameters.

Invoke the PreparedStatement.executeQuery method to obtain the result table
from the SELECT statement in a ResultSet object.

Restriction: For a PreparedStatement that contains an IN predicate, the
expression that is the argument of the IN predicate cannot have more than
32767 parameters if the target data server is a DB2 for Linux, UNIX, and
Windows system. Otherwise, the IBM Data Server Driver for JDBC and SQLJ
throws an SQLException with error code -4499.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve
data from each column of the current row of the ResultSet object using getXXX
methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Example

The following code demonstrates how to retrieve rows from the employee table for
a specific employee. The numbers to the right of selected statements correspond to
the previously-described steps.

String empnum, phonenum;
Connection con;
PreparedStatement pstmt;
ResultSet rs;

pstmt = con.prepareStatement (

"SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?7");

// Create a PreparedStatement object
2

pstmt.setString(1,"000010"); // Assign value to input parameter
rs = pstmt.executeQuery(); // Get the result table from the query
while (rs.next()) { // Position the cursor 4
empnum = rs.getString(1); // Retrieve the first column value
phonenum = rs.getString(2); // Retrieve the first column value
System.out.printin("Employee number = " + empnum +

"Phone number = " + phonenum);

// Print the column values

!
rs.close(); // Close the ResultSet E
pstmt.close(); // Close the PreparedStatement

Figure 13. Example of using PreparedStatement.executeQuery

Chapter 3. JDBC application programming 43

Related reference:
[‘Driver support for JDBC APIs” on page 319

Making batch queries in JDBC applications

The IBM Data Server Driver for JDBC and SQLJ provides a IBM Data Server
Driver for JDBC and SQL]J-only DB2PreparedStatement interface that lets you
perform batch queries on a homogeneous batch.

Procedure

To make batch queries using a single statement with several sets of input
parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object for
the SQL statement with input parameters.

2. For each set of input parameter values:

a. Execute PreparedStatement.setXXX methods to assign values to the input
parameters.

b. Invoke the PreparedStatement.addBatch method to add the set of input
parameters to the batch.

3. Cast the PreparedStatement object to a DB2PreparedStatement object, and
invoke the DB2PreparedStatement.executeDB2QueryBatch method to execute the
statement with all sets of parameters.

4. In aloop, retrieve the ResultSet objects:
a. Retrieve each ResultSet object.
b. Retrieve all the rows from each ResultSet object.

Example

In the following code fragment, two sets of parameters are batched. A SELECT
statement that takes one input parameter is then executed twice, once with each
parameter value. The numbers to the right of selected statements correspond to the
previously described steps.

java.sql.Connection con = java.sql.DriverManager.getConnection(url, properties);
java.sql.Statement s = con.createStatement();

// Clean up from previous executions

try {
s.executeUpdate ("drop table TestQBatch");
1

catch (Exception e) {

}

// Create and populate a test table
s.executeUpdate ("create table TestQBatch (coll int, col2 char(10))");

s.executeUpdate ("insert into TestQBatch values (1, 'testl')");
s.executeUpdate ("insert into TestQBatch values (2, 'test2')");
s.executeUpdate ("insert into TestQBatch values (3, 'test3')");
s.executeUpdate ("insert into TestQBatch values (4, 'test4')");
s.executeUpdate ("insert into TestQBatch values (1, 'test5')");
s.executeUpdate ("insert into TestQBatch values (2, 'test6')");
try {
PreparedStatement pstmt =

con.prepareStatement ("Select * from TestQBatch where coll = ?");
pstmt.setInt(1,1);
pstmt.addBatch();
// Add some more values to the batch
pstmt.setInt(1,2);
pstmt.addBatch();

44 Application Programming Guide and Reference for Java

pstmt.setInt(1,3);

pstmt.addBatch();

pstmt.setInt(1,4);

pstmt.addBatch();

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).executeDB2QueryBatch();
3

} catch(BatchUpdateException b)
// process BatchUpdateException

ResultSet rs;

while(pstmt.getMoreResults()) { 4
rs = pstmt.getResultSet(); da
while (rs.next()) { b

System.out.print (rs.getInt (1) +" ");

System.out.printin (rs.getString (2));
}
System.out.printin();
rs.close ();

}

// Clean up
s.close ();
pstmt.close ();
con.close ();

Related tasks:
[“Making batch updates in JDBC applications” on page 36|

Learning about a ResultSet using ResultSetMetaData methods
You cannot always know the number of columns and data types of the columns in
a table or result set. This is true especially when you are retrieving data from a
remote data source.

About this task

When you write programs that retrieve unknown ResultSets, you need to use
ResultSetMetaData methods to determine the characteristics of the ResultSets
before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

* The number of columns in a ResultSet

* The qualifier for the underlying table of the ResultSet

¢ Information about a column, such as the data type, length, precision, scale, and
nullability

* Whether a column is read-only

Procedure

After you invoke the executeQuery method to generate a ResultSet for a query on
a table, follow these basic steps to determine the contents of the ResultSet:

1. Invoke the getMetaData method on the ResultSet object to create a
ResultSetMetaData object.

2. Invoke the getColumnCount method to determine how many columns are in the
ResultSet.

3. For each column in the ResultSet, execute ResultSetMetaData methods to
determine column characteristics.

The results of ResultSetMetaData.getColumnName call reflects the column name
information that is stored in the DB2 catalog for that data source.

Chapter 3. JDBC application programming 45

Example

The following code demonstrates how to determine the data types of all the
columns in the employee table. The numbers to the right of selected statements
correspond to the previously-described steps.

String s;

Connection con;

Statement stmt;

ResultSet rs;
ResultSetMetaData rsmtadta;
int colCount

int mtadtaint;

int i;

String colName;

String colType;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");
// Get the ResultSet from the query

rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object [l

colCount = rsmtadta.getColumnCount(); 2
// Find number of columns in EMP

for (i=1; i<= colCount; i++) {

colName = rsmtadta.getColumnName(); // Get column name

rsmtadta.getColumnTypeName();

// Get column data type
System.out.printIn("Column = " + colName +
" is data type " + colType);

}

Figure 14. Using ResultSetMetaData methods to get information about a ResultSet

colType

// Print the column value

Related tasks:

“Retrieving data from tables using the Statement.executeQuery method” on page]
11

“Retrieving multiple result sets from a stored procedure in a JDBC application” on|
age 60|
“Calling stored procedures in JDBC applications” on page 57

Characteristics of a JDBC ResultSet under the IBM Data Server
Driver for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ provides support for scrollable,
updatable, and holdable cursors.

In addition to moving forward, one row at a time, through a ResultSet, you might
want to do the following things:

* Move backward or go directly to a specific row
* Update, delete, or insert rows in a ResultSet
* Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability
Whether the cursor for the ResultSet can move forward only, or forward one
or more rows, backward one or more rows, or to a specific row.

If a cursor for a ResultSet is scrollable, it also has a sensitivity attribute, which
describes whether the cursor is sensitive to changes to the underlying table.

46 Application Programming Guide and Reference for Java

updatability
Whether the cursor can be used to update or delete rows. This characteristic
does not apply to a ResultSet that is returned from a stored procedure,
because a stored procedure ResultSet cannot be updated.

holdability
Whether the cursor stays open after a COMMIT.

You set the updatability, scrollability, and holdability characteristics of a ResultSet
through parameters in the Connection.prepareStatement or
Connection.createStatement methods. The ResultSet settings map to attributes of
a cursor in the database. The following table lists the JDBC scrollability,
updatability, and holdability settings, and the corresponding cursor attributes.

Table 11. JDBC ResultSet characteristics and SQL cursor attributes

JDBC setting DB2 cursor setting IBM Informix cursor setting
CONCUR_READ_ONLY FOR READ ONLY FOR READ ONLY
CONCUR_UPDATABLE FOR UPDATE FOR UPDATE
HOLD_CURSORS_OVER_COMMIT WITH HOLD WITH HOLD
TYPE_FORWARD_ONLY SCROLL not specified SCROLL not specified
TYPE_SCROLL_INSENSITIVE INSENSITIVE SCROLL SCROLL
TYPE_SCROLL_SENSITIVE SENSITIVE STATIC, SENSITIVE Not supported

DYNAMIC, or ASENSITIVE,
depending on the cursorSensitivity
Connection and DataSource property

Important: Like static scrollable cursors in any other language, JDBC static
scrollable ResultSet objects use declared temporary tables for their internal
processing. This means that before you can execute any applications that contain
JDBC static scrollable ResultSet objects, your database administrator needs to
create a temporary database and temporary table spaces for those declared
temporary tables.

If a JDBC ResultSet is static, the size of the result table and the order of the rows
in the result table do not change after the cursor is opened. This means that if you
insert rows into the underlying table, the result table for a static ResultSet does
not change. If you delete a row of a result table, a delete hole occurs. You cannot
update or delete a delete hole.

Related concepts:

(& [Temporary table space storage requirements (DB2 Installation and Migration)|

Specifying updatability, scrollability, and holdability for ResultSets in JDBC
applications:

You use special parameters in the Connection.prepareStatement or
Connection.createStatement methods to specify the updatability, scrollability, and
holdability of a ResultSet.

Before you begin

If you plan to update ResultSet objects, ensure that the enableExtendedDescribe

property is not set, or is set to DB2BaseDataSource.YES (2). Updates of ResultSet
objects do not work correctly unless extended describe capability is enabled.

Chapter 3. JDBC application programming 47

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_temptablespstgreqs.htm#db2z_temptablespstgreqs

About this task

By default, ResultSet objects are not scrollable and not updatable. The default
holdability depends on the data source, and can be determined from the
DatabaseMetaData.getResultSetHoldability method. These steps change the
scrollability, updatability, and holdability attributes for a ResultSet.

Procedure

1. If the SELECT statement that defines the ResultSet has no input parameters,
invoke the createStatement method to create a Statement object. Otherwise,
invoke the prepareStatement method to create a PreparedStatement object. You
need to specify forms of the createStatement or prepareStatement methods
that include the resultSetType, resultSetConcurrency, or resultSetHoldability
parameters.

The form of the createStatement method that supports scrollability and
updatability is:
createStatement (int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability,
updatability, and holdability is:

createStatement(int resultSetType, int resultSetConcurrency,
int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and
updatability is:
prepareStatement(String sql, int resultSetType,

int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,
updatability, and holdability is:

prepareStatement (String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability);

Important: In a prepareStatement method invocation in which the first
parameter is a CALL statement, you cannot specify the scrollability,
updatability, or holdability of result sets that are returned from a stored
procedure. Those characteristics are determined by the stored procedure code,
when it declares the cursors for the result sets that are returned. If you use the
prepareStatement method to prepare a CALL statement, and the
prepareStatement call includes the scrollability, updatability, or holdability
parameters, the IBM Data Server Driver for JDBC and SQL] does not use those
parameter values. A prepareStatement method with scrollability, updatability,
or holdability parameters applies only to preparation of SQL statements other
than the CALL statement.

The following table contains a list of valid values for resultSetType and
resultSetConcurrency.

Table 12. Valid combinations of resultSetType and resultSetConcurrency for ResultSets

resultSetType value resultSetConcurrency value
TYPE_FORWARD_ONLY CONCUR_READ_ONLY
TYPE_FORWARD_ONLY CONCUR_UPDATABLE
TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY
TYPE_SCROLL_SENSITIVED CONCUR_READ_ONLY

48 Application Programming Guide and Reference for Java

Table 12. Valid combinations of resultSetType and resultSetConcurrency for
ResultSets (continued)

resultSetType value resultSetConcurrency value
TYPE_SCROLL_SENSITIVEIII CONCUR_UPDATABLE
Note:

1. This value does not apply to connections to IBM Informix.

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and
CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any
valid combination of resultSetConcurrency and resultSetHoldability. The value that
you set overrides the default holdability for the connection.

Restriction: If the ResultSet is scrollable, and the ResultSet is used to select
columns from a table on a DB2 for Linux, UNIX, and Windows server, the
SELECT list of the SELECT statement that defines the ResultSet cannot include
columns with the following data types:

* LONG VARCHAR

* LONG VARGRAPHIC

* BLOB

- CLOB

« XML

* A distinct type that is based on any of the previous data types in this list
e A structured type

2. If the SELECT statement has input parameters, invoke setXXX methods to pass
values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT
statement in a ResultSet object.

4. For each row that you want to access:

a. Position the cursor using one of the methods that are listed in the following
table.

Restriction: If resultSetType is TYPE_FORWARD_ONLY, only ResultSet.next is

valid.
Table 13. ResultSet methods for positioning a scrollable cursor
Method Positions the cursor
firstd On the first row of the ResultSet
lastd On the last row of the ResultSet
nextd On the next row of the ResultSet
previousl On the previous row of the ResultSet
absolute(int n) If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of
the ResultSet.

Clo] If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

relative(int n)i

afterLastd After the last row in the ResultSet

beforeFirstd Before the first row in the ResultSet

Chapter 3. JDBC application programming 49

Table 13. ResultSet methods for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1.
2.

This method does not apply to connections to IBM Informix.

If the cursor is before the first row of the ResultSet, this method positions the cursor on
the first row.

If the cursor is after the last row of the ResultSet, this method positions the cursor on
the last row.

If the absolute value of n is greater than the number of rows in the result set, this
method positions the cursor after the last row if 1 is positive, or before the first row if n
is negative.

. The cursor must be on a valid row of the ResultSet before you can use this method. If

the cursor is before the first row or after the last row, the method throws an
SQLException.

Suppose that m is the number of rows in the ResultSet and x is the current row number
in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If
n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step
ﬂ

and you need to see the latest values of the current row, invoke the
refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a
detrimental effect on the performance of your applications, you should
invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

* To retrieve data from each column of the current row of the ResultSet
object, use getXXX methods.

* To update the current row from the underlying table, use updateXXX
methods to assign column values to the current row of the ResultSet.
Then use updateRow to update the corresponding row of the underlying
table. If you decide that you do not want to update the underlying table,
invoke the cancelRowUpdates method instead of the updateRow method.

The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use these methods.

* To delete the current row from the underlying table, use the deleteRow
method. Invoking deleteRow causes the driver to replace the current row
of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use this method.

5. Invoke the close method to close the ResultSet object.
6. Invoke the close method to close the Statement or PreparedStatement object.
Example

The following code demonstrates how to retrieve all rows from the employee table
in reverse order, and update the phone number for employee number "000010".
The numbers to the right of selected statements correspond to the
previously-described steps.

50 Application Programming Guide and Reference for Java

String s;
String stmtsrc;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;
// Create a Statement object
// for a scrollable, updatable
// ResultSet
stmtsrc = "SELECT EMPNO, PHONENO FROM EMPLOYEE " +
"FOR UPDATE OF PHONENO";

rs = stmt.executeQuery(stmtsrc); // Create the ResultSet
rs.afterLast(); // Position the cursor at the end of
// the ResultSet
while (rs.previous()) { // Position the cursor backward
s = rs.getString("EMPNO"); // Retrieve the employee number [
// (column 1 in the result
// table)
System.out.printin("Employee number = " + s);
// Print the column value
if (s.compareTo("000010") == 0) { // Look for employee 000010
rs.updateString("PHONENO","4657"); // Update their phone number
rs.updateRow(); // Update the row
}
1
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement E

Figure 15. Using a scrollable cursor

Related tasks:

“Retrieving data from tables using the Statement.executeQuery method” on page]
11

Multi-row SQL operations in JDBC applications:

The IBM Data Server Driver for JDBC and SQLJ supports multi-row INSERT,
UPDATE, and FETCH for connections to data sources that support these
operations.

Multi-row INSERT

In JDBC applications, when you execute INSERT or MERGE statements that use
parameter markers in a batch, if the data server supports multi-row INSERT, the
IBM Data Server Driver for JDBC and SQL]J can transform the batch INSERT or
MERGE operations into multi-row INSERT statements. Multi-row INSERT
operations can provide better performance in the following ways:

* For local applications, multi-row INSERTs result in fewer accesses of the data
server.

* For distributed applications, multi-row INSERTs result in fewer network
operations.

You cannot execute a multi-row INSERT operation by including a multi-row
INSERT statement in a statement string in your JDBC application.

Multi-row INSERT is used by default. You can use the Connection or DataSource
property enableMultiRowInsertSupport to control whether multi-row INSERT is
used. Multi-row INSERT cannot be used for INSERT FROM SELECT statements
that are executed in a batch.

Chapter 3. JDBC application programming

51

Multi-row FETCH

Multi-row FETCH can provide better performance than retrieving one row with
each FETCH statement. For IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only
cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, multi-row FETCH can be used only for scrollable cursors.

When you retrieve data in your applications, the IBM Data Server Driver for JDBC
and SQL] determines whether to use multi-row FETCH, depending on several
factors:

¢ The setting of the enableRowsetSupport property
* The setting of the useRowsetCursor property, for connections to DB2 for z/OS

e The type of IBM Data Server Driver for JDBC and SQL]J connectivity that is
being used

* The version of the IBM Data Server Driver for JDBC and SQLJ

For IBM Data Server Driver for JDBC and SQL] type 4 connectivity to DB2 for
z/0OS, one of the following sets of conditions must be true for multi-row FETCH to
be used.

* First set of conditions:
— The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.

— The enableRowsetSupport property value is
com.ibm.db2.jcc. DB2BaseDataSource.YES (1), or the enableRowsetSupport
property value is com.ibm.db2.jcc.DB2BaseDataSource. NOT_SET (0) and the
useRowsetCursor property value is true.

— The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

* Second set of conditions:
— The IBM Data Server Driver for JDBC and SQLJ version is 3.1.

— The useRowsetCursor property value is
com.ibm.db2.jec.DB2BaseDataSource.YES (1).

— The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/0OS the following conditions must be true for multi-row FETCH to be used.

* The IBM Data Server Driver for JDBC and SQL]J version is 3.51 or later.

¢ The enableRowsetSupport property value is
com.ibm.db2.jcc. DB2BaseDataSource. YES (1).

¢ The FETCH operation uses a scrollable cursor or a forward-only cursor.
For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/0S, you can control the maximum size of a rowset for each statement by setting
the maxRowsetSize property.

52 Application Programming Guide and Reference for Java

Multi-row positioned UPDATE or DELETE

The IBM Data Server Driver for JDBC and SQLJ supports a technique for
performing positioned update or delete operations that follows the JDBC 1
standard. That technique involves using the ResultSet.getCursorName method to
obtain the name of the cursor for the ResultSet, and defining a positioned
UPDATE or positioned DELETE statement of the following form:

UPDATE table SET coll=valuel,...coln=valueN WHERE CURRENT OF cursorname
DELETE FROM table WHERE CURRENT OF cursorname

Multi-row UPDATE or DELETE when useRowsetCursor is set to true: If you use the
JDBC 1 technique to update or delete data on a database server that supports
multi-row FETCH, and multi-row FETCH is enabled through the useRowsetCursor
property, the positioned UPDATE or DELETE statement might update or delete
multiple rows, when you expect it to update or delete a single row. To avoid
unexpected updates or deletes, you can take one of the following actions:

* Use an updatable ResultSet to retrieve and update one row at a time, as shown
in the previous example.

e Set useRowsetCursor to false.

Multi-row UPDATE or DELETE when enableRowsetSupport is set to

com.ibm.db2.jcc. DB2BaseDataSource.YES (1): The JDBC 1 technique for updating or
deleting data is incompatible with multi-row FETCH that is enabled through the
enableRowsetSupport property.

Recommendation: If your applications use the JDBC 1 technique, update them to
use the JDBC 2.0 ResultSet.updateRow or ResultSet.deleteRow methods for
positioned update or delete activity.

Testing whether the current row of a ResultSet is a delete hole or update hole in
a JDBC application:

If a ResultSet has the TYPE_SCROLL_SENSITIVE attribute, and the underlying
cursor is SENSITIVE STATIC, you need to test for delete holes or update holes
before you attempt to retrieve rows of the ResultSet.

About this task

After a SENSITIVE STATIC ResultSet is opened, it does not change size. This
means that deleted rows are replaced by placeholders, which are also called holes.
If updated rows no longer fit the criteria for the ResultSet, those rows also become
holes. You cannot retrieve rows that are holes.

Procedure

To test whether the current row in a ResultSet is a delete hole or update hole,
follow these steps:

1. Call the DatabaseMetaData.deletesAreDetected or
DatabaseMetaData.updatesAreDetected method with the
TYPE_SCROLL_SENSITIVE argument to determine whether the data source
creates holes for a TYPE_SCROLL_SENSITIVE ResultSet.

2. If DatabaseMetaData.deletesAreDetected or
DatabaseMetaData.updatesAreDetected returns true, which means that the data
source can create holes, call the ResultSet.rowDeleted or ResultSet.rowUpdated

Chapter 3. JDBC application programming 53

method to determine whether the current row is a delete or update hole. If the
method returns true, the current row is a hole.

Example

The following code tests whether the current row is a delete hole.

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet .CONCUR_UPDATABLE) 5
// Create a Statement object
// for a scrollable, updatable
// ResultSet
ResultSet rs =
stmt.executeQuery ("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");
// Create the ResultSet
DatabaseMetaData dbmd = con.getMetaData();
// Create the DatabaseMetaData object
boolean dbSeesDeletes =
dbmd.deletesAreDetected(ResultSet.TYPESCROLL SENSITIVE);
// Can the database see delete holes?

rs.afterLast(); // Position the cursor at the end of
// the ResultSet
while (rs.previous()) { // Position the cursor backward
if (dbSeesDeletes) { // 1f delete holes can be detected
if (!(rs.rowDeleted())) // 1f this row is not a delete hole
{
s = rs.getString("EMPNO"); // Retrieve the employee number
System.out.printIn("Employee number = " + s);

// Print the column value
}
}
1
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement

Inserting a row into a ResultSet in a JDBC application:

If a ResultSet has a resultSetConcurrency attribute of CONCUR_UPDATABLE, you
can insert rows into the ResultSet.

Before you begin

Ensure that the enableExtendedDescribe property is not set, or is set to
DB2BaseDataSource.YES (2). Insertion of a row into a ResultSet does not work
unless extended describe capability is enabled.

Procedure
1. Perform the following steps for each row that you want to insert.

a. Call the ResultSet.moveToInsertRow method to create the row that you
want to insert. The row is created in a buffer outside the ResultSet.
If an insert buffer already exists, all old values are cleared from the buffer.
b. Call ResultSet.updateXXX methods to assign values to the row that you
want to insert.

You need to assign a value to at least one column in the ResultSet. If you
do not do so, an SQLException is thrown when the row is inserted into the
ResultSet.

If you do not assign a value to a column of the ResultSet, when the
underlying table is updated, the data source inserts the default value for the
associated table column.

54 Application Programming Guide and Reference for Java

If you assign a null value to a column that is defined as NOT NULL, the
JDBC driver throws and SQLException.

c. Call ResultSet.insertRow to insert the row into the ResultSet.

After you call ResultSet.insertRow, all values are always cleared from the
insert buffer, even if ResultSet.insertRow fails.

2. Reposition the cursor within the ResultSet.

To move the cursor from the insert row to the ResultSet, you can invoke any
of the methods that position the cursor at a specific row, such as
ResultSet.first, ResultSet.absolute, or ResultSet.relative. Alternatively,
you can call ResultSet.moveToCurrentRow to move the cursor to the row in the
ResultSet that was the current row before the insert operation occurred.

After you call ResultSet.moveToCurrentRow, all values are cleared from the
insert buffer.

Example

The following code illustrates inserting a row into a ResultSet that consists of all

rows in the sample DEPARTMENT table. After the row is inserted, the code places

the cursor where it was located in the ResultSet before the insert operation. The

numbers to the right of selected statements correspond to the previously-described

steps.

stmt = con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

ResultSet rs = stmt.executeQuery("SELECT * FROM DEPARTMENT");

rs.moveToInsertRow();

rs.updateString("DEPT_NO", "M13");

rs.updateString("DEPTNAME", "TECHNICAL SUPPORT");

rs.updateString("MGRNO", "000010");

rs.updateString ("ADMRDEPT", "A0O");

rs.insertRow();

rs.moveToCurrentRow() ;

Testing whether the current row was inserted into a ResultSet in a JDBC
application:

If a ResultSet is dynamic, you can insert rows into it. After you insert rows into a
ResultSet you might need to know which rows were inserted.

Procedure

To test whether the current row in a ResultSet was inserted, follow these steps:

1. Call the DatabaseMetaData.ownInsertsAreVisible and
DatabaseMetaData.othersInsertsAreVisible methods to determine whether
inserts can be visible to the given type of ResultSet.

2. If inserts can be visible to the ResultSet, call the
DatabaseMetaData.insertsAreDetected method to determine whether the given
type of ResultSet can detect inserts.

3. If the ResultSet can detect inserts, call the ResultSet.rowInserted method to
determine whether the current row was inserted.

Retrieving rows as byte data in JDBC applications

You can use the DB2ResultSet.getDBRowDataAsBytes method to retrieve an entire
row from a table as raw bytes, and retrieve the column data from the returned
TOWS.

Chapter 3. JDBC application programming 55

Procedure
1. Create a Statement or PreparedStatement object.

2. Invoke the Statement.executeQuery method or
PreparedStatement.executeQuery method to obtain a ResultSet object.

3. Cast the ResultSet object as a DB2ResultSet object.
4. Repeat the following steps until there are no rows left to retrieve:
a. Move the cursor to the next row.

b. Call the DB2ResultSet.getDBRowDataAsBytes method to retrieve an Object
array that contains the row data.

c. Cast the first element of the Object array as a byte array.

This byte array contains the data for each column in the row. See the
description of getDBRowDataAsBytes in [“DB2ResultSet interface” on page|
for the data format.

d. Cast the second element of the Object array as an int array.

Each integer in this array contains the offset into the row data byte array of
the beginning of the data for a column.

e. Call the DB2ResultSet.getDBRowDescriptor method to retrieve an int array
that contains the row data.

This array contains descriptive information about each column in the row.
See the description of getDBRowDescriptor in [‘DB2ResultSet interface” on|
for the data format.

f. Use the offset value for each column to locate the column data, and retrieve
each byte of the column data.

g. Use the information that is returned from DB2ResultSet.getDBRowDescriptor
to convert the bytes into a value of the column type.

Example

Suppose that table MYTABLE is defined like this:

CREATE TABLE MYTABLE (
INTCOL1 INTEGER NOT NULL,
INTCOL2 INTEGER NOT NULL)

The following program retrieves rows of data as raw bytes, and retrieves the
column values from each returned row. The numbers to the right of statements
correspond to the previously described steps.

import java.sql.=;
import com.ibm.db2.jcc.*;

Connection conn;

String sqll="select INTCOL, CHARCOL FROM MYTABLE";
int colSqltype;

int colCcsid

int collLen;

int colRep;

Object obj[];

byte data[];

int returnedInfol];
int numberOfColumns;
int j;

int offsets[];

byte bl;

byte b2;

byte b3

byte b4;

56 Application Programming Guide and Reference for Java

int intVal;

try {
Statement stmt = conn.createStatement ();
DB2ResultSet rs = (DB2ResultSet)stmt.executeQuery(sqll);

int rowNum=0;

while(!rs.isLast())

{

rs.next();

rowNum++;

obj[] = rs.getDBRowDataAsBytes();
//**
// Retrieve the data and offsets.

// The code for checking the row indicator is
// not shown. Assume that the row indicator

// indicates that the data is valid.
//**
data[]=(byte[])obj[0]; E
offsets[]= (int [])obj[1];
//**

// Retrieve the metadata for each column.

// The first element in the array that is

// returned by getDBRowDescriptor contains

// the number of columns in the row.
//**

returnedInfo[] = rs.getDBRowDescriptor(); [4e |
number0fColumns=returnedInfo[0];

for(j=0;j<number0fColumns;j++) {
//**
// Get the metadata for a column.
//**
colSqltype=returnedInfol[(4*j)+1];
colCcsid=returnedInfo[(4%j)+2];
collLen=returnedInfo[(4*j)+3];
colRep=returnedInfo[(4xj)+4];
//**
// Determine the type of the column. The code

// is not shown here.
//**

//**
// Suppose that the metadata indicates that a
// column is INT and Little Endian.

// The following code retrieves the four bytes
// of the value and converts them to an integer.
//**

bl = data[offsets[j]+5];

b2 = data[offsets[j]+4];
b3 = data[offsets[j]+3];
b4 = data[offsets[j]+2];

intVal = ((OxFF & bl) << 24) | ((OxFF & b2) << 16) | 4g|
((OXFF & b3) << 8) | (OxFF & b4);
System.out.print("Row "+rowNum+" column "+(j+1)+" "+intVal);
}
}
}

Calling stored procedures in JDBC applications

To call stored procedures, you invoke methods in the CallableStatement or
PreparedStatement class.

Procedure

The basic steps for calling a stored procedures using standard CallableStatement
methods are:

Chapter 3. JDBC application programming 57

1.

Invoke the Connection.prepareCall method with the CALL statement as its
argument to create a CallableStatement object.

You can represent parameters with standard parameter markers (?) or named
parameter markers. You cannot mix named parameter markers with standard
parameter markers in the same CALL statement.

Restriction: The parameter types that are permitted depend on whether the
data source supports dynamic execution of the CALL statement. DB2 for z/OS
does not support dynamic execution of the CALL statement. For a call to a
stored procedure that is on a DB2 for z/OS database server, the parameters can
be parameter markers or literals, but not expressions. Even if all parameters are
literals, you cannot use Statement methods to execute CALL statements. You
must use PreparedStatement methods or CallableStatement methods. The
following table lists the types of literals that are supported, and the JDBC types
to which they map.

Table 14. Supported literal types in parameters in DB2 for z/OS stored procedure calls

Literal parameter type JDBC type Examples

Integer java.sql.Types.INTEGER -122, 40022, +27

Floating-point decimal java.sql.Types. DOUBLE 23E12, 40022E-4, +2723E+15, 1E+23, 0E0
Fixed-point decimal java.sql.Types. DECIMAL -23.12, 40022.4295, 0.0, +2723.23, 10000000000
Character java.sql.Types. VARCHAR 'Grantham Lutz', 'O"Conner’, 'ABcde?z?"
Hexadecimal java.sql.Types. VARBINARY X'C1C30427', X'00CF18EQ'

Unicode string java.sql.Types. VARCHAR UX'0041', UX'0054006500730074'

Important: In a prepareCall method invocation, you cannot specify the
scrollability, updatability, or holdability of result sets that are returned from a
stored procedure. Those characteristics are determined by the stored procedure
code, when it declares the cursors for the result sets that are returned. If you
specify any of the forms of prepareCall that include scrollability, updatability,
or holdability parameters, the IBM Data Server Driver for JDBC and SQL]J does
not use those parameter values. A prepareCall method with scrollability,
updatability, or holdability parameters applies only to preparation of SQL
statements other than the CALL statement.

Invoke the CallableStatement.setXXX methods to pass values to the input
parameters (parameters that are defined as IN or INOUT in the CREATE
PROCEDURE statement).

This step assumes that you use standard parameter markers or named
parameters. Alternatively, if you use named parameter markers, you use IBM
Data Server Driver for JDBC and SQLJ-only methods to pass values to the
input parameters.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement input
parameters exactly as they are specified in the stored procedure definition.

Restriction: Invoking CallableStatement.setXXX methods to pass values to the
OUT parameters is not supported. There is no need to set values for the OUT
parameters of a stored procedure because the stored procedure does not use
those values.

58 Application Programming Guide and Reference for Java

3. Invoke the CallableStatement.registerOutParameter method to register
parameters that are defined as OUT in the CREATE PROCEDURE statement
with specific data types.

This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you use IBM Data Server Driver for JDBC
and SQLJ-only methods to register OUT parameters with specific data types.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement OUT, IN,
or INOUT parameters exactly as they are specified in the stored procedure
definition.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate
Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery
Invoke this method if the stored procedure returns one result set.

You can invoke CallableStatement.executeQuery for a stored procedure
that returns no result sets if you set property
allowNullResultSetForExecuteQuery to DB2BaseDataSource.YES (1). In that
case, CallableStatement.executeQuery returns null. This behavior does not
conform to the JDBC standard.

CallableStatement.execute
Invoke this method if the stored procedure returns multiple result sets, or
an unknown number of result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
5. If the stored procedure returns multiple result sets, retrieve the result sets.

Restriction: IBM Informix data sources do not support multiple result sets.

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT
parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement
object when you have finished using that object.

Example

The following code illustrates calling a stored procedure that has one input
parameter, four output parameters, and no returned ResultSets. The numbers to
the right of selected statements correspond to the previously-described steps.

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;
Connection con;
CallableStatement cstmt;
ResultSet rs;

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,7,2,2)");
// Create a CallableStatement object
cstmt.setString (1, "DISPLAY THREAD(x)");
// Set input parameter (DB2 command)
cstmt.registerQutParameter (2, Types.INTEGER);
// Register output parameters
cstmt.registerQutParameter (3, Types.INTEGER);
cstmt.registerQutParameter (4, Types.INTEGER);

Chapter 3. JDBC application programming 59

cstmt.registerQutParameter (5, Types.VARCHAR);

cstmt.executeUpdate(); // Call the stored procedure E
ifcaret = cstmt.getInt(2); // Get the output parameter values
ifcareas = cstmt.getInt(3);

xshytes = cstmt.getInt(4);

errbuff = cstmt.getString(5);

cstmt.close();

Related tasks:
[“Using named parameter markers with CallableStatement objects” on page 87|

Related reference:
[“Driver support for JDBC APIs” on page 319

Retrieving multiple result sets from a stored procedure in a
JDBC application

If you call a stored procedure that returns result sets, you need to include code to
retrieve the result sets.

About this task

The steps that you take depend on whether you know how many result sets are
returned, and whether you know the contents of those result sets.

Related tasks:

“Retrieving data from tables using the Statement.executeQuery method” on page|
41

“Retrieving data from tables using the PreparedStatement.executeQuery method”|

on page 42|

[“Calling stored procedures in JDBC applications” on page 57|

Retrieving a known number of result sets from a stored procedure in a JDBC
application:

Retrieving a known number of result sets from a stored procedure is a simpler
procedure than retrieving an unknown number of result sets.

Procedure

To retrieve result sets when you know the number of result sets and their contents,
follow these steps:

1. Invoke the Statement.execute method, the PreparedStatement.execute method,
or the CallableStatement.execute method to call the stored procedure.

Use PreparedStatement.execute if the stored procedure has input parameters.

2. Invoke the getResultSet method to obtain the first result set, which is in a
ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.

4. If there are n result sets, repeat the following steps 7-1 times:

a. Invoke the getMoreResults method to close the current result set and point
to the next result set.

b. Invoke the getResultSet method to obtain the next result set, which is in a
ResultSet object.

c. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

60 Application Programming Guide and Reference for Java

Example

The following code illustrates retrieving two result sets. The first result set contains
an INTEGER column, and the second result set contains a CHAR column. The
numbers to the right of selected statements correspond to the previously described
steps.

CallableStatement cstmt;
ResultSet rs;

int i;
String s;
cstmt.execute(); // Call the stored procedure 1
rs = cstmt.getResultSet(); // Get the first result set 2
while (rs.next()) { // Position the cursor 3
i = rs.getInt(1); // Retrieve current result set value
System.out.printIn("Value from first result set = " + i);
// Print the value
1
cstmt.getMoreResults(); // Point to the second result set [}
// and close the first result set
rs = cstmt.getResultSet(); // Get the second result set T
while (rs.next()) { // Position the cursor 4c
s = rs.getString(1); // Retrieve current result set value
System.out.printin("Value from second result set = " + s);
// Print the value
rs.close(); // Close the result set
cstmt.close(); // Close the statement

Retrieving an unknown number of result sets from a stored procedure in a
JDBC application:

Retrieving an unknown number of result sets from a stored procedure is a more
complicated procedure than retrieving a known number of result sets.

About this task

To retrieve result sets when you do not know the number of result sets or their
contents, you need to retrieve ResultSets, until no more ResultSets are returned.
For each ResultSet, use ResultSetMetaData methods to determine its contents.

After you call a stored procedure, follow these basic steps to retrieve the contents
of an unknown number of result sets.

Procedure

1. Check the value that was returned from the execute statement that called the
stored procedure.

If the returned value is true, there is at least one result set, so you need to go
to the next step.

2. Repeat the following steps in a loop:

a. Invoke the getResultSet method to obtain a result set, which is in a
ResultSet object. Invoking this method closes the previous result set.

b. Use ResultSetMetaData methods to determine the contents of the ResultSet,
and retrieve data from the ResultSet.

c. Invoke the getMoreResults method to determine whether there is another
result set. If getMoreResults returns true, go to step to get the next result
set.

Chapter 3. JDBC application programming 61

Example

The following code illustrates retrieving result sets when you do not know the
number of result sets or their contents. The numbers to the right of selected
statements correspond to the previously described steps.

CallableStatement cstmt;
ResultSet rs;

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
while (resultsAvailable) { // Test for result sets
ResultSet rs = cstmt.getResultSet(); // Get a result set
- // Process the ResultSet
// as you would process
// a ResultSet from a table
resultsAvailable = cstmt.getMoreResults(); // Check for next result set Y
// (Also closes the
// previous result set)

}
Related tasks:

[“Learning about a ResultSet using ResultSetMetaData methods” on page 45|

Keeping result sets open when retrieving multiple result sets from a stored
procedure in a JDBC application:

The getMoreResults method has a form that lets you leave the current ResultSet
open when you open the next ResultSet.

Procedure
To specify whether result sets stay open, follow this process:

When you call getMoreResults to check for the next ResultSet, use this form:
CallableStatement.getMoreResults(int current);

* To keep the current ResultSet open when you check for the next ResultSet,
specify a value of Statement.KEEP_CURRENT_RESULT for current.

* To close the current ResultSet when you check for the next ResultSet, specify a
value of Statement.CLOSE_CURRENT_RESULT for current.

* To close all ResultSet objects, specify a value of Statement.CLOSE_ALL_RESULTS
for current.

Example

The following code keeps all ResultSets open until the final ResultSet has been
retrieved, and then closes all ResultSets.

CallableStatement cstmt;

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
if (resultsAvailable==true) { // Test for result set
ResultSet rsl = cstmt.getResultSet(); // Get a result set

resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT RESULT);
// Check for next result set
// but do not close
// previous result set

if (resultsAvailable==true) { // Test for another result set

ResultSet rs2 = cstmt.getResultSet(); // Get next result set

v // Process either ResultSet

}

62 Application Programming Guide and Reference for Java

}
resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL RESULTS);

// Close the result sets

LOBs in JDBC applications with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQL] supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Related reference:

“Driver support for JDBC APIs” on page 319|

“Properties for the IBM Data Server Driver for JDBC and SQLJ]” on page 243

Progressive streaming with the IBM Data Server Driver for JDBC
and SQLJ

If the data source supports progressive streaming, also known as dynamic data
format, the IBM Data Server Driver for JDBC and SQLJ can use progressive
streaming to retrieve data in LOB or XML columns.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs and
XML objects. DB2 for Linux, UNIX, and Windows Version 9.5 and later, IBM
Informix Version 11.50 and later, and DB2 for i V6R1 and later support progressive
streaming for LOBs.

With progressive streaming, the data source dynamically determines the most
efficient mode in which to return LOB or XML data, based on the size of the LOBs
or XML objects.

Progressive streaming is the default behavior in the following environments:

MinimumIBM Data Server
Driver for JDBC and SQLJ Minimum data server

version version Types of objects
3.53 DB2 for i V6R1 LOB, XML
3.50 DB2 for Linux, UNIX, and LOB
Windows Version 9.5
3.50 IBM Informix Version 11.50 LOB
3.2 DB2 for z/OS Version 9 LOB, XML

You set the progressive streaming behavior on new connections using the IBM
Data Server Driver for JDBC and SQL]J progressiveStreaming property.

For DB2 for z/OS Version 9.1 and later data sources, or DB2 for Linux, UNIX, and
Windows Version 9.5 and later data sources, you can set the progressive streaming
behavior for existing connections with the
DB2Connection.setDBProgressiveStreaming(DB2BaseDataSource.YES) method. If
you call DB2Connection.setDBProgressiveStreaming (DB2BaseDataSource.YES), all
ResultSet objects that are created on the connection use progressive streaming
behavior.

Chapter 3. JDBC application programming 63

When progressive streaming is enabled, you can control when the JDBC driver
materializes LOBs with the streamBufferSize property. If a LOB or XML object is
less than or equal to the streamBufferSize value, the object is materialized.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRowl = rs.getClob(1);
// Put the CLOB from the first column of
// the first row in an application variable
clobFromRowl.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB
rs.next(); // Move the cursor to the next row.
// clobFromRowl is no Tonger available.
// String substr2Clob = clobFromRowl.getSubString(51,100);
// This statement would yield an SQLException
Clob clobFromRow2 = rs.getClob(1);
// Put the CLOB from the first column of
// the second row in an application variable
rs.close(); // Close the ResultSet.
// clobFromRow2 is also no Tonger available.

String substrlClob

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow?2 are no longer available.

If you disable progressive streaming, the way in which the IBM Data Server Driver
for JDBC and SQL]J handles LOBs depends on the value of the
fullyMaterializelLobData property.

Use of progressive streaming is the preferred method of LOB or XML data
retrieval.

LOB locators with the IBM Data Server Driver for JDBC and
SQLJ

The IBM Data Server Driver for JDBC and SQLJ can use LOB locators to retrieve
data in LOB columns.

To cause JDBC to use LOB locators to retrieve data from LOB columns, you need
to set the fullyMaterializelobData property to false and set the
progressiveStreaming property to NO (DB2BaseDataSource.NO in an application
program).

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming and the value of the progressiveStreaming

property:
* If the data source does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully materialized
within the JDBC driver when a row is fetched. If the value is false, LOB data is
streamed. The driver uses locators internally to retrieve LOB data in chunks on

64 Application Programming Guide and Reference for Java

an as-needed basis It is highly recommended that you set this value to false
when you retrieve LOBs that contain large amounts of data. The default is true.

* If the data source supports progressive streaming, also known as dynamic data
format:

The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to YES (DB2BaseDataSource.YES in an
application program) or is not set.

fullyMaterializelLobData has no effect on stored procedure parameters.

As in any other language, a LOB locator in a Java application is associated with
only one data source. You cannot use a single LOB locator to move data between
two different data sources. To move LOB data between two data sources, you need
to materialize the LOB data when you retrieve it from a table in the first data
source and then insert that data into the table in the second data source.

LOB operations with the IBM Data Server Driver for JDBC and
sQLJ

The IBM Data Server Driver for JDBC and SQL] supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Among the operations that you can perform on LOB data under the IBM Data
Server Driver for JDBC and SQL]J are:

* Specify a BLOB or column as an argument of the following ResultSet methods
to retrieve data from a BLOB or CLOB column:

For BLOB columns:
— getBinaryStream
— getBlob
— getBytes

For CLOB columns:
getAsciiStream
getCharacterStream
getClob

getString

* Call the following ResultSet methods to update a BLOB or CLOB column in an
updatable ResultSet:

For BLOB columns:
— updateBinaryStream
— updateBlob

For CLOB columns:

— updateAsciiStream

— updateCharacterStream
— updateClob

If you specify -1 for the length parameter in any of the previously listed
methods, the IBM Data Server Driver for JDBC and SQLJ reads the input data
until it is exhausted.

* Use the following PreparedStatement methods to set the values for parameters
that correspond to BLOB or CLOB columns:

For BLOB columns:
— setBytes
— setBlob

Chapter 3. JDBC application programming 65

— setBinaryStream
— setObject, where the Object parameter value is an InputStream.

For CLOB columns:

— setString

— setAsciiStream

— setClob

— setCharacterStream

— setObject, where the Object parameter value is a Reader.

If you specify -1 for length, the IBM Data Server Driver for JDBC and SQL] reads
the input data until it is exhausted.

* Retrieve the value of a JDBC CLOB parameter using the
CallableStatement.getString method.

Restriction: With IBM Data Server Driver for JDBC and SQL]J type 2 connectivity,
you cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.

