
DB2 11 for z/OS

Application Programming
Guide and Reference
for Java

SC19-4052-00

���

DB2 11 for z/OS

Application Programming
Guide and Reference
for Java

SC19-4052-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1998, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . ix
Who should read this information . ix
DB2 Utilities Suite . ix
Terminology and citations. ix
Accessibility features for DB2 11 for z/OS . x
How to send your comments . xi
How to read syntax diagrams . xi

Chapter 1. Java application development for IBM data servers 1

Chapter 2. Supported drivers for JDBC and SQLJ. 3
JDBC driver and database version compatibility . 4
DB2 for z/OS and IBM Data Server Driver for JDBC and SQLJ levels 5
DB2 for Linux, UNIX, and Windows and IBM Data Server Driver for JDBC and SQLJ levels. 8

Chapter 3. JDBC application programming . 11
Example of a simple JDBC application . 11
How JDBC applications connect to a data source . 13

Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and
SQLJ . 15
Connecting to a data source using the DataSource interface 23
How to determine which type of IBM Data Server Driver for JDBC and SQLJ connectivity to use 25
JDBC connection objects . 26
Creating and deploying DataSource objects . 26

Java packages for JDBC support . 28
Learning about a data source using DatabaseMetaData methods. 28

DatabaseMetaData methods for identifying the type of data source 30
Variables in JDBC applications . 30
Comments in a JDBC application . 31
JDBC interfaces for executing SQL. 32

Creating and modifying database objects using the Statement.executeUpdate method 32
Updating data in tables using the PreparedStatement.executeUpdate method 33
JDBC executeUpdate methods against a DB2 for z/OS server. 35
Making batch updates in JDBC applications . 36
Learning about parameters in a PreparedStatement using ParameterMetaData methods 40
Data retrieval in JDBC applications . 41
Calling stored procedures in JDBC applications . 57
LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ 63
ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ 68
Update and retrieval of timestamps with time zone information in JDBC applications 70
Distinct types in JDBC applications . 78
Invocation of stored procedures with ARRAY parameters in JDBC applications 79
Savepoints in JDBC applications . 80
Retrieval of automatically generated keys in JDBC applications 82
Named parameter markers in JDBC applications . 85
Providing extended client information to the data source with IBM Data Server Driver for JDBC and SQLJ-only
methods . 89
Providing extended client information to the data source with client info properties 90

Extended parameter information with the IBM Data Server Driver for JDBC and SQLJ 94
Using DB2PreparedStatement methods or constants to provide extended parameter information 95
Using DB2ResultSet methods or DB2PreparedStatement constants to provide extended parameter information 96

XML data in JDBC applications. 98
XML column updates in JDBC applications . 98
XML data retrieval in JDBC applications . 101
Invocation of routines with XML parameters in Java applications 104

© Copyright IBM Corp. 1998, 2013 iii

Binary XML format in Java applications . 106
Java support for XML schema registration and removal 107

Inserting data from file reference variables into tables in JDBC applications. 110
Transaction control in JDBC applications . 112

IBM Data Server Driver for JDBC and SQLJ isolation levels 112
Committing or rolling back JDBC transactions . 113
Default JDBC autocommit modes . 113

Exceptions and warnings under the IBM Data Server Driver for JDBC and SQLJ 114
Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ 117
Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ. 120
Retrieving information from a BatchUpdateException . 121

Memory use for IBM Data Server Driver for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on
DB2 for z/OS . 123
Disconnecting from data sources in JDBC applications. 124

Chapter 4. SQLJ application programming . 125
Example of a simple SQLJ application . 125
Connecting to a data source using SQLJ . 127

SQLJ connection technique 1: JDBC DriverManager interface 127
SQLJ connection technique 2: JDBC DriverManager interface 129
SQLJ connection technique 3: JDBC DataSource interface 130
SQLJ connection technique 4: JDBC DataSource interface 132
SQLJ connection technique 5: Use a previously created connection context 133
SQLJ connection technique 6: Use the default connection 134

Java packages for SQLJ support . 134
Variables in SQLJ applications . 135
Indicator variables in SQLJ applications . 136
Comments in an SQLJ application . 140
SQL statement execution in SQLJ applications . 140

Creating and modifying database objects in an SQLJ application 141
Performing positioned UPDATE and DELETE operations in an SQLJ application 141
Data retrieval in SQLJ applications . 151
Calling stored procedures in SQLJ applications . 161
LOBs in SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ 164
SQLJ and JDBC in the same application . 166
Controlling the execution of SQL statements in SQLJ . 170
ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ 170
TIMESTAMP WITH TIME ZONE values in SQLJ applications 172
Distinct types in SQLJ applications . 173
Savepoints in SQLJ applications . 174

XML data in SQLJ applications . 175
XML column updates in SQLJ applications . 176
XML data retrieval in SQLJ applications . 178
XMLCAST in SQLJ applications . 179

Inserting data from file reference variables into tables in SQLJ applications 180
SQLJ utilization of SDK for Java Version 5 function. 181
Transaction control in SQLJ applications . 183

Setting the isolation level for an SQLJ transaction . 184
Committing or rolling back SQLJ transactions . 184

Handling SQL errors and warnings in SQLJ applications . 184
Handling SQL errors in an SQLJ application . 185
Handling SQL warnings in an SQLJ application . 185

Closing the connection to a data source in an SQLJ application 186

Chapter 5. Java stored procedures and user-defined functions 189
Setting up the environment for Java routines . 189

Setting up the WLM application environment for Java routines. 190
Runtime environment for Java routines. 193

Moving from 31-bit Java routines to 64-bit Java routines . 196
Defining Java routines and JAR files to DB2 . 198

iv Application Programming Guide and Reference for Java

||

Definition of a Java routine to DB2 . 199
Definition of a JAR file for a Java routine to DB2 . 203

Java routine programming . 213
Differences between Java routines and stand-alone Java programs 213
Differences between Java routines and other routines . 214
Static and non-final variables in a Java routine . 215
Writing a Java stored procedure to return result sets . 216

Techniques for testing a Java routine . 217

Chapter 6. Preparing and running JDBC and SQLJ programs. 219
Program preparation for JDBC programs . 219
Program preparation for SQLJ programs . 219
Binding SQLJ applications to access multiple database servers 220
Program preparation for Java routines . 222

Preparation of Java routines with no SQLJ clauses . 222
Preparation of Java routines with SQLJ clauses . 224
Creating JAR files for Java routines . 227

Running JDBC and SQLJ programs . 228

Chapter 7. JDBC and SQLJ reference information. 229
Data types that map to database data types in Java applications 229

Date, time, and timestamp values that can cause problems in JDBC and SQLJ applications 236
Data loss for timestamp data in JDBC and SQLJ applications 239
Retrieval of special values from DECFLOAT columns in Java applications 240
Use of PreparedStatement.setTimestamp to set values in TIMESTAMP WITH TIME ZONE columns 242

Properties for the IBM Data Server Driver for JDBC and SQLJ 243
Common IBM Data Server Driver for JDBC and SQLJ properties for all supported database products 244
Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers. 270
Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS and IBM Informix. . . . 283
Common IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix and DB2 Database for
Linux, UNIX, and Windows . 285
IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for Linux, UNIX, and Windows . . 285
IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS 288
IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix 294

IBM Data Server Driver for JDBC and SQLJ configuration properties 299
Driver support for JDBC APIs . 319
IBM Data Server Driver for JDBC and SQLJ support for SQL escape syntax 345
SQLJ statement reference information . 346

SQLJ clause . 346
SQLJ host-expression . 346
SQLJ implements-clause . 348
SQLJ with-clause . 348
SQLJ connection-declaration-clause . 350
SQLJ iterator-declaration-clause . 351
SQLJ executable-clause . 352
SQLJ context-clause . 353
SQLJ statement-clause . 354
SQLJ SET-TRANSACTION-clause . 356
SQLJ assignment-clause . 357
SQLJ iterator-conversion-clause . 358

Interfaces and classes in the sqlj.runtime package . 358
sqlj.runtime.ConnectionContext interface . 359
sqlj.runtime.ForUpdate interface . 364
sqlj.runtime.NamedIterator interface. 364
sqlj.runtime.PositionedIterator interface. 365
sqlj.runtime.ResultSetIterator interface . 365
sqlj.runtime.Scrollable interface . 368
sqlj.runtime.AsciiStream class . 370
sqlj.runtime.BinaryStream class . 371
sqlj.runtime.CharacterStream class . 371

Contents v

sqlj.runtime.ExecutionContext class . 372
sqlj.runtime.SQLNullException class . 381
sqlj.runtime.StreamWrapper class . 381
sqlj.runtime.UnicodeStream class . 382

IBM Data Server Driver for JDBC and SQLJ extensions to JDBC 383
DBBatchUpdateException interface . 385
DB2BaseDataSource class . 386
DB2Binder class . 391
DB2BlobFileReference class . 392
DB2CallableStatement interface . 393
DB2ClientRerouteServerList class . 399
DB2ClobFileReference class. 401
DB2Connection interface . 401
DB2ConnectionPoolDataSource class . 421
DB2DatabaseMetaData interface . 423
DB2Diagnosable interface . 424
DB2DataSource class . 425
DB2Driver class . 426
DB2ExceptionFormatter class . 427
DB2FileReference class . 427
DB2JCCPlugin class . 428
DB2ParameterMetaData interface . 429
DB2PooledConnection class . 430
DB2PoolMonitor class . 432
DB2PreparedStatement interface . 435
DB2ResultSet interface . 450
DB2ResultSetMetaData interface . 454
DB2RowID interface . 455
DB2SimpleDataSource class . 455
DB2Sqlca class . 456
DB2Statement interface . 457
DB2SystemMonitor interface . 459
DB2TraceManager class . 462
DB2TraceManagerMXBean interface . 466
DB2Types class . 469
DB2XADataSource class . 469
DB2Xml interface . 471
DB2XmlAsBlobFileReference class . 474
DB2XmlAsClobFileReference class . 474
DBTimestamp class . 475

JDBC differences between versions of the IBM Data Server Driver for JDBC and SQLJ 477
Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values 484
Error codes issued by the IBM Data Server Driver for JDBC and SQLJ 485
SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ 492
How to find IBM Data Server Driver for JDBC and SQLJ version and environment information 494
Commands for SQLJ program preparation. 495

sqlj - SQLJ translator . 495
db2sqljcustomize - SQLJ profile customizer . 498
db2sqljbind - SQLJ profile binder . 509
db2sqljprint - SQLJ profile printer . 514

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 515
Installing the IBM Data Server Driver for JDBC and SQLJ as part of a DB2 installation 515

Jobs for loading the IBM Data Server Driver for JDBC and SQLJ libraries 516
Environment variables for the IBM Data Server Driver for JDBC and SQLJ 516
Customization of IBM Data Server Driver for JDBC and SQLJ configuration properties 518
Enabling the DB2-supplied stored procedures used by the IBM Data Server Driver for JDBC and SQLJ . . . 519
DB2Binder utility . 522
DB2LobTableCreator utility . 529
Verify the installation of the IBM Data Server Driver for JDBC and SQLJ 530

Upgrading the IBM Data Server Driver for JDBC and SQLJ to a new version 532

vi Application Programming Guide and Reference for Java

Installing the z/OS Application Connectivity to DB2 for z/OS feature 533
Jobs for loading the z/OS Application Connectivity to DB2 for z/OS libraries 534
Environment variables for the z/OS Application Connectivity to DB2 for z/OS feature. 535

Chapter 9. Setting the DB2 for z/OS application compatibility for your JDBC and SQLJ
applications . 537

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 539
User ID and password security under the IBM Data Server Driver for JDBC and SQLJ 540
User ID-only security under the IBM Data Server Driver for JDBC and SQLJ 543
Encrypted password, user ID, or data security under the IBM Data Server Driver for JDBC and SQLJ 544
Kerberos security under the IBM Data Server Driver for JDBC and SQLJ 547
IBM Data Server Driver for JDBC and SQLJ trusted context support 550
IBM Data Server Driver for JDBC and SQLJ support for SSL 552

Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use SSL 553
Configuring the Java Runtime Environment to use SSL 554

IBM Data Server Driver for JDBC and SQLJ support for certificate authentication 557
Security for preparing SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ 558

Chapter 11. Java client support for high availability on IBM data servers. 561
Java client support for high availability for connections to DB2 for Linux, UNIX, and Windows servers 562

Configuration of DB2 for Linux, UNIX, and Windows automatic client reroute support for Java clients . . . 563
Example of enabling DB2 for Linux, UNIX, and Windows automatic client reroute support in Java
applications . 566
Configuration of DB2 for Linux, UNIX, and Windows workload balancing support for Java clients. 567
Example of enabling DB2 for Linux, UNIX, and Windows workload balancing support in Java applications 568
Operation of automatic client reroute for connections to DB2 for Linux, UNIX, and Windows from Java clients 569
Operation of alternate group support for connections to DB2 for Linux, UNIX, and Windows 574
Operation of workload balancing for connections to DB2 for Linux, UNIX, and Windows 578
Application programming requirements for high availability for connections to DB2 for Linux, UNIX, and
Windows servers . 579
Client affinities for DB2 for Linux, UNIX, and Windows 580

Java client support for high availability for connections to IBM Informix servers 583
Configuration of IBM Informix high-availability support for Java clients. 584
Example of enabling IBM Informix high availability support in Java applications. 587
Operation of automatic client reroute for connections to IBM Informix from Java clients 589
Operation of workload balancing for connections to IBM Informix from Java clients. 593
Application programming requirements for high availability for connections from Java clients to IBM Informix
servers . 594
Client affinities for connections to IBM Informix from Java clients 595

Java client direct connect support for high availability for connections to DB2 for z/OS servers 598
Configuration of Sysplex workload balancing and automatic client reroute for Java clients 600
Example of enabling DB2 for z/OS Sysplex workload balancing and automatic client reroute in Java
applications . 602
Operation of Sysplex workload balancing for connections from Java clients to DB2 for z/OS servers 605
Operation of automatic client reroute for connections from Java clients to DB2 for z/OS 606
Application programming requirements for high availability for connections from Java clients to DB2 for
z/OS servers . 606

Failover support with IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS 607

Chapter 12. JDBC and SQLJ connection pooling support 609

Chapter 13. IBM Data Server Driver for JDBC and SQLJ statement caching. 611

Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4 connectivity JDBC and
SQLJ distributed transaction support . 613
Example of a distributed transaction that uses JTA methods 614

Contents vii

|
||

Chapter 15. JDBC and SQLJ global transaction support 619

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 621
DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility 623
Examples of using configuration properties to start a JDBC trace 625
Example of a trace program under the IBM Data Server Driver for JDBC and SQLJ 627
Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support 630

Chapter 17. Tracing IBM Data Server Driver for JDBC and SQLJ C/C++ native driver
code . 635
db2jcctrace - Format IBM Data Server Driver for JDBC and SQLJ trace data for C/C++ native driver code . . . 635

Chapter 18. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 637

Information resources for DB2 for z/OS and related products 641

Notices . 643
Programming interface information . 644
Trademarks . 645
Privacy policy considerations . 645

Glossary . 647

Index . 649

viii Application Programming Guide and Reference for Java

About this information

This information describes DB2® for z/OS® support for Java™. This support lets
you access relational databases from Java application programs.

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In Versions 8 and 9, most utility
functions were available in conversion mode. However, for Version 11, most utility
functions work only in new-function mode.

Who should read this information
This information is for the following users:
v DB2 for z/OS application developers who are familiar with Structured Query

Language (SQL) and who know the Java programming language.
v DB2 for z/OS system programmers who are installing JDBC and SQLJ support.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS

© Copyright IBM Corp. 1998, 2013 ix

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

x Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

About this information xi

mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xii Application Programming Guide and Reference for Java

Chapter 1. Java application development for IBM data servers

The DB2 and IBM Informix® database systems provide driver support for client
applications and applets that are written in Java.

You can access data in DB2 and IBM Informix database systems using JDBC, SQL,
or pureQuery®.

JDBC

JDBC is an application programming interface (API) that Java applications use to
access relational databases. IBM data server support for JDBC lets you write Java
applications that access local DB2 or IBM Informix data or remote relational data
on a server that supports DRDA®.

SQLJ

SQLJ provides support for embedded static SQL in Java applications. SQLJ was
initially developed by IBM, Oracle, and Tandem to complement the dynamic SQL
JDBC model with a static SQL model.

For connections to DB2, in general, Java applications use JDBC for dynamic SQL
and SQLJ for static SQL.

For connections to IBM Informix, SQL statements in JDBC or SQLJ applications run
dynamically.

Because SQLJ can inter-operate with JDBC, an application program can use JDBC
and SQLJ within the same unit of work.

pureQuery

pureQuery is a high-performance data access platform that makes it easier to
develop, optimize, secure, and manage data access. It consists of:
v Application programming interfaces that are built for ease of use and for

simplifying the use of best practices
v Development tools, which are delivered in IBM InfoSphere® Optim™

Development Studio, for Java and SQL development
v A runtime, which is delivered in IBM InfoSphere Optim pureQuery Runtime, for

optimizing and securing database access and simplifying management tasks

With pureQuery, you can write Java applications that treat relational data as
objects, whether that data is in databases or JDBC DataSource objects. Your
applications can also treat objects that are stored in in-memory Java collections as
though those objects are relational data. To query or update your relational data or
Java objects, you use SQL.

For more information on pureQuery, see the Integrated Data Management
Information Center.

© Copyright IBM Corp. 1998, 2013 1

Related concepts:
Chapter 2, “Supported drivers for JDBC and SQLJ,” on page 3
Related reference:

IBM Data Studio Information Center (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)

2 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp

Chapter 2. Supported drivers for JDBC and SQLJ

The DB2 product includes support for two types of JDBC driver architecture.

According to the JDBC specification, there are four types of JDBC driver
architectures:

Type 1
Drivers that implement the JDBC API as a mapping to another data access API,
such as Open Database Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability. The DB2 database
system does not provide a type 1 driver.

Type 2
Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Because of the native code, their portability is limited.

Type 3
Drivers that use a pure Java client and communicate with a data server using a
data-server-independent protocol. The data server then communicates the
client's requests to the data source. The DB2 database system does not provide
a type 3 driver.

Type 4
Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

DB2 for z/OS supports the IBM Data Server Driver for JDBC and SQLJ, which
combines type 2 and type 4 JDBC implementations. The driver is packaged in the
following way:
v db2jcc.jar and sqlj.zip for JDBC 3.0 and earlier support
v db2jcc4.jar and sqlj4.zip for JDBC 4.0 or later, and JDBC 3.0 or earlier support

You control the level of JDBC support that you want by specifying the appropriate
set of files in the CLASSPATH.

IBM Data Server Driver for JDBC and SQLJ (type 2 and type 4)

The IBM Data Server Driver for JDBC and SQLJ is a single driver that includes
JDBC type 2 and JDBC type 4 behavior. When an application loads the IBM Data
Server Driver for JDBC and SQLJ, a single driver instance is loaded for type 2 and
type 4 implementations. The application can make type 2 and type 4 connections
using this single driver instance. The type 2 and type 4 connections can be made
concurrently. IBM Data Server Driver for JDBC and SQLJ type 2 driver behavior is
referred to as IBM Data Server Driver for JDBC and SQLJ type 2 connectivity. IBM
Data Server Driver for JDBC and SQLJ type 4 driver behavior is referred to as IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity.

Two versions of the IBM Data Server Driver for JDBC and SQLJ are available. IBM
Data Server Driver for JDBC and SQLJ version 3.5x is JDBC 3.0-compliant. IBM
Data Server Driver for JDBC and SQLJ version 4.x is compliant with JDBC 4.0 or
later.

© Copyright IBM Corp. 1998, 2013 3

The IBM Data Server Driver for JDBC and SQLJ supports these JDBC and SQLJ
functions:
v Version 3.5x supports all of the methods that are described in the JDBC 3.0

specifications.
v Version 4.x supports all of the methods that are described in the JDBC 4.0 or

later specifications.
v SQLJ application programming interfaces, as defined by the SQLJ standards, for

simplified data access from Java applications.
v Connections that are enabled for connection pooling. WebSphere® Application

Server or another application server does the connection pooling.
v Connections to a data server from Java user-defined functions and stored

procedures use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
only. Applications that call user-defined functions or stored procedures can use
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity or IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity to connect to a data server.

v Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java
Transaction API (JTA) specifications, which conform to the X/Open standard for
distributed transactions (Distributed Transaction Processing: The XA Specification,
available from http://www.opengroup.org) (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity to DB2 for z/OS environment, Version 7 or later,
or to DB2 for Linux, UNIX, and Windows).

In general, you should use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity for Java programs that run on the same z/OS system or zSeries®

logical partition (LPAR) as the target DB2 subsystem. Use IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity for Java programs that run on a different
z/OS system or LPAR from the target DB2 subsystem.

For z/OS systems or LPARs that do not have DB2 for z/OS, the z/OS Application
Connectivity to DB2 for z/OS optional feature can be installed to provide IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity to a DB2 for Linux,
UNIX, and Windows data server.

To use the IBM Data Server Driver for JDBC and SQLJ, you need Java 2
Technology Edition, V5 or later.
Related concepts:
“Environment variables for the z/OS Application Connectivity to DB2 for z/OS
feature” on page 535

JDBC driver and database version compatibility
The compatibility of a particular version of the IBM Data Server Driver for JDBC
and SQLJ with a database version depends on the type of driver connectivity that
you are using and the type of data source to which you are connecting.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity

The IBM Data Server Driver for JDBC and SQLJ is always downward compatible
with DB2 databases at the previous release level. For example, IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity from the IBM Data Server Driver for
JDBC and SQLJ version 3.61, which is shipped with DB2 for Linux, UNIX, and
Windows Version 9.7 Fix Pack 3, to a DB2 for Linux, UNIX, and Windows Version
8 database is supported.

4 Application Programming Guide and Reference for Java

The IBM Data Server Driver for JDBC and SQLJ is upward compatible with the
next version of a DB2 database if the applications under which the driver runs use
no new features. For example, IBM Data Server Driver for JDBC and SQLJ type 4
connectivity from the IBM Data Server Driver for JDBC and SQLJ version 2.x,
which is shipped with DB2 for z/OS Version 8, to a DB2 for z/OS Version 9.1
database is supported, if the applications under which the driver runs contain no
DB2 for z/OS Version 9.1 features.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to IBM Informix is
supported only for IBM Informix Version 11 and later.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type
2 connectivity

In general, IBM Data Server Driver for JDBC and SQLJ type 2 connectivity is
intended for connections to the local database system, using the driver version that
is shipped with that database version. For example, version 3.6x of the IBM Data
Server Driver for JDBC and SQLJ is shipped with DB2 for Linux, UNIX, and
Windows Version 9.5 and Version 9.7, and DB2 for z/OS Version 8 and later.

However, for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a
local DB2 for Linux, UNIX, and Windows database, the database version can be
one version earlier or one version later than the DB2 for Linux, UNIX, and
Windows version with which the driver was shipped. For IBM Data Server Driver
for JDBC and SQLJ type 2 connectivity to a local DB2 for z/OS subsystem, the
subsystem version can be one version later than the DB2 for z/OS version with
which the driver was shipped.

If the database version to which your applications are connecting is later than the
database version with which the driver was shipped, the applications cannot use
features of the later database version.
Related concepts:
Chapter 2, “Supported drivers for JDBC and SQLJ,” on page 3

DB2 for z/OS and IBM Data Server Driver for JDBC and SQLJ levels
Each version of the IBM Data Server Driver for JDBC and SQLJ is shipped as a
DB2 for z/OS APAR.

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/OS Version 10 APARs

The following table lists the major 4.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 10 APAR that delivered the initial
release of each version.

Table 1. IBM Data Server Driver for JDBC and SQLJ 4.x versions and corresponding DB2 for
z/OS Version 10 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 10 APAR/PTF

4.13 PM47801/UK76380

4.12 PM32361/UK66666

4.11 Version 10 GA

Chapter 2. Supported drivers for JDBC and SQLJ 5

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 10 APAR that delivered the initial
release of each version.

Table 2. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 10 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 10 APAR/PTF

3.63 PM47803/UK76374

3.62 PM32360/UK66662

3.61 Version 10 GA

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/OS Version 9 APARs

The following table lists the major 4.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 9 APAR that delivered the initial
release of each version.

Table 3. IBM Data Server Driver for JDBC and SQLJ 4.x versions and corresponding DB2 for
z/OS Version 9 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 9 APAR/PTF

4.13 PM47801/UK76381

4.12 PM32361/UK66665

4.11 PM25195/UK62191

4.9 PM15293/UK57688

4.8 PM02862/UK52963

4.7 PK87569/UK48782

4.3 PK75093/UK43777

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 9 APAR that delivered the initial
release of each version.

Table 4. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 9 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 9 APAR/PTF

3.63 PM47803/UK76376

3.62 PM32360/UK66664

3.61 PM25194/UK62189

3.59 PM15292/UK57685

3.58 PK93123/UK52962

3.57 PK87567/UK48236

3.53 PK71020/UK42554

3.52 PK65069/UK39205

3.51 PK68428/UK38507

6 Application Programming Guide and Reference for Java

Table 4. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 9 APARs (continued)

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 9 APAR/PTF

3.6 PK49868/UK32181

3.4 PK46324/UK29044

3.3 PK36170/UK22777

IBM Data Server Driver for JDBC and SQLJ versions and DB2 for
z/OS Version 8 APARs

The following table lists the major 3.x versions of the IBM Data Server Driver for
JDBC and SQLJ and the DB2 for z/OS Version 8 APAR that delivered the initial
release of each version.

Table 5. IBM Data Server Driver for JDBC and SQLJ 3.x versions and corresponding DB2 for
z/OS Version 8 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 8 APAR/PTF

3.63 PM47803/UK76375

3.62 PM32360/UK66663

3.61 PM26574/UK64542

3.58 PK93123/UK52961

3.57 PK87567/UK48235

3.53 PK71020/UK42553

3.52 PK65069/UK39204

The following table lists the major 2.x versions of the IBM Data Server Driver for
JDBC and SQLJ and theDB2 for z/OS Version 8 APAR APAR that delivered the
initial release of each version.

Table 6. IBM Data Server Driver for JDBC and SQLJ 2.x versions and corresponding DB2 for
z/OS Version 8 APARs

IBM Data Server Driver for JDBC and SQLJ
version DB2 for z/OS Version 8 APAR/PTF

2.11 PK54969/UK35429

2.10 PK25139/UK18527

2.9 PK19585/UK14851

2.8 PK18158/UK12333

2.7 PK13108/UK11330

Chapter 2. Supported drivers for JDBC and SQLJ 7

Related information:

IBM Data Server Driver for JDBC and SQLJ Versions and DB2 for z/OS APARs

DB2 for Linux, UNIX, and Windows and IBM Data Server Driver for
JDBC and SQLJ levels

Each version of DB2 for Linux, UNIX, and Windows is shipped with a JDBC 3
version and a JDBC 4 version of the IBM Data Server Driver for JDBC and SQLJ.

The following table lists the DB2 for Linux, UNIX, and Windows versions and
corresponding IBM Data Server Driver for JDBC and SQLJ versions. You can use
this information to determine the level of DB2 for Linux, UNIX, and Windows or
DB2 Connect™ that is associated with the IBM Data Server Driver for JDBC and
SQLJ instance under which a client program is running.

Table 7. DB2 for Linux, UNIX, and Windows fix pack levels and versions of the IBM Data
Server Driver for JDBC and SQLJ

DB2 version and fix pack level
IBM Data Server Driver for JDBC and SQLJ
version1

DB2 Version 10.5 Fix Pack 1 3.67.xx, 4.17.xx

DB2 Version 10.5 3.66.xx, 4.16.xx

DB2 Version 10.1 Fix Pack 2 3.65.xx, 4.15.xx

DB2 Version 10.1 Fix Pack 1 3.64.xx, 4.14.xx

DB2 Version 10.1 3.63.xx, 4.13.xx

DB2 Version 9.7 Fix Pack 6 3.64.xx, 4.14.xx

DB2 Version 9.7 Fix Pack 5 3.63.xx, 4.13.xx

DB2 Version 9.7 Fix Pack 4 3.62.xx, 4.12.xx

DB2 Version 9.7 Fix Pack 2 3.59.xx, 4.9.xx

DB2 Version 9.7 Fix Pack 1 3.58.xx, 4.8.xx

DB2 Version 9.7 3.57.xx, 4.7.xx

DB2 Version 9.5 Fix Pack 7 3.61.xx, 4.8.xx

DB2 Version 9.5 Fix Pack 6 3.58.xx, 4.8.xx

DB2 Version 9.5 Fix Pack 5 3.57.xx, 4.7.xx

DB2 Version 9.5 Fix Pack 3 and Fix Pack 4 3.53.xx, 4.3.xx

DB2 Version 9.5 Fix Pack 2 3.52.xx, 4.2.xx

DB2 Version 9.5 Fix Pack 1 3.51.xx, 4.1.xx

DB2 Version 9.5 3.50.xx, 4.0.xx

DB2 Version 9.1 Fix Pack 5 and later 3.7.xx

DB2 Version 9.1 Fix Pack 4 3.6.xx

DB2 Version 9.1 Fix Pack 3 3.4.xx

DB2 Version 9.1 Fix Pack 2 3.3.xx

DB2 Version 9.1 Fix Pack 1 3.2.xx

DB2 Version 9.1 3.1.xx

8 Application Programming Guide and Reference for Java

||

https://www.ibm.com/support/docview.wss?uid=swg21428742

Table 7. DB2 for Linux, UNIX, and Windows fix pack levels and versions of the IBM Data
Server Driver for JDBC and SQLJ (continued)

DB2 version and fix pack level
IBM Data Server Driver for JDBC and SQLJ
version1

Note:

1. All driver versions are of the form n.m.xx. n.m stays the same within a GA level or a fix
pack level. xx changes when a new version of the IBM Data Server Driver for JDBC and
SQLJ is introduced through an APAR fix.

You can find more detailed information about IBM Data Server Driver for JDBC
and SQLJ and DB2 for Linux, UNIX, and Windows versions at the following URL:
http://www.ibm.com/support/docview.wss?&uid=swg21363866

Chapter 2. Supported drivers for JDBC and SQLJ 9

http://www.ibm.com/support/docview.wss?&uid=swg21363866

10 Application Programming Guide and Reference for Java

Chapter 3. JDBC application programming

Writing a JDBC application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:
v Access the Java packages that contain JDBC methods.
v Declare variables for sending data to or retrieving data from DB2 tables.
v Connect to a data source.
v Execute SQL statements.
v Handle SQL errors and warnings.
v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks is somewhat different.

Example of a simple JDBC application
A simple JDBC application demonstrates the basic elements that JDBC applications
need to include.

import java.sql.*; �1�

public class EzJava
{

public static void main(String[] args)
{

String urlPrefix = "jdbc:db2:";
String url;
String user;
String password;
String empNo; �2�
Connection con;
Statement stmt;
ResultSet rs;

System.out.println ("**** Enter class EzJava");

// Check the that first argument has the correct form for the portion
// of the URL that follows jdbc:db2:,
// as described
// in the Connecting to a data source using the DriverManager
// interface with the IBM Data Server Driver for JDBC and SQLJ topic.
// For example, for IBM Data Server Driver for
// JDBC and SQLJ type 2 connectivity,
// args[0] might be MVS1DB2M. For
// type 4 connectivity, args[0] might
// be //stlmvs1:10110/MVS1DB2M.

if (args.length!=3)
{

System.err.println ("Invalid value. First argument appended to "+
"jdbc:db2: must specify a valid URL.");
System.err.println ("Second argument must be a valid user ID.");
System.err.println ("Third argument must be the password for the user ID.");

Figure 1. Simple JDBC application

© Copyright IBM Corp. 1998, 2013 11

System.exit(1);
}
url = urlPrefix + args[0];
user = args[1];
password = args[2];
try
{

// Load the driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); �3a�
System.out.println("**** Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
con = DriverManager.getConnection (url, user, password); �3b�
// Commit changes manually
con.setAutoCommit(false);
System.out.println("**** Created a JDBC connection to the data source");

// Create the Statement
stmt = con.createStatement(); �4a�
System.out.println("**** Created JDBC Statement object");

// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �4b�
System.out.println("**** Created JDBC ResultSet object");

// Print all of the employee numbers to standard output device
while (rs.next()) {

empNo = rs.getString(1);
System.out.println("Employee number = " + empNo);

}
System.out.println("**** Fetched all rows from JDBC ResultSet");
// Close the ResultSet
rs.close();
System.out.println("**** Closed JDBC ResultSet");

// Close the Statement
stmt.close();
System.out.println("**** Closed JDBC Statement");

// Connection must be on a unit-of-work boundary to allow close
con.commit();
System.out.println ("**** Transaction committed");

// Close the connection
con.close(); �6�
System.out.println("**** Disconnected from data source");

System.out.println("**** JDBC Exit from class EzJava - no errors");

}

catch (ClassNotFoundException e)
{

System.err.println("Could not load JDBC driver");
System.out.println("Exception: " + e);
e.printStackTrace();

}

catch(SQLException ex) �5�
{

System.err.println("SQLException information");
while(ex!=null) {

System.err.println ("Error msg: " + ex.getMessage());
System.err.println ("SQLSTATE: " + ex.getSQLState());
System.err.println ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException(); // For drivers that support chained exceptions

12 Application Programming Guide and Reference for Java

}
}

} // End main
} // End EzJava

Notes to Figure 1 on page 11:

Note Description
1 This statement imports the java.sql package, which contains the JDBC core API.

For information on other Java packages that you might need to access, see "Java
packages for JDBC support".

2 String variable empNo performs the function of a host variable. That is, it is
used to hold data retrieved from an SQL query. See "Variables in JDBC
applications" for more information.

3a and 3b These two sets of statements demonstrate how to connect to a data source using
one of two available interfaces. See "How JDBC applications connect to a data
source" for more details.

Step 3a (loading the JDBC driver) is not necessary if you use JDBC 4.0 or later.
4a and 4b These two sets of statements demonstrate how to perform a SELECT in JDBC.

For information on how to perform other SQL operations, see "JDBC interfaces
for executing SQL".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling an
SQLException under the IBM Data Server Driver for JDBC and SQLJ". For
information on handling SQL warnings, see "Handling an SQLWarning under
the IBM Data Server Driver for JDBC and SQLJ".

6 This statement disconnects the application from the data source. See
"Disconnecting from data sources in JDBC applications".

Related concepts:
“How JDBC applications connect to a data source”
“JDBC interfaces for executing SQL” on page 32
“Variables in JDBC applications” on page 30
“Java packages for JDBC support” on page 28
Related tasks:
“Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ”
on page 120
“Disconnecting from data sources in JDBC applications” on page 124

How JDBC applications connect to a data source
Before you can execute SQL statements in any SQL program, you must be
connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.
Connections to IBM Informix databases can use type 4 connectivity.

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Chapter 3. JDBC application programming 13

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver*

Database
server

*Java byte code executed under JVM,
and native code

Figure 2. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 2
connectivity

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 3. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity

14 Application Programming Guide and Reference for Java

Related tasks:
“Connecting to a data source using SQLJ” on page 127
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ”

Connecting to a data source using the DriverManager
interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

Procedure

The steps for establishing a connection are:
1. Load the JDBC driver by invoking the Class.forName method.

If you are using JDBC 4.0 or later, you do not need to explicitly load the JDBC
driver.
For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by
invoking the Class.forName method with the following argument:
com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following
argument instead:
COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The following code demonstrates loading the IBM Data Server Driver for JDBC
and SQLJ:
try {

// Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager
Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.
2. Connect to a data source by invoking the DriverManager.getConnection

method.
You can use one of the following forms of getConnection:
getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the
getConnection method must specify a user ID and password, through
parameters or through property values.
The url argument represents a data source, and indicates what type of JDBC
connectivity you are using.
The info argument is an object of type java.util.Properties that contains a set
of driver properties for the connection. Specifying the info argument is an
alternative to specifying property=value; strings in the URL. See "Properties for
the IBM Data Server Driver for JDBC and SQLJ" for the properties that you can
specify.
There are several ways to specify a user ID and password for a connection:

Chapter 3. JDBC application programming 15

v Use the form of the getConnection method that specifies url with
property=value; clauses, and include the user and password properties in the
URL.

v Use the form of the getConnection method that specifies user and password.
v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Examples

Example: Establishing a connection and setting the user ID and password in a URL:
String url = "jdbc:db2://myhost:5021/mydb:" +

"user=dbadm;password=dbadm;";

// Set URL for data source
Connection con = DriverManager.getConnection(url);

// Create connection

Example: Establishing a connection and setting the user ID and password in user and
password parameters:
String url = "jdbc:db2://myhost:5021/mydb";

// Set URL for data source
String user = "dbadm";
String password = "dbadm";
Connection con = DriverManager.getConnection(url, user, password);

// Create connection

Example: Establishing a connection and setting the user ID and password in a
java.util.Properties object:
Properties properties = new Properties(); // Create Properties object
properties.put("user", "dbadm"); // Set user ID for connection
properties.put("password", "dbadm"); // Set password for connection
String url = "jdbc:db2://myhost:5021/mydb";

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

URL format for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity
If you are using type 4 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 4 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
syntax

�� jdbc:db2: // server
jdbc:db2j:net:
jdbc:ids:

: port
/ database

: connection-options
��

connection-options:

�
(1)

property=value; special-registers global-variables query-acceleration

16 Application Programming Guide and Reference for Java

special-registers:

�

,

specialRegisters = special-register-name=special-register-value ;

global-variables:

�

,

globalSessionVariables = global-variable-name=global-variable-value ;

query-acceleration:

queryAcceleration = NONE ;
ENABLE
ENABLE WITH FAILBACK
ELIGIBLE
ALL

Notes:

1 property=value pairs, the special-registers string, and the global-variables string can be specified in
any order.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
option descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:
The meanings of the initial portion of the URL are:

jdbc:db2:
Indicates that the connection is to a DB2 for z/OS, DB2 for Linux,
UNIX, and Windows.

jdbc:db2: can also be used for a connection to an IBM Informix
database, for application portability.

jdbc:db2j:net:
Indicates that the connection is to a remote IBM Cloudscape server.

jdbc:ids:
Indicates that the connection is to an IBM Informix data source.
jdbc:informix-sqli: also indicates that the connection is to an IBM
Informix data source, but jdbc:ids: should be used.

server
The domain name or IP address of the data source.

port
The TCP/IP server port number that is assigned to the data source. This is an
integer between 0 and 65535. The default is 446.

database
A name for the data source.

Chapter 3. JDBC application programming 17

v If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in the DB2 location
name must be uppercase characters. The IBM Data Server Driver for JDBC
and SQLJ does not convert lowercase characters in the database value to
uppercase for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.
You can determine the location name by executing the following SQL
statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 for z/OS server or a DB2 for i server, all
characters in database must be uppercase characters.

v If the connection is to a DB2 for Linux, UNIX, and Windows server, database
is the database name that is defined during installation.

v If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

v If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

property=value;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:

String url =
"jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

specialRegisters=special-register-name=special-register-value,...special-
register-name=special-register-value

A list of special register settings for the JDBC connection. You can specify one
or more special register name and value pairs. Special register name and value
pairs must be delimited by commas (,). The last pair must end with a
semicolon (;). For example:

String url =
"jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"specialRegisters=CURRENT_PATH=SYSIBM,CURRENT CLIENT_USERID=test" + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

For special registers that can be set through IBM Data Server Driver for JDBC
and SQLJ Connection properties, if you set a special register value in a URL
string using specialRegisters, and you also set that value in a

18 Application Programming Guide and Reference for Java

java.util.Properties object using the following form of getConnection, the
special register is set to the value from the URL string.
getConnection(String url, java.util.Properties info);

You can specify only one value for each special register using the
specialRegisters parameter. For special registers that take multiple values, such
as CURRENT PATH, CURRENT PACKAGE PATH, CURRENT PACKAGESET,
you can specify multiple values for a special register by using the DataSource
interface and the DB2DataSource.setSpecialRegisters method.

globalSessionVariables=session-variable-name=session-variable-
value,...session-variable-name=session-variable-value

A list of session variable settings for the JDBC connection. You can specify one
or more session variable name and value pairs.

Session variable settings apply only to DB2 for z/OS Version 11 or later data
servers.

Session variable name and value pairs must be delimited by commas (,). The
last pair must end with a semicolon (;). For example:
String url =

"jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"globalSessionVariables=SESSION.TEST=FAILED,SYSIBMADM.GET_ARCHIVE=Y" + ";";

Connection con =
java.sql.DriverManager.getConnection(url);

queryAcceleration=value;
Changes the value of the CURRENT QUERY ACCELERATION special register.

Possible values are:

NONE
Specifies that no query acceleration is done.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If there is an accelerator failure while a query is
running, or the accelerator returns an error, DB2 returns a negative
SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the
PREPARE or first OPEN for the query, DB2 executes the query without the
accelerator. If the accelerator returns an error during a FETCH or a
subsequent OPEN, DB2 returns the error to the user, and does not execute
the query.

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are executed by DB2.
If there is an accelerator failure while a query is running, or the accelerator
returns an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are not executed by
DB2, and an SQL error is returned. If there is an accelerator failure while a

Chapter 3. JDBC application programming 19

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

query is running, or the accelerator returns an error, DB2 returns a
negative SQLCODE to the application.

Related reference:
“DB2DataSource class” on page 425

URL format for IBM Data Server Driver for JDBC and SQLJ type
2 connectivity
If you are using type 2 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 2 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL
syntax

�� jdbc : db2 : database
jdbc : db2os390 : database : connection-options
jdbc : db2os390sqlj : database
jdbc : default : connection
jdbc : db2os390 :
jdbc : db2os390sqlj : connection-options

��

connection-options:

�
(1)

property=value; special-registers global-variables query-acceleration

special-registers:

�

,

specialRegisters = special-register-name=special-register-value ;

global-variables:

�

,

globalSessionVariables = global-variable-name=global-variable-value ;

query-acceleration:

queryAcceleration = NONE ;
ENABLE
ENABLE WITH FAILBACK
ELIGIBLE
ALL

Notes:

1 property=value pairs, the special-registers string, and the global-variables string can be specified in
any order.

20 Application Programming Guide and Reference for Java

|
|

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL
options descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj: or
jdbc:default:connection

The meanings of the initial portion of the URL are:

jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj:
Indicates that the connection is to a DB2 for z/OS or DB2 for Linux,
UNIX, and Windows server. jdbc:db2os390: and jdbc:db2os390sqlj: are
for compatibility of programs that were written for older drivers, and
apply to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS only.

jdbc:default:connection
Indicates that the URL is for a connection to the local subsystem
through a DB2 thread that is controlled by CICS, IMS, or the Java
stored procedure environment.

database
A name for the database server.
v database is a location name that is defined in the SYSIBM.LOCATIONS

catalog table.
All characters in the DB2 location name must be uppercase characters.
However, for a connection to a DB2 for z/OS server, the IBM Data Server
Driver for JDBC and SQLJ converts lowercase characters in the database
value to uppercase.

property=value;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:

String url =
"jdbc:db2:STLEC1" +
":user=dbadm;password=dbadm;" +
"traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

specialRegisters=special-register-name=special-register-value,...special-
register-name=special-register-value

A list of special register settings for the JDBC connection. You can specify one
or more special register name and value pairs. Special register name and value
pairs must be delimited by commas (,). The last pair must end with a
semicolon (;). For example:
String url =

"jdbc:db2:STLEC1" +
":user=dbadm;password=dbadm;" +

Chapter 3. JDBC application programming 21

"specialRegisters=CURRENT_PATH=SYSIBM,CURRENT CLIENT_USERID=test" + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

For special registers that can be set through IBM Data Server Driver for JDBC
and SQLJ Connection properties, if you set a special register value in a URL
string using specialRegisters, and you also set that value in a
java.util.Properties object using the following form of getConnection, the
special register is set to the value from the URL string.
getConnection(String url, java.util.Properties info);

If you specify a special register that is supported on the data server, but you
specify a value that is not supported on the data server, the IBM Data Server
Driver for JDBC and SQLJ returns an error. If you specify a special register that
is not supported on the data server, the driver returns a warning.

You can specify only one value for each special register using the
specialRegisters parameter. For special registers that take multiple values, such
as CURRENT PATH, CURRENT PACKAGE PATH, CURRENT PACKAGESET,
you can specify multiple values for a special register by using the DataSource
interface and the DB2DataSource.setSpecialRegisters method.

globalSessionVariables=global-variable-name=global-variable-
value,...global-variable-name=global-variable-value

A list of global variable settings for the JDBC connection. You can specify one
or more global variable name and value pairs.

global variable settings apply only to DB2 for z/OS Version 11 or later data
servers.

global variable name and value pairs must be delimited by commas (,). The
last pair must end with a semicolon (;). For example:
String url =

"jdbc:db2:STLEC1" +
":user=dbadm;password=dbadm;" +
"globalSessionVariables=SESSION.TEST=FAILED,SYSIBMADM.GET_ARCHIVE=Y" + ";";

Connection con =
java.sql.DriverManager.getConnection(url);

queryAcceleration=value;
Changes the value of the CURRENT QUERY ACCELERATION special register.

Possible values are:

NONE
Specifies that no query acceleration is done.

ENABLE
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If there is an accelerator failure while a query is
running, or the accelerator returns an error, DB2 returns a negative
SQLCODE to the application.

ENABLE WITH FAILBACK
Specifies that queries are accelerated only if DB2 determines that it is
advantageous to do so. If the accelerator returns an error during the
PREPARE or first OPEN for the query, DB2 executes the query without the
accelerator. If the accelerator returns an error during a FETCH or a
subsequent OPEN, DB2 returns the error to the user, and does not execute
the query.

22 Application Programming Guide and Reference for Java

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

ELIGIBLE
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are executed by DB2.
If there is an accelerator failure while a query is running, or the accelerator
returns an error, DB2 returns a negative SQLCODE to the application.

ALL
Specifies that queries are accelerated if they are eligible for acceleration.
DB2 does not use cost information to determine whether to accelerate the
queries. Queries that are not eligible for acceleration are not executed by
DB2, and an SQL error is returned. If there is an accelerator failure while a
query is running, or the accelerator returns an error, DB2 returns a
negative SQLCODE to the application.

Related reference:
“DB2DataSource class” on page 425

Connecting to a data source using the DataSource interface
If your applications need to be portable among data sources, you should use the
DataSource interface.

About this task

Using DriverManager to connect to a data source reduces portability because the
application must identify a specific JDBC driver class name and driver URL. The
driver class name and driver URL are specific to a JDBC vendor, driver
implementation, and data source.

When you connect to a data source using the DataSource interface, you use a
DataSource object.

The simplest way to use a DataSource object is to create and use the object in the
same application, as you do with the DriverManager interface. However, this
method does not provide portability.

The best way to use a DataSource object is for your system administrator to create
and manage it separately, using WebSphere Application Server or some other tool.
The program that creates and manages a DataSource object also uses the Java
Naming and Directory Interface (JNDI) to assign a logical name to the DataSource
object. The JDBC application that uses the DataSource object can then refer to the
object by its logical name, and does not need any information about the underlying
data source. In addition, your system administrator can modify the data source
attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this
URL on the web:
http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see "Creating and deploying
DataSource objects".

You can use the DataSource interface and the DriverManager interface in the same
application, but for maximum portability, it is recommended that you use only the
DataSource interface to obtain connections.

Chapter 3. JDBC application programming 23

|
|
|
|
|
|

|
|
|
|
|
|
|

Procedure

To obtain a connection using a DataSource object that the system administrator has
already created and assigned a logical name to, follow these steps:
1. From your system administrator, obtain the logical name of the data source to

which you need to connect.
2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.
3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.
4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:
getConnection();
getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the
connection that are different from the ones that were specified when the
DataSource was deployed.

Examples

Example of obtaining a connection using a DataSource object that was created by the
system administrator: In this example, the logical name of the data source that you
need to connect to is jdbc/sampledb. The numbers to the right of selected
statements correspond to the previously-described steps.

Example of creating and using a DataSource object in the same application:

import java.sql.*; // JDBC base
import javax.sql.*; // Addtional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ �1�

// interfaces
DB2SimpleDataSource dbds=new DB2SimpleDataSource(); �2�
dbds.setDatabaseName("dbloc1"); �3�

// Assign the location name
dbds.setDescription("Our Sample Database");

// Description for documentation
dbds.setUser("john");

// Assign the user ID
dbds.setPassword("dbadm");

// Assign the password
Connection con=dbds.getConnection(); �4�

// Create a Connection object

Note Description
1 Import the package that contains the implementation of the DataSource interface.

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
...
Context ctx=new InitialContext(); �2�
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�
Connection con=ds.getConnection(); �4�

Figure 4. Obtaining a connection using a DataSource object

Figure 5. Creating and using a DataSource object in the same application

24 Application Programming Guide and Reference for Java

Note Description
2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM Data

Server Driver for JDBC and SQLJ implementations of the DataSource interface. See
"Creating and deploying DataSource objects" for information on DB2's DataSource
implementations.

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign
attributes to the DB2SimpleDataSource object. See "Properties for the IBM Data
Server Driver for JDBC and SQLJ" for information about the attributes that you
can set for a DB2SimpleDataSource object under the IBM Data Server Driver for
JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds
represents.

Related tasks:
“Connecting to a data source using SQLJ” on page 127

How to determine which type of IBM Data Server Driver for
JDBC and SQLJ connectivity to use

The IBM Data Server Driver for JDBC and SQLJ supports two types of
connectivity: type 2 connectivity and type 4 connectivity.

For the DriverManager interface, you specify the type of connectivity through the
URL in the DriverManager.getConnection method. For the DataSource interface,
you specify the type of connectivity through the driverType property.

The following table summarizes the differences between type 2 connectivity and
type 4 connectivity:

Table 8. Comparison of IBM Data Server Driver for JDBC and SQLJ type 2 connectivity and IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity

Function

IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity
support

IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity
support

Performance Better for accessing a local DB2 server Better for accessing a remote DB2
server

Installation Requires installation of native
libraries in addition to Java classes

Requires installation of Java classes
only

Stored procedures Can be used to call or execute stored
procedures

Can be used only to call stored
procedures

Distributed transaction processing
(XA)

Not supported Supported

J2EE 1.4 compliance Compliant Compliant

CICS environment Supported Not supported

IMS environment Supported Not supported

The following points can help you determine which type of connectivity to use.

Use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity under these
circumstances:
v Your JDBC or SQLJ application runs locally most of the time.

Local applications have better performance with type 2 connectivity.
v You are running a Java stored procedure.

Chapter 3. JDBC application programming 25

A stored procedure environment consists of two parts: a client program, from
which you call a stored procedure, and a server program, which is the stored
procedure. You can call a stored procedure in a JDBC or SQLJ program that uses
type 2 or type 4 connectivity, but you must run a Java stored procedure using
type 2 connectivity.

v Your application runs in the CICS environment or IMS environment.

Use IBM Data Server Driver for JDBC and SQLJ type 4 connectivity under these
circumstances:
v Your JDBC or SQLJ application runs remotely most of the time.

Remote applications have better performance with type 4 connectivity.
v You are using IBM Data Server Driver for JDBC and SQLJ connection

concentrator and Sysplex workload balancing support.

JDBC connection objects
When you connect to a data source by either connection method, you create a
Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:
v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in "Executing SQL statements in
JDBC applications".

v Gather information about the data source to which you are connected. This
process is discussed in "Learning about a data source using DatabaseMetaData
methods".

v Commit or roll back transactions. You can commit transactions manually or
automatically. These operations are discussed in "Commit or roll back a JDBC
transaction".

v Close the connection to the data source. This operation is discussed in
"Disconnecting from data sources in JDBC applications".

Related concepts:
“JDBC interfaces for executing SQL” on page 32
Related tasks:
“Learning about a data source using DatabaseMetaData methods” on page 28
“Committing or rolling back JDBC transactions” on page 113
“Disconnecting from data sources in JDBC applications” on page 124

Creating and deploying DataSource objects
JDBC versions starting with version 2.0 provide the DataSource interface for
connecting to a data source. Using the DataSource interface is the preferred way to
connect to a data source.

About this task

Using the DataSource interface involves two parts:
v Creating and deploying DataSource objects. This is usually done by a system

administrator, using a tool such as WebSphere Application Server.
v Using the DataSource objects to create a connection. This is done in the

application program.

26 Application Programming Guide and Reference for Java

This topic contains information that you need if you create and deploy the
DataSource objects yourself.

The IBM Data Server Driver for JDBC and SQLJ provides the following DataSource
implementations:
v com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection

pooling. You can use this implementation with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

v com.ibm.db2.jcc.DB2ConnectionPoolDataSource, which supports connection
pooling. You can use this implementation with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

v com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and
distributed transactions. The connection pooling is provided by WebSphere
Application Server or another application server. You can use this
implementation only with IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

Procedure

To create and deploy a DataSource object, you need to perform these tasks:
1. Create an instance of the appropriate DataSource implementation.
2. Set the properties of the DataSource object.
3. Register the object with the Java Naming and Directory Interface (JNDI)

naming service.

Example

The following example shows how to perform these tasks.

Note Description
1 Creates an instance of the DB2SimpleDataSource class.
2 This statement and the next three statements set values for properties of this

DB2SimpleDataSource object.
3 Creates a context for use by JNDI.

import java.sql.*; // JDBC base
import javax.naming.*; // JNDI Naming Services
import javax.sql.*; // Additional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for

// JDBC and SQLJ
// implementation of JDBC
// standard extension APIs

DB2SimpleDataSource dbds = new com.ibm.db2.jcc.DB2SimpleDataSource(); �1�

dbds.setDatabaseName("db2loc1"); �2�
dbds.setDescription("Our Sample Database");
dbds.setUser("john");
dbds.setPassword("mypw");
...
Context ctx=new InitialContext(); �3�
Ctx.bind("jdbc/sampledb",dbds); �4�

Figure 6. Example of creating and deploying a DataSource object

Chapter 3. JDBC application programming 27

Note Description
4 Associates DBSimple2DataSource object dbds with the logical name jdbc/sampledb.

An application that uses this object can refer to it by the name jdbc/sampledb.

Related tasks:
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Java packages for JDBC support
Before you can invoke JDBC methods, you need to be able to access all or parts of
various Java packages that contain those methods.

You can do that either by importing the packages or specific classes, or by using
the fully-qualified class names. You might need the following packages or classes
for your JDBC program:

java.sql
Contains the core JDBC API.

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains methods for producing server-side applications using Java

com.ibm.db2.jcc
Contains the implementation of JDBC for the IBM Data Server Driver for
JDBC and SQLJ.

Related concepts:
“Example of a simple JDBC application” on page 11

Learning about a data source using DatabaseMetaData methods
The DatabaseMetaData interface contains methods that retrieve information about a
data source. These methods are useful when you write generic applications that
can access various data sources.

About this task

In generic applications that can access various data sources, you need to test
whether a data source can handle various database operations before you execute
them. For example, you need to determine whether the driver at a data source is at
the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:
v Features that the data source supports, such as the ANSI SQL level
v Specific information about the JDBC driver, such as the driver level
v Limits, such as the maximum number of columns that an index can have
v Whether the data source supports data definition statements (CREATE, ALTER,

DROP, GRANT, REVOKE)
v Lists of objects at the data source, such as tables, indexes, or procedures
v Whether the data source supports various JDBC functions, such as batch updates

or scrollable ResultSets

28 Application Programming Guide and Reference for Java

v A list of scalar functions that the driver supports

Procedure

To invoke DatabaseMetaData methods, you need to perform these basic steps:
1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.
2. Invoke DatabaseMetaData methods to get information about the data source.
3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

b. Invoke the close method to close the ResultSet object.

Examples

Example: The following code demonstrates how to use DatabaseMetaData methods
to determine the driver version, to get a list of the stored procedures that are
available at the data source, and to get a list of datetime functions that the driver
supports. The numbers to the right of selected statements correspond to the
previously-described steps.

Connection con;
DatabaseMetaData dbmtadta;
ResultSet rs;
int mtadtaint;
String procSchema;
String procName;
String dtfnList;
...
dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object �1�
mtadtaint = dmtadta.getDriverVersion(); �2�

// Check the driver version
System.out.println("Driver version: " + mtadtaint);
rs = dbmtadta.getProcedures(null, null, "%");

// Get information for all procedures
while (rs.next()) { // Position the cursor �3a�
procSchema = rs.getString("PROCEDURE_SCHEM");

// Get procedure schema
procName = rs.getString("PROCEDURE_NAME");

// Get procedure name
System.out.println(procSchema + "." + procName);

// Print the qualified procedure name
}
dtfnList = dbmtadta.getTimeDateFunctions();

// Get list of supported datetime functions
System.out.println("Supported datetime functions:");
System.out.println(dtfnList); // Print the list of datetime functions
rs.close(); // Close the ResultSet �3b�

Figure 7. Using DatabaseMetaData methods to get information about a data source

Chapter 3. JDBC application programming 29

Related reference:
“Driver support for JDBC APIs” on page 319

DatabaseMetaData methods for identifying the type of data
source

You can use the DatabaseMetaData.getDatabaseProductName and
DatabaseMetaData.getProductVersion methods to identify the type and level of the
database manager to which you are connected, and the operating system on which
the database manager is running.

DatabaseMetaData.getDatabaseProductName returns a string that identifies the
database manager and the operating system. The string has one of the following
formats:
database-product
database-product/operating-system

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductName.

Table 9. Examples of DatabaseMetaData.getDatabaseProductName values

getDatabaseProductName value Database product

DB2 DB2 for z/OS

DB2/LINUXX8664 DB2 for Linux, UNIX, and Windows on Linux on x86

IBM Informix/UNIX64 IBM Informix on UNIX

DatabaseMetaData.getDatabaseVersionName returns a string that contains the
database product indicator and the version number, release number, and
maintenance level of the data source.

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductVersion.

Table 10. Examples of DatabaseMetaData.getDatabaseProductVersion values

getDatabaseProductVersion value Database product version

DSN09015 DB2 for z/OS Version 9.1 in new-function mode

SQL09010 DB2 for Linux, UNIX, and Windows Version 9.1

IFX11100 IBM Informix Version 11.10

Variables in JDBC applications
As in any other Java application, when you write JDBC applications, you declare
variables. In Java applications, those variables are known as Java identifiers.

Some of those identifiers have the same function as host variables in other
languages: they hold data that you pass to or retrieve from database tables.
Identifier empNo in the following code holds data that you retrieve from the
EMPNO table column, which has the CHAR data type.
String empNo;
// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");

30 Application Programming Guide and Reference for Java

while (rs.next()) {
String empNo = rs.getString(1);
System.out.println("Employee number = " + empNo);
}

Your choice of Java data types can affect performance because DB2 picks better
access paths when the data types of your Java variables map closely to the DB2
data types.
Related concepts:
“Example of a simple JDBC application” on page 11
Related reference:
“Data types that map to database data types in Java applications” on page 229

Comments in a JDBC application
To document your JDBC program, you need to include comments. You can use
Java comments outside of JDBC methods and Java or SQL comments in SQL
statement strings.

You can include Java comments outside JDBC methods, wherever the Java
language permits them. Within an SQL statement string in a JDBC method call,
you can use comments in the following places:
v For connections to DB2 data servers or Informix data servers, comments can be:

– Anywhere in the SQL statement string, and enclosed in /* and */ pairs. /*
and */ pairs can be nested.

– At the end of the SQL statement string, and preceded by two hyphens (--).
v For connections to Informix data servers only, comments can be enclosed in left

curly bracket ({) and right curly bracket (}) pairs.

Restriction: A comment that is enclosed in a { and } pair is not valid if either of
the following conditions is true:
– The SQL statement string is not a stored procedure call, the SQL statement

string is preceded and followed by comments that are enclosed in { and }
pairs, and the comment at the beginning of the SQL statement string begins
with the word call.

– The SQL statement string is a stored procedure call, and the comment {call} is
at the beginning of the escape syntax for the stored procedure call.

– The comment contains any of the following characters:
- Single quotation mark (')
- Double quotation mark (")
- Left curly bracket ({)
- Right curly bracket (})
- /*

– The comment can be interpreted as SQL escape syntax. Comments that begin
with the following characters can be interpreted as SQL escape syntax:
- d followed by a space
- t followed by a space
- ts followed by a space
- escape followed by a space
- oj followed by a space
- fn followed by a space

For example, the following SQL statement strings are not valid:

Chapter 3. JDBC application programming 31

"{call comment at beginning} select * from systables {ending comment}"
"{{call} call mysp(?, ?)}"

JDBC interfaces for executing SQL
You execute SQL statements in a traditional SQL program to update data in tables,
retrieve data from the tables, or call stored procedures. To perform the same
functions in a JDBC program, you invoke methods.

Those methods are defined in the following interfaces:
v The Statement interface supports all SQL statement execution. The following

interfaces inherit methods from the Statement interface:
– The PreparedStatement interface supports any SQL statement containing

input parameter markers. Parameter markers represent input variables. The
PreparedStatement interface can also be used for SQL statements with no
parameter markers.
With the IBM Data Server Driver for JDBC and SQLJ, the PreparedStatement
interface can be used to call stored procedures that have input parameters
and no output parameters, and that return no result sets. However, the
preferred interface is CallableStatement.

– The CallableStatement interface supports the invocation of a stored
procedure.
The CallableStatement interface can be used to call stored procedures with
input parameters, output parameters, or input and output parameters, or no
parameters. With the IBM Data Server Driver for JDBC and SQLJ, you can
also use the Statement interface to call stored procedures, but those stored
procedures must have no parameters.

v The ResultSet interface provides access to the results that a query generates.
The ResultSet interface has the same purpose as the cursor that is used in SQL
applications in other languages.

Related tasks:
“Creating and modifying database objects using the Statement.executeUpdate
method”
“Retrieving data from tables using the Statement.executeQuery method” on page
41
“Updating data in tables using the PreparedStatement.executeUpdate method” on
page 33
“Retrieving data from tables using the PreparedStatement.executeQuery method”
on page 42
Related reference:
“Driver support for JDBC APIs” on page 319

Creating and modifying database objects using the
Statement.executeUpdate method

The Statement.executeUpdate is one of the JDBC methods that you can use to
update tables and call stored procedures.

About this task

You can use the Statement.executeUpdate method to do the following things:
v Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,

REVOKE

32 Application Programming Guide and Reference for Java

v Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain
parameter markers.

v With the IBM Data Server Driver for JDBC and SQLJ, execute the CALL
statement to call stored procedures that have no parameters and that return no
result sets.

Procedure

To execute these SQL statements, you need to perform these steps:
1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeUpdate method to perform the SQL operation.
3. Invoke the Statement.close method to close the Statement object.

Example

Suppose that you want to execute this SQL statement:
UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

The following code creates Statement object stmt, executes the UPDATE statement,
and returns the number of rows that were updated in numUpd. The numbers to the
right of selected statements correspond to the previously-described steps.

Related reference:
“Driver support for JDBC APIs” on page 319

Updating data in tables using the
PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update DB2 tables with
constant values. However, updates often need to involve passing values in
variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate
method.

About this task

With the IBM Data Server Driver for JDBC and SQLJ, you can also use
PreparedStatement.executeUpdate to call stored procedures that have input
parameters and no output parameters, and that return no result sets.

DB2 for z/OS does not support dynamic execution of the CALL statement. For
calls to stored procedures that are on DB2 for z/OS data sources, the parameters
can be parameter markers or literals, but not expressions. The following types of
literals are supported:
v Integer
v Double

Connection con;
Statement stmt;
int numUpd;
...
stmt = con.createStatement(); // Create a Statement object �1�
numUpd = stmt.executeUpdate(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’"); �2�
// Perform the update

stmt.close(); // Close Statement object �3�

Figure 8. Using Statement.executeUpdate

Chapter 3. JDBC application programming 33

v Decimal
v Character
v Hexadecimal
v Graphic

For calls to stored procedures that are on IBM Informix data sources, the
PreparedStatement object can be a CALL statement or an EXECUTE PROCEDURE
statement.

When you execute an SQL statement many times, you can get better performance
by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table
for only one phone number and one employee number:
UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

Suppose that you want to generalize the operation to update the employee table
for any set of phone numbers and employee numbers. You need to replace the
constant phone number and employee number with variables:
UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers.

Procedure

To execute an SQL statement with parameter markers, you need to perform these
steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.
2. Invoke the PreparedStatement.setXXX methods to pass values to the input

variables.
This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you useIBM Data Server Driver for JDBC
and SQLJ-only methods to pass values to the input parameters.

3. Invoke the PreparedStatement.executeUpdate method to update the table with
the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Example

The following code performs the previous steps to update the phone number to
'4657' for the employee with employee number '000010'. The numbers to the right
of selected statements correspond to the previously-described steps.

34 Application Programming Guide and Reference for Java

You can also use the PreparedStatement.executeUpdate method for statements that
have no parameter markers. The steps for executing a PreparedStatement object
with no parameter markers are similar to executing a PreparedStatement object
with parameter markers, except you skip step 2 on page 34. The following example
demonstrates these steps.

Related tasks:
“Using named parameter markers with PreparedStatement objects” on page 86
Related reference:
“Driver support for JDBC APIs” on page 319

JDBC executeUpdate methods against a DB2 for z/OS server
The JDBC standard states that the executeUpdate method returns a row count or 0.
However, if the executeUpdate method is executed against a DB2 for z/OS server,
it can return a value of -1.

For executeUpdate statements against a DB2 for z/OS server, the value that is
returned depends on the type of SQL statement that is being executed:
v For an SQL statement that can have an update count, such as an INSERT,

UPDATE, DELETE, or MERGE statement, the returned value is the number of
affected rows. It can be:
– A positive number, if a positive number of rows are affected by the operation,

and the operation is not a mass delete on a segmented table space.
– 0, if no rows are affected by the operation.
– -1, if the operation is a mass delete on a segmented table space.

v For an SQL CALL statement, a value of -1 is returned, because the data source
cannot determine the number of affected rows. Calls to getUpdateCount or
getMoreResults for a CALL statement also return -1.

Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pstmt.setString(1,"4657"); // Assign first value to first parameter �2�
pstmt.setString(2,"000010"); // Assign first value to second parameter
numUpd = pstmt.executeUpdate(); // Perform first update �3�
pstmt.setString(1,"4658"); // Assign second value to first parameter
pstmt.setString(2,"000020"); // Assign second value to second parameter
numUpd = pstmt.executeUpdate(); // Perform second update
pstmt.close(); // Close the PreparedStatement object �4�

Figure 9. Using PreparedStatement.executeUpdate for an SQL statement with parameter
markers

Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");
// Create a PreparedStatement object �1�

numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object �4�

Figure 10. Using PreparedStatement.executeUpdate for an SQL statement without parameter
markers

Chapter 3. JDBC application programming 35

v For any other SQL statement, a value of -1 is returned.
Related tasks:
“Creating and modifying database objects using the Statement.executeUpdate
method” on page 32

Making batch updates in JDBC applications
With batch updates, instead of updating rows of a table one at a time, you can
direct JDBC to execute a group of updates at the same time. Statements that can be
included in the same batch of updates are known as batchable statements.

About this task

If a statement has input parameters or host expressions, you can include that
statement only in a batch that has other instances of the same statement. This type
of batch is known as a homogeneous batch. If a statement has no input parameters,
you can include that statement in a batch only if the other statements in the batch
have no input parameters or host expressions. This type of batch is known as a
heterogeneous batch. Two statements that can be included in the same batch are
known as batch compatible.

Use the following Statement methods for creating, executing, and removing a
batch of SQL updates:
v addBatch
v executeBatch
v clearBatch

Use the following PreparedStatement and CallableStatement method for creating a
batch of parameters so that a single statement can be executed multiple times in a
batch, with a different set of parameters for each execution.
v addBatch

Restrictions on executing statements in a batch:

v If you try to execute a SELECT statement in a batch, a BatchUpdateException is
thrown.

v A CallableStatement object that you execute in a batch can contain output
parameters. However, you cannot retrieve the values of the output parameters. If
you try to do so, a BatchUpdateException is thrown.

v You cannot retrieve ResultSet objects from a CallableStatement object that you
execute in a batch. A BatchUpdateException is not thrown, but the getResultSet
method invocation returns a null value.

Procedure

To make batch updates, follow one of the following sets of steps.
v To make batch updates using several statements with no input parameters,

follow these basic steps:
1. For each SQL statement that you want to execute in the batch, invoke the

addBatch method.
2. Invoke the executeBatch method to execute the batch of statements.
3. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the
array that the executeBatch invocation returns. This number does not
include rows that were affected by triggers or by referential integrity
enforcement.

36 Application Programming Guide and Reference for Java

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.
If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

v To make batch updates using a single statement with several sets of input
parameters, follow these basic steps:
1. If the batched statement is a searched UDPATE, searched DELETE, or

MERGE statement, set the autocommit mode for the connection to false.
2. Invoke the prepareStatement method to create a PreparedStatement object.
3. For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.
b. Invoke the addBatch method to add the set of input parameters to the

batch.
4. Invoke the executeBatch method to execute the statements with all sets of

parameters.
5. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL
statement from the array that the executeBatch invocation returns. The
number of affected rows does not include rows that were affected by
triggers or by referential integrity enforcement.
If the following conditions are true, the IBM Data Server Driver for JDBC
and SQLJ returns Statement.SUCCESS_NO_INFO (-2), instead of the number
of rows that were affected by each SQL statement:
– The application is connected to a subsystem that is in DB2 for z/OS

Version 8 new-function mode, or later.
– The application is using Version 3.1 or later of the IBM Data Server

Driver for JDBC and SQLJ.
– The IBM Data Server Driver for JDBC and SQLJ uses multi-row

INSERT operations to execute batch updates.
This occurs because with multi-row INSERT, the database server executes
the entire batch as a single operation, so it does not return results for
individual SQL statements.

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.
If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

c. If the PreparedStatement object returns automatically generated keys, call
DB2PreparedStatement.getDBGeneratedKeys to retrieve an array of
ResultSet objects that contains the automatically generated keys.
Check the length of the returned array. If the length of the returned array
is 0, an error occurred during retrieval of the automatically generated
keys.

6. If errors occurred, process the BatchUpdateException.

Example

In the following code fragment, two sets of parameters are batched. An UPDATE
statement that takes two input parameters is then executed twice, once with each
set of parameters. The numbers to the right of selected statements correspond to
the previously-described steps.

Chapter 3. JDBC application programming 37

try {
...

PreparedStatement preps = conn.prepareStatement(
"UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); �2�

ps.setString(1,mgrnum1); �3a�
ps.setString(2,deptnum1);
ps.addBatch(); �3b�

ps.setString(1,mgrnum2);
ps.setString(2,deptnum2);
ps.addBatch();
int [] numUpdates=ps.executeBatch(); �4�
for (int i=0; i < numUpdates.length; i++) { �5a�

if (numUpdates[i] == SUCCESS_NO_INFO)
System.out.println("Execution " + i +

": unknown number of rows updated");
else

System.out.println("Execution " + i +
"successful: " numUpdates[i] + " rows updated");

}
conn.commit(); �5b�

} catch(BatchUpdateException b) { �6�
// process BatchUpdateException

}

In the following code fragment, a batched INSERT statement returns automatically
generated keys.
import java.sql.*;
import com.ibm.db2.jcc.*;
...
Connection conn;
...
try {
...

PreparedStatement ps = conn.prepareStatement(�2�
"INSERT INTO DEPT (DEPTNO, DEPTNAME, ADMRDEPT) " +
"VALUES (?,?,?)",
Statement.RETURN_GENERATED_KEYS);

ps.setString(1,"X01"); �3a�
ps.setString(2,"Finance");
ps.setString(3,"A00");
ps.addBatch(); �3b�
ps.setString(1,"Y01");
ps.setString(2,"Accounting");
ps.setString(3,"A00");
ps.addBatch();

int [] numUpdates=preps.executeBatch(); �4�

for (int i=0; i < numUpdates.length; i++) { �5a�
if (numUpdates[i] == SUCCESS_NO_INFO)

System.out.println("Execution " + i +
": unknown number of rows updated");

else
System.out.println("Execution " + i +

"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); �5b�
ResultSet[] resultList =

((DB2PreparedStatement)ps).getDBGeneratedKeys(); �5c�
if (resultList.length != 0) {

for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {

java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value

38 Application Programming Guide and Reference for Java

System.out.println("Automatically generated key value = "
+ idColVar);

}
}

}
else {

System.out.println("Error retrieving automatically generated keys");
}

} catch(BatchUpdateException b) { �6�
// process BatchUpdateException

}

In the following code fragment, a batched UPDATE statement returns
automatically generated keys. The code names the DEPTNO column as an
automatically generated key, updates two rows in the DEPT table in a batch, and
retrieves the values of DEPTNO for the updated rows. The numbers to the right of
selected statements correspond to the previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;
...
Connection conn;
...
String[] agkNames = {"DEPTNO"};
try {
...

conn.setAutoCommit(false); �1�
PreparedStatement ps = conn.prepareStatement(�2�

"UPDATE DEPT SET DEPTNAME=? " +
"WHERE DEPTNO=?",agkNames);

ps.setString(1,"X01"); �3a�
ps.setString(2,"Planning");
ps.addBatch(); �3b�
ps.setString(1,"Y01");
ps.setString(2,"Bookkeeping");
ps.addBatch();

int [] numUpdates=ps.executeBatch(); �4�

for (int i=0; i < numUpdates.length; i++) { �5a�
if (numUpdates[i] == SUCCESS_NO_INFO)

System.out.println("Execution " + i +
": unknown number of rows updated");

else
System.out.println("Execution " + i +

"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); �5b�
ResultSet[] resultList =

((DB2PreparedStatement)ps).getDBGeneratedKeys(); �5c�
if (resultList.length != 0) {

for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {

String deptNoKey = rs.getString(1);
// Get automatically generated key
// value

System.out.println("Automatically generated key value = "
+ deptNoKey);

}
}

}
else {

System.out.println("Error retrieving automatically generated keys");
}

Chapter 3. JDBC application programming 39

}
catch(BatchUpdateException b) { �6�

// process BatchUpdateException
}

Related tasks:
“Making batch updates in SQLJ applications” on page 146
“Retrieving information from a BatchUpdateException” on page 121
“Making batch queries in JDBC applications” on page 44
“Committing or rolling back JDBC transactions” on page 113

Learning about parameters in a PreparedStatement using
ParameterMetaData methods

The IBM Data Server Driver for JDBC and SQLJ includes support for the
ParameterMetaData interface. The ParameterMetaData interface contains methods
that retrieve information about the parameter markers in a PreparedStatement
object.

About this task

ParameterMetaData methods provide the following types of information:
v The data types of parameters, including the precision and scale of decimal

parameters.
v The parameters' database-specific type names. For parameters that correspond to

table columns that are defined with distinct types, these names are the distinct
type names.

v Whether parameters are nullable.
v Whether parameters are input or output parameters.
v Whether the values of a numeric parameter can be signed.
v The fully-qualified Java class name that PreparedStatement.setObject uses

when it sets a parameter value.

Procedure

To invoke ParameterMetaData methods, you need to perform these basic steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.
2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a

ParameterMetaData object.
3. Invoke ParameterMetaData.getParameterCount to determine the number of

parameters in the PreparedStatement.
4. Invoke ParameterMetaData methods on individual parameters.

Example

The following code demonstrates how to use ParameterMetaData methods to
determine the number and data types of parameters in an SQL UPDATE statement.
The numbers to the right of selected statements correspond to the
previously-described steps.

40 Application Programming Guide and Reference for Java

Related reference:
“Driver support for JDBC APIs” on page 319

Data retrieval in JDBC applications
In JDBC applications, you retrieve data using ResultSet objects. A ResultSet
represents the result set of a query.

Retrieving data from tables using the Statement.executeQuery
method
To retrieve data from a table using a SELECT statement with no parameter
markers, you can use the Statement.executeQuery method.

About this task

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
Statement.executeQuery method to retrieve a result set from a stored procedure
call, if that stored procedure returns only one result set. If the stored procedure
returns multiple result sets, you need to use the Statement.execute method.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet
in which you can only move forward, one row at a time. The IBM Data Server
Driver for JDBC and SQLJ also supports updatable and scrollable ResultSets.

Procedure

To retrieve rows from a table using a SELECT statement with no parameter
markers, you need to perform these steps:
1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeQuery method to obtain the result table from the

SELECT statement in a ResultSet object.

Connection con;
ParameterMetaData pmtadta;
int mtadtacnt;
String sqlType;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pmtadta = pstmt.getParameterMetaData(); �2�
// Create a ParameterMetaData object

mtadtacnt = pmtadta.getParameterCount(); �3�
// Determine the number of parameters

System.out.println("Number of statement parameters: " + mtadtacnt);
for (int i = 1; i <= mtadtacnt; i++) {

sqlType = pmtadta.getParameterTypeName(i); �4�
// Get SQL type for each parameter

System.out.println("SQL type of parameter " + i " is " + sqlType);
}
...
pstmt.close(); // Close the PreparedStatement

Figure 11. Using ParameterMetaData methods to get information about a PreparedStatement

Chapter 3. JDBC application programming 41

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.
XXX represents a data type.

4. Invoke the ResultSet.close method to close the ResultSet object.
5. Invoke the Statement.close method to close the Statement object when you

have finished using that object.

Example

The following code demonstrates how to retrieve all rows from the employee table.
The numbers to the right of selected statements correspond to the
previously-described steps.

Related reference:
“Driver support for JDBC APIs” on page 319

Retrieving data from tables using the
PreparedStatement.executeQuery method
To retrieve data from a table using a SELECT statement with parameter markers,
you use the PreparedStatement.executeQuery method.

About this task

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
PreparedStatement.executeQuery method to retrieve a result set from a stored
procedure call, if that stored procedure returns only one result set and has only
input parameters. If the stored procedure returns multiple result sets, you need to
use the PreparedStatement.execute method.

You can also use the PreparedStatement.executeQuery method for statements that
have no parameter markers. When you execute a query many times, you can get
better performance by creating the SQL statement as a PreparedStatement.

String empNo;
Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(); // Create a Statement object �1�
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �2�

// Get the result table from the query
while (rs.next()) { // Position the cursor �3�
empNo = rs.getString(1); // Retrieve only the first column value
System.out.println("Employee number = " + empNo);

// Print the column value
}
rs.close(); // Close the ResultSet �4�
stmt.close(); // Close the Statement �5�

Figure 12. Using Statement.executeQuery

42 Application Programming Guide and Reference for Java

Procedure

To retrieve rows from a table using a SELECT statement with parameter markers,
you need to perform these steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.
2. Invoke PreparedStatement.setXXX methods to pass values to the input

parameters.
3. Invoke the PreparedStatement.executeQuery method to obtain the result table

from the SELECT statement in a ResultSet object.

Restriction: For a PreparedStatement that contains an IN predicate, the
expression that is the argument of the IN predicate cannot have more than
32767 parameters if the target data server is a DB2 for Linux, UNIX, and
Windows system. Otherwise, the IBM Data Server Driver for JDBC and SQLJ
throws an SQLException with error code -4499.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve
data from each column of the current row of the ResultSet object using getXXX
methods.

5. Invoke the ResultSet.close method to close the ResultSet object.
6. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

Example

The following code demonstrates how to retrieve rows from the employee table for
a specific employee. The numbers to the right of selected statements correspond to
the previously-described steps.

String empnum, phonenum;
Connection con;
PreparedStatement pstmt;
ResultSet rs;
...
pstmt = con.prepareStatement(

"SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pstmt.setString(1,"000010"); // Assign value to input parameter �2�

rs = pstmt.executeQuery(); // Get the result table from the query �3�
while (rs.next()) { // Position the cursor �4�
empnum = rs.getString(1); // Retrieve the first column value
phonenum = rs.getString(2); // Retrieve the first column value
System.out.println("Employee number = " + empnum +

"Phone number = " + phonenum);
// Print the column values

}
rs.close(); // Close the ResultSet �5�
pstmt.close(); // Close the PreparedStatement �6�

Figure 13. Example of using PreparedStatement.executeQuery

Chapter 3. JDBC application programming 43

Related reference:
“Driver support for JDBC APIs” on page 319

Making batch queries in JDBC applications
The IBM Data Server Driver for JDBC and SQLJ provides a IBM Data Server
Driver for JDBC and SQLJ-only DB2PreparedStatement interface that lets you
perform batch queries on a homogeneous batch.

Procedure

To make batch queries using a single statement with several sets of input
parameters, follow these basic steps:
1. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.
2. For each set of input parameter values:

a. Execute PreparedStatement.setXXX methods to assign values to the input
parameters.

b. Invoke the PreparedStatement.addBatch method to add the set of input
parameters to the batch.

3. Cast the PreparedStatement object to a DB2PreparedStatement object, and
invoke the DB2PreparedStatement.executeDB2QueryBatch method to execute the
statement with all sets of parameters.

4. In a loop, retrieve the ResultSet objects:
a. Retrieve each ResultSet object.
b. Retrieve all the rows from each ResultSet object.

Example

In the following code fragment, two sets of parameters are batched. A SELECT
statement that takes one input parameter is then executed twice, once with each
parameter value. The numbers to the right of selected statements correspond to the
previously described steps.
java.sql.Connection con = java.sql.DriverManager.getConnection(url, properties);
java.sql.Statement s = con.createStatement();
// Clean up from previous executions
try {

s.executeUpdate ("drop table TestQBatch");
}
catch (Exception e) {
}

// Create and populate a test table
s.executeUpdate ("create table TestQBatch (col1 int, col2 char(10))");
s.executeUpdate ("insert into TestQBatch values (1, ’test1’)");
s.executeUpdate ("insert into TestQBatch values (2, ’test2’)");
s.executeUpdate ("insert into TestQBatch values (3, ’test3’)");
s.executeUpdate ("insert into TestQBatch values (4, ’test4’)");
s.executeUpdate ("insert into TestQBatch values (1, ’test5’)");
s.executeUpdate ("insert into TestQBatch values (2, ’test6’)");

try {
PreparedStatement pstmt = �1�

con.prepareStatement("Select * from TestQBatch where col1 = ?");
pstmt.setInt(1,1); �2a�
pstmt.addBatch(); �2b�
// Add some more values to the batch
pstmt.setInt(1,2);
pstmt.addBatch();

44 Application Programming Guide and Reference for Java

pstmt.setInt(1,3);
pstmt.addBatch();
pstmt.setInt(1,4);
pstmt.addBatch();
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).executeDB2QueryBatch();

�3�
} catch(BatchUpdateException b) {

// process BatchUpdateException
}
ResultSet rs;
while(pstmt.getMoreResults()) { �4�

rs = pstmt.getResultSet(); �4a�
while (rs.next()) { �4b�

System.out.print (rs.getInt (1) + " ");
System.out.println (rs.getString (2));

}
System.out.println();
rs.close ();

}
// Clean up
s.close ();
pstmt.close ();
con.close ();

Related tasks:
“Making batch updates in JDBC applications” on page 36

Learning about a ResultSet using ResultSetMetaData methods
You cannot always know the number of columns and data types of the columns in
a table or result set. This is true especially when you are retrieving data from a
remote data source.

About this task

When you write programs that retrieve unknown ResultSets, you need to use
ResultSetMetaData methods to determine the characteristics of the ResultSets
before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:
v The number of columns in a ResultSet
v The qualifier for the underlying table of the ResultSet
v Information about a column, such as the data type, length, precision, scale, and

nullability
v Whether a column is read-only

Procedure

After you invoke the executeQuery method to generate a ResultSet for a query on
a table, follow these basic steps to determine the contents of the ResultSet:
1. Invoke the getMetaData method on the ResultSet object to create a

ResultSetMetaData object.
2. Invoke the getColumnCount method to determine how many columns are in the

ResultSet.
3. For each column in the ResultSet, execute ResultSetMetaData methods to

determine column characteristics.
The results of ResultSetMetaData.getColumnName call reflects the column name
information that is stored in the DB2 catalog for that data source.

Chapter 3. JDBC application programming 45

Example

The following code demonstrates how to determine the data types of all the
columns in the employee table. The numbers to the right of selected statements
correspond to the previously-described steps.

Related tasks:
“Retrieving data from tables using the Statement.executeQuery method” on page
41
“Retrieving multiple result sets from a stored procedure in a JDBC application” on
page 60
“Calling stored procedures in JDBC applications” on page 57

Characteristics of a JDBC ResultSet under the IBM Data Server
Driver for JDBC and SQLJ
The IBM Data Server Driver for JDBC and SQLJ provides support for scrollable,
updatable, and holdable cursors.

In addition to moving forward, one row at a time, through a ResultSet, you might
want to do the following things:
v Move backward or go directly to a specific row
v Update, delete, or insert rows in a ResultSet

v Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability
Whether the cursor for the ResultSet can move forward only, or forward one
or more rows, backward one or more rows, or to a specific row.

If a cursor for a ResultSet is scrollable, it also has a sensitivity attribute, which
describes whether the cursor is sensitive to changes to the underlying table.

String s;
Connection con;
Statement stmt;
ResultSet rs;
ResultSetMetaData rsmtadta;
int colCount
int mtadtaint;
int i;
String colName;
String colType;
...
stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

// Get the ResultSet from the query
rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object �1�
colCount = rsmtadta.getColumnCount(); �2�

// Find number of columns in EMP
for (i=1; i<= colCount; i++) { �3�
colName = rsmtadta.getColumnName(); // Get column name
colType = rsmtadta.getColumnTypeName();

// Get column data type
System.out.println("Column = " + colName +
" is data type " + colType);

// Print the column value
}

Figure 14. Using ResultSetMetaData methods to get information about a ResultSet

46 Application Programming Guide and Reference for Java

updatability
Whether the cursor can be used to update or delete rows. This characteristic
does not apply to a ResultSet that is returned from a stored procedure,
because a stored procedure ResultSet cannot be updated.

holdability
Whether the cursor stays open after a COMMIT.

You set the updatability, scrollability, and holdability characteristics of a ResultSet
through parameters in the Connection.prepareStatement or
Connection.createStatement methods. The ResultSet settings map to attributes of
a cursor in the database. The following table lists the JDBC scrollability,
updatability, and holdability settings, and the corresponding cursor attributes.

Table 11. JDBC ResultSet characteristics and SQL cursor attributes

JDBC setting DB2 cursor setting IBM Informix cursor setting

CONCUR_READ_ONLY FOR READ ONLY FOR READ ONLY

CONCUR_UPDATABLE FOR UPDATE FOR UPDATE

HOLD_CURSORS_OVER_COMMIT WITH HOLD WITH HOLD

TYPE_FORWARD_ONLY SCROLL not specified SCROLL not specified

TYPE_SCROLL_INSENSITIVE INSENSITIVE SCROLL SCROLL

TYPE_SCROLL_SENSITIVE SENSITIVE STATIC, SENSITIVE
DYNAMIC, or ASENSITIVE,
depending on the cursorSensitivity
Connection and DataSource property

Not supported

Important: Like static scrollable cursors in any other language, JDBC static
scrollable ResultSet objects use declared temporary tables for their internal
processing. This means that before you can execute any applications that contain
JDBC static scrollable ResultSet objects, your database administrator needs to
create a temporary database and temporary table spaces for those declared
temporary tables.

If a JDBC ResultSet is static, the size of the result table and the order of the rows
in the result table do not change after the cursor is opened. This means that if you
insert rows into the underlying table, the result table for a static ResultSet does
not change. If you delete a row of a result table, a delete hole occurs. You cannot
update or delete a delete hole.
Related concepts:

Temporary table space storage requirements (DB2 Installation and Migration)

Specifying updatability, scrollability, and holdability for ResultSets in JDBC
applications:

You use special parameters in the Connection.prepareStatement or
Connection.createStatement methods to specify the updatability, scrollability, and
holdability of a ResultSet.

Before you begin

If you plan to update ResultSet objects, ensure that the enableExtendedDescribe
property is not set, or is set to DB2BaseDataSource.YES (2). Updates of ResultSet
objects do not work correctly unless extended describe capability is enabled.

Chapter 3. JDBC application programming 47

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_temptablespstgreqs.htm#db2z_temptablespstgreqs

About this task

By default, ResultSet objects are not scrollable and not updatable. The default
holdability depends on the data source, and can be determined from the
DatabaseMetaData.getResultSetHoldability method. These steps change the
scrollability, updatability, and holdability attributes for a ResultSet.

Procedure

1. If the SELECT statement that defines the ResultSet has no input parameters,
invoke the createStatement method to create a Statement object. Otherwise,
invoke the prepareStatement method to create a PreparedStatement object. You
need to specify forms of the createStatement or prepareStatement methods
that include the resultSetType, resultSetConcurrency, or resultSetHoldability
parameters.
The form of the createStatement method that supports scrollability and
updatability is:
createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability,
updatability, and holdability is:
createStatement(int resultSetType, int resultSetConcurrency,
int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and
updatability is:
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,
updatability, and holdability is:
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability);

Important: In a prepareStatement method invocation in which the first
parameter is a CALL statement, you cannot specify the scrollability,
updatability, or holdability of result sets that are returned from a stored
procedure. Those characteristics are determined by the stored procedure code,
when it declares the cursors for the result sets that are returned. If you use the
prepareStatement method to prepare a CALL statement, and the
prepareStatement call includes the scrollability, updatability, or holdability
parameters, the IBM Data Server Driver for JDBC and SQLJ does not use those
parameter values. A prepareStatement method with scrollability, updatability,
or holdability parameters applies only to preparation of SQL statements other
than the CALL statement.
The following table contains a list of valid values for resultSetType and
resultSetConcurrency.

Table 12. Valid combinations of resultSetType and resultSetConcurrency for ResultSets

resultSetType value resultSetConcurrency value

TYPE_FORWARD_ONLY CONCUR_READ_ONLY

TYPE_FORWARD_ONLY CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE1 CONCUR_READ_ONLY

48 Application Programming Guide and Reference for Java

Table 12. Valid combinations of resultSetType and resultSetConcurrency for
ResultSets (continued)

resultSetType value resultSetConcurrency value

TYPE_SCROLL_SENSITIVE1 CONCUR_UPDATABLE

Note:

1. This value does not apply to connections to IBM Informix.

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and
CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any
valid combination of resultSetConcurrency and resultSetHoldability. The value that
you set overrides the default holdability for the connection.
Restriction: If the ResultSet is scrollable, and the ResultSet is used to select
columns from a table on a DB2 for Linux, UNIX, and Windows server, the
SELECT list of the SELECT statement that defines the ResultSet cannot include
columns with the following data types:
v LONG VARCHAR
v LONG VARGRAPHIC
v BLOB
v CLOB
v XML
v A distinct type that is based on any of the previous data types in this list
v A structured type

2. If the SELECT statement has input parameters, invoke setXXX methods to pass
values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT
statement in a ResultSet object.

4. For each row that you want to access:
a. Position the cursor using one of the methods that are listed in the following

table.

Restriction: If resultSetType is TYPE_FORWARD_ONLY, only ResultSet.next is
valid.

Table 13. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the ResultSet

last1 On the last row of the ResultSet

next2 On the next row of the ResultSet

previous1,3 On the previous row of the ResultSet

absolute(int n)1,4 If n>0, on row n of the ResultSet. If n<0, and m is the
number of rows in the ResultSet, on row m+n+1 of
the ResultSet.

relative(int n)1,5,6, If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast1 After the last row in the ResultSet

beforeFirst1 Before the first row in the ResultSet

Chapter 3. JDBC application programming 49

Table 13. ResultSet methods for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is before the first row of the ResultSet, this method positions the cursor on
the first row.

3. If the cursor is after the last row of the ResultSet, this method positions the cursor on
the last row.

4. If the absolute value of n is greater than the number of rows in the result set, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

5. The cursor must be on a valid row of the ResultSet before you can use this method. If
the cursor is before the first row or after the last row, the method throws an
SQLException.

6. Suppose that m is the number of rows in the ResultSet and x is the current row number
in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If
n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step 1 on
page 48, and you need to see the latest values of the current row, invoke the
refreshRow method.
Recommendation: Because refreshing the rows of a ResultSet can have a
detrimental effect on the performance of your applications, you should
invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:
v To retrieve data from each column of the current row of the ResultSet

object, use getXXX methods.
v To update the current row from the underlying table, use updateXXX

methods to assign column values to the current row of the ResultSet.
Then use updateRow to update the corresponding row of the underlying
table. If you decide that you do not want to update the underlying table,
invoke the cancelRowUpdates method instead of the updateRow method.
The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use these methods.

v To delete the current row from the underlying table, use the deleteRow
method. Invoking deleteRow causes the driver to replace the current row
of the ResultSet with a hole.
The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use this method.

5. Invoke the close method to close the ResultSet object.
6. Invoke the close method to close the Statement or PreparedStatement object.

Example

The following code demonstrates how to retrieve all rows from the employee table
in reverse order, and update the phone number for employee number "000010".
The numbers to the right of selected statements correspond to the
previously-described steps.

50 Application Programming Guide and Reference for Java

Related tasks:
“Retrieving data from tables using the Statement.executeQuery method” on page
41

Multi-row SQL operations in JDBC applications:

The IBM Data Server Driver for JDBC and SQLJ supports multi-row INSERT,
UPDATE, and FETCH for connections to data sources that support these
operations.

Multi-row INSERT

In JDBC applications, when you execute INSERT or MERGE statements that use
parameter markers in a batch, if the data server supports multi-row INSERT, the
IBM Data Server Driver for JDBC and SQLJ can transform the batch INSERT or
MERGE operations into multi-row INSERT statements. Multi-row INSERT
operations can provide better performance in the following ways:
v For local applications, multi-row INSERTs result in fewer accesses of the data

server.
v For distributed applications, multi-row INSERTs result in fewer network

operations.

You cannot execute a multi-row INSERT operation by including a multi-row
INSERT statement in a statement string in your JDBC application.

Multi-row INSERT is used by default. You can use the Connection or DataSource
property enableMultiRowInsertSupport to control whether multi-row INSERT is
used. Multi-row INSERT cannot be used for INSERT FROM SELECT statements
that are executed in a batch.

String s;
String stmtsrc;
Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE); �1�
// Create a Statement object
// for a scrollable, updatable
// ResultSet

stmtsrc = "SELECT EMPNO, PHONENO FROM EMPLOYEE " +
"FOR UPDATE OF PHONENO";

rs = stmt.executeQuery(stmtsrc); // Create the ResultSet �3�
rs.afterLast(); // Position the cursor at the end of

// the ResultSet �4a�
while (rs.previous()) { // Position the cursor backward
s = rs.getString("EMPNO"); // Retrieve the employee number �4d�

// (column 1 in the result
// table)

System.out.println("Employee number = " + s);
// Print the column value

if (s.compareTo("000010") == 0) { // Look for employee 000010
rs.updateString("PHONENO","4657"); // Update their phone number
rs.updateRow(); // Update the row
}
}
rs.close(); // Close the ResultSet �5�
stmt.close(); // Close the Statement �6�

Figure 15. Using a scrollable cursor

Chapter 3. JDBC application programming 51

Multi-row FETCH

Multi-row FETCH can provide better performance than retrieving one row with
each FETCH statement. For IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only
cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, multi-row FETCH can be used only for scrollable cursors.

When you retrieve data in your applications, the IBM Data Server Driver for JDBC
and SQLJ determines whether to use multi-row FETCH, depending on several
factors:
v The setting of the enableRowsetSupport property
v The setting of the useRowsetCursor property, for connections to DB2 for z/OS
v The type of IBM Data Server Driver for JDBC and SQLJ connectivity that is

being used
v The version of the IBM Data Server Driver for JDBC and SQLJ

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for
z/OS, one of the following sets of conditions must be true for multi-row FETCH to
be used.
v First set of conditions:

– The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.
– The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1), or the enableRowsetSupport
property value is com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0) and the
useRowsetCursor property value is true.

– The FETCH operation uses a scrollable cursor.
For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

v Second set of conditions:
– The IBM Data Server Driver for JDBC and SQLJ version is 3.1.
– The useRowsetCursor property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).
– The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS the following conditions must be true for multi-row FETCH to be used.
v The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.
v The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).
v The FETCH operation uses a scrollable cursor or a forward-only cursor.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS, you can control the maximum size of a rowset for each statement by setting
the maxRowsetSize property.

52 Application Programming Guide and Reference for Java

Multi-row positioned UPDATE or DELETE

The IBM Data Server Driver for JDBC and SQLJ supports a technique for
performing positioned update or delete operations that follows the JDBC 1
standard. That technique involves using the ResultSet.getCursorName method to
obtain the name of the cursor for the ResultSet, and defining a positioned
UPDATE or positioned DELETE statement of the following form:
UPDATE table SET col1=value1,...coln=valueN WHERE CURRENT OF cursorname
DELETE FROM table WHERE CURRENT OF cursorname

Multi-row UPDATE or DELETE when useRowsetCursor is set to true: If you use the
JDBC 1 technique to update or delete data on a database server that supports
multi-row FETCH, and multi-row FETCH is enabled through the useRowsetCursor
property, the positioned UPDATE or DELETE statement might update or delete
multiple rows, when you expect it to update or delete a single row. To avoid
unexpected updates or deletes, you can take one of the following actions:
v Use an updatable ResultSet to retrieve and update one row at a time, as shown

in the previous example.
v Set useRowsetCursor to false.

Multi-row UPDATE or DELETE when enableRowsetSupport is set to
com.ibm.db2.jcc.DB2BaseDataSource.YES (1): The JDBC 1 technique for updating or
deleting data is incompatible with multi-row FETCH that is enabled through the
enableRowsetSupport property.

Recommendation: If your applications use the JDBC 1 technique, update them to
use the JDBC 2.0 ResultSet.updateRow or ResultSet.deleteRow methods for
positioned update or delete activity.

Testing whether the current row of a ResultSet is a delete hole or update hole in
a JDBC application:

If a ResultSet has the TYPE_SCROLL_SENSITIVE attribute, and the underlying
cursor is SENSITIVE STATIC, you need to test for delete holes or update holes
before you attempt to retrieve rows of the ResultSet.

About this task

After a SENSITIVE STATIC ResultSet is opened, it does not change size. This
means that deleted rows are replaced by placeholders, which are also called holes.
If updated rows no longer fit the criteria for the ResultSet, those rows also become
holes. You cannot retrieve rows that are holes.

Procedure

To test whether the current row in a ResultSet is a delete hole or update hole,
follow these steps:
1. Call the DatabaseMetaData.deletesAreDetected or

DatabaseMetaData.updatesAreDetected method with the
TYPE_SCROLL_SENSITIVE argument to determine whether the data source
creates holes for a TYPE_SCROLL_SENSITIVE ResultSet.

2. If DatabaseMetaData.deletesAreDetected or
DatabaseMetaData.updatesAreDetected returns true, which means that the data
source can create holes, call the ResultSet.rowDeleted or ResultSet.rowUpdated

Chapter 3. JDBC application programming 53

method to determine whether the current row is a delete or update hole. If the
method returns true, the current row is a hole.

Example

The following code tests whether the current row is a delete hole.
Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);
// Create a Statement object
// for a scrollable, updatable
// ResultSet

ResultSet rs =
stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");

// Create the ResultSet
DatabaseMetaData dbmd = con.getMetaData();

// Create the DatabaseMetaData object
boolean dbSeesDeletes =

dbmd.deletesAreDetected(ResultSet.TYPESCROLL_SENSITIVE);
// Can the database see delete holes?

rs.afterLast(); // Position the cursor at the end of
// the ResultSet

while (rs.previous()) { // Position the cursor backward
if (dbSeesDeletes) { // If delete holes can be detected

if (!(rs.rowDeleted())) // If this row is not a delete hole
{

s = rs.getString("EMPNO"); // Retrieve the employee number
System.out.println("Employee number = " + s);

// Print the column value
}
}

}
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement

Inserting a row into a ResultSet in a JDBC application:

If a ResultSet has a resultSetConcurrency attribute of CONCUR_UPDATABLE, you
can insert rows into the ResultSet.

Before you begin

Ensure that the enableExtendedDescribe property is not set, or is set to
DB2BaseDataSource.YES (2). Insertion of a row into a ResultSet does not work
unless extended describe capability is enabled.

Procedure

1. Perform the following steps for each row that you want to insert.
a. Call the ResultSet.moveToInsertRow method to create the row that you

want to insert. The row is created in a buffer outside the ResultSet.
If an insert buffer already exists, all old values are cleared from the buffer.

b. Call ResultSet.updateXXX methods to assign values to the row that you
want to insert.
You need to assign a value to at least one column in the ResultSet. If you
do not do so, an SQLException is thrown when the row is inserted into the
ResultSet.
If you do not assign a value to a column of the ResultSet, when the
underlying table is updated, the data source inserts the default value for the
associated table column.

54 Application Programming Guide and Reference for Java

If you assign a null value to a column that is defined as NOT NULL, the
JDBC driver throws and SQLException.

c. Call ResultSet.insertRow to insert the row into the ResultSet.
After you call ResultSet.insertRow, all values are always cleared from the
insert buffer, even if ResultSet.insertRow fails.

2. Reposition the cursor within the ResultSet.
To move the cursor from the insert row to the ResultSet, you can invoke any
of the methods that position the cursor at a specific row, such as
ResultSet.first, ResultSet.absolute, or ResultSet.relative. Alternatively,
you can call ResultSet.moveToCurrentRow to move the cursor to the row in the
ResultSet that was the current row before the insert operation occurred.
After you call ResultSet.moveToCurrentRow, all values are cleared from the
insert buffer.

Example

The following code illustrates inserting a row into a ResultSet that consists of all
rows in the sample DEPARTMENT table. After the row is inserted, the code places
the cursor where it was located in the ResultSet before the insert operation. The
numbers to the right of selected statements correspond to the previously-described
steps.
stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT * FROM DEPARTMENT");
rs.moveToInsertRow(); �1a�
rs.updateString("DEPT_NO", "M13"); �1b�
rs.updateString("DEPTNAME", "TECHNICAL SUPPORT");
rs.updateString("MGRNO", "000010");
rs.updateString("ADMRDEPT", "A00");
rs.insertRow(); �1c�
rs.moveToCurrentRow(); �2�

Testing whether the current row was inserted into a ResultSet in a JDBC
application:

If a ResultSet is dynamic, you can insert rows into it. After you insert rows into a
ResultSet you might need to know which rows were inserted.

Procedure

To test whether the current row in a ResultSet was inserted, follow these steps:
1. Call the DatabaseMetaData.ownInsertsAreVisible and

DatabaseMetaData.othersInsertsAreVisible methods to determine whether
inserts can be visible to the given type of ResultSet.

2. If inserts can be visible to the ResultSet, call the
DatabaseMetaData.insertsAreDetected method to determine whether the given
type of ResultSet can detect inserts.

3. If the ResultSet can detect inserts, call the ResultSet.rowInserted method to
determine whether the current row was inserted.

Retrieving rows as byte data in JDBC applications
You can use the DB2ResultSet.getDBRowDataAsBytes method to retrieve an entire
row from a table as raw bytes, and retrieve the column data from the returned
rows.

Chapter 3. JDBC application programming 55

Procedure
1. Create a Statement or PreparedStatement object.
2. Invoke the Statement.executeQuery method or

PreparedStatement.executeQuery method to obtain a ResultSet object.
3. Cast the ResultSet object as a DB2ResultSet object.
4. Repeat the following steps until there are no rows left to retrieve:

a. Move the cursor to the next row.
b. Call the DB2ResultSet.getDBRowDataAsBytes method to retrieve an Object

array that contains the row data.
c. Cast the first element of the Object array as a byte array.

This byte array contains the data for each column in the row. See the
description of getDBRowDataAsBytes in “DB2ResultSet interface” on page
450 for the data format.

d. Cast the second element of the Object array as an int array.
Each integer in this array contains the offset into the row data byte array of
the beginning of the data for a column.

e. Call the DB2ResultSet.getDBRowDescriptor method to retrieve an int array
that contains the row data.
This array contains descriptive information about each column in the row.
See the description of getDBRowDescriptor in “DB2ResultSet interface” on
page 450 for the data format.

f. Use the offset value for each column to locate the column data, and retrieve
each byte of the column data.

g. Use the information that is returned from DB2ResultSet.getDBRowDescriptor
to convert the bytes into a value of the column type.

Example

Suppose that table MYTABLE is defined like this:
CREATE TABLE MYTABLE (
INTCOL1 INTEGER NOT NULL,
INTCOL2 INTEGER NOT NULL)

The following program retrieves rows of data as raw bytes, and retrieves the
column values from each returned row. The numbers to the right of statements
correspond to the previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
...
String sql1="select INTCOL, CHARCOL FROM MYTABLE";
int colSqltype;
int colCcsid
int colLen;
int colRep;
Object obj[];
byte data[];
int returnedInfo[];
int numberOfColumns;
int j;
int offsets[];
byte b1;
byte b2;
byte b3
byte b4;

56 Application Programming Guide and Reference for Java

int intVal;

try {
Statement stmt = conn.createStatement (); �1�
DB2ResultSet rs = (DB2ResultSet)stmt.executeQuery(sql1); �2,3�
int rowNum=0;
while(!rs.isLast())
{
rs.next(); �4a�
rowNum++;
obj[] = rs.getDBRowDataAsBytes(); �4b�
//**
// Retrieve the data and offsets.
// The code for checking the row indicator is
// not shown. Assume that the row indicator
// indicates that the data is valid.
//**
data[]=(byte[])obj[0]; �4c�
offsets[]= (int [])obj[1]; �4d�
//**
// Retrieve the metadata for each column.
// The first element in the array that is
// returned by getDBRowDescriptor contains
// the number of columns in the row.
//**
returnedInfo[] = rs.getDBRowDescriptor(); �4e�
numberOfColumns=returnedInfo[0];
for(j=0;j<numberOfColumns;j++) {
//**
// Get the metadata for a column.
//**
colSqltype=returnedInfo[(4*j)+1];
colCcsid=returnedInfo[(4*j)+2];
colLen=returnedInfo[(4*j)+3];
colRep=returnedInfo[(4*j)+4];
//**
// Determine the type of the column. The code
// is not shown here.
//**
...
//**
// Suppose that the metadata indicates that a
// column is INT and Little Endian.
// The following code retrieves the four bytes
// of the value and converts them to an integer.
//**
b1 = data[offsets[j]+5]; �4f�
b2 = data[offsets[j]+4];
b3 = data[offsets[j]+3];
b4 = data[offsets[j]+2];
intVal = ((0xFF & b1) << 24) | ((0xFF & b2) << 16) | �4g�

((0xFF & b3) << 8) | (0xFF & b4);
System.out.print("Row "+rowNum+" column "+(j+1)+" "+intVal);
}
}
}

Calling stored procedures in JDBC applications
To call stored procedures, you invoke methods in the CallableStatement or
PreparedStatement class.

Procedure

The basic steps for calling a stored procedures using standard CallableStatement
methods are:

Chapter 3. JDBC application programming 57

1. Invoke the Connection.prepareCall method with the CALL statement as its
argument to create a CallableStatement object.
You can represent parameters with standard parameter markers (?) or named
parameter markers. You cannot mix named parameter markers with standard
parameter markers in the same CALL statement.

Restriction: The parameter types that are permitted depend on whether the
data source supports dynamic execution of the CALL statement. DB2 for z/OS
does not support dynamic execution of the CALL statement. For a call to a
stored procedure that is on a DB2 for z/OS database server, the parameters can
be parameter markers or literals, but not expressions. Even if all parameters are
literals, you cannot use Statement methods to execute CALL statements. You
must use PreparedStatement methods or CallableStatement methods. The
following table lists the types of literals that are supported, and the JDBC types
to which they map.

Table 14. Supported literal types in parameters in DB2 for z/OS stored procedure calls

Literal parameter type JDBC type Examples

Integer java.sql.Types.INTEGER -122, 40022, +27

Floating-point decimal java.sql.Types.DOUBLE 23E12, 40022E-4, +2723E+15, 1E+23, 0E0

Fixed-point decimal java.sql.Types.DECIMAL -23.12, 40022.4295, 0.0, +2723.23, 10000000000

Character java.sql.Types.VARCHAR 'Grantham Lutz', 'O''Conner', 'ABcde?z?'

Hexadecimal java.sql.Types.VARBINARY X'C1C30427', X'00CF18E0'

Unicode string java.sql.Types.VARCHAR UX'0041', UX'0054006500730074'

Important: In a prepareCall method invocation, you cannot specify the
scrollability, updatability, or holdability of result sets that are returned from a
stored procedure. Those characteristics are determined by the stored procedure
code, when it declares the cursors for the result sets that are returned. If you
specify any of the forms of prepareCall that include scrollability, updatability,
or holdability parameters, the IBM Data Server Driver for JDBC and SQLJ does
not use those parameter values. A prepareCall method with scrollability,
updatability, or holdability parameters applies only to preparation of SQL
statements other than the CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input
parameters (parameters that are defined as IN or INOUT in the CREATE
PROCEDURE statement).
This step assumes that you use standard parameter markers or named
parameters. Alternatively, if you use named parameter markers, you use IBM
Data Server Driver for JDBC and SQLJ-only methods to pass values to the
input parameters.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement input
parameters exactly as they are specified in the stored procedure definition.

Restriction: Invoking CallableStatement.setXXX methods to pass values to the
OUT parameters is not supported. There is no need to set values for the OUT
parameters of a stored procedure because the stored procedure does not use
those values.

58 Application Programming Guide and Reference for Java

3. Invoke the CallableStatement.registerOutParameter method to register
parameters that are defined as OUT in the CREATE PROCEDURE statement
with specific data types.
This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you use IBM Data Server Driver for JDBC
and SQLJ-only methods to register OUT parameters with specific data types.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement OUT, IN,
or INOUT parameters exactly as they are specified in the stored procedure
definition.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate
Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery
Invoke this method if the stored procedure returns one result set.

You can invoke CallableStatement.executeQuery for a stored procedure
that returns no result sets if you set property
allowNullResultSetForExecuteQuery to DB2BaseDataSource.YES (1). In that
case, CallableStatement.executeQuery returns null. This behavior does not
conform to the JDBC standard.

CallableStatement.execute
Invoke this method if the stored procedure returns multiple result sets, or
an unknown number of result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
5. If the stored procedure returns multiple result sets, retrieve the result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.
7. Invoke the CallableStatement.close method to close the CallableStatement

object when you have finished using that object.

Example

The following code illustrates calling a stored procedure that has one input
parameter, four output parameters, and no returned ResultSets. The numbers to
the right of selected statements correspond to the previously-described steps.
int ifcaret;
int ifcareas;
int xsbytes;
String errbuff;
Connection con;
CallableStatement cstmt;
ResultSet rs;
...
cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,?,?,?)"); �1�

// Create a CallableStatement object
cstmt.setString (1, "DISPLAY THREAD(*)"); �2�

// Set input parameter (DB2 command)
cstmt.registerOutParameter (2, Types.INTEGER); �3�

// Register output parameters
cstmt.registerOutParameter (3, Types.INTEGER);
cstmt.registerOutParameter (4, Types.INTEGER);

Chapter 3. JDBC application programming 59

cstmt.registerOutParameter (5, Types.VARCHAR);
cstmt.executeUpdate(); // Call the stored procedure �4�
ifcaret = cstmt.getInt(2); // Get the output parameter values �6�
ifcareas = cstmt.getInt(3);
xsbytes = cstmt.getInt(4);
errbuff = cstmt.getString(5);
cstmt.close(); �7�

Related tasks:
“Using named parameter markers with CallableStatement objects” on page 87
Related reference:
“Driver support for JDBC APIs” on page 319

Retrieving multiple result sets from a stored procedure in a
JDBC application
If you call a stored procedure that returns result sets, you need to include code to
retrieve the result sets.

About this task

The steps that you take depend on whether you know how many result sets are
returned, and whether you know the contents of those result sets.
Related tasks:
“Retrieving data from tables using the Statement.executeQuery method” on page
41
“Retrieving data from tables using the PreparedStatement.executeQuery method”
on page 42
“Calling stored procedures in JDBC applications” on page 57

Retrieving a known number of result sets from a stored procedure in a JDBC
application:

Retrieving a known number of result sets from a stored procedure is a simpler
procedure than retrieving an unknown number of result sets.

Procedure

To retrieve result sets when you know the number of result sets and their contents,
follow these steps:
1. Invoke the Statement.execute method, the PreparedStatement.execute method,

or the CallableStatement.execute method to call the stored procedure.
Use PreparedStatement.execute if the stored procedure has input parameters.

2. Invoke the getResultSet method to obtain the first result set, which is in a
ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.

4. If there are n result sets, repeat the following steps n-1 times:
a. Invoke the getMoreResults method to close the current result set and point

to the next result set.
b. Invoke the getResultSet method to obtain the next result set, which is in a

ResultSet object.
c. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX
methods.

60 Application Programming Guide and Reference for Java

Example

The following code illustrates retrieving two result sets. The first result set contains
an INTEGER column, and the second result set contains a CHAR column. The
numbers to the right of selected statements correspond to the previously described
steps.
CallableStatement cstmt;
ResultSet rs;
int i;
String s;
...
cstmt.execute(); // Call the stored procedure �1�
rs = cstmt.getResultSet(); // Get the first result set �2�
while (rs.next()) { // Position the cursor �3�
i = rs.getInt(1); // Retrieve current result set value
System.out.println("Value from first result set = " + i);

// Print the value
}
cstmt.getMoreResults(); // Point to the second result set �4a�

// and close the first result set
rs = cstmt.getResultSet(); // Get the second result set �4b�
while (rs.next()) { // Position the cursor �4c�
s = rs.getString(1); // Retrieve current result set value
System.out.println("Value from second result set = " + s);

// Print the value
}
rs.close(); // Close the result set
cstmt.close(); // Close the statement

Retrieving an unknown number of result sets from a stored procedure in a
JDBC application:

Retrieving an unknown number of result sets from a stored procedure is a more
complicated procedure than retrieving a known number of result sets.

About this task

To retrieve result sets when you do not know the number of result sets or their
contents, you need to retrieve ResultSets, until no more ResultSets are returned.
For each ResultSet, use ResultSetMetaData methods to determine its contents.

After you call a stored procedure, follow these basic steps to retrieve the contents
of an unknown number of result sets.

Procedure

1. Check the value that was returned from the execute statement that called the
stored procedure.
If the returned value is true, there is at least one result set, so you need to go
to the next step.

2. Repeat the following steps in a loop:
a. Invoke the getResultSet method to obtain a result set, which is in a

ResultSet object. Invoking this method closes the previous result set.
b. Use ResultSetMetaData methods to determine the contents of the ResultSet,

and retrieve data from the ResultSet.
c. Invoke the getMoreResults method to determine whether there is another

result set. If getMoreResults returns true, go to step 1 to get the next result
set.

Chapter 3. JDBC application programming 61

Example

The following code illustrates retrieving result sets when you do not know the
number of result sets or their contents. The numbers to the right of selected
statements correspond to the previously described steps.
CallableStatement cstmt;
ResultSet rs;
...
boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
while (resultsAvailable) { // Test for result sets �1�
ResultSet rs = cstmt.getResultSet(); // Get a result set �2a�
... // Process the ResultSet

// as you would process
// a ResultSet from a table

resultsAvailable = cstmt.getMoreResults(); // Check for next result set �2c�
// (Also closes the
// previous result set)

}

Related tasks:
“Learning about a ResultSet using ResultSetMetaData methods” on page 45

Keeping result sets open when retrieving multiple result sets from a stored
procedure in a JDBC application:

The getMoreResults method has a form that lets you leave the current ResultSet
open when you open the next ResultSet.

Procedure

To specify whether result sets stay open, follow this process:

When you call getMoreResults to check for the next ResultSet, use this form:
CallableStatement.getMoreResults(int current);

v To keep the current ResultSet open when you check for the next ResultSet,
specify a value of Statement.KEEP_CURRENT_RESULT for current.

v To close the current ResultSet when you check for the next ResultSet, specify a
value of Statement.CLOSE_CURRENT_RESULT for current.

v To close all ResultSet objects, specify a value of Statement.CLOSE_ALL_RESULTS
for current.

Example

The following code keeps all ResultSets open until the final ResultSet has been
retrieved, and then closes all ResultSets.
CallableStatement cstmt;
...
boolean resultsAvailable = cstmt.execute(); // Call the stored procedure
if (resultsAvailable==true) { // Test for result set
ResultSet rs1 = cstmt.getResultSet(); // Get a result set
...
resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

// Check for next result set
// but do not close
// previous result set

if (resultsAvailable==true) { // Test for another result set
ResultSet rs2 = cstmt.getResultSet(); // Get next result set
... // Process either ResultSet
}

62 Application Programming Guide and Reference for Java

}
resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

// Close the result sets

LOBs in JDBC applications with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.
Related reference:
“Driver support for JDBC APIs” on page 319
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Progressive streaming with the IBM Data Server Driver for JDBC
and SQLJ
If the data source supports progressive streaming, also known as dynamic data
format, the IBM Data Server Driver for JDBC and SQLJ can use progressive
streaming to retrieve data in LOB or XML columns.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs and
XML objects. DB2 for Linux, UNIX, and Windows Version 9.5 and later, IBM
Informix Version 11.50 and later, and DB2 for i V6R1 and later support progressive
streaming for LOBs.

With progressive streaming, the data source dynamically determines the most
efficient mode in which to return LOB or XML data, based on the size of the LOBs
or XML objects.

Progressive streaming is the default behavior in the following environments:

MinimumIBM Data Server
Driver for JDBC and SQLJ
version

Minimum data server
version Types of objects

3.53 DB2 for i V6R1 LOB, XML

3.50 DB2 for Linux, UNIX, and
Windows Version 9.5

LOB

3.50 IBM Informix Version 11.50 LOB

3.2 DB2 for z/OS Version 9 LOB, XML

You set the progressive streaming behavior on new connections using the IBM
Data Server Driver for JDBC and SQLJ progressiveStreaming property.