If you are using the IBM Data Server Driver for JDBC and SQL]J version 4.0 or
later, you can perform the following additional operations:

e Use ResultSet.updateXXX or PreparedStatement.setXXX methods to update a
BLOB or CLOB with a length value of up to 2GB for a BLOB or CLOB. For
example, these methods are defined for BLOBs:

ResultSet.updateBlob(int columnIndex, InputStream x, long length)
ResultSet.updateBlob(String columnLabel, InputStream x, long length)
ResultSet.updateBinaryStream(int columnIndex, InputStream x, long length)
ResultSet.updateBinaryStream(String columnlLabel, InputStream x, long length)
PreparedStatement.setBlob(int columnIndex, InputStream x, long length)
PreparedStatement.setBlob(String columnLabel, InputStream x, long length)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x, long length)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x, long length)

* Use ResultSet.updateXXX or PreparedStatement.setXXX methods without the
length parameter when you update a BLOB or CLOB, to cause the IBM Data
Server Driver for JDBC and SQLJ to read the input data until it is exhausted. For
example:

ResultSet.updateBlob(int columnIndex, InputStream x)
ResultSet.updateBlob(String columnLabel, InputStream x)
ResultSet.updateBinaryStream(int columnIndex, InputStream x)
ResultSet.updateBinaryStream(String columnlabel, InputStream x)
PreparedStatement.setBlob(int columnIndex, InputStream x)
PreparedStatement.setBlob(String columnLabel, InputStream x)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x)

* Create a Blob or Clob object that contains no data, using the
Connection.createBlob or Connection.createClob method.

* Materialize a Blob or Clob object on the client, when progressive streaming or
locators are in use, using the Blob.getBinaryStream or Clob.getCharacterStream
method.

* Free the resources that a Blob or Clob object holds, using the Blob.free or
Clob.free method.

Java data types for retrieving or updating LOB column data in
JDBC applications

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

66 Application Programming Guide and Reference for Java

For IBM Data Server Driver for JDBC and SQL] type 2 connectivity to DB2 for
z/0S, when the JDBC driver processes a CallableStatement.setXXX call for a
stored procedure input parameter, or a CallableStatement.registerOutParameter
call for a stored procedure output parameter, the driver cannot determine the
parameter data types.

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQL]J processes a PreparedStatement.setXXX call, the driver might need
to do extra processing to determine data types. This extra processing can impact
performance.

Input parameters for BLOB columns

For IN parameters for BLOB columns, or INOUT parameters that are used for

input to BLOB columns, you can use one of the following techniques:

¢ Use a java.sql.Blob input variable, which is an exact match for a BLOB column:
cstmt.setBlob(parmIndex, blobData);

* Use a CallableStatement.setObject call that specifies that the target data type is
BLOB:
byte[] byteData = {(byte)Oxla, (byte)0x2b, (byte)0x3c};
cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

* Use an input parameter of type of java.io.ByteArrayInputStream with a
CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream
object is compatible with a BLOB data type. For this call, you need to specify the
exact length of the input data:

java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns

For OUT parameters for BLOB columns, or INOUT parameters that are used for
output from BLOB columns, you can use the following technique:

* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type BLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a BLOB data type. For
example, the following code lets you retrieve a BLOB value into a byte][]
variable:

cstmt.registerOutParameter(parmIindex, java.sql.Types.BLOB);
cstmt.execute();
byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns

For IN parameters for CLOB columns, or INOUT parameters that are used for
input to CLOB columns, you can use one of the following techniques:

* Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
cstmt.setClob(parmIndex, clobData);

* Use a CallableStatement.setObject call that specifies that the target data type is
CLOB:

String charData = "CharacterString";
cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

* Use one of the following types of stream input parameters:

Chapter 3. JDBC application programming 67

— A java.io.StringReader input parameter with a cstmt.setCharacterStream
call:

java.io.StringReader reader = new java.io.StringReader(charData);
cstmt.setCharacterStream(parmIndex, reader, charData.length);

— A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream
call, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =
new java.io.ByteArrayInputStream (charDataBytes);
cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);
For these calls, you need to specify the exact length of the input data.
* Use a String input parameter with a cstmt.setString call:

cstmt.setString(parmIndex, charData);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

¢ Use a String input parameter with a cstmt.setObject call, and specify the target
data type as VARCHAR or LONGVARCHAR:
cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

Output parameters for CLOB columns

For OUT parameters for CLOB columns, or INOUT parameters that are used for

output from CLOB columns, you can use one of the following techniques:

e Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type CLOB. Then you can retrieve the parameter value into a
Clob variable. For example:

cstmt.registerQutParameter(parmindex, java.sql.Types.CLOB);
cstmt.execute();
Clob clobData = cstmt.getClob(parmIndex);
* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type VARCHAR or LONGVARCHAR:

cstmt.registerQutParameter(parmIndex, java.sql.Types.VARCHAR);
cstmt.execute();
String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Related concepts:
“LOBs in |JDBC applications with the IBM Data Server Driver for JDBC and SQL]”l

on page 63|

Related reference:

[“Data types that map to database data types in Java applications” on page 229

ROWIDs in JDBC with the IBM Data Server Driver for JDBC

and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a
database table. A ROWID is a value that uniquely identifies a row in a table.

68 Application Programming Guide and Reference for Java

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

You can use the following ResultSet methods to retrieve data from a ROWID
column:

* getRowId (JDBC 4.0 and later)

* getBytes

e getObject

You can use the following ResultSet method to update a ROWID column of an
updatable ResultSet:
* updateRowId (JDBC 4.0 and later)

updateRowId is valid only if the target database system supports updating of
ROWID columns.

If you are using JDBC 3.0, for getObject, the IBM Data Server Driver for JDBC and
SQL]J returns an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class com.ibm.db2.jcc.DB2RowID.

If you are using JDBC 4.0, for getObject, the IBM Data Server Driver for JDBC and
SQL]J returns an instance of the class java.sql.RowlId.

You can use the following PreparedStatement methods to set a value for a
parameter that is associated with a ROWID column:

* setRowId (JDBC 4.0 and later)

e setBytes

¢ setObject

If you are using JDBC 3.0, for setObject, use the IBM Data Server Driver for JDBC
and SQLJ-only type com.ibm.db2.jcc.Types.ROWID or an instance of the
com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

If you are using JDBC 4.0, for setObject, use the type java.sql.Types.ROWID or an
instance of the java.sql.Rowld class as the target type for the parameter.

You can use the following CallableStatement methods to retrieve a ROWID
column as an output parameter from a stored procedure call:

* getRowId (JDBC 4.0 and later)

* getObject

To call a stored procedure that is defined with a ROWID output parameter, register
that parameter to be of the java.sql.Types.ROWID type.

ROWID values are valid for different periods of time, depending on the data
source on which those ROWID values are defined. Use the
DatabaseMetaData.getRowIdLifetime method to determine the time period for
which a ROWID value is valid. The values that are returned for the data sources
are listed in the following table.

Table 15. DatabaseMetaData.getRowIdLifetime values for supported data sources

Database server DatabaseMetaData.getRowIdLifetime
DB2 for z/0OS ROWID_VALID_TRANSACTION
DB2 for Linux, UNIX, and Windows ROWID_UNSUPPORTED

Chapter 3. JDBC application programming 69

Table 15. DatabaseMetaData.getRowlIdLifetime values for supported data
sources (continued)

Database server DatabaseMetaData.getRowIdLifetime
DB2 for i ROWID_VALID_FOREVER
IBM Informix ROWID_VALID_FOREVER

Example: Using PreparedStatement.setRowld with a java.sql.Rowld target type: Suppose
that rwid is a RowId object. To set parameter 1, use this form of the setRowId
method:

ps.setRowId(1, rid);

Example: Using ResultSet.getRowld to retrieve a ROWID value from a data source: To
retrieve a ROWID value from the first column of a result set into RowId object
rwid, use this form of the ResultSet.getRowId method:

java.sql.Rowld rwid = rs.getRowId(1);

Example: Using CallableStatement.registerOutParameter with a java.sql.Types. ROWID
parameter type: To register parameter 1 of a CALL statement as a
java.sql.Types.ROWID data type, use this form of the registerOutParameter
method:

cs.registerOutParameter(1l, java.sql.Types.ROWID)

Related reference:

[“Data types that map to database data types in Java applications” on page 229

Update and retrieval of timestamps with time zone information
in JDBC applications

The JDBC methods and data types that you use and the information that the IBM
Data Server Driver for JDBC and SQL]J has about the column data types determine
the timestamp values that are sent to and received from TIMESTAMP WITH TIME
ZONE or TIMESTAMP columns.

Updates of values in TIMESTAMP or TIMESTAMP WITH TIME
ZONE columns

You can use the following standard JDBC methods to update a TIMESTAMP WITH
TIME ZONE or TIMESTAMP column:

* PreparedStatement.setObject

* PreparedStatement.setTimestamp

* PreparedStatement.setString

For a PreparedStatement.setTimestamp call in which the second parameter is a
DBTimestamp object and the third parameter is a Calendar object, the value that is
passed to a TIMESTAMP WITH TIME ZONE or TIMESTAMP column contains the
time zone value in the Calendar parameter, and not the time zone value in the
DBTimestamp object. For a PreparedStatement.setTimestamp in which the second
parameter is a DBTimestamp object and there is no Calendar parameter, the IBM
Data Server Driver for JDBC and SQL] value that is passed to a TIMESTAMP
WITH TIME ZONE or TIMESTAMP column has the default time zone, which is
that of the Java virtual machine in which the application is running.

70 Application Programming Guide and Reference for Java

If you want the value that is passed to a TIMESTAMP WITH TIME ZONE or
TIMESTAMP column to use the time zone that is in the DBTimestamp object, you
need to use PreparedStatement.setObject.

Example: Suppose that table TSTABLE is defined like this:

CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP WITH TIME ZONE)

Also suppose that the default time zone of the Java Virtual Machine (JVM) is
UTC-08:00 (Pacific Standard Time). The following code assigns timestamp values to
the column.

java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);

// Construct a Calendar object with the

// UTC-05:00 (Eastern Standard Time) time zone.
java.util.Calendar defcal = java.util.Calendar.getInstance();

// Construct a Calendar object

// with the default time zone.
java.sql.Timestamp ts =
java.sql.Timestamp.valueOf("2010-10-27 21:22:33.123456");

// Assign a timestamp to a Timestamp object.
DBTimestamp dbts = new DBTimestamp(ts,estcal);

// Construct a DBTimestamp object that has

// the UTC-05:00 time zone.

PreparedStatement ps = con.prepareStatement (
"INSERT INTO TSTABLE (TSCOL,TSTZCOL) VALUES (?,?2)");
//
// Use setTimestamp methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column
//
ps.setTimestamp(1l, ts); // Assign a timestamp value in a Timestamp
// object to a TIMESTAMP column.
ps.setTimestamp(2,ts); // Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.
ps.setTimestamp(1l, dbts);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column.
ps.setTimestamp(2,dbts);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-02-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// default time zone of UTC-08:00 is sent to
// the column.

Chapter 3. JDBC application programming 71

ps.setTimestamp(1l, ts, estcal);
// Assign a timestamp value in a Timestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies
// the UTC-05:00 time zone.
ps.setTimestamp(2, ts, estcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column. Include
// a Calendar parameter that specifies the
// UTC-05:00 time zone.
ps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
// if the driver has no information about the column
// data type. The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
ps.setTimestamp(1l, dbts, estcal);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies the
// UTC-05:00 time zone.
ps.setTimestamp(2, dbts, estcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// time zone in the Calendar parameter, UTC-05:00,
// is sent to the column.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
ps.setTimestamp(1l, ts, defcal);
// Assign a timestamp value in a Timestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies
// the default time zone (UTC-08:00).
ps.setTimestamp(2, ts, defcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column. Include
// a Calendar parameter that specifies the
// default (UTC-08:00) time zone.

72 Application Programming Guide and Reference for Java

ps.execute(); //
/ if the driver has information that the column

/1

2010-10-27-21.22.33.123456 is assigned to TSCOL

has the TIMESTAMP data type.
2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
if the driver has no information about the column
data type.

2010-10-27-21.22.33.123456-08:00 is assigned

to TSTZCOL regardless of whether the driver

has information that the the column has

the TIMESTAMP WITH TIME ZONE data type.

ps.setTimestamp(1l, dbts, defcal);

// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column

ps.setTimestamp(2, dbts, defcal);

ps.execute(); //

/1l

//

// Assign the same timestamp value to

// a TIMESTAMP WITH TIME ZONE column
2010-10-27-21.22.33.123456 is assigned to TSCOL
if the driver has information that the column
has the TIMESTAMP data type
2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
if the driver has no information about the column
data type
2010-10-27-21.22.33.123456-08:00 is assigned
to TSTZCOL regardless of whether the driver
has information that the the column has
the TIMESTAMP WITH TIME ZONE data type. The
default time zone in the Calendar parameter,
UTC-08:00, is sent to the column.

// Use setObject methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column

/!

ps.setObject (1, ts); // Assign a timestamp value in a Timestamp

// object to a TIMESTAMP column.

ps.setObject (2, ts);

ps.execute(); //

// Assign the same timestamp value to

// a TIMESTAMP WITH TIME ZONE column.
2010-10-27-21.22.33.123456 is assigned to TSCOL
if the driver has information that the column
has the TIMESTAMP data type.
2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
if the driver has no information about the column
data type. The time zone is the default time zone.
2010-10-27-21.22.33.123456-08:00 is assigned
to TSTZCOL regardless of whether the driver
has information that the the column has
the TIMESTAMP WITH TIME ZONE data type. The
time zone is the default time zone.

ps.setObject (1, dbts);

// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column.

ps.setObject (2, dbts);

ps.execute(); //
// if the driver has information that the column

/!

//
//
//
/1

/1

// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
2010-10-28-00.22.33.123456 is assigned to TSCOL

has the TIMESTAMP data type.
2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
if the driver has no information about the column
data type.

2010-10-28-00.22.33.123456-05:00 is assigned

to TSTZCOL regardless of whether the driver

has information that the the column has

the TIMESTAMP WITH TIME ZONE data type.

The time zone is the time zone in the DBTimestamp
object.

Chapter 3. JDBC application programming

73

// Use setString methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column
//
ps.setString(1l, "2010-10-27-21.22.33.123456");
// Assign a constant timestamp value
// with no time zone to a TIMESTAMP column.
ps.setString(2, "2010-10-27-21.22.33.123456");
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// regardless of whether the driver has information
// that the column has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL if the driver has information that
// the column has the TIMESTAMP WITH TIME ZONE
// data type. The time zone is the default time zone.
// 2010-10-27-21.22.33.123456 is assigned to TSTZCOL
// if the driver has no information about the column
// data type.
ps.setString(1, "2010-10-27-21.22.33.123456-05:00");
// Assign a constant timestamp value
// with a time zone to a TIMESTAMP column.
ps.setString(2, "2010-10-27-21.22.33.123456-05:00") ;
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// data type is TIMESTAMP.
// 2010-10-27-21.22.33.123456-05:00 is assigned to
// TSCOL if the driver has no information about the
// column data type.
// 2010-10-27-21.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver has
// information that the column data type is
// TIMESTAMP WITH TIME ZONE.

Alternatively, if you want to assign data that has a time zone or has a precision of
greater than nine to a TIMESTAMP WITH TIME ZONE column, you can construct
a DBTimestamp object, and use the IBM Data Server Driver for JDBC and SQLJ-only
method DB2PreparedStatement.setDBTimestamp to update a TIMESTAMP WITH
TIME ZONE column.

Example: Suppose that table TSTABLE is defined like this:

CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP(12) WITH TIME ZONE)

The following code assigns a timestamp value with a time zone and a precision of
10 to each column.

DBTimestamp tstz =
DBTimestamp.valueOfDBString("2010-10-28-00.22.33.1234567890-05:00") ;
// Create a DBTimestamp object from the input value
PreparedStatement ps = con.prepareStatement (
"INSERT INTO TSTABLE (TSCOL, TSTXCOL) VALUES (?,?)");

DB2PreparedStatement dbps = (DB2PreparedStatement)ps;

dbps.setDBTimestamp (1, tstz);

dbps.setDBTimestamp (2, tstz);

dbps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL if
// the driver has information that the column data type is
// TIMESTAMP.
// 2010-10-28-00.22.33.1234567890-05:00 is assigned to TSCOL
// if the driver has no information about the column

74 Application Programming Guide and Reference for Java

// data type.

// 2010-10-28-00.22.33.1234567890-05:00 is assigned to TSTZCOL
// regardless of whether the driver has information that

// the column data type is TIMESTAMP(12) WITH TIME ZONE.

Retrieval of values from TIMESTAMP or TIMESTAMP WITH TIME
ZONE columns

You can use the following standard JDBC methods to retrieve data from a
TIMESTAMP WITH TIME ZONE or TIMESTAMP column or output parameter:
* ResultSet.getTimestamp

* CallableStatement.getTimestamp

* ResultSet.getObject

* CallableStatement.getObject

* ResultSet.getString

* CallableStatement.getString

For a ResultSet.getTimestamp, CallableStatement.getTimestamp,
ResultSet.getObject, or CallableStatement.getObject call, you can specify the
type of object that you want the IBM Data Server Driver for JDBC and SQL]J to
return by setting the DB2BaseDataSource.timestampQOutputType property:

* If you set the property to DB2BaseDataSource JDBC_TIMESTAMP (1), the driver
returns a java.sql.Timestamp object.

 If you set the property to DB2BaseDataSource.JCC_DBTIMESTAMP (2), the
driver returns a com.ibm.db2.jcc.DBTimestamp object.

For a ResultSet.getTimestamp or CallableStatement.getTimestamp call, if the
ResultSet.getTimestamp or CallableStatement.getTimestamp call has a Calendar
parameter with a non-null value, the IBM Data Server Driver for JDBC and SQLJ
uses the Calendar object when it constructs the returned object. If the
ResultSet.getTimestamp or CallableStatement.getTimestamp call has no Calendar
parameter, or the Calendar parameter value is null, the IBM Data Server Driver for
JDBC and SQLJ uses the default time zone when it constructs the returned object.

If you want to retrieve a timestamp with the time zone value that is in a
TIMESTAMP WITH TIME ZONE column, call ResultSet.getObject or
CallableStatement.getObject, and then call DBTimestamp.toDBString(true) to
retrieve the timestamp with the time zone.

getString retrieves the timestamp value in the standard JDBC format: without the
time zone, and with a precision of up to nine. The returned value is adjusted for
the difference between the time zone of the column value and the default time
zone.

Example: Suppose that table TSTABLE is defined like this:

CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP WITH TIME ZONE)

Also suppose that the default time zone is UTC-08:00 (Pacific Standard Time). The
following code retrieves timestamp values from the TIMESTAMP column.

java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);
java.util.Calendar defcal = java.util.Calendar.getInstance();

Statement stmt = conn.createStatement ();

ResultSet rs = stmt.executeQuery("SELECT TSCOL, TSTZCOL FROM TSTABLE");

Chapter 3. JDBC application programming 75

com.ibm.db2.jcc.DB2ResultSet dbrs =
Timestamp ts;
DBTimestamp dbts;

rs.next();

(com.ibm.db2.jcc.DB2ResultSet)rs;

// Suppose that the TSCOL column value is 2010-10-27-21.22.33.123456

ts=rs.getTimestamp(1);

ts.toString();

((DBTimestamp)ts).toDBString(false);

((DBTimestamp)ts).toDBString(true);

ts=rs.getTimestamp(1,estcal);

ts.toString();

((DBTimestamp)ts).toDBString(false);

((DBTimestamp)ts).toDBString(true);

ts=rs.getObject(1);

ts.toString();

((DBTimestamp)ts).toDBString(false);

((DBTimestamp)ts).toDBString(true);

/l
//
/1l
//

/1l
//
/1

Retrieve the TIMESTAMP column value

into a Timestamp object.

Format the Timestamp object as a String.
2010-10-27-21:22:33.123456 is

returned.

Cast the retrieved object to a
DBTimestamp object, and format the
value as a String, without the time
zone information.
2010-10-27-21.22.33.123456 is returned.
Cast the retrieved object to a
DBTimestamp object, and format the value
as a String, with the time zone
information.
2009-02-27-21.22.33.123456-08:00 is
returned. The time zone is the default
time zone.

Retrieve the TIMESTAMP column value

into a Timestamp object. Specify a
calendar parameter that says that the
time zone is UTC-05:00.

Format the value as a String, using the
default time zone of UTC-08:00.
2010-10-27-18:22:33.123456 is

returned.

Cast the retrieved object to a
DBTimestamp object, and format the
value as a String, without the time zone
information.

2010-10-27-21.22.33.123456 is returned.
Cast the retrieved object to a
DBTimestamp object, and format the
value as a String, with the time zone
information.
2010-10-27-21.22.33.123456-05:00 is
returned. The time zone is the time zone
in the Calendar parameter.

Retrieve the TIMESTAMP column value
into an Object.

Format the Timestamp object as a String.
2010-10-27-21:22:33.123456 is

returned.

Cast the retrieved object to a
DBTimestamp object, and format the
value as a String, without the time
zone information.
2010-10-27-21.22.33.123456 is returned.
Cast the retrieved object to a
DBTimestamp object, and format the value
as a String, with the time zone
information.
2009-02-27-21.22.33.123456-08:00 is
returned. The time zone is the default
time zone.

Alternatively, you can use DB2ResultSet methods to retrieve the TIMESTAMP or
TIMESTAMP WITH TIME ZONE column values.

Example: Suppose that table TSTABLE is defined like this:

76 Application Programming Guide and Reference for Java

CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP(12) WITH TIME ZONE)

Also suppose that the default time zone is UTC-08:00 (Pacific Standard Time). The
following code retrieves timestamp values from the TIMESTAMP and TIMESTAMP
WITH TIME ZONE columns.

java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);
java.util.Calendar defcal = java.util.Calendar.getInstance();

Statement stmt = conn.createStatement ();

ResultSet rs = stmt.executeQuery("SELECT TSCOL, TSTZCOL FROM TSTABLE");
com.ibm.db2.jcc.DB2ResultSet dbrs = (com.ibm.db2.jcc.DB2ResultSet)rs;
Timestamp ts;

DBTimestamp dbts;

;é:next();
// Suppose that the TSTZCOL column value is 2010-10-28-00.22.33.123456-05:00, and
// the TSCOL column value is 2010-10-27-21.22.33.123456.

ts=dbrs.getDBTimestamp(1); // Retrieve the TIMESTAMP column value into
// a Timestamp object.
ts.toString(); // Format the Timestamp object as a String.

// 2010-10-27-21:22:33.123456 is

// returned.
((DBTimestamp)ts).toDBString(false); // Format the value as a String, without

// the time zone information.

// 2010-10-27-21.22.33.123456 is returned.
((DBTimestamp)ts).toDBString(true); // Format the value as a String, with the

// time zone information.

// 2009-02-27-21.22.33.123456-08:00 is

// returned. The time zone is the default

// time zone.

ts=dbrs.getDBTimestamp(2); // Retrieve the TIMESTAMP WITH TIME ZONE
// column value into a Timestamp object.
ts.toString(); // Format the Timestamp object as a String.

// 2010-10-27-21:22:33.123456 is

// returned. The returned value differs

// from the original value because toString

// uses the default time zone in its

// calculations.
((DBTimestamp)ts).toDBString(false); // Format the value as a String, without

// the time zone information.

// 2010-10-28-00.22.33.123456 is returned.
((DBTimestamp)ts).toDBString(true); // Format the value as a String, with the

// time zone information.

// 2010-10-28-00.22.33.123456-05:00 is

// returned. The time zone is the time zone

// from the retrieved column value.
dbts = (DBTimestamp)rs.getTimestamp(2);

// Retrieve the TIMESTAMP WITH TIME ZONE

// column value into a DBTimestamp object.
dbts.toString(); // Format the DBTimestamp object as a String.

// 2010-10-27-21:22:33.123456 is

// returned. The value is adjusted for the

// difference between the time zone in the

// column value and the default time zone.
dbts.toDBString(false); // Format the value as a String, without

// the time zone information. The value is

// adjusted for the difference between the

// time zone in the column value and the

// default time zone.

// 2010-10-27-21.22.33.123456 is returned.
dbts.toDBString(true); // Format the value as a String, with the

// time zone information.

// 2009-02-27-21.22.33.123456-08:00 is

Chapter 3. JDBC application programming 77

// returned. The time zone is the default
// time zone. The value is adjusted for
// the difference between the time zone in
// the column value and the default
// time zone.
dbts = (DBTimestamp)rs.getTimestamp(2, defcal);
// Retrieve the TIMESTAMP WITH TIME ZONE
// column value into a DBTimestamp object,
// using the default Calendar to construct
// the DBTimestamp object.
dbts.toString(); // Format the DBTimestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.
dbts.toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-27-21.22.33.123456 is returned.
// The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.
dbts.toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-02-27-21.22.33.123456-08:00 is
// returned. The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.
dbts = (DBTimestamp)rs.getObject(2); // Retrieve the TIMESTAMP WITH TIME ZONE
// column value into an Object, and cast
// the object as a DBTimestamp object.
dbts.toString(); // Format the DBTimestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The returned value differs from
// the original value because toString uses
// the default time zone in its calculations.
dbts.toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-28-00.22.33.123456 is returned.
dbts.toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-10-28-00.22.33.123456-05:00 is
// returned. The time zone is the time
// zone in the retrieved column value.

Recommendation: Use getObject or getDBTimestamp, followed by setObject or
setDBTimestamp when you need to preserve the original timestamp with time zone
information when you retrieve data from one table and insert it into another table.

Related reference:

“DBTimestamp class” on page 475
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers”|

on page 270|
Distinct types in JDBC applications

A distinct type is a user-defined data type that is internally represented as a
built-in SQL data type. You create a distinct type by executing the SQL statement
CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method
to execute the CREATE DISTINCT TYPE statement. You can also use

78 Application Programming Guide and Reference for Java

executeUpdate to create a table that includes a column of that type. When you
retrieve data from a column of that type, or update a column of that type, you use
Java identifiers with data types that correspond to the built-in types on which the
distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,
creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;

stmt = con.createStatement(); // Create a Statement object
stmt.executeUpdate(
"CREATE DISTINCT TYPE SHOESIZE AS INTEGER");
// Create distinct type
stmt.executeUpdate (
"CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");
// Create table with distinct type
stmt.executeUpdate("INSERT INTO EMP_SHOE " +
"VALUES ('000010', 6)"); // Insert a row
rs=stmt.executeQuery("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);
// Create ResultSet for query
while (rs.next()) {
empNumVar = rs.getString(1); // Get employee number
shoeSizeVar = rs.getInt(2); // Get shoe size (use int
// because underlying type
// of SHOESIZE is INTEGER)

System.out.printin("Employee number = " + empNumVar +
" Shoe size = " + shoeSizeVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Figure 16. Creating and using a distinct type

Related reference:

[“Data types that map to database data types in Java applications” on page 229|
[[CREATE TYPE (distinct) (DB2 SQL)

Invocation of stored procedures with ARRAY parameters in
JDBC applications

JDBC applications that run under the IBM Data Server Driver for JDBC and SQL]
can call stored procedures that have ARRAY parameters.

ARRAY parameters are supported in stored procedures on DB2 for Linux, UNIX,
and Windows Version 9.5 and later.

ARRAY parameters are supported in native SQL procedures on DB2 for z/OS
Version 11 and later. Programs that call DB2 for z/OS stored procedures with array
parameters must use IBM Data Server Driver for JDBC and SQL]J type 4
connectivity.

You can use java.sql.Array objects as arguments for calling stored procedures
with array parameters.

Chapter 3. JDBC application programming 79

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtypedistinct.htm#db2z_sql_createtypedistinct

For IN or INOUT parameters, use the DB2Connection.createArray0f method (JDBC
3.0) or the Connection.createArray0f method (JDBC 4.0 or later) to create a
java.sql.Array object. Use the CallableStatement.setArray method or the
CallableStatement.setObject method to assign a java.sql.Array object to an
ARRAY stored procedure parameter.

You can register an OUT ARRAY parameter for a stored procedure call by
specifying java.sql.Types.ARRAY as the parameter type in a
CallableStatement.registerOutParameter call.

There are two ways to retrieve data from an ARRAY output parameter:

* Use the CallableStatement.getArray method to retrieve the data into a
java.sql.Array object, and use the java.sql.Array.getArray method to retrieve
the contents of the java.sql.Array object into a Java array.

* Use the CallableStatement.getArray method to retrieve the data into a
java.sql.Array object. Use the java.sql.Array.getResultSet () method to
retrieve the data into a ResultSet object. Use ResultSet methods to retrieve
elements of the array. Each row of the ResultSet contains two columns:

— An index into the array, which starts at 1
— The array element

Example: Suppose that input and output parameters IN_PHONE and
OUT_PHONE in stored procedure GET_EMP_DATA are arrays that are defined
like this:

CREATE TYPE PHONENUMBERS AS VARCHAR(10) ARRAY[5]

Call GET_EMP_DATA with the two parameters.

Connection con;
CallableStatement cstmt;
ResultSet rs;
java.sql.Array inPhoneData;

cstmt = con.prepareCall("CALL GET_EMP_DATA(?,?)");

// Create a CallableStatement object
cstmt.setObject (1, inPhoneData); // Set input parameter
cstmt.registerQutParameter (2, java.sql.Types.ARRAY);

// Register out parameters
cstmt.executeUpdate(); // Call the stored procedure
Array outPhoneData = cstmt.getArray(2);

// Get the output parameter array
System.out.printin("Parameter values from GET_EMP DATA call: ");
String [] outPhoneNums = (String [])outPhoneData.getArray();

// Retrieve output data from the JDBC Array object
// into a Java String array
for(int i=0; i<outPhoneNums.length; i++) {
System.out.print(outPhoneNums[i]);
System.out.printin();
}

Savepoints in JDBC applications

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. You can use SQL statements to set a savepoint, release
a savepoint, and restore data and schemas to the state that the savepoint
represents.

The IBM Data Server Driver for JDBC and SQLJ supports the following methods
for using savepoints:

80 Application Programming Guide and Reference for Java

Connection.setSavepoint() or Connection.setSavepoint(String name)
Sets a savepoint. These methods return a Savepoint object that is used in later
releaseSavepoint or rollback operations.

When you execute either of these methods, DB2 executes the form of the
SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)
Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)
Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()
Indicates whether a data source supports savepoints.

You can indicate whether savepoints are unique by calling the method
DB2Connection.setSavePointUniqueOption. If you call this method with a value of
true, the application cannot set more than one savepoint with the same name
within the same unit of recovery. If you call this method with a value of false (the
default), multiple savepoints with the same name can be created within the same
unit of recovery, but creation of a savepoint destroys a previously created
savepoint with the same name.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;

con.setAutoCommit(false); // set autocommit OFF
stmt = con.createStatement(); // Create a Statement object
. // Perform some SQL
con.commit(); // Commit the transaction
stmt.executeUpdate ("INSERT INTO EMP_SHOE " +

"VALUES ('000010', 6)"); // Insert a row

((com.ibm.db2.jcc.DB2Connection)con).setSavePointUniqueOption(true);
// Indicate that savepoints
// are unique within a unit
// of recovery

Savepoint savept = con.setSavepoint("savepointl");
// Create a savepoint

stmt.executeUpdate ("INSERT INTO EMP_SHOE " +

"VALUES ('000020', 10)"); // Insert another row
conn.rollback(savept); // Roll back work to the point
// after the first insert
con.releaseSavepoint(savept); // Release the savepoint
stmt.close(); // Close the Statement
conn.commit(); // Commit the transaction

Figure 17. Setting, rolling back to, and releasing a savepoint in a JDBC application

Chapter 3. JDBC application programming 81

Related tasks:
[‘Committing or rolling back JDBC transactions” on page 113

Related reference:

“Data types that map to database data types in Java applications” on page 229
"Driver support for JDBC APIs” on page 319|
[“DB2Connection interface” on page 401|

Retrieval of automatically generated keys in JDBC
applications

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve
automatically generated keys (also called auto-generated keys) from a table using
JDBC 3.0 methods.

An automatically generated key is any value that is generated by the data server,
instead of being specified by the user. One type of automatically generated key is
the contents of an identity column. An identity column is a table column that
provides a way for the data source to automatically generate a numeric value for
each row. You define an identity column in a CREATE TABLE or ALTER TABLE
statement by specifying the AS IDENTITY clause when you define a column that
has an exact numeric type with a scale of 0 (SMALLINT, INTEGER, BIGINT,
DECIMAL with a scale of zero, or a distinct type based on one of these types).

For connections to DB2 for z/OS or DB2 for Linux, UNIX, and Windows, the IBM
Data Server Driver for JDBC and SQLJ supports the return of automatically
generated keys for INSERT statements, for searched UPDATE or searched DELETE
statements, or for MERGE statements. For UPDATE, DELETE, or MERGE
statements, you can identify any columns as automatically generated keys, even if
they are not generated by the data server. In this case, the column values that are
returned are the column values for the rows that are modified by the UPDATE,
DELETE, or MERGE statement.

Restriction: If the Connection or DataSource property atomicMultiRowInsert is set
to DB2BaseDataSource.YES (1), you cannot prepare an SQL statement for retrieval of
automatically generated keys and use the PreparedStatement object for batch
updates. The IBM Data Server Driver for JDBC and SQLJ version 3.50 or later
throws an SQLException when you call the addBatch or executeBatch method on a
PreparedStatement object that is prepared to return automatically generated keys.

Related tasks:

“Creating and modifying database objects using the Statement.executeUpdate
method” on page 32|

“Updating data in tables using the PreparedStatement.executeUpdate method” on|

page 3§|

Retrieving auto-generated keys for an INSERT statement
With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0

methods to retrieve the keys that are automatically generated when you execute an
INSERT statement.

Procedure

To retrieve automatically generated keys that are generated by an INSERT
statement, you need to perform these steps:

82 Application Programming Guide and Reference for Java

1. Use one of the following methods to indicate that you want to return
automatically generated keys:

 If you plan to use the PreparedStatement.executeUpdate method to insert
rows, invoke one of these forms of the Connection.prepareStatement method
to create a PreparedStatement object:

The following form is valid for a table on any data source that supports
identity columns.

Restriction: For IBM Data Server Driver for JDBC and SQL]J version 3.57 or
later, the following form is not valid for inserting rows into a view on a DB2
for z/OS data server.
Connection.prepareStatement (sql-statement,
Statement.RETURN_GENERATED KEYS);

If the data server is DB2 for z/OS, the following forms are valid only if the
data server supports SELECT FROM INSERT statements. With the first form,
you specify the names of the columns for which you want automatically
generated keys. With the second form, you specify the positions in the table
of the columns for which you want automatically generated keys.
Connection.prepareStatement(sql-statement, String [] columnNames);
Connection.prepareStatement (sql-statement, int [] columnIndexes);

* If you use the Statement.executeUpdate method to insert rows, invoke one
of these forms of the Statement.executeUpdate method:

The following form is valid for a table on any data source that supports
identity columns.

Restriction: For IBM Data Server Driver for JDBC and SQL]J version 3.57 or
later, the following form is not valid for inserting rows into a view on a DB2
for z/OS data server.

Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED KEYS);

If the data server is DB2 for z/OS, the following forms are valid only if the
data server supports SELECT FROM INSERT statements. With the first form,
you specify the names of the columns for which you want automatically
generated keys. With the second form, you specify the positions in the table
of the columns for which you want automatically generated keys.
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);
2. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that
contains the automatically generated key values.

If you include the Statement.RETURN_GENERATED_KEYS parameter, the data type
of the automatically generated keys in the ResultSet is DECIMAL, regardless
of the data type of the corresponding column.

Example

The following code creates a table with an identity column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.

import java.sql.*;

import java.math.=;

import com.ibm.db2.jcc.*;

Connection con;

Chapter 3. JDBC application programming 83

Statement stmt;
ResultSet rs;
java.math.BigDecimal iDColVar;

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +
"IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");
// Create table with identity column
stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " +
"VALUES ('000010', '5555')", // Insert a row
Statement.RETURN_GENERATED KEYS); // Indicate you want automatically
// generated keys
rs = stmt.getGeneratedKeys(); // Retrieve the automatically 2]
// generated key value in a ResultSet.
// Only one row is returned.
// Create ResultSet for query
while (rs.next()) {
java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key

// value
System.out.printin("automatically generated key value = " + idColVar);
1
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

With any version of the IBM Data Server Driver for JDBC and SQLJ, you can
retrieve the most recently assigned value of an identity column by explicitly
executing the IDENTITY_VAL_LOCAL built-in function. Execute code similar to
this:

String idntVal;

Connection con;

Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT IDENTITY_VAL_LOCAL() FROM SYSIBM.SYSDUMMY1");
// Get the result table from the query.
// This is a single row with the most
// recent identity column value.

while (rs.next()) { // Position the cursor

idntVal = rs.getString(1); // Retrieve column value

System.out.printin("Identity column value = " + idntVal);
// Print the column value

}

rs.close(); // Close the ResultSet

stmt.close(); // Close the Statement

Retrieving auto-generated keys for an UPDATE, DELETE, or
MERGE statement

With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0
methods to retrieve the keys that are automatically generated when you execute a
searched UPDATE, searched DELETE, or MERGE statement.

Procedure

To retrieve automatically generated keys that are generated by an UPDATE,
DELETE, or MERGE statement, you need to perform these steps:

1. Construct a String array that contains the names of the columns from which
you want to return automatically generated keys.

The array must be an array of column names, and not column indexes.

84 Application Programming Guide and Reference for Java

2. Set the autocommit mode for the connection to false.

3. Use one of the following methods to indicate that you want to return
automatically generated keys:

* If you plan to use the PreparedStatement.executeUpdate method to update,
delete, or merge rows, invoke this form of the Connection.prepareStatement
method to create a PreparedStatement object:
Connection.prepareStatement(sql-statement, String [] columnNames);

 If you use the Statement.executeUpdate method to update, delete, or merge
rows, invoke this form of the Statement.executeUpdate method:
Statement.executeUpdate(sql-statement, String [] columnNames);

4. Invoke the PreparedStatement.getGeneratedKeys method or the

Statement.getGeneratedKeys method to retrieve a ResultSet object that
contains the automatically generated key values.

Example

Suppose that a table is defined like this and has thirty rows:

CREATE TABLE EMP_BONUS
(EMPNO CHAR(6),
BONUS DECIMAL(9,2))

The following code names the EMPNO column as an automatically generated key,
updates the thirty rows in the EMP_BONUS table, and retrieves the values of
EMPNO for the updated rows. The numbers to the right of selected statements
correspond to the previously described steps.

import java.sql.*;

Connection conn;

String[] agkNames = {"EMPNO"};
int updateCount = 0;

conn.setAutoCommit (false); 2
PreparedStatement ps = 3

conn.prepareStatement ("UPDATE EMP_BONUS SET BONUS = " +
" BONUS + 300.00",agkNames);
updateCount = ps.executeUpdate();
ResultSet rs = ps.getGeneratedKeys(); 4]
while (rs.next()) {
String agkEmpNo = rs.getString(1);
// Get automatically generated key value
System.out.printin("Automatically generated key value = " + agkEmpNo);

1
ps.close();
conn.close();

Named parameter markers in JDBC applications

You can use named parameter markers instead of standard parameter markers in
PreparedStatement and CallableStatement objects to assign values to the input
parameter markers. You can also use named parameter markers instead of
standard parameter markers in CallableStatement objects to register OUT
parameters that have named parameter markers.

SQL strings that contain the following SQL elements can include named parameter
markers:

+ CALL

* DELETE

» INSERT

Chapter 3. JDBC application programming 85

* MERGE

* PL/SQL block
e SELECT

e SET
 UPDATE

Named parameter markers make your JDBC applications more readable. If you
have named parameter markers in an application, set the IBM Data Server Driver
for JDBC and SQLJ Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES (1) to direct the driver
to accept named parameter markers and send them to the data source as standard
parameter markers.

Related reference:

“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported|
database products” on page 244|

Using named parameter markers with PreparedStatement objects
You can use named parameter markers instead of standard parameter markers in
PreparedStatement objects to assign values to the parameter markers.

Before you begin

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

About this task
Procedure

To use named parameter markers with PreparedStatement objects, follow these

steps:

1. Execute the Connection.prepareStatement method on an SQL statement string
that contains named parameter markers. The named parameter markers must
follow the rules for SQL host variable names.

You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.

Named parameter markers are case-insensitive.

2. For each named parameter marker, use a
DB2PreparedStatement.setJccXXXAtName method to assign a value to each
named input parameter.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that parameter
marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

Restriction: You cannot use standard JDBC PreparedStatement.setXXX methods
with named parameter markers. Doing so causes an exception to be thrown.

3. Execute the PreparedStatement.

86 Application Programming Guide and Reference for Java

Example

The following code uses named parameter markers to update the phone number to
'4657' for the employee with employee number '000010". The numbers to the right
of selected statements correspond to the previously described steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=:phonenum WHERE EMPNO=:empnum");
// Create a PreparedStatement object
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setdccStringAtName
("phonenum", "4567");
// Assign a value to phonenum parameter H
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setdccStringAtName
("empnum", "000010");
// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update
pstmt.close(); // Close the PreparedStatement object

The following code uses named parameter markers to update values in a PL/SQL
block. The numbers to the right of selected statements correspond to the previously
described steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

String sql =
"BEGIN " +
" UPDATE EMPLOYEE SET PHONENO = :phonenum WHERE EMPNO = :empnum; " +
"END;";
pstmt = con.prepareStatement(sql); // Create a PreparedStatement object
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setdccStringAtName
("phonenum", "4567");
// Assign a value to phonenum parameter H
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setdccStringAtName
("empnum", "000010");
// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update
pstmt.close(); // Close the PreparedStatement object

Related reference:

['DB2PreparedStatement interface” on page 435|

Using named parameter markers with CallableStatement objects
You can use named parameter markers instead of standard parameter markers in
CallableStatement objects to assign values to IN or INOUT parameters and to
register OUT parameters.

Before you begin
To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your

applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource. YES.

Chapter 3. JDBC application programming 87

About this task
Procedure

To use named parameter markers with CallableStatement objects, follow these

steps:

1. Execute the Connection.prepareCall method on an SQL statement string that
contains named parameter markers.

The named parameter markers must follow the rules for SQL host variable
names.

You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.

Named parameter markers are case-insensitive.

2. If you do not know the names of the named parameter markers in the CALL
statement, or the mode of the parameters (IN, OUT, or INOUT):

a. Call the CallableStatement.getParameterMetaData method to obtain a
ParameterMetaData object with information about the parameters.

b. Call the ParameterMetaData.getParameterMode method to retrieve the
parameter mode.

c. Cast the ParameterMetaData object to a DB2ParameterMetaData object.

d. Call the DB2ParameterMetaData.getParameterMarkerNames method to retrieve
the parameter names.

3. For each named parameter marker that represents an OUT parameter, use a
DB2CallableStatement.registerdccOutParameterAtName method to register the
OUT parameter with a data type.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a registerdccOutParameterAtName method for
that parameter marker only once. All parameters with the same name are
registered as the same data type.

Restriction: You cannot use standard JDBC
CallableStatement.registerOutParameter methods with named parameter
markers. Doing so causes an exception to be thrown.

4. For each named parameter marker for an input parameter, use a
DB2CallableStatement.setJccXXXAtName method to assign a value to each
named input parameter.
setJccXXXAtName methods are inherited from DB2PreparedStatement.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that parameter
marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

5. Execute the CallableStatement.

6. Call CallableStatement.getXXX methods or
DB2CallableStatement.getJccXXXAtName methods to retrieve output parameter
values.

88 Application Programming Guide and Reference for Java

Example

The following code illustrates calling a stored procedure that has one input
VARCHAR parameter and one output INTEGER parameter, which are represented
by named parameter markers. The numbers to the right of selected statements
correspond to the previously described steps.

CallableStatement cstmt =
con.prepareCall("CALL MYSP(:inparm,:outparm)");
// Create a CallableStatement object
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).
registerdccOutParameterAtName ("outparm", java.sql.Types.INTEGER);
// Register OUT parameter data type
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).setdccStringAtName("inparm", "4567");
// Assign a value to inparm parameter

cstmt.executeUpdate(); // Call the stored procedure
int outssid = cstmt.getInt(2); // Get the output parameter value
cstmt.close();

Related reference:
[“DB2CallableStatement interface” on page 393|
[“DB2PreparedStatement interface” on page 435|

Providing extended client information to the data source with
IBM Data Server Driver for JDBC and SQLJ-only methods

A set of IBM Data Server Driver for JDBC and SQL]J-only methods provide extra
information about the client to the server. This information can be used for
accounting, workload management, or debugging.

About this task

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

In the IBM Data Server Driver for JDBC and SQLJ version 4.0 or later, the IBM
Data Server Driver for JDBC and SQLJ-only methods are deprecated. You should
use java.sql.Connection.setClientInfo instead.

The IBM Data Server Driver for JDBC and SQLJ-only methods are listed in the
following table.

Table 16. Methods that provide client information to theDB2 server

Method Information provided

setDB2ClientAccountingInformation Accounting information

setDB2ClientApplicationInformation Name of the application that is working with
a connection

setDB2ClientDebugInfo The CLIENT DEBUGINFO connection

attribute for the Unified debugger

setDB2ClientProgramId A caller-specified string that helps the caller
identify which program is associated with a
particular SQL statement.
setDB2ClientProgramld does not apply to DB2
for Linux, UNIX, and Windows data servers.

setDB2ClientUser User name for a connection

Chapter 3. JDBC application programming 89

Table 16. Methods that provide client information to theDB2 server (continued)

Method Information provided
setDB2ClientWorkstation Client workstation name for a connection
Procedure

To set the extended client information, follow these steps:
1. Create a Connection.
Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.

2
3. Call any of the methods shown in [Table 16 on page 89}
4

Execute an SQL statement to cause the information to be sent to theDB2 server.
Example

The following code performs the previous steps to pass a user name and a
workstation name to theDB2 server. The numbers to the right of selected
statements correspond to the previously-described steps.

public class ClientInfoTest {
public static void main(String[] args) {
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021/san_jose";
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url,
user, password);
if (conn instanceof DB2Connection) {
DB2Connection db2conn = (DB2Connection) conn;
db2conn.setDB2ClientUser("Michael L Thompson"); 3
db2conn.setDB2CTientWorkstation("sjwkstnl");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement ("SELECT * FROM SYSIBM.SYSDUMMY1"
+ "WHERE 0 = 1").executeQuery();

} catch (Throwable e) {
e.printStackTrace();
}
}
1

Figure 18. Example of passing extended client information to aDB2 server

Related reference:
[“IBM Data Server Driver for JDBC and SQL]J extensions to JDBC” on page 383|

Providing extended client information to the data source with
client info properties

The IBM Data Server Driver for JDBC and SQLJ version 4.0 supports JDBC 4.0
client info properties, which you can use to provide extra information about the
client to the server. This information can be used for accounting, workload
management, or debugging.

90 Application Programming Guide and Reference for Java

About this task

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

The application can also use the Connection.getClientInfo method to retrieve
client information from the database server, or execute the
DatabaseMetaData.getClientInfoProperties method to determine which client
information the driver supports.

The JDBC 4.0 client info properties should be used instead IBM Data Server Driver
for JDBC and SQLJ-only methods, which are deprecated.

Procedure

To set client info properties, follow these steps:
1. Create a Connection.

2. Call the java.sql.Connection.setClientInfo method to set any of the client
info properties that the database server supports.

3. Execute an SQL statement to cause the information to be sent to the database
server.

Example

The following code performs the previous steps to pass a client's user name and
host name to theDB2 server. The numbers to the right of selected statements
correspond to the previously-described steps.

public class ClientInfoTest
public static void main(String[] args) {
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021/san_jose";
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url,
user, password);
conn.setClientInfo("ClientUser", "Michael L Thompson"); H
conn.setClientInfo("ClientHostname, "sjwkstnl");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement ("SELECT * FROM SYSIBM.SYSDUMMY1"
+ "WHERE 0 = 1").executeQuery();
} catch (Throwable e) {
e.printStackTrace();
1
}
}

Figure 19. Example of passing extended client information to aDB2 server

Client info properties support by the IBM Data Server Driver for
JDBC and SQLJ

JDBC 4.0 includes client info properties, which contain information about a
connection to a data source. The DatabaseMetaData.getClientInfoProperties
method returns a list of client info properties that the IBM Data Server Driver for
JDBC and SQL]J supports.

Chapter 3. JDBC application programming 91

When you call DatabaseMetaData.getClientInfoProperties, a result set is returned
that contains the following columns:

* NAME

* MAX_LEN

* DEFAULT_VALUE

* DESCRIPTION

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for Linux, UNIX, and Windows and for
DB2 for i.

Table 17. Client info property values for DB2 for Linux, UNIX, and Windows and for DB2 for i

MAX_LEN
NAME (bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 Empty string The name of the application
that is currently using the
connection. This value is stored
in DB2 special register
CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string The value of the accounting
string from the client
information that is specified for
the connection. This value is
stored in DB2 special register
CURRENT CLIENT_ACCTNG.

ClientHostname 255 The host name of the local host. The host name of the computer
on which the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 255 Empty string The name of the user on whose
behalf the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 4 connectivity.

Table 18. Client info property values for type 4 connectivity to DB2 for z/OS

MAX_LEN
NAME (bytes) DEFAULT_VALUE DESCRIPTION
ApplicationName 255 The string "db2jcc_application". The name of the application that is
currently using the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_APPLNAME.
ClientAccountingInformation 255 A string of the form JCCuersionclient-ip, The value of the accounting string
where version is the driver version, and from the client information that is
client-ip is the IP address of the client. specified for the connection. This

value is stored in DB2 special
register CURRENT
CLIENT_ACCTNG.

92 Application Programming Guide and Reference for Java

Table 18. Client info property values for type 4 connectivity to DB2 for z/OS (continued)

NAME

MAX_LEN
(bytes)

DEFAULT_VALUE

DESCRIPTION

ClientCorrelationToken

255 An LUWID (logical unit of work ID) that

the data server generates.

A unique value that allows you to
correlate your business processes
across the enterprise. This value is
stored in DB2 special register
CURRENT CLIENT_CORR_TOKEN.
The client correlation token value is
available in the accounting
correlation header record of a DB2
trace, and in the -DISPLAY
THREAD command output.

ClientHostname

255 The string "db2jcc_local"

The host name of the computer on
which the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_WRKSTNNAME.

ClientUser

128 The user ID that was specified when the

connection was established.

The name of the user on whose
behalf the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQL]J returns for DB2 for z/OS when the connection uses

type 2 connectivity.

Table 19. Client info property values for type 2 connectivity on DB2 for z/OS

NAME

MAX_LEN
(bytes)

DEFAULT_VALUE

DESCRIPTION

ApplicationName

255

The string
"db2jcc_application”.

The name of the application that is currently
using the connection. This value is stored in
DB?2 special register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255

Empty string.

The value of the accounting string from the
client information that is specified for the
connection. This value is stored in DB2
special register CURRENT
CLIENT_ACCTNG.

ClientCorrelationToken

255

An LUWID (Logical Unit
of Work ID) that the data
server generates.

A unique value that allows you to correlate
your business processes across the
enterprise. This value is stored in DB2
special register CURRENT
CLIENT_CORR_TOKEN. The client
correlation token value is available in the
accounting correlation header record of a
DB2 trace, and in the -DISPLAY THREAD
command output.

ClientHostname

255

The string "RRSAF".

The host name of the computer on which
the application that is using the connection
is running. This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser

128

The user ID that was
specified for the
connection. If no user ID
was specified, the RACF
user ID is used.

The name of the user on whose behalf the
application that is using the connection is
running. This value is stored in DB2 special
register CURRENT CLIENT_USERID.

Chapter 3. JDBC application programming 93

The following table lists the client info property values that the IBM Data Server

Driver for JDBC and SQLJ returns for IBM Informix

Table 20. Client info property values for IBM Informix

MAX_LEN

NAME (bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 20 Empty string The name of the application
that is currently using the
connection.

ClientAccountingInformation 199 Empty string The value of the accounting
string from the client
information that is specified for
the connection.

ClientHostname 20 The host name of the local host. The host name of the computer
on which the application that is
using the connection is
running.

ClientUser 1024 Empty string The name of the user on whose

behalf the application that is
using the connection is
running.

Extended parameter information with the IBM Data Server Driver for

JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ-only methods and constants let you
assign the default value or no value to table columns or ResultSet columns.

The data server must support extended indicators before you can use the methods
that provide extended indicator information in your Java applications. If you call
one of those methods against a data server that does not support extended
indicators, an exception is thrown. Extended parameter information is supported
by DB2 for z/OS Version 10 or later, or DB2 for Linux, UNIX, and Windows

Version 9.7 or later.

The methods that provide extended parameter information are listed in the

following table.

Extended parameter information methods

Purpose

DB2PreparedStatement.setDBDefault,
DB2PreparedStatement.setJccDBDefaultAtName

Sets an input parameter to its default value.

DB2PreparedStatement.setDBUnassigned,

DB2PreparedStatement.setJdccDBUnassignedAtName

Indicates that an input parameter is unassigned. This

action yields the same behavior that would occur if the

input parameter did not appear in the SQL statement

text.

DB2ResultSet.updateDBDefault

Sets a column value in the current ResultSet row to its

default value.

These methods are applicable only for parameter markers that appear in one of the

following places:

e The SET list of an UPDATE statement

* The SET list of a MERGE statement

* The VALUES list of an INSERT statement
e The VALUES list of a MERGE statement

94 Application Programming Guide and Reference for Java

e The source table in a MERGE statement
e The SELECT list of an INSERT from SELECT statement

An SQLException is raised if you use these methods in any other context.

Alternatively, you can use the standard PreparedStatement.setObject or
ResultSet.updateObject methods with IBM Data Server Driver for JDBC and
SQLJ-only constants DB2PreparedStatement.DB_PARAMETER_DEFAULT or
DB2PreparedStatement.DB_PARAMETER_UNASSIGNED to assign the default value or no
value to parameters.

Extended parameter information can simplify application programs that have
several input variables, each of which can send a value or the default value to the
data server, or does not need to appear in the SQL statement. Instead of preparing
separate statement strings for all combinations of variable values, you can prepare
a single statement string. The resulting PreparedStatement object can be used in a
homogeneous batch, whereas multiple different PreparedStatement objects cannot
be used in a homogeneous batch.

Related reference:

[“DB2PreparedStatement interface” on page 435|

Using DB2PreparedStatement methods or constants to
provide extended parameter information

Use DB2PreparedStatement methods or PreparedStatement methods with
DB2PreparedStatement constants to assign default values to target columns or to
assign no values to target columns.

About this task

Follow these steps to send extended client information for a PreparedStatement to
the data server.

Procedure

1. Create a PreparedStatement object.
The SQL statement is a INSERT, UPDATE, or MERGE statement.

2. If you are not using setObject to assign the values, cast the PreparedStatement
object to a com.ibm.db2.jcc.DB2PreparedStatement object.

3. Call one of the following methods:
* If you are not using setObject to assign the value:

— To assign the default value of the target column to the input parameter,
call DB2PreparedStatement.setDBDefault or
DB2PreparedStatement.setJccDBDefaultAtName.

— To mark the input parameter as unassigned, call
DB2PreparedStatement.setDBUnassigned or
DB2PreparedStatement.setJccDBUnassignedAtName.

* If you are using setObject to assign the value:

— To assign the default value of the target column to the input parameter,
call PreparedStatement.setObject with
DB2PreparedStatement.DB_PARAMETER_DEFAULT as the assigned value.

— To mark the input parameter as unassigned, call
PreparedStatement.setObject with
DB2PreparedStatement.DB_PARAMETER_UNASSIGNED as the assigned value.

Chapter 3. JDBC application programming 95

4. Execute the SQL statement.
Example

The following code assigns the default values of the target columns to the third
and fifth parameters in an INSERT statement. The numbers to the right of selected
statements correspond to the previously described steps.

import java.sql.=;
import com.ibm.db2.jcc.*;

Connection conn;

PreparedStatement p = conn.prepareStatement (
"INSERT INTO DEPARTMENT " +

"(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION) " +

"VALUES (?7,7,7,7,2)");

.setString(1, "X00");

.setString(2, "FACILITIES");

.setString (4, "A00");
((com.ibm.db2.jcc.DB2PreparedStatement)p).setDBDefault(3); 2,3
((com.ibm.db2.jcc.DB2PreparedStatement)p).setDBDefault(5);

int uCount = p.executeUpdate(); 4]

T T T

p.close(); // Close PreparedStatement

The following code uses the PreparedStatement.setObject method and
DB2PreparedStatement constants to perform the same function as in the previous
example. The numbers to the right of selected statements correspond to the
previously described steps.

import java.sql.=;
import com.ibm.db2.jcc.*;

Connection conn;

PreparedStatement p = conn.prepareStatement (
"INSERT INTO DEPARTMENT " +
"(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION) " +
"VALUES (?7,7,7,2,72)");
p.setString(1, "X00");
p.setString(2, "FACILITIES");
p.setString(4, "A00");
p.setObject(3, DB2PreparedStatement.DB_PARAMETER DEFAULT); ﬂ
p.setObject(5, DB2PreparedStatement.DB_PARAMETER DEFAULT);
int uCount = p.executeUpdate();

p.close(); // Close PreparedStatement

In these examples, use of the method DB2PreparedStatement.setDBDefault or the
constant DB2PreparedStatement.DB_PARAMETER_DEFAULT simplifies programming of
the INSERT operation. If DB2PreparedStatement.setDBDefault or
DB2PreparedStatement.DB_PARAMETER_DEFAULT is not used, up to 32 different
PreparedStatement objects are necessary to cover all combinations of default and
non-default input values.

Using DB2ResultSet methods or DB2PreparedStatement
constants to provide extended parameter information

Use DB2ResultSet methods or ResultSet methods with DB2PreparedStatement
constants to assign default values to target columns in a DBZResultSet.

96 Application Programming Guide and Reference for Java

About this task
Follow these steps to update a ResultSet with extended client information.

Procedure
1. Create a PreparedStatement object.
The SQL statement is a SELECT statement.

2. Invoke PreparedStatement.setXXX methods to pass values to any input
parameters.

3. Invoke the PreparedStatement.executeQuery method to obtain the result table
from the SELECT statement in a ResultSet object.

4. Position the cursor to the row that you want to update or insert.
5. Update columns in the ResultSet row.
* If you are not using updateObject to update a value:

— To assign the default value to the target column of the ResultSet, cast the
ResultSet to a DB2ResultSet, and call DB2ResultSet.updateDBDefault.

* If you are using updateObject to assign the value:
— To assign the default value to the target column of the ResultSet, call

ResultSet.updateObject with
DB2PreparedStatement.DB_PARAMETER_DEFAULT as the assigned value.

6. Execute ResultSet.updateRow if you are updating an existing row, or
ResultSet.insertRow if you are inserting a new row.

Example

The following code inserts a row into a ResultSet with the default value in the
second column, and does not modify the value in the first column. The numbers to
the right of selected statements correspond to the previously described steps.
import java.sql.=;

import com.ibm.db2.jcc.*;

Connection conn;
PreparedStatement p = conn.prepareStatement (

"SELECT MGRNO, LOCATION " +
"FROM DEPARTMENT");

ResultSet rs = p.executeQuery ();
rs.next ();

rs.moveToInsertRow();

((DB2ResultSet)rs).updateDBDefault (2);

rs.insertRow();

rs.close(); // Close ResultSet
p.close(); // Close PreparedStatement

The following code uses the ResultSet interface with DB2PreparedStatement
constants to perform the same function as in the previous example. The numbers
to the right of selected statements correspond to the previously described steps.

import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
PreparedStatement p = conn.prepareStatement (ﬂ
"SELECT MGRNO, LOCATION " +

"FROM DEPARTMENT");
ResultSet rs = p.executeQuery ();

Chapter 3. JDBC application programming 97

rs.next ();

rs.moveToInsertRow(); E

rs.updateObject (2,
DB2PreparedStatement.DB_PARAMETER_DEFAULT) ;

rs.insertRow(); 6|
rs.close(); // Close ResultSet
p.close(); // Close PreparedStatement

XML data in JDBC applications

In JDBC applications, you can store data in XML columns and retrieve data from
XML columns.

In database tables, the XML built-in data type is used to store XML data in a
column as a structured set of nodes in a tree format.

JDBC applications can send XML data to the data server or retrieve XML data from
the data server in one of the following forms:

* As textual XML data
* As binary XML data, if the data server supports it

In JDBC applications, you can:
* Store an entire XML document in an XML column using setXXX methods.
* Retrieve an entire XML document from an XML column using getXXX methods.

* Retrieve a sequence from a document in an XML column by using the SQL
XMLQUERY function to retrieve the sequence into a serialized sequence in the
database, and then using getXXX methods to retrieve the data into an application
variable.

* Retrieve a sequence from a document in an XML column as a user-defined table
by using the SQL XMLTABLE function to define the result table and retrieve it.
Then use getXXX methods to retrieve the data from the result table into
application variables.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML
columns. Invocations of metadata methods, such as
ResultSetMetaData.getColumnTypeName return the integer value
Jjava.sql.Types.SQLXML for an XML column type.

Related concepts:

["XML data retrieval in JDBC applications” on page 101|

[" XML column updates in JDBC applications”|

Related reference:

[“Data types that map to database data types in Java applications” on page 229

XML column updates in JDBC applications

In a JDBC application, you can update or insert data into XML columns of a table
at a DB2 data server using XML textual data. You can update or insert data into
XML columns of a table using binary XML data (data that is in the Extensible
Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data server
supports binary XML data.

The following table lists the methods and corresponding input data types that you
can use to put data in XML columns.

98 Application Programming Guide and Reference for Java

Table 21. Methods and data types for updating XML columns

Method Input data type
PreparedStatement.setAsciiStream InputStream
PreparedStatement.setBinaryStream InputStream
PreparedStatement.setBlob Blob
PreparedStatement.setBytes byte[]
PreparedStatement.setCharacterStream Reader
PreparedStatement.setClob Clob
PreparedStatement.setObject byte[], Blob, Clob, SQLXML, DB2Xml (deprecated), InputStream,
Reader, String
PreparedStatement.setSQLXM SQLXML
PreparedStatement.setString String
Note:

1. This method requires JDBC 4.0 or later.

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the data source as character
data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent
to the data source as character data, but the data contains encoding information.
The data source handles incompatibilities between internal and external encoding
as follows:

e If the data source is DB2 for Linux, UNIX, and Windows, the database source
generates an error if the external and internal encoding are incompatible, unless
the external and internal encoding are Unicode. If the external and internal
encoding are Unicode, the database source ignores the internal encoding.

* If the database source is DB2 for z/OS, the database source ignores the internal
encoding.

Character data in XML columns is stored in UTF-8 encoding. The database source
handles conversion of the data from its internal or external encoding to UTE-8.

Example: The following example demonstrates inserting data from an SQLXML
object into an XML column. The data is String data, so the database source treats
the data as externally encoded.

public void insertSQLXML()
{
Connection con = DriverManager.getConnection(url);
SQLXML info = con.createSQLXML();
// Create an SQLXML object
PreparedStatement insertStmt = null;
String infoData =
"<customerinfo xmlns=""http://posample.org"" " +
"Cid=""1000"">...</customerinfo>";
info.setString(infoData);
// Populate the SQLXML object
int cid = 1000;
try {

Chapter 3. JDBC application programming 99

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = con.prepareStatement(sqls);
insertStmt.setInt (1, cid);
insertStmt.setSQLXML(2, info);
// Assign the SQLXML object value
// to an input parameter
if (insertStmt.executeUpdate() != 1) {
System.out.printIn("insertSQLXML: No record inserted.");
}
1
catch (IOException ioe) {
joe.printStackTrace();

catch (SQLException sqle) {
System.out.printIn("insertSQLXML: SQL Exception: " +
sqle.getMessage());
System.out.printin("insertSQLXML: SQL State: " +
sqle.getSQLState());
System.out.printIn("insertSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}
}

Example: The following example demonstrates inserting data from a file into an
XML column. The data is inserted as binary data, so the database server honors the
internal encoding.

public void insertBinStream(Connection conn)

{
PreparedStatement insertStmt = null;
String sqls = null;

int cid = 0;
Statement stmt=null;
try {

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File(fn);
insertStmt.setBinaryStream(2,
new FilelnputStream(file), (int)file.length());
if (insertStmt.executeUpdate() != 1) {
System.out.printin("insertBinStream: No record inserted.");

}

1
catch (IOException ioe) {
ioe.printStackTrace();
1
catch (SQLException sqle) {
System.out.printin("insertBinStream: SQL Exception: " +
sqle.getMessage());
System.out.printin("insertBinStream: SQL State: " +
sqle.getSQLState());
System.out.printin("insertBinStream: SQL Error Code: " +
sqle.getErrorCode());

}
}

Example: The following example demonstrates inserting binary XML data from a
file into an XML column.

SQLXML info = conn.createSQLXML();

OutputStream os = info.setBinaryStream ();
FileInputStream fis = new FileInputStream("c7.xm1");
int read;

100 Application Programming Guide and Reference for Java

while ((read = fis.read ()) != -1) {
os.write (read);

}

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;

sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";

insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
insertStmt.setSQLXML(2, info);
insertStmt.executeUpdate();

Related reference:

[“Data types that map to database data types in Java applications” on page 229|

XML data retrieval in JDBC applications
In JDBC applications, you use ResultSet.getXXX or ResultSet.getObject methods

to retrieve data from XML columns.

In a JDBC application, you can retrieve data from XML columns in a DB2 table as

XML textual data. You can retrieve data from XML columns in a table as binary

XML data (data that is in the Extensible Dynamic Binary XML DB2 Client/Server

Binary XML Format), if the data server supports binary XML data.

You can use one of the following techniques to retrieve XML data:
* Use the ResultSet.getSQLXML method to retrieve the data. Then use a

SQLXML.getXXX method to retrieve the data into a compatible output data type.

This technique requires JDBC 4.0 or later.

For example, you can retrieve data by using the SQLXML.getBinaryStream

method or the SQLXML.getSource method.

* Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the

data into a compatible data type.

e Use the ResultSet.getObject method to retrieve the data, and then cast it to the

DB2Xm1 type and assign it to a DB2Xm1 object. Then use a DB2Xm1.getDB2XXX or

DB2Xm1.getDB2Xm1XXX method to retrieve the data into a compatible output data

type.

You need to use this technique if you are not using a version of the IBM Data

Server Driver for JDBC and SQLJ that supports JDBC 4.0.

The following table lists the ResultSet methods and corresponding output data

types for retrieving XML data.

Table 22. ResultSet methods and data types for retrieving XML data

Method Output data type
ResultSet.getAsciiStream InputStream
ResultSet.getBinaryStream InputStream
ResultSet.getBytes byte[]
ResultSet.getCharacterStream Reader
ResultSet.getObject Object
ResultSet.getSQLXML SQLXML
ResultSet.getString String

Chapter 3. JDBC application programming

101

The following table lists the methods that you can call to retrieve data from a
java.sql.SQLXML or a com.ibm.db2.jcc. DB2Xml object, and the corresponding
output data types and type of encoding in the XML declarations.

Table 23. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Sourcdl None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2Xm1BinaryStream targetEncoding
parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding
parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

Note:

1. The class that is returned is specified by the invoker of getSource, but the class must extend
javax.xml.transform.Source.

If the application executes the XMLSERIALIZE function on the data that is to be
returned, after execution of the function, the data has the data type that is specified
in the XMLSERIALIZE function, not the XML data type. Therefore, the driver
handles the data as the specified type and ignores any internal encoding
declarations.

Example: The following example demonstrates retrieving data from an XML
column into an SQLXML object, and then using the SQLXML.getString method to
retrieve the data into a string.

public void fetchToSQLXML(long cid, java.sql.Connection conn)
{
System.out.printin(">> fetchToSQLXML: Get XML data as an SQLXML object " +
"using getSQLXML");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata

// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();

int colType = meta.getColumnType(1);
System.out.printIin("fetchToSQLXML: Column type = " + colType);

102 Application Programming Guide and Reference for Java

while (rs.next()) {
// Retrieve the XML data with getSQLXML.
// Then write it to a string with
// explicit internal I1S0-10646-UCS-2 encoding.
java.sql.SQLXML xml = rs.getSQLXML(1);
System.out.printin (xml.getString());
}
rs.close();
}
catch (SQLException sqle) {
System.out.printin("fetchToSQLXML: SQL Exception: " +
sqle.getMessage());
System.out.printIn("fetchToSQLXML: SQL State: " +
sqle.getSQLState());
System.out.printIn("fetchToSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}

Example: The following example demonstrates retrieving data from an XML

column into an SQLXML object, and then using the SQLXML.getBinaryStream method

to retrieve the data as binary data into an InputStream.

String sql = "SELECT INFO FROM Customer WHERE Cid='1000'";
PreparedStatement pstmt = con.prepareStatement(sql);
ResultSet resultSet = pstmt.executeQuery();

// Get the result XML as a binary stream

SQLXML sqlxml = resultSet.getSQLXML(1);

InputStream binaryStream = sqlxml.getBinaryStream();

Example: The following example demonstrates retrieving data from an XML
column into a String variable.

public void fetchToString(long cid, java.sql.Connection conn)
{
System.out.printin(">> fetchToString: Get XML data " +
"using getString");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata

// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();

int colType = meta.getColumnType(1);
System.out.printin("fetchToString: Column type = " + colType);

while (rs.next()) {
stringDoc = rs.getString(1);
System.out.printin("Document contents:");
System.out.printin(stringDoc);

1
catch (SQLException sqle) {

System.out.printin("fetchToString: SQL Exception: " +
sqle.getMessage());

System.out.printIn("fetchToString: SQL State: " +
sqle.getSQLState());

System.out.printIn("fetchToString: SQL Error Code: " +
sqle.getErrorCode());

Chapter 3. JDBC application programming

103

Example: The following example demonstrates retrieving data from an XML
column into a DB2Xm1 object, and then using the DB2Xm1.getDB2Xm1String method
to retrieve the data into a string with an added XML declaration with an
ISO-10646-UCS-2 encoding specification.

public void fetchToDB2Xm1(long cid, java.sql.Connection conn)
{
System.out.printin(">> fetchToDB2Xml: Get XML data as a DB2XML object " +
"using getObject");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;

selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
int colType = meta.getColumnType(1);
System.out.printIn("fetchToDB2Xml1: Column type = " + colType);
while (rs.next()) {
// Retrieve the XML data with getObject, and cast the object
// as a DB2Xml object. Then write it to a string with
// explicit internal I1S0-10646-UCS-2 encoding.
com.ibm.db2.jcc.DB2Xml xml =
(com.ibm.db2.jcc.DB2Xm1) rs.getObject(1);
System.out.printin (xml.getDB2XmIString());
}
rs.close();
1
catch (SQLException sqle) {
System.out.printin("fetchToDB2Xml1: SQL Exception: " +
sqle.getMessage());
System.out.printin("fetchToDB2Xml: SQL State: " +
sqle.getSQLState());
System.out.printIn("fetchToDB2Xml: SQL Error Code: " +
sqle.getErrorCode());
1

}

Related reference:

[‘Data types that map to database data types in Java applications” on page 229

Invocation of routines with XML parameters in Java

applications

Java applications can call stored procedures at DB2 for Linux, UNIX, and Windows
or DB2 for z/OS data sources that have XML parameters.

For native SQL procedures, XML parameters in the stored procedure definition
have the XML type. For external stored procedures and user-defined functions on
DB2 for Linux, UNIX, and Windows data sources, XML parameters in the routine
definition have the XML AS CLOB type. When you call a stored procedure or
user-defined function that has XML parameters, you need to use a compatible data
type in the invoking statement.

To call a routine with XML input parameters from a JDBC program, use

parameters of the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type. To register
XML output parameters, register the parameters as the java.sql.Types.SQLXML or

104 Application Programming Guide and Reference for Java

com.ibm.db2.jecc.DB2Types. XML type. (The com.ibm.db2.jcc. DB2Xml and
com.ibm.db2.jecc. DB2Types. XML types are deprecated.)

Example: JDBC program that calls a stored procedure that takes three XML
parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This
example requires JDBC 4.0 or later.

java.sql.SQLXML in_xml = xmlvar;

Java.sql.SQLXML out_xml = null;

java.sql.SQLXML inout_xml = xmlvar;
// Declare an input, output, and
// INOUT XML parameter

Connection con;

CallableStatement cstmt;

ResultSet rs;

cstmt = con.prepareCall("CALL SP_xm1(?,7,7)");

// Create a CallableStatement object
cstmt.setObject (1, in_xml); // Set input parameter
cstmt.setObject (3, inout_xml); // Set inout parameter
cstmt.registerQutParameter (2, java.sql.Types.SQLXML);

// Register out and input parameters
cstmt.registerQutParameter (3, java.sql.Types.SQLXML);
cstmt.executeUpdate(); // Call the stored procedure
out_xml = cstmt.getSQLXML(2); // Get the OUT parameter value
inout_xml = cstmt.getSQLXML(3); // Get the INOUT parameter value
System.out.printin("Parameter values from SP_xml call: ");
System.out.printIn("Output parameter value ");
MyUtilities.printString(out_xml.getString());

// Use the SQLXML.getString

// method to convert the out xml

// value to a string for printing.

// Call a user-defined method called

// printString (not shown) to print

// the value.
System.out.printIn("INOUT parameter value ");
MyUtilities.printString(inout_xml.getString());

// Use the SQLXML.getString

// method to convert the inout_xml

// value to a string for printing.

// Call a user-defined method called

// printString (not shown) to print

// the value.

To call a routine with XML parameters from an SQLJ program, use parameters of
the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type.

Example: SQLJ program that calls a stored procedure that takes three XML
parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This
example requires JDBC 4.0 or later.

java.sql.SQLXML in_xml = xmlvar;

java.sql.SQLXML out_xml = null;

Java.sql.SQLXML inout_xml = xmlvar;
// Declare an input, output, and
// INOUT XML parameter

#sq1 [myConnCtx] {CALL SP_xml(:IN in_xml,
:0UT out_xml,
:INOUT inout_xml)};
// Call the stored procedure
System.out.printin("Parameter values from SP_xml call: ");
System.out.printIn("Output parameter value ");
MyUtilities.printString(out_xml.getString());
// Use the SQLXML.getString
// method toconvert the out_xml value

Chapter 3. JDBC application programming 105

// to a string for printing.

// Call a user-defined method called

// printString (not shown) to print

// the value.
System.out.printIn("INOUT parameter value ");
MyUtilities.printString(inout_xml.getString());

// Use the SQLXML.getString

// method to convert the inout_xml

// value to a string for printing.

// Call a user-defined method called

// printString (not shown) to print

// the value.

Binary XML format in Java applications

The IBM Data Server Driver for JDBC and SQL] can send XML data to the data
server or retrieve XML data from the data server as binary XML data (data that is
in the Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format).
The data server must provide support for binary XML data.

The IBM Data Server Driver for JDBC and SQL] presents binary XML data to the
application only through XML object interfaces. The user does not see the data in
the binary XML format.

The format of XML data is transparent to the application. Storage and retrieval of
binary XML data requires version 4.9 or later of the IBM Data Server Driver for
JDBC and SQLJ. If you are using binary XML data in SQL]J applications, you also
need version 4.9 or later of the sqlj4.zip package.

You use the property xmlFormat to control whether the data format for retrieval of
XML data is textual XML format or binary XML format. You set xmlFormat to
XML_FORMAT_BINARY (1) to enable binary XML format. The default is textual
XML format.

For update of data in XML table columns, xmlFormat has no effect. If the input
data is binary XML data, and the data server does not support binary XML data,
the input data is converted to textual XML data. Otherwise, no conversion occurs.

When binary XML data is used, the XML data that is passed to the IBM Data
Server Driver for JDBC and SQLJ cannot refer to external entities, internal entities,
or internal DTDs. External DTDs are supported only if those DTDs were
previously registered in the data source.

There is no setXXX method defined on the Connection interface for the xmlFormat
property. Therefore, to set the xmlFormat value when you use the Connection
interface, you need to specify xmlFormat as a property when you execute the
DriverManager.getConnection method. For example:

properties.put("xmlFormat", "1");
DriverManager.getConnection(url, properties);

Restriction: When you send XML data in binary format to a DB2 for z/OS data
server that supports binary XML data, you cannot use an InputStreamReader object
with a Charset object named UTF-16LE, UTF-8, or UTF-16BE for an XML
document file that contains a byte order mark (BOM). To circumvent this
restriction, take one of the following actions:

* Remove the BOM from the XML instance document in the input file.

e Use an InputStreamReader object with a Charset object named UTF-16 for the
input file.

106 Application Programming Guide and Reference for Java

* Use an InputStream object instead of an InputStreamReader object for the input
file.

Binary XML format is most efficient for cases in which the input or output data is
in a non-textual representation, such as SAX, StAX, or DOM. For example, these
methods retrieve XML data in non-textual representations:

* getSource(SAXSource.class)

* getSource(StAXSource.class)

* getSource(DOMSource.class)

These methods update XML columns with data in non-textual representations:
* setResult(SAXResult.class)
* setResult(StAXResult.class)
* setResult(DOMResult.class)

The SAX representation is the most efficient way to retrieve data that is in the
binary XML format because the data does not undergo extra conversions from
binary format to textual format.

Suppose that you set xmlFormat to XML_FORMAT_BINARY (1). In the following
JDBC example, the IBM Data Server Driver for JDBC and SQL] retrieves data in
the binary XML format, application uses the SAX parser to parse the retrieved
data.

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT XMLCOL FROM XMLTABLE");
ContentHandler handler = new MyContentHandler();
while (rs.next()) {
SQLXML sqlxml = rs.getSQLXML(1);
SAXSource source = sqlxml.getSource(SAXSource.class);
XMLReader reader = source.getXMLReader();
reader.setContentHandler(handler);
reader.parse(source.getInputSource());

The following SQLJ example performs the same actions.

#sql iterator SqlXmlIter(java.sql.SQLXML);
{

SqlXmlIter SQLXMLiter = null;

java.sql.SQLXML outSqglXml = null;

ContentHandler handler = new MyContentHandler();

#sql [ctx] SQLXmlIter = {SELECT XMLCOL FROM XMLTABLE};
#sql {FETCH :Sq1XmlIter INTO :outSqlXml};

while (!SQLXMLIter.endFetch()) {
SAXSource source = outSqlXml.getSource(SAXSource.class);
XMLReader reader = source.getXMLReader();
reader.setContentHandler(handler);
reader.parse(source.getInputSource());
#sql {FETCH :Sq1Xml1Iter INTO :outSqlXml};

}

Java support for XML schema registration and removal

The IBM Data Server Driver for JDBC and SQL]J provides methods that let you
write Java application programs to register and remove XML schemas and their
components.

Chapter 3. JDBC application programming 107

The methods are:

DB2Connection.registerDB2XMLSchema
Registers an XML schema in DB2, using one or more XML schema documents.
There are two forms of this method: one form for XML schema documents that
are input from InputStream objects, and one form for XML schema documents
that are in a String.

DB2Connection.deregisterDB2XMLObject
Removes an XML schema definition from DB2.

DB2Connection.updateDB2XmlSchema
Replaces the XML schema documents in a registered XML schema with the
XML schema documents from another registered XML schema. Optionally
drops the XML schema whose contents are copied. This method is available
only for connections to DB2 for Linux, UNIX, and Windows.

Before you can invoke these methods, the stored procedures that support these
methods must be installed on the DB2 database server.

Example: Registration of an XML schema: The following example demonstrates the
use of registerDB2XmlSchema to register an XML schema in DB2 using a single
XML schema document (customer.xsd) that is read from an input stream. The SQL
schema name for the registered schema is SYSXSR. The xmlSchemaLocations value is
null, so DB2 will not find this XML schema on an invocation of
DSN_XMLVALIDATE that supplies a non-null XML schema location value. No
additional properties are registered.

public static void registerSchema(

Connection con,
String schemaName)
throws SQLException {
// Define the registerDB2Xml1Schema parameters
String[] xmlSchemaNameQualifiers = new String[1];
String[] xml1SchemaNames = new String[1];
String[] xmlSchemalLocations = new String[1];
InputStream[] xml1SchemaDocuments = new InputStream[1];
int[] xmlSchemaDocumentsLengths = new int[1];
java.io.InputStream[] xmlSchemaDocumentsProperties = new InputStream[1];
int[] xmlSchemaDocumentsPropertiesLengths = new int[1];
InputStream xmlSchemaProperties;
int xmlSchemaPropertiesLength;
//Set the parameter values
xmlSchemaLocations[0] = "";
FileInputStream fi = null;
xmlSchemaNameQualifiers[0] = "SYSXSR";
xml1SchemaNames[0] = schemaName;
try {

fi = new FileInputStream("customer.xsd");

xmlSchemaDocuments[0] = new BufferedInputStream(fi);
} catch (FileNotFoundException e) {

e.printStackTrace();

}

try {
xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();
System.out.printIn(xmlSchemaDocumentslLengths[0]);
} catch (IOException el) {
el.printStackTrace();
}

xmlSchemaDocumentsProperties[0] = null;
xmlSchemaDocumentsPropertiesLengths[0] = 0;
xmlSchemaProperties = null;
xmlSchemaPropertiesLength = 0;
DB2Connection ds = (DB2Connection) con;

108 Application Programming Guide and Reference for Java

// Invoke registerDB2XmlSchema

ds.registerDB2Xm1Schema (
xmlSchemaNameQualifiers,
xmlSchemaNames,
xmlSchemalocations,
xmlSchemaDocuments,
xmlSchemaDocumentsLengths,
xmlSchemaDocumentsProperties,
xmlSchemaDocumentsPropertiesLengths,
xmlSchemaProperties,
xmlSchemaPropertiesLength,
false);

}

Example: Removal of an XML schema: The following example demonstrates the use of
deregisterDB2XmlObject to remove an XML schema from DB2. The SQL schema
name for the registered schema is SYSXSR.

public static void deregisterSchema(
Connection con,
String schemaName)
throws SQLException {
// Define and assign values to the deregisterDB2XmlObject parameters
String xmlSchemaNameQualifier = "SYSXSR";
String xmlSchemaName = schemaName;
DB2Connection ds = (DB2Connection) con;
// Invoke deregisterDB2XmlObject
ds.deregisterDB2Xml0bject (
xm1SchemaNameQualifier,
xm1SchemaName) ;

}

Example: Update of an XML schema: The following example applies only to
connections to DB2 for Linux, UNIX, and Windows. It demonstrates the use of
updateDB2XmlSchema to update the contents of an XML schema with the contents
of another XML schema. The schema that is copied is kept in the repository. The
SQL schema name for both registered schemas is SYSXSR.

public static void updateSchema (
Connection con,
String schemaNameTarget,
String schemaNameSource)
throws SQLException {
// Define and assign values to the updateDB2Xml1Schema parameters
String xmlSchemaNameQualifierTarget = "SYSXSR";
String xmlSchemaNameQualifierSource = "SYSXSR";
String xmlSchemaNameTarget = schemaNameTarget;
String xmlSchemaNameSource = schemaNameSource;
boolean dropSourceSchema = false;
DB2Connection ds = (DB2Connection) con;
// Invoke updateDB2Xm1Schema
ds.updateDB2Xm1Schema (
xmlSchemaNameQualifierTarget,
xmlSchemaNameTarget,
xm1SchemaNameQualifierSource,
xm1SchemaNameSource,
dropSourceSchema) ;

Chapter 3. JDBC application programming 109

Inserting data from file reference variables into tables in JDBC
applications

You can use file reference variable objects with IBM Data Server Driver for JDBC
and SQL]J type 2 connectivity on DB2 for z/OS Version 9 or later to stream LOB or
XML input data.

Before you begin

You need to store your LOB or XML input data in HFS files.

About this task

Use of file reference variables eliminates the need to materialize the LOB or XML
data in memory before the data is stored in tables.

Procedure

To use file reference variables to store LOB or XML data in tables, follow these

steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object from an INSERT statement.

The parameter markers in the INSERT statement represent XML or LOB values.
2. Execute constructors for file reference variable objects of the appropriate types.
The following table lists the types of data in the input files and the appropriate

constructors.
Input data type Constructor
BLOB com.ibm.db2.jcc. DB2BlobFileReference
CLOB com.ibm.db2.jcc.DB2ClobFileReference
XML AS BLOB com.ibm.db2.jcc. DB2XmlAsBlobFileReference
XML AS CLOB com.ibm.db2.jcc. DB2XmlAsClobFileReference

The first parameter in each constructor must specify the absolute path name for
an existing HFS file.

3. If you are performing single-row INSERT operations, repeat these steps for
each row that you want to insert:

a. Invoke DB2PreparedStatement.setXXX to pass values to the input variables.
Alternatively, you can use PreparedStatement.setObject methods.

The following table lists the types of data in the input files and the
appropriate DB2PreparedStatement.setXXX methods to use for each data

type.
Input data type DB2PreparedStatement.setXXX method
BLOB setDB2BlobFileReference
CLOB setDB2ClobFileReference
XML AS BLOB setDB2XmlAsBlobFileReference
XML AS CLOB setDB2XmlAsClobFileReference

If you use DB2PreparedStatement methods, you need to cast the
PreparedStatement object that you created in step|ljto a

110 Application Programming Guide and Reference for Java

DB2PreparedStatement object when you execute a

DB2PreparedStatement.setXXX method.

You can assign NULL values to input parameters in any of the following

ways:

» Using DB2PreparedStatement.setXXX methods, with null as the fileRef
parameter value.

* Using PreparedStatement.setObject, with null as the x (second)
parameter value and the appropriate value from
com.ibm.db2.jcc.DB2Types for the target]dbcType (third) parameter value.

¢ Using PreparedStatement.setNull, with the appropriate value from
com.ibm.db2.jcc.DB2Types for the JdbcType (second) parameter value.

b. Invoke the PreparedStatement.execute or

PreparedStatement.executeUpdate method to update the table with the

variable values.

4. If you are performing multi-row INSERT operations, execute these steps:
a. Repeat these steps for every row that you want to insert:

1) Invoke DB2PreparedStatement.setXXX to pass values to the input
variables. Alternatively, you can use PreparedStatement.setObject
methods.

2) Invoke the PreparedStatement.addBatch method after you set the values
for a row of the table.

b. Invoke the PreparedStatement.executeBatch method to update the table
with the variable values.

5. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Examples

The following code inserts a single row into a table. The code inserts values from
CLOB and BLOB file reference variables into CLOB and BLOB columns and a
NULL value into an XML column. The numbers to the right of selected statements
correspond to the previously-described steps.

Connection conn;

PreparedStatement pstmt =
conn.prepareStatement (
"INSERT INTO TESTO2TB(RECID,CLOBCOL,BLOBCOL,XMLCOL) VALUES('003',?,7,?)");
// Create a PreparedStatement object
com.ibm.db2.jcc.DB2CTobFileReference clobFileRef =
new com.ibm.db2.jcc.DB2CTobFileReference("/u/usrt001/jcc/test/TEXT.FILE","Cp0O37");
com.ibm.db2.jcc.DB2BTobFileReference blobFileRef =
new com.ibm.db2.jcc.DB2BTobFileReference("/u/usrt001/jcc/test/BINARY.FILE");
com.ibm.db2.jcc.DB2Xm1AsBlobFileReference xmlAsBlobFileRef =
new com.ibm.db2.jcc.DB2XmIAsBlobFileReference(
"/u/usrt001/jcc/test/XML.FILE");
// Execute constructors for the file reference H
// variable objects
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2CIobFileReference(1,clobFileRef);
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BlobFileReference(2,blobFileRef);
pstmt.setNull(3,com.ibm.db2.jcc.DB2Types.XML_AS BLOB FILE);
// Assign values to the CLOB and BLOB parameters. [EE}
// Assign a null value to the XML parameter.
int numUpd = pstmt.executeUpdate();
// Perform the update E
pstmt.close(); // Close the PreparedStatement object

Chapter 3. JDBC application programming

111

The following code uses multi-row INSERT to insert two rows in a table. The code
inserts values from XML AS CLOB and XML AS BLOB file reference variables into
XML columns. The numbers to the right of selected statements correspond to the
previously-described steps.