For DB2 for z/OS Version 9.1 and later data sources, or DB2 for Linux, UNIX, and
Windows Version 9.5 and later data sources, you can set the progressive streaming
behavior for existing connections with the
DB2Connection.setDBProgressiveStreaming(DB2BaseDataSource.YES) method. If
you call DB2Connection.setDBProgressiveStreaming(DB2BaseDataSource.YES), all
ResultSet objects that are created on the connection use progressive streaming
behavior.

Chapter 3. JDBC application programming 63

When progressive streaming is enabled, you can control when the JDBC driver
materializes LOBs with the streamBufferSize property. If a LOB or XML object is
less than or equal to the streamBufferSize value, the object is materialized.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:
...
ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRow1 = rs.getClob(1);

// Put the CLOB from the first column of
// the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.
// clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);
// This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);
// Put the CLOB from the first column of
// the second row in an application variable

rs.close(); // Close the ResultSet.
// clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow2 are no longer available.

If you disable progressive streaming, the way in which the IBM Data Server Driver
for JDBC and SQLJ handles LOBs depends on the value of the
fullyMaterializeLobData property.

Use of progressive streaming is the preferred method of LOB or XML data
retrieval.

LOB locators with the IBM Data Server Driver for JDBC and
SQLJ
The IBM Data Server Driver for JDBC and SQLJ can use LOB locators to retrieve
data in LOB columns.

To cause JDBC to use LOB locators to retrieve data from LOB columns, you need
to set the fullyMaterializeLobData property to false and set the
progressiveStreaming property to NO (DB2BaseDataSource.NO in an application
program).

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming and the value of the progressiveStreaming
property:
v If the data source does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully materialized
within the JDBC driver when a row is fetched. If the value is false, LOB data is
streamed. The driver uses locators internally to retrieve LOB data in chunks on

64 Application Programming Guide and Reference for Java

an as-needed basis It is highly recommended that you set this value to false
when you retrieve LOBs that contain large amounts of data. The default is true.

v If the data source supports progressive streaming, also known as dynamic data
format:
The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to YES (DB2BaseDataSource.YES in an
application program) or is not set.

fullyMaterializeLobData has no effect on stored procedure parameters.

As in any other language, a LOB locator in a Java application is associated with
only one data source. You cannot use a single LOB locator to move data between
two different data sources. To move LOB data between two data sources, you need
to materialize the LOB data when you retrieve it from a table in the first data
source and then insert that data into the table in the second data source.

LOB operations with the IBM Data Server Driver for JDBC and
SQLJ
The IBM Data Server Driver for JDBC and SQLJ supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Among the operations that you can perform on LOB data under the IBM Data
Server Driver for JDBC and SQLJ are:
v Specify a BLOB or column as an argument of the following ResultSet methods

to retrieve data from a BLOB or CLOB column:
For BLOB columns:
– getBinaryStream
– getBlob
– getBytes

For CLOB columns:
– getAsciiStream
– getCharacterStream
– getClob
– getString

v Call the following ResultSet methods to update a BLOB or CLOB column in an
updatable ResultSet:
For BLOB columns:
– updateBinaryStream
– updateBlob

For CLOB columns:
– updateAsciiStream
– updateCharacterStream
– updateClob

If you specify -1 for the length parameter in any of the previously listed
methods, the IBM Data Server Driver for JDBC and SQLJ reads the input data
until it is exhausted.

v Use the following PreparedStatement methods to set the values for parameters
that correspond to BLOB or CLOB columns:
For BLOB columns:
– setBytes
– setBlob

Chapter 3. JDBC application programming 65

– setBinaryStream
– setObject, where the Object parameter value is an InputStream.
For CLOB columns:
– setString
– setAsciiStream
– setClob
– setCharacterStream
– setObject, where the Object parameter value is a Reader.
If you specify -1 for length, the IBM Data Server Driver for JDBC and SQLJ reads
the input data until it is exhausted.

v Retrieve the value of a JDBC CLOB parameter using the
CallableStatement.getString method.

Restriction: With IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,
you cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.

If you are using the IBM Data Server Driver for JDBC and SQLJ version 4.0 or
later, you can perform the following additional operations:
v Use ResultSet.updateXXX or PreparedStatement.setXXX methods to update a

BLOB or CLOB with a length value of up to 2GB for a BLOB or CLOB. For
example, these methods are defined for BLOBs:
ResultSet.updateBlob(int columnIndex, InputStream x, long length)
ResultSet.updateBlob(String columnLabel, InputStream x, long length)
ResultSet.updateBinaryStream(int columnIndex, InputStream x, long length)
ResultSet.updateBinaryStream(String columnLabel, InputStream x, long length)
PreparedStatement.setBlob(int columnIndex, InputStream x, long length)
PreparedStatement.setBlob(String columnLabel, InputStream x, long length)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x, long length)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x, long length)

v Use ResultSet.updateXXX or PreparedStatement.setXXX methods without the
length parameter when you update a BLOB or CLOB, to cause the IBM Data
Server Driver for JDBC and SQLJ to read the input data until it is exhausted. For
example:
ResultSet.updateBlob(int columnIndex, InputStream x)
ResultSet.updateBlob(String columnLabel, InputStream x)
ResultSet.updateBinaryStream(int columnIndex, InputStream x)
ResultSet.updateBinaryStream(String columnLabel, InputStream x)
PreparedStatement.setBlob(int columnIndex, InputStream x)
PreparedStatement.setBlob(String columnLabel, InputStream x)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x)

v Create a Blob or Clob object that contains no data, using the
Connection.createBlob or Connection.createClob method.

v Materialize a Blob or Clob object on the client, when progressive streaming or
locators are in use, using the Blob.getBinaryStream or Clob.getCharacterStream
method.

v Free the resources that a Blob or Clob object holds, using the Blob.free or
Clob.free method.

Java data types for retrieving or updating LOB column data in
JDBC applications
When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

66 Application Programming Guide and Reference for Java

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS, when the JDBC driver processes a CallableStatement.setXXX call for a
stored procedure input parameter, or a CallableStatement.registerOutParameter
call for a stored procedure output parameter, the driver cannot determine the
parameter data types.

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQLJ processes a PreparedStatement.setXXX call, the driver might need
to do extra processing to determine data types. This extra processing can impact
performance.

Input parameters for BLOB columns

For IN parameters for BLOB columns, or INOUT parameters that are used for
input to BLOB columns, you can use one of the following techniques:
v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

cstmt.setBlob(parmIndex, blobData);

v Use a CallableStatement.setObject call that specifies that the target data type is
BLOB:
byte[] byteData = {(byte)0x1a, (byte)0x2b, (byte)0x3c};
cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

v Use an input parameter of type of java.io.ByteArrayInputStream with a
CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream
object is compatible with a BLOB data type. For this call, you need to specify the
exact length of the input data:
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns

For OUT parameters for BLOB columns, or INOUT parameters that are used for
output from BLOB columns, you can use the following technique:
v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type BLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a BLOB data type. For
example, the following code lets you retrieve a BLOB value into a byte[]
variable:
cstmt.registerOutParameter(parmIndex, java.sql.Types.BLOB);
cstmt.execute();
byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns

For IN parameters for CLOB columns, or INOUT parameters that are used for
input to CLOB columns, you can use one of the following techniques:
v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

cstmt.setClob(parmIndex, clobData);

v Use a CallableStatement.setObject call that specifies that the target data type is
CLOB:
String charData = "CharacterString";
cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

v Use one of the following types of stream input parameters:

Chapter 3. JDBC application programming 67

– A java.io.StringReader input parameter with a cstmt.setCharacterStream
call:
java.io.StringReader reader = new java.io.StringReader(charData);
cstmt.setCharacterStream(parmIndex, reader, charData.length);

– A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream
call, for ASCII data:
byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.
v Use a String input parameter with a cstmt.setString call:

cstmt.setString(parmIndex, charData);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

v Use a String input parameter with a cstmt.setObject call, and specify the target
data type as VARCHAR or LONGVARCHAR:
cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

Output parameters for CLOB columns

For OUT parameters for CLOB columns, or INOUT parameters that are used for
output from CLOB columns, you can use one of the following techniques:
v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type CLOB. Then you can retrieve the parameter value into a
Clob variable. For example:
cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);
cstmt.execute();
Clob clobData = cstmt.getClob(parmIndex);

v Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type VARCHAR or LONGVARCHAR:
cstmt.registerOutParameter(parmIndex, java.sql.Types.VARCHAR);
cstmt.execute();
String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Related concepts:
“LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ”
on page 63
Related reference:
“Data types that map to database data types in Java applications” on page 229

ROWIDs in JDBC with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a
database table. A ROWID is a value that uniquely identifies a row in a table.

68 Application Programming Guide and Reference for Java

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

You can use the following ResultSet methods to retrieve data from a ROWID
column:
v getRowId (JDBC 4.0 and later)
v getBytes
v getObject

You can use the following ResultSet method to update a ROWID column of an
updatable ResultSet:
v updateRowId (JDBC 4.0 and later)

updateRowId is valid only if the target database system supports updating of
ROWID columns.

If you are using JDBC 3.0, for getObject, the IBM Data Server Driver for JDBC and
SQLJ returns an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class com.ibm.db2.jcc.DB2RowID.

If you are using JDBC 4.0, for getObject, the IBM Data Server Driver for JDBC and
SQLJ returns an instance of the class java.sql.RowId.

You can use the following PreparedStatement methods to set a value for a
parameter that is associated with a ROWID column:
v setRowId (JDBC 4.0 and later)
v setBytes
v setObject

If you are using JDBC 3.0, for setObject, use the IBM Data Server Driver for JDBC
and SQLJ-only type com.ibm.db2.jcc.Types.ROWID or an instance of the
com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

If you are using JDBC 4.0, for setObject, use the type java.sql.Types.ROWID or an
instance of the java.sql.RowId class as the target type for the parameter.

You can use the following CallableStatement methods to retrieve a ROWID
column as an output parameter from a stored procedure call:
v getRowId (JDBC 4.0 and later)
v getObject

To call a stored procedure that is defined with a ROWID output parameter, register
that parameter to be of the java.sql.Types.ROWID type.

ROWID values are valid for different periods of time, depending on the data
source on which those ROWID values are defined. Use the
DatabaseMetaData.getRowIdLifetime method to determine the time period for
which a ROWID value is valid. The values that are returned for the data sources
are listed in the following table.

Table 15. DatabaseMetaData.getRowIdLifetime values for supported data sources

Database server DatabaseMetaData.getRowIdLifetime

DB2 for z/OS ROWID_VALID_TRANSACTION

DB2 for Linux, UNIX, and Windows ROWID_UNSUPPORTED

Chapter 3. JDBC application programming 69

Table 15. DatabaseMetaData.getRowIdLifetime values for supported data
sources (continued)

Database server DatabaseMetaData.getRowIdLifetime

DB2 for i ROWID_VALID_FOREVER

IBM Informix ROWID_VALID_FOREVER

Example: Using PreparedStatement.setRowId with a java.sql.RowId target type: Suppose
that rwid is a RowId object. To set parameter 1, use this form of the setRowId
method:
ps.setRowId(1, rid);

Example: Using ResultSet.getRowId to retrieve a ROWID value from a data source: To
retrieve a ROWID value from the first column of a result set into RowId object
rwid, use this form of the ResultSet.getRowId method:
java.sql.RowId rwid = rs.getRowId(1);

Example: Using CallableStatement.registerOutParameter with a java.sql.Types.ROWID
parameter type: To register parameter 1 of a CALL statement as a
java.sql.Types.ROWID data type, use this form of the registerOutParameter
method:
cs.registerOutParameter(1, java.sql.Types.ROWID)

Related reference:
“Data types that map to database data types in Java applications” on page 229

Update and retrieval of timestamps with time zone information
in JDBC applications

The JDBC methods and data types that you use and the information that the IBM
Data Server Driver for JDBC and SQLJ has about the column data types determine
the timestamp values that are sent to and received from TIMESTAMP WITH TIME
ZONE or TIMESTAMP columns.

Updates of values in TIMESTAMP or TIMESTAMP WITH TIME
ZONE columns

You can use the following standard JDBC methods to update a TIMESTAMP WITH
TIME ZONE or TIMESTAMP column:
v PreparedStatement.setObject
v PreparedStatement.setTimestamp
v PreparedStatement.setString

For a PreparedStatement.setTimestamp call in which the second parameter is a
DBTimestamp object and the third parameter is a Calendar object, the value that is
passed to a TIMESTAMP WITH TIME ZONE or TIMESTAMP column contains the
time zone value in the Calendar parameter, and not the time zone value in the
DBTimestamp object. For a PreparedStatement.setTimestamp in which the second
parameter is a DBTimestamp object and there is no Calendar parameter, the IBM
Data Server Driver for JDBC and SQLJ value that is passed to a TIMESTAMP
WITH TIME ZONE or TIMESTAMP column has the default time zone, which is
that of the Java virtual machine in which the application is running.

70 Application Programming Guide and Reference for Java

If you want the value that is passed to a TIMESTAMP WITH TIME ZONE or
TIMESTAMP column to use the time zone that is in the DBTimestamp object, you
need to use PreparedStatement.setObject.

Example: Suppose that table TSTABLE is defined like this:
CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP WITH TIME ZONE)

Also suppose that the default time zone of the Java Virtual Machine (JVM) is
UTC-08:00 (Pacific Standard Time). The following code assigns timestamp values to
the column.
...
java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);

// Construct a Calendar object with the
// UTC-05:00 (Eastern Standard Time) time zone.

java.util.Calendar defcal = java.util.Calendar.getInstance();
// Construct a Calendar object
// with the default time zone.

java.sql.Timestamp ts =
java.sql.Timestamp.valueOf("2010-10-27 21:22:33.123456");

// Assign a timestamp to a Timestamp object.
DBTimestamp dbts = new DBTimestamp(ts,estcal);

// Construct a DBTimestamp object that has
// the UTC-05:00 time zone.

...
PreparedStatement ps = con.prepareStatement(

"INSERT INTO TSTABLE (TSCOL,TSTZCOL) VALUES (?,?)");
//
// Use setTimestamp methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column
//
ps.setTimestamp(1, ts); // Assign a timestamp value in a Timestamp

// object to a TIMESTAMP column.
ps.setTimestamp(2,ts); // Assign the same timestamp value to

// a TIMESTAMP WITH TIME ZONE column.
ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL

// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.

ps.setTimestamp(1, dbts);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column.

ps.setTimestamp(2,dbts);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-02-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// default time zone of UTC-08:00 is sent to
// the column.

Chapter 3. JDBC application programming 71

ps.setTimestamp(1, ts, estcal);
// Assign a timestamp value in a Timestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies
// the UTC-05:00 time zone.

ps.setTimestamp(2, ts, estcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column. Include
// a Calendar parameter that specifies the
// UTC-05:00 time zone.

ps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
// if the driver has no information about the column
// data type. The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.

ps.setTimestamp(1, dbts, estcal);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies the
// UTC-05:00 time zone.

ps.setTimestamp(2, dbts, estcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.
// 2010-10-28-00.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// time zone in the Calendar parameter, UTC-05:00,
// is sent to the column.
// The value is adjusted for the difference
// between the time zone in the Calendar parameter and
// the default time zone.

ps.setTimestamp(1, ts, defcal);
// Assign a timestamp value in a Timestamp
// object to a TIMESTAMP column. Include
// a Calendar parameter that specifies
// the default time zone (UTC-08:00).

ps.setTimestamp(2, ts, defcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column. Include
// a Calendar parameter that specifies the
// default (UTC-08:00) time zone.

72 Application Programming Guide and Reference for Java

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.

ps.setTimestamp(1, dbts, defcal);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column

ps.setTimestamp(2, dbts, defcal);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// default time zone in the Calendar parameter,
// UTC-08:00, is sent to the column.

//
// Use setObject methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column
//
ps.setObject(1, ts); // Assign a timestamp value in a Timestamp

// object to a TIMESTAMP column.
ps.setObject(2, ts);

// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned to TSCOL
// if the driver has no information about the column
// data type. The time zone is the default time zone.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type. The
// time zone is the default time zone.

ps.setObject(1, dbts);
// Assign a timestamp value in a DBTimestamp
// object to a TIMESTAMP column.

ps.setObject(2, dbts);
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// has the TIMESTAMP data type.
// 2010-10-28-00.22.33.123456-05:00 is assigned to TSCOL
// if the driver has no information about the column
// data type.
// 2010-10-28-00.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver
// has information that the the column has
// the TIMESTAMP WITH TIME ZONE data type.
// The time zone is the time zone in the DBTimestamp
// object.

//

Chapter 3. JDBC application programming 73

// Use setString methods to assign a timestamp value to a
// TIMESTAMP WITH TIME ZONE or TIMESTAMP column
//
ps.setString(1, "2010-10-27-21.22.33.123456");

// Assign a constant timestamp value
// with no time zone to a TIMESTAMP column.

ps.setString(2, "2010-10-27-21.22.33.123456");
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// regardless of whether the driver has information
// that the column has the TIMESTAMP data type.
// 2010-10-27-21.22.33.123456-08:00 is assigned
// to TSTZCOL if the driver has information that
// the column has the TIMESTAMP WITH TIME ZONE
// data type. The time zone is the default time zone.
// 2010-10-27-21.22.33.123456 is assigned to TSTZCOL
// if the driver has no information about the column
// data type.

ps.setString(1, "2010-10-27-21.22.33.123456-05:00");
// Assign a constant timestamp value
// with a time zone to a TIMESTAMP column.

ps.setString(2, "2010-10-27-21.22.33.123456-05:00");
// Assign the same timestamp value to
// a TIMESTAMP WITH TIME ZONE column.

ps.execute(); // 2010-10-27-21.22.33.123456 is assigned to TSCOL
// if the driver has information that the column
// data type is TIMESTAMP.
// 2010-10-27-21.22.33.123456-05:00 is assigned to
// TSCOL if the driver has no information about the
// column data type.
// 2010-10-27-21.22.33.123456-05:00 is assigned
// to TSTZCOL regardless of whether the driver has
// information that the column data type is
// TIMESTAMP WITH TIME ZONE.

Alternatively, if you want to assign data that has a time zone or has a precision of
greater than nine to a TIMESTAMP WITH TIME ZONE column, you can construct
a DBTimestamp object, and use the IBM Data Server Driver for JDBC and SQLJ-only
method DB2PreparedStatement.setDBTimestamp to update a TIMESTAMP WITH
TIME ZONE column.

Example: Suppose that table TSTABLE is defined like this:
CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP(12) WITH TIME ZONE)

The following code assigns a timestamp value with a time zone and a precision of
10 to each column.
...
DBTimestamp tstz =

DBTimestamp.valueOfDBString("2010-10-28-00.22.33.1234567890-05:00");
// Create a DBTimestamp object from the input value

PreparedStatement ps = con.prepareStatement(
"INSERT INTO TSTABLE (TSCOL, TSTXCOL) VALUES (?,?)");

DB2PreparedStatement dbps = (DB2PreparedStatement)ps;
dbps.setDBTimestamp(1, tstz);
dbps.setDBTimestamp(2, tstz);
dbps.execute(); // 2010-10-28-00.22.33.123456 is assigned to TSCOL if

// the driver has information that the column data type is
// TIMESTAMP.
// 2010-10-28-00.22.33.1234567890-05:00 is assigned to TSCOL
// if the driver has no information about the column

74 Application Programming Guide and Reference for Java

// data type.
// 2010-10-28-00.22.33.1234567890-05:00 is assigned to TSTZCOL
// regardless of whether the driver has information that
// the column data type is TIMESTAMP(12) WITH TIME ZONE.

Retrieval of values from TIMESTAMP or TIMESTAMP WITH TIME
ZONE columns

You can use the following standard JDBC methods to retrieve data from a
TIMESTAMP WITH TIME ZONE or TIMESTAMP column or output parameter:
v ResultSet.getTimestamp
v CallableStatement.getTimestamp
v ResultSet.getObject
v CallableStatement.getObject
v ResultSet.getString
v CallableStatement.getString

For a ResultSet.getTimestamp, CallableStatement.getTimestamp,
ResultSet.getObject, or CallableStatement.getObject call, you can specify the
type of object that you want the IBM Data Server Driver for JDBC and SQLJ to
return by setting the DB2BaseDataSource.timestampOutputType property:
v If you set the property to DB2BaseDataSource.JDBC_TIMESTAMP (1), the driver

returns a java.sql.Timestamp object.
v If you set the property to DB2BaseDataSource.JCC_DBTIMESTAMP (2), the

driver returns a com.ibm.db2.jcc.DBTimestamp object.

For a ResultSet.getTimestamp or CallableStatement.getTimestamp call, if the
ResultSet.getTimestamp or CallableStatement.getTimestamp call has a Calendar
parameter with a non-null value, the IBM Data Server Driver for JDBC and SQLJ
uses the Calendar object when it constructs the returned object. If the
ResultSet.getTimestamp or CallableStatement.getTimestamp call has no Calendar
parameter, or the Calendar parameter value is null, the IBM Data Server Driver for
JDBC and SQLJ uses the default time zone when it constructs the returned object.

If you want to retrieve a timestamp with the time zone value that is in a
TIMESTAMP WITH TIME ZONE column, call ResultSet.getObject or
CallableStatement.getObject, and then call DBTimestamp.toDBString(true) to
retrieve the timestamp with the time zone.

getString retrieves the timestamp value in the standard JDBC format: without the
time zone, and with a precision of up to nine. The returned value is adjusted for
the difference between the time zone of the column value and the default time
zone.

Example: Suppose that table TSTABLE is defined like this:
CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP WITH TIME ZONE)

Also suppose that the default time zone is UTC-08:00 (Pacific Standard Time). The
following code retrieves timestamp values from the TIMESTAMP column.
...
java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);
java.util.Calendar defcal = java.util.Calendar.getInstance();
Statement stmt = conn.createStatement ();
ResultSet rs = stmt.executeQuery("SELECT TSCOL, TSTZCOL FROM TSTABLE");

Chapter 3. JDBC application programming 75

com.ibm.db2.jcc.DB2ResultSet dbrs = (com.ibm.db2.jcc.DB2ResultSet)rs;
Timestamp ts;
DBTimestamp dbts;
...
rs.next();
// Suppose that the TSCOL column value is 2010-10-27-21.22.33.123456

ts=rs.getTimestamp(1); // Retrieve the TIMESTAMP column value
// into a Timestamp object.

ts.toString(); // Format the Timestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned.

((DBTimestamp)ts).toDBString(false); // Cast the retrieved object to a
// DBTimestamp object, and format the
// value as a String, without the time
// zone information.
// 2010-10-27-21.22.33.123456 is returned.

((DBTimestamp)ts).toDBString(true); // Cast the retrieved object to a
// DBTimestamp object, and format the value
// as a String, with the time zone
// information.
// 2009-02-27-21.22.33.123456-08:00 is
// returned. The time zone is the default
// time zone.

ts=rs.getTimestamp(1,estcal); // Retrieve the TIMESTAMP column value
// into a Timestamp object. Specify a
// calendar parameter that says that the
// time zone is UTC-05:00.

ts.toString(); // Format the value as a String, using the
// default time zone of UTC-08:00.
// 2010-10-27-18:22:33.123456 is
// returned.

((DBTimestamp)ts).toDBString(false); // Cast the retrieved object to a
// DBTimestamp object, and format the
// value as a String, without the time zone
// information.
// 2010-10-27-21.22.33.123456 is returned.

((DBTimestamp)ts).toDBString(true); // Cast the retrieved object to a
// DBTimestamp object, and format the
// value as a String, with the time zone
// information.
// 2010-10-27-21.22.33.123456-05:00 is
// returned. The time zone is the time zone
// in the Calendar parameter.

ts=rs.getObject(1); // Retrieve the TIMESTAMP column value
// into an Object.

ts.toString(); // Format the Timestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned.

((DBTimestamp)ts).toDBString(false); // Cast the retrieved object to a
// DBTimestamp object, and format the
// value as a String, without the time
// zone information.
// 2010-10-27-21.22.33.123456 is returned.

((DBTimestamp)ts).toDBString(true); // Cast the retrieved object to a
// DBTimestamp object, and format the value
// as a String, with the time zone
// information.
// 2009-02-27-21.22.33.123456-08:00 is
// returned. The time zone is the default
// time zone.

Alternatively, you can use DB2ResultSet methods to retrieve the TIMESTAMP or
TIMESTAMP WITH TIME ZONE column values.

Example: Suppose that table TSTABLE is defined like this:

76 Application Programming Guide and Reference for Java

CREATE TABLE TSTABLE (
TSCOL TIMESTAMP,
TSTZCOL TIMESTAMP(12) WITH TIME ZONE)

Also suppose that the default time zone is UTC-08:00 (Pacific Standard Time). The
following code retrieves timestamp values from the TIMESTAMP and TIMESTAMP
WITH TIME ZONE columns.
...
java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");
java.util.Calendar estcal = java.util.Calendar.getInstance(esttz);
java.util.Calendar defcal = java.util.Calendar.getInstance();
Statement stmt = conn.createStatement ();
ResultSet rs = stmt.executeQuery("SELECT TSCOL, TSTZCOL FROM TSTABLE");
com.ibm.db2.jcc.DB2ResultSet dbrs = (com.ibm.db2.jcc.DB2ResultSet)rs;
Timestamp ts;
DBTimestamp dbts;
...
rs.next();
// Suppose that the TSTZCOL column value is 2010-10-28-00.22.33.123456-05:00, and
// the TSCOL column value is 2010-10-27-21.22.33.123456.
ts=dbrs.getDBTimestamp(1); // Retrieve the TIMESTAMP column value into

// a Timestamp object.
ts.toString(); // Format the Timestamp object as a String.

// 2010-10-27-21:22:33.123456 is
// returned.

((DBTimestamp)ts).toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-27-21.22.33.123456 is returned.

((DBTimestamp)ts).toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-02-27-21.22.33.123456-08:00 is
// returned. The time zone is the default
// time zone.

ts=dbrs.getDBTimestamp(2); // Retrieve the TIMESTAMP WITH TIME ZONE
// column value into a Timestamp object.

ts.toString(); // Format the Timestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The returned value differs
// from the original value because toString
// uses the default time zone in its
// calculations.

((DBTimestamp)ts).toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-28-00.22.33.123456 is returned.

((DBTimestamp)ts).toDBString(true); // Format the value as a String, with the
// time zone information.
// 2010-10-28-00.22.33.123456-05:00 is
// returned. The time zone is the time zone
// from the retrieved column value.

dbts = (DBTimestamp)rs.getTimestamp(2);
// Retrieve the TIMESTAMP WITH TIME ZONE
// column value into a DBTimestamp object.

dbts.toString(); // Format the DBTimestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The value is adjusted for the
// difference between the time zone in the
// column value and the default time zone.

dbts.toDBString(false); // Format the value as a String, without
// the time zone information. The value is
// adjusted for the difference between the
// time zone in the column value and the
// default time zone.
// 2010-10-27-21.22.33.123456 is returned.

dbts.toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-02-27-21.22.33.123456-08:00 is

Chapter 3. JDBC application programming 77

// returned. The time zone is the default
// time zone. The value is adjusted for
// the difference between the time zone in
// the column value and the default
// time zone.

dbts = (DBTimestamp)rs.getTimestamp(2, defcal);
// Retrieve the TIMESTAMP WITH TIME ZONE
// column value into a DBTimestamp object,
// using the default Calendar to construct
// the DBTimestamp object.

dbts.toString(); // Format the DBTimestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.

dbts.toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-27-21.22.33.123456 is returned.
// The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.

dbts.toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-02-27-21.22.33.123456-08:00 is
// returned. The value is adjusted for
// the difference between the time zone in
// the column value and the time zone
// in the Calendar parameter.

dbts = (DBTimestamp)rs.getObject(2); // Retrieve the TIMESTAMP WITH TIME ZONE
// column value into an Object, and cast
// the object as a DBTimestamp object.

dbts.toString(); // Format the DBTimestamp object as a String.
// 2010-10-27-21:22:33.123456 is
// returned. The returned value differs from
// the original value because toString uses
// the default time zone in its calculations.

dbts.toDBString(false); // Format the value as a String, without
// the time zone information.
// 2010-10-28-00.22.33.123456 is returned.

dbts.toDBString(true); // Format the value as a String, with the
// time zone information.
// 2009-10-28-00.22.33.123456-05:00 is
// returned. The time zone is the time
// zone in the retrieved column value.

Recommendation: Use getObject or getDBTimestamp, followed by setObject or
setDBTimestamp when you need to preserve the original timestamp with time zone
information when you retrieve data from one table and insert it into another table.
Related reference:
“DBTimestamp class” on page 475
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers”
on page 270

Distinct types in JDBC applications
A distinct type is a user-defined data type that is internally represented as a
built-in SQL data type. You create a distinct type by executing the SQL statement
CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method
to execute the CREATE DISTINCT TYPE statement. You can also use

78 Application Programming Guide and Reference for Java

executeUpdate to create a table that includes a column of that type. When you
retrieve data from a column of that type, or update a column of that type, you use
Java identifiers with data types that correspond to the built-in types on which the
distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,
creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

Related reference:
“Data types that map to database data types in Java applications” on page 229

CREATE TYPE (distinct) (DB2 SQL)

Invocation of stored procedures with ARRAY parameters in
JDBC applications

JDBC applications that run under the IBM Data Server Driver for JDBC and SQLJ
can call stored procedures that have ARRAY parameters.

ARRAY parameters are supported in stored procedures on DB2 for Linux, UNIX,
and Windows Version 9.5 and later.

ARRAY parameters are supported in native SQL procedures on DB2 for z/OS
Version 11 and later. Programs that call DB2 for z/OS stored procedures with array
parameters must use IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

You can use java.sql.Array objects as arguments for calling stored procedures
with array parameters.

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;
...
stmt = con.createStatement(); // Create a Statement object
stmt.executeUpdate(

"CREATE DISTINCT TYPE SHOESIZE AS INTEGER");
// Create distinct type

stmt.executeUpdate(
"CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");

// Create table with distinct type
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES (’000010’, 6)"); // Insert a row
rs=stmt.executeQuery("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);

// Create ResultSet for query
while (rs.next()) {

empNumVar = rs.getString(1); // Get employee number
shoeSizeVar = rs.getInt(2); // Get shoe size (use int

// because underlying type
// of SHOESIZE is INTEGER)

System.out.println("Employee number = " + empNumVar +
" Shoe size = " + shoeSizeVar);

}
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Figure 16. Creating and using a distinct type

Chapter 3. JDBC application programming 79

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtypedistinct.htm#db2z_sql_createtypedistinct

For IN or INOUT parameters, use the DB2Connection.createArrayOf method (JDBC
3.0) or the Connection.createArrayOf method (JDBC 4.0 or later) to create a
java.sql.Array object. Use the CallableStatement.setArray method or the
CallableStatement.setObject method to assign a java.sql.Array object to an
ARRAY stored procedure parameter.

You can register an OUT ARRAY parameter for a stored procedure call by
specifying java.sql.Types.ARRAY as the parameter type in a
CallableStatement.registerOutParameter call.

There are two ways to retrieve data from an ARRAY output parameter:
v Use the CallableStatement.getArray method to retrieve the data into a

java.sql.Array object, and use the java.sql.Array.getArray method to retrieve
the contents of the java.sql.Array object into a Java array.

v Use the CallableStatement.getArray method to retrieve the data into a
java.sql.Array object. Use the java.sql.Array.getResultSet() method to
retrieve the data into a ResultSet object. Use ResultSet methods to retrieve
elements of the array. Each row of the ResultSet contains two columns:
– An index into the array, which starts at 1
– The array element

Example: Suppose that input and output parameters IN_PHONE and
OUT_PHONE in stored procedure GET_EMP_DATA are arrays that are defined
like this:
CREATE TYPE PHONENUMBERS AS VARCHAR(10) ARRAY[5]

Call GET_EMP_DATA with the two parameters.
Connection con;
CallableStatement cstmt;
ResultSet rs;
java.sql.Array inPhoneData;
...
cstmt = con.prepareCall("CALL GET_EMP_DATA(?,?)");

// Create a CallableStatement object
cstmt.setObject (1, inPhoneData); // Set input parameter
cstmt.registerOutParameter (2, java.sql.Types.ARRAY);

// Register out parameters
cstmt.executeUpdate(); // Call the stored procedure
Array outPhoneData = cstmt.getArray(2);

// Get the output parameter array
System.out.println("Parameter values from GET_EMP_DATA call: ");
String [] outPhoneNums = (String [])outPhoneData.getArray();

// Retrieve output data from the JDBC Array object
// into a Java String array

for(int i=0; i<outPhoneNums.length; i++) {
System.out.print(outPhoneNums[i]);
System.out.println();

}

Savepoints in JDBC applications
An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. You can use SQL statements to set a savepoint, release
a savepoint, and restore data and schemas to the state that the savepoint
represents.

The IBM Data Server Driver for JDBC and SQLJ supports the following methods
for using savepoints:

80 Application Programming Guide and Reference for Java

|
|
|
|
|

Connection.setSavepoint() or Connection.setSavepoint(String name)
Sets a savepoint. These methods return a Savepoint object that is used in later
releaseSavepoint or rollback operations.

When you execute either of these methods, DB2 executes the form of the
SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)
Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)
Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()
Indicates whether a data source supports savepoints.

You can indicate whether savepoints are unique by calling the method
DB2Connection.setSavePointUniqueOption. If you call this method with a value of
true, the application cannot set more than one savepoint with the same name
within the same unit of recovery. If you call this method with a value of false (the
default), multiple savepoints with the same name can be created within the same
unit of recovery, but creation of a savepoint destroys a previously created
savepoint with the same name.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;
...
con.setAutoCommit(false); // set autocommit OFF
stmt = con.createStatement(); // Create a Statement object
... // Perform some SQL
con.commit(); // Commit the transaction
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES (’000010’, 6)"); // Insert a row
((com.ibm.db2.jcc.DB2Connection)con).setSavePointUniqueOption(true);

// Indicate that savepoints
// are unique within a unit
// of recovery

Savepoint savept = con.setSavepoint("savepoint1");
// Create a savepoint

...
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES (’000020’, 10)"); // Insert another row
conn.rollback(savept); // Roll back work to the point

// after the first insert
...
con.releaseSavepoint(savept); // Release the savepoint
stmt.close(); // Close the Statement
conn.commit(); // Commit the transaction

Figure 17. Setting, rolling back to, and releasing a savepoint in a JDBC application

Chapter 3. JDBC application programming 81

Related tasks:
“Committing or rolling back JDBC transactions” on page 113
Related reference:
“Data types that map to database data types in Java applications” on page 229
“Driver support for JDBC APIs” on page 319
“DB2Connection interface” on page 401

Retrieval of automatically generated keys in JDBC
applications

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve
automatically generated keys (also called auto-generated keys) from a table using
JDBC 3.0 methods.

An automatically generated key is any value that is generated by the data server,
instead of being specified by the user. One type of automatically generated key is
the contents of an identity column. An identity column is a table column that
provides a way for the data source to automatically generate a numeric value for
each row. You define an identity column in a CREATE TABLE or ALTER TABLE
statement by specifying the AS IDENTITY clause when you define a column that
has an exact numeric type with a scale of 0 (SMALLINT, INTEGER, BIGINT,
DECIMAL with a scale of zero, or a distinct type based on one of these types).

For connections to DB2 for z/OS or DB2 for Linux, UNIX, and Windows, the IBM
Data Server Driver for JDBC and SQLJ supports the return of automatically
generated keys for INSERT statements, for searched UPDATE or searched DELETE
statements, or for MERGE statements. For UPDATE, DELETE, or MERGE
statements, you can identify any columns as automatically generated keys, even if
they are not generated by the data server. In this case, the column values that are
returned are the column values for the rows that are modified by the UPDATE,
DELETE, or MERGE statement.

Restriction: If the Connection or DataSource property atomicMultiRowInsert is set
to DB2BaseDataSource.YES (1), you cannot prepare an SQL statement for retrieval of
automatically generated keys and use the PreparedStatement object for batch
updates. The IBM Data Server Driver for JDBC and SQLJ version 3.50 or later
throws an SQLException when you call the addBatch or executeBatch method on a
PreparedStatement object that is prepared to return automatically generated keys.
Related tasks:
“Creating and modifying database objects using the Statement.executeUpdate
method” on page 32
“Updating data in tables using the PreparedStatement.executeUpdate method” on
page 33

Retrieving auto-generated keys for an INSERT statement
With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0
methods to retrieve the keys that are automatically generated when you execute an
INSERT statement.

Procedure

To retrieve automatically generated keys that are generated by an INSERT
statement, you need to perform these steps:

82 Application Programming Guide and Reference for Java

1. Use one of the following methods to indicate that you want to return
automatically generated keys:
v If you plan to use the PreparedStatement.executeUpdate method to insert

rows, invoke one of these forms of the Connection.prepareStatement method
to create a PreparedStatement object:
The following form is valid for a table on any data source that supports
identity columns.

Restriction: For IBM Data Server Driver for JDBC and SQLJ version 3.57 or
later, the following form is not valid for inserting rows into a view on a DB2
for z/OS data server.
Connection.prepareStatement(sql-statement,

Statement.RETURN_GENERATED_KEYS);

If the data server is DB2 for z/OS, the following forms are valid only if the
data server supports SELECT FROM INSERT statements. With the first form,
you specify the names of the columns for which you want automatically
generated keys. With the second form, you specify the positions in the table
of the columns for which you want automatically generated keys.
Connection.prepareStatement(sql-statement, String [] columnNames);
Connection.prepareStatement(sql-statement, int [] columnIndexes);

v If you use the Statement.executeUpdate method to insert rows, invoke one
of these forms of the Statement.executeUpdate method:
The following form is valid for a table on any data source that supports
identity columns.

Restriction: For IBM Data Server Driver for JDBC and SQLJ version 3.57 or
later, the following form is not valid for inserting rows into a view on a DB2
for z/OS data server.
Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED_KEYS);

If the data server is DB2 for z/OS, the following forms are valid only if the
data server supports SELECT FROM INSERT statements. With the first form,
you specify the names of the columns for which you want automatically
generated keys. With the second form, you specify the positions in the table
of the columns for which you want automatically generated keys.
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);

2. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that
contains the automatically generated key values.
If you include the Statement.RETURN_GENERATED_KEYS parameter, the data type
of the automatically generated keys in the ResultSet is DECIMAL, regardless
of the data type of the corresponding column.

Example

The following code creates a table with an identity column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.
import java.sql.*;
import java.math.*;
import com.ibm.db2.jcc.*;

Connection con;

Chapter 3. JDBC application programming 83

Statement stmt;
ResultSet rs;
java.math.BigDecimal iDColVar;
...
stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

"IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�
"VALUES (’000010’, ’5555’)", // Insert a row
Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

// generated keys
rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

// generated key value in a ResultSet.
// Only one row is returned.
// Create ResultSet for query

while (rs.next()) {
java.math.BigDecimal idColVar = rs.getBigDecimal(1);

// Get automatically generated key
// value

System.out.println("automatically generated key value = " + idColVar);
}
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

With any version of the IBM Data Server Driver for JDBC and SQLJ, you can
retrieve the most recently assigned value of an identity column by explicitly
executing the IDENTITY_VAL_LOCAL built-in function. Execute code similar to
this:
String idntVal;
Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT IDENTITY_VAL_LOCAL() FROM SYSIBM.SYSDUMMY1");

// Get the result table from the query.
// This is a single row with the most
// recent identity column value.

while (rs.next()) { // Position the cursor
idntVal = rs.getString(1); // Retrieve column value
System.out.println("Identity column value = " + idntVal);

// Print the column value
}
rs.close(); // Close the ResultSet
stmt.close(); // Close the Statement

Retrieving auto-generated keys for an UPDATE, DELETE, or
MERGE statement
With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0
methods to retrieve the keys that are automatically generated when you execute a
searched UPDATE, searched DELETE, or MERGE statement.

Procedure

To retrieve automatically generated keys that are generated by an UPDATE,
DELETE, or MERGE statement, you need to perform these steps:
1. Construct a String array that contains the names of the columns from which

you want to return automatically generated keys.
The array must be an array of column names, and not column indexes.

84 Application Programming Guide and Reference for Java

2. Set the autocommit mode for the connection to false.
3. Use one of the following methods to indicate that you want to return

automatically generated keys:
v If you plan to use the PreparedStatement.executeUpdate method to update,

delete, or merge rows, invoke this form of the Connection.prepareStatement
method to create a PreparedStatement object:
Connection.prepareStatement(sql-statement, String [] columnNames);

v If you use the Statement.executeUpdate method to update, delete, or merge
rows, invoke this form of the Statement.executeUpdate method:
Statement.executeUpdate(sql-statement, String [] columnNames);

4. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that
contains the automatically generated key values.

Example

Suppose that a table is defined like this and has thirty rows:
CREATE TABLE EMP_BONUS

(EMPNO CHAR(6),
BONUS DECIMAL(9,2))

The following code names the EMPNO column as an automatically generated key,
updates the thirty rows in the EMP_BONUS table, and retrieves the values of
EMPNO for the updated rows. The numbers to the right of selected statements
correspond to the previously described steps.
import java.sql.*;
...
Connection conn;
...
String[] agkNames = {"EMPNO"}; �1�
int updateCount = 0;
conn.setAutoCommit(false); �2�
PreparedStatement ps = �3�
conn.prepareStatement(“UPDATE EMP_BONUS SET BONUS = " +
“ BONUS + 300.00”,agkNames);
updateCount = ps.executeUpdate();
ResultSet rs = ps.getGeneratedKeys(); �4�
while (rs.next()) {
String agkEmpNo = rs.getString(1);

// Get automatically generated key value
System.out.println("Automatically generated key value = " + agkEmpNo);
}
ps.close();
conn.close();

Named parameter markers in JDBC applications
You can use named parameter markers instead of standard parameter markers in
PreparedStatement and CallableStatement objects to assign values to the input
parameter markers. You can also use named parameter markers instead of
standard parameter markers in CallableStatement objects to register OUT
parameters that have named parameter markers.

SQL strings that contain the following SQL elements can include named parameter
markers:
v CALL
v DELETE
v INSERT

Chapter 3. JDBC application programming 85

v MERGE
v PL/SQL block
v SELECT
v SET
v UPDATE

Named parameter markers make your JDBC applications more readable. If you
have named parameter markers in an application, set the IBM Data Server Driver
for JDBC and SQLJ Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES (1) to direct the driver
to accept named parameter markers and send them to the data source as standard
parameter markers.
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Using named parameter markers with PreparedStatement objects
You can use named parameter markers instead of standard parameter markers in
PreparedStatement objects to assign values to the parameter markers.

Before you begin

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

About this task

Procedure

To use named parameter markers with PreparedStatement objects, follow these
steps:
1. Execute the Connection.prepareStatement method on an SQL statement string

that contains named parameter markers. The named parameter markers must
follow the rules for SQL host variable names.
You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.
Named parameter markers are case-insensitive.

2. For each named parameter marker, use a
DB2PreparedStatement.setJccXXXAtName method to assign a value to each
named input parameter.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that parameter
marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

Restriction: You cannot use standard JDBC PreparedStatement.setXXX methods
with named parameter markers. Doing so causes an exception to be thrown.

3. Execute the PreparedStatement.

86 Application Programming Guide and Reference for Java

Example

The following code uses named parameter markers to update the phone number to
'4657' for the employee with employee number '000010'. The numbers to the right
of selected statements correspond to the previously described steps.
Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=:phonenum WHERE EMPNO=:empnum");
// Create a PreparedStatement object �1�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("phonenum", "4567");

// Assign a value to phonenum parameter �2�
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

("empnum", "000010");
// Assign a value to empnum parameter

numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object

The following code uses named parameter markers to update values in a PL/SQL
block. The numbers to the right of selected statements correspond to the previously
described steps.
Connection con;
PreparedStatement pstmt;
int numUpd;
...
String sql =

"BEGIN " +
" UPDATE EMPLOYEE SET PHONENO = :phonenum WHERE EMPNO = :empnum; " +
"END;";

pstmt = con.prepareStatement(sql); // Create a PreparedStatement object �1�
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

("phonenum", "4567");
// Assign a value to phonenum parameter �2�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("empnum", "000010");

// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object

Related reference:
“DB2PreparedStatement interface” on page 435

Using named parameter markers with CallableStatement objects
You can use named parameter markers instead of standard parameter markers in
CallableStatement objects to assign values to IN or INOUT parameters and to
register OUT parameters.

Before you begin

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

Chapter 3. JDBC application programming 87

About this task

Procedure

To use named parameter markers with CallableStatement objects, follow these
steps:
1. Execute the Connection.prepareCall method on an SQL statement string that

contains named parameter markers.
The named parameter markers must follow the rules for SQL host variable
names.
You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.
Named parameter markers are case-insensitive.

2. If you do not know the names of the named parameter markers in the CALL
statement, or the mode of the parameters (IN, OUT, or INOUT):
a. Call the CallableStatement.getParameterMetaData method to obtain a

ParameterMetaData object with information about the parameters.
b. Call the ParameterMetaData.getParameterMode method to retrieve the

parameter mode.
c. Cast the ParameterMetaData object to a DB2ParameterMetaData object.
d. Call the DB2ParameterMetaData.getParameterMarkerNames method to retrieve

the parameter names.
3. For each named parameter marker that represents an OUT parameter, use a

DB2CallableStatement.registerJccOutParameterAtName method to register the
OUT parameter with a data type.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a registerJccOutParameterAtName method for
that parameter marker only once. All parameters with the same name are
registered as the same data type.

Restriction: You cannot use standard JDBC
CallableStatement.registerOutParameter methods with named parameter
markers. Doing so causes an exception to be thrown.

4. For each named parameter marker for an input parameter, use a
DB2CallableStatement.setJccXXXAtName method to assign a value to each
named input parameter.
setJccXXXAtName methods are inherited from DB2PreparedStatement.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that parameter
marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

5. Execute the CallableStatement.
6. Call CallableStatement.getXXX methods or

DB2CallableStatement.getJccXXXAtName methods to retrieve output parameter
values.

88 Application Programming Guide and Reference for Java

Example

The following code illustrates calling a stored procedure that has one input
VARCHAR parameter and one output INTEGER parameter, which are represented
by named parameter markers. The numbers to the right of selected statements
correspond to the previously described steps.
...
CallableStatement cstmt =

con.prepareCall("CALL MYSP(:inparm,:outparm)");
// Create a CallableStatement object �1�

((com.ibm.db2.jcc.DB2CallableStatement)cstmt).
registerJccOutParameterAtName("outparm", java.sql.Types.INTEGER);

// Register OUT parameter data type �3�
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).setJccStringAtName("inparm", "4567");

// Assign a value to inparm parameter �4�

cstmt.executeUpdate(); // Call the stored procedure �5�
int outssid = cstmt.getInt(2); // Get the output parameter value �6�
cstmt.close();

Related reference:
“DB2CallableStatement interface” on page 393
“DB2PreparedStatement interface” on page 435

Providing extended client information to the data source with
IBM Data Server Driver for JDBC and SQLJ-only methods

A set of IBM Data Server Driver for JDBC and SQLJ-only methods provide extra
information about the client to the server. This information can be used for
accounting, workload management, or debugging.

About this task

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

In the IBM Data Server Driver for JDBC and SQLJ version 4.0 or later, the IBM
Data Server Driver for JDBC and SQLJ-only methods are deprecated. You should
use java.sql.Connection.setClientInfo instead.

The IBM Data Server Driver for JDBC and SQLJ-only methods are listed in the
following table.

Table 16. Methods that provide client information to theDB2 server

Method Information provided

setDB2ClientAccountingInformation Accounting information

setDB2ClientApplicationInformation Name of the application that is working with
a connection

setDB2ClientDebugInfo The CLIENT DEBUGINFO connection
attribute for the Unified debugger

setDB2ClientProgramId A caller-specified string that helps the caller
identify which program is associated with a
particular SQL statement.
setDB2ClientProgramId does not apply to DB2
for Linux, UNIX, and Windows data servers.

setDB2ClientUser User name for a connection

Chapter 3. JDBC application programming 89

Table 16. Methods that provide client information to theDB2 server (continued)

Method Information provided

setDB2ClientWorkstation Client workstation name for a connection

Procedure

To set the extended client information, follow these steps:
1. Create a Connection.
2. Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.
3. Call any of the methods shown in Table 16 on page 89.
4. Execute an SQL statement to cause the information to be sent to theDB2 server.

Example

The following code performs the previous steps to pass a user name and a
workstation name to theDB2 server. The numbers to the right of selected
statements correspond to the previously-described steps.

Related reference:
“IBM Data Server Driver for JDBC and SQLJ extensions to JDBC” on page 383

Providing extended client information to the data source with
client info properties

The IBM Data Server Driver for JDBC and SQLJ version 4.0 supports JDBC 4.0
client info properties, which you can use to provide extra information about the
client to the server. This information can be used for accounting, workload
management, or debugging.

public class ClientInfoTest {
public static void main(String[] args) {

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";
try {

Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url, �1�

user, password);
if (conn instanceof DB2Connection) {

DB2Connection db2conn = (DB2Connection) conn; �2�
db2conn.setDB2ClientUser("Michael L Thompson"); �3�
db2conn.setDB2ClientWorkstation("sjwkstn1");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

+ "WHERE 0 = 1").executeQuery(); �4�
}

} catch (Throwable e) {
e.printStackTrace();

}
}

}

Figure 18. Example of passing extended client information to aDB2 server

90 Application Programming Guide and Reference for Java

About this task

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

The application can also use the Connection.getClientInfo method to retrieve
client information from the database server, or execute the
DatabaseMetaData.getClientInfoProperties method to determine which client
information the driver supports.

The JDBC 4.0 client info properties should be used instead IBM Data Server Driver
for JDBC and SQLJ-only methods, which are deprecated.

Procedure

To set client info properties, follow these steps:
1. Create a Connection.
2. Call the java.sql.Connection.setClientInfo method to set any of the client

info properties that the database server supports.
3. Execute an SQL statement to cause the information to be sent to the database

server.

Example

The following code performs the previous steps to pass a client's user name and
host name to theDB2 server. The numbers to the right of selected statements
correspond to the previously-described steps.

Client info properties support by the IBM Data Server Driver for
JDBC and SQLJ
JDBC 4.0 includes client info properties, which contain information about a
connection to a data source. The DatabaseMetaData.getClientInfoProperties
method returns a list of client info properties that the IBM Data Server Driver for
JDBC and SQLJ supports.

public class ClientInfoTest {
public static void main(String[] args) {
String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";
try {

Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url, �1�

user, password);
conn.setClientInfo("ClientUser", "Michael L Thompson"); �2�
conn.setClientInfo("ClientHostname, "sjwkstn1");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

+ "WHERE 0 = 1").executeQuery(); �3�
} catch (Throwable e) {

e.printStackTrace();
}

}
}

Figure 19. Example of passing extended client information to aDB2 server

Chapter 3. JDBC application programming 91

When you call DatabaseMetaData.getClientInfoProperties, a result set is returned
that contains the following columns:
v NAME
v MAX_LEN
v DEFAULT_VALUE
v DESCRIPTION

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for Linux, UNIX, and Windows and for
DB2 for i.

Table 17. Client info property values for DB2 for Linux, UNIX, and Windows and for DB2 for i

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 Empty string The name of the application
that is currently using the
connection. This value is stored
in DB2 special register
CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string The value of the accounting
string from the client
information that is specified for
the connection. This value is
stored in DB2 special register
CURRENT CLIENT_ACCTNG.

ClientHostname 255 The host name of the local host. The host name of the computer
on which the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 255 Empty string The name of the user on whose
behalf the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 4 connectivity.

Table 18. Client info property values for type 4 connectivity to DB2 for z/OS

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 The string "db2jcc_application". The name of the application that is
currently using the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 A string of the form JCCversionclient-ip,
where version is the driver version, and
client-ip is the IP address of the client.

The value of the accounting string
from the client information that is
specified for the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_ACCTNG.

92 Application Programming Guide and Reference for Java

Table 18. Client info property values for type 4 connectivity to DB2 for z/OS (continued)

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ClientCorrelationToken 255 An LUWID (logical unit of work ID) that
the data server generates.

A unique value that allows you to
correlate your business processes
across the enterprise. This value is
stored in DB2 special register
CURRENT CLIENT_CORR_TOKEN.
The client correlation token value is
available in the accounting
correlation header record of a DB2
trace, and in the -DISPLAY
THREAD command output.

ClientHostname 255 The string "db2jcc_local" The host name of the computer on
which the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 128 The user ID that was specified when the
connection was established.

The name of the user on whose
behalf the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 2 connectivity.

Table 19. Client info property values for type 2 connectivity on DB2 for z/OS

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 The string
"db2jcc_application".

The name of the application that is currently
using the connection. This value is stored in
DB2 special register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string. The value of the accounting string from the
client information that is specified for the
connection. This value is stored in DB2
special register CURRENT
CLIENT_ACCTNG.

ClientCorrelationToken 255 An LUWID (Logical Unit
of Work ID) that the data
server generates.

A unique value that allows you to correlate
your business processes across the
enterprise. This value is stored in DB2
special register CURRENT
CLIENT_CORR_TOKEN. The client
correlation token value is available in the
accounting correlation header record of a
DB2 trace, and in the -DISPLAY THREAD
command output.

ClientHostname 255 The string "RRSAF". The host name of the computer on which
the application that is using the connection
is running. This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 128 The user ID that was
specified for the
connection. If no user ID
was specified, the RACF
user ID is used.

The name of the user on whose behalf the
application that is using the connection is
running. This value is stored in DB2 special
register CURRENT CLIENT_USERID.

Chapter 3. JDBC application programming 93

|||
|
|
|
|
|
|
|
|
|
|
|

|||
|
|

|
|
|
|
|
|
|
|
|

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for IBM Informix

Table 20. Client info property values for IBM Informix

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 20 Empty string The name of the application
that is currently using the
connection.

ClientAccountingInformation 199 Empty string The value of the accounting
string from the client
information that is specified for
the connection.

ClientHostname 20 The host name of the local host. The host name of the computer
on which the application that is
using the connection is
running.

ClientUser 1024 Empty string The name of the user on whose
behalf the application that is
using the connection is
running.

Extended parameter information with the IBM Data Server Driver for
JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ-only methods and constants let you
assign the default value or no value to table columns or ResultSet columns.

The data server must support extended indicators before you can use the methods
that provide extended indicator information in your Java applications. If you call
one of those methods against a data server that does not support extended
indicators, an exception is thrown. Extended parameter information is supported
by DB2 for z/OS Version 10 or later, or DB2 for Linux, UNIX, and Windows
Version 9.7 or later.

The methods that provide extended parameter information are listed in the
following table.

Extended parameter information methods Purpose

DB2PreparedStatement.setDBDefault,
DB2PreparedStatement.setJccDBDefaultAtName

Sets an input parameter to its default value.

DB2PreparedStatement.setDBUnassigned,
DB2PreparedStatement.setJccDBUnassignedAtName

Indicates that an input parameter is unassigned. This
action yields the same behavior that would occur if the
input parameter did not appear in the SQL statement
text.

DB2ResultSet.updateDBDefault Sets a column value in the current ResultSet row to its
default value.

These methods are applicable only for parameter markers that appear in one of the
following places:
v The SET list of an UPDATE statement
v The SET list of a MERGE statement
v The VALUES list of an INSERT statement
v The VALUES list of a MERGE statement

94 Application Programming Guide and Reference for Java

v The source table in a MERGE statement
v The SELECT list of an INSERT from SELECT statement

An SQLException is raised if you use these methods in any other context.

Alternatively, you can use the standard PreparedStatement.setObject or
ResultSet.updateObject methods with IBM Data Server Driver for JDBC and
SQLJ-only constants DB2PreparedStatement.DB_PARAMETER_DEFAULT or
DB2PreparedStatement.DB_PARAMETER_UNASSIGNED to assign the default value or no
value to parameters.

Extended parameter information can simplify application programs that have
several input variables, each of which can send a value or the default value to the
data server, or does not need to appear in the SQL statement. Instead of preparing
separate statement strings for all combinations of variable values, you can prepare
a single statement string. The resulting PreparedStatement object can be used in a
homogeneous batch, whereas multiple different PreparedStatement objects cannot
be used in a homogeneous batch.
Related reference:
“DB2PreparedStatement interface” on page 435

Using DB2PreparedStatement methods or constants to
provide extended parameter information

Use DB2PreparedStatement methods or PreparedStatement methods with
DB2PreparedStatement constants to assign default values to target columns or to
assign no values to target columns.

About this task

Follow these steps to send extended client information for a PreparedStatement to
the data server.

Procedure
1. Create a PreparedStatement object.

The SQL statement is a INSERT, UPDATE, or MERGE statement.
2. If you are not using setObject to assign the values, cast the PreparedStatement

object to a com.ibm.db2.jcc.DB2PreparedStatement object.
3. Call one of the following methods:

v If you are not using setObject to assign the value:
– To assign the default value of the target column to the input parameter,

call DB2PreparedStatement.setDBDefault or
DB2PreparedStatement.setJccDBDefaultAtName.

– To mark the input parameter as unassigned, call
DB2PreparedStatement.setDBUnassigned or
DB2PreparedStatement.setJccDBUnassignedAtName.

v If you are using setObject to assign the value:
– To assign the default value of the target column to the input parameter,

call PreparedStatement.setObject with
DB2PreparedStatement.DB_PARAMETER_DEFAULT as the assigned value.

– To mark the input parameter as unassigned, call
PreparedStatement.setObject with
DB2PreparedStatement.DB_PARAMETER_UNASSIGNED as the assigned value.

Chapter 3. JDBC application programming 95

4. Execute the SQL statement.

Example

The following code assigns the default values of the target columns to the third
and fifth parameters in an INSERT statement. The numbers to the right of selected
statements correspond to the previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
...
PreparedStatement p = conn.prepareStatement(�1�

"INSERT INTO DEPARTMENT " +
"(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION) " +
"VALUES (?,?,?,?,?)");

p.setString(1, "X00");
p.setString(2, "FACILITIES");
p.setString(4, "A00");
((com.ibm.db2.jcc.DB2PreparedStatement)p).setDBDefault(3); �2,3�
((com.ibm.db2.jcc.DB2PreparedStatement)p).setDBDefault(5);
int uCount = p.executeUpdate(); �4�
...
p.close(); // Close PreparedStatement

The following code uses the PreparedStatement.setObject method and
DB2PreparedStatement constants to perform the same function as in the previous
example. The numbers to the right of selected statements correspond to the
previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
...

PreparedStatement p = conn.prepareStatement(�1�
"INSERT INTO DEPARTMENT " +
"(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION) " +
"VALUES (?,?,?,?,?)");

p.setString(1, "X00");
p.setString(2, "FACILITIES");
p.setString(4, "A00");
p.setObject(3, DB2PreparedStatement.DB_PARAMETER_DEFAULT); �3�
p.setObject(5, DB2PreparedStatement.DB_PARAMETER_DEFAULT);
int uCount = p.executeUpdate(); �4�
...
p.close(); // Close PreparedStatement

In these examples, use of the method DB2PreparedStatement.setDBDefault or the
constant DB2PreparedStatement.DB_PARAMETER_DEFAULT simplifies programming of
the INSERT operation. If DB2PreparedStatement.setDBDefault or
DB2PreparedStatement.DB_PARAMETER_DEFAULT is not used, up to 32 different
PreparedStatement objects are necessary to cover all combinations of default and
non-default input values.