Connection conn;

PreparedStatement pstmt =
conn.prepareStatement (
"INSERT INTO TESTO3TB(RECID,XMLCLOBCOL,XMLBLOBCOL) VALUES('003',?,?2)");
// Create a PreparedStatement object
com.ibm.db2.jcc.DB2Xm1AsClobFileReference xmlAsClobFileRefl =
new com.ibm.db2.jcc.DB2Xm1AsClobFileReference("/u/usrt001/jcc/test/XMLCLOB1.FILE","Cp037");
com.ibm.db2.jcc.DB2Xm1AsBlobFileReference xmlAsBlobFileRefl =
new com.ibm.db2.jcc.DB2Xm1AsBlobFileReference("/u/usrt001/jcc/test/XMLBLOB1.FILE");
com.ibm.db2.jcc.DB2Xm1AsClobFileReference xmlAsClobFileRef2 =
new com.ibm.db2.jcc.DB2Xm1AsClobFileReference("/u/usrt001/jcc/test/XMLCLOB2.FILE","Cp037");
com.ibm.db2.jcc.DB2Xm1AsBTobFileReference xmlAsBlobFileRef2 =
new com.ibm.db2.jcc.DB2Xm1AsBTobFileReference("/u/usrt001/jcc/test/XMLBLOB2.FILE");
// Execute constructors for the file reference
// variable objects
(com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2C1obFileReference(1,xmlAsClobFileRefl);
(com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BTobFileReference(2,xmlAsBlobFileRefl);
// Assign first set of values to the
// XML parameters
pstmt.addBatch(); // Add the first input parameters to the batch [[EXEN
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2CTobFileReference(1,xmlAsClobFileRef2);
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BlobFileReference(2,xmlAsBlobFileRef2);
// Assign second set of values to the
// XML parameters

pstmt.addBatch(); // Add the second input parameters to the batch [[EXEN
int [] numUpd = pstmt.executeBatch();

// Perform the update E
pstmt.close(); // Close the PreparedStatement object

Transaction control in JDBC applications

In JDBC applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

IBM Data Server Driver for JDBC and SQLJ isolation levels

The IBM Data Server Driver for JDBC and SQL] supports a number of isolation
levels, which correspond to database server isolation levels.

JDBC isolation levels can be set for a unit of work within a JDBC program, using
the Connection.setTransactionIsolation method. The default isolation level can
be set with the defaultlsolationLevel property.

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their DB2 database server
equivalents.

Table 24. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level
java.sql.Connection. TRANSACTION_SERIALIZABLE Repeatable read
java.sql.Connection. TRANSACTION_REPEATABLE_READ Read stability
java.sql.Connection. TRANSACTION_READ_COMMITTED Cursor stability
java.sql.Connection. TRANSACTION_READ_UNCOMMITTED Uncommitted read

112 Application Programming Guide and Reference for Java

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their IBM Informix equivalents.

Table 25. Equivalent JDBC and IBM Informix isolation levels

JDBC value IBM Informix isolation level
java.sql.Connection. TRANSACTION_SERIALIZABLE Repeatable read
java.sql.Connection. TRANSACTION_REPEATABLE_READ Repeatable read
java.sql.Connection. TRANSACTION_READ_COMMITTED Committed read
java.sql.Connection. TRANSACTION_READ_UNCOMMITTED Dirty read

com.ibm.db2 jec. DB2Connection. TRANSACTION_IDS_CURSOR_STABILITY IBM Informix cursor stability
com.ibm.db2 jcc.DB2Connection. TRANSACTION_IDS_LAST_COMMITTED Committed read, last committed

Related concepts:

[/TDBC connection objects” on page 26|

Committing or rolling back JDBC transactions

In JDBC, to commit or roll back transactions explicitly, use the commit or rollback
methods.

About this task

For example:
Connection con;

con.commit();

If autocommit mode is on, the database manager performs a commit operation
after every SQL statement completes. To set autocommit mode on, invoke the
Connection.setAutoCommit (true) method. To set autocommit mode off, invoke the
Connection.setAutoCommit(false) method. To determine whether autocommit
mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the
setAutoCommit (true) method.

When you change the autocommit state, the database manager executes a commit
operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed or global transaction, the
associated application cannot issue the commit or rollback methods.

While a connection is participating in a global transaction, the associated
application cannot invoke the setAutoCommit (true) method.

Related concepts:

[“Savepoints in JDBC applications” on page 80|
Related tasks:
[“Disconnecting from data sources in JDBC applications” on page 124

[“Making batch updates in JDBC applications” on page 36|

Default JDBC autocommit modes

The default autocommit mode depends on the data source to which the JDBC
application connects.

Chapter 3. JDBC application programming 113

Autocommit default for DB2 data sources
For connections to DB2 data sources, the default autocommit mode is true.
Autocommit default for IBM Informix data sources

For connections to IBM Informix data sources, the default autocommit mode
depends on the type of data source. The following table shows the defaults.

Table 26. Default autocommit modes for IBM Informix data sources

Default autocommit mode for local ~ Default autocommit mode for global

Type of data source transactions transactions
ANSI-compliant database true false
Non-ANSI-compliant database false not applicable
without logging

Non-ANSI-compliant database with ~ true false

logging

Exceptions and warnings under the IBM Data Server Driver for JDBC

and SQLJ

In JDBC applications, SQL errors throw exceptions, which you handle using
try/catch blocks. SQL warnings do not throw exceptions, so you need to invoke
methods to check whether warnings occurred after you execute SQL statements.

The IBM Data Server Driver for JDBC and SQL] provides the following classes and
interfaces, which provide information about errors and warnings.

SQLException

The SQLException class for handling errors. All JDBC methods throw an instance of

SQLException when an error occurs during their execution. According to the JDBC

specification, an SQLException object contains the following information:

* An int value that contains an error code. SQLException.getErrorCode retrieves
this value.

* A String object that contains the SQLSTATE, or null. SQLException.getSQLState
retrieves this value.

* A String object that contains a description of the error, or null.
SQLException.getMessage retrieves this value.

* A pointer to the next SQLException, or null. SQLException.getNextException
retrieves this value.

When a JDBC method throws a single SQLException, that SQLException might be
caused by an underlying Java exception that occurred when the IBM Data Server
Driver for JDBC and SQL] processed the method. In this case, the SQLException
wraps the underlying exception, and you can use the SQLException.getCause
method to retrieve information about the error.

DB2Diagnosable

The IBM Data Server Driver for JDBC and SQLJ-only interface
com.ibm.db2.jcc.DB2Diagnosable extends the SQLException class. The
DB2Diagnosable interface gives you more information about errors that occur when

114 Application Programming Guide and Reference for Java

the data source is accessed. If the JDBC driver detects an error, DB2Diagnosable
gives you the same information as the standard SQLException class. However, if
the database server detects the error, DB2Diagnosable adds the following methods,
which give you additional information about the error:

getSqlca
Returns an DB2Sqlca object with the following information:
* An SQL error code
* The SQLERRMC values
* The SQLERRP value
* The SQLERRD values
* The SQLWARN values
* The SQLSTATE

getThrowable
Returns a java.lang.Throwable object that caused the SQLException, or null, if
no such object exists.

printTrace
Prints diagnostic information.

SQLEXxception subclasses

If you are using JDBC 4.0 or later, you can obtain more specific information than
an SQLException provides by catching the following exception classes:

* SQLNonTransientException

An SQLNonTransientException is thrown when an SQL operation that failed
previously cannot succeed when the operation is retried, unless some corrective
action is taken. The SQLNonTransientException class has these subclasses:

— SQLFeatureNotSupportedException

— SQLNonTransientConnectionException

— SQLDataException

— SQLIntegrityConstraintViolationException

— SQLInvalidAuthorizationSpecException

— SQLSyntaxException

* SQLTransientException

An SQLTransientException is thrown when an SQL operation that failed
previously might succeed when the operation is retried, without intervention
from the application. A connection is still valid after an SQLTransientException
is thrown. The SQLTransientException class has these subclasses:
— SQLTransientConnectionException
— SQLTransientRol1backException
— SQLTimeoutException

* SQLRecoverableException
An SQLRecoverableException is thrown when an operation that failed previously
might succeed if the application performs some recovery steps, and retries the

transaction. A connection is no longer valid after an SQLRecoverableException is
thrown.

* SQLClientInfoException

A SQLClientInfoException is thrown by the Connection.setClientInfo method
when one or more client properties cannot be set. The SQLCTientInfoException
indicates which properties cannot be set.

Chapter 3. JDBC application programming 115

BatchUpdateException

A BatchUpdateException object contains the following items about an error that

occurs during execution of a batch of SQL statements:

* A String object that contains a description of the error, or null.

* A String object that contains the SQLSTATE for the failing SQL statement, or
null

* An integer value that contains the error code, or zero

* An integer array of update counts for SQL statements in the batch, or nulT

* A pointer to an SQLException object, or null

One BatchUpdateException is thrown for the entire batch. At least one
SQLException object is chained to the BatchUpdateException object. The
SQLException objects are chained in the same order as the corresponding
statements were added to the batch. To help you match SQLException objects to
statements in the batch, the error description field for each SQLException object
begins with this string:

Error for batch element #n:

n is the number of the statement in the batch.

SQL warnings during batch execution do not throw BatchUpdateExceptions. To
obtain information about warnings, use the Statement.getWarnings method on the
object on which you ran the executeBatch method. You can then retrieve an error
description, SQLSTATE, and error code for each SQLWarning object.

SQLWarning

The IBM Data Server Driver for JDBC and SQL] accumulates warnings when SQL
statements return positive SQLCODEs, and when SQL statements return 0
SQLCODEs with non-zero SQLSTATEs.

Calling getWarnings retrieves an SQLWarning object.

Important: When a call to Statement.executeUpdate or
PreparedStatement.executeUpdate affects no rows, the IBM Data Server Driver for
JDBC and SQL] generates an SQLWarning with error code +100.

When a call to ResultSet.next returns no rows, the IBM Data Server Driver for
JDBC and SQL]J does not generate an SQLWarning.

A generic SQLWarning object contains the following information:

e A String object that contains a description of the warning, or null
* A String object that contains the SQLSTATE, or null

* An int value that contains an error code

* A pointer to the next SQLWarning, or null

Under the IBM Data Server Driver for JDBC and SQLJ, like an SQLException object,
an SQLWarning object can also contain DB2-specific information. The DB2-specific
information for an SQLWarning object is the same as the DB2-specific information
for an SQLException object.

116 Application Programming Guide and Reference for Java

Handling an SQLException under the IBM Data Server Driver
for JDBC and SQLJ

As in all Java programs, error handling for JDBC applications is done using
try/catch blocks. Methods throw exceptions when an error occurs, and the code in
the catch block handles those exceptions.

Procedure

The basic steps for handling an SQLException in a JDBC program that runs under
the IBM Data Server Driver for JDBC and SQL]J are:

1.

Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and
the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to
them, or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;

import com.ibm.db2.jcc.DB2Sqlca;

Optional: During a connection to a data server, set the
retrieveMessagesFromServerOnGetMessage property to true if you want full
message text from an SQLException.getMessage call.

Optional: During a IBM Data Server Driver for JDBC and SQLJ type 2
connectivity connection to a DB2 for z/OS data source, set the
extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241) if you
want extended diagnostic information similar to the information that is
provided by the SQL GET DIAGNOSTICS statement from an
SQLException.getMessage call.

Put code that can generate an SQLException in a try block.

In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.

b. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the
com.ibm.db2.jcc.DB2Statement.getIDSSQLStatementOffSet method to
determine which columns have syntax errors.

DB2Statement.getIDSSQLStatement0ffSet returns the offset into the SQL
statement of the first syntax error.

c. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the SQLException.getCause method to retrieve any ISAM
error messages.

1) If the Throwable that is returned by SQLException.getCause is not null,
perform one of the following sets of steps:

¢ Issue SQLException.printStackTrace to print an error message that
includes the ISAM error message text. The ISAM error message text is
preceded by the string "Caused by:".

* Retrieve the error code and message text for the ISAM message:

a) Test whether the Throwable is an instance of an SQLException. If
so, retrieve the SQL error code from that SQLException.

b) Execute the Throwable.getMessage method to retrieve the text of
the ISAM message.

d. Check whether any IBM Data Server Driver for JDBC and SQLJ-only
information exists by testing whether the SQLException is an instance of
DB2Diagnosable. If so:

1) Cast the object to a DB2Diagnosable object.

Chapter 3. JDBC application programming 117

2) Optional: Invoke the DB2Diagnosable.printTrace method to write all
SQLException information to a java.io.PrintWriter object.

3) Invoke the DB2Diagnosable.getThrowable method to determine
whether an underlying java.lang.Throwable caused the SQLException.

4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca
object.

5) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code
value.

6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that
contains all SQLERRMC values, or invoke the
DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC
values in an array.

7) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP
value.

8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD
values in an array.

9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN
values in an array.

10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE
value.

11) Invoke the DB2Sqlca.getMessage method to retrieve error message text
from the data source.

e. Invoke the SQLException.getNextException method to retrieve the next
SQLException.

Example
The following code demonstrates how to obtain IBM Data Server Driver for JDBC
and SQL]J-specific information from an SQLException that is provided with the IBM

Data Server Driver for JDBC and SQL]J. The numbers to the right of selected
statements correspond to the previously-described steps.

Figure 20. Processing an SQLException under the IBM Data Server Driver for JDBC and

SQLJ
import java.sql.=; // Import JDBC API package
import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2
import com.ibm.db2.jcc.DB2Sqlca; // SQLException support
java.io.PrintWriter printWriter; // For dumping all SQLException

// information
String url = "jdbc:db2://myhost:9999/myDB:" + 2]

"retrieveMessagesFromServerOnGetMessage=true;";
// Set properties to retrieve full message
// text
String user = "db2adm";
String password = "db2adm";
java.sql.Connection con =
java.sql.DriverManager.getConnection (url, user, password)
// Connect to a DB2 for z/0S data source

try { 4]
// Code that could generate SQLExceptions

} catch(SQLException sqle) {
while(sqle != null) { // Check whether there are more |HY

118 Application Programming Guide and Reference for Java

// SQLExceptions to process

//=====> Optional IBM Data Server Driver
// error processing
if (sqle instanceof DB2Diagnosable)

for JDBC and SQLJ-only

{ El

// Check if IBM Data Server Driver for JDBC and SQLJ-only

// information exists

com.ibm.db2.jcc.DB2Diagnosable diagnosable =

(com.ibm.db2.jcc.DB2Diagnosable)sqle;
diagnosable.printTrace (printWriter, "");

java.lang.Throwable throwable =
diagnosable.getThrowable();
if (throwable != null) {

5d1
5d2

// Extract java.lang.Throwable information
// such as message or stack trace.

} .
DB2Sqlca sqlca =

if (sqlca !'= null) {
int sqlCode =
String sqlErrmc =

String[] sqlErrmcTokens =

String sqlErrp =
int[] sqlErrd =

char[] sqlWarn =

String sqlState =

String errMessage =

System.

System.
System.
System.
If (sqlErrmcTokens != null) {
for (int i=0;
System.err.printin ("
1
}

System.err.printin ("SQLERRP:

System.err.printin (

"SQLERRD(1): " + sqlErrd[0]
"SQLERRD(2): " + sqlErrd[1]
"SQLERRD(3): " + sqlErrd[2]
"SQLERRD(4): " + sqlErrd[3]
"SQLERRD(5): " + sqlErrd[4]
"SQLERRD(6): " + sqlErrd[5]

System.err. pr1nt1n (

"SQLWARN1: " + sqlWarn[0] +
"SQLWARNZ2: " + sqlWarn[1] +
"SQLWARN3: " + sqglWarn[2] +
"SQLWARN4: " + sqlWarn[3] +
"SQLWARN5: " + sqlWarn[4] +
"SQLWARN6: " + sqlWarn[5] +
"SQLWARN7: " + sqlWarn[6] +
"SQLWARN8: " + sqglWarn[7] +
"SQLWARN9: " + sqglWarn[8] +
"SQLWARNA: " + sqlWarn[9]);

System.err.printin ("SQLSTATE:

diagnosable.getSqlca();

sqlca.getSqlCode();
sqlca.getSqlErrmc();

sqlca.getSqlErrd();
sqlca.getSqlWarn();
sqlca.getSqlState();

sqlca.getMessage();

err.println ("Server error message:

err.println ("-----=---
err.printin ("Error code:
err.printin ("SQLERRMC:

i< sqlErrmcTokens.length;
token " + i + ":

// Get DB2Sqlca object
// Check that DB2Sqlca is not nu
// Get the SQL error code

iy

1

// Get the entire SQLERRMC

sqlca.getSqlErrmcTokens () ;

// You can also retrieve the
// individual SQLERRMC tokens

sqlca.getSqlErrp(); 5d7

// Get the SQLERRP
// Get SQLERRD fields

// Get SQLWARN fields

o1
o
=
(-}

// Get SQLSTATE

ol
o
(=
(=N

// Get error message

" + errMessage);

------ SQLCA
" + sqlCode);

" + sqlErrmc);

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
~
we

i+4) {

"+ sqlErrp);

Il\nll
||\n||
Il\nll

+
+
+
+ ||\n||
+

+ + + + +

Il\nll

Il\nll
Il\nll
Il\nll
Il\nll
Il\nll
Il\nll
Il\nll
Il\nll
Il\nll

+ 4+ + o+ + o+

" + sqlState);
// portion of SQLException

Chapter 3. JDBC application programming

" + sqlErrmcTokens[i]);

119

}
sqle=sqle.getNextException(); // Retrieve next SQLException m

}
}

Related tasks:
“Handling an SQL.Warning under the IBM Data Server Driver for JDBC and SQLJ”|
“Handling SQL warnings in an SQL]J application” on page 185|

“Handling SQL errors in an SQLJ application” on page 185|

Related reference:

“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on pagé|
485

Handling an SQLWarning under the IBM Data Server Driver for
JDBC and SQLJ

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated.

Procedure

The basic steps for retrieving SQL warning information are:

1. Optional: During connection to the database server, set properties that affect
SQLWarning objects.

If you want full message text from a data server when you execute
SQLWarning.getMessage calls, set the retrieveMessagesFromServerOnGetMessage
property to true.

If you are using IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
to a DB2 for z/OS data source, and you want extended diagnostic information
that is similar to the information that is provided by the SQL GET
DIAGNOSTICS statement when you execute SQLWarning.getMessage calls, set
the extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241).

2. Immediately after invoking a method that connects to a database server or
executes an SQL statement, invoke the getWarnings method to retrieve an
SQLWarning object.

3. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning
description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE
value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code
value.

e. If you want DB2-specific warning information, perform the same steps that
you perform to get DB2-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next
SQLWarning.

120 Application Programming Guide and Reference for Java

Example

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

String url = "jdbc:db2://myhost:9999/myDB:" +
"retrieveMessagesFromServerOnGetMessage=true;";
// Set properties to retrieve full message
/] text
String user = "db2adm";
String password = "db2adm";
java.sql.Connection con =
java.sql.DriverManager.getConnection (url, user, password)
// Connect to a DB2 for z/0S data source
Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");
// Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated
while (sqlwarn != null) { // While there are warnings, get and
// print warning information
System.out.printin ("Warning description: " + sqlwarn.getMessage()); 3b
System.out.printin ("SQLSTATE: " + sqlwarn.getSQLState()); 3c
System.out.printin ("Error code: " + sqglwarn.getErrorCode()); 3d
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning 3f

}
Figure 21. Example of processing an SQLWarning

Retrieving information from a BatchUpdateException

When an error occurs during execution of a statement in a batch, processing
continues. However, executeBatch throws a BatchUpdateException.

Procedure

To retrieve information from the BatchUpdateException, follow these steps:

1. Use the BatchUpdateException.getUpdateCounts method to determine the
number of rows that each SQL statement in the batch updated before the
exception was thrown.

getUpdateCount returns an array with an element for each statement in the
batch. An element has one of the following values:
n The number of rows that the statement updated.

Statement.SUCCESS_NO_INFO
This value is returned if the number of updated rows cannot be
determined. The number of updated rows cannot be determined if the
following conditions are true:

* The application is connected to a subsystem that is in DB2 for z/OS
Version 8 new-function mode, or later.

* The application is using Version 3.1 or later of the IBM Data Server
Driver for JDBC and SQL]J.

* The IBM Data Server Driver for JDBC and SQLJ uses multi-row
INSERT operations to execute batch updates.

Chapter 3. JDBC application programming 121

Statement. EXECUTE_FAILED
This value is returned if the statement did not execute successfully.

2. If the batched statement can return automatically generated keys:

a. Cast the BatchUpdateException to a
com.ibm.db2.jcc.DBBatchUpdateException.

b. Call the DBBatchUpdateException.getDBGeneratedKeys method to retrieve an
array of ResultSet objects that contains the automatically generated keys for
each execution of the batched SQL statement.

c. Test whether each ResultSet in the array is null.
Each ResultSet contains:

* If the ResultSet is not null, it contains the automatically generated keys
for an execution of the batched SQL statement.

e If the ResultSet is null, execution of the batched statement failed.

3. Use SQLException methods getMessage, getSQLState, and getErrorCode to
retrieve the description of the error, the SQLSTATE, and the error code for the
first error.

4. Use the BatchUpdateException.getNextException method to get a chained
SQLException.

5. In a loop, execute the getMessage, getSQLState, getErrorCode, and
getNextException method calls to obtain information about an SQLException
and get the next SQLException.

Example

The following code fragment demonstrates how to obtain the fields of a
BatchUpdateException and the chained SQLException objects for a batched
statement that returns automatically generated keys. The example assumes that
there is only one column in the automatically generated key, and that there is
always exactly one key value, whose data type is numeric. The numbers to the
right of selected statements correspond to the previously-described steps.
try {

// Batch updates
} catch(BatchUpdateException buex) {

System.err.printin("Contents of BatchUpdateException:");
System.err.printin(" Update counts: ");

int [] updateCounts = buex.getUpdateCounts(); 1]
for (int i = 0; i < updateCounts.length; i++) {
System.err.printin(" Statement " + i + ":" + updateCounts[i]);

1

ResultSet[] resultList =
((DBBatchUpdateException)buex).getDBGeneratedKeys(); 2|

for (i = 0; i < resultList.length; i++)

if (resultList[i] == null)
continue; // Skip the ResultSet for which there was a failure
else {
rs.next();
java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value
System.out.printin("Automatically generated key value = " + idColVar);
}

1

System.err.printin(" Message: " + buex.getMessage());
System.err.printin(" SQLSTATE: " + buex.getSQLState());
System.err.printin(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException();

while (ex != null) {

122 Application Programming Guide and Reference for Java

System.err.printIn("SQL exception:");
System.err.printin(" Message: " + ex.getMessage());
System.err.printin(" SQLSTATE: " + ex.getSQLState());
System.err.printin(" Error code: " + ex.getErrorCode());
ex = ex.getNextException();
1
1

Related tasks:
[“Making batch updates in JDBC applications” on page 36|

Memory use for IBM Data Server Driver for IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for z/0S

In general, applications that use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity require more memory than applications that use IBM Data Server
Driver for JDBC and SQL]J type 4 connectivity.

With IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, an
application receives data from the DB2 database server in network packets, and
receives only the data that is contained in a particular row and column of a table.

Applications that run under IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS generally require more memory. IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity has a direct, native interface to DB2
for z/OS. For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, the
driver must provide memory in which DB2 for z/OS writes data. Because the
amount of data that is needed can vary from row to row, and the driver has no
information about how much memory is needed for each row, the driver must
allocate the maximum amount of memory that any row might need. This value is
determined from DESCRIBE information on the SELECT statement that generates
the result table. For example, when an application that uses IBM Data Server
Driver for JDBC and SQL]J type 2 connectivity selects a column that is defined as
VARCHAR(32000), the driver must allocate 32000 bytes for each row of the result
table.

The extra memory requirements can be particularly great for retrieval of LOB
columns, which can be defined with lengths of up to 2 GB, or for CAST
expressions that cast values to LOB types with large length attributes.

In general, even when you use a 64-bit JVM, all native connectivity to DB2 for
z/0S is below the bar, with 32-bit addressing limits. Although the maximum size
of any row is defined as approximately 2 GB, the practical maximum amount of
available memory for use by IBM Data Server Driver for JDBC and SQLJ type 2
connectivity is generally significantly less. However, if the IBM Data Server Driver
for JDBC and SQLJ can use limited block fetch to retrieve the data for a query or
for a stored procedure result set, the data can be passed to the driver using full
64-bit addressing.

Two ways to alleviate excess memory use for LOB retrieval and manipulation are
to use progressive streaming or LOB locators. You enable progressive streaming or
LOB locator use by setting the progressiveStreaming property or the
fullyMaterializeLobData property.

Chapter 3. JDBC application programming 123

Related concepts:
“LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ”|

on page 63|

Related reference:
[“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Disconnecting from data sources in JDBC applications

When you have finished with a connection to a data source, it is essential that you
close the connection to the data source. Doing this releases the Connection object's
database and JDBC resources immediately.

Procedure

To close the connection to the data source, use the close method.
For example:

Connection con;
con.close();

For a connection to a DB2 data source, if autocommit mode is not on, the
connection needs to be on a unit-of-work boundary before you close the
connection.

For a connection to an IBM Informix database, if the database supports logging,
and autocommit mode is not on, the connection needs to be on a unit-of-work
boundary before you close the connection.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/0S, when you close the connection to a data source, the driver issues an implicit
rollback to ensure consistency of the underlying RRSAF thread before thread
termination.

Related concepts:

[“How JDBC applications connect to a data source” on page 13|

124 Application Programming Guide and Reference for Java

Chapter 4. SQLJ application programming

Writing an SQLJ application has much in common with writing an SQL application

in any other language.

In general, you need to do the following things:

* Import the Java packages that contain SQLJ and JDBC methods.

¢ Declare variables for sending data to or retrieving data from DB2 tables.

* Connect to a data source.

e Execute SQL statements.

¢ Handle SQL errors and warnings.
* Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks, and the order in which you

execute those tasks, is somewhat different.

Example of a simple SQLJ application

A simple SQLJ application demonstrates the basic elements that JDBC applications

need to include.

Figure 22. Simple SQLJ application

import sqlj.runtime.x*;
import java.sql.=;

#sql context EzSqljCtx;
#sql iterator EzSqljNamelter (String LASTNAME);

public class EzSqlj {

public static void main(String args[])
throws SQLException

{
EzSq1jCtx ctx = null;
String URLprefix = "jdbc:db2:";
String url;
url = new String(URLprefix + args[0]);

=

4a

// Location name is an input parameter

String hvmgr="000010";

String hvdeptno="A00";

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (Exception e)

{

throw new SQLException("Error in EzSqlj: Could not load the driver");

try
{

System.out.printin("About to connect using url: " + url);

Connection con® = DriverManager.getConnection(url);

// Create a JDBC Connection

con0.setAutoCommit(false); // set autocommit OFF

ctx = new EzSql1jCtx(con@);

try
{

© Copyright IBM Corp. 1998, 2013

125

EzSqljNamelter iter;
int count=0;

#sql [ctx] iter =
{SELECT LASTNAME FROM EMPLOYEE};
// Create result table of the SELECT
while (iter.next()) {
System.out.printIn(iter.LASTNAME());
// Retrieve rows from result table
count++;

}

System.out.printin("Retrieved " + count + " rows of data");

iter.close(); // Close the iterator
}
catch(SQLException e) B
{
System.out.printin ("*%%% SELECT SQLException...");
while(e!=null) {
System.out.printin ("Error msg: " + e.getMessage());
System.out.printin ("SQLSTATE: " + e.getSQLState());
System.out.printin ("Error code: " + e.getErrorCode());
e = e.getNextException(); // Check for chained exceptions
1
}
catch(Exception e)
{
System.out.printIn("*x++* NON-SQL exception =" + e);
e.printStackTrace();
1
try
{
#sql [ctx] 4d]|
{UPDATE DEPARTMENT SET MGRNO=:hvmgr
WHERE DEPTNO=:hvdeptno}; // Update data for one department
#sql [ctx] {COMMIT}; // Commit the update
catch(SQLException e)
{
System.out.printin ("x%%* UPDATE SQLException...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +
e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();
1
catch(Exception e)
{
System.out.printIn("*xx* NON-SQL exception =" + e);
e.printStackTrace();
1
ctx.close();

}
catch(SQLException e)

{
System.out.printin ("##% SQLException ...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +
e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();
}

catch(Exception e)

System.out.println ("xx*x NON-SQL exception = " + e);
e.printStackTrace();
}

}

Notes to [Figure 22 on page 125

126 Application Programming Guide and Reference for Java

Note

3a, 3b, 3¢,
and 3d

4a , 4b, 4c,
and 4d

Description

These statements import the java.sql package, which contains the JDBC core
API, and the sql1j.runtime package, which contains the SQLJ API. For
information on other packages or classes that you might need to access, see
"Java packages for SQL]J support".

String variables hvmgr and hvdeptno are host identifiers, which are equivalent
to DB2 host variables. See "Variables in SQL]J applications" for more
information.

These statements demonstrate how to connect to a data source using one of the
three available techniques. See "Connecting to a data source using SQL]J" for
more details.

Step 3b (loading the JDBC driver) is not necessary if you use JDBC 4.0 or later.
These statements demonstrate how to execute SQL statements in SQLJ.
Statement 4a demonstrates the SQL] equivalent of declaring an SQL cursor.
Statements 4b and 4c show one way of doing the SQL]J equivalent of executing
an SQL OPEN CURSOR and SQL FETCHes. Statement 4d shows how to do the
SQLJ equivalent of performing an SQL UPDATE. For more information, see
"SQL statements in an SQLJ application”.

This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling
SQL errors in an SQL]J application". For more information on handling SQL
warnings, see "Handling SQL warnings in an SQL]J application”.

This is an example of a comment. For rules on including comments in SQL]J
programs, see "Comments in an SQL]J application".

This statement closes the connection to the data source. See "Closing the
connection to the data source in an SQL]J application".

Connecting to a data source using SQLJ

In an SQLJ application, as in any other DB2 application, you must be connected to
a data source before you can execute SQL statements.

About this task

You can use one of six techniques to connect to a data source in an SQL] program.
Two use the JDBC DriverManager interface, two use the JDBC DataSource interface,
one uses a previously created connection context, and one uses the default

connection.

Related concepts:

[‘How JDBC applications connect to a data source” on page 13|

SQLJ connection technique 1: JDBC DriverManager interface

SQLJ connection technique 1 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

Procedure

To use SQLJ connection technique 1, follow these steps:

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

Chapter 4. SQL] application programming 127

2. Load a JDBC driver by invoking the Class.forName method.
* Invoke Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");
This step is unnecessary if you use the JDBC 4.0 driver or later.

3. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, String user,
String password, boolean autocommit);
connection-context-class connection-context-object=
new connection-context-class(String url, Properties info,
boolean autocommit);

The meanings of the parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

info
Specifies an object of type java.util.Properties that contains a set of
driver properties for the connection. For the IBM Data Server Driver for
JDBC and SQLJ, you can specify any of the properties listed in "Properties
for the IBM Data Server Driver for JDBC and SQLJ".

autocommit
Specifies whether you want the database manager to issue a COMMIT after
every statement. Possible values are true or false. If you specify false,
you need to do explicit commit operations.

Example
The following code uses connection technique 1 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

128 Application Programming Guide and Reference for Java

#sql context Ctx; // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

1
catch (ClassNotFoundException e) {
e.printStackTrace();

}

Ctx myConnCtx=
new Ctx("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object myConnCtx

// for the connection to NEWYORK
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 23. Using connection technique 1 to connect to a data source

SQLJ connection technique 2: JDBC DriverManager interface

SQLJ connection technique 2 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

Procedure

To use SQLJ connection technique 2, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.
* Invoke Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");
This step is unnecessary if you use the JDBC 4.0 driver or later.
3. Invoke the JDBC DriverManager.getConnection method.
Doing this creates a JDBC connection object for the connection to the data
source. You can use any of the forms of getConnection that are specified in

"Connect to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQL]J".

The meanings of the url, user, and password parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

Chapter 4. SQL] application programming 129

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

4. Invoke the constructor for the connection context class that you created in step
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step

Example

The following code uses connection technique 2 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

#sq1 context Ctx; // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

}

catch (ClassNotFoundException e) {
e.printStackTrace();

1

Connection jdbccon=
DriverManager.getConnection("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password);
// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx myConnCtx=new Ctx(jdbccon);
// Create connection context object myConnCtx
// for the connection to NEWYORK
#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 24. Using connection technique 2 to connect to a data source

SQLJ connection technique 3: JDBC DataSource interface

SQLJ connection technique 3 uses the JDBC DataSource as the underlying means
for creating the connection.

Procedure

To use SQLJ connection technique 3, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

130 Application Programming Guide and Reference for Java

The name of the generated connection context class is context-class-name.

2. If your system administrator created a DataSource object in a different program,
follow these steps. Otherwise, create a DataSource object and assign properties
to it.

a. Obtain the logical name of the data source to which you need to connect.
b. Create a context to use in the next step.

¢. In your application program, use the Java Naming and Directory Interface
(JNDI) to get the DataSource object that is associated with the logical data
source name.

3. Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can use one of the following forms of getConnection:

getConnection();
getConnection(user, password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

4. If the default autocommit mode is not appropriate, invoke the JDBC
Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a
COMMIT after every statement. The form of this method is:

setAutoCommit (boolean autocommit);

For environments other than the environments for CICS, stored procedures, and
user-defined functions, the default autocommit mode for a JDBC connection is
true. To disable autocommit, invoke setAutoCommit(false).

5. Invoke the constructor for the connection context class that you created in step
1 on page 130

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);
The JDBC-connection-object parameter is the Connection object that you created
in step

Example

The following code uses connection technique 3 to create a connection to a location
with logical name jdbc/sampledb. This example assumes that the system
administrator created and deployed a DataSource object that is available through
JNDI lookup. The numbers to the right of selected statements correspond to the
previously-described steps.

Chapter 4. SQL] application programming 131

import java.sql.*;
import javax.naming.=;
import javax.sql.=*;

#sql context CtxSqlj; // Create connection context class CtxSqlj
Context ctx=new InitialContext();

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

Connection con=ds.getConnection();

String empname; // Declare a host variable

con.setAutoCommit(false); // Do not autocommit
CtxSqlj myConnCtx=new CtxSqlj(con);
// Create connection context object myConnCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 25. Using connection technique 3 to connect to a data source

SQLJ connection technique 4: JDBC DataSource interface

SQLJ connection technique 4 uses the JDBC DataSource as the underlying means
for creating the connection. This technique requires that the DataSource is
registered with JNDL

Procedure

To use SQLJ connection technique 4, follow these steps:

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of
this form:

#sql public static context context-class-name
with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the
data source name that you obtained in step |1}

3. Invoke the constructor for the connection context class that you created in step
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class();

connection-context-class connection-context-object=
new connection-context-class (String user,
String password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF

132 Application Programming Guide and Reference for Java

security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

Example

The following code uses connection technique 4 to create a connection to a location
with logical name jdbc/sampledb. The connection requires a user ID and password.

#sql public static context Ctx
with (dataSource="jdbc/sampledb");
// Create connection context class Ctx
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";

String empname; // Declare a host variable

Ctx myConnCtx=new Ctx(userid, password);
// Create connection context object myConnCtx
// for the connection to jdbc/sampledb
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"};
// Use myConnCtx for executing an SQL statement

Figure 26. Using connection technique 4 to connect to a data source

SQLJ connection technique 5: Use a previously created
connection context

SQLJ connection technique 5 uses a previously created connection context to
connect to the data source.

About this task

In general, one program declares a connection context class, creates connection
contexts, and passes them as parameters to other programs. A program that uses
the connection context invokes a constructor with the passed connection context
object as its argument.

Example

Program CtxGen.sqlj declares connection context Ctx and creates instance oldCtx:
#sql context Ctx;

// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument
of its connection context constructor:

void useContext(sqlj.runtime.ConnectionContext oldCtx)
// 01dCtx was created in CtxGen.sqlj
{

Ctx myConnCtx=
new Ctx(oldCtx); // Create connection context object myConnCtx
// from oldCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Chapter 4. SQLJ application programming 133

SQLJ connection technique 6: Use the default connection

SQLJ connection technique 6 uses the default connection to connect to the data
source. It should be used only in situations where the database thread is controlled
by another resource manager, such as the Java stored procedure environment.

About this task

You use the default connection by specifying your SQL statements without a
connection context object. When you use this technique, you do not need to load a
JDBC driver unless you explicitly use JDBC interfaces in your program.

The default connection context can be:

e The connection context that is associated with the data source that is bound to
the logical name jdbc/defaultDataSource

* An explicitly created connection context that has been set as the default
connection context with the ConnectionContext.setDefaultContext method. This
method of creating a default connection context is not recommended.

In a stored procedure that runs on DB2 for z/OS, or for a CICS or IMS application,
when you use the default connection, DB2 uses the implicit connection.

Example

The following SQLJ execution clause does not have a connection context, so it uses
the default connection context.
#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO='000010'}; // Use default connection for
// executing an SQL statement

Java packages for SQLJ support

Before you can execute SQL]J statements or invoke JDBC methods in your SQLJ
program, you need to be able to access all or parts of various Java packages that
contain support for those statements.

You can do that either by importing the packages or specific classes, or by using
fully-qualified class names. You might need the following packages or classes for
your SQLJ program:

sqlj.runtime
Contains the SQLJ run-time APIL.

java.sql
Contains the core JDBC APIL

com.ibm.db2.jcc
Contains the driver-specific implementation of JDBC and SQL]J.

javax.naming
Contains methods for performing Java Naming and Directory Interface
(JNDI) lookup.

javax.sql
Contains methods for creating DataSource objects.

134 Application Programming Guide and Reference for Java

Variables in SQLJ applications

In DB2 programs in other languages, you use host variables to pass data between
the application program and DB2. In SQL] programs, In SQLJ programs, you can
use host variables or host expressions.

A host expression begins with a colon (:). The colon is followed by an optional
parameter mode identifier (IN, OUT, or INOUT), which is followed by a
parenthesized expression clause.

Host variables and host expressions are case sensitive.

A complex expression is an array element or Java expression that evaluates to a
single value. A complex expression in an SQL]J clause must be surrounded by
parentheses.

The following examples demonstrate how to use host expressions.
Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sq1 has the same function as a
SELECT statement in other languages. This statement assigns the last name of the
employee with employee number 000010 to Java identifier empname.

String empname;

#sql [ctxt]
{SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO='000010'};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sq1 has the same function as an
SQL CALL statement in other languages. This statement uses Java identifier empno
as an input parameter to stored procedure A. The keyword IN, which precedes
empno, specifies that empno is an input parameter. For a parameter in a CALL
statement, IN is the default. The explicit or default qualifier that indicates how the
parameter is used (IN, OUT, or INOUT) must match the corresponding value in
the parameter definition that you specified in the CREATE PROCEDURE statement
for the stored procedure.

String empno = "0000010";

#sql [ctxt] {CALL A (:IN empno)};
Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host
expression.

#sql [ctxt] {UPDATE EMPLOYEE
SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQL]J performs the following actions when it processes a complex host expression:

* Evaluates each of the host expressions in the statement, from left to right, before
assigning their respective values to the database.

* Evaluates side effects, such as operations with postfix operators, according to
normal Java rules. All host expressions are fully evaluated before any of their
values are passed to DB2.

* Uses Java rules for rounding and truncation.

Chapter 4. SQLJ application programming 135

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is
executed, the value that is assigned to column BONUS by the UPDATE statement
is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of
yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQL]J

programs. Observe the following restrictions when you use these strings in your

SQLJ programs:

* The string __s]JT_ is a reserved prefix for variable names that are generated by
SQLJ. Do not begin the following types of names with __sJT_:

— Host expression names

— Java variable names that are declared in blocks that include executable SQL
statements

— Names of parameters for methods that contain executable SQL statements

— Names of fields in classes that contain executable SQL statements, or in
classes with subclasses or enclosed classes that contain executable SQL
statements

* The string _SJ is a reserved suffix for resource files and classes that are
generated by SQLJ. Avoid using the string _SJ in class names and input source
file names.

Indicator variables in SQLJ applications

In SQLJ programs, you can use indicator variables to pass the NULL value to or
from a data server, to pass the default value for a column to the data server, or to
indicate that a host variable value is unassigned.

A host variable or host expression can be followed by an indicator variable. An
indicator variable begins with a colon (:) and has the data type short. For input, an
indicator variable indicates whether the corresponding host variable or host
expression has the default value, a non-null value, the null value, or is unassigned.
An unassigned variable in an SQL statement yields the same results as if the
variable and its target column were not in the SQL statement. For output, the
indicator variable indicates where the corresponding host variable or host
expression has a non-null value or a null value.

In SQLJ programs, indicator variables that indicate a null value perform the same
function as assigning the Java null value to a table column. However, you need to
use an indicator variable to retrieve the SQL NULL value from a table into a host
variable.

You can use indicator variables that assign the default value or the unassigned
value to columns to simplify the coding in your applications. For example, if a
table has four columns, and you might need to update any combination of those
columns, without the use of default indicator variables or unassigned indicator
variables, you need 15 UPDATE statements to perform all possible combinations of
updates. With default indicator variables and unassigned indicator variables, you
can use one UPDATE statement with all four columns in the SET statement to
perform all possible updates. You use the indicator variables to indicate which
columns you want to set to their default values, and which columns you do not
want to update.

For input, SQL]J supports the use of indicator variables for INSERT, UPDATE, or
MERGE statements.

136 Application Programming Guide and Reference for Java

If you customize your SQL]J application, you can assign one of the following values
to an indicator variable in an SQL]J application to specify the type of the
corresponding input host variable.

Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Null

-2,-3, -4, -6 Null

-5 sqlj.runtime.ExecutionContext.DBDefault Default

-7 sqlj.runtime.ExecutionContext. DBUnassigned =~ Unassigned
short-value >=0 sqlj.runtime.ExecutionContext. DBNonNull Non-null

If you do not customize the application, you can assign one of the following values
to an indicator variable to specify the type of the corresponding input host

variable.
Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Null
-7 <= short-value < -1 Null
0 sqlj.runtime.ExecutionContext. DBNonNull Non-null
short-value >0 Non-null

For output, SQL] supports the use of indicator variables for the following
statements:

* CALL with OUT or INOUT parameters
e FETCH iterator INTO host-variable
e SELECT ... INTO host-variable-1,...host-variable-n

SQLJ assigns one of the following values to an indicator variable to indicate
whether an SQL NULL value was retrieved into the corresponding host variable.

Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Retrieved value is SQL NULL
0 Retrieved value is not SQL NULL

You cannot use indicator variables to update result sets. To assign null values or
default values to result sets, or to indicate that columns are unassigned, call
ResultSet.updateObject on the underlying JDBC ResultSet objects of the SQLJ
iterators.

The following examples demonstrate how to use indicator variables.

All examples require that the data server supports extended indicators.

Example of using indicators to assign the default value to columns during an INSERT:

In this example, the MGRNO and LOCATION columns need to be set to their
default values. To do this, the code performs these steps:

Chapter 4. SQL] application programming 137

1. Assigns the value ExecutionContext.DBNonNull to the indicator variables
(deptInd, dNamelnd, rptDeptInd) for the input host variables (dept, dName,
rptDept) that send non-default values to the target columns.

2. Assigns the value ExecutionContext.DBDefault to the indicator variables
(mgrind, locnInd) for the input host variables (mgr, locn) that send default
values to the target columns.

3. Executes an INSERT statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.x*;

String dept = "FO1";
String dName = "SHIPPING";
String rptDept = "A0O";
String mgr, locn = null;
short deptInd, dNameInd, mgrInd, rptDeptInd, TocnlInd;
// Set indicator variables for dept, dName, rptDept to non-null
deptInd = dNameInd = rptDeptInd = ExecutionContext.DBNonNull;
mgrInd = ExecutionContext.DBDefault; 2
locnInd = ExecutionContext.DBDefault;
#sql [ctxt]
{INSERT INTO DEPARTMENT
(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES (:dept :deptind, :dName :dNamelnd,:mgr :mgrind,
:rptDept :rptDeptInd, :locn :locnlInd)};

Example of using indicators to assign the default value to leave column values unassigned
during an UPDATE:

In this example, in rows for department FO1, the MGRNO column needs to be set
to its default value, the DEPTNAME column value needs to be changed to
RECEIVING, and the DEPTNO, DEPTNAME, ADMRDEPT, and LOCATION
columns need to remain unchanged. To do this, the code performs these steps:

1. Assigns the new value for the DEPTNAME column to the dName input host
variable.

2. Assigns the value ExecutionContext.DBDefault to the indicator variable
(mgrInd) for the input host variable (mgr) that sends the default value to the
target column.

3. Assigns the value ExecutionContext.DBUnassigned to the indicator variables
(deptInd, dNamelnd, rptDeptInd, and locnInd) for the input host variables
(dept, dName, rptDept, and locn) that need to remain unchanged by the
UPDATE operation.