Using DB2ResultSet methods or DB2PreparedStatement
constants to provide extended parameter information

Use DB2ResultSet methods or ResultSet methods with DB2PreparedStatement
constants to assign default values to target columns in a DB2ResultSet.

96 Application Programming Guide and Reference for Java

About this task

Follow these steps to update a ResultSet with extended client information.

Procedure
1. Create a PreparedStatement object.

The SQL statement is a SELECT statement.
2. Invoke PreparedStatement.setXXX methods to pass values to any input

parameters.
3. Invoke the PreparedStatement.executeQuery method to obtain the result table

from the SELECT statement in a ResultSet object.
4. Position the cursor to the row that you want to update or insert.
5. Update columns in the ResultSet row.

v If you are not using updateObject to update a value:
– To assign the default value to the target column of the ResultSet, cast the

ResultSet to a DB2ResultSet, and call DB2ResultSet.updateDBDefault.
v If you are using updateObject to assign the value:

– To assign the default value to the target column of the ResultSet, call
ResultSet.updateObject with
DB2PreparedStatement.DB_PARAMETER_DEFAULT as the assigned value.

6. Execute ResultSet.updateRow if you are updating an existing row, or
ResultSet.insertRow if you are inserting a new row.

Example

The following code inserts a row into a ResultSet with the default value in the
second column, and does not modify the value in the first column. The numbers to
the right of selected statements correspond to the previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
...
PreparedStatement p = conn.prepareStatement (�1�
"SELECT MGRNO, LOCATION " +
"FROM DEPARTMENT");

ResultSet rs = p.executeQuery (); �3�
rs.next ();
rs.moveToInsertRow(); �4�
((DB2ResultSet)rs).updateDBDefault (2); �5�
rs.insertRow(); �6�
...
rs.close(); // Close ResultSet
p.close(); // Close PreparedStatement

The following code uses the ResultSet interface with DB2PreparedStatement
constants to perform the same function as in the previous example. The numbers
to the right of selected statements correspond to the previously described steps.
import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
...
PreparedStatement p = conn.prepareStatement (�1�
"SELECT MGRNO, LOCATION " +
"FROM DEPARTMENT");

ResultSet rs = p.executeQuery (); �3�

Chapter 3. JDBC application programming 97

rs.next ();
rs.moveToInsertRow(); �4�
rs.updateObject (2, �5�
DB2PreparedStatement.DB_PARAMETER_DEFAULT);
rs.insertRow(); �6�
...
rs.close(); // Close ResultSet
p.close(); // Close PreparedStatement

XML data in JDBC applications
In JDBC applications, you can store data in XML columns and retrieve data from
XML columns.

In database tables, the XML built-in data type is used to store XML data in a
column as a structured set of nodes in a tree format.

JDBC applications can send XML data to the data server or retrieve XML data from
the data server in one of the following forms:
v As textual XML data
v As binary XML data, if the data server supports it

In JDBC applications, you can:
v Store an entire XML document in an XML column using setXXX methods.
v Retrieve an entire XML document from an XML column using getXXX methods.
v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence into a serialized sequence in the
database, and then using getXXX methods to retrieve the data into an application
variable.

v Retrieve a sequence from a document in an XML column as a user-defined table
by using the SQL XMLTABLE function to define the result table and retrieve it.
Then use getXXX methods to retrieve the data from the result table into
application variables.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML
columns. Invocations of metadata methods, such as
ResultSetMetaData.getColumnTypeName return the integer value
java.sql.Types.SQLXML for an XML column type.
Related concepts:
“XML data retrieval in JDBC applications” on page 101
“XML column updates in JDBC applications”
Related reference:
“Data types that map to database data types in Java applications” on page 229

XML column updates in JDBC applications
In a JDBC application, you can update or insert data into XML columns of a table
at a DB2 data server using XML textual data. You can update or insert data into
XML columns of a table using binary XML data (data that is in the Extensible
Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data server
supports binary XML data.

The following table lists the methods and corresponding input data types that you
can use to put data in XML columns.

98 Application Programming Guide and Reference for Java

Table 21. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

PreparedStatement.setBlob Blob

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

PreparedStatement.setObject byte[], Blob, Clob, SQLXML, DB2Xml (deprecated), InputStream,
Reader, String

PreparedStatement.setSQLXML1 SQLXML

PreparedStatement.setString String

Note:

1. This method requires JDBC 4.0 or later.

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the data source as character
data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent
to the data source as character data, but the data contains encoding information.
The data source handles incompatibilities between internal and external encoding
as follows:
v If the data source is DB2 for Linux, UNIX, and Windows, the database source

generates an error if the external and internal encoding are incompatible, unless
the external and internal encoding are Unicode. If the external and internal
encoding are Unicode, the database source ignores the internal encoding.

v If the database source is DB2 for z/OS, the database source ignores the internal
encoding.

Character data in XML columns is stored in UTF-8 encoding. The database source
handles conversion of the data from its internal or external encoding to UTF-8.

Example: The following example demonstrates inserting data from an SQLXML
object into an XML column. The data is String data, so the database source treats
the data as externally encoded.
public void insertSQLXML()
{
Connection con = DriverManager.getConnection(url);
SQLXML info = con.createSQLXML();

// Create an SQLXML object
PreparedStatement insertStmt = null;
String infoData =

"<customerinfo xmlns=""http://posample.org"" " +
"Cid=""1000"">...</customerinfo>";

info.setString(infoData);
// Populate the SQLXML object

int cid = 1000;
try {

Chapter 3. JDBC application programming 99

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = con.prepareStatement(sqls);
insertStmt.setInt(1, cid);
insertStmt.setSQLXML(2, info);

// Assign the SQLXML object value
// to an input parameter

if (insertStmt.executeUpdate() != 1) {
System.out.println("insertSQLXML: No record inserted.");

}
}
catch (IOException ioe) {
ioe.printStackTrace();
}
catch (SQLException sqle) {

System.out.println("insertSQLXML: SQL Exception: " +
sqle.getMessage());

System.out.println("insertSQLXML: SQL State: " +
sqle.getSQLState());

System.out.println("insertSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}
}

Example: The following example demonstrates inserting data from a file into an
XML column. The data is inserted as binary data, so the database server honors the
internal encoding.

public void insertBinStream(Connection conn)
{

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 0;
Statement stmt=null;
try {

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File(fn);
insertStmt.setBinaryStream(2,

new FileInputStream(file), (int)file.length());
if (insertStmt.executeUpdate() != 1) {

System.out.println("insertBinStream: No record inserted.");
}

}
catch (IOException ioe) {
ioe.printStackTrace();
}
catch (SQLException sqle) {

System.out.println("insertBinStream: SQL Exception: " +
sqle.getMessage());

System.out.println("insertBinStream: SQL State: " +
sqle.getSQLState());

System.out.println("insertBinStream: SQL Error Code: " +
sqle.getErrorCode());

}
}

Example: The following example demonstrates inserting binary XML data from a
file into an XML column.
...
SQLXML info = conn.createSQLXML();
OutputStream os = info.setBinaryStream ();
FileInputStream fis = new FileInputStream("c7.xml");
int read;

100 Application Programming Guide and Reference for Java

while ((read = fis.read ()) != -1) {
os.write (read);

}

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
insertStmt.setSQLXML(2, info);
insertStmt.executeUpdate();

Related reference:
“Data types that map to database data types in Java applications” on page 229

XML data retrieval in JDBC applications
In JDBC applications, you use ResultSet.getXXX or ResultSet.getObject methods
to retrieve data from XML columns.

In a JDBC application, you can retrieve data from XML columns in a DB2 table as
XML textual data. You can retrieve data from XML columns in a table as binary
XML data (data that is in the Extensible Dynamic Binary XML DB2 Client/Server
Binary XML Format), if the data server supports binary XML data.

You can use one of the following techniques to retrieve XML data:
v Use the ResultSet.getSQLXML method to retrieve the data. Then use a

SQLXML.getXXX method to retrieve the data into a compatible output data type.
This technique requires JDBC 4.0 or later.
For example, you can retrieve data by using the SQLXML.getBinaryStream
method or the SQLXML.getSource method.

v Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the
data into a compatible data type.

v Use the ResultSet.getObject method to retrieve the data, and then cast it to the
DB2Xml type and assign it to a DB2Xml object. Then use a DB2Xml.getDB2XXX or
DB2Xml.getDB2XmlXXX method to retrieve the data into a compatible output data
type.
You need to use this technique if you are not using a version of the IBM Data
Server Driver for JDBC and SQLJ that supports JDBC 4.0.

The following table lists the ResultSet methods and corresponding output data
types for retrieving XML data.

Table 22. ResultSet methods and data types for retrieving XML data

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getObject Object

ResultSet.getSQLXML SQLXML

ResultSet.getString String

Chapter 3. JDBC application programming 101

The following table lists the methods that you can call to retrieve data from a
java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding
output data types and type of encoding in the XML declarations.

Table 23. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source1 None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding
parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding
parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

Note:

1. The class that is returned is specified by the invoker of getSource, but the class must extend
javax.xml.transform.Source.

If the application executes the XMLSERIALIZE function on the data that is to be
returned, after execution of the function, the data has the data type that is specified
in the XMLSERIALIZE function, not the XML data type. Therefore, the driver
handles the data as the specified type and ignores any internal encoding
declarations.

Example: The following example demonstrates retrieving data from an XML
column into an SQLXML object, and then using the SQLXML.getString method to
retrieve the data into a string.
public void fetchToSQLXML(long cid, java.sql.Connection conn)

{
System.out.println(">> fetchToSQLXML: Get XML data as an SQLXML object " +
"using getSQLXML");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
int colType = meta.getColumnType(1);
System.out.println("fetchToSQLXML: Column type = " + colType);

102 Application Programming Guide and Reference for Java

while (rs.next()) {
// Retrieve the XML data with getSQLXML.
// Then write it to a string with
// explicit internal ISO-10646-UCS-2 encoding.
java.sql.SQLXML xml = rs.getSQLXML(1);
System.out.println (xml.getString());

}
rs.close();

}
catch (SQLException sqle) {

System.out.println("fetchToSQLXML: SQL Exception: " +
sqle.getMessage());

System.out.println("fetchToSQLXML: SQL State: " +
sqle.getSQLState());

System.out.println("fetchToSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}
}

Example: The following example demonstrates retrieving data from an XML
column into an SQLXML object, and then using the SQLXML.getBinaryStream method
to retrieve the data as binary data into an InputStream.
String sql = "SELECT INFO FROM Customer WHERE Cid=’1000’";
PreparedStatement pstmt = con.prepareStatement(sql);
ResultSet resultSet = pstmt.executeQuery();
// Get the result XML as a binary stream
SQLXML sqlxml = resultSet.getSQLXML(1);
InputStream binaryStream = sqlxml.getBinaryStream();

Example: The following example demonstrates retrieving data from an XML
column into a String variable.
public void fetchToString(long cid, java.sql.Connection conn)

{
System.out.println(">> fetchToString: Get XML data " +
"using getString");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
int colType = meta.getColumnType(1);
System.out.println("fetchToString: Column type = " + colType);

while (rs.next()) {
stringDoc = rs.getString(1);
System.out.println("Document contents:");
System.out.println(stringDoc);

}
catch (SQLException sqle) {

System.out.println("fetchToString: SQL Exception: " +
sqle.getMessage());

System.out.println("fetchToString: SQL State: " +
sqle.getSQLState());

System.out.println("fetchToString: SQL Error Code: " +
sqle.getErrorCode());

}
}

Chapter 3. JDBC application programming 103

Example: The following example demonstrates retrieving data from an XML
column into a DB2Xml object, and then using the DB2Xml.getDB2XmlString method
to retrieve the data into a string with an added XML declaration with an
ISO-10646-UCS-2 encoding specification.
public void fetchToDB2Xml(long cid, java.sql.Connection conn)

{
System.out.println(">> fetchToDB2Xml: Get XML data as a DB2XML object " +
"using getObject");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
int colType = meta.getColumnType(1);
System.out.println("fetchToDB2Xml: Column type = " + colType);
while (rs.next()) {

// Retrieve the XML data with getObject, and cast the object
// as a DB2Xml object. Then write it to a string with
// explicit internal ISO-10646-UCS-2 encoding.
com.ibm.db2.jcc.DB2Xml xml =

(com.ibm.db2.jcc.DB2Xml) rs.getObject(1);
System.out.println (xml.getDB2XmlString());

}
rs.close();

}
catch (SQLException sqle) {

System.out.println("fetchToDB2Xml: SQL Exception: " +
sqle.getMessage());

System.out.println("fetchToDB2Xml: SQL State: " +
sqle.getSQLState());

System.out.println("fetchToDB2Xml: SQL Error Code: " +
sqle.getErrorCode());

}
}

Related reference:
“Data types that map to database data types in Java applications” on page 229

Invocation of routines with XML parameters in Java
applications

Java applications can call stored procedures at DB2 for Linux, UNIX, and Windows
or DB2 for z/OS data sources that have XML parameters.

For native SQL procedures, XML parameters in the stored procedure definition
have the XML type. For external stored procedures and user-defined functions on
DB2 for Linux, UNIX, and Windows data sources, XML parameters in the routine
definition have the XML AS CLOB type. When you call a stored procedure or
user-defined function that has XML parameters, you need to use a compatible data
type in the invoking statement.

To call a routine with XML input parameters from a JDBC program, use
parameters of the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type. To register
XML output parameters, register the parameters as the java.sql.Types.SQLXML or

104 Application Programming Guide and Reference for Java

com.ibm.db2.jcc.DB2Types.XML type. (The com.ibm.db2.jcc.DB2Xml and
com.ibm.db2.jcc.DB2Types.XML types are deprecated.)

Example: JDBC program that calls a stored procedure that takes three XML
parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This
example requires JDBC 4.0 or later.
java.sql.SQLXML in_xml = xmlvar;
java.sql.SQLXML out_xml = null;
java.sql.SQLXML inout_xml = xmlvar;

// Declare an input, output, and
// INOUT XML parameter

Connection con;
CallableStatement cstmt;
ResultSet rs;
...
cstmt = con.prepareCall("CALL SP_xml(?,?,?)");

// Create a CallableStatement object
cstmt.setObject (1, in_xml); // Set input parameter
cstmt.setObject (3, inout_xml); // Set inout parameter
cstmt.registerOutParameter (2, java.sql.Types.SQLXML);

// Register out and input parameters
cstmt.registerOutParameter (3, java.sql.Types.SQLXML);
cstmt.executeUpdate(); // Call the stored procedure
out_xml = cstmt.getSQLXML(2); // Get the OUT parameter value
inout_xml = cstmt.getSQLXML(3); // Get the INOUT parameter value
System.out.println("Parameter values from SP_xml call: ");
System.out.println("Output parameter value ");
MyUtilities.printString(out_xml.getString());

// Use the SQLXML.getString
// method to convert the out_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

System.out.println("INOUT parameter value ");
MyUtilities.printString(inout_xml.getString());

// Use the SQLXML.getString
// method to convert the inout_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

To call a routine with XML parameters from an SQLJ program, use parameters of
the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type.

Example: SQLJ program that calls a stored procedure that takes three XML
parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This
example requires JDBC 4.0 or later.
java.sql.SQLXML in_xml = xmlvar;
java.sql.SQLXML out_xml = null;
java.sql.SQLXML inout_xml = xmlvar;

// Declare an input, output, and
// INOUT XML parameter

...
#sql [myConnCtx] {CALL SP_xml(:IN in_xml,

:OUT out_xml,
:INOUT inout_xml)};

// Call the stored procedure
System.out.println("Parameter values from SP_xml call: ");
System.out.println("Output parameter value ");
MyUtilities.printString(out_xml.getString());

// Use the SQLXML.getString
// method toconvert the out_xml value

Chapter 3. JDBC application programming 105

// to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

System.out.println("INOUT parameter value ");
MyUtilities.printString(inout_xml.getString());

// Use the SQLXML.getString
// method to convert the inout_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

Binary XML format in Java applications
The IBM Data Server Driver for JDBC and SQLJ can send XML data to the data
server or retrieve XML data from the data server as binary XML data (data that is
in the Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format).
The data server must provide support for binary XML data.

The IBM Data Server Driver for JDBC and SQLJ presents binary XML data to the
application only through XML object interfaces. The user does not see the data in
the binary XML format.

The format of XML data is transparent to the application. Storage and retrieval of
binary XML data requires version 4.9 or later of the IBM Data Server Driver for
JDBC and SQLJ. If you are using binary XML data in SQLJ applications, you also
need version 4.9 or later of the sqlj4.zip package.

You use the property xmlFormat to control whether the data format for retrieval of
XML data is textual XML format or binary XML format. You set xmlFormat to
XML_FORMAT_BINARY (1) to enable binary XML format. The default is textual
XML format.

For update of data in XML table columns, xmlFormat has no effect. If the input
data is binary XML data, and the data server does not support binary XML data,
the input data is converted to textual XML data. Otherwise, no conversion occurs.

When binary XML data is used, the XML data that is passed to the IBM Data
Server Driver for JDBC and SQLJ cannot refer to external entities, internal entities,
or internal DTDs. External DTDs are supported only if those DTDs were
previously registered in the data source.

There is no setXXX method defined on the Connection interface for the xmlFormat
property. Therefore, to set the xmlFormat value when you use the Connection
interface, you need to specify xmlFormat as a property when you execute the
DriverManager.getConnection method. For example:
properties.put("xmlFormat", "1");
DriverManager.getConnection(url, properties);

Restriction: When you send XML data in binary format to a DB2 for z/OS data
server that supports binary XML data, you cannot use an InputStreamReader object
with a Charset object named UTF-16LE, UTF-8, or UTF-16BE for an XML
document file that contains a byte order mark (BOM). To circumvent this
restriction, take one of the following actions:
v Remove the BOM from the XML instance document in the input file.
v Use an InputStreamReader object with a Charset object named UTF-16 for the

input file.

106 Application Programming Guide and Reference for Java

v Use an InputStream object instead of an InputStreamReader object for the input
file.

Binary XML format is most efficient for cases in which the input or output data is
in a non-textual representation, such as SAX, StAX, or DOM. For example, these
methods retrieve XML data in non-textual representations:
v getSource(SAXSource.class)
v getSource(StAXSource.class)
v getSource(DOMSource.class)

These methods update XML columns with data in non-textual representations:
v setResult(SAXResult.class)
v setResult(StAXResult.class)
v setResult(DOMResult.class)

The SAX representation is the most efficient way to retrieve data that is in the
binary XML format because the data does not undergo extra conversions from
binary format to textual format.

Suppose that you set xmlFormat to XML_FORMAT_BINARY (1). In the following
JDBC example, the IBM Data Server Driver for JDBC and SQLJ retrieves data in
the binary XML format, application uses the SAX parser to parse the retrieved
data.
...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT XMLCOL FROM XMLTABLE");
ContentHandler handler = new MyContentHandler();
while (rs.next()) {
SQLXML sqlxml = rs.getSQLXML(1);
SAXSource source = sqlxml.getSource(SAXSource.class);
XMLReader reader = source.getXMLReader();
reader.setContentHandler(handler);
reader.parse(source.getInputSource());
}
...

The following SQLJ example performs the same actions.
#sql iterator SqlXmlIter(java.sql.SQLXML);
{
...
SqlXmlIter SQLXMLiter = null;
java.sql.SQLXML outSqlXml = null;
ContentHandler handler = new MyContentHandler();
#sql [ctx] SQLXmlIter = {SELECT XMLCOL FROM XMLTABLE};
#sql {FETCH :SqlXmlIter INTO :outSqlXml};
while (!SQLXMLIter.endFetch()) {
SAXSource source = outSqlXml.getSource(SAXSource.class);
XMLReader reader = source.getXMLReader();
reader.setContentHandler(handler);
reader.parse(source.getInputSource());
#sql {FETCH :SqlXmlIter INTO :outSqlXml};
}
...
}

Java support for XML schema registration and removal
The IBM Data Server Driver for JDBC and SQLJ provides methods that let you
write Java application programs to register and remove XML schemas and their
components.

Chapter 3. JDBC application programming 107

The methods are:

DB2Connection.registerDB2XMLSchema
Registers an XML schema in DB2, using one or more XML schema documents.
There are two forms of this method: one form for XML schema documents that
are input from InputStream objects, and one form for XML schema documents
that are in a String.

DB2Connection.deregisterDB2XMLObject
Removes an XML schema definition from DB2.

DB2Connection.updateDB2XmlSchema
Replaces the XML schema documents in a registered XML schema with the
XML schema documents from another registered XML schema. Optionally
drops the XML schema whose contents are copied. This method is available
only for connections to DB2 for Linux, UNIX, and Windows.

Before you can invoke these methods, the stored procedures that support these
methods must be installed on the DB2 database server.

Example: Registration of an XML schema: The following example demonstrates the
use of registerDB2XmlSchema to register an XML schema in DB2 using a single
XML schema document (customer.xsd) that is read from an input stream. The SQL
schema name for the registered schema is SYSXSR. The xmlSchemaLocations value is
null, so DB2 will not find this XML schema on an invocation of
DSN_XMLVALIDATE that supplies a non-null XML schema location value. No
additional properties are registered.
public static void registerSchema(

Connection con,
String schemaName)
throws SQLException {
// Define the registerDB2XmlSchema parameters
String[] xmlSchemaNameQualifiers = new String[1];
String[] xmlSchemaNames = new String[1];
String[] xmlSchemaLocations = new String[1];
InputStream[] xmlSchemaDocuments = new InputStream[1];
int[] xmlSchemaDocumentsLengths = new int[1];
java.io.InputStream[] xmlSchemaDocumentsProperties = new InputStream[1];
int[] xmlSchemaDocumentsPropertiesLengths = new int[1];
InputStream xmlSchemaProperties;
int xmlSchemaPropertiesLength;
//Set the parameter values
xmlSchemaLocations[0] = "";
FileInputStream fi = null;
xmlSchemaNameQualifiers[0] = "SYSXSR";
xmlSchemaNames[0] = schemaName;
try {

fi = new FileInputStream("customer.xsd");
xmlSchemaDocuments[0] = new BufferedInputStream(fi);

} catch (FileNotFoundException e) {
e.printStackTrace();

}
try {

xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();
System.out.println(xmlSchemaDocumentsLengths[0]);

} catch (IOException e1) {
e1.printStackTrace();

}
xmlSchemaDocumentsProperties[0] = null;
xmlSchemaDocumentsPropertiesLengths[0] = 0;
xmlSchemaProperties = null;
xmlSchemaPropertiesLength = 0;
DB2Connection ds = (DB2Connection) con;

108 Application Programming Guide and Reference for Java

// Invoke registerDB2XmlSchema
ds.registerDB2XmlSchema(

xmlSchemaNameQualifiers,
xmlSchemaNames,
xmlSchemaLocations,
xmlSchemaDocuments,
xmlSchemaDocumentsLengths,
xmlSchemaDocumentsProperties,
xmlSchemaDocumentsPropertiesLengths,
xmlSchemaProperties,
xmlSchemaPropertiesLength,
false);

}

Example: Removal of an XML schema: The following example demonstrates the use of
deregisterDB2XmlObject to remove an XML schema from DB2. The SQL schema
name for the registered schema is SYSXSR.
public static void deregisterSchema(

Connection con,
String schemaName)
throws SQLException {
// Define and assign values to the deregisterDB2XmlObject parameters
String xmlSchemaNameQualifier = "SYSXSR";
String xmlSchemaName = schemaName;
DB2Connection ds = (DB2Connection) con;
// Invoke deregisterDB2XmlObject
ds.deregisterDB2XmlObject(

xmlSchemaNameQualifier,
xmlSchemaName);

}

Example: Update of an XML schema: The following example applies only to
connections to DB2 for Linux, UNIX, and Windows. It demonstrates the use of
updateDB2XmlSchema to update the contents of an XML schema with the contents
of another XML schema. The schema that is copied is kept in the repository. The
SQL schema name for both registered schemas is SYSXSR.
public static void updateSchema(

Connection con,
String schemaNameTarget,
String schemaNameSource)
throws SQLException {
// Define and assign values to the updateDB2XmlSchema parameters
String xmlSchemaNameQualifierTarget = "SYSXSR";
String xmlSchemaNameQualifierSource = "SYSXSR";
String xmlSchemaNameTarget = schemaNameTarget;
String xmlSchemaNameSource = schemaNameSource;
boolean dropSourceSchema = false;
DB2Connection ds = (DB2Connection) con;
// Invoke updateDB2XmlSchema
ds.updateDB2XmlSchema(

xmlSchemaNameQualifierTarget,
xmlSchemaNameTarget,

xmlSchemaNameQualifierSource,
xmlSchemaNameSource,

dropSourceSchema);
}

Chapter 3. JDBC application programming 109

Inserting data from file reference variables into tables in JDBC
applications

You can use file reference variable objects with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS Version 9 or later to stream LOB or
XML input data.

Before you begin

You need to store your LOB or XML input data in HFS files.

About this task

Use of file reference variables eliminates the need to materialize the LOB or XML
data in memory before the data is stored in tables.

Procedure

To use file reference variables to store LOB or XML data in tables, follow these
steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object from an INSERT statement.
The parameter markers in the INSERT statement represent XML or LOB values.

2. Execute constructors for file reference variable objects of the appropriate types.
The following table lists the types of data in the input files and the appropriate
constructors.

Input data type Constructor

BLOB com.ibm.db2.jcc.DB2BlobFileReference

CLOB com.ibm.db2.jcc.DB2ClobFileReference

XML AS BLOB com.ibm.db2.jcc.DB2XmlAsBlobFileReference

XML AS CLOB com.ibm.db2.jcc.DB2XmlAsClobFileReference

The first parameter in each constructor must specify the absolute path name for
an existing HFS file.

3. If you are performing single-row INSERT operations, repeat these steps for
each row that you want to insert:
a. Invoke DB2PreparedStatement.setXXX to pass values to the input variables.

Alternatively, you can use PreparedStatement.setObject methods.
The following table lists the types of data in the input files and the
appropriate DB2PreparedStatement.setXXX methods to use for each data
type.

Input data type DB2PreparedStatement.setXXX method

BLOB setDB2BlobFileReference

CLOB setDB2ClobFileReference

XML AS BLOB setDB2XmlAsBlobFileReference

XML AS CLOB setDB2XmlAsClobFileReference

If you use DB2PreparedStatement methods, you need to cast the
PreparedStatement object that you created in step 1 to a

110 Application Programming Guide and Reference for Java

DB2PreparedStatement object when you execute a
DB2PreparedStatement.setXXX method.
You can assign NULL values to input parameters in any of the following
ways:
v Using DB2PreparedStatement.setXXX methods, with null as the fileRef

parameter value.
v Using PreparedStatement.setObject, with null as the x (second)

parameter value and the appropriate value from
com.ibm.db2.jcc.DB2Types for the targetJdbcType (third) parameter value.

v Using PreparedStatement.setNull, with the appropriate value from
com.ibm.db2.jcc.DB2Types for the JdbcType (second) parameter value.

b. Invoke the PreparedStatement.execute or
PreparedStatement.executeUpdate method to update the table with the
variable values.

4. If you are performing multi-row INSERT operations, execute these steps:
a. Repeat these steps for every row that you want to insert:

1) Invoke DB2PreparedStatement.setXXX to pass values to the input
variables. Alternatively, you can use PreparedStatement.setObject
methods.

2) Invoke the PreparedStatement.addBatch method after you set the values
for a row of the table.

b. Invoke the PreparedStatement.executeBatch method to update the table
with the variable values.

5. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Examples

The following code inserts a single row into a table. The code inserts values from
CLOB and BLOB file reference variables into CLOB and BLOB columns and a
NULL value into an XML column. The numbers to the right of selected statements
correspond to the previously-described steps.

Connection conn;
...
PreparedStatement pstmt =

conn.prepareStatement(
"INSERT INTO TEST02TB(RECID,CLOBCOL,BLOBCOL,XMLCOL) VALUES(’003’,?,?,?)");

// Create a PreparedStatement object �1�
com.ibm.db2.jcc.DB2ClobFileReference clobFileRef =

new com.ibm.db2.jcc.DB2ClobFileReference("/u/usrt001/jcc/test/TEXT.FILE","Cp037");
com.ibm.db2.jcc.DB2BlobFileReference blobFileRef =

new com.ibm.db2.jcc.DB2BlobFileReference("/u/usrt001/jcc/test/BINARY.FILE");
com.ibm.db2.jcc.DB2XmlAsBlobFileReference xmlAsBlobFileRef =

new com.ibm.db2.jcc.DB2XmlAsBlobFileReference(
"/u/usrt001/jcc/test/XML.FILE");

// Execute constructors for the file reference �2�
// variable objects

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2ClobFileReference(1,clobFileRef);
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BlobFileReference(2,blobFileRef);
pstmt.setNull(3,com.ibm.db2.jcc.DB2Types.XML_AS_BLOB_FILE);

// Assign values to the CLOB and BLOB parameters.�3a�
// Assign a null value to the XML parameter.

int numUpd = pstmt.executeUpdate();
// Perform the update �3b�

pstmt.close(); // Close the PreparedStatement object �5�

Chapter 3. JDBC application programming 111

The following code uses multi-row INSERT to insert two rows in a table. The code
inserts values from XML AS CLOB and XML AS BLOB file reference variables into
XML columns. The numbers to the right of selected statements correspond to the
previously-described steps.

Connection conn;
...
PreparedStatement pstmt =

conn.prepareStatement(
"INSERT INTO TEST03TB(RECID,XMLCLOBCOL,XMLBLOBCOL) VALUES(’003’,?,?)");

// Create a PreparedStatement object �1�
com.ibm.db2.jcc.DB2XmlAsClobFileReference xmlAsClobFileRef1 =

new com.ibm.db2.jcc.DB2XmlAsClobFileReference("/u/usrt001/jcc/test/XMLCLOB1.FILE","Cp037");
com.ibm.db2.jcc.DB2XmlAsBlobFileReference xmlAsBlobFileRef1 =

new com.ibm.db2.jcc.DB2XmlAsBlobFileReference("/u/usrt001/jcc/test/XMLBLOB1.FILE");
com.ibm.db2.jcc.DB2XmlAsClobFileReference xmlAsClobFileRef2 =

new com.ibm.db2.jcc.DB2XmlAsClobFileReference("/u/usrt001/jcc/test/XMLCLOB2.FILE","Cp037");
com.ibm.db2.jcc.DB2XmlAsBlobFileReference xmlAsBlobFileRef2 =

new com.ibm.db2.jcc.DB2XmlAsBlobFileReference("/u/usrt001/jcc/test/XMLBLOB2.FILE");
// Execute constructors for the file reference �2�
// variable objects

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2ClobFileReference(1,xmlAsClobFileRef1);
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BlobFileReference(2,xmlAsBlobFileRef1);

// Assign first set of values to the �4ai�
// XML parameters

pstmt.addBatch(); // Add the first input parameters to the batch �4aii�
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2ClobFileReference(1,xmlAsClobFileRef2);
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setDB2BlobFileReference(2,xmlAsBlobFileRef2);

// Assign second set of values to the �4ai�
// XML parameters

pstmt.addBatch(); // Add the second input parameters to the batch �4aii�
int [] numUpd = pstmt.executeBatch();

// Perform the update �4b�
pstmt.close(); // Close the PreparedStatement object �5�

Transaction control in JDBC applications
In JDBC applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

IBM Data Server Driver for JDBC and SQLJ isolation levels
The IBM Data Server Driver for JDBC and SQLJ supports a number of isolation
levels, which correspond to database server isolation levels.

JDBC isolation levels can be set for a unit of work within a JDBC program, using
the Connection.setTransactionIsolation method. The default isolation level can
be set with the defaultIsolationLevel property.

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their DB2 database server
equivalents.

Table 24. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Read stability

java.sql.Connection.TRANSACTION_READ_COMMITTED Cursor stability

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Uncommitted read

112 Application Programming Guide and Reference for Java

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their IBM Informix equivalents.

Table 25. Equivalent JDBC and IBM Informix isolation levels

JDBC value IBM Informix isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Repeatable read

java.sql.Connection.TRANSACTION_READ_COMMITTED Committed read

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Dirty read

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_CURSOR_STABILITY IBM Informix cursor stability

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_LAST_COMMITTED Committed read, last committed

Related concepts:
“JDBC connection objects” on page 26

Committing or rolling back JDBC transactions
In JDBC, to commit or roll back transactions explicitly, use the commit or rollback
methods.

About this task

For example:
Connection con;
...
con.commit();

If autocommit mode is on, the database manager performs a commit operation
after every SQL statement completes. To set autocommit mode on, invoke the
Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the
Connection.setAutoCommit(false) method. To determine whether autocommit
mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the
setAutoCommit(true) method.

When you change the autocommit state, the database manager executes a commit
operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed or global transaction, the
associated application cannot issue the commit or rollback methods.

While a connection is participating in a global transaction, the associated
application cannot invoke the setAutoCommit(true) method.
Related concepts:
“Savepoints in JDBC applications” on page 80
Related tasks:
“Disconnecting from data sources in JDBC applications” on page 124
“Making batch updates in JDBC applications” on page 36

Default JDBC autocommit modes
The default autocommit mode depends on the data source to which the JDBC
application connects.

Chapter 3. JDBC application programming 113

Autocommit default for DB2 data sources

For connections to DB2 data sources, the default autocommit mode is true.

Autocommit default for IBM Informix data sources

For connections to IBM Informix data sources, the default autocommit mode
depends on the type of data source. The following table shows the defaults.

Table 26. Default autocommit modes for IBM Informix data sources

Type of data source
Default autocommit mode for local
transactions

Default autocommit mode for global
transactions

ANSI-compliant database true false

Non-ANSI-compliant database
without logging

false not applicable

Non-ANSI-compliant database with
logging

true false

Exceptions and warnings under the IBM Data Server Driver for JDBC
and SQLJ

In JDBC applications, SQL errors throw exceptions, which you handle using
try/catch blocks. SQL warnings do not throw exceptions, so you need to invoke
methods to check whether warnings occurred after you execute SQL statements.

The IBM Data Server Driver for JDBC and SQLJ provides the following classes and
interfaces, which provide information about errors and warnings.

SQLException

The SQLException class for handling errors. All JDBC methods throw an instance of
SQLException when an error occurs during their execution. According to the JDBC
specification, an SQLException object contains the following information:
v An int value that contains an error code. SQLException.getErrorCode retrieves

this value.
v A String object that contains the SQLSTATE, or null. SQLException.getSQLState

retrieves this value.
v A String object that contains a description of the error, or null.

SQLException.getMessage retrieves this value.
v A pointer to the next SQLException, or null. SQLException.getNextException

retrieves this value.

When a JDBC method throws a single SQLException, that SQLException might be
caused by an underlying Java exception that occurred when the IBM Data Server
Driver for JDBC and SQLJ processed the method. In this case, the SQLException
wraps the underlying exception, and you can use the SQLException.getCause
method to retrieve information about the error.

DB2Diagnosable

The IBM Data Server Driver for JDBC and SQLJ-only interface
com.ibm.db2.jcc.DB2Diagnosable extends the SQLException class. The
DB2Diagnosable interface gives you more information about errors that occur when

114 Application Programming Guide and Reference for Java

the data source is accessed. If the JDBC driver detects an error, DB2Diagnosable
gives you the same information as the standard SQLException class. However, if
the database server detects the error, DB2Diagnosable adds the following methods,
which give you additional information about the error:

getSqlca
Returns an DB2Sqlca object with the following information:
v An SQL error code
v The SQLERRMC values
v The SQLERRP value
v The SQLERRD values
v The SQLWARN values
v The SQLSTATE

getThrowable
Returns a java.lang.Throwable object that caused the SQLException, or null, if
no such object exists.

printTrace
Prints diagnostic information.

SQLException subclasses

If you are using JDBC 4.0 or later, you can obtain more specific information than
an SQLException provides by catching the following exception classes:
v SQLNonTransientException

An SQLNonTransientException is thrown when an SQL operation that failed
previously cannot succeed when the operation is retried, unless some corrective
action is taken. The SQLNonTransientException class has these subclasses:
– SQLFeatureNotSupportedException
– SQLNonTransientConnectionException
– SQLDataException
– SQLIntegrityConstraintViolationException
– SQLInvalidAuthorizationSpecException
– SQLSyntaxException

v SQLTransientException

An SQLTransientException is thrown when an SQL operation that failed
previously might succeed when the operation is retried, without intervention
from the application. A connection is still valid after an SQLTransientException
is thrown. The SQLTransientException class has these subclasses:
– SQLTransientConnectionException

– SQLTransientRollbackException

– SQLTimeoutException

v SQLRecoverableException

An SQLRecoverableException is thrown when an operation that failed previously
might succeed if the application performs some recovery steps, and retries the
transaction. A connection is no longer valid after an SQLRecoverableException is
thrown.

v SQLClientInfoException

A SQLClientInfoException is thrown by the Connection.setClientInfo method
when one or more client properties cannot be set. The SQLClientInfoException
indicates which properties cannot be set.

Chapter 3. JDBC application programming 115

BatchUpdateException

A BatchUpdateException object contains the following items about an error that
occurs during execution of a batch of SQL statements:
v A String object that contains a description of the error, or null.
v A String object that contains the SQLSTATE for the failing SQL statement, or

null
v An integer value that contains the error code, or zero
v An integer array of update counts for SQL statements in the batch, or null
v A pointer to an SQLException object, or null

One BatchUpdateException is thrown for the entire batch. At least one
SQLException object is chained to the BatchUpdateException object. The
SQLException objects are chained in the same order as the corresponding
statements were added to the batch. To help you match SQLException objects to
statements in the batch, the error description field for each SQLException object
begins with this string:
Error for batch element #n:

n is the number of the statement in the batch.

SQL warnings during batch execution do not throw BatchUpdateExceptions. To
obtain information about warnings, use the Statement.getWarnings method on the
object on which you ran the executeBatch method. You can then retrieve an error
description, SQLSTATE, and error code for each SQLWarning object.

SQLWarning

The IBM Data Server Driver for JDBC and SQLJ accumulates warnings when SQL
statements return positive SQLCODEs, and when SQL statements return 0
SQLCODEs with non-zero SQLSTATEs.

Calling getWarnings retrieves an SQLWarning object.

Important: When a call to Statement.executeUpdate or
PreparedStatement.executeUpdate affects no rows, the IBM Data Server Driver for
JDBC and SQLJ generates an SQLWarning with error code +100.

When a call to ResultSet.next returns no rows, the IBM Data Server Driver for
JDBC and SQLJ does not generate an SQLWarning.

A generic SQLWarning object contains the following information:
v A String object that contains a description of the warning, or null
v A String object that contains the SQLSTATE, or null
v An int value that contains an error code
v A pointer to the next SQLWarning, or null

Under the IBM Data Server Driver for JDBC and SQLJ, like an SQLException object,
an SQLWarning object can also contain DB2-specific information. The DB2-specific
information for an SQLWarning object is the same as the DB2-specific information
for an SQLException object.

116 Application Programming Guide and Reference for Java

Handling an SQLException under the IBM Data Server Driver
for JDBC and SQLJ

As in all Java programs, error handling for JDBC applications is done using
try/catch blocks. Methods throw exceptions when an error occurs, and the code in
the catch block handles those exceptions.

Procedure

The basic steps for handling an SQLException in a JDBC program that runs under
the IBM Data Server Driver for JDBC and SQLJ are:
1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to
them, or you can import them:
import com.ibm.db2.jcc.DB2Diagnosable;
import com.ibm.db2.jcc.DB2Sqlca;

2. Optional: During a connection to a data server, set the
retrieveMessagesFromServerOnGetMessage property to true if you want full
message text from an SQLException.getMessage call.

3. Optional: During a IBM Data Server Driver for JDBC and SQLJ type 2
connectivity connection to a DB2 for z/OS data source, set the
extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241) if you
want extended diagnostic information similar to the information that is
provided by the SQL GET DIAGNOSTICS statement from an
SQLException.getMessage call.

4. Put code that can generate an SQLException in a try block.
5. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.

b. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the
com.ibm.db2.jcc.DB2Statement.getIDSSQLStatementOffSet method to
determine which columns have syntax errors.
DB2Statement.getIDSSQLStatementOffSet returns the offset into the SQL
statement of the first syntax error.

c. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the SQLException.getCause method to retrieve any ISAM
error messages.
1) If the Throwable that is returned by SQLException.getCause is not null,

perform one of the following sets of steps:
v Issue SQLException.printStackTrace to print an error message that

includes the ISAM error message text. The ISAM error message text is
preceded by the string "Caused by:".

v Retrieve the error code and message text for the ISAM message:
a) Test whether the Throwable is an instance of an SQLException. If

so, retrieve the SQL error code from that SQLException.
b) Execute the Throwable.getMessage method to retrieve the text of

the ISAM message.
d. Check whether any IBM Data Server Driver for JDBC and SQLJ-only

information exists by testing whether the SQLException is an instance of
DB2Diagnosable. If so:
1) Cast the object to a DB2Diagnosable object.

Chapter 3. JDBC application programming 117

2) Optional: Invoke the DB2Diagnosable.printTrace method to write all
SQLException information to a java.io.PrintWriter object.

3) Invoke the DB2Diagnosable.getThrowable method to determine
whether an underlying java.lang.Throwable caused the SQLException.

4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca
object.

5) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code
value.

6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that
contains all SQLERRMC values, or invoke the
DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC
values in an array.

7) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP
value.

8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD
values in an array.

9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN
values in an array.

10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE
value.

11) Invoke the DB2Sqlca.getMessage method to retrieve error message text
from the data source.

e. Invoke the SQLException.getNextException method to retrieve the next
SQLException.

Example

The following code demonstrates how to obtain IBM Data Server Driver for JDBC
and SQLJ-specific information from an SQLException that is provided with the IBM
Data Server Driver for JDBC and SQLJ. The numbers to the right of selected
statements correspond to the previously-described steps.

import java.sql.*; // Import JDBC API package
import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�
import com.ibm.db2.jcc.DB2Sqlca; // SQLException support
java.io.PrintWriter printWriter; // For dumping all SQLException

// information
String url = "jdbc:db2://myhost:9999/myDB:" + �2�

"retrieveMessagesFromServerOnGetMessage=true;";
// Set properties to retrieve full message
// text

String user = "db2adm";
String password = "db2adm";
java.sql.Connection con =

java.sql.DriverManager.getConnection (url, user, password)
// Connect to a DB2 for z/OS data source

...
try { �4�

// Code that could generate SQLExceptions
...
} catch(SQLException sqle) {

while(sqle != null) { // Check whether there are more �5a�

Figure 20. Processing an SQLException under the IBM Data Server Driver for JDBC and
SQLJ

118 Application Programming Guide and Reference for Java

// SQLExceptions to process
//=====> Optional IBM Data Server Driver for JDBC and SQLJ-only
// error processing

if (sqle instanceof DB2Diagnosable) { �5d�
// Check if IBM Data Server Driver for JDBC and SQLJ-only
// information exists

com.ibm.db2.jcc.DB2Diagnosable diagnosable =
(com.ibm.db2.jcc.DB2Diagnosable)sqle; �5d1�

diagnosable.printTrace (printWriter, ""); �5d2�
java.lang.Throwable throwable =

diagnosable.getThrowable(); �5d3�
if (throwable != null) {

// Extract java.lang.Throwable information
// such as message or stack trace.
...

}
DB2Sqlca sqlca = diagnosable.getSqlca(); �5d4�

// Get DB2Sqlca object
if (sqlca != null) { // Check that DB2Sqlca is not null

int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �5d5�
String sqlErrmc = sqlca.getSqlErrmc(); �5d6�

// Get the entire SQLERRMC
String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

// You can also retrieve the
// individual SQLERRMC tokens

String sqlErrp = sqlca.getSqlErrp(); �5d7�
// Get the SQLERRP

int[] sqlErrd = sqlca.getSqlErrd(); �5d8�
// Get SQLERRD fields

char[] sqlWarn = sqlca.getSqlWarn(); �5d9�
// Get SQLWARN fields

String sqlState = sqlca.getSqlState(); �5d10�
// Get SQLSTATE

String errMessage = sqlca.getMessage(); �5d11�
// Get error message

System.err.println ("Server error message: " + errMessage);

System.err.println ("--------------- SQLCA ---------------");
System.err.println ("Error code: " + sqlCode);
System.err.println ("SQLERRMC: " + sqlErrmc);
If (sqlErrmcTokens != null) {

for (int i=0; i< sqlErrmcTokens.length; i++) {
System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

}
}
System.err.println ("SQLERRP: " + sqlErrp);
System.err.println (

"SQLERRD(1): " + sqlErrd[0] + "\n" +
"SQLERRD(2): " + sqlErrd[1] + "\n" +
"SQLERRD(3): " + sqlErrd[2] + "\n" +
"SQLERRD(4): " + sqlErrd[3] + "\n" +
"SQLERRD(5): " + sqlErrd[4] + "\n" +
"SQLERRD(6): " + sqlErrd[5]);

System.err.println (
"SQLWARN1: " + sqlWarn[0] + "\n" +
"SQLWARN2: " + sqlWarn[1] + "\n" +
"SQLWARN3: " + sqlWarn[2] + "\n" +
"SQLWARN4: " + sqlWarn[3] + "\n" +
"SQLWARN5: " + sqlWarn[4] + "\n" +
"SQLWARN6: " + sqlWarn[5] + "\n" +
"SQLWARN7: " + sqlWarn[6] + "\n" +
"SQLWARN8: " + sqlWarn[7] + "\n" +
"SQLWARN9: " + sqlWarn[8] + "\n" +
"SQLWARNA: " + sqlWarn[9]);

System.err.println ("SQLSTATE: " + sqlState);
// portion of SQLException

Chapter 3. JDBC application programming 119

}
sqle=sqle.getNextException(); // Retrieve next SQLException �5e�

}
}

Related tasks:
“Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ”
“Handling SQL warnings in an SQLJ application” on page 185
“Handling SQL errors in an SQLJ application” on page 185
Related reference:
“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on page
485

Handling an SQLWarning under the IBM Data Server Driver for
JDBC and SQLJ

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated.

Procedure

The basic steps for retrieving SQL warning information are:
1. Optional: During connection to the database server, set properties that affect

SQLWarning objects.
If you want full message text from a data server when you execute
SQLWarning.getMessage calls, set the retrieveMessagesFromServerOnGetMessage
property to true.
If you are using IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
to a DB2 for z/OS data source, and you want extended diagnostic information
that is similar to the information that is provided by the SQL GET
DIAGNOSTICS statement when you execute SQLWarning.getMessage calls, set
the extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241).

2. Immediately after invoking a method that connects to a database server or
executes an SQL statement, invoke the getWarnings method to retrieve an
SQLWarning object.

3. Perform the following steps in a loop:
a. Test whether the SQLWarning object is null. If not, continue to the next step.
b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.
c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.
d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.
e. If you want DB2-specific warning information, perform the same steps that

you perform to get DB2-specific information for an SQLException.
f. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

120 Application Programming Guide and Reference for Java

Example

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

Retrieving information from a BatchUpdateException
When an error occurs during execution of a statement in a batch, processing
continues. However, executeBatch throws a BatchUpdateException.

Procedure

To retrieve information from the BatchUpdateException, follow these steps:
1. Use the BatchUpdateException.getUpdateCounts method to determine the

number of rows that each SQL statement in the batch updated before the
exception was thrown.
getUpdateCount returns an array with an element for each statement in the
batch. An element has one of the following values:

n The number of rows that the statement updated.

Statement.SUCCESS_NO_INFO
This value is returned if the number of updated rows cannot be
determined. The number of updated rows cannot be determined if the
following conditions are true:
v The application is connected to a subsystem that is in DB2 for z/OS

Version 8 new-function mode, or later.
v The application is using Version 3.1 or later of the IBM Data Server

Driver for JDBC and SQLJ.
v The IBM Data Server Driver for JDBC and SQLJ uses multi-row

INSERT operations to execute batch updates.

String url = "jdbc:db2://myhost:9999/myDB:" + �1�
"retrieveMessagesFromServerOnGetMessage=true;";

// Set properties to retrieve full message
// text

String user = "db2adm";
String password = "db2adm";
java.sql.Connection con =

java.sql.DriverManager.getConnection (url, user, password)
// Connect to a DB2 for z/OS data source

Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;
...
stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

// Get the result table from the query
sqlwarn = stmt.getWarnings(); // Get any warnings generated �2�
while (sqlwarn != null) { // While there are warnings, get and �3a�

// print warning information
System.out.println ("Warning description: " + sqlwarn.getMessage()); �3b�
System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �3c�
System.out.println ("Error code: " + sqlwarn.getErrorCode()); �3d�
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �3f�

}

Figure 21. Example of processing an SQLWarning

Chapter 3. JDBC application programming 121

Statement.EXECUTE_FAILED
This value is returned if the statement did not execute successfully.

2. If the batched statement can return automatically generated keys:
a. Cast the BatchUpdateException to a

com.ibm.db2.jcc.DBBatchUpdateException.
b. Call the DBBatchUpdateException.getDBGeneratedKeys method to retrieve an

array of ResultSet objects that contains the automatically generated keys for
each execution of the batched SQL statement.

c. Test whether each ResultSet in the array is null.
Each ResultSet contains:
v If the ResultSet is not null, it contains the automatically generated keys

for an execution of the batched SQL statement.
v If the ResultSet is null, execution of the batched statement failed.

3. Use SQLException methods getMessage, getSQLState, and getErrorCode to
retrieve the description of the error, the SQLSTATE, and the error code for the
first error.

4. Use the BatchUpdateException.getNextException method to get a chained
SQLException.

5. In a loop, execute the getMessage, getSQLState, getErrorCode, and
getNextException method calls to obtain information about an SQLException
and get the next SQLException.

Example

The following code fragment demonstrates how to obtain the fields of a
BatchUpdateException and the chained SQLException objects for a batched
statement that returns automatically generated keys. The example assumes that
there is only one column in the automatically generated key, and that there is
always exactly one key value, whose data type is numeric. The numbers to the
right of selected statements correspond to the previously-described steps.
try {

// Batch updates
} catch(BatchUpdateException buex) {

System.err.println("Contents of BatchUpdateException:");
System.err.println(" Update counts: ");
int [] updateCounts = buex.getUpdateCounts(); �1�
for (int i = 0; i < updateCounts.length; i++) {

System.err.println(" Statement " + i + ":" + updateCounts[i]);
}
ResultSet[] resultList =

((DBBatchUpdateException)buex).getDBGeneratedKeys(); �2�
for (i = 0; i < resultList.length; i++)
{

if (resultList[i] == null)
continue; // Skip the ResultSet for which there was a failure

else {
rs.next();
java.math.BigDecimal idColVar = rs.getBigDecimal(1);

// Get automatically generated key
// value

System.out.println("Automatically generated key value = " + idColVar);
}

}
System.err.println(" Message: " + buex.getMessage()); �3�
System.err.println(" SQLSTATE: " + buex.getSQLState());
System.err.println(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException(); �4�
while (ex != null) { �5�

122 Application Programming Guide and Reference for Java

System.err.println("SQL exception:");
System.err.println(" Message: " + ex.getMessage());
System.err.println(" SQLSTATE: " + ex.getSQLState());
System.err.println(" Error code: " + ex.getErrorCode());
ex = ex.getNextException();

}
}

Related tasks:
“Making batch updates in JDBC applications” on page 36

Memory use for IBM Data Server Driver for IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for z/OS

In general, applications that use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity require more memory than applications that use IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

With IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, an
application receives data from the DB2 database server in network packets, and
receives only the data that is contained in a particular row and column of a table.

Applications that run under IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS generally require more memory. IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity has a direct, native interface to DB2
for z/OS. For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, the
driver must provide memory in which DB2 for z/OS writes data. Because the
amount of data that is needed can vary from row to row, and the driver has no
information about how much memory is needed for each row, the driver must
allocate the maximum amount of memory that any row might need. This value is
determined from DESCRIBE information on the SELECT statement that generates
the result table. For example, when an application that uses IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity selects a column that is defined as
VARCHAR(32000), the driver must allocate 32000 bytes for each row of the result
table.

The extra memory requirements can be particularly great for retrieval of LOB
columns, which can be defined with lengths of up to 2 GB, or for CAST
expressions that cast values to LOB types with large length attributes.

In general, even when you use a 64-bit JVM, all native connectivity to DB2 for
z/OS is below the bar, with 32-bit addressing limits. Although the maximum size
of any row is defined as approximately 2 GB, the practical maximum amount of
available memory for use by IBM Data Server Driver for JDBC and SQLJ type 2
connectivity is generally significantly less. However, if the IBM Data Server Driver
for JDBC and SQLJ can use limited block fetch to retrieve the data for a query or
for a stored procedure result set, the data can be passed to the driver using full
64-bit addressing.

Two ways to alleviate excess memory use for LOB retrieval and manipulation are
to use progressive streaming or LOB locators. You enable progressive streaming or
LOB locator use by setting the progressiveStreaming property or the
fullyMaterializeLobData property.

Chapter 3. JDBC application programming 123

|
|
|
|
|
|
|
|

Related concepts:
“LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ”
on page 63
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Disconnecting from data sources in JDBC applications
When you have finished with a connection to a data source, it is essential that you
close the connection to the data source. Doing this releases the Connection object's
database and JDBC resources immediately.

Procedure

To close the connection to the data source, use the close method.
For example:
Connection con;
...
con.close();

For a connection to a DB2 data source, if autocommit mode is not on, the
connection needs to be on a unit-of-work boundary before you close the
connection.
For a connection to an IBM Informix database, if the database supports logging,
and autocommit mode is not on, the connection needs to be on a unit-of-work
boundary before you close the connection.
For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS, when you close the connection to a data source, the driver issues an implicit
rollback to ensure consistency of the underlying RRSAF thread before thread
termination.
Related concepts:
“How JDBC applications connect to a data source” on page 13

124 Application Programming Guide and Reference for Java

Chapter 4. SQLJ application programming

Writing an SQLJ application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:
v Import the Java packages that contain SQLJ and JDBC methods.
v Declare variables for sending data to or retrieving data from DB2 tables.
v Connect to a data source.
v Execute SQL statements.
v Handle SQL errors and warnings.
v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks, and the order in which you
execute those tasks, is somewhat different.

Example of a simple SQLJ application
A simple SQLJ application demonstrates the basic elements that JDBC applications
need to include.

import sqlj.runtime.*; �1�
import java.sql.*;

#sql context EzSqljCtx; �3a�
#sql iterator EzSqljNameIter (String LASTNAME); �4a�

public class EzSqlj {
public static void main(String args[])

throws SQLException
{

EzSqljCtx ctx = null;
String URLprefix = "jdbc:db2:";
String url;
url = new String(URLprefix + args[0]);

// Location name is an input parameter
String hvmgr="000010"; �2�
String hvdeptno="A00";
try { �3b�

Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (Exception e)
{

throw new SQLException("Error in EzSqlj: Could not load the driver");
}
try
{

System.out.println("About to connect using url: " + url);
Connection con0 = DriverManager.getConnection(url); �3c�

// Create a JDBC Connection
con0.setAutoCommit(false); // set autocommit OFF
ctx = new EzSqljCtx(con0); �3d�

try
{

Figure 22. Simple SQLJ application

© Copyright IBM Corp. 1998, 2013 125

EzSqljNameIter iter;
int count=0;

#sql [ctx] iter =
{SELECT LASTNAME FROM EMPLOYEE}; �4b�

// Create result table of the SELECT
while (iter.next()) { �4c�

System.out.println(iter.LASTNAME());
// Retrieve rows from result table

count++;
}
System.out.println("Retrieved " + count + " rows of data");
iter.close(); // Close the iterator

}
catch(SQLException e) �5�
{

System.out.println ("**** SELECT SQLException...");
while(e!=null) {

System.out.println ("Error msg: " + e.getMessage());
System.out.println ("SQLSTATE: " + e.getSQLState());
System.out.println ("Error code: " + e.getErrorCode());
e = e.getNextException(); // Check for chained exceptions

}
}
catch(Exception e)
{

System.out.println("**** NON-SQL exception = " + e);
e.printStackTrace();

}
try
{

#sql [ctx] �4d�
{UPDATE DEPARTMENT SET MGRNO=:hvmgr

WHERE DEPTNO=:hvdeptno}; // Update data for one department
�6�

#sql [ctx] {COMMIT}; // Commit the update
}
catch(SQLException e)
{

System.out.println ("**** UPDATE SQLException...");
System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();

}
catch(Exception e)
{

System.out.println("**** NON-SQL exception = " + e);
e.printStackTrace();

}
ctx.close(); �7�

}
catch(SQLException e)
{

System.out.println ("**** SQLException ...");
System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();

}
catch(Exception e)
{

System.out.println ("**** NON-SQL exception = " + e);
e.printStackTrace();

}

}

Notes to Figure 22 on page 125:

126 Application Programming Guide and Reference for Java

Note Description
1 These statements import the java.sql package, which contains the JDBC core

API, and the sqlj.runtime package, which contains the SQLJ API. For
information on other packages or classes that you might need to access, see
"Java packages for SQLJ support".

2 String variables hvmgr and hvdeptno are host identifiers, which are equivalent
to DB2 host variables. See "Variables in SQLJ applications" for more
information.

3a, 3b, 3c,
and 3d

These statements demonstrate how to connect to a data source using one of the
three available techniques. See "Connecting to a data source using SQLJ" for
more details.

Step 3b (loading the JDBC driver) is not necessary if you use JDBC 4.0 or later.
4a , 4b, 4c,
and 4d

These statements demonstrate how to execute SQL statements in SQLJ.
Statement 4a demonstrates the SQLJ equivalent of declaring an SQL cursor.
Statements 4b and 4c show one way of doing the SQLJ equivalent of executing
an SQL OPEN CURSOR and SQL FETCHes. Statement 4d shows how to do the
SQLJ equivalent of performing an SQL UPDATE. For more information, see
"SQL statements in an SQLJ application".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling
SQL errors in an SQLJ application". For more information on handling SQL
warnings, see "Handling SQL warnings in an SQLJ application".

6 This is an example of a comment. For rules on including comments in SQLJ
programs, see "Comments in an SQLJ application".

7 This statement closes the connection to the data source. See "Closing the
connection to the data source in an SQLJ application".

Connecting to a data source using SQLJ
In an SQLJ application, as in any other DB2 application, you must be connected to
a data source before you can execute SQL statements.

About this task

You can use one of six techniques to connect to a data source in an SQLJ program.
Two use the JDBC DriverManager interface, two use the JDBC DataSource interface,
one uses a previously created connection context, and one uses the default
connection.
Related concepts:
“How JDBC applications connect to a data source” on page 13

SQLJ connection technique 1: JDBC DriverManager interface
SQLJ connection technique 1 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

Procedure

To use SQLJ connection technique 1, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

The name of the generated connection context class is context-class-name.