4. Executes an UPDATE statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.=;

String dept = null;

String dName = "RECEIVING";
String rptDept = null;

String mgr, locn = null;

short deptInd, dNameInd, mgrInd, rptDeptInd, TocnInd;

dNameInd = ExecutionContext.DBNonNulTl;

mgrind = ExecutionContext.DBDefault; B

138 Application Programming Guide and Reference for Java

deptInd = rptDeptInd = TocnInd = ExecutionContext.DBUnassigned;
#sql [ctxt] 4
{UPDATE DEPARTMENT
SET DEPTNO = :dept :deptlnd,
DEPTNAME = :dName :dNamelnd,
MGRNO = :mgr :mgrlnd,
ADMRDEPT = :rptDept :rptDeptlnd,
LOCATION = :locn :locnlnd
WHERE DEPTNO = "FO1"
bs

Example of using indicators to retrieve NULL values from columns:

In this example, the HIREDATE column can return the NULL value. To handle this

case, the code performs these steps:

1. Defines an indicator variable to indicate when the NULL value is returned from

HIREDATE.

2. Executes FETCH statements with the host variable and indicator variable pairs

as output.

3. Checks the indicator variable to determine whether a NULL value was
returned.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.x*;

#sql iterator ByPos(String, Date); // Declare positioned iterator ByPos
{

ByPos positer; // Declare object of ByPos class
String name = null; // Declare host variables

Date hrdate = null;

short indhrdate = null; // Declare indicator variable

#sql [ctxt] positer =
{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate :indhrdate }; 2|
// Retrieve the first row
while (!positer.endFetch()) // Check whether the FETCH returned a row
{ if(indhrdate == ExecutionContext.DBNonNull {
System.out.printin(name + " was hired in " +
hrdate); }
else {

System.out.printin(name + " has no hire date "); }
#sql {FETCH :positer INTO :name, :hrdate };
// Fetch the next row
}

positer.close(); // Close the iterator B
}

Example of assigning default values to result set columns:

In this example, the HIREDATE column in a result set needs to be set to its default

value. To do this, the code performs these steps:

1. Retrieves the underlying ResultSet from the iterator that holds the retrieved

data.

2. Executes the ResultSet.updateObject method with the
DB2PreparedStatement.DB_PARAMETER_DEFAULT constant to assign the default
value to the result set column.

Chapter 4. SQL] application programming

139

The numbers to the right of selected statements correspond to the previously
described steps.

#sql public iterator sensitiveUpdatelter

implements sqlj.runtime.Scrollable, sqlj.runtime.ForUpdate
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE,
updateColumns="LASTNAME, HIREDATE") (String, Date);

String name; // Declare host variables
Date hrdate;

sensitiveUpdatelter iter = null;
#sql [ctx] iter = { SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

iter.next();

java.sql.ResultSet rs = iter.getResultSet(); 1]
rs.updateString("LASTNAME", "FORREST");

rs.updateObject

(2, com.ibm.db2.jcc.DB2PreparedStatement.DB_PARAMETER DEFAULT);); EE]
rs.updateRow() ;

iter.close();

Comments in an SQLJ application

To document your SQLJ program, you need to include comments. You can use
Java comments outside of SQLJ statements and SQL or Java comments in SQLJ
statements.

You can include Java comments outside SQL]J clauses, wherever the Java language
permits them. Within an SQLJ clause, you can use comments in the following
places:

* Within a host expression (enclosed in /* and */ or preceded by //).

* Within an SQL statement in an executable clause, if the data server supports a
comment within the SQL statement.

— For connections to DB2 data servers or Informix data servers, comments can
be:

- Anywhere in the SQL statement text, and enclosed in /* and */ pairs. /*
and */ pairs can be nested.

- At the end of the SQL statement text, and preceded by two hyphens (--).

— For connections to Informix data servers only, comments can be enclosed in
left curly bracket ({) and right curly bracket (}) pairs.

SQL statement execution in SQLJ applications

You execute SQL statements in a traditional SQL program to create tables, update
data in tables, retrieve data from the tables, call stored procedures, or commit or
roll back transactions. In an SQLJ program, you also execute these statements,
within SQL]J executable clauses.

An executable clause can have one of the following general forms:

#sql [connection-context] {sql-statement};
#sql [connection-context ,execution-context] {sql-statement};
#sql [execution-context] {sql-statement};

execution-context specification
In an executable clause, you should always specify an explicit connection
context, with one exception: you do not specify an explicit connection context
for a FETCH statement. You include an execution context only for specific

140 Application Programming Guide and Reference for Java

cases. See "Control the execution of SQL statements in SQL]J" for information
about when you need an execution context.

connection-context specification
In an executable clause, if you do not explicitly specify a connection context,
the executable clause uses the default connection context.

Creating and modifying database objects in an SQLJ
application
Use SQLJ executable clauses to execute data definition statements (CREATE,

ALTER, DROP, GRANT, REVOKE) or to execute INSERT, searched or positioned
UPDATE, and searched or positioned DELETE statements.

Example

The following executable statements demonstrate an INSERT, a searched UPDATE,
and a searched DELETE:
#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES
("X00","Operations 2","000030","EO1" ,NULL)};
#sql [myConnCtx] {UPDATE DEPARTMENT
SET MGRNO="000090" WHERE MGRNO="000030"};
#sq1 [myConnCtx] {DELETE FROM DEPARTMENT
WHERE DEPTNO="X00"};

Performing positioned UPDATE and DELETE operations in an
SQLJ application

As in DB2 applications in other languages, performing positioned UPDATEs and
DELETEs with SQLJ is an extension of retrieving rows from a result table.

Procedure

The basic steps are:
1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE
operations, declare the iterator as updatable, using one or both of the following
clauses:

implements sqlj.runtime.ForUpdate
This clause causes the generated iterator class to include methods for
using updatable iterators. This clause is required for programs with
positioned UPDATE or DELETE operations.

with (updateColumns="column-list")
This clause specifies a comma-separated list of the columns of the result
table that the iterator will update. This clause is optional.
You need to declare the iterator as public, so you need to follow the rules for
declaring and using public iterators in the same file or different files.
If you declare the iterator in a file by itself, any SQLJ source file that has
addressability to the iterator and imports the generated class can retrieve data
and execute positioned UPDATE or DELETE statements using the iterator.
The authorization ID under which a positioned UPDATE or DELETE statement
executes depends on whether the statement executes statically or dynamically.
If the statement executes statically, the authorization ID is the owner of the plan
or package that includes the statement. If the statement executes dynamically

Chapter 4. SQL] application programming 141

the authorization ID is determined by the DYNAMICRULES behavior that is in
effect. For the IBM Data Server Driver for JDBC and SQLJ, the behavior is
always DYNAMICRULES BIND.

2. Disable autocommit mode for the connection.
If autocommit mode is enabled, a COMMIT operation occurs every time the
positioned UPDATE statement executes, which causes the iterator to be
destroyed unless the iterator has the with (holdability=true) attribute.
Therefore, you need to turn autocommit off to prevent COMMIT operations
until you have finished using the iterator. If you want a COMMIT to occur
after every update operation, an alternative way to keep the iterator from being
destroyed after each COMMIT operation is to declare the iterator with
(holdabiTlity=true).

3. Create an instance of the iterator class.
This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.
This is the same step as for a non-updatable iterator. The SELECT statement
must not include a FOR UPDATE clause.

5. Retrieve and update rows.
For a positioned iterator, do this by performing the following actions in a loop:
a. Execute a FETCH statement in an executable clause to obtain the current

TOW.
b. Test whether the iterator is pointing to a row of the result table by invoking
the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL
UPDATE... WHERE CURRENT OF :iterator-object statement in an executable
clause to update the columns in the current row. Execute an SQL DELETE...
WHERE CURRENT OF :iterator-object statement in an executable clause to
delete the current row.

For a named iterator, do this by performing the following actions in a loop:

a. Invoke the next method to move the iterator forward.

b. Test whether the iterator is pointing to a row of the result table by checking
whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement
in an executable clause to update the columns in the current row. Execute
an SQL DELETE... WHERE CURRENT OF iterator-object statement in an
executable clause to delete the current row.

6. Close the iterator.
Use the close method to do this.

Example
The following code shows how to declare a positioned iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to
use the iterator to update column SALARY:

142 Application Programming Guide and Reference for Java

import java.math.x; // Import this class for BigDecimal data type

#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY") (String, BigDecimal);

Figure 27. Example of declaring a positioned iterator for a positioned UPDATE

Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the

following code fragment:

import sqlj.runtime.x*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.x; // Import this class for BigDecimal data type
import UpdByPos; // Import the generated iterator class that

// was created by the iterator declaration clause

// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {

Class.forName("com.ibm.db2.jcc.DB2Driver");
}
catch (ClassNotFoundException e) {
e.printStackTrace();
}
Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2:SANJOSE");
// Create a JDBC connection object
HSjdbccon.setAutoCommit (false);
// Set autocommit off so automatic commits

// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object

UpdByPos upditer; // Declare iterator object of UpdByPos class

String empnum; // Declares host variable to receive EMPNO
BigDecimal sal; // and SALARY column values
#sq1 [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE
WHERE WORKDEPT='D11'};
// Assign result table to iterator object
#sql {FETCH :upditer INTO :empnum,:sal};
// Move cursor to next row
while (lupditer.endFetch())
// Check if on a row
{

#sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY=*1.05
WHERE CURRENT OF :upditer};
// Perform positioned update
System.out.printin("Updating row for " + empnum);
#sql {FETCH :upditer INTO :empnum,:sal};
// Move cursor to next row
}

upditer.close(); // Close the iterator
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 28. Example of performing a positioned UPDATE with a positioned iterator

The following code shows how to declare a named iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

Chapter 4. SQL] application programming

143

First, in one file, declare named iterator UpdByName, specifying that you want to use
the iterator to update column SALARY:

import java.math.=*; // Import this class for BigDecimal data type
#sql public iterator UpdByName implements sqlj.runtime.ForUpdate 1]
with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 29. Example of declaring a named iterator for a positioned UPDATE

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the
following code fragment:

import sqlj.runtime.x*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.x*; // Import this class for BigDecimal data type
import UpdByName; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sq1 context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {

Class.forName("com.ibm.db2.jcc.DB2Driver");

catch (ClassNotFoundException e) {
e.printStackTrace();
1

Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit (false);

// Set autocommit off so automatic commits

// do not destroy the cursor between updates
HSCtx myConnCtx=new HSCtx(HSjdbccon);

// Create a connection context object

UpdByName upditer;
// Declare iterator object of UpdByName class
String empnum; // Declare host variable to receive EmpNo

// column values
#sq1 [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE ﬂ
WHERE WORKDEPT='D11'};
// Assign result table to iterator object
while (upditer.next())
// Move cursor to next row and
// check ifon a row
{
empnum = upditer.EmpNo(); // Get employee number from current row
#sq1 [myConnCtx]
{UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer};
// Perform positioned update
System.out.printIn("Updating row for " + empnum);

upditer.close(); // Close the iterator 6|
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}
Figure 30. Example of performing a positioned UPDATE with a named iterator

144 Application Programming Guide and Reference for Java

Related concepts:

“Iterators as passed variables for positioned UPDATE or DELETE operations in an|
SQLJ application”]

[‘Data retrieval in SQLJ applications” on page 151]

[+ |Auth0rization IDs and dynamic SQL (DB2 SQL)|

Related tasks:

“Creating and modifying database objects in an SQLJ application” on page 141|

“Connecting to a data source using SQLJ” on page 127

Iterators as passed variables for positioned UPDATE or DELETE
operations in an SQLJ application
SQL]J allows iterators to be passed between methods as variables.

An iterator that is used for a positioned UPDATE or DELETE statement can be
identified only at runtime. The same SQL]J positioned UPDATE or DELETE
statement can be used with different iterators at runtime. If you specify a value of
YES for -staticpositioned when you customize your SQL]J application as part of the
program preparation process, the SQLJ customizer prepares positioned UPDATE or
DELETE statements to execute statically. In this case, the customizer must
determine which iterators belong with which positioned UPDATE or DELETE
statements. The SQL] customizer does this by matching iterator data types to data
types in the UPDATE or DELETE statements. However, if there is not a unique
mapping of tables in UPDATE or DELETE statements to iterator classes, the SQLJ
customizer cannot determine exactly which iterators and UPDATE or DELETE
statements go together. The SQLJ customizer must arbitrarily pair iterators with
UPDATE or DELETE statements, which can sometimes result in SQL errors. The
following code fragments illustrate this point.

#sql iterator Generallter implements sqlj.runtime.ForUpdate
(String);

public static void main (String args[])
{
Generallter iterl
#sql [ctxt] iterl

null;
{ SELECT CHAR COL1 FROM TABLE1 };

null;
{ SELECT CHAR _COL2 FROM TABLE2 };

Generallter iter2
#sql [ctxt] iter2

doUpdate (iterl);
}

public static void doUpdate (Generallter iter)

{
#sql [ctxt] { UPDATE TABLEl ... WHERE CURRENT OF :iter };

}
Figure 31. Static positioned UPDATE that fails

In this example, only one iterator is declared. Two instances of that iterator are
declared, and each is associated with a different SELECT statement that retrieves
data from a different table. During customization and binding with
-staticpositioned YES, SQL] creates two DECLARE CURSOR statements, one for
each SELECT statement, and attempts to bind an UPDATE statement for each
cursor. However, the bind process fails with SQLCODE -509 when UPDATE TABLE1

Chapter 4. SQL] application programming 145

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_authidsdynamicsql.htm#db2z_authidsdynamicsql

... WHERE CURRENT OF :iter is bound for the cursor for SELECT CHAR_COL2 FROM
TABLE2 because the table for the UPDATE does not match the table for the cursor.

You can avoid a bind time error for a program like the one in|Figure 31 on page]
by specifying the bind option SQLERROR(CONTINUE). However, this
technique has the drawback that it causes the DB2 database manager to build a
package, regardless of the SQL errors that are in the program. A better technique is
to write the program so that there is a one-to-one mapping between tables in
positioned UPDATE or DELETE statements and iterator classes. shows
an example of how to do this.

#sql iterator Table2Iter(String);
#sql iterator Tablellter(String);
public static void main (String args[])

{

Table2Ilter iter2 = null;
#sql [ctxt] iter2 = { SELECT CHAR COL2 FROM TABLE2 };

Tablellter iterl = null;
#sql [ctxt] iterl = { SELECT CHAR COL1 FROM TABLE1 };

doUpdate(iterl);
}

public static void doUpdate (Tablellter iter)
{

#sql [ctxt] { UPDATE TABLEl ... WHERE CURRENT OF :iter };

}
public static void doUpdate (Table2Iter iter)

{
#sq] [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };
}
Figure 32. Static positioned UPDATE that succeeds

With this method of coding, each iterator class is associated with only one table.
Therefore, the DB2 bind process can always associate the positioned UPDATE
statement with a valid iterator.

Making batch updates in SQLJ applications

The IBM Data Server Driver for JDBC and SQLJ supports batch updates in SQLJ.
With batch updates, instead of updating rows of a table one at a time, you can
direct SQLJ to execute a group of updates at the same time.

About this task

You can include the following types of statements in a batch update:
e Searched INSERT, UPDATE, or DELETE, or MERGE statements

e CREATE, ALTER, DROP, GRANT, or REVOKE statements

e CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with

input parameters or host expressions. You can therefore combine any of the
following items in an SQLJ batch:

146 Application Programming Guide and Reference for Java

* Instances of the same statement

* Different statements

* Statements with different numbers of input parameters or host expressions
 Statements with different data types for input parameters or host expressions

* Statements with no input parameters or host expressions

For all cases except homogeneous batches of INSERT statements, when an error
occurs during execution of a statement in a batch, the remaining statements are
executed, and a BatchUpdateException is thrown after all the statements in the
batch have executed.

For homogeneous batches of INSERT statements, the behavior is as follows:

 If you set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you run
db2sqljcustomize, and the target data server is DB2 for z/OS, when an error
occurs during execution of an INSERT statement in a batch, the remaining
statements are not executed, and a BatchUpdateException is thrown.

* If you do not set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you
run db2sqljcustomize, or the target data server is not DB2 for z/OS, when an
error occurs during execution of an INSERT statement in a batch, the remaining
statements are executed, and a BatchUpdateException is thrown after all the
statements in the batch have executed.

To obtain information about warnings, use the ExecutionContext.getWarnings
method on the ExecutionContext that you used to submit statements to be
batched. You can then retrieve an error description, SQLSTATE, and error code for
each SQLWarning object.

When a batch is executed implicitly because the program contains a statement that
cannot be added to the batch, the batch is executed before the new statement is
processed. If an error occurs during execution of the batch, the statement that
caused the batch to execute does not execute.

Procedure

The basic steps for creating, executing, and deleting a batch of statements are:
1. Disable AutoCommit for the connection.

Do this so that you can control whether to commit changes to already-executed
statements when an error occurs during batch execution.

2. Acquire an execution context.
All statements that execute in a batch must use this execution context.
3. Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context
that you created in step@ are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,
you need to create an execution context for each set of batch compatible
statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.
These clauses must include the execution context that you created in step El

If an SQLJ executable clause has input parameters or host expressions, you can
include the statement in the batch multiple times with different values for the
input parameters or host expressions.

Chapter 4. SQL] application programming 147

To determine whether a statement was added to an existing batch, was the first
statement in a new batch, or was executed inside or outside a batch, invoke the
ExecutionContext.getUpdateCount method. This method returns one of the
following values:

ExecutionContext.ADD_BATCH_COUNT
This is a constant that is returned if the statement was added to an existing
batch.

ExecutionContext.NEW_BATCH_COUNT
This is a constant that is returned if the statement was the first statement in
a new batch.

ExecutionContext.EXEC_BATCH_COUNT
This is a constant that is returned if the statement was part of a batch, and
the batch was executed.

Other integer
This value is the number of rows that were updated by the statement. This
value is returned if the statement was executed rather than added to a
batch.

5. Execute the batch explicitly or implicitly.

* Invoke the ExecutionContext.executeBatch method to execute the batch
explicitly.
executeBatch returns an integer array that contains the number of rows that
were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the
batch.

* Alternatively, a batch executes implicitly under the following circumstances:

- You include a batchable statement in your program that is not compatible
with statements that are already in the batch. In this case, SQL] executes
the statements that are already in the batch and creates a new batch that
includes the incompatible statement.

- You include a statement in your program that is not batchable. In this
case, SQLJ executes the statements that are already in the batch. SQL]J also
executes the statement that is not batchable.

— After you invoke the ExecutionContext.setBatchLimit(n) method, you
add a statement to the batch that brings the number of statements in the
batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH
This constant indicates that implicit execution occurs only when SQLJ
encounters a statement that is batchable but incompatible, or not
batchable. Setting this value is the same as not invoking
setBatchLimit.

ExecutionContext.AUTO_BATCH
This constant indicates that implicit execution occurs when the
number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer
When this number of statements have been added to the batch, SQLJ
executes the batch implicitly. However, the batch might be executed
before this many statements have been added if SQLJ encounters a
statement that is batchable but incompatible, or not batchable.

148 Application Programming Guide and Reference for Java

To determine the number of rows that were updated by a batch that was
executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts
method. getBatchUpdateCounts returns an integer array that contains the
number of rows that were updated by each statement in the batch. The order
of the elements in the array corresponds to the order in which you added
statements to the batch. Each array element can be one of the following
values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When
you disable batching, you can still execute the batch implicitly or explicitly, but
no more statements are added to the batch. Disabling batching is useful when a
batch already exists, and you want to execute a batch compatible statement,
rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the
ExecutionContext.cancel method.

7. 1If batch execution was implicit, perform a final, explicit executeBatch to ensure
that all statements have been executed.

Example

The following example demonstrates batching of UPDATE statements. The
numbers to the right of selected statements correspond to the previously described
steps.

#sql iterator GetMgr(String); // Declare positioned iterator
{
GetMgr deptiter; // Declare object of GetMgr class
String mgrnum = null; // Declare host variable for manager number
int raise = 400; // Declare raise amount
int currentSalary; // Declare current salary

String url, username, password; // Declare url, user ID, password

TestContext cl = new TestContext (url, username, password, false); [l
ExecutionContext ec = new ExecutionContext(); 2
ec.setBatching(true); K]

#sql [cl] deptiter =
{SELECT MGRNO FROM DEPARTMENT};
// Assign the result table of the SELECT
// to iterator object deptiter
#sql {FETCH :deptiter INTO :mgrnum};
// Retrieve the first manager number
while (!deptiter.endFetch()) { // Check whether the FETCH returned a row
#sql [c1]
{SELECT SALARY INTO :currentSalary FROM EMPLOYEE
WHERE EMPNO=:mgrnum};
#sql [cl, ec] 4]
{UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)
WHERE EMPNO=:mgrnum};
#sql {FETCH :deptiter INTO :mgrnum };
// Fetch the next row
}

ec.executeBatch(); 5]

Chapter 4. SQL] application programming 149

ec.setBatching(false); 6|
#sql [c1] {COMMIT};

deptiter.close(); // Close the iterator

cl.close(); // Close the connection

}

The following example demonstrates batching of INSERT statements. Suppose that
ATOMICTBL is defined like this:
CREATE TABLE ATOMICTBL(

INTCOL INTEGER NOT NULL UNIQUE,
CHARCOL VARCHAR(10))

Also suppose that the table already has a row with the values 2 and "val2".
Because of the uniqueness constraint on INTCOL, when the following code is
executed, the second INSERT statement in the batch fails.

If the target data server is DB2 for z/OS, and this application is customized
without atomicMultiRowInsert set to DB2BaseDataSource.YES, the batch INSERT is
non-atomic, so the first set of values is inserted in the table. However, if the
application is customized with atomicMultiRowInsert set to
DB2BaseDataSource.YES, the batch INSERT is atomic, so the first set of values is not
inserted.

The numbers to the right of selected statements correspond to the previously
described steps.

TestContext ctx = new TestContext (url, username, password, false);
ctx.getExecutionContext().setBatching(true);

try {
for (int i = 1; i<= 2; ++i) {
if (i ==1) {
intVar = 3;
strVar = "vall";
{
if (i ==2) {
intVar = 1;
strVar = "val2";
1
#sql [ctx] {INSERT INTO ATOMICTBL values(:intVar, :strVar)}; 4]
int[] counts = ctx.getExecutionContext().executeBatch(); B

for (int i = 0; i<counts.length; ++i) {
System.out.printIn(" count[" + i + "]:" + counts[i]);
}
1
catch (SQLException e) {
System.out.printIn(" Exception Caught: " + e.getMessage());
SQLException excp = null;
if (e instanceof SQLException)
{
System.out.printIn(" SQLCode: " + ((SQLException)e).getErrorCode() + "
Message: " + e.getMessage());
excp = ((SQLException)e).getNextException();
while (excp !'= null) {
System.out.printin(" SQLCode: " + ((SQLException)excp).getErrorCode() +
" Message: " + excp.getMessage());
excp = excp.getNextException();
1
}
}

150 Application Programming Guide and Reference for Java

Related tasks:
[“Controlling the execution of SQL statements in SQL]” on page 170]

[‘Connecting to a data source using SQL]” on page 127

Related reference:

[“sqlj.runtime. SQLNullException class” on page 381

[“db2sgljcustomize - SQLJ profile customizer” on page 498|

Data retrieval in SQLJ applications

SQLJ applications use a result set iterator to retrieve result sets. Like a cursor, a
result set iterator can be non-scrollable or scrollable.

Just as in DB2 applications in other languages, if you want to retrieve a single row
from a table in an SQL]J application, you can write a SELECT INTO statement with
a WHERE clause that defines a result table that contains only that row:

#sq1 [myConnCtx] {SELECT DEPTNO INTO :hvdeptno
FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain
many rows. In DB2 applications in other languages, you use a cursor to select the
individual rows from the result table. That cursor can be non-scrollable, which
means that when you use it to fetch rows, you move the cursor serially, from the
beginning of the result table to the end. Alternatively, the cursor can be scrollable,
which means that when you use it to fetch rows, you can move the cursor
forward, backward, or to any row in the result table.

This topic discusses how to use non-scrollable iterators. For information on using
scrollable iterators, see "Use scrollable iterators in an SQL]J application".

A result set iterator is a Java object that you use to retrieve rows from a result
table. Unlike a cursor, a result set iterator can be passed as a parameter to a
method.

The basic steps in using a result set iterator are:

Declare the iterator, which results in an iterator class

Define an instance of the iterator class.

Assign the result table of a SELECT to an instance of the iterator.
Retrieve rows.

Close the iterator.

Il

There are two types of iterators: positioned iterators and named iterators. Positioned
iterators extend the interface sqlj.runtime.PositionedIterator. Positioned
iterators identify the columns of a result table by their position in the result table.
Named iterators extend the interface sqlj.runtime.NamedIterator. Named iterators
identify the columns of the result table by result table column names.

Using a named iterator in an SQLJ application
Use a named iterator to refer to each of the columns in a result table by name.

Procedure

The steps in using a named iterator are:
1. Declare the iterator.

Chapter 4. SQL] application programming 151

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name as the iterator. For a
named iterator, the iterator declaration clause specifies the following
information:

¢ The name of the iterator
* A list of column names and Java data types

* Information for a Java class declaration, such as whether the iterator is
pubTic or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

When you declare a named iterator for a query, you specify names for each of
the iterator columns. Those names must match the names of columns in the
result table for the query. An iterator column name and a result table column
name that differ only in case are considered to be matching names. The named
iterator class that results from the iterator declaration clause contains accessor
methods. There is one accessor method for each column of the iterator. Each
accessor method name is the same as the corresponding iterator column name.
You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the
corresponding DB2 column data types. See "Java, JDBC, and SQL data types"
for a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
pubTic, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:

* As public, in a source file by itself

This method lets you use the iterator declaration in other code modules, and
provides an iterator that works for all SQLJ applications. In addition, there
are no concerns about having other top-level classes or public classes in the
same source file.

¢ As a top-level class in a source file that contains other top-level class
definitions

Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

* As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible to other code modules or
packages. However, when you reference the iterator from outside the nesting
class, you must fully-qualify the iterator name with the name of the nesting
class.

¢ As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQLJ and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

152 Application Programming Guide and Reference for Java

2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result
table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQL]
assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};
See "SQLJ assignment-clause" and "SQL]J context-clause" for more information.
4. Retrieve rows.

Do this by invoking accessor methods in a loop. Accessor methods have the
same names as the corresponding columns in the iterator, and have no
parameters. An accessor method returns the value from the corresponding
column of the current row in the result table. Use the NamedIterator.next()
method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned
when you invoke the next method. next returns a boolean with a value of
false if there is no next row.

5. Close the iterator.
Use the NamedIterator.close method to do this.

Example
The following code demonstrates how to declare and use a named iterator. The
numbers to the right of selected statements correspond to the previously-described

steps.

#sql iterator ByName(String LastName, Date HireDate);
// Declare named iterator ByName
{

ByName nameiter; // Declare object of ByName class 2]
#sql [ctxt]
nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

// Assign the result table of the SELECT
// to iterator object nameiter
while (nameiter.next()) // Move the iterator through the result |
// table and test whether all rows retrieved
{

System.out.printin(nameiter.LastName() + " was hired on "
+ nameiter.HireDate()); // Use accessor methods LastName and
// HireDate to retrieve column values

}

nameiter.close(); // Close the iterator B

}
Figure 33. Example of using a named iterator

Related tasks:
“Performing positioned UPDATE and DELETE operations in an SQL] application’]

on page 141|

[“Using a positioned iterator in an SQLJ application”]

Using a positioned iterator in an SQLJ application
Use a positioned iterator to refer to columns in a result table by their position in
the result set.

Chapter 4. SQLJ application programming 153

Procedure

The steps in using a positioned iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name and attributes as the
iterator. For a positioned iterator, the iterator declaration clause specifies the
following information:

* The name of the iterator
* A list of Java data types

* Information for a Java class declaration, such as whether the iterator is
pubTic or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

The data type declarations represent columns in the result table and are
referred to as columns of the result set iterator. The columns of the result set
iterator correspond to the columns of the result table, in left-to-right order. For
example, if an iterator declaration clause has two data type declarations, the
first data type declaration corresponds to the first column in the result table,
and the second data type declaration corresponds to the second column in the
result table.

You need to specify Java data types in the iterators that closely match the
corresponding DB2 column data types. See "Java, JDBC, and SQL data types"
for a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:

* As publigc, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets
you use the iterator declaration in other code modules, and provides an
iterator that works for all SQL]J applications. In addition, there are no
concerns about having other top-level classes or public classes in the same
source file.

* As a top-level class in a source file that contains other top-level class
definitions

Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

* As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible from other code modules
or packages. However, when you reference the iterator from outside the
nesting class, you must fully-qualify the iterator name with the name of the
nesting class.

¢ As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.

154 Application Programming Guide and Reference for Java

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQL]J and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a
result table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a positioned iterator
is:

#sql context-clause iterator-object={select-statement};
4. Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The
FETCH statements looks the same as a FETCH statements in other languages.

To test whether you have retrieved all rows, invoke the
PositionedIterator.endFetch method after each FETCH. endFetch returns a
boolean with the value true if the FETCH failed because there are no rows to
retrieve.

5. Close the iterator.

Use the PositionedIterator.close method to do this.
Example

The following code demonstrates how to declare and use a positioned iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos
{

ByPos positer; // Declare object of ByPos class Iﬂ
String name = null; // Declare host variables
Date hrdate;
#sql [ctxt] positer =
{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate }; 4]
// Retrieve the first row
while (!positer.endFetch()) // Check whether the FETCH returned a row
{ System.out.printin(name + " was hired in " +
hrdate)

#sql {FETCH :positer INTO :name, :hrdate };
// Fetch the next row
}

positer.close(); // Close the iterator B
}

Figure 34. Example of using a positioned iterator

Chapter 4. SQLJ application programming 155

Related concepts:

[‘Data retrieval in SQLJ applications” on page 151
Related tasks:

“Performing positioned UPDATE and DELETE operations in an SQLJ application”|
on page 141

“Using a named iterator in an SQLJ application” on page 151|

Multiple open iterators for the same SQL statement in an SQLJ
application

With the IBM Data Server Driver for JDBC and SQLJ, your application can have
multiple concurrently open iterators for a single SQL statement in an SQLJ
application. With this capability, you can perform one operation on a table using
one iterator while you perform a different operation on the same table using
another iterator.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/0S, support for multiple open iterators on a single SQL statement must be
enabled. To do that, set the db2.jcc.allowSqljDuplicateStaticQueries configuration
property to YES or true.

When you use concurrently open iterators in an application, you should close
iterators when you no longer need them to prevent excessive storage consumption
in the Java heap.

The following examples demonstrate how to perform the same operations on a
table without concurrently open iterators on a single SQL statement and with
concurrently open iterators on a single SQL statement. These examples use the
following iterator declaration:

import java.math.=*;
#sql public iterator Multilter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL
statement, if you want to select employee and salary values for a specific employee
number, you need to define a different SQL statement for each employee number,

as shown in |[Figure 35

Multilter iterl = null; // Iterator instance for retrieving
// data for first employee
String EmpNol = "000100"; // Employee number for first employee

#sql [ctx] iterl =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNol};
// Assign result table to first iterator

Multilter iter2 = null; // Iterator instance for retrieving
// data for second employee
String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};
// Assign result table to second iterator
// Process with iterl
// Process with iter2
iterl.close(); // Close the iterators
iter2.close();

Figure 35. Example of concurrent table operations using iterators with different SQL
statements

[Figure 36 on page 157 demonstrates how you can perform the same operations
when you have the capability for multiple, concurrently open iterators for a single

156 Application Programming Guide and Reference for Java

SQL statement.

Multilter iterl = openlter("000100"); // Invoke openlter to assign the result table
// (for employee 100) to the first iterator
Multilter iter2 = openlter("000200"); // Invoke openlter to assign the result
// table to the second iterator
// iterl stays open when iter2 is opened

// Process with iterl
// Process with iter2

iterl.close(); // Close the iterators
iter2.close();

public Multilter openlter(String EmpNo)
// Method to assign a result table
// to an iterator instance

{
Multilter iter;
#sql [ctxt] iter =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};
return iter; // Method returns an iterator instance

}

Figure 36. Example of concurrent table operations using iterators with the same SQL
statement

Multiple open instances of an iterator in an SQLJ application
Multiple instances of an iterator can be open concurrently in a single SQLJ
application. One application for this ability is to open several instances of an
iterator that uses host expressions. Each instance can use a different set of host
expression values.

The following example shows an application with two concurrently open instances
of an iterator.

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet

{
MyIter iter;
#sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};
return iter.getResultSet();

}

// An application can call this method to get a resultSet for each
// employee ID. The application can process each resultSet separately.

ResultSet rsl = myFunc("000100"); // Get employee record for employee ID 000100
ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 37. Example of opening more than one instance of an iterator in a single application

As with any other iterator, you need to remember to close this iterator after the last
time you use it to prevent excessive storage consumption.

Using scrollable iterators in an SQLJ application

In addition to moving forward, one row at a time, through a result table, you
might want to move backward or go directly to a specific row. The IBM Data
Server Driver for JDBC and SQLJ provides this capability.

Chapter 4. SQL] application programming 157

About this task

An iterator in which you can move forward, backward, or to a specific row is
called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result
table of a database cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A
sensitive scrollable iterator can be static or dynamic. Insensitive means that changes
to the underlying table after the iterator is opened are not visible to the iterator.
Insensitive iterators are read-only. Sensitive means that changes that the iterator or
other processes make to the underlying table are visible to the iterator. Asensitive
means that if the cursor is a read-only cursor, it behaves as an insensitive cursor. If
it is not a read-only cursor, it behaves as a sensitive cursor.

If a scrollable iterator is static, the size of the result table and the order of the rows
in the result table do not change after the iterator is opened. This means that you
cannot insert into result tables, and if you delete a row of a result table, a delete
hole occurs. If you update a row of the result table so that the row no longer
qualifies for the result table, an update hole occurs. Fetching from a hole results in
an SQLException.

Important: Like static scrollable cursors in any other language, SQLJ static
scrollable iterators use declared temporary tables for their internal processing. This
means that before you can execute any applications that contain static scrollable
iterators, your database administrator needs to create a temporary database and
temporary table spaces for those declared temporary tables.

If a scrollable iterator is dynamic, the size of the result table and the order of the
rows in the result table can change after the iterator is opened. Rows that are
inserted or deleted with INSERT and DELETE statements that are executed by the
same application process are immediately visible. Rows that are inserted or deleted
with INSERT and DELETE statements that are executed by other application
processes are visible after the changes are committed.

Important: DB2 for Linux, UNIX, and Windows servers do not support dynamic
scrollable cursors. You can use dynamic scrollable iterators in your SQL]J
applications only if those applications access data on DB2 for z/OS servers, at
Version 9 or later.

Procedure

To create and use a scrollable iterator, you need to follow these steps:
1. Specify an iterator declaration clause that includes the following clauses:
* implements sqlj.runtime.Scrollable
This indicates that the iterator is scrollable.

e with (sensitivity=sensitivity-attribute) or with
(sensitivity=sensitivity-attribute, dynamic=true|false)
sensitivity-attribute indicates whether update or delete operations on the
underlying table can be visible to the iterator. Possible values are
sqlj.runtime.ResultSetIterator.SENSITIVE,
sqlj.runtime.ResultSetIterator INSENSITIVE, or
sqlj.runtime.ResultSetIterator. ASENSITIVE.
sqlj.runtime.ResultSetIterator. ASENSITIVE is the default.

158 Application Programming Guide and Reference for Java

dynamic=true|false indicates whether the size of the result table or the order
of the rows in the result table can change after the iterator is opened. The
default value of dynamic is false.

The iterator can be a named or positioned iterator.

Example: The following iterator declaration clause declares a positioned,
sensitive, dynamic, scrollable iterator:
#sql public iterator ByPos
implements sqlj.runtime.Scrollable
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE, dynamic=true)
(String);
Example: The following iterator declaration clause declares a named,
insensitive, scrollable iterator:
#sql public iterator ByName

implements sqlj.runtime.Scrollable
with (sensitivity=sqlj.runtime.ResultSetIterator.INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the

following data types from a table on a DB2 for Linux, UNIX, and Windows
server:

* LONG VARCHAR

* LONG VARGRAPHIC

+ BLOB

+ CLOB

+ XML

A distinct type that is based on any of the previous data types in this list
¢ A structured type

Create an iterator object, which is an instance of your iterator class.

If you want to give the SQLJ runtime environment a hint about the initial fetch
direction, use the setFetchDirection(int direction) method. direction can be
FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the
fetch direction is FETCH_FORWARD.

For each row that you want to access:
For a named iterator, perform the following steps:
a. Position the cursor using one of the methods listed in the following table.

Table 27. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor
firstd On the first row of the result table
lastd On the last row of the result table

previous

On the previous row of the result table

next

On the next row of the result table

absolute(int n)

If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

relative(int n)EEI

If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLastl

After the last row in the result table

beforeFirs

Before the first row in the result table

Chapter 4. SQLJ application programming 159

Table 27. sqlj.runtime.Scrollable methods for positioning a scrollable cursor (continued)

Method

Positions the cursor

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if # is positive, or before the first row if n

is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

If you need to know the current fetch direction, invoke the
getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the

current row is a hole.

For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the
iterator and retrieve the current row of the result table. lists the
clauses that you can use to position the cursor.

Table 28. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRSTH On the first row of the result table

LAS On the last row of the result table

PRIORE On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n If n>0, on row #n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

RELATIVE(n If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

AFTERE After the last row in the result table

BEFORHE Before the first row in the result table

160 Application Programming Guide and Reference for Java

Table 28. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:
1. This value is not supported for connections to IBM Informix

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of 7 is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

5. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the
current row is a hole.

5. Invoke the close method to close the iterator.
Example

The following code demonstrates how to use a named iterator to retrieve the
employee number and last name from all rows from the employee table in reverse
order. The numbers to the right of selected statements correspond to the
previously-described steps.

#sql context Ctx; // Create connection context class Ctx
#sql iterator Scrolllter implements sqlj.runtime.Scrollable 1)
(String EmpNo, String LastName);
{
Ctx ctxt =
new Ctx("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object ctxt
// for the connection to NEWYORK
Scrolllter scrliter; 2|
#sql [ctxt]
scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};
scrliter.afterLast();
while (scrliter.previous()) 4a |
{
System.out.printin(scrliter.EmpNo() + " " [4c |
+ scrliter.LastName());
}
scrliter.close(); B
1

Related concepts:

[“Data retrieval in SQLJ applications” on page 151

(& [Temporary table space storage requirements (DB2 Installation and Migration)|
Related tasks:
[“Using a positioned iterator in an SQLJ application” on page 153|

[‘Using a named iterator in an SQL]J application” on page 151]

Calling stored procedures in SQLJ applications

To call a stored procedure, you use an executable clause that contains an SQL
CALL statement.

Chapter 4. SQL] application programming 161

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_temptablespstgreqs.htm#db2z_temptablespstgreqs

About this task

You can execute the CALL statement with host identifier parameters. You can
execute the CALL statement with literal parameters only if the DB2 server on
which the CALL statement runs supports execution of the CALL statement
dynamically.

Procedure

The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.

2. Call the stored procedure.

3. Process output (OUT or INOUT) parameters.

4. 1If the stored procedure returns multiple result sets, retrieve those result sets.

Example

The following code illustrates calling a stored procedure that has three input
parameters and three output parameters. The numbers to the right of selected
statements correspond to the previously-described steps.

String FirstName="TOM"; // Input parameters 1]
String LastName="NARISINST";

String Address="IBM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

#sq1 [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, 2]

:IN LastName,

:IN Address,

:0UT CustNo,

:0UT Mark,

:0UT MarkErrorText)};

// Call the stored procedure
System.out.printIn("Output parameters from ADD_CUSTOMER call: ");
System.out.printin("Customer number for " + LastName + ": " + CustNo);
System.out.printin(Mark);
If (MarkErrorText != null)
System.out.printIn(" Error messages:" + MarkErrorText);

Figure 38. Example of calling a stored procedure in an SQLJ application

Related concepts:

[“Retrieving multiple result sets from a stored procedure in an SQL]J application”|

Retrieving multiple result sets from a stored procedure in an
SQLJ application

Some stored procedures return one or more result sets to the calling program by
including the DYNAMIC RESULT SETS n clause in the definition, with #n>0, and
opening cursors that are defined with the WITH RETURN clause. The calling
program needs to retrieve the contents of those result sets.

To retrieve the rows from those result sets, you execute these steps:

1. Acquire an execution context for retrieving the result set from the stored
procedure.

2. Associate the execution context with the CALL statement for the stored
procedure.

162 Application Programming Guide and Reference for Java

Do not use this execution context for any other purpose until you have
retrieved and processed the last result set.

3. For each result set:

a. Use the ExecutionContext method getNextResultSet to retrieve the result
set.

b. If you do not know the contents of the result set, use ResultSetMetaData
methods to retrieve this information.

c. Use an SQL]J result set iterator or JDBC ResultSet to retrieve the rows from
the result set.

Result sets are returned to the calling program in the same order that their cursors
are opened in the stored procedure. When there are no more result sets to retrieve,
getNextResultSet returns a null value.

getNextResultSet has two forms:

getNextResultSet();
getNextResultSet(int current);

When you invoke the first form of getNextResultSet, SQLJ closes the
currently-open result set and advances to the next result set. When you invoke the
second form of getNextResultSet, the value of current indicates what SQL]J does
with the currently-open result set before it advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT
Specifies that the current ResultSet object is closed when the next ResultSet
object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT
Specifies that the current ResultSet object stays open when the next ResultSet
object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS
Specifies that all open ResultSet objects are closed when the next ResultSet
object is returned.

The following code calls a stored procedure that returns multiple result sets. For
this example, it is assumed that the caller does not know the number of result sets
to be returned or the contents of those result sets. It is also assumed that
autoCommit is false. The numbers to the right of selected statements correspond to
the previously-described steps.

Chapter 4. SQLJ application programming 163

ExecutionContext execCtx=myConnCtx.getExecutionContext();
#sql [myConnCtx, execCtx] {CALL MULTRSSP()};
// MULTRSSP returns multiple result sets
ResultSet rs;
while ((rs = execCtx.getNextResultSet()) != null)
{
ResultSetMetaData rsmeta=rs.getMetaData();
int numcols=rsmeta.getColumnCount();
while (rs.next())
{
for (int i=1; i<=numcols; i++)
{
String colval=rs.getString(i);
System.out.printIn("Column " + i + "value is " + colval);
1
}
1

Figure 39. Retrieving result sets from a stored procedure

-

LOBs in SQLJ applications with the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve LOB data
into Clob or Blob host expressions or update CLOB, BLOB, or DBCLOB columns
from Clob or Blob host expressions. You can also declare iterators with Clob or
Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare
an iterator that includes a data type of Blob or byte[]. To retrieve data from a
CLOB or DBCLOB column, declare an iterator in which the corresponding column
has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To
update data in a CLOB or DBCLOB column, use a host expression with data type
Clob.

Progressive streaming or LOB locators: In SQLJ applications, you can use
progressive streaming, also known as dynamic data format, or LOB locators in the
same way that you use them in JDBC applications.

Java data types for retrieving or updating LOB column data in
SQLJ applications

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQL]J processes an uncustomized SQLJ statement that includes host
expressions, the driver might need to do extra processing to determine data types.
This extra processing can impact performance.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/0S, when the JDBC driver processes a CALL statement, the driver cannot
determine the parameter data types.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

164 Application Programming Guide and Reference for Java

Input parameters for BLOB columns

For input parameters for BLOB columns, you can use either of the following
techniques:

* Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;
#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a
java.sql.Blob object, and then populate that object.

For example, if you are using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, you can use the IBM Data Server Driver for JDBC
and SQLJ-only method com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob to
create a java.sql.Blob object and populate the object with byte[] data:
byte[] byteArray = {0, 1, 2, 3};
java.sql.Blob blobData =
com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);
¢ Use an input parameter of type of sqlj.runtime.BinaryStream. A
sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For
example:
java.io.ByteArrayInputStream byteStream =
new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
sqlj.runtime.BinaryStream binStream =

new sqlj.runtime.BinaryStream(byteStream, numBytes);
#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for INOUT parameters.
Output parameters for BLOB columns

For output or INOUT parameters for BLOB columns, you can use the following
technique:
* Declare the output parameter or INOUT variable with a java.sql.Blob data type:

java.sql.Blob blobData = null;
#sq1 CALL STORPROC (:0UT blobData)};

java.sql.Blob blobData = null;
#sql CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns

For input parameters for CLOB columns, you can use one of the following

techniques:

* Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a
java.sql.Clob object, and then populate that object.