Chapter 4. SQLJ application programming 127

2. Load a JDBC driver by invoking the Class.forName method.
v Invoke Class.forName this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver or later.
3. Invoke the constructor for the connection context class that you created in step

1 on page 127.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:
connection-context-class connection-context-object=

new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, String user,
String password, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, Properties info,

boolean autocommit);

The meanings of the parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

info
Specifies an object of type java.util.Properties that contains a set of
driver properties for the connection. For the IBM Data Server Driver for
JDBC and SQLJ, you can specify any of the properties listed in "Properties
for the IBM Data Server Driver for JDBC and SQLJ".

autocommit
Specifies whether you want the database manager to issue a COMMIT after
every statement. Possible values are true or false. If you specify false,
you need to do explicit commit operations.

Example

The following code uses connection technique 1 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

128 Application Programming Guide and Reference for Java

SQLJ connection technique 2: JDBC DriverManager interface
SQLJ connection technique 2 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

Procedure

To use SQLJ connection technique 2, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.

v Invoke Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver or later.
3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can use any of the forms of getConnection that are specified in
"Connect to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ".
The meanings of the url, user, and password parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

#sql context Ctx; // Create connection context class Ctx �1�
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";
String empname; // Declare a host variable
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Ctx myConnCtx= �3�

new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object myConnCtx

// for the connection to NEWYORK
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

Figure 23. Using connection technique 1 to connect to a data source

Chapter 4. SQLJ application programming 129

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

4. Invoke the constructor for the connection context class that you created in step
1 on page 129
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created
in step 3 on page 129.

Example

The following code uses connection technique 2 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

SQLJ connection technique 3: JDBC DataSource interface
SQLJ connection technique 3 uses the JDBC DataSource as the underlying means
for creating the connection.

Procedure

To use SQLJ connection technique 3, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

#sql context Ctx; // Create connection context class Ctx �1�
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";
String empname; // Declare a host variable
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Connection jdbccon= �3�

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password);

// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx myConnCtx=new Ctx(jdbccon); �4�

// Create connection context object myConnCtx
// for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO=’000010’};

// Use myConnCtx for executing an SQL statement

Figure 24. Using connection technique 2 to connect to a data source

130 Application Programming Guide and Reference for Java

The name of the generated connection context class is context-class-name.
2. If your system administrator created a DataSource object in a different program,

follow these steps. Otherwise, create a DataSource object and assign properties
to it.
a. Obtain the logical name of the data source to which you need to connect.
b. Create a context to use in the next step.
c. In your application program, use the Java Naming and Directory Interface

(JNDI) to get the DataSource object that is associated with the logical data
source name.

3. Invoke the JDBC DataSource.getConnection method.
Doing this creates a JDBC connection object for the connection to the data
source. You can use one of the following forms of getConnection:
getConnection();
getConnection(user, password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF
security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

4. If the default autocommit mode is not appropriate, invoke the JDBC
Connection.setAutoCommit method.
Doing this indicates whether you want the database manager to issue a
COMMIT after every statement. The form of this method is:
setAutoCommit(boolean autocommit);

For environments other than the environments for CICS, stored procedures, and
user-defined functions, the default autocommit mode for a JDBC connection is
true. To disable autocommit, invoke setAutoCommit(false).

5. Invoke the constructor for the connection context class that you created in step
1 on page 130.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created
in step 3.

Example

The following code uses connection technique 3 to create a connection to a location
with logical name jdbc/sampledb. This example assumes that the system
administrator created and deployed a DataSource object that is available through
JNDI lookup. The numbers to the right of selected statements correspond to the
previously-described steps.

Chapter 4. SQLJ application programming 131

SQLJ connection technique 4: JDBC DataSource interface
SQLJ connection technique 4 uses the JDBC DataSource as the underlying means
for creating the connection. This technique requires that the DataSource is
registered with JNDI.

Procedure

To use SQLJ connection technique 4, follow these steps:
1. From your system administrator, obtain the logical name of the data source to

which you need to connect.
2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of
this form:
#sql public static context context-class-name
with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the
data source name that you obtained in step 1.

3. Invoke the constructor for the connection context class that you created in step
2.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:
connection-context-class connection-context-object=

new connection-context-class();

connection-context-class connection-context-object=
new connection-context-class (String user,

String password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

If the data source is a DB2 for z/OS system, and you do not specify these
parameters, DB2 uses the external security environment, such as the RACF

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
...
#sql context CtxSqlj; // Create connection context class CtxSqlj �1�
Context ctx=new InitialContext(); �2b�
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �2c�
Connection con=ds.getConnection(); �3�
String empname; // Declare a host variable
...
con.setAutoCommit(false); // Do not autocommit �4�
CtxSqlj myConnCtx=new CtxSqlj(con); �5�

// Create connection context object myConnCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

Figure 25. Using connection technique 3 to connect to a data source

132 Application Programming Guide and Reference for Java

security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

Example

The following code uses connection technique 4 to create a connection to a location
with logical name jdbc/sampledb. The connection requires a user ID and password.

SQLJ connection technique 5: Use a previously created
connection context

SQLJ connection technique 5 uses a previously created connection context to
connect to the data source.

About this task

In general, one program declares a connection context class, creates connection
contexts, and passes them as parameters to other programs. A program that uses
the connection context invokes a constructor with the passed connection context
object as its argument.

Example

Program CtxGen.sqlj declares connection context Ctx and creates instance oldCtx:
#sql context Ctx;
...
// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument
of its connection context constructor:
void useContext(sqlj.runtime.ConnectionContext oldCtx)

// oldCtx was created in CtxGen.sqlj
{

Ctx myConnCtx=
new Ctx(oldCtx); // Create connection context object myConnCtx

// from oldCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

...
}

#sql public static context Ctx
with (dataSource="jdbc/sampledb"); �2�

// Create connection context class Ctx
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";

String empname; // Declare a host variable
...
Ctx myConnCtx=new Ctx(userid, password); �3�

// Create connection context object myConnCtx
// for the connection to jdbc/sampledb

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO=’000010’};

// Use myConnCtx for executing an SQL statement

Figure 26. Using connection technique 4 to connect to a data source

Chapter 4. SQLJ application programming 133

SQLJ connection technique 6: Use the default connection
SQLJ connection technique 6 uses the default connection to connect to the data
source. It should be used only in situations where the database thread is controlled
by another resource manager, such as the Java stored procedure environment.

About this task

You use the default connection by specifying your SQL statements without a
connection context object. When you use this technique, you do not need to load a
JDBC driver unless you explicitly use JDBC interfaces in your program.

The default connection context can be:
v The connection context that is associated with the data source that is bound to

the logical name jdbc/defaultDataSource
v An explicitly created connection context that has been set as the default

connection context with the ConnectionContext.setDefaultContext method. This
method of creating a default connection context is not recommended.

In a stored procedure that runs on DB2 for z/OS, or for a CICS or IMS application,
when you use the default connection, DB2 uses the implicit connection.

Example

The following SQLJ execution clause does not have a connection context, so it uses
the default connection context.
#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’}; // Use default connection for
// executing an SQL statement

Java packages for SQLJ support
Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ
program, you need to be able to access all or parts of various Java packages that
contain support for those statements.

You can do that either by importing the packages or specific classes, or by using
fully-qualified class names. You might need the following packages or classes for
your SQLJ program:

sqlj.runtime
Contains the SQLJ run-time API.

java.sql
Contains the core JDBC API.

com.ibm.db2.jcc
Contains the driver-specific implementation of JDBC and SQLJ.

javax.naming
Contains methods for performing Java Naming and Directory Interface
(JNDI) lookup.

javax.sql
Contains methods for creating DataSource objects.

134 Application Programming Guide and Reference for Java

Variables in SQLJ applications
In DB2 programs in other languages, you use host variables to pass data between
the application program and DB2. In SQLJ programs, In SQLJ programs, you can
use host variables or host expressions.

A host expression begins with a colon (:). The colon is followed by an optional
parameter mode identifier (IN, OUT, or INOUT), which is followed by a
parenthesized expression clause.

Host variables and host expressions are case sensitive.

A complex expression is an array element or Java expression that evaluates to a
single value. A complex expression in an SQLJ clause must be surrounded by
parentheses.

The following examples demonstrate how to use host expressions.

Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sql has the same function as a
SELECT statement in other languages. This statement assigns the last name of the
employee with employee number 000010 to Java identifier empname.
String empname;
...
#sql [ctxt]

{SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO=’000010’};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an
SQL CALL statement in other languages. This statement uses Java identifier empno
as an input parameter to stored procedure A. The keyword IN, which precedes
empno, specifies that empno is an input parameter. For a parameter in a CALL
statement, IN is the default. The explicit or default qualifier that indicates how the
parameter is used (IN, OUT, or INOUT) must match the corresponding value in
the parameter definition that you specified in the CREATE PROCEDURE statement
for the stored procedure.
String empno = "0000010";
...
#sql [ctxt] {CALL A (:IN empno)};

Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host
expression.
#sql [ctxt] {UPDATE EMPLOYEE

SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQLJ performs the following actions when it processes a complex host expression:
v Evaluates each of the host expressions in the statement, from left to right, before

assigning their respective values to the database.
v Evaluates side effects, such as operations with postfix operators, according to

normal Java rules. All host expressions are fully evaluated before any of their
values are passed to DB2.

v Uses Java rules for rounding and truncation.

Chapter 4. SQLJ application programming 135

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is
executed, the value that is assigned to column BONUS by the UPDATE statement
is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of
yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQLJ
programs. Observe the following restrictions when you use these strings in your
SQLJ programs:
v The string __sJT_ is a reserved prefix for variable names that are generated by

SQLJ. Do not begin the following types of names with __sJT_:
– Host expression names
– Java variable names that are declared in blocks that include executable SQL

statements
– Names of parameters for methods that contain executable SQL statements
– Names of fields in classes that contain executable SQL statements, or in

classes with subclasses or enclosed classes that contain executable SQL
statements

v The string _SJ is a reserved suffix for resource files and classes that are
generated by SQLJ. Avoid using the string _SJ in class names and input source
file names.

Indicator variables in SQLJ applications
In SQLJ programs, you can use indicator variables to pass the NULL value to or
from a data server, to pass the default value for a column to the data server, or to
indicate that a host variable value is unassigned.

A host variable or host expression can be followed by an indicator variable. An
indicator variable begins with a colon (:) and has the data type short. For input, an
indicator variable indicates whether the corresponding host variable or host
expression has the default value, a non-null value, the null value, or is unassigned.
An unassigned variable in an SQL statement yields the same results as if the
variable and its target column were not in the SQL statement. For output, the
indicator variable indicates where the corresponding host variable or host
expression has a non-null value or a null value.

In SQLJ programs, indicator variables that indicate a null value perform the same
function as assigning the Java null value to a table column. However, you need to
use an indicator variable to retrieve the SQL NULL value from a table into a host
variable.

You can use indicator variables that assign the default value or the unassigned
value to columns to simplify the coding in your applications. For example, if a
table has four columns, and you might need to update any combination of those
columns, without the use of default indicator variables or unassigned indicator
variables, you need 15 UPDATE statements to perform all possible combinations of
updates. With default indicator variables and unassigned indicator variables, you
can use one UPDATE statement with all four columns in the SET statement to
perform all possible updates. You use the indicator variables to indicate which
columns you want to set to their default values, and which columns you do not
want to update.

For input, SQLJ supports the use of indicator variables for INSERT, UPDATE, or
MERGE statements.

136 Application Programming Guide and Reference for Java

If you customize your SQLJ application, you can assign one of the following values
to an indicator variable in an SQLJ application to specify the type of the
corresponding input host variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-2, -3, -4, -6 Null

-5 sqlj.runtime.ExecutionContext.DBDefault Default

-7 sqlj.runtime.ExecutionContext.DBUnassigned Unassigned

short-value >=0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

If you do not customize the application, you can assign one of the following values
to an indicator variable to specify the type of the corresponding input host
variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-7 <= short-value < -1 Null

0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

short-value >0 Non-null

For output, SQLJ supports the use of indicator variables for the following
statements:
v CALL with OUT or INOUT parameters
v FETCH iterator INTO host-variable

v SELECT ... INTO host-variable-1,...host-variable-n

SQLJ assigns one of the following values to an indicator variable to indicate
whether an SQL NULL value was retrieved into the corresponding host variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Retrieved value is SQL NULL

0 Retrieved value is not SQL NULL

You cannot use indicator variables to update result sets. To assign null values or
default values to result sets, or to indicate that columns are unassigned, call
ResultSet.updateObject on the underlying JDBC ResultSet objects of the SQLJ
iterators.

The following examples demonstrate how to use indicator variables.

All examples require that the data server supports extended indicators.

Example of using indicators to assign the default value to columns during an INSERT:

In this example, the MGRNO and LOCATION columns need to be set to their
default values. To do this, the code performs these steps:

Chapter 4. SQLJ application programming 137

1. Assigns the value ExecutionContext.DBNonNull to the indicator variables
(deptInd, dNameInd, rptDeptInd) for the input host variables (dept, dName,
rptDept) that send non-default values to the target columns.

2. Assigns the value ExecutionContext.DBDefault to the indicator variables
(mgrInd, locnInd) for the input host variables (mgr, locn) that send default
values to the target columns.

3. Executes an INSERT statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
String dept = "F01";
String dName = "SHIPPING";
String rptDept = "A00";
String mgr, locn = null;
short deptInd, dNameInd, mgrInd, rptDeptInd, locnInd;
// Set indicator variables for dept, dName, rptDept to non-null
deptInd = dNameInd = rptDeptInd = ExecutionContext.DBNonNull; �1�
mgrInd = ExecutionContext.DBDefault; �2�
locnInd = ExecutionContext.DBDefault;
#sql [ctxt] �3�

{INSERT INTO DEPARTMENT
(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES (:dept :deptInd, :dName :dNameInd,:mgr :mgrInd,
:rptDept :rptDeptInd, :locn :locnInd)};

Example of using indicators to assign the default value to leave column values unassigned
during an UPDATE:

In this example, in rows for department F01, the MGRNO column needs to be set
to its default value, the DEPTNAME column value needs to be changed to
RECEIVING, and the DEPTNO, DEPTNAME, ADMRDEPT, and LOCATION
columns need to remain unchanged. To do this, the code performs these steps:
1. Assigns the new value for the DEPTNAME column to the dName input host

variable.
2. Assigns the value ExecutionContext.DBDefault to the indicator variable

(mgrInd) for the input host variable (mgr) that sends the default value to the
target column.

3. Assigns the value ExecutionContext.DBUnassigned to the indicator variables
(deptInd, dNameInd, rptDeptInd, and locnInd) for the input host variables
(dept, dName, rptDept, and locn) that need to remain unchanged by the
UPDATE operation.

4. Executes an UPDATE statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
String dept = null;
String dName = "RECEIVING"; �1�
String rptDept = null;
String mgr, locn = null;
short deptInd, dNameInd, mgrInd, rptDeptInd, locnInd;
dNameInd = ExecutionContext.DBNonNull;
mgrInd = ExecutionContext.DBDefault; �2�

138 Application Programming Guide and Reference for Java

deptInd = rptDeptInd = locnInd = ExecutionContext.DBUnassigned; �3�
#sql [ctxt] �4�

{UPDATE DEPARTMENT
SET DEPTNO = :dept :deptInd,

DEPTNAME = :dName :dNameInd,
MGRNO = :mgr :mgrInd,
ADMRDEPT = :rptDept :rptDeptInd,
LOCATION = :locn :locnInd

WHERE DEPTNO = "F01"
};

Example of using indicators to retrieve NULL values from columns:

In this example, the HIREDATE column can return the NULL value. To handle this
case, the code performs these steps:
1. Defines an indicator variable to indicate when the NULL value is returned from

HIREDATE.
2. Executes FETCH statements with the host variable and indicator variable pairs

as output.
3. Checks the indicator variable to determine whether a NULL value was

returned.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
#sql iterator ByPos(String, Date); // Declare positioned iterator ByPos
{

...
ByPos positer; // Declare object of ByPos class
String name = null; // Declare host variables
Date hrdate = null;
short indhrdate = null; // Declare indicator variable �1�
#sql [ctxt] positer =

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate :indhrdate }; �2�
// Retrieve the first row

while (!positer.endFetch()) // Check whether the FETCH returned a row
{ if(indhrdate == ExecutionContext.DBNonNull { �3�

System.out.println(name + " was hired in " +
hrdate); }

else {
System.out.println(name + " has no hire date "); }
#sql {FETCH :positer INTO :name, :hrdate };

// Fetch the next row
}
positer.close(); // Close the iterator �5�

}

Example of assigning default values to result set columns:

In this example, the HIREDATE column in a result set needs to be set to its default
value. To do this, the code performs these steps:
1. Retrieves the underlying ResultSet from the iterator that holds the retrieved

data.
2. Executes the ResultSet.updateObject method with the

DB2PreparedStatement.DB_PARAMETER_DEFAULT constant to assign the default
value to the result set column.

Chapter 4. SQLJ application programming 139

The numbers to the right of selected statements correspond to the previously
described steps.
#sql public iterator sensitiveUpdateIter
implements sqlj.runtime.Scrollable, sqlj.runtime.ForUpdate
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE,
updateColumns="LASTNAME, HIREDATE") (String, Date);

String name; // Declare host variables
Date hrdate;

sensitiveUpdateIter iter = null;
#sql [ctx] iter = { SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

iter.next();

java.sql.ResultSet rs = iter.getResultSet(); �1�
rs.updateString("LASTNAME", "FORREST");
rs.updateObject
(2, com.ibm.db2.jcc.DB2PreparedStatement.DB_PARAMETER_DEFAULT);); �2,3�

rs.updateRow();
iter.close();

Comments in an SQLJ application
To document your SQLJ program, you need to include comments. You can use
Java comments outside of SQLJ statements and SQL or Java comments in SQLJ
statements.

You can include Java comments outside SQLJ clauses, wherever the Java language
permits them. Within an SQLJ clause, you can use comments in the following
places:
v Within a host expression (enclosed in /* and */ or preceded by //).
v Within an SQL statement in an executable clause, if the data server supports a

comment within the SQL statement.
– For connections to DB2 data servers or Informix data servers, comments can

be:
- Anywhere in the SQL statement text, and enclosed in /* and */ pairs. /*

and */ pairs can be nested.
- At the end of the SQL statement text, and preceded by two hyphens (--).

– For connections to Informix data servers only, comments can be enclosed in
left curly bracket ({) and right curly bracket (}) pairs.

SQL statement execution in SQLJ applications
You execute SQL statements in a traditional SQL program to create tables, update
data in tables, retrieve data from the tables, call stored procedures, or commit or
roll back transactions. In an SQLJ program, you also execute these statements,
within SQLJ executable clauses.

An executable clause can have one of the following general forms:
#sql [connection-context] {sql-statement};
#sql [connection-context,execution-context] {sql-statement};
#sql [execution-context] {sql-statement};

execution-context specification
In an executable clause, you should always specify an explicit connection
context, with one exception: you do not specify an explicit connection context
for a FETCH statement. You include an execution context only for specific

140 Application Programming Guide and Reference for Java

cases. See "Control the execution of SQL statements in SQLJ" for information
about when you need an execution context.

connection-context specification
In an executable clause, if you do not explicitly specify a connection context,
the executable clause uses the default connection context.

Creating and modifying database objects in an SQLJ
application

Use SQLJ executable clauses to execute data definition statements (CREATE,
ALTER, DROP, GRANT, REVOKE) or to execute INSERT, searched or positioned
UPDATE, and searched or positioned DELETE statements.

Example

The following executable statements demonstrate an INSERT, a searched UPDATE,
and a searched DELETE:
#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

("X00","Operations 2","000030","E01",NULL)};
#sql [myConnCtx] {UPDATE DEPARTMENT

SET MGRNO="000090" WHERE MGRNO="000030"};
#sql [myConnCtx] {DELETE FROM DEPARTMENT

WHERE DEPTNO="X00"};

Performing positioned UPDATE and DELETE operations in an
SQLJ application

As in DB2 applications in other languages, performing positioned UPDATEs and
DELETEs with SQLJ is an extension of retrieving rows from a result table.

Procedure

The basic steps are:
1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE
operations, declare the iterator as updatable, using one or both of the following
clauses:

implements sqlj.runtime.ForUpdate
This clause causes the generated iterator class to include methods for
using updatable iterators. This clause is required for programs with
positioned UPDATE or DELETE operations.

with (updateColumns="column-list")
This clause specifies a comma-separated list of the columns of the result
table that the iterator will update. This clause is optional.

You need to declare the iterator as public, so you need to follow the rules for
declaring and using public iterators in the same file or different files.
If you declare the iterator in a file by itself, any SQLJ source file that has
addressability to the iterator and imports the generated class can retrieve data
and execute positioned UPDATE or DELETE statements using the iterator.
The authorization ID under which a positioned UPDATE or DELETE statement
executes depends on whether the statement executes statically or dynamically.
If the statement executes statically, the authorization ID is the owner of the plan
or package that includes the statement. If the statement executes dynamically

Chapter 4. SQLJ application programming 141

the authorization ID is determined by the DYNAMICRULES behavior that is in
effect. For the IBM Data Server Driver for JDBC and SQLJ, the behavior is
always DYNAMICRULES BIND.

2. Disable autocommit mode for the connection.
If autocommit mode is enabled, a COMMIT operation occurs every time the
positioned UPDATE statement executes, which causes the iterator to be
destroyed unless the iterator has the with (holdability=true) attribute.
Therefore, you need to turn autocommit off to prevent COMMIT operations
until you have finished using the iterator. If you want a COMMIT to occur
after every update operation, an alternative way to keep the iterator from being
destroyed after each COMMIT operation is to declare the iterator with
(holdability=true).

3. Create an instance of the iterator class.
This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.
This is the same step as for a non-updatable iterator. The SELECT statement
must not include a FOR UPDATE clause.

5. Retrieve and update rows.
For a positioned iterator, do this by performing the following actions in a loop:
a. Execute a FETCH statement in an executable clause to obtain the current

row.
b. Test whether the iterator is pointing to a row of the result table by invoking

the PositionedIterator.endFetch method.
c. If the iterator is pointing to a row of the result table, execute an SQL

UPDATE... WHERE CURRENT OF :iterator-object statement in an executable
clause to update the columns in the current row. Execute an SQL DELETE...
WHERE CURRENT OF :iterator-object statement in an executable clause to
delete the current row.

For a named iterator, do this by performing the following actions in a loop:
a. Invoke the next method to move the iterator forward.
b. Test whether the iterator is pointing to a row of the result table by checking

whether next returns true.
c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement

in an executable clause to update the columns in the current row. Execute
an SQL DELETE... WHERE CURRENT OF iterator-object statement in an
executable clause to delete the current row.

6. Close the iterator.
Use the close method to do this.

Example

The following code shows how to declare a positioned iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to
use the iterator to update column SALARY:

142 Application Programming Guide and Reference for Java

Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the
following code fragment:

The following code shows how to declare a named iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

import java.math.*; // Import this class for BigDecimal data type
#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate �1�

with(updateColumns="SALARY") (String, BigDecimal);

Figure 27. Example of declaring a positioned iterator for a positioned UPDATE

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs
import java.sql.*;
import java.math.*; // Import this class for BigDecimal data type
import UpdByPos; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit(false);

// Set autocommit off so automatic commits �2�
// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object

UpdByPos upditer; // Declare iterator object of UpdByPos class �3�
String empnum; // Declares host variable to receive EMPNO
BigDecimal sal; // and SALARY column values
#sql [myConnCtx]

upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�
WHERE WORKDEPT=’D11’};

// Assign result table to iterator object
#sql {FETCH :upditer INTO :empnum,:sal}; �5a�

// Move cursor to next row
while (!upditer.endFetch()) �5b�

// Check if on a row
{

#sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer}; �5c�

// Perform positioned update
System.out.println("Updating row for " + empnum);
#sql {FETCH :upditer INTO :empnum,:sal};

// Move cursor to next row
}
upditer.close(); // Close the iterator �6�
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 28. Example of performing a positioned UPDATE with a positioned iterator

Chapter 4. SQLJ application programming 143

First, in one file, declare named iterator UpdByName, specifying that you want to use
the iterator to update column SALARY:

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the
following code fragment:

import java.math.*; // Import this class for BigDecimal data type
#sql public iterator UpdByName implements sqlj.runtime.ForUpdate �1�

with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 29. Example of declaring a named iterator for a positioned UPDATE

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs
import java.sql.*;
import java.math.*; // Import this class for BigDecimal data type
import UpdByName; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:db2:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit(false);

// Set autocommit off so automatic commits �2�
// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object

UpdByName upditer; �3�
// Declare iterator object of UpdByName class

String empnum; // Declare host variable to receive EmpNo
// column values

#sql [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

WHERE WORKDEPT=’D11’};
// Assign result table to iterator object

while (upditer.next()) �5a,5b�
// Move cursor to next row and
// check ifon a row

{
empnum = upditer.EmpNo(); // Get employee number from current row
#sql [myConnCtx]

{UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer}; �5c�

// Perform positioned update
System.out.println("Updating row for " + empnum);

}
upditer.close(); // Close the iterator �6�
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 30. Example of performing a positioned UPDATE with a named iterator

144 Application Programming Guide and Reference for Java

Related concepts:
“Iterators as passed variables for positioned UPDATE or DELETE operations in an
SQLJ application”
“Data retrieval in SQLJ applications” on page 151

Authorization IDs and dynamic SQL (DB2 SQL)
Related tasks:
“Creating and modifying database objects in an SQLJ application” on page 141
“Connecting to a data source using SQLJ” on page 127

Iterators as passed variables for positioned UPDATE or DELETE
operations in an SQLJ application
SQLJ allows iterators to be passed between methods as variables.

An iterator that is used for a positioned UPDATE or DELETE statement can be
identified only at runtime. The same SQLJ positioned UPDATE or DELETE
statement can be used with different iterators at runtime. If you specify a value of
YES for -staticpositioned when you customize your SQLJ application as part of the
program preparation process, the SQLJ customizer prepares positioned UPDATE or
DELETE statements to execute statically. In this case, the customizer must
determine which iterators belong with which positioned UPDATE or DELETE
statements. The SQLJ customizer does this by matching iterator data types to data
types in the UPDATE or DELETE statements. However, if there is not a unique
mapping of tables in UPDATE or DELETE statements to iterator classes, the SQLJ
customizer cannot determine exactly which iterators and UPDATE or DELETE
statements go together. The SQLJ customizer must arbitrarily pair iterators with
UPDATE or DELETE statements, which can sometimes result in SQL errors. The
following code fragments illustrate this point.

In this example, only one iterator is declared. Two instances of that iterator are
declared, and each is associated with a different SELECT statement that retrieves
data from a different table. During customization and binding with
-staticpositioned YES, SQLJ creates two DECLARE CURSOR statements, one for
each SELECT statement, and attempts to bind an UPDATE statement for each
cursor. However, the bind process fails with SQLCODE -509 when UPDATE TABLE1

#sql iterator GeneralIter implements sqlj.runtime.ForUpdate
(String);

public static void main (String args[])
{

...
GeneralIter iter1 = null;
#sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

GeneralIter iter2 = null;
#sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

...

doUpdate (iter1);
}

public static void doUpdate (GeneralIter iter)
{

#sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };
}

Figure 31. Static positioned UPDATE that fails

Chapter 4. SQLJ application programming 145

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_authidsdynamicsql.htm#db2z_authidsdynamicsql

... WHERE CURRENT OF :iter is bound for the cursor for SELECT CHAR_COL2 FROM
TABLE2 because the table for the UPDATE does not match the table for the cursor.

You can avoid a bind time error for a program like the one in Figure 31 on page
145 by specifying the bind option SQLERROR(CONTINUE). However, this
technique has the drawback that it causes the DB2 database manager to build a
package, regardless of the SQL errors that are in the program. A better technique is
to write the program so that there is a one-to-one mapping between tables in
positioned UPDATE or DELETE statements and iterator classes. Figure 32 shows
an example of how to do this.

With this method of coding, each iterator class is associated with only one table.
Therefore, the DB2 bind process can always associate the positioned UPDATE
statement with a valid iterator.

Making batch updates in SQLJ applications
The IBM Data Server Driver for JDBC and SQLJ supports batch updates in SQLJ.
With batch updates, instead of updating rows of a table one at a time, you can
direct SQLJ to execute a group of updates at the same time.

About this task

You can include the following types of statements in a batch update:
v Searched INSERT, UPDATE, or DELETE, or MERGE statements
v CREATE, ALTER, DROP, GRANT, or REVOKE statements
v CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with
input parameters or host expressions. You can therefore combine any of the
following items in an SQLJ batch:

#sql iterator Table2Iter(String);
#sql iterator Table1Iter(String);

public static void main (String args[])
{

...
Table2Iter iter2 = null;
#sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

Table1Iter iter1 = null;
#sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

...

doUpdate(iter1);

}

public static void doUpdate (Table1Iter iter)
{

...
#sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };
...

}
public static void doUpdate (Table2Iter iter)
{

...
#sql [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };
...

}

Figure 32. Static positioned UPDATE that succeeds

146 Application Programming Guide and Reference for Java

v Instances of the same statement
v Different statements
v Statements with different numbers of input parameters or host expressions
v Statements with different data types for input parameters or host expressions
v Statements with no input parameters or host expressions

For all cases except homogeneous batches of INSERT statements, when an error
occurs during execution of a statement in a batch, the remaining statements are
executed, and a BatchUpdateException is thrown after all the statements in the
batch have executed.

For homogeneous batches of INSERT statements, the behavior is as follows:
v If you set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you run

db2sqljcustomize, and the target data server is DB2 for z/OS, when an error
occurs during execution of an INSERT statement in a batch, the remaining
statements are not executed, and a BatchUpdateException is thrown.

v If you do not set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you
run db2sqljcustomize, or the target data server is not DB2 for z/OS, when an
error occurs during execution of an INSERT statement in a batch, the remaining
statements are executed, and a BatchUpdateException is thrown after all the
statements in the batch have executed.

To obtain information about warnings, use the ExecutionContext.getWarnings
method on the ExecutionContext that you used to submit statements to be
batched. You can then retrieve an error description, SQLSTATE, and error code for
each SQLWarning object.

When a batch is executed implicitly because the program contains a statement that
cannot be added to the batch, the batch is executed before the new statement is
processed. If an error occurs during execution of the batch, the statement that
caused the batch to execute does not execute.

Procedure

The basic steps for creating, executing, and deleting a batch of statements are:
1. Disable AutoCommit for the connection.

Do this so that you can control whether to commit changes to already-executed
statements when an error occurs during batch execution.

2. Acquire an execution context.
All statements that execute in a batch must use this execution context.

3. Invoke the ExecutionContext.setBatching(true) method to create a batch.
Subsequent batchable statements that are associated with the execution context
that you created in step 2 are added to the batch for later execution.
If you want to batch sets of statements that are not batch compatible in parallel,
you need to create an execution context for each set of batch compatible
statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.
These clauses must include the execution context that you created in step 2.
If an SQLJ executable clause has input parameters or host expressions, you can
include the statement in the batch multiple times with different values for the
input parameters or host expressions.

Chapter 4. SQLJ application programming 147

To determine whether a statement was added to an existing batch, was the first
statement in a new batch, or was executed inside or outside a batch, invoke the
ExecutionContext.getUpdateCount method. This method returns one of the
following values:

ExecutionContext.ADD_BATCH_COUNT
This is a constant that is returned if the statement was added to an existing
batch.

ExecutionContext.NEW_BATCH_COUNT
This is a constant that is returned if the statement was the first statement in
a new batch.

ExecutionContext.EXEC_BATCH_COUNT
This is a constant that is returned if the statement was part of a batch, and
the batch was executed.

Other integer
This value is the number of rows that were updated by the statement. This
value is returned if the statement was executed rather than added to a
batch.

5. Execute the batch explicitly or implicitly.
v Invoke the ExecutionContext.executeBatch method to execute the batch

explicitly.
executeBatch returns an integer array that contains the number of rows that
were updated by each statement in the batch. The order of the elements in
the array corresponds to the order in which you added statements to the
batch.

v Alternatively, a batch executes implicitly under the following circumstances:
– You include a batchable statement in your program that is not compatible

with statements that are already in the batch. In this case, SQLJ executes
the statements that are already in the batch and creates a new batch that
includes the incompatible statement.

– You include a statement in your program that is not batchable. In this
case, SQLJ executes the statements that are already in the batch. SQLJ also
executes the statement that is not batchable.

– After you invoke the ExecutionContext.setBatchLimit(n) method, you
add a statement to the batch that brings the number of statements in the
batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH
This constant indicates that implicit execution occurs only when SQLJ
encounters a statement that is batchable but incompatible, or not
batchable. Setting this value is the same as not invoking
setBatchLimit.

ExecutionContext.AUTO_BATCH
This constant indicates that implicit execution occurs when the
number of statements in the batch reaches a number that is set by
SQLJ.

Positive integer
When this number of statements have been added to the batch, SQLJ
executes the batch implicitly. However, the batch might be executed
before this many statements have been added if SQLJ encounters a
statement that is batchable but incompatible, or not batchable.

148 Application Programming Guide and Reference for Java

To determine the number of rows that were updated by a batch that was
executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts
method. getBatchUpdateCounts returns an integer array that contains the
number of rows that were updated by each statement in the batch. The order
of the elements in the array corresponds to the order in which you added
statements to the batch. Each array element can be one of the following
values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

6. Optionally, when all statements have been added to the batch, disable batching.
Do this by invoking the ExecutionContext.setBatching(false) method. When
you disable batching, you can still execute the batch implicitly or explicitly, but
no more statements are added to the batch. Disabling batching is useful when a
batch already exists, and you want to execute a batch compatible statement,
rather than adding it to the batch.
If you want to clear a batch without executing it, invoke the
ExecutionContext.cancel method.

7. If batch execution was implicit, perform a final, explicit executeBatch to ensure
that all statements have been executed.

Example

The following example demonstrates batching of UPDATE statements. The
numbers to the right of selected statements correspond to the previously described
steps.
#sql iterator GetMgr(String); // Declare positioned iterator
...
{

GetMgr deptiter; // Declare object of GetMgr class
String mgrnum = null; // Declare host variable for manager number
int raise = 400; // Declare raise amount
int currentSalary; // Declare current salary
String url, username, password; // Declare url, user ID, password
...
TestContext c1 = new TestContext (url, username, password, false); �1�
ExecutionContext ec = new ExecutionContext(); �2�
ec.setBatching(true); �3�

#sql [c1] deptiter =
{SELECT MGRNO FROM DEPARTMENT};

// Assign the result table of the SELECT
// to iterator object deptiter

#sql {FETCH :deptiter INTO :mgrnum};
// Retrieve the first manager number

while (!deptiter.endFetch()) { // Check whether the FETCH returned a row
#sql [c1]

{SELECT SALARY INTO :currentSalary FROM EMPLOYEE
WHERE EMPNO=:mgrnum};

#sql [c1, ec] �4�
{UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)

WHERE EMPNO=:mgrnum};
#sql {FETCH :deptiter INTO :mgrnum };

// Fetch the next row
}
ec.executeBatch(); �5�

Chapter 4. SQLJ application programming 149

ec.setBatching(false); �6�
#sql [c1] {COMMIT};
deptiter.close(); // Close the iterator
c1.close(); // Close the connection

}

The following example demonstrates batching of INSERT statements. Suppose that
ATOMICTBL is defined like this:
CREATE TABLE ATOMICTBL(
INTCOL INTEGER NOT NULL UNIQUE,
CHARCOL VARCHAR(10))

Also suppose that the table already has a row with the values 2 and "val2".
Because of the uniqueness constraint on INTCOL, when the following code is
executed, the second INSERT statement in the batch fails.

If the target data server is DB2 for z/OS, and this application is customized
without atomicMultiRowInsert set to DB2BaseDataSource.YES, the batch INSERT is
non-atomic, so the first set of values is inserted in the table. However, if the
application is customized with atomicMultiRowInsert set to
DB2BaseDataSource.YES, the batch INSERT is atomic, so the first set of values is not
inserted.

The numbers to the right of selected statements correspond to the previously
described steps.
...
TestContext ctx = new TestContext (url, username, password, false); �1�
ctx.getExecutionContext().setBatching(true); �2,3�
try {

for (int i = 1; i<= 2; ++i) {
if (i == 1) {
intVar = 3;
strVar = "val1";
{
if (i == 2) {
intVar = 1;
strVar = "val2";
}
#sql [ctx] {INSERT INTO ATOMICTBL values(:intVar, :strVar)}; �4�

}
int[] counts = ctx.getExecutionContext().executeBatch(); �5�
for (int i = 0; i<counts.length; ++i) {

System.out.println(" count[" + i + "]:" + counts[i]);
}

}
catch (SQLException e) {

System.out.println(" Exception Caught: " + e.getMessage());
SQLException excp = null;
if (e instanceof SQLException)
{

System.out.println(" SQLCode: " + ((SQLException)e).getErrorCode() + "
Message: " + e.getMessage());

excp = ((SQLException)e).getNextException();
while (excp != null) {

System.out.println(" SQLCode: " + ((SQLException)excp).getErrorCode() +
" Message: " + excp.getMessage());

excp = excp.getNextException();
}

}
}

150 Application Programming Guide and Reference for Java

Related tasks:
“Controlling the execution of SQL statements in SQLJ” on page 170
“Connecting to a data source using SQLJ” on page 127
Related reference:
“sqlj.runtime.SQLNullException class” on page 381
“db2sqljcustomize - SQLJ profile customizer” on page 498

Data retrieval in SQLJ applications
SQLJ applications use a result set iterator to retrieve result sets. Like a cursor, a
result set iterator can be non-scrollable or scrollable.

Just as in DB2 applications in other languages, if you want to retrieve a single row
from a table in an SQLJ application, you can write a SELECT INTO statement with
a WHERE clause that defines a result table that contains only that row:
#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno

FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain
many rows. In DB2 applications in other languages, you use a cursor to select the
individual rows from the result table. That cursor can be non-scrollable, which
means that when you use it to fetch rows, you move the cursor serially, from the
beginning of the result table to the end. Alternatively, the cursor can be scrollable,
which means that when you use it to fetch rows, you can move the cursor
forward, backward, or to any row in the result table.

This topic discusses how to use non-scrollable iterators. For information on using
scrollable iterators, see "Use scrollable iterators in an SQLJ application".

A result set iterator is a Java object that you use to retrieve rows from a result
table. Unlike a cursor, a result set iterator can be passed as a parameter to a
method.

The basic steps in using a result set iterator are:
1. Declare the iterator, which results in an iterator class
2. Define an instance of the iterator class.
3. Assign the result table of a SELECT to an instance of the iterator.
4. Retrieve rows.
5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Positioned
iterators extend the interface sqlj.runtime.PositionedIterator. Positioned
iterators identify the columns of a result table by their position in the result table.
Named iterators extend the interface sqlj.runtime.NamedIterator. Named iterators
identify the columns of the result table by result table column names.

Using a named iterator in an SQLJ application
Use a named iterator to refer to each of the columns in a result table by name.

Procedure

The steps in using a named iterator are:
1. Declare the iterator.

Chapter 4. SQLJ application programming 151

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name as the iterator. For a
named iterator, the iterator declaration clause specifies the following
information:
v The name of the iterator
v A list of column names and Java data types
v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

When you declare a named iterator for a query, you specify names for each of
the iterator columns. Those names must match the names of columns in the
result table for the query. An iterator column name and a result table column
name that differ only in case are considered to be matching names. The named
iterator class that results from the iterator declaration clause contains accessor
methods. There is one accessor method for each column of the iterator. Each
accessor method name is the same as the corresponding iterator column name.
You use the accessor methods to retrieve data from columns of the result table.
You need to specify Java data types in the iterators that closely match the
corresponding DB2 column data types. See "Java, JDBC, and SQL data types"
for a list of the best mappings between Java data types and DB2 data types.
You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:
v As public, in a source file by itself

This method lets you use the iterator declaration in other code modules, and
provides an iterator that works for all SQLJ applications. In addition, there
are no concerns about having other top-level classes or public classes in the
same source file.

v As a top-level class in a source file that contains other top-level class
definitions
Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible to other code modules or
packages. However, when you reference the iterator from outside the nesting
class, you must fully-qualify the iterator name with the name of the nesting
class.

v As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.
You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQLJ and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

152 Application Programming Guide and Reference for Java

2. Create an instance of the iterator class.
You declare an object of the named iterator class to retrieve rows from a result
table.

3. Assign the result table of a SELECT to an instance of the iterator.
To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a named iterator is:
#sql context-clause iterator-object={select-statement};

See "SQLJ assignment-clause" and "SQLJ context-clause" for more information.
4. Retrieve rows.

Do this by invoking accessor methods in a loop. Accessor methods have the
same names as the corresponding columns in the iterator, and have no
parameters. An accessor method returns the value from the corresponding
column of the current row in the result table. Use the NamedIterator.next()
method to move the cursor forward through the result table.
To test whether you have retrieved all rows, check the value that is returned
when you invoke the next method. next returns a boolean with a value of
false if there is no next row.

5. Close the iterator.
Use the NamedIterator.close method to do this.

Example

The following code demonstrates how to declare and use a named iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

Related tasks:
“Performing positioned UPDATE and DELETE operations in an SQLJ application”
on page 141
“Using a positioned iterator in an SQLJ application”

Using a positioned iterator in an SQLJ application
Use a positioned iterator to refer to columns in a result table by their position in
the result set.

#sql iterator ByName(String LastName, Date HireDate); �1�
// Declare named iterator ByName

{
...
ByName nameiter; // Declare object of ByName class �2�
#sql [ctxt]
nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

// Assign the result table of the SELECT
// to iterator object nameiter

while (nameiter.next()) // Move the iterator through the result �4�
// table and test whether all rows retrieved

{
System.out.println(nameiter.LastName() + " was hired on "

+ nameiter.HireDate()); // Use accessor methods LastName and
// HireDate to retrieve column values

}
nameiter.close(); // Close the iterator �5�

}

Figure 33. Example of using a named iterator

Chapter 4. SQLJ application programming 153

Procedure

The steps in using a positioned iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name and attributes as the
iterator. For a positioned iterator, the iterator declaration clause specifies the
following information:
v The name of the iterator
v A list of Java data types
v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

The data type declarations represent columns in the result table and are
referred to as columns of the result set iterator. The columns of the result set
iterator correspond to the columns of the result table, in left-to-right order. For
example, if an iterator declaration clause has two data type declarations, the
first data type declaration corresponds to the first column in the result table,
and the second data type declaration corresponds to the second column in the
result table.
You need to specify Java data types in the iterators that closely match the
corresponding DB2 column data types. See "Java, JDBC, and SQL data types"
for a list of the best mappings between Java data types and DB2 data types.
You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:
v As public, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets
you use the iterator declaration in other code modules, and provides an
iterator that works for all SQLJ applications. In addition, there are no
concerns about having other top-level classes or public classes in the same
source file.

v As a top-level class in a source file that contains other top-level class
definitions
Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible from other code modules
or packages. However, when you reference the iterator from outside the
nesting class, you must fully-qualify the iterator name with the name of the
nesting class.

v As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.

154 Application Programming Guide and Reference for Java

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQLJ and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.
You declare an object of the positioned iterator class to retrieve rows from a
result table.

3. Assign the result table of a SELECT to an instance of the iterator.
To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a positioned iterator
is:
#sql context-clause iterator-object={select-statement};

4. Retrieve rows.
Do this by executing FETCH statements in executable clauses in a loop. The
FETCH statements looks the same as a FETCH statements in other languages.
To test whether you have retrieved all rows, invoke the
PositionedIterator.endFetch method after each FETCH. endFetch returns a
boolean with the value true if the FETCH failed because there are no rows to
retrieve.

5. Close the iterator.
Use the PositionedIterator.close method to do this.

Example

The following code demonstrates how to declare and use a positioned iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos �1�
{

...
ByPos positer; // Declare object of ByPos class �2�
String name = null; // Declare host variables
Date hrdate;
#sql [ctxt] positer =

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate }; �4�
// Retrieve the first row

while (!positer.endFetch()) // Check whether the FETCH returned a row
{ System.out.println(name + " was hired in " +

hrdate);
#sql {FETCH :positer INTO :name, :hrdate };

// Fetch the next row
}
positer.close(); // Close the iterator �5�

}

Figure 34. Example of using a positioned iterator

Chapter 4. SQLJ application programming 155

Related concepts:
“Data retrieval in SQLJ applications” on page 151
Related tasks:
“Performing positioned UPDATE and DELETE operations in an SQLJ application”
on page 141
“Using a named iterator in an SQLJ application” on page 151

Multiple open iterators for the same SQL statement in an SQLJ
application
With the IBM Data Server Driver for JDBC and SQLJ, your application can have
multiple concurrently open iterators for a single SQL statement in an SQLJ
application. With this capability, you can perform one operation on a table using
one iterator while you perform a different operation on the same table using
another iterator.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS, support for multiple open iterators on a single SQL statement must be
enabled. To do that, set the db2.jcc.allowSqljDuplicateStaticQueries configuration
property to YES or true.

When you use concurrently open iterators in an application, you should close
iterators when you no longer need them to prevent excessive storage consumption
in the Java heap.

The following examples demonstrate how to perform the same operations on a
table without concurrently open iterators on a single SQL statement and with
concurrently open iterators on a single SQL statement. These examples use the
following iterator declaration:
import java.math.*;
#sql public iterator MultiIter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL
statement, if you want to select employee and salary values for a specific employee
number, you need to define a different SQL statement for each employee number,
as shown in Figure 35.

Figure 36 on page 157 demonstrates how you can perform the same operations
when you have the capability for multiple, concurrently open iterators for a single

MultiIter iter1 = null; // Iterator instance for retrieving
// data for first employee

String EmpNo1 = "000100"; // Employee number for first employee
#sql [ctx] iter1 =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo1};
// Assign result table to first iterator

MultiIter iter2 = null; // Iterator instance for retrieving
// data for second employee

String EmpNo2 = "000200"; // Employee number for second employee
#sql [ctx] iter2 =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};
// Assign result table to second iterator

// Process with iter1
// Process with iter2
iter1.close(); // Close the iterators
iter2.close();

Figure 35. Example of concurrent table operations using iterators with different SQL
statements

156 Application Programming Guide and Reference for Java

SQL statement.

Multiple open instances of an iterator in an SQLJ application
Multiple instances of an iterator can be open concurrently in a single SQLJ
application. One application for this ability is to open several instances of an
iterator that uses host expressions. Each instance can use a different set of host
expression values.

The following example shows an application with two concurrently open instances
of an iterator.

As with any other iterator, you need to remember to close this iterator after the last
time you use it to prevent excessive storage consumption.

Using scrollable iterators in an SQLJ application
In addition to moving forward, one row at a time, through a result table, you
might want to move backward or go directly to a specific row. The IBM Data
Server Driver for JDBC and SQLJ provides this capability.

...
MultiIter iter1 = openIter("000100"); // Invoke openIter to assign the result table

// (for employee 100) to the first iterator
MultiIter iter2 = openIter("000200"); // Invoke openIter to assign the result

// table to the second iterator
// iter1 stays open when iter2 is opened

// Process with iter1
// Process with iter2
...
iter1.close(); // Close the iterators
iter2.close();
...
public MultiIter openIter(String EmpNo)

// Method to assign a result table
// to an iterator instance

{
MultiIter iter;
#sql [ctxt] iter =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};
return iter; // Method returns an iterator instance

}

Figure 36. Example of concurrent table operations using iterators with the same SQL
statement

...
ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet
{

MyIter iter;
#sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};
return iter.getResultSet();

}

// An application can call this method to get a resultSet for each
// employee ID. The application can process each resultSet separately.
...
ResultSet rs1 = myFunc("000100"); // Get employee record for employee ID 000100
...
ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 37. Example of opening more than one instance of an iterator in a single application

Chapter 4. SQLJ application programming 157

About this task

An iterator in which you can move forward, backward, or to a specific row is
called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result
table of a database cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A
sensitive scrollable iterator can be static or dynamic. Insensitive means that changes
to the underlying table after the iterator is opened are not visible to the iterator.
Insensitive iterators are read-only. Sensitive means that changes that the iterator or
other processes make to the underlying table are visible to the iterator. Asensitive
means that if the cursor is a read-only cursor, it behaves as an insensitive cursor. If
it is not a read-only cursor, it behaves as a sensitive cursor.

If a scrollable iterator is static, the size of the result table and the order of the rows
in the result table do not change after the iterator is opened. This means that you
cannot insert into result tables, and if you delete a row of a result table, a delete
hole occurs. If you update a row of the result table so that the row no longer
qualifies for the result table, an update hole occurs. Fetching from a hole results in
an SQLException.

Important: Like static scrollable cursors in any other language, SQLJ static
scrollable iterators use declared temporary tables for their internal processing. This
means that before you can execute any applications that contain static scrollable
iterators, your database administrator needs to create a temporary database and
temporary table spaces for those declared temporary tables.

If a scrollable iterator is dynamic, the size of the result table and the order of the
rows in the result table can change after the iterator is opened. Rows that are
inserted or deleted with INSERT and DELETE statements that are executed by the
same application process are immediately visible. Rows that are inserted or deleted
with INSERT and DELETE statements that are executed by other application
processes are visible after the changes are committed.

Important: DB2 for Linux, UNIX, and Windows servers do not support dynamic
scrollable cursors. You can use dynamic scrollable iterators in your SQLJ
applications only if those applications access data on DB2 for z/OS servers, at
Version 9 or later.

Procedure

To create and use a scrollable iterator, you need to follow these steps:
1. Specify an iterator declaration clause that includes the following clauses:

v implements sqlj.runtime.Scrollable

This indicates that the iterator is scrollable.
v with (sensitivity=sensitivity-attribute) or with

(sensitivity=sensitivity-attribute, dynamic=true|false)

sensitivity-attribute indicates whether update or delete operations on the
underlying table can be visible to the iterator. Possible values are
sqlj.runtime.ResultSetIterator.SENSITIVE,
sqlj.runtime.ResultSetIterator.INSENSITIVE, or
sqlj.runtime.ResultSetIterator.ASENSITIVE.
sqlj.runtime.ResultSetIterator.ASENSITIVE is the default.

158 Application Programming Guide and Reference for Java

dynamic=true|false indicates whether the size of the result table or the order
of the rows in the result table can change after the iterator is opened. The
default value of dynamic is false.

The iterator can be a named or positioned iterator.
Example: The following iterator declaration clause declares a positioned,
sensitive, dynamic, scrollable iterator:
#sql public iterator ByPos

implements sqlj.runtime.Scrollable
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE, dynamic=true)
(String);

Example: The following iterator declaration clause declares a named,
insensitive, scrollable iterator:
#sql public iterator ByName

implements sqlj.runtime.Scrollable
with (sensitivity=sqlj.runtime.ResultSetIterator.INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the
following data types from a table on a DB2 for Linux, UNIX, and Windows
server:
v LONG VARCHAR
v LONG VARGRAPHIC
v BLOB
v CLOB
v XML
v A distinct type that is based on any of the previous data types in this list
v A structured type

2. Create an iterator object, which is an instance of your iterator class.
3. If you want to give the SQLJ runtime environment a hint about the initial fetch

direction, use the setFetchDirection(int direction) method. direction can be
FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the
fetch direction is FETCH_FORWARD.

4. For each row that you want to access:
For a named iterator, perform the following steps:
a. Position the cursor using one of the methods listed in the following table.

Table 27. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the result table

last1 On the last row of the result table

previous1,2 On the previous row of the result table

next On the next row of the result table

absolute(int n)1,3 If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

relative(int n)1,4 If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast1 After the last row in the result table

beforeFirst1 Before the first row in the result table

Chapter 4. SQLJ application programming 159

Table 27. sqlj.runtime.Scrollable methods for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.
If you need to know the current fetch direction, invoke the
getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.
d. If update or delete operations by the iterator or by other means are visible

in the result table, invoke the getWarnings method to check whether the
current row is a hole.

For a positioned iterator, perform the following steps:
a. Use a FETCH statement with a fetch orientation clause to position the

iterator and retrieve the current row of the result table. Table 28 lists the
clauses that you can use to position the cursor.

Table 28. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST1 On the first row of the result table

LAST1 On the last row of the result table

PRIOR1,2 On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)1,3 If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

RELATIVE(n)1,4 If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

AFTER1,5 After the last row in the result table

BEFORE1,5 Before the first row in the result table

160 Application Programming Guide and Reference for Java

Table 28. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1. This value is not supported for connections to IBM Informix

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

5. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the
current row is a hole.

5. Invoke the close method to close the iterator.

Example

The following code demonstrates how to use a named iterator to retrieve the
employee number and last name from all rows from the employee table in reverse
order. The numbers to the right of selected statements correspond to the
previously-described steps.
#sql context Ctx; // Create connection context class Ctx
#sql iterator ScrollIter implements sqlj.runtime.Scrollable �1�

(String EmpNo, String LastName);
{

...
Ctx ctxt =
new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object ctxt

// for the connection to NEWYORK
ScrollIter scrliter; �2�
#sql [ctxt]

scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};
scrliter.afterLast();
while (scrliter.previous()) �4a�
{

System.out.println(scrliter.EmpNo() + " " �4c�
+ scrliter.LastName());

}
scrliter.close(); �5�

}

Related concepts:
“Data retrieval in SQLJ applications” on page 151

Temporary table space storage requirements (DB2 Installation and Migration)
Related tasks:
“Using a positioned iterator in an SQLJ application” on page 153
“Using a named iterator in an SQLJ application” on page 151

Calling stored procedures in SQLJ applications
To call a stored procedure, you use an executable clause that contains an SQL
CALL statement.

Chapter 4. SQLJ application programming 161

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_temptablespstgreqs.htm#db2z_temptablespstgreqs

About this task

You can execute the CALL statement with host identifier parameters. You can
execute the CALL statement with literal parameters only if the DB2 server on
which the CALL statement runs supports execution of the CALL statement
dynamically.

Procedure

The basic steps in calling a stored procedure are:
1. Assign values to input (IN or INOUT) parameters.
2. Call the stored procedure.
3. Process output (OUT or INOUT) parameters.
4. If the stored procedure returns multiple result sets, retrieve those result sets.

Example

The following code illustrates calling a stored procedure that has three input
parameters and three output parameters. The numbers to the right of selected
statements correspond to the previously-described steps.

Related concepts:
“Retrieving multiple result sets from a stored procedure in an SQLJ application”

Retrieving multiple result sets from a stored procedure in an
SQLJ application
Some stored procedures return one or more result sets to the calling program by
including the DYNAMIC RESULT SETS n clause in the definition, with n>0, and
opening cursors that are defined with the WITH RETURN clause. The calling
program needs to retrieve the contents of those result sets.

To retrieve the rows from those result sets, you execute these steps:
1. Acquire an execution context for retrieving the result set from the stored

procedure.
2. Associate the execution context with the CALL statement for the stored

procedure.

String FirstName="TOM"; // Input parameters �1�
String LastName="NARISINST";
String Address="IBM";
int CustNo; // Output parameters
String Mark;
String MarkErrorText;
...
#sql [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, �2�

:IN LastName,
:IN Address,
:OUT CustNo,
:OUT Mark,
:OUT MarkErrorText)};

// Call the stored procedure
System.out.println("Output parameters from ADD_CUSTOMER call: ");
System.out.println("Customer number for " + LastName + ": " + CustNo); �3�
System.out.println(Mark);
If (MarkErrorText != null)

System.out.println(" Error messages:" + MarkErrorText);

Figure 38. Example of calling a stored procedure in an SQLJ application

162 Application Programming Guide and Reference for Java

Do not use this execution context for any other purpose until you have
retrieved and processed the last result set.

3. For each result set:
a. Use the ExecutionContext method getNextResultSet to retrieve the result

set.
b. If you do not know the contents of the result set, use ResultSetMetaData

methods to retrieve this information.
c. Use an SQLJ result set iterator or JDBC ResultSet to retrieve the rows from

the result set.

Result sets are returned to the calling program in the same order that their cursors
are opened in the stored procedure. When there are no more result sets to retrieve,
getNextResultSet returns a null value.

getNextResultSet has two forms:
getNextResultSet();
getNextResultSet(int current);

When you invoke the first form of getNextResultSet, SQLJ closes the
currently-open result set and advances to the next result set. When you invoke the
second form of getNextResultSet, the value of current indicates what SQLJ does
with the currently-open result set before it advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT
Specifies that the current ResultSet object is closed when the next ResultSet
object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT
Specifies that the current ResultSet object stays open when the next ResultSet
object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS
Specifies that all open ResultSet objects are closed when the next ResultSet
object is returned.

The following code calls a stored procedure that returns multiple result sets. For
this example, it is assumed that the caller does not know the number of result sets
to be returned or the contents of those result sets. It is also assumed that
autoCommit is false. The numbers to the right of selected statements correspond to
the previously-described steps.

Chapter 4. SQLJ application programming 163

LOBs in SQLJ applications with the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve LOB data
into Clob or Blob host expressions or update CLOB, BLOB, or DBCLOB columns
from Clob or Blob host expressions. You can also declare iterators with Clob or
Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare
an iterator that includes a data type of Blob or byte[]. To retrieve data from a
CLOB or DBCLOB column, declare an iterator in which the corresponding column
has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To
update data in a CLOB or DBCLOB column, use a host expression with data type
Clob.

Progressive streaming or LOB locators: In SQLJ applications, you can use
progressive streaming, also known as dynamic data format, or LOB locators in the
same way that you use them in JDBC applications.

Java data types for retrieving or updating LOB column data in
SQLJ applications
When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQLJ processes an uncustomized SQLJ statement that includes host
expressions, the driver might need to do extra processing to determine data types.
This extra processing can impact performance.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS, when the JDBC driver processes a CALL statement, the driver cannot
determine the parameter data types.

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�
#sql [myConnCtx, execCtx] {CALL MULTRSSP()}; �2�

// MULTRSSP returns multiple result sets
ResultSet rs;
while ((rs = execCtx.getNextResultSet()) != null) �3a�
{

ResultSetMetaData rsmeta=rs.getMetaData(); �3b�
int numcols=rsmeta.getColumnCount();
while (rs.next()) �3c�
{

for (int i=1; i<=numcols; i++)
{

String colval=rs.getString(i);
System.out.println("Column " + i + "value is " + colval);

}
}

}

Figure 39. Retrieving result sets from a stored procedure

164 Application Programming Guide and Reference for Java

Input parameters for BLOB columns

For input parameters for BLOB columns, you can use either of the following
techniques:
v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;
#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a
java.sql.Blob object, and then populate that object.
For example, if you are using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, you can use the IBM Data Server Driver for JDBC
and SQLJ-only method com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob to
create a java.sql.Blob object and populate the object with byte[] data:
byte[] byteArray = {0, 1, 2, 3};
java.sql.Blob blobData =

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

v Use an input parameter of type of sqlj.runtime.BinaryStream. A
sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For
example:
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
sqlj.runtime.BinaryStream binStream =

new sqlj.runtime.BinaryStream(byteStream, numBytes);
#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for INOUT parameters.

Output parameters for BLOB columns

For output or INOUT parameters for BLOB columns, you can use the following
technique:
v Declare the output parameter or INOUT variable with a java.sql.Blob data type:

java.sql.Blob blobData = null;
#sql CALL STORPROC (:OUT blobData)};

java.sql.Blob blobData = null;
#sql CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns

For input parameters for CLOB columns, you can use one of the following
techniques:
v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a
java.sql.Clob object, and then populate that object.
For example, if you are using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, you can use the IBM Data Server Driver for JDBC
and SQLJ-only method com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob to
create a java.sql.Clob object and populate the object with String data:
String stringVal = "Some Data";
java.sql.Clob clobData =

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

Chapter 4. SQLJ application programming 165

v Use one of the following types of stream IN parameters:
– A sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;
java.io.StringReader reader = new java.io.StringReader(charData);
sqlj.runtime.CharacterStream charStream =

new sqlj.runtime.CharacterStream (reader, charData.length);
#sql {CALL STORPROC(:IN charStream)};

– A sqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:
byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(charDataBytes);
sqlj.runtime.UnicodeStream uniStream =

new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN uniStream)};

– A sqlj.runtime.AsciiStream parameter, for ASCII data:
byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
sqlj.runtime.AsciiStream asciiStream =

new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You
cannot use this technique for INOUT parameters.

v Use a java.lang.String input parameter:
java.lang.String charData;
#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns

For output or INOUT parameters for CLOB columns, you can use one of the
following techniques:
v Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;
#sql CALL STORPROC(:OUT clobData)};

v Use a java.lang.String output variable:
java.lang.String charData = null;
#sql CALL STORPROC(:OUT charData)};

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns

DBCLOB output or INOUT parameters for stored procedures are not supported.

SQLJ and JDBC in the same application
You can combine SQLJ clauses and JDBC calls in a single program.

To do this effectively, you need to be able to do the following things:
v Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC

Connection from an SQLJ ConnectionContext.
v Use an SQLJ iterator to retrieve data from a JDBC ResultSet or generate a JDBC

ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

166 Application Programming Guide and Reference for Java

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.
3. Invoke the SQLJ DriverManager.getConnection or DataSource.getConnection

method to obtain a JDBC Connection.
4. Invoke the ConnectionContext constructor with the Connection as its argument

to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQLJ ConnectionContext: To do this,
1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.
2. Load the driver or obtain a DataSource instance.
3. Invoke the ConnectionContext constructor with the URL of the driver and any

other necessary parameters as its arguments to create the ConnectionContext
object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC
Connection object.

See "Connect to a data source using SQLJ" for more information on SQLJ
connections.

Retrieving JDBC result sets using SQLJ iterators: Use the iterator conversion
statement to manipulate a JDBC result set as an SQLJ iterator. The general form of
an iterator conversion statement is:
#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must
conform to the following rules:
v The iterator must be declared as public.
v If the iterator is a positioned iterator, the number of columns in the result set

must match the number of columns in the iterator. In addition, the data type of
each column in the result set must match the data type of the corresponding
column in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match
the name of a column in the result set. In addition, the data type of the object
that an accessor method returns must match the data type of the corresponding
column in the result set.

The code in Figure 40 on page 168 builds and executes a query using a JDBC call,
executes an iterator conversion statement to convert the JDBC result set to an SQLJ
iterator, and retrieves rows from the result table using the iterator.

Chapter 4. SQLJ application programming 167

Notes to Figure 40:

Note Description
�1� This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for
dynamic execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table
to result set rs.

�4� This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the
result table.

�5� The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQLJ iterators: Use the getResultSet method to
generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a
getResultSet method. After you access the ResultSet that underlies an iterator,
you need to fetch rows using only the ResultSet.

The code in Figure 41 on page 169 generates a positioned iterator for a query,
converts the iterator to a result set, and uses JDBC methods to fetch rows from the
table.

#sql public iterator ByName(String LastName, Date HireDate); �1�
public void HireDates(ConnectionContext connCtx, String whereClause)
{

ByName nameiter; // Declare object of ByName class
Connection conn=connCtx.getConnection();

// Create JDBC connection
Statement stmt = conn.createStatement(); �2�
String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";
query+=whereClause; // Build the query
ResultSet rs = stmt.executeQuery(query); �3�
#sql [connCtx] nameiter = {CAST :rs}; �4�
while (nameiter.next())
{

System.out.println(nameiter.LastName() + " was hired on "
+ nameiter.HireDate());

}
nameiter.close(); �5�
stmt.close();

}

Figure 40. Converting a JDBC result set to an SQLJ iterator

168 Application Programming Guide and Reference for Java

Notes to Figure 41:

Note Description
�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object
to variable iter.

�2� The getResultSet() method accesses the ResultSet that underlies iterator iter.
�3� The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.
�4� The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQLJ applications: When you
write SQLJ applications that include JDBC result sets, observe the following rules
and restrictions:
v Before you can access the columns of a remote table by name, through either a

named iterator or an iterator that is converted to a JDBC ResultSet object, the
DB2 for z/OS DESCSTAT subsystem parameter must be set to YES.

v You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator
have different holdability attributes.
A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT
operation. For a JDBC ResultSet, this characteristic is controlled by the IBM
Data Server Driver for JDBC and SQLJ property resultSetHoldability. For an
SQLJ iterator, this characteristic is controlled by the with holdability parameter
of the iterator declaration. Casting a ResultSet that has holdability to an SQLJ
iterator that does not, or casting a ResultSet that does not have holdability to an
SQLJ iterator that does, is not supported.

v Close the iterator or the underlying ResultSet object as soon as the program no
longer uses the iterator or ResultSet, and before the end of the program.
Closing the iterator also closes the ResultSet object. Closing the ResultSet object
also closes the iterator object. In general, it is best to close the object that is used
last.

v For the IBM Data Server Driver for JDBC and SQLJ, which supports scrollable
iterators and scrollable and updatable ResultSet objects, the following
restrictions apply:
– Scrollable iterators have the same restrictions as their underlying JDBC

ResultSet objects.
– You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator

that is updatable.

#sql iterator EmpIter(String, java.sql.Date);
{
...

EmpIter iter=null;
#sql [connCtx] iter=

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �1�
ResultSet rs=iter.getResultSet(); �2�
while (rs.next()) �3�
{ System.out.println(rs.getString(1) + " was hired in " +

rs.getDate(2));
}
rs.close(); �4�

}

Figure 41. Converting an SQLJ iterator to a JDBC ResultSet

Chapter 4. SQLJ application programming 169

Related reference:

DESCRIBE FOR STATIC field (DESCSTAT subsystem parameter) (DB2
Installation and Migration)

Controlling the execution of SQL statements in SQLJ
You can use selected methods of the SQLJ ExecutionContext class to control or
monitor the execution of SQL statements.

Procedure

To use ExecutionContext methods, follow these steps:
1. Acquire the default execution context from the connection context.

There are two ways to acquire an execution context:
v Acquire the default execution context from the connection context. For

example:
ExecutionContext execCtx = connCtx.getExecutionContext();

v Create a new execution context by invoking the constructor for
ExecutionContext. For example:
ExecutionContext execCtx=new ExecutionContext();

2. Associate the execution context with an SQL statement.
To do that, specify an execution context after the connection context in the
execution clause that contains the SQL statement.

3. Invoke ExecutionContext methods.
Some ExecutionContext methods are applicable before the associated SQL
statement is executed, and some are applicable only after their associated SQL
statement is executed.
For example, you can use method getUpdateCount to count the number of rows
that are deleted by a DELETE statement after you execute the DELETE
statement.

Example

The following code demonstrates how to acquire an execution context, and then
use the getUpdateCount method on that execution context to determine the number
of rows that were deleted by a DELETE statement. The numbers to the right of
selected statements correspond to the previously-described steps.
ExecutionContext execCtx=new ExecutionContext(); �1�
#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000}; �2�
System.out.println("Deleted " + execCtx.getUpdateCount() + " rows"); �3�

Related tasks:
“Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ”
on page 120
“Handling SQL warnings in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117

ROWIDs in SQLJ with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a table.
A ROWID is a value that uniquely identifies a row in a table.

170 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

If you use columns with the ROWID data type in SQLJ programs, you need to
customize those programs.

JDBC 4.0 includes interface java.sql.RowId that you can use in iterators and in
CALL statement parameters. If you do not have JDBC 4.0, you can use the IBM
Data Server Driver for JDBC and SQLJ-only class com.ibm.db2.jcc.DB2RowID. For
an iterator, you can also use the byte[] object type to retrieve ROWID values.

The following code shows an example of an iterator that is used to select values
from a ROWID column:

The following code shows an example of calling a stored procedure that takes
three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT
parameter.

#sql iterator PosIter(int,String,java.sql.RowId);
// Declare positioned iterator
// for retrieving ITEM_ID (INTEGER),
// ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)
// values from table ROWIDTAB

{
PosIter positrowid; // Declare object of PosIter class
java.sql.RowId rowid = null;
int id = 0;
String i_fmt = null;

// Declare host expressions
#sql [ctxt] positrowid =

{SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB
WHERE ITEM_ID=3};

// Assign the result table of the SELECT
// to iterator object positrowid

#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the first row

while (!positrowid.endFetch())
// Check whether the FETCH returned a row

{System.out.println("Item ID " + id + " Item format " +
i_fmt + " Item ROWID ");
MyUtilities.printBytes(rowid.getBytes());

// Use the getBytes method to
// convert the value to bytes for printing.
// Call a user-defined method called
// printBytes (not shown) to print
// the value.

#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the next row

}
positrowid.close(); // Close the iterator

}

Figure 42. Example of using an iterator to retrieve ROWID values

Chapter 4. SQLJ application programming 171

TIMESTAMP WITH TIME ZONE values in SQLJ applications
DB2 for z/OS supports table columns with the TIMESTAMP WITH TIME ZONE
data type. IBM Data Server Driver for JDBC and SQLJ supports update into and
retrieval from a column with the TIMESTAMP WITH TIME ZONE data type in
SQLJ programs.

When you update or retrieve a TIMESTAMP WITH TIME ZONE value, or call a
stored procedure with a TIMESTAMP WITH TIME ZONE parameter, you need to
use host variables that are com.ibm.db2.jcc.DBTimestamp objects to retain the time
zone information. If you use java.sql.Timestamp objects to pass TIMESTAMP
WITH TIME ZONE values to and from the data server, you lose the time zone
information.

Because the com.ibm.db2.jcc.DBTimestamp class is a IBM Data Server Driver for
JDBC and SQLJ-only class, if you run an uncustomized SQLJ application that uses
com.ibm.db2.jcc.DBTimestamp objects, the application receives an SQLException.

Examples

Suppose that table TSTABLE has a single column, TSCOL, which has data type
TIMESTAMP WITH TIME ZONE. The following code assigns a timestamp value
with a time zone to the column, and retrieves the value from the column.
#sql iterator TSIter(com.ibm.db2.jcc.DBTimestamp TSVar);
{

...
java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");

// Set the time zone to UTC-5
java.util.Calendar estcal= java.util.Calendar.getInstance(esttz);

// Create a calendar instance
// with the EST time zone

java.sql.Timestamp ts =
java.sql.Timestamp.valueOf("2009-02-27 21:22:33.444444");

// Initialize a timestamp object
// with the datetime value that you
// want to put in the table

com.ibm.db2.jcc.DBTimestamp dbts =

java.sql.RowId in_rowid = rowid;
java.sqlRowId out_rowid = null;
java.sql.RowId inout_rowid = rowid;

// Declare an IN, OUT, and
// INOUT ROWID parameter

...
#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,

:OUT out_rowid,
:INOUT inout_rowid)};

// Call the stored procedure
System.out.println("Parameter values from SP_ROWID call: ");
System.out.println("OUT parameter value ");
MyUtilities.printBytes(out_rowid.getBytes());

// Use the getBytes method to
// convert the value to bytes for printing
// Call a user-defined method called
// printBytes (not shown) to print
// the value.

System.out.println("INOUT parameter value ");
MyUtilities.printBytes(inout_rowid.getBytes());

Figure 43. Example of calling a stored procedure with a ROWID parameter

172 Application Programming Guide and Reference for Java

new com.ibm.db2.jcc.DBTimestamp(ts,estcal);
// Create a datetime object that
// includes the time zone

#sql[ctx] {INSERT INTO TSTABLE (TSCOL) VALUES (:dbts)};
// Insert the datetime object in
// the table

#sql[ctx] {COMMIT};

TSIter iter = null;
#sql [ctx] iter = {SELECT TSCOL FROM TSTABLE};

// Assign the result table of the SELECT
while (iter.next()) {

System.out.println ("Timestamp = " +
((com.ibm.db2.jcc.DBTimestamp)iter.TSVar()).toDBString(true));

// Use accessor method TSVar to retrieve
// the TIMESTAMP WITH TIME ZONE value,
// cast it to a DBTimestamp value,
// and retrieve its string representation.
// Value retrieved:
// 2009-02-27 21:22:33.444444-05:00

}
}

Suppose that stored procedure TSSP has a single INOUT parameter, TSPARM,
which has data type TIMESTAMP WITH TIME ZONE. The following code calls
the stored procedure with a timestamp value that includes a time zone, and
retrieves a parameter value with a timestamp value that includes a time zone.
{

...
java.util.TimeZone esttz = java.util.TimeZone.getTimeZone("EST");

// Set the time zone to UTC-5
java.util.Calendar estcal= java.util.Calendar.getInstance(esttz);

// Create a calendar instance
// with the EST time zone

java.sql.Timestamp ts =
java.sql.Timestamp.valueOf("2009-02-27 21:22:33.444444");

// Initialize a timestamp object
// with the timestamp value that you
// want to pass to the stored procedure

com.ibm.db2.jcc.DBTimestamp dbts =
new com.ibm.db2.jcc.DBTimestamp(ts,estcal);

// Create a timestamp object that
// includes the time zone to
// pass to the stored procedure

#sql[ctx] { CALL TSSP (:INOUT dbts) };
System.out.println ("Output parameter: " + dbts.toDBString (true));

// Call the stored procedure with
// the timestamp value as input,
// and retrieve a timestamp value
// with a time zone in the same
// parameter

}

Distinct types in SQLJ applications
In an SQLJ program, you can create a distinct type using the CREATE DISTINCT
TYPE statement in an executable clause.

You can also use CREATE TABLE in an executable clause to create a table that
includes a column of that type. When you retrieve data from a column of that
type, or update a column of that type, you use Java host variables or expressions
with data types that correspond to the built-in types on which the distinct types
are based.

Chapter 4. SQLJ application programming 173

The following example creates a distinct type that is based on an INTEGER type,
creates a table with a column of that type, inserts a row into the table, and
retrieves the row from the table:

Related reference:

CREATE TYPE (distinct) (DB2 SQL)

Savepoints in SQLJ applications
Under the IBM Data Server Driver for JDBC and SQLJ, you can include any form
of the SQL SAVEPOINT statement in your SQLJ program.

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

#sql context Ctx; // Create connection context class Ctx
String empNumVar;
int shoeSizeVar;
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver");
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Connection jdbccon=

DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password);

// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx ctxt=new Ctx(jdbccon);

// Create connection context object myConnCtx
// for the connection to NEWYORK

... // Perform some SQL
#sql [ctxt] {COMMIT}; // Commit the transaction

String empNumVar;
int shoeSizeVar;
...
#sql [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};

// Create distinct type
#sql [myConnCtx] {COMMIT}; // Commit the create
#sql [myConnCtx] {CREATE TABLE EMP_SHOE

(EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};
// Create table using distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create
#sql [myConnCtx] {INSERT INTO EMP_SHOE

VALUES(’000010’,6)}; // Insert a row in the table
#sql [myConnCtx] {COMMIT}; // Commit the INSERT
#sql [myConnCtx] {SELECT EMPNO, EMP_SHOE_SIZE

INTO :empNumVar, :shoeSizeVar
FROM EMP_SHOE}; // Retrieve the row

System.out.println("Employee number: " + empNumVar +
" Shoe size: " + shoeSizeVar);

Figure 44. Defining and using a distinct type

Figure 45. Setting, rolling back to, and releasing a savepoint in an SQLJ application

174 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtypedistinct.htm#db2z_sql_createtypedistinct

// Commit the create
#sql [ctxt]

{INSERT INTO EMP_SHOE VALUES (’000010’, 6)};
// Insert a row

#sql [ctxt]
{SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};

// Create a savepoint
...
#sql [ctxt]

{INSERT INTO EMP_SHOE VALUES (’000020’, 10)};
// Insert another row

#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};
// Roll back work to the point
// after the first insert

...
#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

// Release the savepoint
ctx.close(); // Close the connection context

XML data in SQLJ applications
In SQLJ applications, you can store data in XML columns and retrieve data from
XML columns.

In DB2 tables, the XML built-in data type is used to store XML data in a column as
a structured set of nodes in a tree format.

SQLJ applications can send XML data to the data server or retrieve XML data from
the data server in one of the following forms:
v As textual XML data
v As binary XML data (data that is in the Extensible Dynamic Binary XML DB2

Client/Server Binary XML Format), if the data server supports it

In SQLJ applications, you can:
v Store an entire XML document in an XML column using INSERT, UPDATE, or

MERGE statements.
v Retrieve an entire XML document from an XML column using single-row

SELECT statements or iterators.
v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence in the database, and then using
single-row SELECT statements or iterators to retrieve the serialized XML string
data into an application variable.

v You can update or retrieve XML data as textual XML data. Alternatively, for
connections to a data server that supports binary XML data, you can update or
retrieve XML data as binary XML data.
For data retrieval, you use the Datasource or Connection property xmlFormat to
control whether the format of the retrieved data is textual XML or binary XML.
For update of data in XML columns, xmlFormat has no effect. If the input data
is binary XML data, and the data server does not support binary XML data, the
input data is converted to textual XML data. Otherwise, no conversion occurs.
The format of XML data is transparent to the application. Storage and retrieval
of binary XML data on a DB2 for z/OS data server requires version 4.9 or later
of the IBM Data Server Driver for JDBC and SQLJ. Storage and retrieval of
binary XML data on a DB2 for Linux, UNIX, and Windows data server requires
version 4.11 or later of the IBM Data Server Driver for JDBC and SQLJ.

Chapter 4. SQLJ application programming 175

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML
columns. Invocations of metadata methods, such as
ResultSetMetaData.getColumnType return the integer value java.sql.Types.SQLXML
for an XML column type.
Related concepts:
“XML data retrieval in SQLJ applications” on page 178
“XML column updates in SQLJ applications”

XML column updates in SQLJ applications
In an SQLJ application, you can update or insert data into XML columns of a table
at a DB2 data server using XML textual data. You can update or insert data into
XML columns of a table using binary XML data (data that is in the Extensible
Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data server
supports binary XML data.

The host expression data types that you can use to update XML columns are:
v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ version 4.0 or later)
v com.ibm.db2.jcc.DB2Xml (deprecated)
v String
v byte
v Blob
v Clob
v sqlj.runtime.AsciiStream
v sqlj.runtime.BinaryStream
v sqlj.runtime.CharacterStream

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the data source as character
data is treated as externally encoded data. The external encoding is the default
encoding for the JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent
to the data source as character data, but the data contains encoding information.
The data source handles incompatibilities between internal and external encoding
as follows:
v If the data source is DB2 for Linux, UNIX, and Windows, the data source

generates an error if the external and internal encoding are incompatible, unless
the external and internal encoding are Unicode. If the external and internal
encoding are Unicode, the data source ignores the internal encoding.

v If the data source is DB2 for z/OS, the data source ignores internal encoding.

Character data in XML columns is stored in UTF-8 encoding.

Example: Suppose that you use the following statement to insert data from String
host expression xmlString into an XML column in a table. xmlString is a character
type, so its external encoding is used, whether or not it has an internal encoding
specification.
#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xmlString)};

176 Application Programming Guide and Reference for Java

Example: Suppose that you copy the data from xmlString into a byte array with
CP500 encoding. The data contains an XML declaration with an encoding
declaration for CP500. Then you insert the data from the byte[] host expression
into an XML column in a table.
byte[] xmlBytes = xmlString.getBytes("CP500");
#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :xmlBytes)};

A byte string is considered to be internally encoded data. The data is converted
from its internal encoding scheme to UTF-8, if necessary, and stored in its
hierarchical format on the data source.

Example: Suppose that you copy the data from xmlString into a byte array with
US-ASCII encoding. Then you construct an sqlj.runtime.AsciiStream host
expression, and insert data from the sqlj.runtime.AsciiStream host expression into
an XML column in a table on a data source.
byte[] b = xmlString.getBytes("US-ASCII");
java.io.ByteArrayInputStream xmlAsciiInputStream =

new java.io.ByteArrayInputStream(b);
sqlj.runtime.AsciiStream sqljXmlAsciiStream =

new sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);
#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlAsciiStream)};

sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is
converted from its internal encoding to UTF-8 encoding and stored in its
hierarchical form on the data source.

Example: sqlj.runtime.CharacterStream host expression: Suppose that you
construct an sqlj.runtime.CharacterStream host expression, and insert data from the
sqlj.runtime.CharacterStream host expression into an XML column in a table.
java.io.StringReader xmlReader =

new java.io.StringReader(xmlString);
sqlj.runtime.CharacterStream sqljXmlCharacterStream =

new sqlj.runtime.CharacterStream(xmlReader, xmlString.length());
#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljXmlCharacterStream is a character type, so its external encoding is used,
whether or not it has an internal encoding specification.

Example: Suppose that you retrieve a document from an XML column into a
java.sql.SQLXML host expression, and insert the data into an XML column in a
table.
java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");
rs.next();
java.sql.SQLXML xmlObject = (java.sql.SQLXML)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the
data into another XML column, no conversion occurs.

Example: Suppose that you retrieve a document from an XML column into a
com.ibm.db2.jcc.DB2Xml host expression, and insert the data into an XML column
in a table.
java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");
rs.next();
com.ibm.db2.jcc.DB2Xml xmlObject = (com.ibm.db2.jcc.DB2Xml)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

Chapter 4. SQLJ application programming 177

After you retrieve the data it is still in UTF-8 encoding, so when you insert the
data into another XML column, no conversion occurs.

XML data retrieval in SQLJ applications
When you retrieve data from XML columns of a database table in an SQLJ
application, the output data must be explicitly or implicitly serialized.

The host expression or iterator data types that you can use to retrieve data from
XML columns are:
v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ version 4.0 or later)
v com.ibm.db2.jcc.DB2Xml (deprecated)
v String
v byte[]
v sqlj.runtime.AsciiStream
v sqlj.runtime.BinaryStream
v sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval,
the data is converted from UTF-8 to the external application encoding for the
character data types, or the internal encoding for the binary data types. No XML
declaration is added. If the host expression is an object of the java.sql.SQLXML or
com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve
the data from this object. The method that you call determines the encoding of the
output data and whether an XML declaration with an encoding specification is
added.

The following table lists the methods that you can call to retrieve data from a
java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding
output data types and type of encoding in the XML declarations.

Table 29. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding
parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding
parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

178 Application Programming Guide and Reference for Java

If the application executes the XMLSERIALIZE function on the data that is to be
returned, after execution of the function, the data has the data type that is specified
in the XMLSERIALIZE function, not the XML data type. Therefore, the driver
handles the data as the specified type and ignores any internal encoding
declarations.

Example: Suppose that you retrieve data from an XML column into a String host
expression.
#sql iterator XmlStringIter (int, String);
#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};
#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the
external encoding, which is the default JVM encoding, and returned without any
XML declaration.

Example: Suppose that you retrieve data from an XML column into a byte[] host
expression.
#sql iterator XmlByteArrayIter (int, byte[]);
XmlByteArrayIter biter = null;
#sql [ctx] biter = {SELECT c1, CADOC from CUSTACC};
#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so no data conversion from UTF-8 encoding
occurs, and the data is returned without any XML declaration.

Example: Suppose that you retrieve a document from an XML column into a
java.sql.SQLXML host expression, but you need the data in a binary stream.
#sql iterator SqlXmlIter (int, java.sql.SQLXML);
SqlXmlIter SQLXMLiter = null;
java.sql.SQLXML outSqlXml = null;
#sql [ctx] SqlXmlIter = {SELECT c1, CADOC from CUSTACC};
#sql {FETCH :SqlXmlIter INTO :row, :outSqlXml};
java.io.InputStream XmlStream = outSqlXml.getBinaryStream();

The FETCH statement retrieves the data into the SQLXML object in UTF-8
encoding. The SQLXML.getBinaryStream stores the data in a binary stream.

Example: Suppose that you retrieve a document from an XML column into a
com.ibm.db2.jcc.DB2Xml host expression, but you need the data in a byte string
with an XML declaration that includes an internal encoding specification for
UTF-8.
#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);
DB2XmlIter db2xmliter = null;
com.ibm.db2.jcc.DB2Xml outDB2Xml = null;
#sql [ctx] db2xmliter = {SELECT c1, CADOC from CUSTACC};
#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};
byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8
encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML
declaration with a UTF-8 encoding specification and stores the data in a byte array.

XMLCAST in SQLJ applications
Before you can use XMLCAST to cast a host variable to the XML data type in an
SQLJ application, you need to cast the host variable to the corresponding SQL data
type.

Chapter 4. SQLJ application programming 179

Example: The following code demonstrates a situation in which it is necessary to
cast a String host variable to an SQL character type, such as VARCHAR, before
you use XMLCAST to cast the value to the XML data type.
String xmlresult = null;
String varchar_hv = "San Jose";
...
#sql [con] {SELECT XMLCAST(CAST(:varchar_hv AS VARCHAR(32)) AS XML) INTO

:xmlresult FROM SYSIBM.SYSDUMMY1};

Inserting data from file reference variables into tables in SQLJ
applications

You can use file reference variable objects with IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS Version 9 or later to stream LOB or
XML input data.

Before you begin

You need to store your LOB or XML input data in HFS files.

About this task

Use of file reference variables eliminates the need to materialize the LOB or XML
data in memory before the data is stored in tables.

Procedure

To use file reference variables to store LOB or XML data in tables, follow these
steps:
1. Execute constructors for file reference variable objects of the appropriate types.

The following table lists the types of data in the input files and the appropriate
constructors.

Input data type Constructor

BLOB com.ibm.db2.jcc.DB2BlobFileReference

CLOB com.ibm.db2.jcc.DB2ClobFileReference

XML AS BLOB com.ibm.db2.jcc.DB2XmlAsBlobFileReference

XML AS CLOB com.ibm.db2.jcc.DB2XmlAsClobFileReference

The first parameter in each constructor must specify the absolute path name for
an existing HFS file.

2. Execute an INSERT statement with the file reference variable object as the input
host variable.

Example

Suppose that a table is defined like this:
CREATE TABLE TEST02TB (

RECID INTEGER,
CLOBCOL CLOB(100M),
BLOBCOL(200M),
XMLCOL XML)

180 Application Programming Guide and Reference for Java

The following code uses file reference variables to insert a CLOB value, a BLOB
value, and an XML AS BLOB value into the table. The numbers to the right of
selected statements correspond to the previously described steps.

...
com.ibm.db2.jcc.DB2ClobFileReference clobFileRef = �1�

new com.ibm.db2.jcc.DB2ClobFileReference("/u/usrt001/jcc/test/TEXT.FILE","Cp037");
com.ibm.db2.jcc.DB2BlobFileReference blobFileRef =

new com.ibm.db2.jcc.DB2BlobFileReference("/u/usrt001/jcc/test/BINARY.FILE");
com.ibm.db2.jcc.DB2XmlAsBlobFileReference xmlAsBlobFileRef =

new com.ibm.db2.jcc.DB2XmlAsBlobFileReference(
"/u/usrt001/jcc/test/XML.FILE");

// Execute constructors for the file reference
// variable objects

#sql [ctx] {"INSERT INTO TEST03TB(RECID,CLOBCOL,BLOBCOL,XMLCOL) �2�
VALUES(’003’,:clobFileRef,:blobFileRef,:xmlAsBlobFileRef)};

SQLJ utilization of SDK for Java Version 5 function
Your SQLJ applications can use a number of functions that were introduced with
the SDK for Java Version 5.

Static import

The static import construct lets you access static members without qualifying those
members with the name of the class to which they belong. For SQLJ applications,
this means that you can use static members in host expressions without qualifying
them.

Example: Suppose that you want to declare a host expression of this form:
double r = cos(PI * E);

cos, PI, and E are members of the java.lang.Math class. To declare r without
explicitly qualifying cos, PI, and E, include the following static import statement in
your program:
import static java.lang.Math.*;

Annotations

Java annotations are a means for adding metadata to Java programs that can also
affect the way that those programs are treated by tools and libraries. Annotations
are declared with annotation type declarations, which are similar to interface
declarations. Java annotations can appear in the following types of classes or
interfaces:
v Class declaration
v Interface declaration
v Nested class declaration
v Nested interface declaration

You cannot include Java annotations directly in SQLJ programs, but you can
include annotations in Java source code, and then include that source code in your
SQLJ programs.

Example: Suppose that you declare the following marker annotation in a program
called MyAnnot.java:
public @interface MyAnot { }

Chapter 4. SQLJ application programming 181

You also declare the following marker annotation in a program called
MyAnnot2.java:
public @interface MyAnot2 { }

You can then use those annotations in an SQLJ program:
// Class annotations
@MyAnot2 public @MyAnot class TestAnnotation
{

// Field annotation
@MyAnot
private static final int field1 = 0;
// Constructor annotation
@MyAnot2 public @MyAnot TestAnnotation () { }
// Method annotation
@MyAnot
public static void main (String a[])
{

TestAnnotation TestAnnotation_o = new TestAnnotation();
TestAnnotation_o.runThis();

}
// Inner class annotation
public static @MyAnot class TestAnotherInnerClass { }
// Inner interface annotation
public static @MyAnot interface TestAnotInnerInterface { }

}

Enumerated types

An enumerated type is a data type that consists of a set of ordered values. The
SDK for Java version 5 introduces the enum type for enumerated types.

You can include enums in the following places:
v In Java source files (.java files) that you include in an SQLJ program
v In SQLJ class declarations

Example: The TestEnum.sqlj class declaration includes an enum type:
public class TestEnum2
{

public enum Color {
RED,ORANGE,YELLOW,GREEN,BLUE,INDIGO,VIOLET}
Color color;
... // Get the value of color
switch (color) {
case RED:

System.out.println("Red is at one end of the spectrum.");
#sql[ctx] { INSERT INTO MYTABLE VALUES (:color) };
break;

case VIOLET:
System.out.println("Violet is on the other end of the spectrum.");
break;

case ORANGE:
case YELLOW:
case GREEN:
case BLUE:
case INDIGO:

System.out.println("Everything else is in the middle.");
break;

}

182 Application Programming Guide and Reference for Java

Generics

You can use generics in your Java programs to assign a type to a Java collection.
The SQLJ translator tolerates Java generic syntax. Examples of generics that you
can use in SQLJ programs are:
v A List of List objects:

List <List<String>> strList2 = new ArrayList<List<String>>();

v A HashMap in which the key/value pair has the String type:
Map <String,String> map = new HashMap<String,String>();

v A method that takes a List with elements of any type:
public void mthd(List <?> obj) {
...
}

Although you can use generics in SQLJ host variables, the value of doing so is
limited because the SQLJ translator cannot determine the types of those host
variables.

Enhanced for loop

The enhanced for lets you specify that a set of operations is performed on each
member of a collection or array. You can use the iterator in the enhanced for loop
in host expressions.

Example: INSERT each of the items in array names into table TAB.
String[] names = {"ABC","DEF","GHI"};
for (String n : names)
{

#sql {INSERT INTO TAB (VARCHARCOL) VALUES(:n) };
}

Varargs

Varargs make it easier to pass an arbitrary number of values to a method. A Vararg
in the last argument position of a method declaration indicates that the last
arguments are an array or a sequence of arguments. An SQLJ program can use the
passed arguments in host expressions.

Example: Pass an arbitrary number of parameters of type Object, to a method that
inserts each parameter value into table TAB.
public void runThis(Object... objects) throws SQLException
{

for (Object obj : objects)
{

#sql { INSERT INTO TAB (VARCHARCOL) VALUES(:obj) };
}

}

Transaction control in SQLJ applications
In SQLJ applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

Chapter 4. SQLJ application programming 183

Setting the isolation level for an SQLJ transaction
To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause.

About this task

The following table shows the values that you can specify in the SET
TRANSACTION ISOLATION LEVEL clause and their DB2 equivalents.

Table 30. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level

SERIALIZABLE Repeatable read

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ
connection.
Related concepts:
“JDBC connection objects” on page 26

Committing or rolling back SQLJ transactions
If you disable autocommit for an SQLJ connection, you need to perform explicit
commit or rollback operations. You do this using execution clauses that contain the
SQL COMMIT or ROLLBACK statements.

Example

To commit a transaction in an SQLJ program, use a statement like this:
#sql [myConnCtx] {COMMIT};

To roll back a transaction in an SQLJ program, use a statement like this:
#sql [myConnCtx] {ROLLBACK};

Related tasks:
“Connecting to a data source using SQLJ” on page 127
“Committing or rolling back SQLJ transactions”

Handling SQL errors and warnings in SQLJ applications
SQLJ clauses throw SQLExceptions when SQL errors occur, but not when most
SQL warnings occur.

About this task

SQLJ generates an SQLException under the following circumstances:
v When any SQL statement returns a negative SQL error code
v When a SELECT INTO SQL statement returns a +100 SQL error code

You need to explicitly check for other SQL warnings.

184 Application Programming Guide and Reference for Java

Procedure
v For SQL error handling, include try/catch blocks around SQLJ statements.
v For SQL warning handling, invoke the getWarnings method after every SQLJ

statement.

Handling SQL errors in an SQLJ application
SQLJ clauses use the JDBC class java.sql.SQLException for error handling.

Procedure

To handle SQL errors in SQLJ applications, following these steps:
1. Import the java.sql.SQLException class.
2. Use the Java error handling try/catch blocks to modify program flow when an

SQL error occurs.
3. Obtain error information from the SQLException.

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.
If you are using the IBM Data Server Driver for JDBC and SQLJ, obtain
additional information from the SQLException by casting it to a DB2Diagnosable
object, in the same way that you obtain this information in a JDBC application.

Example

The following code prints out the SQL error that occurred if a SELECT statement
fails.
try {

#sql [ctxt] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO=’000010’};

}
catch(SQLException e) {

System.out.println("Error code returned: " + e.getErrorCode());
}

Related tasks:
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117

Handling SQL warnings in an SQLJ application
Other than a +100 SQL error code on a SELECT INTO statement, warnings from
the data server do not throw SQLExceptions. To handle warnings from the data
server, you need to give the program access to the java.sql.SQLWarning class.

About this task

If you want to retrieve data-server-specific information about a warning, you also
need to give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface
and the com.ibm.db2.jcc.DB2Sqlca class.

Procedure

To retrieve data-server-specific information about a warning:
1. Set up an execution context for that SQL clause. See "Control the execution of

SQL statements in SQLJ" for information on how to set up an execution context.

Chapter 4. SQLJ application programming 185

2. To check for a warning from the data server, invoke the getWarnings method
after you execute an SQLJ clause.
getWarnings returns the first SQLWarning object that an SQL statement
generates. Subsequent SQLWarning objects are chained to the first one.

3. To retrieve data-server-specific information from the SQLWarning object with the
IBM Data Server Driver for JDBC and SQLJ, follow the instructions in "Handle
an SQLException under the IBM Data Server Driver for JDBC and SQLJ".

Example

The following example demonstrates how to retrieve an SQLWarning object for an
SQL clause with execution context execCtx. The numbers to the right of selected
statements correspond to the previously-described steps.
ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

// Get default execution context from
// connection context

SQLWarning sqlWarn;
...
#sql [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO=’000010’};
if ((sqlWarn = execCtx.getWarnings()) != null) �2�
System.out.println("SQLWarning " + sqlWarn);

Related tasks:
“Handling SQL errors in an SQLJ application” on page 185

Closing the connection to a data source in an SQLJ application
When you have finished with a connection to a data source, you need to close the
connection to the data source. Doing so releases the DB2 and SQLJ resources for
the associated ConnectionContext object immediately.

About this task

If you do not close a ConnectionContext object after you use it, unexpected
behavior might occur if a Java finalizer closes the ConnectionContext object.
Examples of the unexpected behavior are:
v An ObjectClosedException on the underlying ResultSet or Statement objects
v Agent hangs in DB2 stored procedures

Procedure

To close the connection to the data source, use one of the ConnectionContext.close
methods.
v If you execute ConnectionContext.close() or

ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the connection
context, as well as the connection to the data source, are closed.

v If you execute ConnectionContext.close(ConnectionContext.KEEP_CONNECTION)
the connection context is closed, but the connection to the data source is not.

Example

The following code closes the connection context, but does not close the connection
to the data source.

186 Application Programming Guide and Reference for Java

...
ctx = new EzSqljctx(con0); // Create a connection context object

// from JDBC connection con0
... // Perform various SQL operations
EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);

// Close the connection context but keep
// the connection to the data source open

Related tasks:
“Connecting to a data source using SQLJ” on page 127

Chapter 4. SQLJ application programming 187

188 Application Programming Guide and Reference for Java

Chapter 5. Java stored procedures and user-defined functions

Like stored procedures and user-defined functions in any other language, Java
stored procedures and user-defined functions are programs that can contain SQL
statements. You invoke Java stored procedures from a client program that is
written in any supported language.

The following topics contain information that is specific to defining and writing
Java user-defined functions and stored procedures.

In these topics, the word routine refers to either a stored procedure or a
user-defined function.
Related reference:

Java sample JDBC stored procedure (DB2 9 for z/OS Stored Procedures:
Through the CALL and Beyond)

Java stored procedure returning a BLOB column (DB2 9 for z/OS Stored
Procedures: Through the CALL and Beyond)

Java stored procedure returning a CLOB column (DB2 9 for z/OS Stored
Procedures: Through the CALL and Beyond)

Debugging Java procedures on Linux, UNIX, and Windows (DB2 9 for z/OS
Stored Procedures: Through the CALL and Beyond)

Java sample SQLJ stored procedure (DB2 9 for z/OS Stored Procedures:
Through the CALL and Beyond)

Setting up the environment for Java routines
Before you can run Java routines, you need to set up a WLM environment and set
Java environment variables.

Before you begin

Before you can prepare and run Java routines, you need to satisfy the following
prerequisites:
v Java 2 Technology Edition, V5 or later.

The IBM Data Server Driver for JDBC and SQLJ supports 31-bit or 64-bit Java
routines. For 64-bit Java routines, you need Java 2 Technology Edition, V6 or
later.

v TCP/IP
TCP/IP is required on the client and all database servers to which you connect.

v The 4.xx version of the IBM Data Server Driver for JDBC and SQLJ that matches
the DB2 for z/OS version.
If you are migrating from a previous release of DB2 for z/OS, you need to
install the corresponding version of the IBM Data Server Driver for JDBC and
SQLJ.

About this task

The steps in this ask are necessary for preparing and running Java routines.

© Copyright IBM Corp. 1998, 2013 189

|

|
|
|

|
|

|
|
|

http://www.redbooks.ibm.com/redbooks/SG247604/13-10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-4.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-4.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-5.htm
http://www.redbooks.ibm.com/redbooks/SG247604/25-5.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-6.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-11.htm
http://www.redbooks.ibm.com/redbooks/SG247604/13-11.htm

If you plan to use IBM Optim Development Studio to prepare and run your Java
routines, see the information on developing database routines in the Integrated
Data Management Information Center, at the following URL:
http://publib.boulder.ibm.com/infocenter/idm/v2r1/index.jsp

Procedure

To set up the environment for running Java routines, you need to perform these
tasks:
1. Ensure that your operating system, SDK for Java, and the IBM Data Server

Driver for JDBC and SQLJ are at the correct levels, and that you have installed
all prerequisite products.
Important: If you have migrated the DB2 subsystem from a previous release of
DB2 for z/OS, your existing Java stored procedures and user-defined function
no longer work with the previous release of the IBM Data Server Driver for
JDBC and SQLJ and the current release of DB2 for z/OS. You need to install the
version of the IBM Data Server Driver for JDBC and SQLJ that matches the
DB2 for z/OS release level, and update the WLM-managed stored procedure
address space configuration and JAVAENV data set to use the current driver.

2. Create the Workload Manager for z/OS (WLM) application environment for
running the routines.

3. Set up the run-time environment for Java routines, which includes setting
environment variables.

Setting up the WLM application environment for Java routines
You need different WLM application environments for Java routines from the
WLM application environments that you use for other routines.

About this task

Setting up a WLM environment for Java routines involves the same basic steps as
setting up a WLM environment for other routines.

Procedure
1. Create a WLM environment startup procedure for Java routines.
2. Define the WLM environment to WLM.

WLM address space startup procedure for Java routines
The WLM address space startup procedure for Java routines requires extra DD
statements that other routines do not need.

The following figure shows an example of a startup procedure for an address
space in which Java routines can run. The JAVAENV DD statement indicates to
DB2 that the WLM environment is for Java routines.

190 Application Programming Guide and Reference for Java

Notes to Figure 46:

�1� In this statement:

v Change the DB2SSN value to your DB2 for z/OS subsystem name.

v Change the APPLENV value to the name of the application environment that
you set up for Java stored procedures.

v If your stored procedure address space runs routines in 31-bit Java virtual
machines (JVMs), the recommended NUMTCB value is 5. For testing a Java
stored procedure, NUMTCB=1 is recommended. With NUMTCB=1, only one
JVM is started, so refreshing the WLM environment after you change the stored
procedure takes less time.

If your stored procedure address space runs routines in a 64-bit, multi-threaded
environment, the recommended NUMTCB value is 25. The NUMTCB value
specifies the number of concurrent stored procedure executions within the
single JVM that runs in the stored procedure address space.

v Change the MNSPAS value to the minimum number of stored procedure
address spaces that WLM starts and maintains. Valid values are 0 to 50. If you
specify 0, WLM starts and shuts down stored procedure address spaces as
applications require them. Specify a value of greater than 0 if the overhead of
starting and shutting down stored procedure address spaces and JVMs makes
your response time unacceptable.

�2� DSNX9WLM is the program that is executed to run stored procedures in a 31-bit
stored procedure environment. To run Java routines in a 64-bit, multi-threaded
environment, change DSNX9WLM to DSNX9WJM.

�3� JAVAENV specifies a data set that contains Language Environment® run-time
options for Java stored procedures. The presence of this DD statement indicates to
DB2 that the WLM environment is for Java routines. This data set must contain
the environment variable JAVA_HOME. This environment variable indicates to
DB2 that the WLM environment is for Java routines. JAVA_HOME also specifies
the highest-level directory in the set of directories that contain the SDK for Java.

�4� Specifies a data set into which DB2 puts information that you can use to debug
your stored procedure. The information that DB2 collects is for assistance in
debugging setup problems, and should be used only under the direction of IBM
Software Support. You should comment out this DD statement during production.

Related concepts:
“WLM application environment values for Java routines”
“Runtime environment for Java routines” on page 193

WLM application environment values for Java routines
To define the application environment for Java routines to WLM, specify the
appropriate values on WLM setup panels.

//DSNWLM PROC RGN=0K,APPLENV=WLMIJAV,DB2SSN=DSN,NUMTCB=5, �1�
// MNSPAS=0//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV,&MNSPAS’ �2�

//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSNB10.SDSNEXIT
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=DSNB10.SDSNLOD2
//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV �3�
//JSPDEBUG DD SYSOUT=A �4�

//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 46. Startup procedure for a WLM address space in which a Java routine runs

Chapter 5. Java stored procedures and user-defined functions 191

|
|

|
|
|
|
|

|
|
|
|

||
|
|

Use values like those that are shown in the following screen examples.

File Utilities Notes Options Help
--

Definition Menu WLM Appl
Command ===> ___

Definition data set . : none
Definition name WLMENV
Description Environment for Java stored procedures
Select one of the
following options. . . 9 1. Policies

2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments

10. Scheduling Environments

Definition name
Specify the name of the WLM application environment that you are setting up
for stored procedures.

Description
Specify any value.

Options
Specify 9 (Application Environments).

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> ___

Application Environment Name . : WLMENV
Description Environment for Java stored procedures
Subsystem Type DB2
Procedure Name DSN8WLMP
Start Parameters DB2SSN=DB2T,NUMTCB=3,APPLENV=WLMENV

Limit on starting server address spaces for a subsystem instance:
1 1. No limit.

2. Single address space per system.
3. Single address spaces per sysplex.

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the
stored procedure address spaces that are associated with this application
environment.

Start Parameters
If the DB2 subsystem in which the stored procedure runs is not in a sysplex,
specify a DB2SSN value that matches the name of that DB2 subsystem. If the
same JCL is used for multiple DB2 subsystems, specify DB2SSN=&IWMSSNM.
The NUMTCB value depends on the type of stored procedure you are running.
For Java routines that run in a 31-bit environment, the recommended value is
5. For Java routines that run in a 64-bit environment, the recommended value
is 25. Specify an APPLENV value that matches the value that you specify on

192 Application Programming Guide and Reference for Java

|
|
|
|
|
|
|

the CREATE PROCEDURE or CREATE FUNCTION statement for the routines
that run in this application environment.

Limit on starting server address spaces for a subsystem instance
Specify 1 (no limit).

Related concepts:
“WLM address space startup procedure for Java routines” on page 190
“Runtime environment for Java routines”

Runtime environment for Java routines
For Java routines, the startup procedure for the stored procedure address space
contains a JAVAENV DD statement. This statement specifies a data set that
contains Language Environment runtime options for the routines that run in the
stored procedure address space.

Create the data set for the runtime options with the characteristics that are listed in
the following table.

Table 31. Data set characteristics for the JAVAENV data set

Primary space allocation 1 block

Secondary space allocation 1 block

Record format VB

Record length 255

Block size 4096

After you create the data set, edit it to insert a Language Environment options
string, which has this form:

��
XPLINK(ON),

�

,

ENVAR(" environment-variable = setting "), �

� MSGFILE(, , , ,)
ddname recfm lrecl blksize NOENQ

ENQ

��

The maximum length of the Language Environment runtime options string in a
JAVAENV data set for Java stored procedures is 245 bytes. If you exceed the
maximum length, DB2 truncates the contents but does not issue a message. If you
enter the contents of the JAVAENV data set on more than one line, DB2
concatenates the lines to form the runtime options string. The runtime options
string can contain no leading or trailing blanks. Within the string, only blanks that
are valid within an option are permitted.

If your environment variable list is long enough that the JAVAENV content is
greater than 245 bytes, you can put the environment variable list in a separate data
set in a separate file, and use the environment variable _CEE_ENVFILE to point to
that file.

The descriptions of the parameters are:

Chapter 5. Java stored procedures and user-defined functions 193

|
|

_CEE_ENVFILE
Specifies a z/OS UNIX System Services data set that contains some or all of
the settings for environment variables.

Use the _CEE_ENVFILE parameter if the length of environment variable string
causes the total length of the JAVAENV content to exceed 245 bytes, which is
the DB2 limit for the JAVAENV content.

The data set must be variable-length.The format for environment variable
settings in this data set is:
environment-variable-1=setting-1
environment-variable-2=setting-2
...
environment-variable-n=setting-n

You can specify some of your environment variable settings as arguments of
ENVAR and put some of the settings in this data set, or you can put all of
your environment variable settings in this data set.

For example, to use file /u/db2b10/javasp/jspnolimit.txt for environment
variable settings, specify:
_CEE_ENVFILE=/u/db2b10/javasp/jspnolimit.txt

ENVAR
Sets the initial values for specified environment variables. The environment
variables that you might need to specify are:

CLASSPATH
When you prepare your Java routines, if you do not put your routine
classes into JAR files, include the directories that contain those classes. For
example:
CLASSPATH=.:/U/DB2RES3/ACMEJOS

Do not include directories for JAR files for JDBC or the JDK in the
CLASSPATH. If you use a DB2JccConfiguration.properties file, you need to
include the directory that contains that file in the CLASSPATH.

DB2_BASE
The value of DB2_BASE is the highest-level directory in the set of HFS
directories that contain DB2 for z/OS code.

For example:
DB2_BASE=/usr/lpp/db2b10/base

The default is /usr/lpp/db2b10/base.

JAVA_HOME
This environment variable indicates to DB2 that the WLM environment is
for Java routines. The value of JAVA_HOME is the highest-level directory
in the set of directories that contain the SDK for Java. For example:
JAVA_HOME=/usr/lpp/java/IBM/J6.0

JCC_HOME
The value of JCC_HOME is the highest-level directory in the set of
directories that contain the JDBC driver. For example:
JCC_HOME=/usr/lpp/db2b10/jdbc

JCC_HOME must be set.

194 Application Programming Guide and Reference for Java

JDBCSTD
Specifies which version of the IBM Data Server Driver for JDBC and SQLJ
that Java routines use. Possible values are:

3 Java routines use the version of the driver that supports JDBC 3.0.

4 Java routines use the version of the driver that supports JDBC 4.0.

To run multiple Java stored procedures concurrently in a 64-bit
JVM, you must set JDBCSTD to 4.

JVM_DEBUG_PORTRANGE
This environment variable specifies a range of ports that the JVM listens on
for debug connections, in the form low-port-number::high-port-number. The
default is ports 8000 to 8050. For example:
JVM_DEBUG_PORTRANGE=8051::8055

Specify JVM_DEBUG_PORTRANGE only for WLM environments that are
used for debugging Java routines.

JVMPROPS
This environment variable specifies the name of a z/OS UNIX System
Services file that contains startup options for the JVM in which the stored
procedure runs. For example:
JVMPROPS=/usr/lpp/java/properties/jvmsp

The following example shows the contents of a startup options file that
you might use for a JVM in which Java stored procedures run:

Properties file for JVM for Java stored procedures
Sets the initial size of middleware heap within non-system heap
-Xms64M

Sets the maximum size of nonsystem heap
-Xmx128M

#initial size of system heap
-Xinitsh512K

For information about JVM startup options, see IBM 31-bit and 64-bit SDKs
for z/OS, Java 2 Technology Edition, Version 5 SDK and Runtime Environment
User Guide, available at:
http://www.ibm.com/servers/eserver/zseries/software/java

Click the Reference Information link.

LC_ALL
Modify LC_ALL to change the locale to use for the locale categories when
the individual locale environment variables specify locale information. This
value needs to match the CCSID for the DB2 subsystem on which the
stored procedures run. For example:
LC_ALL=En_US.IBM-037

TZ Modify TZ to change the local timezone. For example:
TZ=PST08

The default is GMT (UTC).

USE_LIBJVM_G
Specifies whether the debug version of the JVM is used instead of the
default, non-debug version of the JVM. The debug version of the JVM is in

Chapter 5. Java stored procedures and user-defined functions 195

dynamic link library libjvm_g. If USE_LIBJVM_G is not specified, or its
value is anything other than the capitalized string YES, the non-debug
version of the JVM is used. For example, USE_LIBJVM_G=NO causes the
non-debug version of the JVM to be used.

If USE_LIBJVM_G=YES, the JVMPROPS environment variable must specify
a file that contains JVM startup options. That file must contain the startup
option -Djava.execsuffix=_g.

Specify USE_LIBJVM_G=YES only under the direction of IBM Software
Support.

WORK_DIR
Modify WORK_DIR to change the default destination for STDOUT and
STDERR output.

MSGFILE
Specifies the DD name of a data set in which Language Environment puts
runtime diagnostics. All subparameters in the MSGFILE parameter are
optional. The default is
MSGFILE(SYSOUT,FBA,121,0,NOENQ)

If you specify a data set name in the JSPDEBUG statement of your stored
procedure address space startup procedure, you need to specify JSPDEBUG as
the first parameter. If the NUMTCB value in the stored procedure address
space startup procedure is greater than 1, you need to specify ENQ as the fifth
subparameter. z/OS Language Environment Programming Reference contains
complete information about MSGFILE.

XPLINK(ON)
Causes the initialization of the XPLINK environment. This option must be
specified for a 31-bit environment, and should not be specified for a 64-bit
environment.

The following example shows the contents of a JAVAENV data set.
ENVAR("JCC_HOME=/usr/lpp/db2b10/jdbc",
"JAVA_HOME=/usr/lpp/java160/J6.0",
"WORK_DIR=/u/db2b10/tmp"),
MSGFILE(JSPDEBUG,,,,ENQ)

For information on environment variables that are related to locales, see z/OS
C/C++ Programming Guide.
Related concepts:
“WLM address space startup procedure for Java routines” on page 190
“WLM application environment values for Java routines” on page 191

Moving from 31-bit Java routines to 64-bit Java routines
Modify your existing 31-bit Java routine environments to run Java routines in a
64-bit Java virtual machine (JVM). This change can provide better scalability and
performance.

About this task

A stored procedure address space in which JVMs use 64-bit addressing supports a
multi-threaded JVM model. With this model, the WLM address space starts a

196 Application Programming Guide and Reference for Java

|

|
|
|

|

|
|

single JVM that can concurrently execute multiple Java stored procedures or
user-defined functions. This model is more efficient than the 31-bit model, in which
a single routine runs in a JVM.

To run Java routines in 64-bit JVMs, you need to make several changes to the
environment and to your Java applications.

Procedure
1. Define a startup procedure for a WLM environment in which 64-bit JVMs can

run.
The following JCL shows an example of such a WLM startup procedure.
//DSNWJ64 PROC RGN=0K,APPLENV=DSNWLM_JAVA64,DB2SSN=DSN, �1�
// NUMTCB=10,MNSPAS=0
//IEFPROC EXEC PGM=DSNX9WJM,REGION=&RGN,TIME=NOLIMIT, �2�
// PARM=’&DB2SSN,&NUMTCB,&APPLENV,&MNSPAS’

//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSNB10.SDSNEXIT
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=DSNB10.SDSNLOD2
//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV
//JSPDEBUG DD SYSOUT=A
//CEEDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

�1� In a 64-bit environment, NUMTCB controls the number of concurrent Java stored
procedure executions in a JVM. NUMTCB can be higher for a WLM address space
that supports 64-bit JVMs than for one that supports 31-bit JVMs.

�1� Program DSNX9WJM supports 64-bit JVMs.

2. Alter your stored procedure or user-defined function definitions to specify a
WLM environment name that matches the APPLENV value in the previous
step.

3. Define the application environment for 64-bit Java routines to WLM.
In WLM setup panels, use values like those that are shown in the following
screen examples.

File Utilities Notes Options Help
--

Definition Menu WLM Appl
Command ===> ___

Definition data set . : none
Definition name DSNWLM_JAVA64
Description Environment for Java stored procedures
Select one of the
following options. . . 9 1. Policies

2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments

10. Scheduling Environments

Definition name
Specify the name of the WLM application environment that you are setting

Chapter 5. Java stored procedures and user-defined functions 197

|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
||
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

up for 64-bit routines. This is the same application environment name that
you specified in the ALTER PROCEDURE or ALTER FUNCTION statement
in the previous step.

Description
Specify any value.

Options
Specify 9 (Application Environments).

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> ___

Application Environment Name . : DSNWLM_JAVA64
Description Environment for 64-bit Java routines
Subsystem Type DB2
Procedure Name DSNWJ64
Start Parameters DB2SSN=DB2T,NUMTCB=10,APPLENV=DSNWLM_JAVA64

Limit on starting server address spaces for a subsystem instance:
1 1. No limit.

2. Single address space per system.
3. Single address spaces per sysplex.

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the
stored procedure address spaces that are associated with this application
environment.

Start Parameters
If the DB2 subsystem in which the stored procedure runs is not in a
sysplex, specify a DB2SSN value that matches the name of that DB2
subsystem. If the same JCL is used for multiple DB2 subsystems, specify
DB2SSN=&IWMSSNM. The NUMTCB value depends on the type of stored
procedure you are running. For running 64-bit Java routines, specify a
value between 5 and 8. Specify an APPLENV value that matches the value
that you that you specified in the ALTER PROCEDURE or ALTER
FUNCTION statement in the previous step.

Limit on starting server address spaces for a subsystem instance
Specify 1 (no limit).

4. For Java routines that make Java Native Interface calls, recompile and link-edit
the DLLs for the native functions in 64-bit mode.

Defining Java routines and JAR files to DB2
Before you can use a Java routine, you need to define it to DB2.

About this task

Use the following procedure to manually define a Java routine to DB2. If you use
IBM Optim Development Studio, IBM Optim Development Studio creates the
definitions.

198 Application Programming Guide and Reference for Java

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

Procedure
1. Execute the CREATE PROCEDURE or CREATE FUNCTION statement to

define the routine to DB2. To alter the routine definition, use the ALTER
PROCEDURE or ALTER FUNCTION statement.

2. Optional: If the routines are in JAR files, define the JAR files to DB2.
If the routines are in JAR files, it is recommended that you also define the JAR
files to DB2. Alternatively, you can include the JAR file name in the
CLASSPATH.
To define the JAR files to DB2:
v Use the SQLJ.INSTALL_JAR or SQLJ.DB2_INSTALL_JAR built-in stored

procedure to define the JAR files to DB2.
v After you have installed a JAR, if that JAR references classes in other

installed JARs, use the SQLJ.ALTER_JAVA_PATH stored procedure to specify
the class resolution path that the JVM searches to resolve those class
references.

v To replace the JAR file, use the SQLJ.REPLACE_JAR or
SQLJ.DB2_REPLACE_JAR stored procedure.

v To remove the JAR file, use the SQLJ.REMOVE_JAR or
SQLJ.DB2_REMOVE_JAR stored procedure.

SQLJ.INSTALL_JAR, SQLJ, SQLJ.REPLACE_JAR, and SQLJ.REMOVE_JAR can
be used only with the local DB2 catalog. The other stored procedures can be
used with remote or local DB2 catalogs.

Definition of a Java routine to DB2
Before you can use a Java routine, you need to define it to DB2 using the CREATE
PROCEDURE or CREATE FUNCTION statement.

The definition for a Java routine is much like the definition for a routine in any
other language. However, the following parameters have different meanings for
Java routines.

LANGUAGE
Specifies the application programming language in which the routine is
written.

Specify LANGUAGE JAVA.

You cannot specify LANGUAGE JAVA for a user-defined table function.

EXTERNAL NAME
Specifies the program that runs when the procedure name is specified in a
CALL statement or the user-defined function name is specified in an SQL
statement. For Java routines, the argument of EXTERNAL NAME is a string
that is enclosed in single quotation marks. The EXTERNAL NAME clause for a
Java routine has the following syntax:

�� EXTERNAL NAME �

� ' class-name.method-name '
(1) (2) (method-signature)

JAR-name: package-name .

��

Notes:

1 For compatibility with DB2 for Linux, UNIX, and Windows, you can use an exclamation point (!)
after JAR-name instead of a colon.