For example, if you are using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, you can use the IBM Data Server Driver for JDBC
and SQLJ-only method com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob to
create a java.sql.Clob object and populate the object with String data:

String stringVal = "Some Data";
java.sql.Clob clobData =
com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

Chapter 4. SQLJ application programming 165

* Use one of the following types of stream IN parameters:
- A'sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;
java.io.StringReader reader = new java.io.StringReader(charData);
sqlj.runtime.CharacterStream charStream =

new sqlj.runtime.CharacterStream (reader, charData.length);
#sq1 {CALL STORPROC(:IN charStream)};

— Asqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(charDataBytes);
sqlj.runtime.UnicodeStream uniStream =

new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN uniStream)};

— Asqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
sqlj.runtime.AsciiStream asciiStream =

new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);
#sq1 {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You
cannot use this technique for INOUT parameters.
* Use a java.lang.String input parameter:

java.lang.String charData;
#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns

For output or INOUT parameters for CLOB columns, you can use one of the
following techniques:

* Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;
#sql CALL STORPROC(:0UT clobData)};

* Use a java.lang.String output variable:

java.lang.String charData = null;
#sql CALL STORPROC(:0UT charData)};

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns

DBCLOB output or INOUT parameters for stored procedures are not supported.

SQLJ and JDBC in the same application

You can combine SQLJ clauses and JDBC calls in a single program.

To do this effectively, you need to be able to do the following things:

* Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC
Connection from an SQLJ ConnectionContext.

* Use an SQL]J iterator to retrieve data from a JDBC ResultSet or generate a JDBC
ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

166 Application Programming Guide and Reference for Java

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the SQLJ DriverManager.getConnection or DataSource.getConnection
method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument
to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQL] ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any
other necessary parameters as its arguments to create the ConnectionContext
object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC
Connection object.

See "Connect to a data source using SQLJ" for more information on SQL]J
connections.

Retrieving JDBC result sets using SQL] iterators: Use the iterator conversion
statement to manipulate a JDBC result set as an SQL] iterator. The general form of
an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must
conform to the following rules:

* The iterator must be declared as public.

* If the iterator is a positioned iterator, the number of columns in the result set
must match the number of columns in the iterator. In addition, the data type of
each column in the result set must match the data type of the corresponding
column in the iterator.

e If the iterator is a named iterator, the name of each accessor method must match
the name of a column in the result set. In addition, the data type of the object
that an accessor method returns must match the data type of the corresponding
column in the result set.

The code in [Figure 40 on page 16§ builds and executes a query using a JDBC call,
executes an iterator conversion statement to convert the JDBC result set to an SQL]J
iterator, and retrieves rows from the result table using the iterator.

Chapter 4. SQL] application programming 167

#sq1 public iterator ByName(String LastName, Date HireDate);
public void HireDates(ConnectionContext connCtx, String whereClause)

{

ByName nameiter; // Declare object of ByName class
Connection conn=connCtx.getConnection();

// Create JDBC connection
Statement stmt = conn.createStatement();
String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";
query+=whereClause; // Build the query
ResultSet rs = stmt.executeQuery(query);
#sql [connCtx] nameiter = {CAST :rs}; 4
while (nameiter.next())

{

System.out.printin(nameiter.LastName() + " was hired on "
+ nameiter.HireDate());

nameiter.close(); 5
stmt.close();

}
Figure 40. Converting a JDBC result set to an SQLJ iterator

Notes to

Note Description

This SQLJ clause creates the named iterator class ByName, which has accessor
methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

2] This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

ﬂ This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the
result table.

B The nameiter.close() method closes the SQL]J iterator and JDBC ResultSet rs.

Generating [DBC ResultSets from SQL] iterators: Use the getResultSet method to
generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a
getResultSet method. After you access the ResultSet that underlies an iterator,
you need to fetch rows using only the ResultSet.

The code in [Figure 41 on page 169 generates a positioned iterator for a query,
converts the iterator to a result set, and uses JDBC methods to fetch rows from the
table.

168 Application Programming Guide and Reference for Java

#sql iterator EmpIter(String, java.sql.Date);
{

EmpIter iter=null;

#sq1 [connCtx] iter=

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; 1
ResultSet rs=iter.getResultSet(); 2
while (rs.next()) 3

{ System.out.printin(rs.getString(1) + " was hired in " +
rs.getDate(2));
}

rs.close(); 4]
}

Figure 41. Converting an SQLJ iterator to a JDBC ResultSet

Notes to

Note Description

This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object
to variable iter.

2] The getResultSet() method accesses the ResultSet that underlies iterator iter.
The JDBC getString() and getDate() methods retrieve values from the ResultSet.
The next() method moves the cursor to the next row in the ResultSet.

4] The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQL] applications: When you
write SQL]J applications that include JDBC result sets, observe the following rules
and restrictions:

* Before you can access the columns of a remote table by name, through either a
named iterator or an iterator that is converted to a JDBC ResultSet object, the
DB2 for z/OS DESCSTAT subsystem parameter must be set to YES.

* You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator
have different holdability attributes.

A JDBC ResultSet or an SQL]J iterator can remain open after a COMMIT
operation. For a JDBC ResultSet, this characteristic is controlled by the IBM
Data Server Driver for JDBC and SQL]J property resultSetHoldability. For an
SQL] iterator, this characteristic is controlled by the with holdability parameter
of the iterator declaration. Casting a ResultSet that has holdability to an SQL]J
iterator that does not, or casting a ResultSet that does not have holdability to an
SQL]J iterator that does, is not supported.

* Close the iterator or the underlying ResultSet object as soon as the program no
longer uses the iterator or ResultSet, and before the end of the program.
Closing the iterator also closes the ResultSet object. Closing the ResultSet object
also closes the iterator object. In general, it is best to close the object that is used
last.

* For the IBM Data Server Driver for JDBC and SQLJ, which supports scrollable
iterators and scrollable and updatable ResultSet objects, the following
restrictions apply:

— Scrollable iterators have the same restrictions as their underlying JDBC
ResultSet objects.

— You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator
that is updatable.

Chapter 4. SQLJ application programming 169

Related reference:

[[DESCRIBE FOR STATIC field (DESCSTAT subsystem parameter) (DB2)]
[nstallation and Migration)|

Controlling the execution of SQL statements in SQLJ

You can use selected methods of the SQLJ ExecutionContext class to control or
monitor the execution of SQL statements.

Procedure

To use ExecutionContext methods, follow these steps:
1. Acquire the default execution context from the connection context.
There are two ways to acquire an execution context:
* Acquire the default execution context from the connection context. For
example:
ExecutionContext execCtx = connCtx.getExecutionContext();
* Create a new execution context by invoking the constructor for
ExecutionContext. For example:
ExecutionContext execCtx=new ExecutionContext();
2. Associate the execution context with an SQL statement.
To do that, specify an execution context after the connection context in the
execution clause that contains the SQL statement.
3. Invoke ExecutionContext methods.
Some ExecutionContext methods are applicable before the associated SQL

statement is executed, and some are applicable only after their associated SQL
statement is executed.

For example, you can use method getUpdateCount to count the number of rows
that are deleted by a DELETE statement after you execute the DELETE
statement.

Example

The following code demonstrates how to acquire an execution context, and then
use the getUpdateCount method on that execution context to determine the number
of rows that were deleted by a DELETE statement. The numbers to the right of
selected statements correspond to the previously-described steps.

ExecutionContext execCtx=new ExecutionContext(); 1

#sq1 [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000}; 2
System.out.printin("Deleted " + execCtx.getUpdateCount() + " rows"); [k

Related tasks:

“Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ’|
on page 120)|

“Handling SQL warnings in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and|
SQLJ]” on page 117]

ROWIDs in SQLJ with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a table.
A ROWID is a value that uniquely identifies a row in a table.

170 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

If you use columns with the ROWID data type in SQLJ programs, you need to
customize those programs.

JDBC 4.0 includes interface java.sql.Rowld that you can use in iterators and in
CALL statement parameters. If you do not have JDBC 4.0, you can use the IBM
Data Server Driver for JDBC and SQLJ-only class com.ibm.db2.jcc.DB2RowID. For
an iterator, you can also use the byte[] object type to retrieve ROWID values.

The following code shows an example of an iterator that is used to select values
from a ROWID column:

#sql iterator PosIter(int,String,java.sql.Rowld);
// Declare positioned iterator
// for retrieving ITEM ID (INTEGER),
// ITEM_FORMAT (VARCHAR), and ITEM _ROWID (ROWID)
// values from table ROWIDTAB

PosIter positrowid; // Declare object of PosIter class
java.sql.RowId rowid = null;
int id = 0;
String i_fmt = null;
// Declare host expressions
#sql [ctxt] positrowid =
{SELECT ITEM_ID, ITEM_FORMAT, ITEM ROWID FROM ROWIDTAB
WHERE ITEM_ID=3};
// Assign the result table of the SELECT
// to iterator object positrowid
#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the first row
while (!positrowid.endFetch())
// Check whether the FETCH returned a row
{System.out.printin("Item ID " + id + " Item format " +
i_fmt + " Item ROWID ");
MyUtilities.printBytes(rowid.getBytes());
// Use the getBytes method to
// convert the value to bytes for printing.
// Call a user-defined method called
// printBytes (not shown) to print
// the value.
#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the next row

positrowid.close(); // Close the iterator

}

Figure 42. Example of using an iterator to retrieve ROWID values

The following code shows an example of calling a stored procedure that takes
three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT
parameter.

Chapter 4. SQL] application programming 171

java.sql.RowId in_rowid = rowid;

Jjava.sqlRowId out_rowid = null;

java.sql.RowId inout_rowid = rowid;
// Declare an IN, OUT, and
// INOUT ROWID parameter

#sq1 [myConnCtx] {CALL SP_ROWID(:IN in_rowid,
:0UT out_rowid,
:INOUT inout_rowid)};
// Call the stored procedure
System.out.printin("Parameter values from SP_ROWID call: ");
System.out.printIn("OUT parameter value ");
MyUtilities.printBytes(out_rowid.getBytes());
// Use the getBytes method to
// convert the value to bytes for printing
// Call a user-defined method called
// printBytes (not shown) to print
// the value.
System.out.printIn("INOUT parameter value ");
MyUtilities.printBytes(inout_rowid.getBytes());

Figure 43. Example of calling a stored procedure with a ROWID parameter

TIMESTAMP WITH TIME ZONE values in SQLJ applications

DB2 for z/OS supports table columns with the TIMESTAMP WITH TIME ZONE
data type. IBM Data Server Driver for JDBC and SQLJ supports update into and
retrieval from a column with the TIMESTAMP WITH TIME ZONE data type in
SQLJ programs.

When you update or retrieve a TIMESTAMP WITH TIME ZONE value, or call a
stored procedure with a TIMESTAMP WITH TIME ZONE parameter, you need to
use host variables that are com.ibm.db2.jcc.DBTimestamp objects to retain the time
zone information. If you use java.sql.Timestamp objects to pass TIMESTAMP
WITH TIME ZONE values to and from the data server, you lose the time zone
information.

Because the com.ibm.db2.jcc.DBTimestamp class is a IBM Data Server Driver for
JDBC and SQLJ-only class, if you run an uncustomized SQLJ application that uses
com.ibm.db2.jcc.DBTimestamp objects, the application receives an SQLException.

Examples

Suppose that table TSTABLE has a single column, TSCOL, which has data type
TIMESTAMP WITH TIME ZONE. The following code assigns a timestamp value
with a time zone to the column, and retrieves the value from the column.

#sql iterator TSIter(com.ibm.db2.jcc.DBTimestamp TSVar);
{

java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
// Set the time zone to UTC-5
java.util.Calendar estcal= java.util.Calendar.getInstance(esttz);
// Create a calendar instance
// with the EST time zone
java.sql.Timestamp ts =
java.sql.Timestamp.valueOf("2009-02-27 21:22:33.444444");
// Initialize a timestamp object
// with the datetime value that you
// want to put in the table
com.ibm.db2.jcc.DBTimestamp dbts =

172 Application Programming Guide and Reference for Java

new com.ibm.db2.jcc.DBTimestamp(ts,estcal);
// Create a datetime object that
// includes the time zone
#sql[ctx] {INSERT INTO TSTABLE (TSCOL) VALUES (:dbts)};
// Insert the datetime object in
// the table
#sql[ctx] {COMMIT};

TSIter iter = null;

#sql [ctx] iter = {SELECT TSCOL FROM TSTABLE};
// Assign the result table of the SELECT

while (iter.next()) {

System.out.printin ("Timestamp = " +
((com.ibm.db2.jcc.DBTimestamp)iter.TSVar()).toDBString(true));

// Use accessor method TSVar to retrieve
// the TIMESTAMP WITH TIME ZONE value,
// cast it to a DBTimestamp value,
// and retrieve its string representation.
// Value retrieved:
// 2009-02-27 21:22:33.444444-05:00

}

1

Suppose that stored procedure TSSP has a single INOUT parameter, TSPARM,
which has data type TIMESTAMP WITH TIME ZONE. The following code calls
the stored procedure with a timestamp value that includes a time zone, and
retrieves a parameter value with a timestamp value that includes a time zone.

{

java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
// Set the time zone to UTC-5

java.util.Calendar estcal= java.util.Calendar.getInstance(esttz);
// Create a calendar instance
// with the EST time zone

java.sql.Timestamp ts =

java.sql.Timestamp.valueOf("2009-02-27 21:22:33.444444");
// Initialize a timestamp object
// with the timestamp value that you
// want to pass to the stored procedure

com.ibm.db2.jcc.DBTimestamp dbts =

new com.ibm.db2.jcc.DBTimestamp(ts,estcal);

// Create a timestamp object that
// includes the time zone to
// pass to the stored procedure

#sql[ctx] { CALL TSSP (:INOUT dbts) };

System.out.printin ("Output parameter: " + dbts.toDBString (true));
// Call the stored procedure with
// the timestamp value as input,
// and retrieve a timestamp value
// with a time zone in the same
// parameter

}

Distinct types in SQLJ applications

In an SQLJ program, you can create a distinct type using the CREATE DISTINCT
TYPE statement in an executable clause.

You can also use CREATE TABLE in an executable clause to create a table that
includes a column of that type. When you retrieve data from a column of that
type, or update a column of that type, you use Java host variables or expressions
with data types that correspond to the built-in types on which the distinct types
are based.

Chapter 4. SQL] application programming 173

The following example creates a distinct type that is based on an INTEGER type,
creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

String empNumVar;
int shoeSizeVar;

#sq1 [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};
// Create distinct type
#sql [myConnCtx] {COMMIT}; // Commit the create
#sq1 [myConnCtx] {CREATE TABLE EMP_SHOE
(EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};
// Create table using distinct type
#sql [myConnCtx] {COMMIT}; // Commit the create
#sq1 [myConnCtx] {INSERT INTO EMP_SHOE
VALUES('000010',6)}; // Insert a row in the table
#sq1 [myConnCtx] {COMMIT}; // Commit the INSERT
#sq1 [myConnCtx] {SELECT EMPNO, EMP_SHOE SIZE
INTO :empNumVar, :shoeSizeVar
FROM EMP_SHOE}; // Retrieve the row
System.out.printIn("Employee number: " + empNumVar +
" Shoe size: " + shoeSizeVar);

Figure 44. Defining and using a distinct type

Related reference:

[[CREATE TYPE (distinct) (DB2 SQL)

Savepoints in SQLJ applications

Under the IBM Data Server Driver for JDBC and SQLJ, you can include any form
of the SQL SAVEPOINT statement in your SQLJ program.

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Figure 45. Setting, rolling back to, and releasing a savepoint in an SQLJ application

#sql context Ctx; // Create connection context class Ctx
String empNumVar;
int shoeSizeVar;

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch (ClassNotFoundException e) {
e.printStackTrace();

1

Connection jdbccon=
DriverManager.getConnection("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password);
// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx ctxt=new Ctx(jdbccon);
// Create connection context object myConnCtx
// for the connection to NEWYORK
- // Perform some SQL
#sql [ctxt] {COMMIT}; // Commit the transaction

174 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtypedistinct.htm#db2z_sql_createtypedistinct

// Commit the create
#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000010', 6)};
// Insert a row
#sql [ctxt]
{SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};
// Create a savepoint

#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000020', 10)};
// Insert another row
#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};
// Roll back work to the point
// after the first insert

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};
// Release the savepoint
ctx.close(); // Close the connection context

XML data in SQLJ applications

In SQLJ applications, you can store data in XML columns and retrieve data from
XML columns.

In DB2 tables, the XML built-in data type is used to store XML data in a column as
a structured set of nodes in a tree format.

SQLJ applications can send XML data to the data server or retrieve XML data from
the data server in one of the following forms:

e As textual XML data

* As binary XML data (data that is in the Extensible Dynamic Binary XML DB2
Client/Server Binary XML Format), if the data server supports it

In SQLJ applications, you can:

* Store an entire XML document in an XML column using INSERT, UPDATE, or
MERGE statements.

* Retrieve an entire XML document from an XML column using single-row
SELECT statements or iterators.

* Retrieve a sequence from a document in an XML column by using the SQL
XMLQUERY function to retrieve the sequence in the database, and then using
single-row SELECT statements or iterators to retrieve the serialized XML string
data into an application variable.

* You can update or retrieve XML data as textual XML data. Alternatively, for
connections to a data server that supports binary XML data, you can update or
retrieve XML data as binary XML data.

For data retrieval, you use the Datasource or Connection property xmlFormat to
control whether the format of the retrieved data is textual XML or binary XML.

For update of data in XML columns, xmlFormat has no effect. If the input data
is binary XML data, and the data server does not support binary XML data, the
input data is converted to textual XML data. Otherwise, no conversion occurs.
The format of XML data is transparent to the application. Storage and retrieval
of binary XML data on a DB2 for z/OS data server requires version 4.9 or later
of the IBM Data Server Driver for JDBC and SQL]J. Storage and retrieval of
binary XML data on a DB2 for Linux, UNIX, and Windows data server requires
version 4.11 or later of the IBM Data Server Driver for JDBC and SQL]J.

Chapter 4. SQL] application programming 175

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML
columns. Invocations of metadata methods, such as
ResultSetMetaData.getColumnType return the integer value java.sql.Types.SQLXML
for an XML column type.

Related concepts:

[“XML data retrieval in SQL]J applications” on page 178|

[“XML column updates in SQLJ applications”]|

XML column updates in SQLJ applications

In an SQLJ application, you can update or insert data into XML columns of a table
at a DB2 data server using XML textual data. You can update or insert data into
XML columns of a table using binary XML data (data that is in the Extensible
Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data server
supports binary XML data.

The host expression data types that you can use to update XML columns are:

* java.sqL.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data
Server Driver for JDBC and SQLJ version 4.0 or later)

e com.ibm.db2.jcc.DB2Xml (deprecated)

* String

* byte

* Blob

¢ Clob

* sqlj.runtime.AsciiStream

* sqlj.runtime.BinaryStream

* sqlj.runtime.CharacterStream

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the data source as character
data is treated as externally encoded data. The external encoding is the default
encoding for the JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent
to the data source as character data, but the data contains encoding information.
The data source handles incompatibilities between internal and external encoding
as follows:

e If the data source is DB2 for Linux, UNIX, and Windows, the data source
generates an error if the external and internal encoding are incompatible, unless
the external and internal encoding are Unicode. If the external and internal
encoding are Unicode, the data source ignores the internal encoding.

* If the data source is DB2 for z/OS, the data source ignores internal encoding.
Character data in XML columns is stored in UTF-8 encoding.

Example: Suppose that you use the following statement to insert data from String
host expression xmlString into an XML column in a table. xmlString is a character
type, so its external encoding is used, whether or not it has an internal encoding
specification.

#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xml1String)};

176 Application Programming Guide and Reference for Java

Example: Suppose that you copy the data from xmlString into a byte array with
CP500 encoding. The data contains an XML declaration with an encoding
declaration for CP500. Then you insert the data from the byte[] host expression
into an XML column in a table.

byte[] xmlBytes = xmIString.getBytes("CP500");
#sq1[ctx] {INSERT INTO CUSTACC VALUES (4, :xmlBytes)};

A byte string is considered to be internally encoded data. The data is converted
from its internal encoding scheme to UTF-8, if necessary, and stored in its
hierarchical format on the data source.

Example: Suppose that you copy the data from xmlString into a byte array with
US-ASCII encoding. Then you construct an sqlj.runtime.AsciiStream host
expression, and insert data from the sqlj.runtime.AsciiStream host expression into
an XML column in a table on a data source.
byte[] b = xml1String.getBytes("US-ASCII");
java.io.ByteArrayInputStream xmlAsciilnputStream =

new java.io.ByteArrayInputStream(b);
sqlj.runtime.AsciiStream sqljXmlAsciiStream =

new sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);
#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlAsciiStream)};

sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is
converted from its internal encoding to UTF-8 encoding and stored in its
hierarchical form on the data source.

Example: sqlj.runtime.CharacterStream host expression: Suppose that you
construct an sqlj.runtime.CharacterStream host expression, and insert data from the
sqlj.runtime.CharacterStream host expression into an XML column in a table.
java.io.StringReader xmlReader =

new java.io.StringReader(xmlString);
sqlj.runtime.CharacterStream sqljXmlCharacterStream =

new sqlj.runtime.CharacterStream(xmlReader, xmIString.length());
#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljiXmlCharacterStream is a character type, so its external encoding is used,
whether or not it has an internal encoding specification.

Example: Suppose that you retrieve a document from an XML column into a
java.sql.SQLXML host expression, and insert the data into an XML column in a
table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

java.sql.SQLXML xmlObject = (java.sql.SQLXML)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the
data into another XML column, no conversion occurs.

Example: Suppose that you retrieve a document from an XML column into a
com.ibm.db2.jcc. DB2Xml host expression, and insert the data into an XML column
in a table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

com.ibm.db2.jcc.DB2Xml xmlObject = (com.ibm.db2.jcc.DB2Xm1)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

Chapter 4. SQL] application programming 177

After you retrieve the data it is still in UTF-8 encoding, so when you insert the
data into another XML column, no conversion occurs.

XML data retrieval in SQLJ applications

When you retrieve data from XML columns of a database table in an SQL]
application, the output data must be explicitly or implicitly serialized.

The host expression or iterator data types that you can use to retrieve data from

XML columns are:

* java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data
Server Driver for JDBC and SQLJ version 4.0 or later)

* com.ibm.db2 jcc.DB2Xml (deprecated)

 String

* byte][]

* sqlj.runtime.AsciiStream

* sqlj.runtime.BinaryStream

* sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval,
the data is converted from UTF-8 to the external application encoding for the
character data types, or the internal encoding for the binary data types. No XML
declaration is added. If the host expression is an object of the java.sql.SQLXML or
com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve
the data from this object. The method that you call determines the encoding of the
output data and whether an XML declaration with an encoding specification is
added.

The following table lists the methods that you can call to retrieve data from a
java.sql.SQLXML or a com.ibm.db2.jcc. DB2Xml object, and the corresponding
output data types and type of encoding in the XML declarations.

Table 29. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2Xm1BinaryStream targetEncoding
parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding
parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

178 Application Programming Guide and Reference for Java

If the application executes the XMLSERIALIZE function on the data that is to be
returned, after execution of the function, the data has the data type that is specified
in the XMLSERIALIZE function, not the XML data type. Therefore, the driver
handles the data as the specified type and ignores any internal encoding
declarations.

Example: Suppose that you retrieve data from an XML column into a String host
expression.
#sql iterator XmlStringIter (int, String);

#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};
#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the
external encoding, which is the default JVM encoding, and returned without any
XML declaration.

Example: Suppose that you retrieve data from an XML column into a byte[] host
expression.

#sql iterator XmlByteArrayIter (int, byte[]);

XmIByteArraylIter biter = null;

#sql [ctx] biter = {SELECT cl, CADOC from CUSTACC};
#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so no data conversion from UTF-8 encoding
occurs, and the data is returned without any XML declaration.

Example: Suppose that you retrieve a document from an XML column into a
java.sql.SQLXML host expression, but you need the data in a binary stream.
#sql iterator SqlXmlIter (int, java.sql.SQLXML);

SqlXmlIter SQLXMLiter = null;

java.sql.SQLXML outSqlXml = null;

#sql [ctx] SqlXmlIter = {SELECT cl, CADOC from CUSTACC};

#sql {FETCH :Sq1Xml1Iter INTO :row, :outSqlXml};

java.io.InputStream XmIStream = outSqlXml.getBinaryStream();

The FETCH statement retrieves the data into the SQLXML object in UTF-8
encoding. The SQLXML.getBinaryStream stores the data in a binary stream.

Example: Suppose that you retrieve a document from an XML column into a
com.ibm.db2 jec. DB2Xml host expression, but you need the data in a byte string
with an XML declaration that includes an internal encoding specification for
UTEF-8.

#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);

DB2Xm1Iter db2xmliter = null;

com.ibm.db2.jcc.DB2Xm1 outDB2Xml = null;

#sql [ctx] db2xmliter = {SELECT cl, CADOC from CUSTACC};

#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};

byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8
encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML
declaration with a UTF-8 encoding specification and stores the data in a byte array.

XMLCAST in SQLJ applications

Before you can use XMLCAST to cast a host variable to the XML data type in an
SQLJ application, you need to cast the host variable to the corresponding SQL data

type.

Chapter 4. SQL] application programming 179

Example: The following code demonstrates a situation in which it is necessary to
cast a String host variable to an SQL character type, such as VARCHAR, before
you use XMLCAST to cast the value to the XML data type.

String xmlresult = null;
String varchar_hv = "San Jose";

#sq1 [con] {SELECT XMLCAST(CAST(:varchar_hv AS VARCHAR(32)) AS XML) INTO
:xmlresult FROM SYSIBM.SYSDUMMY1};

Inserting data from file reference variables into tables in SQLJ
applications

You can use file reference variable objects with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS Version 9 or later to stream LOB or
XML input data.

Before you begin
You need to store your LOB or XML input data in HFS files.

About this task

Use of file reference variables eliminates the need to materialize the LOB or XML
data in memory before the data is stored in tables.

Procedure

To use file reference variables to store LOB or XML data in tables, follow these
steps:

1. Execute constructors for file reference variable objects of the appropriate types.
The following table lists the types of data in the input files and the appropriate

constructors.
Input data type Constructor
BLOB com.ibm.db2.jcc.DB2BlobFileReference
CLOB com.ibm.db2.jcc. DB2ClobFileReference
XML AS BLOB com.ibm.db2.jcc. DB2XmlAsBlobFileReference
XML AS CLOB com.ibm.db2.jcc. DB2XmlAsClobFileReference

The first parameter in each constructor must specify the absolute path name for
an existing HFS file.

2. Execute an INSERT statement with the file reference variable object as the input
host variable.

Example

Suppose that a table is defined like this:

CREATE TABLE TEST02TB (
RECID INTEGER,
CLOBCOL CLOB(106M),
BLOBCOL (200M) ,

XMLCOL XML)

180 Application Programming Guide and Reference for Java

The following code uses file reference variables to insert a CLOB value, a BLOB
value, and an XML AS BLOB value into the table. The numbers to the right of
selected statements correspond to the previously described steps.

com.ibm.db2.jcc.DB2CTobFileReference clobFileRef =
new com.ibm.db2.jcc.DB2CTobFileReference("/u/usrt001/jcc/test/TEXT.FILE","Cp0O37");
com.ibm.db2.jcc.DB2BTobFileReference blobFileRef =
new com.ibm.db2.jcc.DB2BTobFileReference("/u/usrt001/jcc/test/BINARY.FILE");
com.ibm.db2.jcc.DB2Xm1AsBT1obFileReference xmlAsBlobFileRef =
new com.ibm.db2.jcc.DB2XmIAsBlobFileReference(
"/u/usrt001/jcc/test/XML.FILE");
// Execute constructors for the file reference
// variable objects
#sql [ctx] {"INSERT INTO TESTO3TB(RECID,CLOBCOL,BLOBCOL,XMLCOL) ﬂ
VALUES('003"',:cTobFileRef,:blobFileRef, :xm1AsBlobFileRef)};

SQLJ utilization of SDK for Java Version 5 function

Your SQLJ applications can use a number of functions that were introduced with
the SDK for Java Version 5.

Static import

The static import construct lets you access static members without qualifying those
members with the name of the class to which they belong. For SQL]J applications,
this means that you can use static members in host expressions without qualifying
them.

Example: Suppose that you want to declare a host expression of this form:
double r = cos(PI * E);

cos, PI, and E are members of the java.lang.Math class. To declare r without
explicitly qualifying cos, PI, and E, include the following static import statement in
your program:

import static java.lang.Math.x*;

Annotations

Java annotations are a means for adding metadata to Java programs that can also
affect the way that those programs are treated by tools and libraries. Annotations
are declared with annotation type declarations, which are similar to interface
declarations. Java annotations can appear in the following types of classes or
interfaces:

* Class declaration

* Interface declaration

* Nested class declaration

* Nested interface declaration

You cannot include Java annotations directly in SQL] programs, but you can
include annotations in Java source code, and then include that source code in your
SQLJ programs.

Example: Suppose that you declare the following marker annotation in a program
called MyAnnot.java:

public @interface MyAnot { }

Chapter 4. SQL] application programming 181

You also declare the following marker annotation in a program called
MyAnnot?2 java:

public @interface MyAnot2 { }

You can then use those annotations in an SQLJ program:

// Class annotations
OMyAnot2 public @MyAnot class TestAnnotation

// Field annotation
@MyAnot
private static final int fieldl = 0;
// Constructor annotation
@MyAnot2 public @MyAnot TestAnnotation () { }
// Method annotation
@MyAnot
public static void main (String a[])
{
TestAnnotation TestAnnotation o = new TestAnnotation();
TestAnnotation_o.runThis();
1
// Inner class annotation
public static @MyAnot class TestAnotherInnerClass { }
// Inner interface annotation
public static @MyAnot interface TestAnotInnerInterface { }

}
Enumerated types

An enumerated type is a data type that consists of a set of ordered values. The
SDK for Java version 5 introduces the enum type for enumerated types.

You can include enums in the following places:
* In Java source files (.java files) that you include in an SQL]J program

* In SQLJ class declarations

Example: The TestEnum.sqlj class declaration includes an enum type:
public class TestEnum2

{
public enum Color {
RED,ORANGE,YELLOW,GREEN,BLUE, INDIGO,VIOLET}
Color color;
e // Get the value of color
switch (color) {
case RED:
System.out.printin("Red is at one end of the spectrum.");
#sql[ctx] { INSERT INTO MYTABLE VALUES (:color) };
break;
case VIOLET:
System.out.printIn("Violet is on the other end of the spectrum.");
break;
case ORANGE:
case YELLOW:
case GREEN:
case BLUE:
case INDIGO:
System.out.printIn("Everything else is in the middle.");
break;

}

182 Application Programming Guide and Reference for Java

Generics

You can use generics in your Java programs to assign a type to a Java collection.
The SQLJ translator tolerates Java generic syntax. Examples of generics that you
can use in SQL]J programs are:

e AlList of List objects:
List <List<String>> strList2 = new ArrayList<List<String>>();

* A HashMap in which the key/value pair has the String type:
Map <String,String> map = new HashMap<String,String>();

* A method that takes a List with elements of any type:
public void mthd(List <?> obj) {

=

Although you can use generics in SQL]J host variables, the value of doing so is
limited because the SQLJ translator cannot determine the types of those host
variables.

Enhanced for loop

The enhanced for lets you specify that a set of operations is performed on each
member of a collection or array. You can use the iterator in the enhanced for loop
in host expressions.

Example: INSERT each of the items in array names into table TAB.

String[] names = {"ABC","DEF","GHI"};
for (String n : names)

{
#sq1 {INSERT INTO TAB (VARCHARCOL) VALUES(:n) };

}
Varargs

Varargs make it easier to pass an arbitrary number of values to a method. A Vararg
in the last argument position of a method declaration indicates that the last
arguments are an array or a sequence of arguments. An SQLJ program can use the
passed arguments in host expressions.

Example: Pass an arbitrary number of parameters of type Object, to a method that
inserts each parameter value into table TAB.

public void runThis(Object... objects) throws SQLException
{ for (Object obj : objects)

{ #sq1 { INSERT INTO TAB (VARCHARCOL) VALUES(:obj) };
} }

Transaction control in SQLJ applications

In SQLJ applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

Chapter 4. SQLJ application programming 183

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause.

About this task

The following table shows the values that you can specify in the SET
TRANSACTION ISOLATION LEVEL clause and their DB2 equivalents.

Table 30. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level
SERIALIZABLE Repeatable read
REPEATABLE READ Read stability
READ COMMITTED Cursor stability
READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQL]J
connection.

Related concepts:

[/TDBC connection objects” on page 26|

Committing or rolling back SQLJ transactions

If you disable autocommit for an SQL]J connection, you need to perform explicit
commit or rollback operations. You do this using execution clauses that contain the
SQL COMMIT or ROLLBACK statements.

Example

To commit a transaction in an SQLJ program, use a statement like this:
#sq1 [myConnCtx] {COMMIT};

To roll back a transaction in an SQL] program, use a statement like this:
#sq1 [myConnCtx] {ROLLBACK};
Related tasks:

[“Connecting to a data source using SQL]” on page 127

[“Committing or rolling back SQLJ transactions”|

Handling SQL errors and warnings in SQLJ applications

SQLJ clauses throw SQLExceptions when SQL errors occur, but not when most
SQL warnings occur.

About this task

SQL]J generates an SQLException under the following circumstances:
* When any SQL statement returns a negative SQL error code
* When a SELECT INTO SQL statement returns a +100 SQL error code

You need to explicitly check for other SQL warnings.

184 Application Programming Guide and Reference for Java

Procedure
* For SQL error handling, include try/catch blocks around SQLJ statements.

e For SQL warning handling, invoke the getWarnings method after every SQLJ
statement.

Handling SQL errors in an SQLJ application
SQLJ clauses use the JDBC class java.sql.SQLException for error handling.

Procedure

To handle SQL errors in SQL]J applications, following these steps:
1. Import the java.sql.SQLException class.

2. Use the Java error handling try/catch blocks to modify program flow when an
SQL error occurs.

3. Obtain error information from the SQLException.
You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.

If you are using the IBM Data Server Driver for JDBC and SQL]J, obtain
additional information from the SQLException by casting it to a DB2Diagnosable
object, in the same way that you obtain this information in a JDBC application.

Example

The following code prints out the SQL error that occurred if a SELECT statement
fails.
try {

#sql [ctxt] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};
1

catch(SQLException e) {
System.out.printIn("Error code returned: " + e.getErrorCode());

}
Related tasks:

“Handling an SQLException under the IBM Data Server Driver for JDBC and|
SQLJ” on page 117]

Handling SQL warnings in an SQLJ application

Other than a +100 SQL error code on a SELECT INTO statement, warnings from
the data server do not throw SQLExceptions. To handle warnings from the data
server, you need to give the program access to the java.sql.SQLWarning class.

About this task

If you want to retrieve data-server-specific information about a warning, you also
need to give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface
and the com.ibm.db2.jcc.DB2Sqlca class.

Procedure

To retrieve data-server-specific information about a warning:

1. Set up an execution context for that SQL clause. See "Control the execution of
SQL statements in SQLJ" for information on how to set up an execution context.

Chapter 4. SQLJ application programming 185

2. To check for a warning from the data server, invoke the getWarnings method
after you execute an SQLJ clause.

getWarnings returns the first SQLWarning object that an SQL statement
generates. Subsequent SQLWarning objects are chained to the first one.

3. To retrieve data-server-specific information from the SQLWarning object with the
IBM Data Server Driver for JDBC and SQLJ, follow the instructions in "Handle
an SQLException under the IBM Data Server Driver for JDBC and SQLJ".

Example

The following example demonstrates how to retrieve an SQLWarning object for an
SQL clause with execution context execCtx. The numbers to the right of selected
statements correspond to the previously-described steps.
ExecutionContext execCtx=myConnCtx.getExecutionContext(); 1]

// Get default execution context from

// connection context
SQLWarning sqlWarn;

#sq1 [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO='000010'};
if ((sqlWarn = execCtx.getWarnings()) != null) 2]
System.out.printIn("SQLWarning " + sqlWarn);

Related tasks:
[“Handling SQL errors in an SQLJ application” on page 185|

Closing the connection to a data source in an SQLJ application

When you have finished with a connection to a data source, you need to close the
connection to the data source. Doing so releases the DB2 and SQLJ resources for
the associated ConnectionContext object immediately.

About this task

If you do not close a ConnectionContext object after you use it, unexpected
behavior might occur if a Java finalizer closes the ConnectionContext object.
Examples of the unexpected behavior are:

* An ObjectClosedException on the underlying ResultSet or Statement objects
* Agent hangs in DB2 stored procedures

Procedure

To close the connection to the data source, use one of the ConnectionContext.close
methods.

* If you execute ConnectionContext.close() or
ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the connection
context, as well as the connection to the data source, are closed.

 If you execute ConnectionContext.close(ConnectionContext.KEEP_CONNECTION)
the connection context is closed, but the connection to the data source is not.

Example

The following code closes the connection context, but does not close the connection
to the data source.

186 Application Programming Guide and Reference for Java

ctx = new EzSqljctx(con0); // Create a connection context object
// from JDBC connection con®
- // Perform various SQL operations
EzSqljctx.close(ConnectionContext.KEEP_CONNECTION) ;
// Close the connection context but keep
// the connection to the data source open

Related tasks:
[“Connecting to a data source using SQL]” on page 127|

Chapter 4. SQL] application programming

187

188 Application Programming Guide and Reference for Java

Chapter 5. Java stored procedures and user-defined functions

Like stored procedures and user-defined functions in any other language, Java
stored procedures and user-defined functions are programs that can contain SQL
statements. You invoke Java stored procedures from a client program that is
written in any supported language.

The following topics contain information that is specific to defining and writing
Java user-defined functions and stored procedures.

In these topics, the word routine refers to either a stored procedure or a
user-defined function.

Related reference:

[[fava sample JDBC stored procedure (DB2 9 for z/OS Stored Procedures|
[Through the CALL and Beyond)|

ava stored procedure returning a column or z tore
[y d d ing a BLOB column (DB2 9 for z/OS Stored)
[Procedures: Through the CALL and Beyond)|

[+ [fava stored procedure returning a CLOB column (DB2 9 for z/OS Stored|
[Procedures: Through the CALL and Beyond)|

[[Debugeing Java procedures on Linux, UNIX, and Windows (DB2 9 for z/OS|
[Stored Procedures: Through the CALL and Beyond)|

[[fava sample SQLJ stored procedure (DB2 9 for z/OS Stored Procedures]
[Through the CALL and Beyond)|

Setting up the environment for Java routines

Before you can run Java routines, you need to set up a WLM environment and set
Java environment variables.

Before you begin

Before you can prepare and run Java routines, you need to satisfy the following
prerequisites:
* Java 2 Technology Edition, V5 or later.

The IBM Data Server Driver for JDBC and SQLJ supports 31-bit or 64-bit Java
routines. For 64-bit Java routines, you need Java 2 Technology Edition, V6 or
later.

« TCP/IP
TCP/IP is required on the client and all database servers to which you connect.

* The 4.xx version of the IBM Data Server Driver for JDBC and SQL]J that matches
the DB2 for z/OS version.

If you are migrating from a previous release of DB2 for z/OS, you need to
install the corresponding version of the IBM Data Server Driver for JDBC and

SQLJ.
About this task

The steps in this ask are necessary for preparing and running Java routines.

© Copyright IBM Corp. 1998, 2013 189

http://www.redbooks.ibm.com/redbooks/SG247604/13-10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-4.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-4.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-5.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-5.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-11.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-11.htm

If you plan to use IBM Optim Development Studio to prepare and run your Java
routines, see the information on developing database routines in the Integrated
Data Management Information Center, at the following URL:

http://publib.boulder.ibm.com/infocenter/idm/v2rl/index.jsp
Procedure

To set up the environment for running Java routines, you need to perform these

tasks:

1. Ensure that your operating system, SDK for Java, and the IBM Data Server
Driver for JDBC and SQL]J are at the correct levels, and that you have installed
all prerequisite products.

Important: If you have migrated the DB2 subsystem from a previous release of
DB2 for z/OS, your existing Java stored procedures and user-defined function
no longer work with the previous release of the IBM Data Server Driver for
JDBC and SQLJ and the current release of DB2 for z/OS. You need to install the
version of the IBM Data Server Driver for JDBC and SQLJ that matches the
DB2 for z/OS release level, and update the WLM-managed stored procedure
address space configuration and JAVAENV data set to use the current driver.

2. Create the Workload Manager for z/OS (WLM) application environment for
running the routines.

3. Set up the run-time environment for Java routines, which includes setting
environment variables.

Setting up the WLM application environment for Java routines

You need different WLM application environments for Java routines from the
WLM application environments that you use for other routines.

About this task

Setting up a WLM environment for Java routines involves the same basic steps as
setting up a WLM environment for other routines.

Procedure
1. Create a WLM environment startup procedure for Java routines.
2. Define the WLM environment to WLM.

WLM address space startup procedure for Java routines
The WLM address space startup procedure for Java routines requires extra DD
statements that other routines do not need.

The following figure shows an example of a startup procedure for an address

space in which Java routines can run. The JAVAENV DD statement indicates to
DB2 that the WLM environment is for Java routines.

190 Application Programming Guide and Reference for Java

//DSNWLM PROC RGN=0K,APPLENV=WLMIJAV,DB2SSN=DSN,NUMTCB=5,

/1

MNSPAS=0//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM="'&DB2SSN,&NUMTCB,&APPLENV, &MNSPAS'

//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD

// DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=DSNB10.SDSNEXIT

// DD DISP=SHR,DSN=DSNB10.SDSNLOAD

// DD DISP=SHR,DSN=DSNB10.SDSNLOD2

//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV E
//JSPDEBUG DD SYSOUT=A

//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 46. Startup procedure for a WLM address space in which a Java routine runs

Notes to

In this statement:
* Change the DB2SSN value to your DB2 for z/OS subsystem name.

* Change the APPLENV value to the name of the application environment that
you set up for Java stored procedures.

* If your stored procedure address space runs routines in 31-bit Java virtual
machines (JVMs), the recommended NUMTCB value is 5. For testing a Java
stored procedure, NUMTCB=1 is recommended. With NUMTCB=1, only one
JVM is started, so refreshing the WLM environment after you change the stored
procedure takes less time.

If your stored procedure address space runs routines in a 64-bit, multi-threaded
environment, the recommended NUMTCB value is 25. The NUMTCB value
specifies the number of concurrent stored procedure executions within the
single JVM that runs in the stored procedure address space.

* Change the MNSPAS value to the minimum number of stored procedure
address spaces that WLM starts and maintains. Valid values are 0 to 50. If you
specify 0, WLM starts and shuts down stored procedure address spaces as
applications require them. Specify a value of greater than 0 if the overhead of
starting and shutting down stored procedure address spaces and JVMs makes
your response time unacceptable.

DSNX9WLM is the program that is executed to run stored procedures in a 31-bit

stored procedure environment. To run Java routines in a 64-bit, multi-threaded

environment, change DSNX9WLM to DSNX9W]JM.

JAVAENV specifies a data set that contains Language Environment® run-time

options for Java stored procedures. The presence of this DD statement indicates to

DB2 that the WLM environment is for Java routines. This data set must contain

the environment variable JAVA_HOME. This environment variable indicates to

DB2 that the WLM environment is for Java routines. JAVA_HOME also specifies

the highest-level directory in the set of directories that contain the SDK for Java.

Specifies a data set into which DB2 puts information that you can use to debug

your stored procedure. The information that DB2 collects is for assistance in

debugging setup problems, and should be used only under the direction of IBM

Software Support. You should comment out this DD statement during production.

Related concepts:

“WLM application environment values for Java routines”]

“Runtime environment for Java routines” on page 193]

WLM application environment values for Java routines
To define the application environment for Java routines to WLM, specify the
appropriate values on WLM setup panels.

Chapter 5. Java stored procedures and user-defined functions 191

Use values like those that are shown in the following screen examples.

File Utilities Notes Options Help h
Definition Menu WLM Appl
Command ===>
Definition data set . : none
Definition name WLMENV
Description Environment for Java stored procedures
Select one of the
following options. . . 9 1. Policies
2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments
q 10. Scheduling Environments)

Definition name
Specify the name of the WLM application environment that you are setting up
for stored procedures.

Description
Specify any value.
Options
Specify 9 (Application Environments).
~
Application-Environment Notes Options Help
Create an Application Environment
Command ===>
Application Environment Name . : WLMENV
Description Environment for Java stored procedures
Subsystem Type DB2
Procedure Name DSN8WLMP
Start Parameters DB2SSN=DB2T,NUMTCB=3 ,APPLENV=WLMENV
Limit on starting server address spaces for a subsystem instance:
1 1. No limit.
2. Single address space per system.
9 3. Single address spaces per sysplex.)

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the
stored procedure address spaces that are associated with this application
environment.

Start Parameters

If the DB2 subsystem in which the stored procedure runs is not in a sysplex,
specify a DB2SSN value that matches the name of that DB2 subsystem. If the
same JCL is used for multiple DB2 subsystems, specify DB2SSN=&IWMSSNM.
The NUMTCB value depends on the type of stored procedure you are running.
For Java routines that run in a 31-bit environment, the recommended value is
5. For Java routines that run in a 64-bit environment, the recommended value
is 25. Specify an APPLENV value that matches the value that you specify on

192 Application Programming Guide and Reference for Java

the CREATE PROCEDURE or CREATE FUNCTION statement for the routines
that run in this application environment.

Limit on starting server address spaces for a subsystem instance
Specify 1 (no limit).
Related concepts:

[“WLM address space startup procedure for Java routines” on page 190|

[“‘Runtime environment for Java routines”|

Runtime environment for Java routines

[N
>

For Java routines, the startup procedure for the stored procedure address space
contains a JAVAENV DD statement. This statement specifies a data set that
contains Language Environment runtime options for the routines that run in the
stored procedure address space.

Create the data set for the runtime options with the characteristics that are listed in
the following table.

Table 31. Data set characteristics for the JAVAENV data set

Primary space allocation 1 block
Secondary space allocation 1 block
Record format VB
Record length 255
Block size 4096

After you create the data set, edit it to insert a Language Environment options
string, which has this form:

B

I—XPLINK(ON) ,—|

ENVAR (—"—environment-variable—=—setting—"—-), >

»—MSGFILE (, , , s)
|—ddname—| l—recfm—| l—Zrecl—l |—bstize—| LI:NOE

A\
A

NQ
ENQ——I—

The maximum length of the Language Environment runtime options string in a
JAVAENYV data set for Java stored procedures is 245 bytes. If you exceed the
maximum length, DB2 truncates the contents but does not issue a message. If you
enter the contents of the JAVAENYV data set on more than one line, DB2
concatenates the lines to form the runtime options string. The runtime options
string can contain no leading or trailing blanks. Within the string, only blanks that
are valid within an option are permitted.

If your environment variable list is long enough that the JAVAENV content is
greater than 245 bytes, you can put the environment variable list in a separate data
set in a separate file, and use the environment variable _CEE_ENVFILE to point to
that file.

The descriptions of the parameters are:

Chapter 5. Java stored procedures and user-defined functions 193

_CEE_ENVFILE
Specifies a z/OS UNIX System Services data set that contains some or all of
the settings for environment variables.

Use the _CEE_ENVFILE parameter if the length of environment variable string
causes the total length of the JAVAENV content to exceed 245 bytes, which is
the DB2 limit for the JAVAENV content.

The data set must be variable-length.The format for environment variable
settings in this data set is:

environment-variable-1=setting-1
environment-variable-2=setting-2

environment-variable-n=setting-n

You can specify some of your environment variable settings as arguments of
ENVAR and put some of the settings in this data set, or you can put all of
your environment variable settings in this data set.

For example, to use file /u/db2b10/javasp/jspnolimit.txt for environment
variable settings, specify:
_CEE_ENVFILE=/u/db2b10/javasp/jspnolimit.txt

ENVAR

Sets the initial values for specified environment variables. The environment
variables that you might need to specify are:

CLASSPATH
When you prepare your Java routines, if you do not put your routine
classes into JAR files, include the directories that contain those classes. For
example:

CLASSPATH=. :/U/DB2RES3/ACMEJOS

Do not include directories for JAR files for JDBC or the JDK in the
CLASSPATH. If you use a DB2]JccConfiguration.properties file, you need to
include the directory that contains that file in the CLASSPATH.

DB2_BASE
The value of DB2_BASE is the highest-level directory in the set of HFS
directories that contain DB2 for z/OS code.

For example:
DB2_BASE=/usr/1pp/db2b10/base

The default is /usr/lpp/db2b10/base.

JAVA_HOME
This environment variable indicates to DB2 that the WLM environment is
for Java routines. The value of JAVA_HOME is the highest-level directory
in the set of directories that contain the SDK for Java. For example:

JAVA_HOME=/usr/1pp/java/IBM/J6.0

JCC_HOME
The value of JCC_HOME is the highest-level directory in the set of
directories that contain the JDBC driver. For example:

JCC_HOME=/usr/1pp/db2b16/jdbc

JCC_HOME must be set.

194 Application Programming Guide and Reference for Java

JDBCSTD

Specifies which version of the IBM Data Server Driver for JDBC and SQL]J
that Java routines use. Possible values are:

3 Java routines use the version of the driver that supports JDBC 3.0.
4 Java routines use the version of the driver that supports JDBC 4.0.

To run multiple Java stored procedures concurrently in a 64-bit
JVM, you must set JDBCSTD to 4.

JVM_DEBUG_PORTRANGE

This environment variable specifies a range of ports that the JVM listens on
for debug connections, in the form low-port-number::high-port-number. The
default is ports 8000 to 8050. For example:

JVM_DEBUG_PORTRANGE=8051::8055

Specify JVM_DEBUG_PORTRANGE only for WLM environments that are
used for debugging Java routines.

JVMPROPS

This environment variable specifies the name of a z/OS UNIX System
Services file that contains startup options for the JVM in which the stored
procedure runs. For example:

JVMPROPS=/usr/1pp/java/properties/jvmsp

The following example shows the contents of a startup options file that
you might use for a JVM in which Java stored procedures run:

Properties file for JVM for Java stored procedures
Sets the initial size of middleware heap within non-system heap
-Xms64M

Sets the maximum size of nonsystem heap
-Xmx128M

#initial size of system heap
-Xinitsh512K

For information about JVM startup options, see IBM 31-bit and 64-bit SDKs
for z/OS, Java 2 Technology Edition, Version 5 SDK and Runtime Environment
User Guide, available at:

http://www.ibm.com/servers/eserver/zseries/software/java

Click the Reference Information link.

LC_ALL

TZ

Modify LC_ALL to change the locale to use for the locale categories when
the individual locale environment variables specify locale information. This
value needs to match the CCSID for the DB2 subsystem on which the
stored procedures run. For example:

LC_ALL=En_US.IBM-037

Modify TZ to change the local timezone. For example:
TZ=PSTO8

The default is GMT (UTC).

USE_LIBJVM_G

Specifies whether the debug version of the JVM is used instead of the
default, non-debug version of the JVM. The debug version of the JVM is in

Chapter 5. Java stored procedures and user-defined functions 195

dynamic link library libjvm_g. If USE_LIBJVM_G is not specified, or its
value is anything other than the capitalized string YES, the non-debug
version of the JVM is used. For example, USE_LIBJVM_G=NO causes the
non-debug version of the JVM to be used.

If USE_LIBJVM_G=YES, the JVMPROPS environment variable must specify
a file that contains JVM startup options. That file must contain the startup
option -Djava.execsuffix=_g.

Specify USE_LIBJVM_G=YES only under the direction of IBM Software
Support.

WORK_DIR
Modify WORK_DIR to change the default destination for STDOUT and
STDERR output.

MSGFILE
Specifies the DD name of a data set in which Language Environment puts
runtime diagnostics. All subparameters in the MSGFILE parameter are
optional. The default is

MSGFILE(SYSOUT,FBA,121,0,NOENQ)

If you specify a data set name in the JSPDEBUG statement of your stored
procedure address space startup procedure, you need to specify JSPDEBUG as
the first parameter. If the NUMTCB value in the stored procedure address
space startup procedure is greater than 1, you need to specify ENQ as the fifth
subparameter. z/OS Language Environment Programming Reference contains
complete information about MSGFILE.

XPLINK(ON)
Causes the initialization of the XPLINK environment. This option must be
specified for a 31-bit environment, and should not be specified for a 64-bit
environment.

The following example shows the contents of a JAVAENYV data set.

ENVAR("JCC_HOME=/usr/1pp/db2b16/jdbc",
"JAVA_HOME=/usr/1pp/javal60/J6.0",
"WORK_DIR=/u/db2b10/tmp"),

MSGFILE (JSPDEBUG, , , ,ENQ)

For information on environment variables that are related to locales, see z/OS
C/C++ Programming Guide.

Related concepts:

“WLM address space startup procedure for Java routines” on page 190|

“WLM application environment values for Java routines” on page 191|

I Moving from 31-bit Java routines to 64-bit Java routines

I Modify your existing 31-bit Java routine environments to run Java routines in a
I 64-bit Java virtual machine (JVM). This change can provide better scalability and
I performance.

[About this task

[A stored procedure address space in which JVMs use 64-bit addressing supports a
| multi-threaded JVM model. With this model, the WLM address space starts a

196 Application Programming Guide and Reference for Java

single JVM that can concurrently execute multiple Java stored procedures or
user-defined functions. This model is more efficient than the 31-bit model, in which
a single routine runs in a JVM.

To run Java routines in 64-bit JVMs, you need to make several changes to the
environment and to your Java applications.

Procedure

1.

2.

Define a startup procedure for a WLM environment in which 64-bit JVMs can
run.

The following JCL shows an example of such a WLM startup procedure.

//DSNWJ64 PROC RGN=0K,APPLENV=DSNWLM_JAVA64,DB2SSN=DSN,
// NUMTCB=10,MNSPAS=0

//TEFPROC EXEC PGM=DSNX9WJIM,REGION=&RGN,TIME=NOLIMIT, 2]
// PARM="&DB2SSN,&NUMTCB,&APPLENV, &MNSPAS'

//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=DSNB10.SDSNEXIT

// DD DISP=SHR,DSN=DSNB10.SDSNLOAD

// DD DISP=SHR,DSN=DSNB10.SDSNLOD2

//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV
//JSPDEBUG DD SYSOUT=A

//CEEDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

In a 64-bit environment, NUMTCB controls the number of concurrent Java stored
procedure executions in a JVM. NUMTCB can be higher for a WLM address space
that supports 64-bit JVMs than for one that supports 31-bit JVMs.

Program DSNX9W]JM supports 64-bit JVMs.

Alter your stored procedure or user-defined function definitions to specify a
WLM environment name that matches the APPLENV value in the previous
step.

Define the application environment for 64-bit Java routines to WLM.

In WLM setup panels, use values like those that are shown in the following
screen examples.

~
File Utilities Notes Options Help
Definition Menu WLM Appl
Command ===>
Definition data set . : none
Definition name DSNWLM_JAVA64
Description Environment for Java stored procedures
Select one of the
following options. . . 9 1. Policies
2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments
10. heduling Environment
N 0. Sche g onments)

Definition name
Specify the name of the WLM application environment that you are setting

Chapter 5. Java stored procedures and user-defined functions 197

up for 64-bit routines. This is the same application environment name that
you specified in the ALTER PROCEDURE or ALTER FUNCTION statement
in the previous step.

Description
Specify any value.
Options
Specify 9 (Application Environments).
~
Application-Environment Notes Options Help
Create an Application Environment
Command ===>
Application Environment Name . : DSNWLM_JAVA64
Description Environment for 64-bit Java routines
Subsystem Type DB2
Procedure Name DSNWJ64
Start Parameters DB2SSN=DB2T,NUMTCB=10,APPLENV=DSNWLM_JAVAG4
Limit on starting server address spaces for a subsystem instance:
1 1. No Timit.
2. Single address space per system.
N 3. Single address spaces per sysplex.)

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the
stored procedure address spaces that are associated with this application
environment.

Start Parameters
If the DB2 subsystem in which the stored procedure runs is not in a
sysplex, specify a DB2SSN value that matches the name of that DB2
subsystem. If the same JCL is used for multiple DB2 subsystems, specify
DB25SN=&IWMSSNM. The NUMTCB value depends on the type of stored
procedure you are running. For running 64-bit Java routines, specify a
value between 5 and 8. Specify an APPLENYV value that matches the value
that you that you specified in the ALTER PROCEDURE or ALTER
FUNCTION statement in the previous step.

Limit on starting server address spaces for a subsystem instance
Specify 1 (no limit).
4. For Java routines that make Java Native Interface calls, recompile and link-edit
the DLLs for the native functions in 64-bit mode.

Defining Java routines and JAR files to DB2
Before you can use a Java routine, you need to define it to DB2.
About this task
Use the following procedure to manually define a Java routine to DB2. If you use

IBM Optim Development Studio, IBM Optim Development Studio creates the
definitions.

198 Application Programming Guide and Reference for Java

Procedure

1. Execute the CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. To alter the routine definition, use the ALTER
PROCEDURE or ALTER FUNCTION statement.

2. Optional: If the routines are in JAR files, define the JAR files to DB2.

If the routines are in JAR files, it is recommended that you also define the JAR

files to DB2. Alternatively, you can include the JAR file name in the
CLASSPATH.

To define the JAR files to DB2:

* Use the SQLJ.INSTALL_JAR or SQLJ.DB2_INSTALL_JAR built-in stored
procedure to define the JAR files to DB2.

 After you have installed a JAR, if that JAR references classes in other

installed JARs, use the SQLJ.ALTER_JAVA_PATH stored procedure to specify

the class resolution path that the JVM searches to resolve those class
references.

* To replace the JAR file, use the SQL].REPLACE_JAR or
SQLJ.DB2_REPLACE_JAR stored procedure.

* To remove the JAR file, use the SQL].REMOVE_JAR or
SQLJ.DB2_REMOVE_JAR stored procedure.

SQLJ.INSTALL_JAR, SQLJ, SQL].REPLACE_JAR, and SQLJ.REMOVE_JAR can

be used only with the local DB2 catalog. The other stored procedures can be
used with remote or local DB2 catalogs.

Definition of a Java routine to DB2
Before you can use a Java routine, you need to define it to DB2 using the CREATE

PROCEDURE or CREATE FUNCTION statement.

The definition for a Java routine is much like the definition for a routine in any
other language. However, the following parameters have different meanings for
Java routines.

LANGUAGE
Specifies the application programming language in which the routine is
written.

Specify LANGUAGE JAVA.
You cannot specify LANGUAGE JAVA for a user-defined table function.

EXTERNAL NAME
Specifies the program that runs when the procedure name is specified in a
CALL statement or the user-defined function name is specified in an SQL
statement. For Java routines, the argument of EXTERNAL NAME is a string

that is enclosed in single quotation marks. The EXTERNAL NAME clause for a

Java routine has the following syntax:

»>—EXTERNAL NAME

!

class-name .method-name !

L (1)
JAR-name :

Notes:

>

(2) |—(method—signature)—|

|~package-name—.

1 For compatibility with DB2 for Linux, UNIX, and Windows, you can use an exclamation point (!)
after JAR-name instead of a colon.

Chapter 5. Java stored procedures and user-defined functions

199

2

For compatibility with previous versions of DB2, you can use a slash (/) after package-name instead

of a period.

Whether you include JAR-name depends on where the Java code for the routine
resides. If you create a JAR file from the class file for the routine (the output
from the javac command), you need to include JAR-name. You must create the
JAR file and define the JAR file to DB2 before you execute the CREATE
PROCEDURE or CREATE FUNCTION statement. If some other user executes
the CREATE PROCEDURE or CREATE FUNCTION statement, you need to
grant the USAGE privilege on the JAR to them.

If you use a JAR file, that JAR file must refer to classes that are contained in
that JAR file, are found in the CLASSPATH, or are system-supplied. Classes

that are in directories that are referenced in DB2_HOME or JCC_HOME, and
JAVA_HOME do not need to be included in the JAR file.

Whether you include (method-signature) depends on the following factors:
* The way that you define the parameters in your routine method

Each SQL data type has a corresponding default Java data type. If your
routine method uses data types other than the default types, you need to
include a method signature in the EXTERNAL NAME clause. A method
signature is a comma-separated list of data types.

* Whether you overload a Java routine

If you have several Java methods in the same class, with the same name and
different parameter types, you need to specify the method signature to
indicate which version of the program is associated with the Java routine.

If your stored procedure returns result sets, you also need to include a
parameter in the method signature for each result set. The parameter can be in
one of the following forms:

* java.sql.ResultSet[]

* An array of an SQL] iterator class

You do not include these parameters in the parameter list of the SQL CALL
statement when you invoke the stored procedure.

Example: EXTERNAL NAME clause for a Java user-defined function: Suppose that
you write a Java user-defined function as method getSals in class S1Sal and
package sl. You put S1Sal in a JAR file named sal_JAR and install that JAR in
DB2. The EXTERNAL NAME parameter is :

EXTERNAL NAME 'sal_JAR:sl.S1Sal.getSals'

Example: EXTERNAL NAME clause for a Java stored procedure: Suppose that you
write a Java stored procedure as method getSals in class S1Sal. You put S1Sal
in a JAR file named sal JAR and install that JAR in DB2. The stored procedure
has one input parameter of type INTEGER and returns one result set. The Java
method for the stored procedure receives one parameter of type
java.lang.Integer, but the default Java data type for an SQL type of INTEGER is
int, so the EXTERNAL NAME clause requires a signature clause. The
EXTERNAL NAME parameter is :

EXTERNAL NAME 'sal_JAR:S1Sal.getSals(java.lang.Integer,java.sql.ResultSet[])"

NO SQL

Indicates that the routine does not contain any SQL statements.

For a Java routine that is stored in a JAR file, you cannot specify NO SQL.

PARAMETER STYLE

Identifies the linkage convention that is used to pass parameters to the routine.

200 Application Programming Guide and Reference for Java

For a Java routine, the only value that is valid is PARAMETER STYLE JAVA.

You cannot specify PARAMETER STYLE JAVA for a user-defined table
function.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the
routine is to run.

If you do not specify this parameter, the routine runs in the default WLM
environment that was specified when DB2 was installed.

PROGRAM TYPE
Specifies whether Language Environment runs the routine as a main routine or
a subroutine.

This parameter value must be PROGRAM TYPE SUB.

RUN OPTIONS
Specifies the Language Environment run-time options to be used for the
routine.

This parameter has no meaning for a Java routine. If you specify this
parameter with LANGUAGE JAVA, DB2 issues an error.

SCRATCHPAD
Specifies that when the user-defined function is invoked for the first time, DB2
allocates memory for a scratchpad.

You cannot use a scratchpad in a Java user-defined function. Do not specify
SCRATCHPAD when you create or alter a Java user-defined function.

FINAL CALL
Specifies that a final call is made to the user-defined function, which the
function can use to free any system resources that it has acquired.

You cannot perform a final call when you call a Java user-defined function. Do
not specify FINAL CALL when you create or alter a Java user-defined function.

DBINFO
Specifies that when the routine is invoked, an additional argument is passed
that contains environment information.

You cannot pass the additional argument when you call a Java routine. Do not
specify DBINFO when you call a Java routine.

SECURITY
Specifies how the routine interacts with an external security product, such as
RACEF, to control access to non-SQL resources. The values of the SECURITY
parameter are the same for a Java routine as for any other routine. However,
the value of the SECURITY parameter determines the authorization ID that
must have authority to access z/OS UNIX System Services. The values of
SECURITY and the IDs that must have access to z/OS UNIX System Services
are:

DB2 The user ID that is defined for the stored procedure address space in
the RACF started-procedure table.

EXTERNAL
The invoker of the routine.

DEFINER
The definer of the routine.

Chapter 5. Java stored procedures and user-defined functions 201

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether a Java stored procedure can be run in debugging mode.
When DYNAMICRULES run behavior is in effect, the default is determined by
using the value of the CURRENT DEBUG MODE special register. Otherwise
the default is DISALLOW DEBUG MODE.

ALLOW DEBUG MODE

Specifies that the procedure can be run in debugging mode.

DISALLOW DEBUG MODE

Specifies that the procedure cannot be run in debugging mode.

You can use an ALTER PROCEDURE statement to change this option to

ALLOW DEBUG MODE.
DISABLE DEBUG MODE

Specifies that the procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or
DISALLOW DEBUG MODE once the procedure has been created or altered
using DISABLE DEBUG MODE. To change this option, you must drop and
recreate the procedure using the desired option.

Example: Defining a Java stored procedure: Suppose that you have written and
prepared a stored procedure that has these characteristics:

Fully-qualified procedure name
Parameters

Language

Collection ID for the stored procedure
package

Package, class, and method name

Type of SQL statements in the program
WLM environment name

Maximum number of result sets returned

SYSPROC.S1SAL
DECIMAL(10,2) INOUT
Java

DSNJDBC

s1.S1Sal.getSals

Statements that modify DB2 tables
WLMIJAV

1

This CREATE PROCEDURE statement defines the stored procedure to DB2:

CREATE PROCEDURE SYSPROC.S1SAL
(DECIMAL(10,2) INOUT)
FENCED
MODIFIES SQL DATA
COLLID DSNJDBC
LANGUAGE JAVA
EXTERNAL NAME 's1.S1Sal.getSals'
WLM ENVIRONMENT WLMIJAV
DYNAMIC RESULT SETS 1
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

Example: Defining a Java user-defined function: Suppose that you have written and
prepared a user-defined function that has these characteristics:

Fully-qualified function name

Input parameter

Data type of returned value
Language

Collection ID for the function package
Package, class, and method name

202 Application Programming Guide and Reference for Java

MYSCHEMA.S2SAL
INTEGER
VARCHAR(20)

Java

DSNJDBC
s2.52Sal.getSals

Java data type of the method input java.lang.Integer

parameter

JAR file that contains the function class sal_JAR

Type of SQL statements in the program Statements that modify DB2 tables
Function is called when input parameter is Yes

null?

WLM environment name WLMIJAV

This CREATE FUNCTION statement defines the user-defined function to DB2:

CREATE FUNCTION MYSCHEMA.S2SAL(INTEGER)
RETURNS VARCHAR(20)
FENCED
MODIFIES SQL DATA
COLLID DSNJDBC
LANGUAGE JAVA
EXTERNAL NAME 'sal _JAR:s2.S2Sal.getSals(java.lang.Integer)'
WLM ENVIRONMENT WLMIJAV
CALLED ON NULL INPUT
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

In this function definition, you need to specify a method signature in the
EXTERNAL NAME clause because the data type of the method input parameter is
different from the default Java data type for an SQL type of INTEGER.

Related concepts:
[“Definition of a JAR file for a Java routine to DB2"]
Related reference:

[# [ALTER FUNCTION (external) (DB2 SQL)|

[[ALTER PROCEDURE (external) (DB2 SQL)|
[* [CREATE FUNCTION (DB2 SQL)|

[* [CREATE PROCEDURE (external) (DB2 SQL)|

Definition of a JAR file for a Java routine to DB2

One way to organize the classes for a Java routine is to collect those classes into a
JAR file. If you do this, you need to install the JAR file into the DB2 catalog.

DB2 provides built-in stored procedures that perform the following functions for
the JAR file:

SQLJ.INSTALL_JAR
Installs a JAR file into the local DB2 catalog.

SQLJ.DB2_INSTALL_JAR
Installs a JAR file into the local DB2 catalog or a remote DB2 catalog.

SQLJ.REPLACE_JAR
Replaces an existing JAR file in the local DB2 catalog.

SQLJ.DB2_REPLACE_JAR
Replaces an existing JAR file in the local DB2 catalog or a remote DB2 catalog.

SQLJ.REMOVE_JAR
Deletes a JAR file from the local DB2 catalog or a remote DB2 catalog.

Chapter 5. Java stored procedures and user-defined functions 203

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterfunctionexternal.htm#db2z_sql_alterfunctionexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunction.htm#db2z_sql_createfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal

SQLJ.ALTER_JAVA_PATH
Modifies the class resolution path of an previously installed JAR file to a
specified value.

You can use IBM Optim Development Studio to install JAR files into the DB2
catalog, or you can write a client program that executes SQL CALL statements to
invoke these stored procedures.

Related concepts:

[“Definition of a Java routine to DB2” on page 199

SQLJ.INSTALL_JAR stored procedure
SQLJ.INSTALL_JAR creates a new definition of a JAR file in the local DB2 catalog.

SQLJ.INSTALL_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.INSTALL_JAR, the privilege set must include at least one of the
following items:

» EXECUTE privilege on SQLJ.INSTALL_JAR
* Ownership of SQLJ.INSTALL_JAR
* SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of
at least one of the following items:

* CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the
CREATEIN privilege on the schema.

* SYSADM or SYSCTRL authority

SQLJ.INSTALL_JAR syntax

»>—CALL—SQLJ. INSTALL_JAR—(—url ,—JAR-name ,—deploy—)

Y
A

SQLJ.INSTALL_JAR parameters

url
A VARCHAR(1024) input parameter that identifies the z/OS UNIX System
Services full path name for the JAR file that is to be installed in the DB2
catalog. The format is file://path-name or file:/path-name.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The owner
of the JAR is the authorization ID in the CURRENT SQLID special register.

204 Application Programming Guide and Reference for Java

deploy
An INTEGER input parameter that indicates whether additional actions are to
be performed after the JAR file is installed. Additional actions are not
supported, so this value is 0.

SQLJ.INSTALL_JAR example

Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN/BUILDPLAN jar. You want to refer to the JAR file as
DB2INST3.BUILDPLAN in SQL statements. Use a CALL statement similar to this
one.

CALL SQLJ.INSTALL_JAR('file:/u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar',
'DB2INST3.BUILDPLAN',0)

SQLJ.DB2_INSTALL_JAR stored procedure
SQLJ.DB2_INSTALL_JAR creates a new definition of a JAR file in the local DB2
catalog or in a remote DB2 catalog.

To install a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQLJ.DB2_INSTALL_JAR.

SQLJ.DB2_INSTALL_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.DB2_INSTALL_JAR, the privilege set must include at least one of
the following items:

¢ EXECUTE privilege on SQLJ.DB2_INSTALL_JAR
* Ownership of SQLJ.DB2_INSTALL_JAR
* SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of
at least one of the following items:

* CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the
CREATEIN privilege on the schema.

* SYSADM or SYSCTRL authority

SQLJ.DB2_INSTALL_JAR syntax

»>—CALL—SQLJ.DB2_INSTALL_JAR—(—Jar-locator,—JAR-name ,—deploy—)

A\
A

SQLJ.DB2_INSTALL_JAR parameters

JAR-locator
A BLOB locator input parameter that points to the JAR file that is to be
installed in the DB2 catalog.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

Chapter 5. Java stored procedures and user-defined functions 205

the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The owner
of the JAR is the authorization ID in the CURRENT SQLID special register.

deploy
An INTEGER input parameter that indicates whether additional actions are to
be performed after the JAR file is installed. Additional actions are not
supported, so this value is 0.

SQLJ.DB2_INSTALL_JAR example

Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN/BUILDPLAN jar. You want to refer to the JAR file as
DB2INST3.BUILDPLAN in SQL statements. The following Java program installs
that JAR file.

import java.sql.*; // JDBC classes
import java.io.IOException;

import java.io.File;

import java.io.FileInputStream;
class Simplelnstalldar

public static void main (String argv[])
{

String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021";

String jarname = "DB2INST3.BUILDPLAN";

String jarfile =
"/u/db2inst3/apps/BUILDPLAN/BUILDPLAN. jar";

try

{
Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =

DriverManager.getConnection(url, "MYID", "MYPW");

File aFile = new File(jarfile);
FileInputStream inputStream = new FileInputStream(aFile);
CallableStatement stmt;
String sql = "Call SQLJ.DB2_INSTALL JAR(?, ?, ?)";
stmt = con.prepareCall(sql);
stmt.setBinaryStream(1, inputStream, (int)aFile.length());
stmt.setString(2, jarname);
stmt.setInt(3, 0);
boolean isrs = stmt.execute();
stmt.close();
System.out.printin("Installation of JAR succeeded");
con.commit();
con.close();

1

catch (Exception e)

System.out.printin("Installation of JAR failed");
e.printStackTrace ();
1
}
1

SQLJ.REPLACE_JAR stored procedure
SQLJ.REPLACE_JAR replaces an existing JAR file in the local DB2 catalog.

SQLJ.REPLACE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the

206 Application Programming Guide and Reference for Java

owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQL].REPLACE_JAR, the privilege set must include at least one of the
following items:

» EXECUTE privilege on SQL].REPLACE_JAR
* Ownership of SQLJ.REPLACE_JAR
* SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists
of at least one of the following items:

* Ownership of the JAR
e ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

* SYSADM or SYSCTRL authority
SQLJ.REPLACE_JAR syntax

»»>—CALL—SQLJ.REPLACE_JAR— (—url ,—JAR-name—) ><

SQLJ.REPLACE_JAR parameters

url
A VARCHAR(1024) input parameter that identifies the z/OS UNIX System
Services full path name for the JAR file that replaces the existing JAR file in
the DB2 catalog. The format is file://path-name or file:/path-name.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.REPLACE_JAR example

Suppose that you want to replace a previously installed JAR file that is named
DB2INST3.BUILDPLAN with the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN2/BUILDPLAN jar. Use a CALL statement similar to this one.

CALL SQLJ.REPLACE_JAR('file:/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN. jar',
'DB2INST3.BUILDPLAN')

SQLJ.DB2_REPLACE_JAR stored procedure
SQLJ.DB2_REPLACE_JAR replaces an existing JAR file in the local DB2 catalog or
in a remote DB2 catalog.

To replace a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQL].DB2_REPLACE_JAR.

SQLJ.DB2_REPLACE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the owner of the plan or

Chapter 5. Java stored procedures and user-defined functions 207

package. If the statement is dynamically prepared, the privilege set consists of the
privileges that are held by the authorization IDs of the process.

For calling SQLJ.DB2_REPLACE_JAR, the privilege set must include at least one of
the following items:

* EXECUTE privilege on SQL].DB2_REPLACE_JAR
* Ownership of SQLJ.DB2_REPLACE_JAR
* SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists
of at least one of the following items:

* Ownership of the JAR
* ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

* SYSADM or SYSCTRL authority

SQLJ.DB2_REPLACE_JAR syntax

»»>—CALL—SQLJ.DB2_REPLACE_JAR—(—JAR-locator ,—JAR-name—) ><

SQLJ.DB2_REPLACE_JAR parameters

JAR-locator
A BLOB locator input parameter that points to the JAR file that is to be
replaced in the DB2 catalog.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.DB2_REPLACE_JAR example

Suppose that you want to replace a previously installed JAR file that is named
DB2INST3.BUILDPLAN with the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN2/BUILDPLAN jar. The following Java program replaces the JAR file.

import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class Simplelnstalldar
{
public static void main (String argv[])
{
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021";
String jarname = "DB2INST3.BUILDPLAN";
String jarfile =
"/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN. jar";
try
{
Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =
DriverManager.getConnection(url, "MYID", "MYPW");
File aFile = new File(jarfile);
FileInputStream inputStream = new FileInputStream(aFile);

208 Application Programming Guide and Reference for Java

CallableStatement stmt;

String sql = "Call SQLJ.DB2_REPLACE_JAR(?, ?)";

stmt = con.prepareCall(sql);

stmt.setBinaryStream(1, inputStream, (int)aFile.length());
stmt.setString(2, jarname);

boolean isrs = stmt.execute();

stmt.close();

System.out.printin("Replacement of JAR succeeded");
con.commit();

con.close();

catch (Exception e)

{
System.out.printin("Replacement of JAR failed");
e.printStackTrace ();

}
}
}

SQLJ.REMOVE_JAR stored procedure
SQL]J.REMOVE_JAR deletes a JAR file from the local DB2 catalog or from a remote
DB2 catalog.

To delete a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQL]. REMOVE_JAR.

The JAR cannot be referenced in the EXTERNAL NAME clause of an existing
routine, or in the path of an installed JAR.

SQLJ.REMOVE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQL].REMOVE_JAR, the privilege set must include at least one of the
following items:

* EXECUTE privilege on SQL].REMOVE_JAR
* Ownership of SQL]. REMOVE_JAR
* SYSADM authority

The privilege set must also include the authority to remove a JAR, which consists
of at least one of the following items:

¢ Ownership of the JAR
* DROPIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the DROPIN
privilege on the schema.

* SYSADM or SYSCTRL authority
SQLJ.REMOVE_JAR syntax

»»>—CALL—SQLJ.REMOVE_JAR— (—JAR-name ,—undeploy—)

A\
A

Chapter 5. Java stored procedures and user-defined functions 209

SQLJ.REMOVE_JAR parameters

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR that
is to be removed from the catalog, in the form schema.JAR-id or JAR-id.
JAR-name is the name that you use when you refer to the JAR in SQL
statements. If you omit schema, DB2 uses the SQL authorization ID that is in
the CURRENT SCHEMA special register.

undeploy
An INTEGER input parameter that indicates whether additional actions should
be performed before the JAR file is removed. Additional actions are not
supported, so this value is 0.

SQLJ.REMOVE_JAR example

Suppose that you want to remove a previously installed JAR file that is named
DB2INST3.BUILDPLAN. Use a CALL statement similar to this one.

CALL SQLJ.REMOVE_JAR('DB2INST3.BUILDPLAN',0)

SQLJ.ALTER_JAVA_PATH stored procedure
SQLJ.ALTER_JAVA_PATH modifies the class resolution path of an installed JAR.

SQLJ.ALTER_JAVA_PATH specifies the class resolution path that the JVM uses
when a JAR file that is part of a Java stored procedure references a class that is
neither contained in that JAR file, found in the CLASSPATH, nor system-supplied.

SQLJ.ALTER_JAVA_ PATH authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the owner of the plan or
package. If the statement is dynamically prepared, the privilege set consists of the
privileges that are held by the authorization IDs of the process.

For calling SQLJ. ALTER_JAVA_PATH, the privilege set must include at least one of
the following items:

» EXECUTE privilege on SQLJ.ALTER_JAVA_PATH
* Ownership of SQLJ. ALTER_JAVA_PATH
* SYSADM authority

The privilege set must also include the authority to alter a JAR, which consists of
at least one of the following items:

* Ownership of the JAR
e ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

* SYSADM or SYSCTRL authority

For referring to JAR jar2 in the Java path, the privilege set must include at least
one of the following items:

* Ownership of jar2
* USAGE privilege on jar2
* SYSADM authority

210 Application Programming Guide and Reference for Java

»»>—CALL—SQLJ.ALTER_JAVA PATH—(—JAR-namel ,——"'path')
t'blanks'—

[

—path-element

SQLJ.ALTER_JAVA_PATH syntax

A\
A

path:

path-element:

»>—(* ,—JAR-name2—) »<
—Java-package-name—.—x*
_| class-name—
l—Java—package—name—.
Java-package-name:
»>—Java-identifier—Y >

|—.—Java-identifierJ

class-name:

»»—Java-identifier ><

SQLJ.ALTER_JAVA_PATH parameters

JAR-namel
A VARCHAR(257) input parameter that contains the DB2 name of the JAR
whose path is to be altered, in the form schema.JAR-id or JAR-id. [AR-namel is
the name that you use when you refer to the JAR in SQL statements. If you
omit schema, DB2 uses the SQL authorization ID that is in the CURRENT
SCHEMA special register.

path
A VARCHAR(2048) input parameter that specifies the class resolution path that
the JVM uses when JAR-namel references a class that is neither contained in
JAR-namel, found in the CLASSPATH, nor system-supplied.

During execution of the Java routine, when DB2 encounters an unresolved
class reference, DB2 compares each path element in the path to the class
reference. If a path element matches the class reference, DB2 searches for the
class in the JAR that is specified by the path element.

* Indicates that any class reference can be searched for in the JAR that is
identified by JAR-name2. If an error prevents the class from being found, the

Chapter 5. Java stored procedures and user-defined functions 211

search terminates, and a java.lang.ClassNotFoundException is thrown to
report that error. If the class is not found in the JAR, the search continues with
the next path element.

Java-package-name. *
Indicates that class references for classes that are in the package named
Java-package-name are searched for in the JAR that is identified by JAR-name2. If
an error prevents a class from being found, the search terminates, and a
Jjava.lang.ClassNotFoundException is thrown to report that error. If a class is
not found in the JAR, the search terminates, and a
java.lang.NoClassDefFoundError is thrown.

If the class reference is to a class in a different package, the search continues
with the next path element.

Java-package-name.class-name or class-name
Indicates that class references for classes whose fully qualified name matches
Java-package-name.class-name or class-name are searched for in the JAR that is
identified by JAR-name2. Class references for classes that are in packages
within the package named Java-package-name are not searched for in the JAR
that is identified by JAR-name2. If an error prevents a class from being found,
the search terminates, and a java.lang.ClassNotFoundException is thrown to
report that error. If a class is not found in the JAR, the search terminates and a
java.lang.NoClassDefFoundError is thrown.

If the class reference is to a different class, the search continues with the next
path element.

JAR-nameZ2
Specifies the DB2 name of the JAR that is to be searched. The form of
JAR-name?2 is schema.JAR-id or JAR-id. If schema is omitted, the JAR name is
implicitly qualified with the schema name in the CURRENT SCHEMA special
register. JAR JAR-name2 must exist at the current server. JAR-name2 must not
be the same as JAR-namel.

SQLJ.ALTER_JAVA_PATH usage notes

Stored procedures that reference classes in multiple JAR files: A stored procedure
that is packaged as a JAR file might reference classes that are in other JAR files,
and the referenced JAR files might reference classes in still other JAR files. You
need to specify class resolution paths for all dependencies among JAR files that the
stored procedure uses. For any JAR files that the stored procedure uses that cannot
be found in the CLASSPATH, and are not system-supplied, you need to use
SQLJ.ALTER_JAVA_PATH to define the class resolution path. For example, suppose
that stored procedure SP, which is packaged in JAR file JARSD, references classes in
JAR files JAR1 and JAR2. Classes in JAR file JAR1 reference classes that are in JAR
file JAR2. None of the JAR files are in the CLASSPATH or are system-supplied.
You need to call SQL].ALTER_JAVA_PATH twice, to define the following class
resolution paths:

e From JARSP to JARI and JAR2
* From JAR1 to JAR2

SQLJ.ALTER_JAVA_PATH example
Suppose that the JAR file that is named DB2INST3.BUILDPLAN references classes

that are in a previously installed JAR that is named DB2INST3.BUILDPLAN?2.
Those classes are in Java package buildPlan2. The following Java program calls

212 Application Programming Guide and Reference for Java

SQLJ.ALTER_JAVA_PATH to add the classes in the buildPlan2 package to the
resolution path for DB2INST3.BUILDPLAN.

import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FilelnputStream;
class SimplelnstallJar
{
public static void main (String argv[])
{
String url = "jdbc:db2://sysmvsl.st1.ibm.com:5021";
String jarname = "DB2INST3.BUILDPLAN";
String resolutionPath =
"(buildPlan2.%,DB2INST3.BUILDPLAN2)";
try
{
Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =
DriverManager.getConnection(url, "MYID", "MYPW");
CallableStatement stmt;
String sql = "Call SQLJ.ALTER_JAVA PATH(?, ?)";
stmt = con.prepareCall(sql);
stmt.setString (1, jarname);
stmt.setString(2, resolutionPath);
boolean isrs = stmt.execute();
stmt.close();
System.out.printIn("Alteration of JAR resolution path succeeded");
con.commit();
con.close();

catch (Exception e)
{
System.out.printin("Alteration of JAR resolution path failed");
e.printStackTrace ();
1
}
1

Java routine programming

A Java routine is a Java application program that runs in a stored procedure address
space. It can include JDBC methods or SQLJ clauses.

A Java routine is much like any other Java program and follows the same rules as
routines in other languages. It receives input parameters, executes Java statements,
optionally executes SQLJ clauses, JDBC methods, or a combination of both, and
returns output parameters.

Differences between Java routines and stand-alone Java
programs

Java routines differ in a few basic ways from stand-alone Java programs.

Those differences are:

* In a Java routine, a JDBC connection or an SQLJ] connection context can use the
connection to the data source that processes the CALL statement or the
user-defined function invocation. The URL that identifies this default connection
is jdbc:default:connection.

* The top-level method for a Java routine must be declared as static and public.

Chapter 5. Java stored procedures and user-defined functions 213

Although you can use static and final variables in a Java routine without
problems, you might encounter problems when you use static and non-final
variables. You cannot guarantee that a static and non-final variable retains its
value in the following circumstances:

— Across multiple invocations of the same routine
— Across invocations of different routines that reference that variable

* As in routines in other languages, the SQL statements that you can execute in
the routine depend on whether you specify an SQL access level of CONTAINS
SQL, READS SQL DATA, or MODIFIES SQL DATA.

Related concepts:

[“Differences between Java routines and other routines’]

Related reference:

[[SQL statements allowed in external functions and stored procedures (DB2 SQL)|

Differences between Java routines and other routines

Java routines differ in a few basic ways from routines that are written in other
programming languages.

A Java routine differs from stored procedures that are written in other languages in
the following ways:

* A Java routine must be defined with PARAMETER STYLE JAVA. PARAMETER
STYLE JAVA specifies that the routine uses a parameter-passing convention that
conforms to the Java language and SQLJ specifications. DB2 passes INOUT and
OUT parameters as single-entry arrays. This means that in your Java routine,
you must declare OUT or INOUT parameters as arrays. For example, suppose
that stored procedure sp_one_out has one output parameter of type int. You
declare the parameter like this:

public static void routine_one_out (int[] out_parm)
* Java routines that are Java main methods have these restrictions:

— The method must have a signature of String[]. It must be possible to map all
the parameters to Java variables of type java.lang.String.

— The routine can have only IN parameters.
* You cannot make instrumentation facility interface (IFI) calls in Java routines.
* You cannot specify an SQL access level of NO SQL for Java routines.

* As in other Java programs, you cannot include the following statements in a
Java routine:
- CONNECT
- RELEASE
— SET CONNECTION

* Routine parameters have different mappings to host language data types than
the mappings of routine parameters to host language parameters for other
languages.

* The technique for returning result sets from Java stored procedures is different
from the technique for returning result sets in other stored procedures.

* When a Java routine executes, Java dynamically loads classes when new class
references occur in the class that is being executed. During the class loading
process, a java.lang.ClassNotFoundException or
java.lang.NoClassDefFoundError can be thrown. These failures can occur
whether Java looks for the class in an installed JAR or in the CLASSPATH. If the
Java routine does not catch these errors and exceptions, the routine terminates
and an SQL error condition is reported.

214 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlstmtsallowedinexternalfuncsandprocs.htm#db2z_sqlstmtsallowedinexternalfuncsandprocs

Related concepts:

[‘Differences between Java routines and stand-alone Java programs” on page 213|
Related tasks:

[“Writing a Java stored procedure to return result sets” on page 216

[[Creating an external stored procedure (DB2 Application programming and)|
sQL)
[+ [Writing an external user-defined function (DB2 Application programming and)|

QL)

Related reference:

[“Data types that map to database data types in Java applications” on page 229|

Static and non-final variables in a Java routine

Using Java variables that are defined as static but not final can cause problems
for Java routines.

The reasons for those problems are:
* Use of variables that are static and non-final reduces portability.

Because the ANSI/ISO standard does not include support for static and
non-final variables, different database products might process those variables
differently.

* A sequence of routine invocations is not necessarily processed by the same JVM,
and static variable values are not shared among different JVMs.

For example, suppose that two stored procedures, INITIALIZE and PROCESS,
use the same static variable, svl. INITIALIZE sets the value of svl, and
PROCESS depends on the value of sv1. If INITIALIZE runs in one JVM, and
then PROCESS runs in another JVM, sv1 in PROCESS does not contain the value
that INITIALIZE set.