Chapter 5. Java stored procedures and user-defined functions 199

2 For compatibility with previous versions of DB2, you can use a slash (/) after package-name instead
of a period.

Whether you include JAR-name depends on where the Java code for the routine
resides. If you create a JAR file from the class file for the routine (the output
from the javac command), you need to include JAR-name. You must create the
JAR file and define the JAR file to DB2 before you execute the CREATE
PROCEDURE or CREATE FUNCTION statement. If some other user executes
the CREATE PROCEDURE or CREATE FUNCTION statement, you need to
grant the USAGE privilege on the JAR to them.

If you use a JAR file, that JAR file must refer to classes that are contained in
that JAR file, are found in the CLASSPATH, or are system-supplied. Classes
that are in directories that are referenced in DB2_HOME or JCC_HOME, and
JAVA_HOME do not need to be included in the JAR file.

Whether you include (method-signature) depends on the following factors:
v The way that you define the parameters in your routine method

Each SQL data type has a corresponding default Java data type. If your
routine method uses data types other than the default types, you need to
include a method signature in the EXTERNAL NAME clause. A method
signature is a comma-separated list of data types.

v Whether you overload a Java routine
If you have several Java methods in the same class, with the same name and
different parameter types, you need to specify the method signature to
indicate which version of the program is associated with the Java routine.

If your stored procedure returns result sets, you also need to include a
parameter in the method signature for each result set. The parameter can be in
one of the following forms:
v java.sql.ResultSet[]
v An array of an SQLJ iterator class

You do not include these parameters in the parameter list of the SQL CALL
statement when you invoke the stored procedure.

Example: EXTERNAL NAME clause for a Java user-defined function: Suppose that
you write a Java user-defined function as method getSals in class S1Sal and
package s1. You put S1Sal in a JAR file named sal_JAR and install that JAR in
DB2. The EXTERNAL NAME parameter is :
EXTERNAL NAME ’sal_JAR:s1.S1Sal.getSals’

Example: EXTERNAL NAME clause for a Java stored procedure: Suppose that you
write a Java stored procedure as method getSals in class S1Sal. You put S1Sal
in a JAR file named sal_JAR and install that JAR in DB2. The stored procedure
has one input parameter of type INTEGER and returns one result set. The Java
method for the stored procedure receives one parameter of type
java.lang.Integer, but the default Java data type for an SQL type of INTEGER is
int, so the EXTERNAL NAME clause requires a signature clause. The
EXTERNAL NAME parameter is :
EXTERNAL NAME ’sal_JAR:S1Sal.getSals(java.lang.Integer,java.sql.ResultSet[])’

NO SQL
Indicates that the routine does not contain any SQL statements.

For a Java routine that is stored in a JAR file, you cannot specify NO SQL.

PARAMETER STYLE
Identifies the linkage convention that is used to pass parameters to the routine.

200 Application Programming Guide and Reference for Java

For a Java routine, the only value that is valid is PARAMETER STYLE JAVA.

You cannot specify PARAMETER STYLE JAVA for a user-defined table
function.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the
routine is to run.

If you do not specify this parameter, the routine runs in the default WLM
environment that was specified when DB2 was installed.

PROGRAM TYPE
Specifies whether Language Environment runs the routine as a main routine or
a subroutine.

This parameter value must be PROGRAM TYPE SUB.

RUN OPTIONS
Specifies the Language Environment run-time options to be used for the
routine.

This parameter has no meaning for a Java routine. If you specify this
parameter with LANGUAGE JAVA, DB2 issues an error.

SCRATCHPAD
Specifies that when the user-defined function is invoked for the first time, DB2
allocates memory for a scratchpad.

You cannot use a scratchpad in a Java user-defined function. Do not specify
SCRATCHPAD when you create or alter a Java user-defined function.

FINAL CALL
Specifies that a final call is made to the user-defined function, which the
function can use to free any system resources that it has acquired.

You cannot perform a final call when you call a Java user-defined function. Do
not specify FINAL CALL when you create or alter a Java user-defined function.

DBINFO
Specifies that when the routine is invoked, an additional argument is passed
that contains environment information.

You cannot pass the additional argument when you call a Java routine. Do not
specify DBINFO when you call a Java routine.

SECURITY
Specifies how the routine interacts with an external security product, such as
RACF, to control access to non-SQL resources. The values of the SECURITY
parameter are the same for a Java routine as for any other routine. However,
the value of the SECURITY parameter determines the authorization ID that
must have authority to access z/OS UNIX System Services. The values of
SECURITY and the IDs that must have access to z/OS UNIX System Services
are:

DB2 The user ID that is defined for the stored procedure address space in
the RACF started-procedure table.

EXTERNAL
The invoker of the routine.

DEFINER
The definer of the routine.

Chapter 5. Java stored procedures and user-defined functions 201

ALLOW DEBUG MODE, DISALLOW DEBUG MODE, or DISABLE DEBUG MODE
Specifies whether a Java stored procedure can be run in debugging mode.
When DYNAMICRULES run behavior is in effect, the default is determined by
using the value of the CURRENT DEBUG MODE special register. Otherwise
the default is DISALLOW DEBUG MODE.

ALLOW DEBUG MODE
Specifies that the procedure can be run in debugging mode.

DISALLOW DEBUG MODE
Specifies that the procedure cannot be run in debugging mode.

You can use an ALTER PROCEDURE statement to change this option to
ALLOW DEBUG MODE.

DISABLE DEBUG MODE
Specifies that the procedure can never be run in debugging mode.

The procedure cannot be changed to specify ALLOW DEBUG MODE or
DISALLOW DEBUG MODE once the procedure has been created or altered
using DISABLE DEBUG MODE. To change this option, you must drop and
recreate the procedure using the desired option.

Example: Defining a Java stored procedure: Suppose that you have written and
prepared a stored procedure that has these characteristics:

Fully-qualified procedure name SYSPROC.S1SAL
Parameters DECIMAL(10,2) INOUT
Language Java
Collection ID for the stored procedure
package

DSNJDBC

Package, class, and method name s1.S1Sal.getSals
Type of SQL statements in the program Statements that modify DB2 tables
WLM environment name WLMIJAV
Maximum number of result sets returned 1

This CREATE PROCEDURE statement defines the stored procedure to DB2:
CREATE PROCEDURE SYSPROC.S1SAL
(DECIMAL(10,2) INOUT)
FENCED
MODIFIES SQL DATA
COLLID DSNJDBC
LANGUAGE JAVA
EXTERNAL NAME ’s1.S1Sal.getSals’
WLM ENVIRONMENT WLMIJAV
DYNAMIC RESULT SETS 1
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

Example: Defining a Java user-defined function: Suppose that you have written and
prepared a user-defined function that has these characteristics:

Fully-qualified function name MYSCHEMA.S2SAL
Input parameter INTEGER
Data type of returned value VARCHAR(20)
Language Java
Collection ID for the function package DSNJDBC
Package, class, and method name s2.S2Sal.getSals

202 Application Programming Guide and Reference for Java

Java data type of the method input
parameter

java.lang.Integer

JAR file that contains the function class sal_JAR
Type of SQL statements in the program Statements that modify DB2 tables
Function is called when input parameter is
null?

Yes

WLM environment name WLMIJAV

This CREATE FUNCTION statement defines the user-defined function to DB2:
CREATE FUNCTION MYSCHEMA.S2SAL(INTEGER)

RETURNS VARCHAR(20)
FENCED
MODIFIES SQL DATA
COLLID DSNJDBC
LANGUAGE JAVA
EXTERNAL NAME ’sal_JAR:s2.S2Sal.getSals(java.lang.Integer)’
WLM ENVIRONMENT WLMIJAV
CALLED ON NULL INPUT
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

In this function definition, you need to specify a method signature in the
EXTERNAL NAME clause because the data type of the method input parameter is
different from the default Java data type for an SQL type of INTEGER.
Related concepts:
“Definition of a JAR file for a Java routine to DB2”
Related reference:

ALTER FUNCTION (external) (DB2 SQL)

ALTER PROCEDURE (external) (DB2 SQL)

CREATE FUNCTION (DB2 SQL)

CREATE PROCEDURE (external) (DB2 SQL)

Definition of a JAR file for a Java routine to DB2
One way to organize the classes for a Java routine is to collect those classes into a
JAR file. If you do this, you need to install the JAR file into the DB2 catalog.

DB2 provides built-in stored procedures that perform the following functions for
the JAR file:

SQLJ.INSTALL_JAR
Installs a JAR file into the local DB2 catalog.

SQLJ.DB2_INSTALL_JAR
Installs a JAR file into the local DB2 catalog or a remote DB2 catalog.

SQLJ.REPLACE_JAR
Replaces an existing JAR file in the local DB2 catalog.

SQLJ.DB2_REPLACE_JAR
Replaces an existing JAR file in the local DB2 catalog or a remote DB2 catalog.

SQLJ.REMOVE_JAR
Deletes a JAR file from the local DB2 catalog or a remote DB2 catalog.

Chapter 5. Java stored procedures and user-defined functions 203

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterfunctionexternal.htm#db2z_sql_alterfunctionexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunction.htm#db2z_sql_createfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal

SQLJ.ALTER_JAVA_PATH
Modifies the class resolution path of an previously installed JAR file to a
specified value.

You can use IBM Optim Development Studio to install JAR files into the DB2
catalog, or you can write a client program that executes SQL CALL statements to
invoke these stored procedures.
Related concepts:
“Definition of a Java routine to DB2” on page 199

SQLJ.INSTALL_JAR stored procedure
SQLJ.INSTALL_JAR creates a new definition of a JAR file in the local DB2 catalog.

SQLJ.INSTALL_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.INSTALL_JAR, the privilege set must include at least one of the
following items:
v EXECUTE privilege on SQLJ.INSTALL_JAR
v Ownership of SQLJ.INSTALL_JAR
v SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of
at least one of the following items:
v CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the
CREATEIN privilege on the schema.

v SYSADM or SYSCTRL authority

SQLJ.INSTALL_JAR syntax

�� CALL SQLJ.INSTALL_JAR (url, JAR-name, deploy) ��

SQLJ.INSTALL_JAR parameters

url
A VARCHAR(1024) input parameter that identifies the z/OS UNIX System
Services full path name for the JAR file that is to be installed in the DB2
catalog. The format is file://path-name or file:/path-name.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The owner
of the JAR is the authorization ID in the CURRENT SQLID special register.

204 Application Programming Guide and Reference for Java

deploy
An INTEGER input parameter that indicates whether additional actions are to
be performed after the JAR file is installed. Additional actions are not
supported, so this value is 0.

SQLJ.INSTALL_JAR example

Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN/BUILDPLAN.jar. You want to refer to the JAR file as
DB2INST3.BUILDPLAN in SQL statements. Use a CALL statement similar to this
one.
CALL SQLJ.INSTALL_JAR(’file:/u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar’,
’DB2INST3.BUILDPLAN’,0)

SQLJ.DB2_INSTALL_JAR stored procedure
SQLJ.DB2_INSTALL_JAR creates a new definition of a JAR file in the local DB2
catalog or in a remote DB2 catalog.

To install a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQLJ.DB2_INSTALL_JAR.

SQLJ.DB2_INSTALL_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.DB2_INSTALL_JAR, the privilege set must include at least one of
the following items:
v EXECUTE privilege on SQLJ.DB2_INSTALL_JAR
v Ownership of SQLJ.DB2_INSTALL_JAR
v SYSADM authority

The privilege set must also include the authority to install a JAR, which consists of
at least one of the following items:
v CREATEIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the
CREATEIN privilege on the schema.

v SYSADM or SYSCTRL authority

SQLJ.DB2_INSTALL_JAR syntax

�� CALL SQLJ.DB2_INSTALL_JAR (Jar-locator, JAR-name, deploy) ��

SQLJ.DB2_INSTALL_JAR parameters

JAR-locator
A BLOB locator input parameter that points to the JAR file that is to be
installed in the DB2 catalog.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

Chapter 5. Java stored procedures and user-defined functions 205

the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The owner
of the JAR is the authorization ID in the CURRENT SQLID special register.

deploy
An INTEGER input parameter that indicates whether additional actions are to
be performed after the JAR file is installed. Additional actions are not
supported, so this value is 0.

SQLJ.DB2_INSTALL_JAR example

Suppose that you want to install the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN/BUILDPLAN.jar. You want to refer to the JAR file as
DB2INST3.BUILDPLAN in SQL statements. The following Java program installs
that JAR file.
import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{

public static void main (String argv[])
{

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
String jarname = "DB2INST3.BUILDPLAN";
String jarfile =

"/u/db2inst3/apps/BUILDPLAN/BUILDPLAN.jar";
try
{

Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =

DriverManager.getConnection(url, "MYID", "MYPW");
File aFile = new File(jarfile);
FileInputStream inputStream = new FileInputStream(aFile);
CallableStatement stmt;
String sql = "Call SQLJ.DB2_INSTALL_JAR(?, ?, ?)";
stmt = con.prepareCall(sql);
stmt.setBinaryStream(1, inputStream, (int)aFile.length());
stmt.setString(2, jarname);
stmt.setInt(3, 0);
boolean isrs = stmt.execute();
stmt.close();
System.out.println("Installation of JAR succeeded");
con.commit();
con.close();

}
catch (Exception e)
{

System.out.println("Installation of JAR failed");
e.printStackTrace ();

}
}

}

SQLJ.REPLACE_JAR stored procedure
SQLJ.REPLACE_JAR replaces an existing JAR file in the local DB2 catalog.

SQLJ.REPLACE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the

206 Application Programming Guide and Reference for Java

owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.REPLACE_JAR, the privilege set must include at least one of the
following items:
v EXECUTE privilege on SQLJ.REPLACE_JAR
v Ownership of SQLJ.REPLACE_JAR
v SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists
of at least one of the following items:
v Ownership of the JAR
v ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

v SYSADM or SYSCTRL authority

SQLJ.REPLACE_JAR syntax

�� CALL SQLJ.REPLACE_JAR (url, JAR-name) ��

SQLJ.REPLACE_JAR parameters

url
A VARCHAR(1024) input parameter that identifies the z/OS UNIX System
Services full path name for the JAR file that replaces the existing JAR file in
the DB2 catalog. The format is file://path-name or file:/path-name.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.REPLACE_JAR example

Suppose that you want to replace a previously installed JAR file that is named
DB2INST3.BUILDPLAN with the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN2/BUILDPLAN.jar. Use a CALL statement similar to this one.
CALL SQLJ.REPLACE_JAR(’file:/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar’,
’DB2INST3.BUILDPLAN’)

SQLJ.DB2_REPLACE_JAR stored procedure
SQLJ.DB2_REPLACE_JAR replaces an existing JAR file in the local DB2 catalog or
in a remote DB2 catalog.

To replace a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQLJ.DB2_REPLACE_JAR.

SQLJ.DB2_REPLACE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the owner of the plan or

Chapter 5. Java stored procedures and user-defined functions 207

package. If the statement is dynamically prepared, the privilege set consists of the
privileges that are held by the authorization IDs of the process.

For calling SQLJ.DB2_REPLACE_JAR, the privilege set must include at least one of
the following items:
v EXECUTE privilege on SQLJ.DB2_REPLACE_JAR
v Ownership of SQLJ.DB2_REPLACE_JAR
v SYSADM authority

The privilege set must also include the authority to replace a JAR, which consists
of at least one of the following items:
v Ownership of the JAR
v ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

v SYSADM or SYSCTRL authority

SQLJ.DB2_REPLACE_JAR syntax

�� CALL SQLJ.DB2_REPLACE_JAR (JAR-locator, JAR-name) ��

SQLJ.DB2_REPLACE_JAR parameters

JAR-locator
A BLOB locator input parameter that points to the JAR file that is to be
replaced in the DB2 catalog.

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in
the form schema.JAR-id or JAR-id. JAR-name is the name that you use when you
refer to the JAR in SQL statements. If you omit schema, DB2 uses the SQL
authorization ID that is in the CURRENT SCHEMA special register.

SQLJ.DB2_REPLACE_JAR example

Suppose that you want to replace a previously installed JAR file that is named
DB2INST3.BUILDPLAN with the JAR file that is in path /u/db2inst3/apps/
BUILDPLAN2/BUILDPLAN.jar. The following Java program replaces the JAR file.
import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{

public static void main (String argv[])
{

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
String jarname = "DB2INST3.BUILDPLAN";
String jarfile =

"/u/db2inst3/apps/BUILDPLAN2/BUILDPLAN.jar";
try
{

Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =

DriverManager.getConnection(url, "MYID", "MYPW");
File aFile = new File(jarfile);
FileInputStream inputStream = new FileInputStream(aFile);

208 Application Programming Guide and Reference for Java

CallableStatement stmt;
String sql = "Call SQLJ.DB2_REPLACE_JAR(?, ?)";
stmt = con.prepareCall(sql);
stmt.setBinaryStream(1, inputStream, (int)aFile.length());
stmt.setString(2, jarname);
boolean isrs = stmt.execute();
stmt.close();
System.out.println("Replacement of JAR succeeded");
con.commit();
con.close();

}
catch (Exception e)
{

System.out.println("Replacement of JAR failed");
e.printStackTrace ();

}
}

}

SQLJ.REMOVE_JAR stored procedure
SQLJ.REMOVE_JAR deletes a JAR file from the local DB2 catalog or from a remote
DB2 catalog.

To delete a JAR file at a remote location, you need to execute a CONNECT
statement to connect to that location before you call SQLJ.REMOVE_JAR.

The JAR cannot be referenced in the EXTERNAL NAME clause of an existing
routine, or in the path of an installed JAR.

SQLJ.REMOVE_JAR authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the authorization ID of the
owner of the plan or package. If the statement is dynamically prepared, the
privilege set consists of the privileges that are held by the authorization IDs of the
process.

For calling SQLJ.REMOVE_JAR, the privilege set must include at least one of the
following items:
v EXECUTE privilege on SQLJ.REMOVE_JAR
v Ownership of SQLJ.REMOVE_JAR
v SYSADM authority

The privilege set must also include the authority to remove a JAR, which consists
of at least one of the following items:
v Ownership of the JAR
v DROPIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the DROPIN
privilege on the schema.

v SYSADM or SYSCTRL authority

SQLJ.REMOVE_JAR syntax

�� CALL SQLJ.REMOVE_JAR (JAR-name, undeploy) ��

Chapter 5. Java stored procedures and user-defined functions 209

SQLJ.REMOVE_JAR parameters

JAR-name
A VARCHAR(257) input parameter that contains the DB2 name of the JAR that
is to be removed from the catalog, in the form schema.JAR-id or JAR-id.
JAR-name is the name that you use when you refer to the JAR in SQL
statements. If you omit schema, DB2 uses the SQL authorization ID that is in
the CURRENT SCHEMA special register.

undeploy
An INTEGER input parameter that indicates whether additional actions should
be performed before the JAR file is removed. Additional actions are not
supported, so this value is 0.

SQLJ.REMOVE_JAR example

Suppose that you want to remove a previously installed JAR file that is named
DB2INST3.BUILDPLAN. Use a CALL statement similar to this one.
CALL SQLJ.REMOVE_JAR(’DB2INST3.BUILDPLAN’,0)

SQLJ.ALTER_JAVA_PATH stored procedure
SQLJ.ALTER_JAVA_PATH modifies the class resolution path of an installed JAR.

SQLJ.ALTER_JAVA_PATH specifies the class resolution path that the JVM uses
when a JAR file that is part of a Java stored procedure references a class that is
neither contained in that JAR file, found in the CLASSPATH, nor system-supplied.

SQLJ.ALTER_JAVA_PATH authorization

Privilege set: If the CALL statement is embedded in an application program, the
privilege set consists of the privileges that are held by the owner of the plan or
package. If the statement is dynamically prepared, the privilege set consists of the
privileges that are held by the authorization IDs of the process.

For calling SQLJ.ALTER_JAVA_PATH, the privilege set must include at least one of
the following items:
v EXECUTE privilege on SQLJ.ALTER_JAVA_PATH
v Ownership of SQLJ.ALTER_JAVA_PATH
v SYSADM authority

The privilege set must also include the authority to alter a JAR, which consists of
at least one of the following items:
v Ownership of the JAR
v ALTERIN privilege on the schema of the JAR

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

v SYSADM or SYSCTRL authority

For referring to JAR jar2 in the Java path, the privilege set must include at least
one of the following items:
v Ownership of jar2

v USAGE privilege on jar2

v SYSADM authority

210 Application Programming Guide and Reference for Java

SQLJ.ALTER_JAVA_PATH syntax

�� CALL SQLJ.ALTER_JAVA_PATH (JAR-name1, 'path')
'blanks'
''

��

path:

�� � path-element ��

path-element:

�� (* , JAR-name2)
Java-package-name . *

class-name
Java-package-name .

��

Java-package-name:

�� �Java-identifier
. Java-identifier

��

class-name:

�� Java-identifier ��

SQLJ.ALTER_JAVA_PATH parameters

JAR-name1
A VARCHAR(257) input parameter that contains the DB2 name of the JAR
whose path is to be altered, in the form schema.JAR-id or JAR-id. JAR-name1 is
the name that you use when you refer to the JAR in SQL statements. If you
omit schema, DB2 uses the SQL authorization ID that is in the CURRENT
SCHEMA special register.

path
A VARCHAR(2048) input parameter that specifies the class resolution path that
the JVM uses when JAR-name1 references a class that is neither contained in
JAR-name1, found in the CLASSPATH, nor system-supplied.

During execution of the Java routine, when DB2 encounters an unresolved
class reference, DB2 compares each path element in the path to the class
reference. If a path element matches the class reference, DB2 searches for the
class in the JAR that is specified by the path element.

* Indicates that any class reference can be searched for in the JAR that is
identified by JAR-name2. If an error prevents the class from being found, the

Chapter 5. Java stored procedures and user-defined functions 211

search terminates, and a java.lang.ClassNotFoundException is thrown to
report that error. If the class is not found in the JAR, the search continues with
the next path element.

Java-package-name.*
Indicates that class references for classes that are in the package named
Java-package-name are searched for in the JAR that is identified by JAR-name2. If
an error prevents a class from being found, the search terminates, and a
java.lang.ClassNotFoundException is thrown to report that error. If a class is
not found in the JAR, the search terminates, and a
java.lang.NoClassDefFoundError is thrown.

If the class reference is to a class in a different package, the search continues
with the next path element.

Java-package-name.class-name or class-name
Indicates that class references for classes whose fully qualified name matches
Java-package-name.class-name or class-name are searched for in the JAR that is
identified by JAR-name2. Class references for classes that are in packages
within the package named Java-package-name are not searched for in the JAR
that is identified by JAR-name2. If an error prevents a class from being found,
the search terminates, and a java.lang.ClassNotFoundException is thrown to
report that error. If a class is not found in the JAR, the search terminates and a
java.lang.NoClassDefFoundError is thrown.

If the class reference is to a different class, the search continues with the next
path element.

JAR-name2
Specifies the DB2 name of the JAR that is to be searched. The form of
JAR-name2 is schema.JAR-id or JAR-id. If schema is omitted, the JAR name is
implicitly qualified with the schema name in the CURRENT SCHEMA special
register. JAR JAR-name2 must exist at the current server. JAR-name2 must not
be the same as JAR-name1.

SQLJ.ALTER_JAVA_PATH usage notes

Stored procedures that reference classes in multiple JAR files: A stored procedure
that is packaged as a JAR file might reference classes that are in other JAR files,
and the referenced JAR files might reference classes in still other JAR files. You
need to specify class resolution paths for all dependencies among JAR files that the
stored procedure uses. For any JAR files that the stored procedure uses that cannot
be found in the CLASSPATH, and are not system-supplied, you need to use
SQLJ.ALTER_JAVA_PATH to define the class resolution path. For example, suppose
that stored procedure SP, which is packaged in JAR file JARSP, references classes in
JAR files JAR1 and JAR2. Classes in JAR file JAR1 reference classes that are in JAR
file JAR2. None of the JAR files are in the CLASSPATH or are system-supplied.
You need to call SQLJ.ALTER_JAVA_PATH twice, to define the following class
resolution paths:
v From JARSP to JAR1 and JAR2
v From JAR1 to JAR2

SQLJ.ALTER_JAVA_PATH example

Suppose that the JAR file that is named DB2INST3.BUILDPLAN references classes
that are in a previously installed JAR that is named DB2INST3.BUILDPLAN2.
Those classes are in Java package buildPlan2. The following Java program calls

212 Application Programming Guide and Reference for Java

SQLJ.ALTER_JAVA_PATH to add the classes in the buildPlan2 package to the
resolution path for DB2INST3.BUILDPLAN.
import java.sql.*; // JDBC classes
import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
class SimpleInstallJar
{

public static void main (String argv[])
{

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021";
String jarname = "DB2INST3.BUILDPLAN";
String resolutionPath =

"(buildPlan2.*,DB2INST3.BUILDPLAN2)";
try
{

Class.forName ("com.ibm.db2.jcc.DB2Driver").newInstance ();
Connection con =

DriverManager.getConnection(url, "MYID", "MYPW");
CallableStatement stmt;
String sql = "Call SQLJ.ALTER_JAVA_PATH(?, ?)";
stmt = con.prepareCall(sql);
stmt.setString(1, jarname);
stmt.setString(2, resolutionPath);
boolean isrs = stmt.execute();
stmt.close();
System.out.println("Alteration of JAR resolution path succeeded");
con.commit();
con.close();

}
catch (Exception e)
{

System.out.println("Alteration of JAR resolution path failed");
e.printStackTrace ();

}
}

}

Java routine programming
A Java routine is a Java application program that runs in a stored procedure address
space. It can include JDBC methods or SQLJ clauses.

A Java routine is much like any other Java program and follows the same rules as
routines in other languages. It receives input parameters, executes Java statements,
optionally executes SQLJ clauses, JDBC methods, or a combination of both, and
returns output parameters.

Differences between Java routines and stand-alone Java
programs

Java routines differ in a few basic ways from stand-alone Java programs.

Those differences are:
v In a Java routine, a JDBC connection or an SQLJ connection context can use the

connection to the data source that processes the CALL statement or the
user-defined function invocation. The URL that identifies this default connection
is jdbc:default:connection.

v The top-level method for a Java routine must be declared as static and public.

Chapter 5. Java stored procedures and user-defined functions 213

Although you can use static and final variables in a Java routine without
problems, you might encounter problems when you use static and non-final
variables. You cannot guarantee that a static and non-final variable retains its
value in the following circumstances:
– Across multiple invocations of the same routine
– Across invocations of different routines that reference that variable

v As in routines in other languages, the SQL statements that you can execute in
the routine depend on whether you specify an SQL access level of CONTAINS
SQL, READS SQL DATA, or MODIFIES SQL DATA.

Related concepts:
“Differences between Java routines and other routines”
Related reference:

SQL statements allowed in external functions and stored procedures (DB2 SQL)

Differences between Java routines and other routines
Java routines differ in a few basic ways from routines that are written in other
programming languages.

A Java routine differs from stored procedures that are written in other languages in
the following ways:
v A Java routine must be defined with PARAMETER STYLE JAVA. PARAMETER

STYLE JAVA specifies that the routine uses a parameter-passing convention that
conforms to the Java language and SQLJ specifications. DB2 passes INOUT and
OUT parameters as single-entry arrays. This means that in your Java routine,
you must declare OUT or INOUT parameters as arrays. For example, suppose
that stored procedure sp_one_out has one output parameter of type int. You
declare the parameter like this:
public static void routine_one_out (int[] out_parm)

v Java routines that are Java main methods have these restrictions:
– The method must have a signature of String[]. It must be possible to map all

the parameters to Java variables of type java.lang.String.
– The routine can have only IN parameters.

v You cannot make instrumentation facility interface (IFI) calls in Java routines.
v You cannot specify an SQL access level of NO SQL for Java routines.
v As in other Java programs, you cannot include the following statements in a

Java routine:
– CONNECT
– RELEASE
– SET CONNECTION

v Routine parameters have different mappings to host language data types than
the mappings of routine parameters to host language parameters for other
languages.

v The technique for returning result sets from Java stored procedures is different
from the technique for returning result sets in other stored procedures.

v When a Java routine executes, Java dynamically loads classes when new class
references occur in the class that is being executed. During the class loading
process, a java.lang.ClassNotFoundException or
java.lang.NoClassDefFoundError can be thrown. These failures can occur
whether Java looks for the class in an installed JAR or in the CLASSPATH. If the
Java routine does not catch these errors and exceptions, the routine terminates
and an SQL error condition is reported.

214 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlstmtsallowedinexternalfuncsandprocs.htm#db2z_sqlstmtsallowedinexternalfuncsandprocs

Related concepts:
“Differences between Java routines and stand-alone Java programs” on page 213
Related tasks:
“Writing a Java stored procedure to return result sets” on page 216

Creating an external stored procedure (DB2 Application programming and
SQL)

Writing an external user-defined function (DB2 Application programming and
SQL)
Related reference:
“Data types that map to database data types in Java applications” on page 229

Static and non-final variables in a Java routine
Using Java variables that are defined as static but not final can cause problems
for Java routines.

The reasons for those problems are:
v Use of variables that are static and non-final reduces portability.

Because the ANSI/ISO standard does not include support for static and
non-final variables, different database products might process those variables
differently.

v A sequence of routine invocations is not necessarily processed by the same JVM,
and static variable values are not shared among different JVMs.
For example, suppose that two stored procedures, INITIALIZE and PROCESS,
use the same static variable, sv1. INITIALIZE sets the value of sv1, and
PROCESS depends on the value of sv1. If INITIALIZE runs in one JVM, and
then PROCESS runs in another JVM, sv1 in PROCESS does not contain the value
that INITIALIZE set.
Specifying NUMTCB=1 in the WLM-established stored process space startup
procedure is not sufficient to guarantee that a sequence of routine invocations go
to the same JVM. Under load, multiple stored procedure address spaces are
initiated, and each address space has its own JVM. Multiple invocations might
be directed to multiple address spaces.

v In Java, the static variables for a class are initialized or reset whenever the class
is loaded. However, for Java routines, it is difficult to know when initialization
or reset of static variables occurs.

In certain cases, you need to declare variables as static and non-final. In those
cases, you can use the following technique to make your routines work correctly
with static variables.

To determine whether the values of static data in a routine have persisted across
routine invocations, define a static boolean variable in the class that contains the
routine. Initially set the variable to false, and then set it to true when you set the
value of static data. Check the value of the boolean variable at the beginning of the
routine. If the value is true, the static data has persisted. Otherwise, the data
values need to be set again. With this technique, static data values are not set for
most routine invocations, but are set more than once during the lifetime of the
JVM. Also, with this technique, it is not a problem for a routine to execute on
different JVMs for different invocations.

Chapter 5. Java stored procedures and user-defined functions 215

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createexternalsp.htm#db2z_createexternalsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_createexternalsp.htm#db2z_createexternalsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_writeexternaludf.htm#db2z_writeexternaludf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_writeexternaludf.htm#db2z_writeexternaludf

Writing a Java stored procedure to return result sets
You can write your Java stored procedures to return multiple query result sets to a
client program.

Before you begin

A stored procedure can return multiple query result sets to a client program if the
following conditions are satisfied:
v The client supports the DRDA code points that are used to return query result

sets.
v The value of DYNAMIC RESULT SETS in the stored procedure definition is

greater than 0.

Procedure

For each result set that you want to be returned, your Java stored procedure must
perform the following actions:
1. For each result set, include an object of type java.sql.ResultSet[] or an array of

an SQLJ iterator class in the parameter list for the stored procedure method.
If the stored procedure definition includes a method signature, for each result
set, include java.sql.ResultSet[] or the fully-qualified name of an array of a class
that is declared as an SQLJ iterator in the method signature. These result set
parameters must be the last parameters in the parameter list or method
signature. Do not include a java.sql.ResultSet array or an iterator array in the
SQL parameter list of the stored procedure definition.

2. Execute a SELECT statement to obtain the contents of the result set.
3. Retrieve any rows that you do not want to return to the client.
4. Assign the contents of the result set to element 0 of the java.sql.ResultSet[]

object or array of an SQLJ iterator class that you declared in step 1.
5. Do not close the ResultSet, the statement that generated the ResultSet, or the

connection that is associated with the statement that generated the ResultSet.
DB2 does not return result sets for ResultSets that are closed before the stored
procedure terminates.

Example

The following code shows an example of a Java stored procedure that uses an
SQLJ iterator to retrieve a result set.

216 Application Programming Guide and Reference for Java

Notes to Figure 47:

1 This SQLJ clause declares the iterator named NameSal, which is used to retrieve
the rows that will be returned to the stored procedure caller in a result set.

2 The declaration for the stored procedure method contains declarations for a single
passed parameter, followed by the declaration for the result set object.

3 This SQLJ clause executes the SELECT to obtain the rows for the result set,
constructs an iterator object that contains those rows, and assigns the iterator
object to variable iter1.

4 This SQLJ clause retrieves a value into the parameter that is returned to the stored
procedure caller.

5 This statement uses the getResultSet method to assign the contents of the iterator
to the result set that is returned to the caller.

Related concepts:
“Retrieving multiple result sets from a stored procedure in an SQLJ application” on
page 162
Related tasks:
“Retrieving multiple result sets from a stored procedure in a JDBC application” on
page 60

Techniques for testing a Java routine
You can test your Java routines as stand-alone programs, use the DB2 Unified
Debugger, or write your own debug information from the routines.

Test your routine as a stand-alone program

Before you invoke your Java routines from SQL applications, it is a good idea to
run the routines as stand-alone programs, which are easier to debug. A Java
program that runs as a routine requires only a DB2 package. However, before you

package s1;

import sqlj.runtime.*;
import java.sql.*;
import java.math.*;
#sql iterator NameSal(String LastName, BigDecimal Salary); �1�
public class S1Sal
{

public static void getSals(BigDecimal[] AvgSalParm,
java.sql.ResultSet[] rs) �2�

throws SQLException
{

NameSal iter1;
try
{

#sql iter1 = {SELECT LASTNAME, SALARY FROM EMP �3�
WHERE SALARY>0 ORDER BY SALARY DESC};

#sql {SELECT AVG(SALARY) INTO :(AvgSalParm[0]) FROM EMP}; �4�
}
catch (SQLException e)
{

System.out.println("SQLCODE returned: " + e.getErrorCode());
throw(e);

}
rs[0] = iter1.getResultSet(); �5�

}
}

Figure 47. Java stored procedure that returns a result set

Chapter 5. Java stored procedures and user-defined functions 217

can run the program as a stand-alone program, you need to bind a DB2 plan for it.

Use the DB2 Unified Debugger (stored procedures only)

The DB2 Unified Debugger is available with DB2 Database for Linux, UNIX, and
Windows. The DB2 Unified Debugger provides a GUI interface for debugging Java
stored procedures. Information on the DB2 Unified Debugger is available in the
DB2 Database for Linux, UNIX, and Windows information center, at
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp.

To set up a DB2 for z/OS subsystem to work with the DB2 Unified Debugger,
when you set up your stored procedure environment, follow these additional steps:
1. Customize and run the DSNTIJRT program to define stored procedures that

provide server support for the DB2 Unified Debugger.
DSNTIJSD is in the prefix.SDSNSAMP data set. The job prolog contains
customization instructions.

2. Define the stored procedure that you intend to test with the ALLOW DEBUG
MODE option in the CREATE PROCEDURE or ALTER PROCEDURE
statement.

3. When you prepare the stored procedure for execution, specify the -g option in
the javac command
-g causes the compiler to generate all debugging information for the program..

4. Grant the DEBUGSESSION privilege to the user who runs the debug client.
5. Make the following modifications to the WLM environment for the stored

procedure:
v In the WLM environment startup procedure, set NUMTCB=1
v In the WLM environment startup procedure, include a PSMDEBUG DD

statement to direct the debug diagnostic log to a data set. You can allocate to
a SYSOUT data set or to a preallocated data set. The data set needs to be
created with the RECFM=VBA and LRECL=4096 characteristics.

v In the ENVAR settings in the JAVAENV data set, set USE_LIBJVM_G=YES.
v If the debug port range of 8000::8050 is not acceptable, in the ENVAR

settings in the JAVAENV data set, set JVM_DEBUG_PORTRANGE to the
range of ports that the JVM listens on for debug connections.

Enable collection of DB2 debug information

Include a JSPDEBUG DD statement in your startup procedure for the stored
procedure address space. This DD statement specifies a data set to which DB2
writes debug information for use by IBM Software Support.

Write your own debug information from your routine

A useful technique for debugging is to include System.out.println and
System.err.println calls in your program to write messages to the STDERR and
STDOUT files.

STDERR and STDOUT output is written to the directory that is specified by the
WORK_DIR parameter in the JAVAENV data set, if that directory exists. If no
WORK_DIR parameter is specified, output goes to the default directory,
/tmp/java, if that directory exists.
Related concepts:
“Runtime environment for Java routines” on page 193

218 Application Programming Guide and Reference for Java

Chapter 6. Preparing and running JDBC and SQLJ programs

You prepare and run DB2 for z/OS Java programs in the z/OS UNIX System
Services environment.

Program preparation for JDBC programs
Preparing a Java program that contains only JDBC methods is the same as
preparing any other Java program. You compile the program using the javac
command. No precompile or bind steps are required.

For example, to prepare the Sample01.java program for execution, execute this
command from the /usr/lpp/db2b10/jdbc/ directory:
javac Sample01.java

Program preparation for SQLJ programs
Program preparation for SQLJ programs involves translating, compiling,
customizing, and binding programs.

About this task

The following figure shows the steps of the program preparation process for a
program that uses the IBM Data Server Driver for JDBC and SQLJ.

SQLJ
translator

Compile

Source
program

Modified
source

Java class
file

Four
packages

Serialized
profile

Customized
serialized profile

Customize

Figure 48. The SQLJ program preparation process

© Copyright IBM Corp. 1998, 2013 219

Procedure

The basic steps in SQLJ program preparation are:
1. Run the sqlj command from the z/OS UNIX System Services command line to

translate and compile the source code.
The SQLJ command generates a Java source program, optionally compiles the
Java source program, and produces zero or more serialized profiles. You can
compile the Java program separately, but the default behavior of the sqlj
command is to compile the program. The SQLJ command runs without
connecting to the database server.

2. Run the db2sqljcustomize command from the z/OS UNIX System Services
command line to customize the serialize profiles and bind DB2 packages.
The db2sqljcustomize command performs these tasks:
v Customizes the serialized profiles.
v Optionally does online checking to ensure that application variable types are

compatible with the corresponding column data types.
The default behavior is to do online checking. For better performance, you
should do online checking.

v Optionally binds DB2 packages on a specified database server.
The default behavior is to bind the DB2 packages. However, you can disable
automatic creation of packages and use the db2sqljbind command to bind the
packages later.
You might also need to run the db2sqljbind command under these
circumstances:
– If a bind fails when db2sqljcustomize runs
– if you want to create identical packages at multiple locations for the same

serialized profile
3. Optional: Bind the DB2 packages into a plan.

Use the DB2 BIND command to do that.
Related reference:
“sqlj - SQLJ translator” on page 495
“db2sqljbind - SQLJ profile binder” on page 509
“db2sqljcustomize - SQLJ profile customizer” on page 498

Binding SQLJ applications to access multiple database servers
After you prepare an SQLJ program to run on one DB2 database server, you might
want to port that application to other environments that access different database
servers. For example, you might want to move your application from a test
environment to a production environment.

Procedure

The general steps for enabling access of an existing SQLJ application to additional
database servers are:
1. Bind packages on each database server that you want to access.

Do not re-customize the serialized profiles. Customization stores a new package
timestamp in the serialized profile, which makes the new serialized profile
incompatible with the original package.
You can use one of the following methods to bind the additional DB2 packages:

220 Application Programming Guide and Reference for Java

v Run the db2sqljbind command against each of the database servers.
v Run the DB2 BIND PACKAGE command with the COPY option to copy the

original packages to each of the additional database servers.
You might need a different qualifier for unqualified DB2 objects on each of the
database servers. In that case, you need to specify a value for the QUALIFIER
bind option when you bind the new packages. If you use the db2sqljbind
command, you specify the QUALIFER option in the -bindoptions parameter,
not in the -qualifier parameter. The -qualifier parameter applies to online
checking only.

2. Specify the package collection for the DB2 packages.
By default, when an SQLJ application runs, the DB2 database server looks for
packages using the collection ID that is stored in the serialized profile. If the
collection ID for the additional DB2 packages that you create is different from
the collection ID in the serialized profile, you need to override the collection ID
that is in the serialized profile. You can do that in one of the following ways:
v Specify the collection ID with the pkList DataSource property or the

db2.jcc.pkList global property.
v Follow these steps:

a. Bind a plan for the application that includes the following packages:
– The package collection that you bound in the previous step
– The IBM Data Server Driver for JDBC and SQLJ packages

b. Specify the plan name in the planName DataSource property or the
db2.jcc.planName global property.

Binding a plan might simplify authorization for the application. You can
authorize users to execute the plan, rather than authorizing them to execute
each of the packages in the plan.

Example

An existing SQLJ application was customized and bound using the following
db2sqljcustomize invocation:
db2sqljcustomize -url jdbc:db2://system1.svl.ibm.com:8000/ZOS1
-user user01 -password mypass
-rootPkgName WRKSQLJ
-qualifier WRK1
-collection MYCOL1
-bindoptions "CURRENTDATA NO QUALIFIER WRK1 "
-staticpositioned YES WrkTraceTest_SJProfile0.ser

In addition to accessing data at the location that is indicated by URL
jdbc:db2://system1.svl.ibm.com:8000/ZOS1, you want to use the application to
access data at the location that is indicated by jdbc:db2://
system2.svl.ibm.com:8000/ZOS2. On the ZOS2 system, DB2 objects have a qualifier
of WRK2, and the packages need to be in collection MYCOL2. You therefore need
to bind packages at location ZOS2, change the default qualifier to WRK2, and
specify the MYCOL2 collection for the packages. Use one of the following methods
to bind the packages:
v Run DB2 BIND with COPY to copy each of the packages (one for each isolation

level) from the ZOS1 system to the ZOS2 system:
BIND PACKAGE (ZOS2.MYCOL2) OWNER(USER01) QUALIFIER(WRK2) -
COPY(MYCOL.WRKSQLJ1) CURRENTDATA(NO)
BIND PACKAGE (ZOS2.MYCOL2) OWNER(USER01) QUALIFIER(WRK2) -
COPY(MYCOL.WRKSQLJ2) CURRENTDATA(NO)

Chapter 6. Preparing and running JDBC and SQLJ programs 221

BIND PACKAGE (ZOS2.MYCOL2) OWNER(USER01) QUALIFIER(WRK2) -
COPY(MYCOL.WRKSQLJ3) CURRENTDATA(NO)
BIND PACKAGE (ZOS2.MYCOL2) OWNER(USER01) QUALIFIER(WRK2) -
COPY(MYCOL.WRKSQLJ4) CURRENTDATA(NO)

v Run the db2sqljbind command to create DB2 packages on ZOS2 from the
serialized profile on ZOS1:
db2sqljbind -url jdbc:db2://system2.svl.ibm.com:8000/ZOS2
-user user01 -password mypass
-bindoptions "COLLECTION MYCOL2 QUALIFIER WRK2"
-staticpositioned YES WrkTraceTest_SJProfile0.ser

After you bind the packages, you need to ensure that when the application runs,
the DB2 database server at ZOS2 can find the packages. The collection ID in the
serialized profile is MYCOL1, so the DB2 database server looks in MYCOL1 for the
packages. When you run the application against the ZOS2 system, you need to
access packages in MYCOL2.

For applications that use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity, use one of the following methods to tell the database server to look in
MYCOL2 as well as MYCOL1:
v Specify "MYCOL1.*,MYCOL2.*" in the pkList DataSource property:

pkList = MYCOL1.*,MYCOL2.*

v Bind a plan for the application that includes the packages in MYCOL2 and the
IBM Data Server Driver for JDBC and SQLJ packages:
BIND PLAN(WRKSQLJ) PKLIST(MYCOL1.*,MYCOL2.*,JDBCCOL.*)

Then specify WRKSQLJ in the planName DataSource property:
planName = WRKSQLJ

For applications that use IBM Data Server Driver for JDBC and SQLJ type 4
connectivity, specify "MYCOL1.*,MYCOL2.*" in the currentPackagePath DataSource
property.
Related tasks:
“Program preparation for SQLJ programs” on page 219
Related reference:
“db2sqljbind - SQLJ profile binder” on page 509

Program preparation for Java routines
The program preparation process for Java routines varies, depending on whether
the routines contain SQLJ clauses.

The following topics contain detailed information on program preparation for Java
routines.

Preparation of Java routines with no SQLJ clauses
Java routines that contain no SQLJ clauses are written entirely in JDBC. You can
use one of three methods to prepare Java routines with no SQLJ statements.

Those methods are:
v Prepare the Java routine to run from a JAR file. Running Java routines from JAR

files is recommended.
v Prepare the Java routine with no JAR file.

222 Application Programming Guide and Reference for Java

v Use IBM Optim Development Studio to prepare the routine.
You can use this method regardless of whether the routine is in a JAR file.

Preparing Java routines with no SQLJ clauses to run from a JAR
file
The recommended method of running Java routines is to run them from a JAR file.

About this task

The steps in this task prepare a JDBC routine for execution, create a JAR file for
the routine, define the JAR file and routine to DB2, and grant access on the routine
to users.

Procedure
1. Run the javac command to compile the Java program to produce Java

bytecodes.
2. Run the jar command to collect the class files that contain the methods for

your routine into a JAR file. See 'Creating JAR files for Java routines" for
information on creating the JAR file.

3. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.
4. If the installed JAR references classes in other installed JARs, call the

SQLJ.ALTER_JAVA_PATH stored procedure to specify the class resolution path
that the JVM searches to resolve those class references.

5. If another user defines the routine to DB2, execute the SQL GRANT USAGE
ON JAR statement to grant the privilege to use the JAR file to that user.

6. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter with the
name of the JAR that you defined to DB2 in step 3.

7. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:
“Program preparation for JDBC programs” on page 219
“Definition of a JAR file for a Java routine to DB2” on page 203
Related tasks:
“Creating JAR files for Java routines” on page 227

Preparing Java routines with no SQLJ clauses and no JAR file
If you do not use a JAR file for a Java routine that has no SQLJ clauses, you need
to include the directories for the routine classes in the CLASSPATH.

About this task

The steps in this task compile source code, add the locations of the resulting class
files to the CLASSPATH, define the routine to DB2, and grant access on the routine
to users.

Procedure
1. Run the javac command to compile the Java program to produce Java

bytecodes.
2. Ensure that the zFS or HFS directory that contains the class files for your

routine is in the CLASSPATH for the WLM-established stored procedure
address space.

Chapter 6. Preparing and running JDBC and SQLJ programs 223

You specify this CLASSPATH in the JAVAENV data set. You specify the
JAVAENV data set using a JAVAENV DD statement in the startup procedure
for the WLM-established stored procedure address space.
If you need to modify the CLASSPATH environment variable in the JAVAENV
data set to include the directory for the Java routine's classes, you must restart
the WLM address space to make it use the modified CLASSPATH.

3. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter without a
JAR name.

4. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:
“Program preparation for JDBC programs” on page 219
“Runtime environment for Java routines” on page 193

Preparation of Java routines with SQLJ clauses
You can use one of three methods to prepare Java routines with SQLJ clauses.

Those methods are:
v Prepare the routine Java routine to run from a JAR file. Running Java routines

from JAR files is recommended.
v Prepare the routine Java routine with no JAR file.
v Use IBM Optim Development Studio to prepare the routine.

You can use this method regardless of whether the routine is in a JAR file.

Preparing Java routines with SQLJ clauses to run from a JAR
file
The recommended method of running Java routines with SQLJ clauses is to run
them from a JAR file.

About this task

The steps in this task prepare an SQLJ routine for execution, create JAR files for
the methods in the routine, define the JAR files to DB2, define the routine to DB2,
and grant access on the routine to users.

Procedure
1. Run the sqlj command to translate the source code to produce generated Java

source code and serialized profiles, and to compile the Java program to
produce Java bytecodes.

2. Run the db2sqljcustomize command to produce serialized profiles that are
customized for DB2 for z/OS and DB2 packages.

3. Run the jar command to package the class files that contain the methods for
your routine, and the profiles that you generated in step 2 into a JAR file. See
"Creating JAR files for Java routines" for information on creating the JAR file.

4. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.
5. If the installed JAR references classes in other installed JARs, call the

SQLJ.ALTER_JAVA_PATH stored procedure to specify the class resolution path
that the JVM searches to resolve those class references.

6. If another user defines the routine to DB2, execute the SQL GRANT USAGE
ON JAR statement to grant the privilege to use the JAR file to that user.

224 Application Programming Guide and Reference for Java

7. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter with the
name of the JAR that you defined to DB2 in step 4 on page 224.

8. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Example

The following example demonstrates how to prepare a Java stored procedure that
contains SQLJ clauses for execution from a JAR file.
1. On z/OS UNIX System Services, run the sqlj command to translate and

compile the SQLJ source code.
Assume that the path for the stored procedure source program is
/u/db2res3/s1/s1sal.sqlj. Change to directory /u/db2res3/s1, and issue this
command:
sqlj s1sal.sqlj

After this process completes, the /u/db2res3/s1 directory contains these files:
s1sal.java
s1sal.class
s1sal_SJProfile0.ser

2. On z/OS UNIX System Services, run the db2sqljcustomize command to
produce serialized profiles that are customized for DB2 for z/OS and to bind
the DB2 packages for the stored procedure.
Change to the /u/db2res3 directory, and issue this command:
db2sqljcustomize -url jdbc:db2://mvs1:446/SJCEC1 \

-user db2adm -password db2adm \
-bindoptions "EXPLAIN YES" \
-collection ADMCOLL \
-rootpkgname S1SAL \
s1sal_SJProfile0.ser

After this process completes, s1sal_SJProfile0.ser contains a customized
serialized profile. The DB2 subsystem contains these packages:
S1SAL1
S1SAL2
S1SAL3
S1SAL4

3. On z/OS UNIX System Services, run the jar command to package the class
files that you created in step 1 and the customized serialized profile that you
created in step 2 into a JAR file.
Change to the /u/db2res3 directory, and issue this command:
jar -cvf s1sal.jar s1/*.class s1/*.ser

After this process completes, the /u/db2res3 directory contains this file:
s1sal.jar

4. Call the INSTALL_JAR stored procedure, which is on DB2 for z/OS, to define
the JAR file to DB2.
You need to execute the CALL statement from a static SQL program or from an
ODBC or JDBC program. The CALL statement looks similar to this:
CALL SQLJ.INSTALL_JAR(’file:/u/db2res3/s1sal.jar’,’MYSCHEMA.S1SAL’,0);

The exact form of the CALL statement depends on the language of the program
that issues the CALL statement.

Chapter 6. Preparing and running JDBC and SQLJ programs 225

After this process completes, the DB2 catalog contains JAR file
MYSCHEMA.S1SAL.

5. If the installed JAR references classes in other installed JARs, call the
SQLJ.ALTER_JAVA_PATH stored procedure, which is on DB2 for z/OS, to
specify the class resolution path that the JVM searches to resolve those class
references. You need to execute the CALL statement from a static SQL program
or from an ODBC or JDBC program.

6. If another user defines the routine to DB2, on DB2 for z/OS, execute the SQL
GRANT USAGE ON JAR statement to grant the privilege to use the JAR file to
that user.
Suppose that you want any user to be able to define the stored procedure to
DB2. This means that all users need the USAGE privilege on JAR
MYSCHEMA.S1SAL. To grant this privilege, execute this SQL statement:
GRANT USAGE ON JAR MYSCHEMA.S1SAL TO PUBLIC;

7. On DB2 for z/OS, execute the SQL CREATE PROCEDURE statement to define
the stored procedure to DB2:
CREATE PROCEDURE SYSPROC.S1SAL
(DECIMAL(10,2) INOUT)
FENCED
MODIFIES SQL DATA
COLLID ADMCOLL
LANGUAGE JAVA
EXTERNAL NAME ’MYSCHEMA.S1SAL:s1.S1Sal.getSals’
WLM ENVIRONMENT WLMIJAV
DYNAMIC RESULT SETS 1
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

8. On DB2 for z/OS, execute the SQL GRANT EXECUTE statement to grant the
privilege to run the routine to that user.
Suppose that you want any user to be able to run the routine. This means that
all users need the EXECUTE privilege on SYSPROC.S1SAL. To grant this
privilege, execute this SQL statement:
GRANT EXECUTE ON PROCEDURE SYSPROC.S1SAL TO PUBLIC;

Related concepts:
“Definition of a JAR file for a Java routine to DB2” on page 203
Related tasks:
“Program preparation for SQLJ programs” on page 219
“Creating JAR files for Java routines” on page 227

Preparing Java routines with SQLJ clauses and no JAR file
If you do not use a JAR file for a Java routine that contains SQLJ clauses, you need
to include the directories for the routine classes in the CLASSPATH.

About this task

The steps in this task prepare an SQLJ routine for execution, specify the class files
for the routine in the CLASSPATH, define the routine to DB2, and grant access on
the routine to users.

Procedure
1. Run the sqlj command to translate the source code to produce generated Java

source code and serialized profiles, and to compile the Java program to
produce Java bytecodes.

226 Application Programming Guide and Reference for Java

2. Run the db2sqljcustomize command to produce serialized profiles that are
customized for DB2 for z/OS and DB2 packages.

3. Ensure that the zFS or HFS directory that contains the class files for your
routine is in the CLASSPATH for the WLM-established stored procedure
address space.
You specify this CLASSPATH in the JAVAENV data set. You specify the
JAVAENV data set using a JAVAENV DD statement in the startup procedure
for the WLM-established stored procedure address space.
If you need to modify the CLASSPATH environment variable in the JAVAENV
data set to include the directory for the Java routine's classes, you must restart
the WLM address space to make it use the modified CLASSPATH.

4. Use the SQL CREATE PROCEDURE or CREATE FUNCTION statement to
define the routine to DB2. Specify the EXTERNAL NAME parameter without a
JAR name.

5. Execute the SQL GRANT statement to grant the EXECUTE privilege on the
routine to the appropriate users.

Related concepts:
“Runtime environment for Java routines” on page 193
Related tasks:
“Program preparation for SQLJ programs” on page 219

Creating JAR files for Java routines
A convenient way to ensure that all modules of a Java routine are accessible is to
store those modules in a JAR file. You create the JAR file by running the jar
command in z/OS UNIX System Services.

Before you begin

For a JDBC routine, before you can create a JAR file, you need to compile the
source code. For an SQLJ routine, before you can create a JAR file, you need to
translate, compile, and customize the source code.

Procedure
1. If the Java source file does not contain a package statement, change to the

directory that contains the class file for the Java routine, which you created by
running the javac command.
For example, if JDBC routine Add_customer.java is in /u/db2res3/acmejos,
change to directory /u/db2res3/acmejos.
If the Java source file contains a package statement, change to the directory that
is one level above the directory that is named in the package statement.
For example, suppose the package statement is:
package lvlOne.lvlTwo.lvlThree;

Change to the directory that contains lvlOne as an immediate subdirectory.
2. Run the jar command.

You might need to specify at least these options:

c Creates a new or empty archive.

v Generates verbose output on stderr.

f Specifies that the argument immediately after the options list is the name of
the JAR file to be created.

Chapter 6. Preparing and running JDBC and SQLJ programs 227

For example, to create a JAR file named acmejos.jar from Add_customer.class,
which is in package acmejos, execute this jar command:
jar -cvf acmejos.jar acmejos/Add_customer.class

To create a JAR file for an SQLJ routine, you also need to include all generated
class files, such as classes that are generated for iterators, and all serialized
profile files. For example, suppose that all classes are declared to be in package
acmejos, and all class files, including generated class files, and all serialized
profile files for SQLJ routine Add_customer.sqlj are in directory
/u/db2res3/acmejos/. To create a JAR file named acmejos.jar, change the the
/u/db2res3 directory, and then issue this jar command:
jar -cvf acmejos.jar acmejos/*.class acmejos/*.ser

Running JDBC and SQLJ programs
You run a JDBC or SQLJ program using the java command. Before you run the
program, you need to ensure that the JVM can find all of the files that it needs.

About this task

These steps allow you to run a JDBC or SQLJ program.

Procedure
1. Ensure that the program files can be found.

v For an SQLJ program, put the serialized profiles for the program in the same
directory as the class files for the program.

v Include directories for the class files that are used by the program in the
CLASSPATH.

2. Run the java command on the z/OS UNIX System Services command line, with
the top-level file name in the program as the argument.

Example

To run a program that is in the EzJava class, add the directory that contains EzJava
to the CLASSPATH. Then run this command:
java EzJava

Related concepts:
“Environment variables for the IBM Data Server Driver for JDBC and SQLJ” on
page 516

228 Application Programming Guide and Reference for Java

Chapter 7. JDBC and SQLJ reference information

The IBM implementations of JDBC and SQLJ provide a number of application
programming interfaces, properties, and commands for developing JDBC and SQLJ
applications.

Data types that map to database data types in Java applications
To write efficient JDBC and SQLJ programs, you need to use the best mappings
between Java data types and table column data types.

The following tables summarize the mappings of Java data types to JDBC and
database data types for a DB2 for Linux, UNIX, and Windows, DB2 for z/OS, or
IBM Informix system.

Data types for updating table columns

The following table summarizes the mappings of Java data types to database data
types for PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC
programs, and for input host expressions in SQLJ programs. When more than one
Java data type is listed, the first data type is the recommended data type.

Table 32. Mappings of Java data types to database server data types for updating database tables

Java data type Database data type

short, java.lang.Short SMALLINT

boolean1, byte1, java.lang.Boolean, java.lang.Byte SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long BIGINT12

java.math.BigInteger BIGINT11

java.math.BigInteger CHAR(n)11,5

float, java.lang.Float REAL

double, java.lang.Double DOUBLE

java.math.BigDecimal DECIMAL(p,s)2

java.math.BigDecimal DECFLOAT(n)3,4

java.lang.String CHAR(n)5

java.lang.String GRAPHIC(m)6

java.lang.String VARCHAR(n)7

java.lang.String VARGRAPHIC(m)8

java.lang.String CLOB9

java.lang.String XML10

byte[] CHAR(n) FOR BIT DATA5

byte[] VARCHAR(n) FOR BIT DATA7

byte[] BINARY(n)5, 13

byte[] VARBINARY(n)7, 13

byte[] BLOB9

© Copyright IBM Corp. 1998, 2013 229

Table 32. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

byte[] ROWID

byte[] XML10

java.sql.Blob BLOB

java.sql.Blob XML10

java.sql.Clob CLOB

java.sql.Clob DBCLOB9

java.sql.Clob XML10

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONE14,15

java.io.ByteArrayInputStream BLOB

java.io.StringReader CLOB

java.io.ByteArrayInputStream CLOB

java.io.InputStream XML10

com.ibm.db2.jcc.DB2RowID (deprecated) ROWID

java.sql.RowId ROWID

com.ibm.db2.jcc.DB2Xml (deprecated) XML10

java.sql.SQLXML XML10

java.util.Date CHAR(n)11,5

java.util.Date VARCHAR(n)11,5

java.util.Date DATE11

java.util.Date TIME11

java.util.Date TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONE11,14,15

java.util.Calendar CHAR(n)11,5

java.util.Calendar VARCHAR(n)11,5

java.util.Calendar DATE11

java.util.Calendar TIME11

java.util.Calendar TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONE11,14,15

230 Application Programming Guide and Reference for Java

Table 32. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

Notes:

1. For column updates, the data server has no exact equivalent for the Java boolean or byte data types, but the best
fit is SMALLINT.