Specifying NUMTCB=1 in the WLM-established stored process space startup
procedure is not sufficient to guarantee that a sequence of routine invocations go
to the same JVM. Under load, multiple stored procedure address spaces are
initiated, and each address space has its own JVM. Multiple invocations might
be directed to multiple address spaces.

* In Java, the static variables for a class are initialized or reset whenever the class
is loaded. However, for Java routines, it is difficult to know when initialization
or reset of static variables occurs.

In certain cases, you need to declare variables as static and non-final. In those
cases, you can use the following technique to make your routines work correctly
with static variables.

To determine whether the values of static data in a routine have persisted across
routine invocations, define a static boolean variable in the class that contains the
routine. Initially set the variable to false, and then set it to true when you set the
value of static data. Check the value of the boolean variable at the beginning of the
routine. If the value is true, the static data has persisted. Otherwise, the data
values need to be set again. With this technique, static data values are not set for
most routine invocations, but are set more than once during the lifetime of the
JVM. Also, with this technique, it is not a problem for a routine to execute on
different JVMs for different invocations.

Chapter 5. Java stored procedures and user-defined functions 215

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createexternalsp.htm#db2z_createexternalsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createexternalsp.htm#db2z_createexternalsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_writeexternaludf.htm#db2z_writeexternaludf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_writeexternaludf.htm#db2z_writeexternaludf

Writing a Java stored procedure to return result sets

You can write your Java stored procedures to return multiple query result sets to a
client program.

Before you begin

A stored procedure can return multiple query result sets to a client program if the
following conditions are satisfied:

* The client supports the DRDA code points that are used to return query result
sets.

e The value of DYNAMIC RESULT SETS in the stored procedure definition is
greater than 0.

Procedure

For each result set that you want to be returned, your Java stored procedure must
perform the following actions:

1. For each result set, include an object of type java.sql.ResultSet[] or an array of
an SQLJ iterator class in the parameter list for the stored procedure method.

If the stored procedure definition includes a method signature, for each result
set, include java.sql.ResultSet[] or the fully-qualified name of an array of a class
that is declared as an SQLJ iterator in the method signature. These result set
parameters must be the last parameters in the parameter list or method
signature. Do not include a java.sql.ResultSet array or an iterator array in the
SQL parameter list of the stored procedure definition.

2. Execute a SELECT statement to obtain the contents of the result set.
3. Retrieve any rows that you do not want to return to the client.

4. Assign the contents of the result set to element 0 of the java.sql.ResultSet][]
object or array of an SQLJ iterator class that you declared in step

5. Do not close the ResultSet, the statement that generated the ResultSet, or the
connection that is associated with the statement that generated the ResultSet.

DB2 does not return result sets for ResultSets that are closed before the stored
procedure terminates.

Example

The following code shows an example of a Java stored procedure that uses an
SQLJ iterator to retrieve a result set.

216 Application Programming Guide and Reference for Java

package sl;

import sqlj.runtime.x*;
import java.sql.=;
import java.math.*;
#sql iterator NameSal(String LastName, BigDecimal Salary);
public class S1Sal
{
public static void getSals(BigDecimal[] AvgSalParm,

java.sql.ResultSet[] rs) 2]
throws SQLException
{

NameSal iterl;
try
{

#sql iterl = {SELECT LASTNAME, SALARY FROM EMP

WHERE SALARY>0 ORDER BY SALARY DESC};
#sq1 {SELECT AVG(SALARY) INTO :(AvgSalParm[0]) FROM EMP}; ﬂ

}

catch (SQLException e)

{
System.out.printIn("SQLCODE returned: " + e.getErrorCode());
throw(e);

}
rs[0] = iterl.getResultSet(); a8
}
}

Figure 47. Java stored procedure that returns a result set

Notes to

1 This SQLJ clause declares the iterator named NameSal, which is used to retrieve
the rows that will be returned to the stored procedure caller in a result set.

2 The declaration for the stored procedure method contains declarations for a single
passed parameter, followed by the declaration for the result set object.

3 This SQLJ clause executes the SELECT to obtain the rows for the result set,

constructs an iterator object that contains those rows, and assigns the iterator
object to variable iterl.

4 This SQLJ clause retrieves a value into the parameter that is returned to the stored
procedure caller.
5 This statement uses the getResultSet method to assign the contents of the iterator

to the result set that is returned to the caller.

Related concepts:

“Retrieving multiple result sets from a stored procedure in an SQL]J application” on|

page 162]

Related tasks:
“Retrieving multiple result sets from a stored procedure in a JDBC application” on|

page 6Q|

Techniques for testing a Java routine

You can test your Java routines as stand-alone programs, use the DB2 Unified
Debugger, or write your own debug information from the routines.

Test your routine as a stand-alone program
Before you invoke your Java routines from SQL applications, it is a good idea to
run the routines as stand-alone programs, which are easier to debug. A Java

program that runs as a routine requires only a DB2 package. However, before you

Chapter 5. Java stored procedures and user-defined functions 217

can run the program as a stand-alone program, you need to bind a DB2 plan for it.
Use the DB2 Unified Debugger (stored procedures only)

The DB2 Unified Debugger is available with DB2 Database for Linux, UNIX, and
Windows. The DB2 Unified Debugger provides a GUI interface for debugging Java
stored procedures. Information on the DB2 Unified Debugger is available in the
DB2 Database for Linux, UNIX, and Windows information center, at

http:/ /publib.boulder.ibm.com/infocenter/db2luw /v9r7 /index.jsp.

To set up a DB2 for z/OS subsystem to work with the DB2 Unified Debugger,
when you set up your stored procedure environment, follow these additional steps:

1. Customize and run the DSNTIJRT program to define stored procedures that
provide server support for the DB2 Unified Debugger.
DSNTIJSD is in the prefix SDSNSAMP data set. The job prolog contains
customization instructions.

2. Define the stored procedure that you intend to test with the ALLOW DEBUG
MODE option in the CREATE PROCEDURE or ALTER PROCEDURE
statement.

3. When you prepare the stored procedure for execution, specify the -g option in
the javac command
-g causes the compiler to generate all debugging information for the program..
4. Grant the DEBUGSESSION privilege to the user who runs the debug client.
5. Make the following modifications to the WLM environment for the stored
procedure:
¢ In the WLM environment startup procedure, set NUMTCB=1

* In the WLM environment startup procedure, include a PSMDEBUG DD
statement to direct the debug diagnostic log to a data set. You can allocate to
a SYSOUT data set or to a preallocated data set. The data set needs to be
created with the RECFM=VBA and LRECL=4096 characteristics.

* In the ENVAR settings in the JAVAENYV data set, set USE_LIBJVM_G=YES.

* If the debug port range of 8000::8050 is not acceptable, in the ENVAR
settings in the JAVAENYV data set, set JVM_DEBUG_PORTRANGE to the
range of ports that the JVM listens on for debug connections.

Enable collection of DB2 debug information

Include a JSPDEBUG DD statement in your startup procedure for the stored
procedure address space. This DD statement specifies a data set to which DB2
writes debug information for use by IBM Software Support.

Write your own debug information from your routine

A useful technique for debugging is to include System.out.printin and
System.err.printin calls in your program to write messages to the STDERR and
STDOUT files.

STDERR and STDOUT output is written to the directory that is specified by the
WORK_DIR parameter in the JAVAENV data set, if that directory exists. If no
WORK_DIR parameter is specified, output goes to the default directory,
/tmp/java, if that directory exists.

Related concepts:

[“Runtime environment for Java routines” on page 193]

218 Application Programming Guide and Reference for Java

Chapter 6. Preparing and running JDBC and SQLJ programs

You prepare and run DB2 for z/OS Java programs in the z/OS UNIX System
Services environment.

Program preparation for JDBC programs

Preparing a Java program that contains only JDBC methods is the same as
preparing any other Java program. You compile the program using the javac
command. No precompile or bind steps are required.

For example, to prepare the Sample(l.java program for execution, execute this
command from the /usr/lpp/db2b10/jdbc/ directory:

javac SampleOl.java

Program preparation for SQLJ programs

Program preparation for SQL]J programs involves translating, compiling,
customizing, and binding programs.

About this task

The following figure shows the steps of the program preparation process for a
program that uses the IBM Data Server Driver for JDBC and SQLJ.

Source
program

l

Modified | Sau

source translator |
l Compile

©=—| Serialized
Q = .
O=— profile

Java class
J file

Customize

©®=| Customized
O—| serialized profile

l

Four
packages

Figure 48. The SQLJ program preparation process

© Copyright IBM Corp. 1998, 2013 219

Procedure

The basic steps in SQL] program preparation are:

1. Run the sqlj command from the z/OS UNIX System Services command line to
translate and compile the source code.

The SQLJ command generates a Java source program, optionally compiles the
Java source program, and produces zero or more serialized profiles. You can
compile the Java program separately, but the default behavior of the sqlj
command is to compile the program. The SQL] command runs without
connecting to the database server.

2. Run the db2sqljcustomize command from the z/OS UNIX System Services
command line to customize the serialize profiles and bind DB2 packages.

The db2sqljcustomize command performs these tasks:
¢ Customizes the serialized profiles.

* Optionally does online checking to ensure that application variable types are
compatible with the corresponding column data types.

The default behavior is to do online checking. For better performance, you
should do online checking.

* Optionally binds DB2 packages on a specified database server.

The default behavior is to bind the DB2 packages. However, you can disable
automatic creation of packages and use the db2sqljbind command to bind the
packages later.

You might also need to run the db2sqljbind command under these
circumstances:

— If a bind fails when db2sqljcustomize runs

— if you want to create identical packages at multiple locations for the same
serialized profile

3. Optional: Bind the DB2 packages into a plan.
Use the DB2 BIND command to do that.
Related reference:

[“sqlj - SQL]J translator” on page 495
[“db2sqlibind - SQLJ profile binder” on page 509
[“db2sqljcustomize - SQLJ profile customizer” on page 498|

Binding SQLJ applications to access multiple database servers

After you prepare an SQL] program to run on one DB2 database server, you might
want to port that application to other environments that access different database
servers. For example, you might want to move your application from a test
environment to a production environment.

Procedure

The general steps for enabling access of an existing SQL] application to additional
database servers are:

1. Bind packages on each database server that you want to access.

Do not re-customize the serialized profiles. Customization stores a new package
timestamp in the serialized profile, which makes the new serialized profile
incompatible with the original package.

You can use one of the following methods to bind the additional DB2 packages:

220 Application Programming Guide and Reference for Java

* Run the db2sqgljbind command against each of the database servers.

* Run the DB2 BIND PACKAGE command with the COPY option to copy the
original packages to each of the additional database servers.

You might need a different qualifier for unqualified DB2 objects on each of the
database servers. In that case, you need to specify a value for the QUALIFIER
bind option when you bind the new packages. If you use the db2sqljbind
command, you specify the QUALIFER option in the -bindoptions parameter,
not in the -qualifier parameter. The -qualifier parameter applies to online
checking only.

2. Specify the package collection for the DB2 packages.

By default, when an SQLJ application runs, the DB2 database server looks for
packages using the collection ID that is stored in the serialized profile. If the
collection ID for the additional DB2 packages that you create is different from
the collection ID in the serialized profile, you need to override the collection ID
that is in the serialized profile. You can do that in one of the following ways:

* Specify the collection ID with the pkList DataSource property or the
db2.jcc.pkList global property.

* Follow these steps:

a. Bind a plan for the application that includes the following packages:
— The package collection that you bound in the previous step
— The IBM Data Server Driver for JDBC and SQL] packages

b. Specify the plan name in the planName DataSource property or the
db2.jcc.planName global property.

Binding a plan might simplify authorization for the application. You can
authorize users to execute the plan, rather than authorizing them to execute
each of the packages in the plan.

Example

An existing SQL]J application was customized and bound using the following
db2sqljcustomize invocation:

db2sqljcustomize -url jdbc:db2://systeml.sv1.ibm.com:8000/Z0S1

-user user0Ql -password mypass

-rootPkgName WRKSQLJ

-qualifier WRK1

-collection MYCOL1

-bindoptions "CURRENTDATA NO QUALIFIER WRK1 "

-staticpositioned YES WrkTraceTest SJProfileO.ser

In addition to accessing data at the location that is indicated by URL

jdbec:db2:/ /system1.svl.ibm.com:8000/ZOS1, you want to use the application to
access data at the location that is indicated by jdbc:db2://
system2.svl.ibm.com:8000/Z0OS2. On the ZOS2 system, DB2 objects have a qualifier
of WRK2, and the packages need to be in collection MYCOL2. You therefore need
to bind packages at location ZOS2, change the default qualifier to WRK2, and
specify the MYCOL2 collection for the packages. Use one of the following methods
to bind the packages:

* Run DB2 BIND with COPY to copy each of the packages (one for each isolation
level) from the ZOS1 system to the ZOS2 system:
BIND PACKAGE (Z0S2.MYCOL2) OWNER(USERO1) QUALIFIER(WRK2) -
COPY (MYCOL.WRKSQLJ1) CURRENTDATA(NO)

BIND PACKAGE (Z0S2.MYCOL2) OWNER(USERO1) QUALIFIER(WRK2) -
COPY (MYCOL.WRKSQLJ2) CURRENTDATA(NO)

Chapter 6. Preparing and running JDBC and SQL] programs 221

BIND PACKAGE (Z0S2.MYCOL2) OWNER(USERO1) QUALIFIER(WRK2) -
COPY (MYCOL.WRKSQLJ3) CURRENTDATA(NO)
BIND PACKAGE (Z0S2.MYCOL2) OWNER(USERO1) QUALIFIER(WRK2) -
COPY (MYCOL.WRKSQLJ4) CURRENTDATA(NO)

* Run the db2sqgljbind command to create DB2 packages on ZOS2 from the
serialized profile on ZOS1:

db2sqljbind -url jdbc:db2://system2.sv1.ibm.com:8000/Z0S2
-user user0l -password mypass

-bindoptions "COLLECTION MYCOL2 QUALIFIER WRK2"
-staticpositioned YES WrkTraceTest SJProfile0O.ser

After you bind the packages, you need to ensure that when the application runs,
the DB2 database server at ZOS2 can find the packages. The collection ID in the
serialized profile is MYCOL1, so the DB2 database server looks in MYCOLL for the
packages. When you run the application against the ZOS2 system, you need to
access packages in MYCOL2.

For applications that use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity, use one of the following methods to tell the database server to look in
MYCOL2 as well as MYCOL1:

* Specify "MYCOL1.*,MYCOL2.*" in the pkList DataSource property:
pkList = MYCOL1.*,MYCOL2.*

* Bind a plan for the application that includes the packages in MYCOL2 and the
IBM Data Server Driver for JDBC and SQLJ packages:

BIND PLAN(WRKSQLJ) PKLIST(MYCOLL.*,MYCOL2.*,JDBCCOL.*)

Then specify WRKSQLJ in the planName DataSource property:
planName = WRKSQLJ

For applications that use IBM Data Server Driver for JDBC and SQLJ type 4
connectivity, specify "MYCOL1.*,MYCOL2.*" in the currentPackagePath DataSource
property.

Related tasks:

[‘Program preparation for SQLJ] programs” on page 219|

Related reference:
sqljbind - profile binder” on page
“db2sgljibind - SQLJ file binder” 50

Program preparation for Java routines

The program preparation process for Java routines varies, depending on whether
the routines contain SQLJ clauses.

The following topics contain detailed information on program preparation for Java
routines.

Preparation of Java routines with no SQLJ clauses

Java routines that contain no SQLJ clauses are written entirely in JDBC. You can
use one of three methods to prepare Java routines with no SQL]J statements.

Those methods are:

* Prepare the Java routine to run from a JAR file. Running Java routines from JAR
files is recommended.

* Prepare the Java routine with no JAR file.

222 Application Programming Guide and Reference for Java

* Use IBM Optim Development Studio to prepare the routine.
You can use this method regardless of whether the routine is in a JAR file.

Preparing Java routines with no SQLJ clauses to run from a JAR
file
The recommended method of running Java routines is to run them from a JAR file.

About this task

The steps in this task prepare a JDBC routine for execution, create a JAR file for
the routine, define the JAR file and routine to DB2, and grant access on the routine
to users.

Procedure

1. Run the javac command to compile the Java program to produce Java
bytecodes.

2. Run the jar command to collect the class files that contain the methods for
your routine into a JAR file. See 'Creating JAR files for Java routines" for
information on creating the JAR file.

3. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.

4. If the installed JAR references classes in other installed JARs, call the
SQLJ.ALTER_JAVA_PATH stored procedure to specify the class resolution path
that the JVM searches to resolve those class references.

5. If another user defines the routine to DB2, execute the SQL GRANT USAGE
ON JAR statement to grant the privilege to use the JAR file to that user.

6. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter with the
name of the JAR that you defined to DB2 in step @

7. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:

[‘Program preparation for JDBC programs” on page 219

[“Definition of a JAR file for a Java routine to DB2” on page 203|
Related tasks:
[‘Creating JAR files for Java routines” on page 227|

Preparing Java routines with no SQLJ clauses and no JAR file
If you do not use a JAR file for a Java routine that has no SQL]J clauses, you need
to include the directories for the routine classes in the CLASSPATH.

About this task

The steps in this task compile source code, add the locations of the resulting class
files to the CLASSPATH, define the routine to DB2, and grant access on the routine
to users.

Procedure

1. Run the javac command to compile the Java program to produce Java
bytecodes.

2. Ensure that the zFS or HFS directory that contains the class files for your
routine is in the CLASSPATH for the WLM-established stored procedure
address space.

Chapter 6. Preparing and running JDBC and SQL] programs 223

You specify this CLASSPATH in the JAVAENV data set. You specify the
JAVAENYV data set using a JAVAENV DD statement in the startup procedure
for the WLM-established stored procedure address space.

If you need to modify the CLASSPATH environment variable in the JAVAENV
data set to include the directory for the Java routine's classes, you must restart
the WLM address space to make it use the modified CLASSPATH.

3. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter without a
JAR name.

4. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:

“Program preparation for JDBC programs” on page 219

“Runtime environment for Java routines” on page 193]

Preparation of Java routines with SQLJ clauses

You can use one of three methods to prepare Java routines with SQLJ clauses.

Those methods are:

* Prepare the routine Java routine to run from a JAR file. Running Java routines
from JAR files is recommended.

* Prepare the routine Java routine with no JAR file.
* Use IBM Optim Development Studio to prepare the routine.

You can use this method regardless of whether the routine is in a JAR file.

Preparing Java routines with SQLJ clauses to run from a JAR
file

The recommended method of running Java routines with SQLJ clauses is to run
them from a JAR file.

About this task

The steps in this task prepare an SQL]J routine for execution, create JAR files for
the methods in the routine, define the JAR files to DB2, define the routine to DB2,
and grant access on the routine to users.

Procedure

1. Run the sqlj command to translate the source code to produce generated Java
source code and serialized profiles, and to compile the Java program to
produce Java bytecodes.

2. Run the db2sqljcustomize command to produce serialized profiles that are
customized for DB2 for z/OS and DB2 packages.

3. Run the jar command to package the class files that contain the methods for
your routine, and the profiles that you generated in step @ into a JAR file. See
"Creating JAR files for Java routines" for information on creating the JAR file.

4. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.

5. If the installed JAR references classes in other installed JARs, call the
SQLJ.ALTER_JAVA_PATH stored procedure to specify the class resolution path
that the JVM searches to resolve those class references.

6. If another user defines the routine to DB2, execute the SQL GRANT USAGE
ON JAR statement to grant the privilege to use the JAR file to that user.

224 Application Programming Guide and Reference for Java

7. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter with the
name of the JAR that you defined to DB2 in step |4 on page 224

8. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Example

The following example demonstrates how to prepare a Java stored procedure that
contains SQLJ clauses for execution from a JAR file.

1. On z/0S UNIX System Services, run the sq1j command to translate and
compile the SQLJ source code.

Assume that the path for the stored procedure source program is
/u/db2res3/sl1/slsal.sqlj. Change to directory /u/db2res3/sl1, and issue this
command:

sqlj slsal.sqlj

After this process completes, the /u/db2res3/s1 directory contains these files:

slsal.java
slsal.class
slsal_SJProfile0.ser

2. On z/0S UNIX System Services, run the db2sqljcustomize command to
produce serialized profiles that are customized for DB2 for z/OS and to bind
the DB2 packages for the stored procedure.

Change to the /u/db2res3 directory, and issue this command:

db2sqljcustomize -url jdbc:db2://mvs1:446/SJICEC1 \
-user db2adm -password db2adm \
-bindoptions "EXPLAIN YES" \
-collection ADMCOLL \
-rootpkgname S1SAL \
slsal_SJProfile0.ser

After this process completes, slsal_SJProfile0.ser contains a customized
serialized profile. The DB2 subsystem contains these packages:

SISAL1
S1SAL2
SISAL3
S1SAL4

3. On z/0OS UNIX System Services, run the jar command to package the class
files that you created in step |l|and the customized serialized profile that you
created in step |2 into a JAR file.

Change to the /u/db2res3 directory, and issue this command:
jar -cvf slsal.jar sl/x.class sl/*.ser

After this process completes, the /u/db2res3 directory contains this file:
slsal.jar

4. Call the INSTALL_JAR stored procedure, which is on DB2 for z/OS, to define
the JAR file to DB2.

You need to execute the CALL statement from a static SQL program or from an
ODBC or JDBC program. The CALL statement looks similar to this:

CALL SQLJ.INSTALL_JAR('file:/u/db2res3/slsal.jar', 'MYSCHEMA.S1SAL',0);

The exact form of the CALL statement depends on the language of the program
that issues the CALL statement.

Chapter 6. Preparing and running JDBC and SQL] programs 225

After this process completes, the DB2 catalog contains JAR file
MYSCHEMA.S1SAL.

5. If the installed JAR references classes in other installed JARs, call the
SQLJ.ALTER_JAVA_PATH stored procedure, which is on DB2 for z/OS, to
specify the class resolution path that the JVM searches to resolve those class
references. You need to execute the CALL statement from a static SQL program
or from an ODBC or JDBC program.

6. If another user defines the routine to DB2, on DB2 for z/0S, execute the SQL
GRANT USAGE ON JAR statement to grant the privilege to use the JAR file to
that user.

Suppose that you want any user to be able to define the stored procedure to
DB2. This means that all users need the USAGE privilege on JAR
MYSCHEMA.S1SAL. To grant this privilege, execute this SQL statement:

GRANT USAGE ON JAR MYSCHEMA.S1SAL TO PUBLIC;

7. On DB2 for z/0S, execute the SQL CREATE PROCEDURE statement to define
the stored procedure to DB2:

CREATE PROCEDURE SYSPROC.S1SAL
(DECIMAL(10,2) INOUT)
FENCED
MODIFIES SQL DATA
COLLID ADMCOLL
LANGUAGE JAVA
EXTERNAL NAME 'MYSCHEMA.S1SAL:sl1.S1Sal.getSals'
WLM ENVIRONMENT WLMIJAV
DYNAMIC RESULT SETS 1
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

8. On DB2 for z/0S, execute the SQL GRANT EXECUTE statement to grant the
privilege to run the routine to that user.

Suppose that you want any user to be able to run the routine. This means that
all users need the EXECUTE privilege on SYSPROC.S1ISAL. To grant this
privilege, execute this SQL statement:

GRANT EXECUTE ON PROCEDURE SYSPROC.SISAL TO PUBLIC;
Related concepts:

[‘Definition of a JAR file for a Java routine to DB2” on page 203|
Related tasks:
[‘Program preparation for SQLJ] programs” on page 219|

[‘Creating JAR files for Java routines” on page 227|

Preparing Java routines with SQLJ clauses and no JAR file
If you do not use a JAR file for a Java routine that contains SQL]J clauses, you need
to include the directories for the routine classes in the CLASSPATH.

About this task

The steps in this task prepare an SQLJ routine for execution, specify the class files
for the routine in the CLASSPATH, define the routine to DB2, and grant access on
the routine to users.

Procedure

1. Run the sqlj command to translate the source code to produce generated Java
source code and serialized profiles, and to compile the Java program to
produce Java bytecodes.

226 Application Programming Guide and Reference for Java

2. Run the db2sgljcustomize command to produce serialized profiles that are
customized for DB2 for z/OS and DB2 packages.

3. Ensure that the zFS or HFS directory that contains the class files for your
routine is in the CLASSPATH for the WLM-established stored procedure
address space.

You specify this CLASSPATH in the JAVAENYV data set. You specify the
JAVAENYV data set using a JAVAENV DD statement in the startup procedure
for the WLM-established stored procedure address space.

If you need to modify the CLASSPATH environment variable in the JAVAENV
data set to include the directory for the Java routine's classes, you must restart
the WLM address space to make it use the modified CLASSPATH.

4. Use the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter without a
JAR name.

5. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:

|”Runtime environment for Java routines” on page 193|
Related tasks:
[“Program preparation for SQLJ] programs” on page 219|

Creating JAR files for Java routines

A convenient way to ensure that all modules of a Java routine are accessible is to
store those modules in a JAR file. You create the JAR file by running the jar
command in z/OS UNIX System Services.

Before you begin

For a JDBC routine, before you can create a JAR file, you need to compile the
source code. For an SQL]J routine, before you can create a JAR file, you need to
translate, compile, and customize the source code.

Procedure

1. If the Java source file does not contain a package statement, change to the
directory that contains the class file for the Java routine, which you created by
running the javac command.

For example, if JDBC routine Add_customerjava is in /u/db2res3/acmejos,
change to directory /u/db2res3/acmejos.

If the Java source file contains a package statement, change to the directory that
is one level above the directory that is named in the package statement.

For example, suppose the package statement is:
package 1viOne.lviTwo.Tv1Three;

Change to the directory that contains lvlOne as an immediate subdirectory.
2. Run the jar command.
You might need to specify at least these options:

¢ Creates a new or empty archive.
v Generates verbose output on stderr.
f Specifies that the argument immediately after the options list is the name of

the JAR file to be created.

Chapter 6. Preparing and running JDBC and SQL] programs 227

For example, to create a JAR file named acmejos.jar from Add_customer.class,
which is in package acmejos, execute this jar command:

jar -cvf acmejos.jar acmejos/Add customer.class

To create a JAR file for an SQLJ routine, you also need to include all generated
class files, such as classes that are generated for iterators, and all serialized
profile files. For example, suppose that all classes are declared to be in package
acmejos, and all class files, including generated class files, and all serialized
profile files for SQLJ routine Add_customer.sqlj are in directory
/u/db2res3/acmejos/. To create a JAR file named acmejos jar, change the the
/u/db2res3 directory, and then issue this jar command:

jar -cvf acmejos.jar acmejos/*.class acmejos/x.ser

Running JDBC and SQLJ programs

You run a JDBC or SQLJ program using the java command. Before you run the
program, you need to ensure that the JVM can find all of the files that it needs.

About this task

These steps allow you to run a JDBC or SQL] program.

Procedure
1. Ensure that the program files can be found.

* For an SQL]J program, put the serialized profiles for the program in the same
directory as the class files for the program.

¢ Include directories for the class files that are used by the program in the
CLASSPATH.

2. Run the java command on the z/OS UNIX System Services command line, with
the top-level file name in the program as the argument.

Example

To run a program that is in the EzJava class, add the directory that contains EzJava
to the CLASSPATH. Then run this command:

java EzJava
Related concepts:
“Environment variables for the IBM Data Server Driver for JDBC and SQLJ” on|

page 51§|

228 Application Programming Guide and Reference for Java

Chapter 7. JDBC and SQLJ reference information

The IBM implementations of JDBC and SQLJ provide a number of application
programming interfaces, properties, and commands for developing JDBC and SQLJ
applications.

Data types that map to database data types in Java applications

To write efficient JDBC and SQLJ programs, you need to use the best mappings
between Java data types and table column data types.

The following tables summarize the mappings of Java data types to JDBC and
database data types for a DB2 for Linux, UNIX, and Windows, DB2 for z/OS, or
IBM Informix system.

Data types for updating table columns

The following table summarizes the mappings of Java data types to database data
types for PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC
programs, and for input host expressions in SQLJ programs. When more than one
Java data type is listed, the first data type is the recommended data type.

Table 32. Mappings of Java data types to database server data types for updating database tables

Java data type Database data type
short, java.lang.Short SMALLINT
boolearfl byt java.lang.Boolean, java.lang.Byte SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long BIGINTE
java.math.BigInteger BIGINTI
java.math.BigInteger CHAR(n

float, java.lang.Float REAL

double, java.lang.Double DOUBLE
java.math.BigDecimal DECIMAL(p,sjz
java.math.BigDecimal DECFLOAT(nf8
java.lang.String CHAR(nf
java.lang.String GRAPHIC(mjE
java.lang.String VARCHAR(n)ﬂ
java.lang.String VARGRAPHIC(mﬁ
java.lang.String cLoH
java.lang.String XM

bytel[] CHAR(n) FOR BIT DATAH
byte[] VARCHAR(n) FOR BIT DATAH
bytel[] BINARY(n 3
byte[] VARBINARY (1 f1E
byte[] BLOBY

© Copyright IBM Corp. 1998, 2013 229

Table 32. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

byte[] ROWID

byte[] xm1M@

java.sql.Blob BLOB

java.sql.Blob xmi

java.sql.Clob CLOB

java.sql.Clob DBCLOB

java.sql.Clob XM

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONHEE]

java.io.ByteArrayInputStream BLOB

java.io.StringReader CLOB

java.io.ByteArrayInputStream CLOB

java.io.InputStream xm1m

com.ibm.db2 jec. DB2RowID (deprecated) ROWID

java.sql.Rowld ROWID

com.ibm.db2 jec.DB2Xml (deprecated) xmim

java.sql.SQLXML xmim

java.util.Date CHAR(ny

java.util.Date VARCHAR(n)HH

java.util.Date DATED

java.util.Date TIMHD

java.util.Date TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONHIEE

java.util.Calendar CHAR(n

java.util.Calendar VARCHAR(n)EIE

java.util.Calendar DATEO

java.util.Calendar TIMEH

java.util.Calendar TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,

TIMESTAMP(p) WITH TIME ZON

230 Application Programming Guide and Reference for Java

Table 32. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

Notes:

1.

rw

1.
12.

13.

14.

15.

© © ®N o O

For column updates, the data server has no exact equivalent for the Java boolean or byte data types, but the best
fit is SMALLINT.

. p is the decimal precision and s is the scale of the table column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If
you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a
java.math.BigDecimal variable results in better performance than using other combinations of data types.

n=16 or n=34.

DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS, DB2 V9.5 for Linux, UNIX, and Windows, or
DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

n<=255.

m<=127.

n<=32704.

m<=16352.

This mapping is valid only if the database server can determine the data type of the column.

XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,
and Windows or later database servers.

This mapping is valid only for IBM Data Server Driver for JDBC and SQLJ version 4.13 or later.

BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux,
UNIX, and Windows or later database servers, and all supported DB2 for i database servers.

BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or

DB2 for i5/0S " V5R3 and later database servers.

p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types for retrieval from table columns

The following table summarizes the mappings of DB2 or IBM Informix data types
to Java data types for ResultSet.getXXX methods in JDBC programs, and for
iterators in SQL]J programs. This table does not list Java numeric wrapper object
types, which are retrieved using ResultSet.getObject.

Table 33. Mappings of database server data types to Java data types for retrieving data from database server tables

Recommended Java data type or

SQL data type Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,

java.math.BigDecimal, boolean,
java.lang.String

INTEGER int short, byte, long, float, double,

java.math.BigDecimal, boolean,
java.lang.String

BIGINTE long int, short, byte, float, double,

java.math.BigDecimal, boolean,
java.lang.String

DECIMAL(p,s) or NUMERIC(p,s) java.math.BigDecimal long, int, short, byte, float, double,

boolean, java.lang.String

Chapter 7. JDBC and SQLJ reference information 231

Table 33. Mappings of database server data types to Java data types for retrieving data from database server

tables (continued)

SQL data type

Recommended Java data type or
Java object type

Other supported Java data types

DECFLOAT(nf2

java.math.BigDecimal

long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

REAL

float

long, int, short, byte, double,
java.math.BigDecimal, boolean,
java.lang.String

DOUBLE

double

long, int, short, byte, float,
java.math.BigDecimal, boolean,
java.lang.String

CHAR(n)

java.lang.String

long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARCHAR(n)

java.lang.String

long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,
java.io.InputStream, java.io.Reader

VARCHAR(n) FOR BIT DATA byte[] java.lang.String,
java.io.InputStream, java.io.Reader

BINARY(TI’E byte[] None

VARBINARY (nf# byte[] None

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARGRAPHIC(1m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[ﬁ

DBCLOB(m) No exact equivalent. Use

java.sql.Clob.

ROWID java.sql.Rowld byte[], com.ibm.db2.jcc. DB2RowID
(deprecated)

xMIH java.sqlL.SQLXML byte[], java.lang.String,
java.io.InputStream, java.io.Reader

DATE java.sql.Date java.sql.String, java.sql.Timestamp

TIME java.sql.Time java.sql.String, java.sql. Timestamp

232 Application Programming Guide and Reference for Java

Table 33. Mappings of database server data types to Java data types for retrieving data from database server
tables (continued)

Recommended Java data type or

SQL data type Java object type Other supported Java data types
TIMESTAMP, TIMESTAMP(p), TIMESTAMP java.sql.Timestamp java.sql.String, java.sql.Date,
WITH TIME ZONE, TIMESTAMP(p) WITH java.sql.Time, java.sql.Timestamp
TIME ZONHH

Notes:

1. n=16 or n=34.

2. DECFLOAT is valid for connections to DB2 Version 9.1 for z/0OS, DB2 V9.5 for Linux, UNIX, and Windows, or
DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

3. This mapping is valid only if the database server can determine the data type of the column.

4. XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,
and Windows or later database servers.

5. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,
and Windows or later database servers, and all supported DB2 for i database servers.

6. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2
for i5/0S V5R3 or later database servers.

7. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

8. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types for calling stored procedures and user-defined
functions

The following table summarizes mappings of Java data types to JDBC data types
and DB2 or IBM Informix data types for calling user-defined function and stored
procedure parameters. The mappings of Java data types to JDBC data types are for
CallableStatement.registerOutParameter methods in JDBC programs. The
mappings of Java data types to database server data types are for parameters in
stored procedure or user-defined function invocations.

If more than one Java data type is listed in the following table, the first data type
is the recommended data type.

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data typ
boolear® java.lang.Boolean BIT SMALLINT
byt java.lang.Byte TINYINT SMALLINT
short, java.lang.Short SMALLINT SMALLINT
int, java.lang.Integer INTEGER INTEGER
long, java.lang.Long BIGINT BIGINTE
float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE
java.math.BigDecimal DECIMAL DECIMAL
java.math.BigDecimal java.types. OTHER DECFLOAT/#
java.math.BigDecimal com.ibm.db2.jcc. DB2Types. DECFLOAT DECFLOAT/#

Chapter 7. JDBC and SQLJ reference information 233

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined

functions (continued)

Java data type JDBC data type SQL data ’type!II

java.lang.String CHAR CHAR

java.lang.String CHAR GRAPHIC

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR VARGRAPHIC

java.lang.String LONGVARCHAR VARCHAR

java.lang.String VARCHAR CLOB

java.lang.String LONGVARCHAR CLOB

java.lang.String CLOB CLOB

byte[] BINARY CHAR FOR BIT DATA

bytel[] VARBINARY VARCHAR FOR BIT
DATA

bytel[] BINARY BINARYE

byte[] VARBINARY VARBINARYE

byte[] LONGVARBINARY VARCHAR FOR BIT
DATA

byte[] VARBINARY BLOHY

byte[] LONGVARBINARY BLOHY

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP,
TIMESTAMP(p),
TIMESTAMP WITH TIME
ZONE, TIMESTAMP(p)
WITH TIME ZON

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Clob CLOB DBCLOB

java.io.ByteArrayInputStream None BLOB

java.io.StringReader None CLOB

java.io.ByteArraylnputStream None CLOB

com.ibm.db2.jcc. DB2RowID com.ibm.db2.jcc.DB2Types.ROWID ROWID

(deprecated)

java.sql.Rowld java.sql.Types. ROWID ROWID

java.sql.SQLXML java.sql.Types.SQLXML XML

java.sql.ResultSet com.ibm.db2.jcc. DB2Types. CURSOR CURSOR type

234 Application Programming Guide and Reference for Java

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined
functions (continued)

Java data type

JDBC data type SQL data typ

Notes:

1.

A DB2 for z/OS stored procedure or user-defined function parameter cannot have the XML data type.

2. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a
boolean or byte parameter. However, this is not recommended.

3. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later
database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,
and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

4. This mapping is valid only if the database server can determine the data type of the column.

5. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2
for i5/0S V5R3 and later database servers.

6. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,
and Windows or later database servers, and all supported DB2 for i database servers.

7. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

8. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types in Java stored procedures and user-defined functions

The following table summarizes mappings of the SQL parameter data types in a
CREATE PROCEDURE or CREATE FUNCTION statement to the data types in the
corresponding Java stored procedure or user-defined function method.

For DB2 for Linux, UNIX, and Windows, if more than one Java data type is listed
for an SQL data type, only the first Java data type is valid.

For DB2 for z/OS, if more than one Java data type is listed, and you use a data
type other than the first data type as a method parameter, you need to include a
method signature in the EXTERNAL clause of your CREATE PROCEDURE or
CREATE FUNCTION statement that specifies the Java data types of the method
parameters.

Table 35. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE

Data type in Java stored procedure or

FUNCTIO user-defined function metho
SMALLINT short, java.lang.Integer
INTEGER int, java.lang.Integer
BIGINTE long, java.lang.Long
REAL float, java.lang.Float
DOUBLE double, java.lang.Double
DECIMAL java.math.BigDecimal
DECFLOATH java.math.BigDecimal
CHAR java.lang.String
VARCHAR java.lang.String

CHAR FOR BIT DATA bytel[]

VARCHAR FOR BIT DATA bytel[]

Chapter 7. JDBC and SQLJ reference information

235

Table 35. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program (continued)

SQL data type in CREATE PROCEDURE or CREATE Data type in Java stored procedure or
FUNCTIO user-defined function method?
BINARYE byte[]

VARBINARYE byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE, java.sql.Timestamp
TIMESTAMP(p) WITH TIME ZONHH

BLOB java.sql.Blob

CLOB java.sql.Clob
DBCLOB java.sql.Clob

ROWID java.sql.Types.ROWID
Notes:

1. A DB2 for z/OS stored procedure or user-defined function parameter cannot have the XML data type.
2. For a stored procedure or user-defined function on a DB2 for Linux, UNIX, and Windows server, only the first
data type is valid.

3. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux,
UNIX, and Windows or later database servers.

4. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later
database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,
and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

5. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers.

6. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

7. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Date, time, and timestamp values that can cause problems in
JDBC and SQLJ applications

You might receive unexpected results in JDBC and SQLJ applications if you use
date, time, and timestamp values that do not correspond to real dates and times.

The following items might cause problems:
* Use of the hour '24' to represent midnight
* Use of a date between October 5, 1582, and October 14, 1582, inclusive

Problems with using the hour '24' as midnight

The IBM Data Server Driver for JDBC and SQLJ uses Java data types for its
internal processing of input and output parameters and ResultSet content in JDBC
and SQL]J applications. The Java data type that is used by the driver is based on
the best match for the corresponding SQL type when the target SQL type is known
to the driver.

236 Application Programming Guide and Reference for Java

For values that are assigned to or retrieved from DATE, TIME, or TIMESTAMP
SQL types, the IBM Data Server Driver for JDBC and SQLJ uses java.sql.Date for
DATE SQL types, java.sql.Time for TIME SQL types, and java.sql.Timestamp for
TIMESTAMP SQL types.

When you assign a string value to a DATE, TIME, or TIMESTAMP target, the IBM
Data Server Driver for JDBC and SQLJ uses Java facilities to convert the string
value to a java.sql.Date, java.sql.Time, or java.sql. Timestamp value. If a string
representation of a date, time, or timestamp value does not correspond to a real
date or time, Java adjusts the value to a real date or time value. In particular, Java
adjusts an hour value of 24’ to '00' of the next day. This adjustment can result in
an exception for a timestamp value of '9999-12-31 24:00:00.0', because the adjusted
year value becomes '10000'".

Important: To avoid unexpected results when you assign or retrieve date, time, or
timestamp values in JDBC or SQL]J applications, ensure that the values are real
date, time, or timestamp values. In addition, do not use 24' as the hour component
of a time or timestamp value.

If a value that does not correspond to a real date or time, such as a value with an
hour component of '24', is stored in a TIME or TIMESTAMP column, you can
avoid adjustment during retrieval by executing the SQL CHAR function against
that column in the SELECT statement that defines a ResultSet. Executing the
CHAR function converts the date or time value to a character string value on the
database side. However, if you use the getTime or getTimestamp method to retrieve
that value from the ResultSet, the IBM Data Server Driver for JDBC and SQL]J
converts the value to a java.sql.Time or java.sql.Timestamp type, and Java adjusts
the value. To avoid date adjustment, execute the CHAR function against the
column value, and retrieve the value from the ResultSet with the getString
method.

The following examples show the results of updating DATE, TIME, or
TIMESTAMP columns in JDBC or SQL]J applications, when the application data
does not represent real dates or times.

Table 36. Examples of updating DATE, TIME, or TIMESTAMP SQL values with Java date, time, or timestamp values
that do not represent real dates or times

Target type in

String input value database Value sent to table column, or exception

2008-13-35 DATE 2009-02-04

25:00:00 TIME 01:00:00

24:00:00 TIME 00:00:00

2008-15-36 TIMESTAMP 2009-04-06 05:04:14.0

28:63:74.0

9999-12-31 TIMESTAMP Exception, because the adjusted value (10000-01-01 00:00:00.0) exceeds the
24:00:00.0 maximum year of 9999.

The following examples demonstrate the results of retrieving data from
TIMESTAMP columns in JDBC or SQLJ applications, when the values in those
columns do not represent real dates or times.

Chapter 7. JDBC and SQLJ reference information 237

Table 37. Results of retrieving DATE, TIME, or TIMESTAMP SQL values that do not represent real dates or times into

Java application variables

Target type in application
Value in TIMESTAMP (getXXX method for
SELECT statement column TS_COL retrieval)

Value retrieved from table column

2000-01-02 00:00:00.000000

SELECT TS_COL 2000-01-01 24:00:00.000000 java.sql.Timestamp

FROM TABLE1 (getTimestamp)

SELECT TS_COL 2000-01-01 24:00:00.000000 String (getString) 2000-01-02 00:00:00.000000
FROM TABLE1

SELECT 2000-01-01 24:00:00.000000 java.sql.Timestamp 2000-01-02 00:00:00.000000
CHAR(TS_COL) (getTimestamp)

FROM TABLE1

SELECT 2000-01-01 24:00:00.000000 String (getString) 2000-01-01 24:00:00.000000 (no

CHAR(TS_COL)
FROM TABLE1

adjustment by Java)

Problems with using dates in the range October 5, 1582, through
October 14, 1582

The Java java.util.Date and java.util.Timestamp classes use the Julian calendar
for dates before October 4, 1582, and the Gregorian calendar for dates starting with
October 4, 1582. In the Gregorian calendar, October 4, 1582, is followed by October
15, 1582. If a Java program encounters a java.util.Date or java.util.Timestamp
value that is between October 5, 1582, and October 14, 1582, inclusive, Java adds 10
days to that date. Therefore, a DATE or TIMESTAMP value in a DB2 table that has
a value between October 5, 1582, and October 14, 1582, inclusive, is retrieved in a
Java program as a java.util.Date or java.util.Timestamp value between October
15, 1582, and October 24, 1582, inclusive. A java.util.Date or
java.util.Timestamp value in a Java program that is between October 5, 1582, and
October 14, 1582, inclusive, is stored in a DB2 table as a DATE or TIMESTAMP
value between October 15, 1582, and October 24, 1582, inclusive.

Example: Retrieve October 10, 1582, from a DATE column.

// DATETABLE has one date column with one row.
// Its value is 1582-10-10.
java.sql.ResultSet rs =
statement.executeQuery(select * from DATETABLE);
rs.next();
System.out.printin(rs.getDate(1)); // Value is retrieved as 1582-10-20

Example: Store October 10, 1582, in a DATE column.

java.sql.Date d = java.sql.Date.valueOf("1582-10-10");
java.sql.PreparedStatement ps =

c.prepareStatemen