2. p is the decimal precision and s is the scale of the table column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If
you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a
java.math.BigDecimal variable results in better performance than using other combinations of data types.

3. n=16 or n=34.

4. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS, DB2 V9.5 for Linux, UNIX, and Windows, or
DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

5. n<=255.

6. m<=127.

7. n<=32704.

8. m<=16352.

9. This mapping is valid only if the database server can determine the data type of the column.

10. XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,
and Windows or later database servers.

11. This mapping is valid only for IBM Data Server Driver for JDBC and SQLJ version 4.13 or later.

12. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux,
UNIX, and Windows or later database servers, and all supported DB2 for i database servers.

13. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or
DB2 for i5/OS™ V5R3 and later database servers.

14. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

15. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types for retrieval from table columns

The following table summarizes the mappings of DB2 or IBM Informix data types
to Java data types for ResultSet.getXXX methods in JDBC programs, and for
iterators in SQLJ programs. This table does not list Java numeric wrapper object
types, which are retrieved using ResultSet.getObject.

Table 33. Mappings of database server data types to Java data types for retrieving data from database server tables

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

INTEGER int short, byte, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

BIGINT5 long int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

DECIMAL(p,s) or NUMERIC(p,s) java.math.BigDecimal long, int, short, byte, float, double,
boolean, java.lang.String

Chapter 7. JDBC and SQLJ reference information 231

Table 33. Mappings of database server data types to Java data types for retrieving data from database server
tables (continued)

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

DECFLOAT(n)1,2 java.math.BigDecimal long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

REAL float long, int, short, byte, double,
java.math.BigDecimal, boolean,
java.lang.String

DOUBLE double long, int, short, byte, float,
java.math.BigDecimal, boolean,
java.lang.String

CHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARCHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,
java.io.InputStream, java.io.Reader

VARCHAR(n) FOR BIT DATA byte[] java.lang.String,
java.io.InputStream, java.io.Reader

BINARY(n)6 byte[] None

VARBINARY(n)6 byte[] None

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARGRAPHIC(m) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[]3

DBCLOB(m) No exact equivalent. Use
java.sql.Clob.

ROWID java.sql.RowId byte[], com.ibm.db2.jcc.DB2RowID
(deprecated)

XML4 java.sql.SQLXML byte[], java.lang.String,
java.io.InputStream, java.io.Reader

DATE java.sql.Date java.sql.String, java.sql.Timestamp

TIME java.sql.Time java.sql.String, java.sql.Timestamp

232 Application Programming Guide and Reference for Java

Table 33. Mappings of database server data types to Java data types for retrieving data from database server
tables (continued)

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

TIMESTAMP, TIMESTAMP(p), TIMESTAMP
WITH TIME ZONE, TIMESTAMP(p) WITH
TIME ZONE7,8

java.sql.Timestamp java.sql.String, java.sql.Date,
java.sql.Time, java.sql.Timestamp

Notes:

1. n=16 or n=34.

2. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS, DB2 V9.5 for Linux, UNIX, and Windows, or
DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

3. This mapping is valid only if the database server can determine the data type of the column.

4. XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,
and Windows or later database servers.

5. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,
and Windows or later database servers, and all supported DB2 for i database servers.

6. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2
for i5/OS V5R3 or later database servers.

7. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

8. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types for calling stored procedures and user-defined
functions

The following table summarizes mappings of Java data types to JDBC data types
and DB2 or IBM Informix data types for calling user-defined function and stored
procedure parameters. The mappings of Java data types to JDBC data types are for
CallableStatement.registerOutParameter methods in JDBC programs. The
mappings of Java data types to database server data types are for parameters in
stored procedure or user-defined function invocations.

If more than one Java data type is listed in the following table, the first data type
is the recommended data type.

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data type1

boolean2, java.lang.Boolean BIT SMALLINT

byte2, java.lang.Byte TINYINT SMALLINT

short, java.lang.Short SMALLINT SMALLINT

int, java.lang.Integer INTEGER INTEGER

long, java.lang.Long BIGINT BIGINT6

float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE

java.math.BigDecimal DECIMAL DECIMAL

java.math.BigDecimal java.types.OTHER DECFLOATn3

java.math.BigDecimal com.ibm.db2.jcc.DB2Types.DECFLOAT DECFLOATn3

Chapter 7. JDBC and SQLJ reference information 233

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined
functions (continued)

Java data type JDBC data type SQL data type1

java.lang.String CHAR CHAR

java.lang.String CHAR GRAPHIC

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR VARGRAPHIC

java.lang.String LONGVARCHAR VARCHAR

java.lang.String VARCHAR CLOB

java.lang.String LONGVARCHAR CLOB

java.lang.String CLOB CLOB

byte[] BINARY CHAR FOR BIT DATA

byte[] VARBINARY VARCHAR FOR BIT
DATA

byte[] BINARY BINARY5

byte[] VARBINARY VARBINARY5

byte[] LONGVARBINARY VARCHAR FOR BIT
DATA

byte[] VARBINARY BLOB4

byte[] LONGVARBINARY BLOB4

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP,
TIMESTAMP(p),
TIMESTAMP WITH TIME
ZONE, TIMESTAMP(p)
WITH TIME ZONE7,8

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Clob CLOB DBCLOB

java.io.ByteArrayInputStream None BLOB

java.io.StringReader None CLOB

java.io.ByteArrayInputStream None CLOB

com.ibm.db2.jcc.DB2RowID
(deprecated)

com.ibm.db2.jcc.DB2Types.ROWID ROWID

java.sql.RowId java.sql.Types.ROWID ROWID

java.sql.SQLXML java.sql.Types.SQLXML XML

java.sql.ResultSet com.ibm.db2.jcc.DB2Types.CURSOR CURSOR type

234 Application Programming Guide and Reference for Java

Table 34. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined
functions (continued)

Java data type JDBC data type SQL data type1

Notes:

1. A DB2 for z/OS stored procedure or user-defined function parameter cannot have the XML data type.

2. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a
boolean or byte parameter. However, this is not recommended.

3. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later
database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,
and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

4. This mapping is valid only if the database server can determine the data type of the column.

5. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2
for i5/OS V5R3 and later database servers.

6. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,
and Windows or later database servers, and all supported DB2 for i database servers.

7. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

8. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Data types in Java stored procedures and user-defined functions

The following table summarizes mappings of the SQL parameter data types in a
CREATE PROCEDURE or CREATE FUNCTION statement to the data types in the
corresponding Java stored procedure or user-defined function method.

For DB2 for Linux, UNIX, and Windows, if more than one Java data type is listed
for an SQL data type, only the first Java data type is valid.

For DB2 for z/OS, if more than one Java data type is listed, and you use a data
type other than the first data type as a method parameter, you need to include a
method signature in the EXTERNAL clause of your CREATE PROCEDURE or
CREATE FUNCTION statement that specifies the Java data types of the method
parameters.

Table 35. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE
FUNCTION1

Data type in Java stored procedure or
user-defined function method2

SMALLINT short, java.lang.Integer

INTEGER int, java.lang.Integer

BIGINT3 long, java.lang.Long

REAL float, java.lang.Float

DOUBLE double, java.lang.Double

DECIMAL java.math.BigDecimal

DECFLOAT4 java.math.BigDecimal

CHAR java.lang.String

VARCHAR java.lang.String

CHAR FOR BIT DATA byte[]

VARCHAR FOR BIT DATA byte[]

Chapter 7. JDBC and SQLJ reference information 235

Table 35. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in
the corresponding Java stored procedure or user-defined function program (continued)

SQL data type in CREATE PROCEDURE or CREATE
FUNCTION1

Data type in Java stored procedure or
user-defined function method2

BINARY5 byte[]

VARBINARY5 byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP, TIMESTAMP(p), TIMESTAMP WITH TIME ZONE,
TIMESTAMP(p) WITH TIME ZONE6,7

java.sql.Timestamp

BLOB java.sql.Blob

CLOB java.sql.Clob

DBCLOB java.sql.Clob

ROWID java.sql.Types.ROWID

Notes:

1. A DB2 for z/OS stored procedure or user-defined function parameter cannot have the XML data type.

2. For a stored procedure or user-defined function on a DB2 for Linux, UNIX, and Windows server, only the first
data type is valid.

3. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux,
UNIX, and Windows or later database servers.

4. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later
database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,
and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

5. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers.

6. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.
0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 for Linux, UNIX, and Windows
V9.7 and later and DB2 for z/OS V10 and later only.

7. The WITH TIME ZONE clause is supported for connections to DB2 for z/OS V10 and later only.

Date, time, and timestamp values that can cause problems in
JDBC and SQLJ applications

You might receive unexpected results in JDBC and SQLJ applications if you use
date, time, and timestamp values that do not correspond to real dates and times.

The following items might cause problems:
v Use of the hour '24' to represent midnight
v Use of a date between October 5, 1582, and October 14, 1582, inclusive

Problems with using the hour '24' as midnight

The IBM Data Server Driver for JDBC and SQLJ uses Java data types for its
internal processing of input and output parameters and ResultSet content in JDBC
and SQLJ applications. The Java data type that is used by the driver is based on
the best match for the corresponding SQL type when the target SQL type is known
to the driver.

236 Application Programming Guide and Reference for Java

For values that are assigned to or retrieved from DATE, TIME, or TIMESTAMP
SQL types, the IBM Data Server Driver for JDBC and SQLJ uses java.sql.Date for
DATE SQL types, java.sql.Time for TIME SQL types, and java.sql.Timestamp for
TIMESTAMP SQL types.

When you assign a string value to a DATE, TIME, or TIMESTAMP target, the IBM
Data Server Driver for JDBC and SQLJ uses Java facilities to convert the string
value to a java.sql.Date, java.sql.Time, or java.sql.Timestamp value. If a string
representation of a date, time, or timestamp value does not correspond to a real
date or time, Java adjusts the value to a real date or time value. In particular, Java
adjusts an hour value of '24' to '00' of the next day. This adjustment can result in
an exception for a timestamp value of '9999-12-31 24:00:00.0', because the adjusted
year value becomes '10000'.

Important: To avoid unexpected results when you assign or retrieve date, time, or
timestamp values in JDBC or SQLJ applications, ensure that the values are real
date, time, or timestamp values. In addition, do not use '24' as the hour component
of a time or timestamp value.

If a value that does not correspond to a real date or time, such as a value with an
hour component of '24', is stored in a TIME or TIMESTAMP column, you can
avoid adjustment during retrieval by executing the SQL CHAR function against
that column in the SELECT statement that defines a ResultSet. Executing the
CHAR function converts the date or time value to a character string value on the
database side. However, if you use the getTime or getTimestamp method to retrieve
that value from the ResultSet, the IBM Data Server Driver for JDBC and SQLJ
converts the value to a java.sql.Time or java.sql.Timestamp type, and Java adjusts
the value. To avoid date adjustment, execute the CHAR function against the
column value, and retrieve the value from the ResultSet with the getString
method.

The following examples show the results of updating DATE, TIME, or
TIMESTAMP columns in JDBC or SQLJ applications, when the application data
does not represent real dates or times.

Table 36. Examples of updating DATE, TIME, or TIMESTAMP SQL values with Java date, time, or timestamp values
that do not represent real dates or times

String input value
Target type in
database Value sent to table column, or exception

2008-13-35 DATE 2009-02-04

25:00:00 TIME 01:00:00

24:00:00 TIME 00:00:00

2008-15-36
28:63:74.0

TIMESTAMP 2009-04-06 05:04:14.0

9999-12-31
24:00:00.0

TIMESTAMP Exception, because the adjusted value (10000-01-01 00:00:00.0) exceeds the
maximum year of 9999.

The following examples demonstrate the results of retrieving data from
TIMESTAMP columns in JDBC or SQLJ applications, when the values in those
columns do not represent real dates or times.

Chapter 7. JDBC and SQLJ reference information 237

Table 37. Results of retrieving DATE, TIME, or TIMESTAMP SQL values that do not represent real dates or times into
Java application variables

SELECT statement
Value in TIMESTAMP
column TS_COL

Target type in application
(getXXX method for
retrieval) Value retrieved from table column

SELECT TS_COL
FROM TABLE1

2000-01-01 24:00:00.000000 java.sql.Timestamp
(getTimestamp)

2000-01-02 00:00:00.000000

SELECT TS_COL
FROM TABLE1

2000-01-01 24:00:00.000000 String (getString) 2000-01-02 00:00:00.000000

SELECT
CHAR(TS_COL)
FROM TABLE1

2000-01-01 24:00:00.000000 java.sql.Timestamp
(getTimestamp)

2000-01-02 00:00:00.000000

SELECT
CHAR(TS_COL)
FROM TABLE1

2000-01-01 24:00:00.000000 String (getString) 2000-01-01 24:00:00.000000 (no
adjustment by Java)

Problems with using dates in the range October 5, 1582, through
October 14, 1582

The Java java.util.Date and java.util.Timestamp classes use the Julian calendar
for dates before October 4, 1582, and the Gregorian calendar for dates starting with
October 4, 1582. In the Gregorian calendar, October 4, 1582, is followed by October
15, 1582. If a Java program encounters a java.util.Date or java.util.Timestamp
value that is between October 5, 1582, and October 14, 1582, inclusive, Java adds 10
days to that date. Therefore, a DATE or TIMESTAMP value in a DB2 table that has
a value between October 5, 1582, and October 14, 1582, inclusive, is retrieved in a
Java program as a java.util.Date or java.util.Timestamp value between October
15, 1582, and October 24, 1582, inclusive. A java.util.Date or
java.util.Timestamp value in a Java program that is between October 5, 1582, and
October 14, 1582, inclusive, is stored in a DB2 table as a DATE or TIMESTAMP
value between October 15, 1582, and October 24, 1582, inclusive.

Example: Retrieve October 10, 1582, from a DATE column.
// DATETABLE has one date column with one row.
// Its value is 1582-10-10.
java.sql.ResultSet rs =
statement.executeQuery(select * from DATETABLE);
rs.next();
System.out.println(rs.getDate(1)); // Value is retrieved as 1582-10-20

Example: Store October 10, 1582, in a DATE column.
java.sql.Date d = java.sql.Date.valueOf("1582-10-10");
java.sql.PreparedStatement ps =
c.prepareStatement("Insert into DATETABLE values(?)");
ps.setDate(1, d);
ps.executeUpdate(); // Value is inserted as 1582-10-20

To retrieve a value in the range October 5, 1582, to October 14, 1582, from a DB2
table without date adjustment, execute the SQL CHAR function against the DATE
or TIMESTAMP column in the SELECT statement that defines a ResultSet.
Executing the CHAR function converts the date or time value to a character string
value on the database side.

To store a value in the range October 5, 1582, to October 14, 1582 in a DB2 table
without date adjustment, you can use one of the following techniques:

238 Application Programming Guide and Reference for Java

v For a JDBC or an SQLJ application, use the setString method to assign the
value to a String input parameter. Cast the input parameter as VARCHAR, and
execute the DATE or TIMESTAMP function against the result of the cast. Then
store the result of the DATE or TIMESTAMP function in the DATE or
TIMESTAMP column.

v For a JDBC application, set the Connection or DataSource property sendDataAsIs
to true, and use the setString method to assign the date or timestamp value to
the input parameter. Then execute an SQL statement to assign the String value
to the DATE or TIMESTAMP column.

Example: Retrieve October 10, 1582, from a DATE column without date
adjustment.
// DATETABLE has one date column called DATECOL with one row.
// Its value is 1582-10-10.
java.sql.ResultSet rs =
statement.executeQuery(SELECT CHAR(DATECOL) FROM DATETABLE);
rs.next();
System.out.println(rs.getString(1)); // Value is retrieved as 1582-10-10

Example: Store October 10, 1582, in a DATE column without date adjustment.
String s = "1582-10-10";
java.sql.Statement stmt = c.createStatement;
java.sql.PreparedStatement ps =
c.prepareStatement("Insert INTO DATETABLE VALUES " +
"(DATE(CAST (? AS VARCHAR)))");

ps.setString(1, s);
ps.executeUpdate(); // Value is inserted as 1582-10-10

Data loss for timestamp data in JDBC and SQLJ applications
For DB2 for z/OS Version 10 or later, or DB2 for Linux, UNIX, and Windows
Version 9.7 or later, you can specify the precision of the fractional part of a
TIMESTAMP column, with a maximum precision of 12 digits. The fractional part
of a Java timestamp value can have up to 9 digits of precision. Depending on the
column definition, data loss can occur when you update a TIMESTAMP(p) column
or retrieve data from a TIMESTAMP(p) column.

Data loss for input data

If you use a setTimestamp call to pass a timestamp value to a TIMESTAMP(p)
column, the maximum precision of the Java value that is sent to the data source is
9. If you use a setTimestamp call to pass a timestamp value to a TIMESTAMP
column at a data source that does not support TIMESTAMP(p), the maximum
precision of the Java value that is sent to the data source is 6. For input to a
TIMESTAMP(p) column, if the precision of the target column is less than the
precision of the input value, the data source truncates the excess digits in the
fractional part of the timestamp.

If you use a setString call to pass the input value, it is possible to send a value
with a precision of greater than 9 to the data source.

For IBM Data Server Driver for JDBC and SQLJ version 3.59 or later, no data loss
occurs if the TIMESTAMP(p) column is big enough to accommodate the input
value. For IBM Data Server Driver for JDBC and SQLJ version 3.58 or earlier, data
loss depends on the setting of the deferPrepares property and the sendDataAsIs
property:

Chapter 7. JDBC and SQLJ reference information 239

v If sendDataAsIs is set to true, the IBM Data Server Driver for JDBC and SQLJ
sends the string to the data source as-is, so the fractional part of the timestamp
value can be more than 9 digits. If the value of p in the TIMESTAMP(p) column
is greater than or equal to the number of digits in the fractional part of the input
data, no data loss occurs.

v If sendDataAsIs is set to false, data loss depends on the deferPrepares setting.
v If deferPrepares is set to true, the first time that an UPDATE statement is

executed, the IBM Data Server Driver for JDBC and SQLJ sends the string to the
data source as-is, so the fractional part of the timestamp value can be more than
9 digits. If the value of p in the TIMESTAMP(p) column is greater than or equal
to the number of digits in the fractional part of the input data, no data loss
occurs.
For subsequent executions of the UPDATE statement, the IBM Data Server
Driver for JDBC and SQLJ can determine that the target data type is a
TIMESTAMP data type. If the data source supports TIMESTAMP(p) columns, the
driver converts the input value to a java.sql.Timestamp value with a maximum
precision of 9. If the data source does not support TIMESTAMP(p) columns, the
driver converts the input value to a java.sql.Timestamp value with a maximum
precision of 6. Data loss occurs if the original value has more precision than the
converted java.sql.Timestamp value, or if the java.sql.Timestamp value has more
precision than the TIMESTAMP(p) column.

v If deferPrepares is set to false, the IBM Data Server Driver for JDBC and SQLJ
can determine that the target data type is a TIMESTAMP data type. If the data
source supports TIMESTAMP(p) columns, the driver converts the input value to
a java.sql.Timestamp value with a maximum precision of 9. If the data source
does not support TIMESTAMP(p) columns, the driver converts the input value
to a java.sql.Timestamp value with a maximum precision of 6. Data loss occurs if
the original value has more precision than the converted java.sql.Timestamp
value, or if the java.sql.Timestamp value has more precision than the
TIMESTAMP(p) column.

You can lessen data loss for input timestamp values by using a setString call and
setting sendDataAsIs to true. However, if you set sendDataAsIs to true, you need
to ensure that application data types are compatible with data source data types.

Data loss for output data

When you use a getTimestamp or getString call to retrieve data from a
TIMESTAMP(p) column, the IBM Data Server Driver for JDBC and SQLJ converts
the value to a java.sql.Timestamp value with a maximum precision of 9. If the
source value has a precision of greater than 9, the driver truncates the fractional
part of the retrieved value to nine digits. If you do not want truncation to occur, in
the SELECT statement that retrieves the TIMESTAMP(p) value, you can cast the
TIMESTAMP(p) value to a character data type, such as VARCHAR, and use
getString to retrieve the value from the ResultSet.

Retrieval of special values from DECFLOAT columns in Java
applications

Special handling is necessary if you retrieve values from DECFLOAT columns, and
the DECFLOAT columns contain the values NaN, Infinity, or -Infinity.

The recommended Java data type for retrieval of DECFLOAT column values is
java.math.BigDecimal. However, you receive SQL error code -4231 if you perform
either of these operations:

240 Application Programming Guide and Reference for Java

v Retrieve the value NaN, Infinity, or -Infinity from a DECFLOAT column using
the JDBC java.sql.ResultSet.getBigDecimal or java.sql.ResultSet.getObject
method

v Retrieve the value NaN, Infinity, or -Infinity from a DECFLOAT column into a
java.math.BigDecimal variable in an SQLJ clause of an SQLJ program

You can circumvent this restriction by testing for the -4231 error, and retrieving the
special value using the java.sql.ResultSet.getDouble or
java.sql.ResultSet.getString method.

Suppose that the following SQL statements were used to create and populate a
table.
CREATE TABLE TEST.DECFLOAT_TEST
(
INT_VAL INT,
DECFLOAT_VAL DECFLOAT
);
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (1, 123.456),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (2, INFINITY),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (3, -123.456),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (4, -INFINITY),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (5, NaN);

The following code retrieves the contents of the DECFLOAT column using the
java.sql.ResultSet.getBigDecimal method. If retrieval fails because the column
value is NaN, INFINITY, or -INFINITY, the program retrieves the value using the
java.sql.ResultSet.getBigDouble method.
final static int DECFLOAT_SPECIALVALUE_ENCOUNTERED = -4231;
java.sql.Connection con =

java.sql.DriverManager.getConnection("jdbc:db2://localhost:50000/sample"
, "userid", "password");

java.sql.Statement stmt = con.createStatement();
java.sql.ResultSet rs = stmt.executeQuery(
"SELECT INT_VAL, DECFLOAT_VAL FROM TEST.DECFLOAT_TEST ORDER BY INT_VAL");
int i = 0;
while (rs.next()) {
try {
System.out.println("\nRow ” + ++i);
System.out.println("INT_VAL = " + rs.getInt(1));
System.out.println("DECFLOAT_VAL = " + rs.getBigDecimal(2));

}
catch (java.sql.SQLException e) {
System.out.println("Caught SQLException" + e.getMessage());
if (e.getErrorCode() == DECFLOAT_SPECIALVALUE_ENCOUNTERED) {
// getBigDecimal failed because the retrieved value is NaN,
// INFINITY, or -INFINITY, so retry with getDouble.

double d = rs.getDouble(2);
if (d == Double.POSITIVE_INFINITY) {

System.out.println("DECFLOAT_VAL = +INFINITY");
} else if (d == Double.NEGATIVE_INFINITY) {

System.out.println("DECFLOAT_VAL = -INFINITY");
} else if (d == Double.NaN) {

System.out.println("DECFLOAT_VAL = NaN");
} else {

System.out.println("DECFLOAT_VAL = " + d);
}

} else {
e.printStackTrace();
}

}

Chapter 7. JDBC and SQLJ reference information 241

The following code retrieves the contents of the DECFLOAT column using the
java.sql.ResultSet.getBigDecimal method. If retrieval fails because the column
value is NaN, INFINITY, or -INFINITY, the program retrieves the value using the
java.sql.ResultSet.getString method.
final static int DECFLOAT_SPECIALVALUE_ENCOUNTERED = -4231;
java.sql.Connection con =

java.sql.DriverManager.getConnection("jdbc:db2://localhost:50000/sample"
, "userid", "password");

java.sql.Statement stmt = con.createStatement();
java.sql.ResultSet rs = stmt.executeQuery(
"SELECT INT_VAL, DECFLOAT_VAL FROM TEST.DECFLOAT_TEST ORDER BY INT_VAL");
int i = 0;
while (rs.next()) {
try {
System.out.println("\nRow ” + ++i);
System.out.println("INT_VAL = " + rs.getInt(1));
System.out.println("DECFLOAT_VAL = " + rs.getBigDecimal(2));

}
catch (java.sql.SQLException e) {
System.out.println("Caught SQLException" + e.getMessage());
if (e.getErrorCode() == DECFLOAT_SPECIALVALUE_ENCOUNTERED) {
// getBigDecimal failed because the retrieved value is NaN,
// INFINITY, or -INFINITY, so retry with getString.

System.out.println("DECFLOAT_VAL = "+rs.getString(2));
} else {

e.printStackTrace();
}

}

Use of PreparedStatement.setTimestamp to set values in
TIMESTAMP WITH TIME ZONE columns

When you use PreparedStatement.setTimestamp to set a value in a TIMESTAMP
WITH TIME ZONE column, you should specify a com.ibm.db2.jcc.DBTimestamp
object for the input value.

Use of a com.ibm.db2.jcc.DBTimestamp object ensures that the correct time zone is
assigned to the target column.

In certain cases, the target data type for a table update is not known. Possible
reasons are:
v The deferPrepares and sendDataAsIs properties are set so that the target data

type is not known.
v The input parameter is for a CALL statement, and the stored procedure is on a

DB2 for z/OS data server.

If the target data type is not known, the IBM Data Server Driver for JDBC and
SQLJ must choose a target data type. When an input parameter has type
com.ibm.db2.jcc.DBTimestamp, and the target data server supports TIMESTAMP
WITH TIME ZONE, the driver always chooses TIMESTAMP with TIMEZONE as
the target data type.

If the target data type is not known, the target data server supports TIMESTAMP
WITH TIME ZONE, and the input data type is java.sql.Timestamp, the driver
chooses TIMESTAMP WITH TIME ZONE as the target type, except when the input
object has a value of 0001-01-01-00:00:00.000000 or 9999-12-31-23:59:59.999999. In
those cases, the driver chooses the TIMESTAMP type, without a time zone. Use of
the TIMESTAMP data type in those two cases prevents an overflow condition from

242 Application Programming Guide and Reference for Java

occurring because of adjustment of the value for the implied time zone. The
implied time zone is the time zone of the Java virtual machine (JVM).

Migration consideration

TIMESTAMP WITH TIME ZONE is first supported in DB2 for z/OS Version 10
new-function mode. Under certain circumstances, an application that invokes
PreparedStatement.setTimestamp might produce different results before and after
conversion to DB2 for z/OS Version 10 new-function mode. If the second
parameter of PreparedStatement.setTimestamp has the java.sql.Timestamp data
type, and the target data type is not known, the IBM Data Server Driver for JDBC
and SQLJ chooses TIMESTAMP as the target data type before Version 10
new-function mode. However, starting with DB2 for z/OS Version 10 new-function
mode, unless the input value is 0001-01-01-00:00:00.000000 or 9999-12-31-
23:59:59.999999, the driver chooses TIMESTAMP WITH TIME ZONE as the target
data type. If the driver chooses the TIMESTAMP data type, and the target type is
actually TIMESTAMP WITH TIME ZONE, the database manager sets the time zone
in the target column using the value of the IMPLICIT_TIMEZONE DECP value.
This value might differ from the value that is inserted prior to Version 10
new-function mode.

To produce the same results when PreparedStatement.setTimestamp is executed,
specify a com.ibm.db2.jcc.DBTimestamp value as the second parameter.

Properties for the IBM Data Server Driver for JDBC and SQLJ
IBM Data Server Driver for JDBC and SQLJ properties define how the connection
to a particular data source should be made. Most properties can be set for a
DataSource object or for a Connection object.

Methods for setting the properties

Properties can be set in one of the following ways:
v Using setXXX methods, where XXX is the unqualified property name, with the

first character capitalized.
Properties are applicable to the following IBM Data Server Driver for JDBC and
SQLJ-specific implementations that inherit from
com.ibm.db2.jcc.DB2BaseDataSource:
– com.ibm.db2.jcc.DB2SimpleDataSource
– com.ibm.db2.jcc.DB2ConnectionPoolDataSource
– com.ibm.db2.jcc.DB2XADataSource

v In a java.util.Properties value in the info parameter of a
DriverManager.getConnection call.

v In a java.lang.String value in the url parameter of a
DriverManager.getConnection call.
Some properties with an int data type have predefined constant field values. You
must resolve constant field values to their integer values before you can use
those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string to
a String variable. Then you can use the String variable in the url parameter:

String url =
"jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +

Chapter 7. JDBC and SQLJ reference information 243

"traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

Connection con =
java.sql.DriverManager.getConnection(url);

Related concepts:
“LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ”
on page 63
Chapter 10, “Security under the IBM Data Server Driver for JDBC and SQLJ,” on
page 539
“IBM Data Server Driver for JDBC and SQLJ support for SSL” on page 552

Methods for keeping prepared statements after commit points (DB2
Application programming and SQL)
Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“IBM Data Server Driver for JDBC and SQLJ extensions to JDBC” on page 383

SIGNON function for RRSAF (DB2 Application programming and SQL)

Common IBM Data Server Driver for JDBC and SQLJ
properties for all supported database products

Most of the IBM Data Server Driver for JDBC and SQLJ properties apply to all
database products that the driver supports.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

affinityFailbackInterval
Specifies the length of the interval, in seconds, that the IBM Data Server Driver
for JDBC and SQLJ waits between attempts to fail back an existing connection
to the primary server. A value that is less than or equal to 0 means that the
connection does not fail back. The default is DB2BaseDataSource.NOT_SET (0).

Attempts to fail back connections to the primary server are made at transaction
boundaries, after the specified interval elapses.

affinityFailbackInterval is used only if the values of properties
enableSeamlessFailover and enableClientAffinitiesList are
DB2BaseDataSource.YES (1).

affinityFailbackInterval applies only to IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity.

allowNextOnExhaustedResultSet
Specifies how the IBM Data Server Driver for JDBC and SQLJ handles a
ResultSet.next() call for a forward-only cursor that is positioned after the last
row of the ResultSet. The data type of this property is int.

Possible values are:

DB2BaseDataSource.YES (1)
For a ResultSet that is defined as TYPE_FORWARD_ONLY,
ResultSet.next() returns false if the cursor was previously positioned

244 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_keeppreparedstmt.htm#db2z_keeppreparedstmt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_keeppreparedstmt.htm#db2z_keeppreparedstmt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_signonfnrrsaf.htm#db2z_signonfnrrsaf

after the last row of the ResultSet. false is returned, regardless of
whether the cursor is open or closed.

DB2BaseDataSource.NO (2)
For a ResultSet that is defined as TYPE_FORWARD_ONLY, when
ResultSet.next() is called, and the cursor was previously positioned
after the last row of the ResultSet, the driver throws a
java.sql.SQLException with error text "Invalid operation: result set is
closed." This is the default.

allowNullResultSetForExecuteQuery
Specifies whether the IBM Data Server Driver for JDBC and SQLJ returns null
when Statement.executeQuery, PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to execute a CALL statement for a
stored procedure that does not return any result sets.

Possible values are:

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as for DB2BaseDataSource.NO.

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ returns null when
Statement.executeQuery, PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to execute a CALL statement
for a stored procedure that does not return any result sets. This
behavior does not conform to the JDBC standard.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ throws an
SQLException when Statement.executeQuery,
PreparedStatement.executeQuery, or CallableStatement.executeQuery
is used to execute a CALL statement for a stored procedure that does
not return any result sets. This behavior conforms to the JDBC
standard.

atomicMultiRowInsert
Specifies whether batch operations that use PreparedStatement methods to
modify a table are atomic or non-atomic. The data type of this property is int.

For connections to DB2 for z/OS, this property applies only to batch INSERT
operations.

For connections to DB2 for Linux, UNIX, and Windows or IBM Informix, this
property applies to batch INSERT, MERGE, UPDATE or DELETE operations.

Possible values are:

DB2BaseDataSource.YES (1)
Batch operations are atomic. Insertion of all rows in the batch is
considered to be a single operation. If insertion of a single row fails,
the entire operation fails with a BatchUpdateException. Use of a batch
statement that returns auto-generated keys fails with a
BatchUpdateException.

If atomicMultiRowInsert is set to DB2BaseDataSource.YES (1):
v Execution of statements in a heterogeneous batch is not allowed.
v If the target data source is DB2 for z/OS the following operations

are not allowed:
– Insertion of more than 32767 rows in a batch results in a

BatchUpdateException.

Chapter 7. JDBC and SQLJ reference information 245

– Calling more than one of the following methods against the same
parameter in different rows results in a BatchUpdateException:
- PreparedStatement.setAsciiStream
- PreparedStatement.setCharacterStream
- PreparedStatement.setUnicodeStream

DB2BaseDataSource.NO (2)
Batch inserts are non-atomic. Insertion of each row is considered to be
a separate execution. Information on the success of each insert
operation is provided by the int[] array that is returned by
Statement.executeBatch.

DB2BaseDataSource.NOT_SET (0)
Batch inserts are non-atomic. Insertion of each row is considered to be
a separate execution. Information on the success of each insert
operation is provided by the int[] array that is returned by
Statement.executeBatch. This is the default.

blockingReadConnectionTimeout
The amount of time in seconds before a connection socket read times out. This
property applies only to IBM Data Server Driver for JDBC and SQLJ type 4
connectivity, and affects all requests that are sent to the data source after a
connection is successfully established. The default is 0. A value of 0 means that
there is no timeout.

clientDebugInfo
Specifies a value for the CLIENT DEBUGINFO connection attribute, to notify
the data server that stored procedures and user-defined functions that are
using the connection are running in debug mode. CLIENT DEBUGINFO is
used by the DB2 Unified Debugger. The data type of this property is String.
The maximum length is 254 bytes.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

clientRerouteAlternateServerName
Specifies one or more server names for client reroute. The data type of this
property is String.

When enableClientAffinitiesList=DB2BaseDataSource.YES (1),
clientRerouteAlternateServerName must contain the name of the primary
server as well as alternate server names. The server that is identified by
serverName and portNumber is the primary server. That server name must
appear at the beginning of the clientRerouteAlternateServerName list.

If more than one server name is specified, delimit the server names with
commas (,) or spaces. The number of values that is specified for
clientRerouteAlternateServerName must match the number of values that is
specified for clientRerouteAlternatePortNumber.

clientRerouteAlternateServerName applies to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity to DB2 for Linux, UNIX, and Windows and IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity.

clientRerouteAlternatePortNumber
Specifies one or more port numbers for client reroute. The data type of this
property is String.

When enableClientAffinitiesList=DB2BaseDataSource.YES (1),
clientRerouteAlternatePortNumber must contain the port number for the
primary server as well as port numbers for alternate servers. The server that is

246 Application Programming Guide and Reference for Java

identified by serverName and portNumber is the primary server. That port
number must appear at the beginning of the
clientRerouteAlternatePortNumber list.

If more than one port number is specified, delimit the port numbers with
commas (,) or spaces. The number of values that is specified for
clientRerouteAlternatePortNumber must match the number of values that is
specified for clientRerouteAlternateServerName.

clientRerouteAlternatePortNumber applies to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity to DB2 for Linux, UNIX, and Windows and IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity.

clientRerouteServerListJNDIName
Identifies a JNDI reference to a DB2ClientRerouteServerList instance in a JNDI
repository of reroute server information. clientRerouteServerListJNDIName
applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
and to connections that are established through the DataSource interface.

If the value of clientRerouteServerListJNDIName is not null,
clientRerouteServerListJNDIName provides the following functions:
v Allows information about reroute servers to persist across JVMs
v Provides an alternate server location if the first connection to the data source

fails

clientRerouteServerListJNDIContext
Specifies the JNDI context that is used for binding and lookup of the
DB2ClientRerouteServerList instance. clientRerouteServerListJNDIContext
applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
and to connections that are established through the DataSource interface.

If clientRerouteServerListJNDIContext is not set, the IBM Data Server Driver
for JDBC and SQLJ creates an initial context using system properties or the
jndi.properties file.

clientRerouteServerListJNDIContext can be set only by using the following
method:
public void setClientRerouteServerListJNDIContext(javax.naming.Context registry)

commandTimeout
Specifies the maximum time in seconds that an application that runs under the
IBM Data Server Driver for JDBC and SQLJ waits for SQL operations to
complete before the driver throws an SQLException. The wait time includes
time to obtain a transport, perform failover if needed, send the request, and
wait for a response. The data type of this parameter is int. The default is 0,
which means that there is no timeout.

If the java.sql.Statement.setQueryTimeout method is invoked, the query
timeout value that is set through Statement.setQueryTimeout overrides the
commandTimeout value.

commandTimeout applies to the execution of Statement, PreparedStatement,
and CallableStatement methods execute, executeQuery, and executeUpdate.
commandTimeout also applies to the executeBatch method if property
queryTimeoutInterruptProcessingMode has the value
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2).

The SQL error code that is returned with the SQLException depends on the
data server and the value of property queryTimeoutInterruptProcessingMode:
v For connections to DB2 for z/OS data servers, -30108 is returned.

Chapter 7. JDBC and SQLJ reference information 247

Automatic client reroute processing is not initiated if the commandTimeout
value is exceeded.

v For connections to other data servers:
– If the queryTimeoutInterruptProcessingMode value is

INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1), -952 is returned.
– If the queryTimeoutInterruptProcessingMode value is

INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2), -30108 is returned.

If configuration property db2.jcc.enableInetAddressGetHostName is set to true,
the following situations might occur:
v Actual wait times might exceed the commandTimeout value. This situation

can occur when the driver needs to do several DNS lookup operations to
resolve IP addresses to host names. The amount by which the wait time
exceeds the commandTimeout value depends on the number of DNS lookup
operations, and the amount of time that each DNS lookup operation takes.

v The extra time that is required for DNS lookup operations might cause more
timeout conditions than if db2.jcc.enableInetAddressGetHostName is set to
false.

connectionCloseWithInFlightTransaction
Specifies whether the IBM Data Server Driver for JDBC and SQLJ throws an
SQLException or rolls back a transaction without throwing an SQLException
when a connection is closed in the middle of the transaction. Possible values
are:

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as for
DB2BaseDataSource.CONNECTION_CLOSE_WITH_EXCEPTION.

DB2BaseDataSource.CONNECTION_CLOSE_WITH_EXCEPTION (1)
When a connection is closed in the middle of a transaction, an
SQLException with error -4471 is thrown.

DB2BaseDataSource.CONNECTION_CLOSE_WITH_ROLLBACK (2)
When a connection is closed in the middle of a transaction, the
transaction is rolled back, and no SQLException is thrown.

connectionTimeout
Specifies the maximum time in seconds that the IBM Data Server Driver for
JDBC and SQLJ waits for a reply from a group of data servers when the driver
attempts to establish a connection. If the driver does not receive a reply after
the amount of time that is specified by connectionTimeout, the driver throws
an SQLException with SQL error code -4499. The data type of this parameter is
int. The default value is 0.

connectionTimeout applies only to connections to a DB2 for z/OS data sharing
group, DB2 pureScale® instance, or IBM Informix high availability cluster.

If connectionTimeout is set to a positive value, that value overrides any other
timeout values that are set on a connection, such as loginTimeout. A
connection is attempted to the member of the group of data servers with the
greatest load capacity. If none of the members are up, a connection is
attempted to the group IP address that is specified on the DataSource. If the
connection cannot be established with any of the data servers within the
amount of time that is specified by connectionTimeout, an SQLException is
thrown.

If connectionTimeout is set to 0, and automatic client reroute is not enabled,
there is no time limit.

248 Application Programming Guide and Reference for Java

|
|

If connectionTimeout is set to 0, and automatic client reroute is enabled against
a DB2 for z/OS data sharing group, DB2 pureScale instance, or IBM Informix
high availability cluster, automatic client reroute properties such as
maxRetriesForClientReroute and retryIntervalForClientReroute control the
amount of time that is needed to establish the connection.

If configuration property db2.jcc.enableInetAddressGetHostName is set to true,
the following situations might occur:
v Actual wait times might exceed the connectionTimeout value. This situation

can occur when the driver needs to do several DNS lookup operations to
resolve IP addresses to host names. The amount by which the wait time
exceeds the connectionTimeout value depends on the number of DNS
lookup operations, and the amount of time that each DNS lookup operation
takes.

v The extra time that is required for DNS lookup operations might cause more
timeout conditions than if db2.jcc.enableInetAddressGetHostName is set to
false.

databaseName
Specifies the name for the data source. This name is used as the database
portion of the connection URL. The name depends on whether IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity is used.

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity:
v If the connection is to a DB2 for z/OS server, the databaseName value is the

DB2 location name that is defined during installation. All characters in this
value must be uppercase characters. You can determine the location name by
executing the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 for Linux, UNIX, and Windows server, the
databaseName value is the database name that is defined during installation.

v If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

v If the connection is to an IBM Cloudscape server, the databaseName value is
the fully-qualified name of the file that contains the database. This name
must be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

If this property is not set, connections are made to the local site.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity:
v The databaseName value is the location name for the data source. The

location name is defined in the SYSIBM.LOCATIONS catalog table.
If the databaseName property is not set, the connection location depends on
the type of environment in which the connection is made. If the connection
is made in an environment such as a stored procedure, CICS, or IMS
environment, where a DB2 connection to a location is previously established,
that connection is used. The connection URL for this case is
jdbc:default:connection:. If a connection to DB2 is not previously established,
the connection is to the local site. The connection URL for this case is
jdbc:db2os390: or jdbc:db2os390sqlj:.

decimalSeparator
Specifies the decimal separator for input and output, for decimal, floating
point, or decimal floating-point data values. The data type of this property is
int.

Chapter 7. JDBC and SQLJ reference information 249

If the value of the sendDataAsIs property is true, decimalSeparator affects only
output values.

Possible values are:

DB2BaseDataSource.DECIMAL_SEPARATOR_NOT_SET (0)
A period is used as the decimal separator. This is the default.

DB2BaseDataSource.DECIMAL_SEPARATOR_PERIOD (1)
A period is used as the decimal separator.

DB2BaseDataSource.DECIMAL_SEPARATOR_COMMA (2)
A comma is used as the decimal separator.

When DECIMAL_SEPARATOR_COMMA is set, the result of
ResultSet.getString on a decimal, floating point, or decimal
floating-point value has a comma as a separator. However, if the
toString method is executed on a value that is retrieved with a
ResultSet.getXXX method that returns a decimal, floating point, or
decimal floating-point value, the result has a decimal point as the
decimal separator.

decimalStringFormat
Specifies the string format for data that is retrieved from a DECIMAL or
DECFLOAT column when the SDK for Java is Version 1.5 or later. The data
type of this property is int. Possible values are:

DB2BaseDataSource.DECIMAL_STRING_FORMAT_NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toString method returns
them. This is the default.

For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_STRING (1)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toString method returns
them.

For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_PLAIN_STRING (2)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toPlainString method
returns them.

For example, the value 0.0000000004 is returned as 0.0000000004.

This property has no effect for earlier versions of the SDK for Java. For those
versions, the IBM Data Server Driver for JDBC and SQLJ returns decimal
values in the format that the java.math.BigDecimal.toString method returns
them.

defaultIsolationLevel
Specifies the default transaction isolation level for new connections. The data
type of this property is int. When defaultIsolationLevel is set on a DataSource,
all connections that are created from that DataSource have the default isolation
level that is specified by defaultIsolationLevel.

For DB2 data sources, the default is
java.sql.Connection.TRANSACTION_READ_COMMITTED.

For IBM Informix databases, the default depends on the type of data source.
The following table shows the defaults.

250 Application Programming Guide and Reference for Java

Table 38. Default isolation levels for IBM Informix databases

Type of data source Default isolation level

ANSI-compliant database with logging java.sql.Connection.TRANSACTION_SERIALIZABLE

Database without logging java.sql.Connection.TRANSACTION_READ_UNCOMMITTED

Non-ANSI-compliant database with
logging

java.sql.Connection.TRANSACTION_READ_COMMITTED

deferPrepares
Specifies whether invocation of the Connection.prepareStatement method
results in immediate preparation of an SQL statement on the data source, or
whether statement preparation is deferred until the PreparedStatement.execute
method is executed. The data type of this property is boolean.

deferPrepares is supported for IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity to DB2 for Linux, UNIX, and Windows, and for IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity.

Possible values are:

true Statement preparation on the data source does not occur until the
PreparedStatement.execute method is executed. This is the default.

false Statement preparation on the data source occurs when the
Connection.prepareStatement method is executed.

Deferring prepare operations can reduce network delays. However, if you defer
prepare operations, you need to ensure that input data types match table
column types.

description
A description of the data source. The data type of this property is String.

downgradeHoldCursorsUnderXa
Specifies whether cursors that are defined WITH HOLD can be opened under
XA connections.

downgradeHoldCursorsUnderXa applies to:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for

z/OS servers.
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for Linux,
UNIX, and Windows servers.

The default is false, which means that a cursor that is defined WITH HOLD
cannot be opened under an XA connection. An exception is thrown when an
attempt is made to open that cursor.

If downgradeHoldCursorsUnderXa is set to true, a cursor that is defined
WITH HOLD can be opened under an XA connection. However, the cursor has
the following restrictions:
v When the cursor is opened under an XA connection, the cursor does not

have WITH HOLD behavior. The cursor is closed at XA End.
v A cursor that is open before XA Start on a local transaction is closed at XA

Start.

driverType
For the DataSource interface, determines which driver to use for connections.
The data type of this property is int. Valid values are 2 or 4. 2 is the default.

Chapter 7. JDBC and SQLJ reference information 251

enableClientAffinitiesList
Specifies whether the IBM Data Server Driver for JDBC and SQLJ enables
client affinities for cascaded failover support. The data type of this property is
int. Possible values are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ enables client affinities
for cascaded failover support. This means that only servers that are
specified in the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are retried. The driver
does not attempt to reconnect to any other servers.

For example, suppose that clientRerouteAlternateServerName contains
the following string:
host1,host2,host3

Also suppose that clientRerouteAlternatePortNumber contains the
following string:
port1,port2,port3

When client affinities are enabled, the retry order is:
1. host1:port1
2. host2:port2
3. host3:port3

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not enable client
affinities for cascaded failover support.

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not enable client
affinities for cascaded failover support. This is the default.

The effect of the maxRetriesForClientReroute and retryIntervalForClientReroute
properties differs depending on whether enableClientAffinitiesList is enabled.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

enableNamedParameterMarkers
Specifies whether support for named parameter markers is enabled in the IBM
Data Server Driver for JDBC and SQLJ. The data type of this property is int.
Possible values are:

DB2BaseDataSource.YES (1)
Named parameter marker support is enabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NO (2)
Named parameter marker support is not enabled in the IBM Data
Server Driver for JDBC and SQLJ.

The driver sends an SQL statement with named parameter markers to
the target data source without modification. The success or failure of
the statement depends on a number of factors, including the following
ones:
v Whether the target data source supports named parameter markers
v Whether the deferPrepares property value is true of false
v Whether the sendDataAsIs property value is true of false

252 Application Programming Guide and Reference for Java

Recommendation: To avoid unexpected behavior in an application
that uses named parameter markers, set
enableNamedParameterMarkers to YES.

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as the behavior for DB2BaseDataSource.NO (2).
This is the default.

enableSeamlessFailover
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
seamless failover for client reroute. The data type of this property is int.

For connections to DB2 for z/OS, if enableSysplexWLB is set to true,
enableSeamlessFailover has no effect. The IBM Data Server Driver for JDBC
and SQLJ uses seamless failover regardless of the enableSeamlessFailover
setting.

Possible values of enableSeamlessFailover are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ uses seamless failover.
This means that the driver does not throw an SQLException with SQL
error code -4498 after a failed connection has been successfully
re-established if the following conditions are true:
v The connection was not being used for a transaction at the time the

failure occurred.
v There are no outstanding global resources, such as global temporary

tables or open, held cursors, or connection states that prevent a
seamless failover to another server.

When seamless failover occurs, after the connection to a new data
source has been established, the driver re-issues the SQL statement that
was being processed when the original connection failed.

Recommendation: Set the queryCloseImplicit property to
DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2) when you set
enableSeamlessFailover to DB2BaseDataSource.YES, if the application
uses held cursors.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not use seamless
failover.

When this setting is in effect, if a server goes down, the driver tries to
fail back or fail over to an alternate server. If failover or failback is
successful, the driver throws an SQLException with SQL error code
-4498, which indicates that a connection failed but was successfully
reestablished. An SQLException with SQL error code -4498 informs the
application that it should retry the transaction during which the
connection failure occurred. If the driver cannot reestablish a
connection, it throws an SQLException with SQL error code -4499.

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not use seamless
failover. This is the default.

enableSysplexWLB
Indicates whether the Sysplex workload balancing function of the IBM Data
Server Driver for JDBC and SQLJ is enabled. The data type of
enableSysplexWLB is boolean. The default is false.

Chapter 7. JDBC and SQLJ reference information 253

enablSysplexWLB applies only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

fetchSize
Specifies the default fetch size for ResultSet objects that are generated from
Statement objects. The data type of this property is int.

The fetchSize default can be overridden by the Statement.setFetchSize
method. The fetchSize property does not affect Statement objects that already
exist when fetchSize is set.

Possible values of fetchSize are:

0 or positive-integer
The default fetchSize value for newly created Statement objects. If the
fetchSize property value is invalid, the IBM Data Server Driver for
JDBC and SQLJ sets the default fetchSize value to 0.

DB2BaseDataSource.FETCHSIZE_NOT_SET (-1)
Indicates that the default fetchSize value for Statement objects is 0. This
is the property default.

The fetchSize property differs from the queryDataSize property. fetchSize
affects the number of rows that are returned, and queryDataSize affects the
number of bytes that are returned.

fullyMaterializeLobData
Indicates whether the driver retrieves LOB locators for FETCH operations. The
data type of this property is boolean.

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming, which is also known as dynamic data format:
v If the data source does not support progressive streaming:

If the value of fullyMaterializeLobData is true, LOB data is fully
materialized within the JDBC driver when a row is fetched. If the value is
false, LOB data is streamed. The driver uses locators internally to retrieve
LOB data in chunks on an as-needed basis It is highly recommended that
you set this value to false when you retrieve LOBs that contain large
amounts of data. The default is true.

v If the data source supports progressive streaming:
The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to DB2BaseDataSource.YES or
DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or on LOBs that
are fetched using scrollable cursors. LOB stored procedure parameters are
always fully materialized. LOBs that are fetched using scrollable cursors use
LOB locators if progressive streaming is not in effect.

implicitRollbackOption
Specifies the actions that the IBM Data Server Driver for JDBC and SQLJ takes
when a transaction encounters a deadlock or a timeout. Possible values are:

DB2BaseDataSource.IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION (1)
The IBM Data Server Driver for JDBC and SQLJ throws an
SQLException with an SQL error code that indicates that a deadlock or
timeout occurred. The SQL error code is the SQL error code that is
generated by the data server after a deadlock or timeout. The driver
does not close the connection.

254 Application Programming Guide and Reference for Java

DB2BaseDataSource.IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION (2)
The IBM Data Server Driver for JDBC and SQLJ throws a
DisconnectException with SQL error code -4499 when a deadlock or
timeout occurs. The driver closes the connection. If automatic client
reroute or Sysplex workload balancing is enabled, the driver disables
automatic failover behavior.

DB2BaseDataSource.IMPLICIT_ROLLBACK_OPTION_NOT_SET (0)
This is the default. The IBM Data Server Driver for JDBC and SQLJ
throws an SQLException with an SQL error code that indicates that a
deadlock or timeout occurred. The SQL error code is the SQL error
code that is generated by the data server after a deadlock or timeout.
The driver does not close the connection.

interruptProcessingMode
Specifies the behavior of the IBM Data Server Driver for JDBC and SQLJ when
an application executes the Statement.cancel method. Possible values are:

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_DISABLED (0)
Interrupt processing is disabled. When an application executes
Statement.cancel, the IBM Data Server Driver for JDBC and SQLJ
does nothing.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)
When an application executes Statement.cancel, the IBM Data Server
Driver for JDBC and SQLJ cancels the currently executing statement, if
the data server supports interrupt processing. If the data server does
not support interrupt processing, the IBM Data Server Driver for JDBC
and SQLJ throws an SQLException that indicates that the feature is not
supported.
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL is the
default.

For DB2 for Linux, UNIX, and Windows clients, when
interruptProcessingMode is set to
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL, the DB2
Connect setting for INTERRUPT_ENABLED and the DB2 registry
variable setting for DB2CONNECT_DISCONNECT_ON_INTERRUPT
override this value.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2)
When an application executes Statement.cancel, the IBM Data Server
Driver for JDBC and SQLJ drops the underlying socket. The connection
is not closed and can be reused to resubmit the statement. When the
connection is reused, the driver obtains a new socket.

For connections to DB2 for z/OS data servers, the IBM Data Server
Driver for JDBC and SQLJ always uses this value, regardless of the
value that is specified.

keepAliveTimeout
The maximum time in seconds before each TCP KeepAlive signal is sent to the
data server. The data type of this property is int. The default is 15 seconds.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity uses the
TCP/IP protocol to communicate with data servers. To prevent potential
failover issues caused by timeouts within the TCP/IP layer, it is necessary to
adjust the TCP/IP KeepAlive parameters on the client. Decreasing the
KeepAlive values on the client improves timely detection of server failures.

A value of 0 means that the timeout value is the default system timeout value.

Chapter 7. JDBC and SQLJ reference information 255

keepAliveTimeout is supported only for IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity.

loginTimeout
The maximum time in seconds to wait for a connection to a data source. After
the number of seconds that are specified by loginTimeout have elapsed, the
driver closes the connection to the data source. The data type of this property
is int. The default is 0. A value of 0 means that the timeout value is the default
system timeout value. This property is not supported for IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

If the data server environment is a DB2 for z/OS Sysplex workload balancing
environment or a DB2 pureScale environment, the wait time for a connection is
determined by a combination of loginTimeout, maxRetriesForClientReroute,
and retryIntervalForClientReroute. loginTimeout determines only the time for a
single attempt to establish a connection to a data server. There might be
multiple attempts to establish a connection, based on the
maxRetriesForClientReroute value. There might also be gaps between attempts
to establish a connection, based on the retryIntervalForClientReroute value.

During automatic client reroute processing, the memberConnectTimeout
property takes precedence over the loginTimeout property.

logWriter
The character output stream to which all logging and trace messages for the
DataSource object are printed. The data type of this property is
java.io.PrinterWriter. The default value is null, which means that no logging
or tracing for the DataSource is output.

maxRetriesForClientReroute
During automatic client reroute, limits the number of retries if the primary
connection to the data server fails.

The data type of this property is int.

The meaning of a retry and the default depend on the data server:
v For connections to DB2 for Linux, UNIX, and Windows or IBM Informix

data servers:
– Meaning of a retry: If enableClientAffinitiesList is set to

DB2BaseDataSource.NO (2), an attempt to connect to the primary server
and alternate servers counts as one retry.
If enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), an
attempt to connect to each server that is specified by the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber
values counts as one retry. Each server connection is retried the number
of times that is specified by maxRetriesForClientReroute.

– Default: If enableClientAffinitiesList is set to DB2BaseDataSource.NO (2),
and maxRetriesForClientReroute and retryIntervalForClientReroute are
not set, the connection is retried for 10 minutes, with a wait time between
retries that increases as the length of time from the first retry increases.
If enableClientAffinitiesList is DB2BaseDataSource.YES (1), the default is
3.

v For connections to DB2 for z/OS data servers:
– Meaning of a retry:

- For version 3.66 or 4.16, or later, one retry means one attempt to
connect to all members of the data sharing group other than the failed
member, and to the group IP address.

256 Application Programming Guide and Reference for Java

|
|

|
|
|

- For versions of the IBM Data Server Driver for JDBC and SQLJ before
3.66 or 4.16, one retry means an attempt to connect to one member of
the data sharing group.

– Default:

- For version 3.66 or 4.16, or later, of the IBM Data Server Driver for
JDBC and SQLJ, the default is 1.

- For versions 3.64, 4.14, 3.65, or 4.15, the default is 5.
- For versions of the IBM Data Server Driver for JDBC and SQLJ before

3.64 and 4.14, the connection is retried for 10 minutes, with a wait time
between retries that increases as the length of time from the first retry
increases.

If the value of maxRetriesForClientReroute is 0, client reroute processing does
not occur.

maxStatements
Controls an internal statement cache that is associated with a Connection. The
data type of this property is int. Possible values are:

positive integer
Enables the internal statement cache for a Connection, and specifies the
number of statements that the IBM Data Server Driver for JDBC and
SQLJ keeps open in the cache.

0 or negative integer
Disables internal statement caching for the Connection. 0 is the default.

com.ibm.db2.jcc.DB2SimpleDataSource.maxStatements controls the internal
statement cache that is associated with a Connection only when the Connection
object is created. com.ibm.db2.jcc.DB2SimpleDataSource.maxStatements has no
effect on caching in an already existing Connection object.

com.ibm.db2.jcc.DB2SimpleDataSource.maxStatements applies only to IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity.

memberConnectTimeout
Specifies the amount of time in seconds before an attempt to open a socket to a
member of a DB2 for z/OS data sharing group, DB2 pureScale instance, or
IBM Informix high availability cluster fails. The data type of this property is
int.

memberConnectTimeout applies only to socket connection attempts to different
members during automatic client reroute processing. The
memberConnectTimeout property takes precedence over the loginTimeout
property.

For connections to DB2 for z/OS data servers, the default is one second. For
connections to other data servers, the default is 0.

If the memberConnectTimeout value is less than or equal to 0, the driver uses
the loginTimeout value to determine how long to wait before failing a
connection request.

The memberConnectTimeout value is used for every socket open operation to
each member in a member list.

For a connection to a DB2 for z/OS data sharing group, after all attempts to
open a socket to all members fail, the driver retries the socket open using a
group IP address. For that retry, the driver uses the loginTimeout value to
determine how long to wait before failing the connection request.

Chapter 7. JDBC and SQLJ reference information 257

|
|

|

|
|
|
|

password
The password to use for establishing connections. The data type of this
property is String. When you use the DataSource interface to establish a
connection, you can override this property value by invoking this form of the
DataSource.getConnection method:
getConnection(user, password);

portNumber
The port number where the DRDA server is listening for requests. The data
type of this property is int.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

progressiveStreaming
Specifies whether the JDBC driver uses progressive streaming when
progressive streaming is supported on the data source.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs
and XML objects. DB2 for Linux, UNIX, and Windows Version 9.5 and later,
and IBM Informix Version 11.50 and later support progressive streaming for
LOBs.

With progressive streaming, also known as dynamic data format, the data
source dynamically determines the most efficient mode in which to return LOB
or XML data, based on the size of the LOBs or XML objects. The value of the
streamBufferSize parameter determines whether the data is materialized when
it is returned.

The data type of progressiveStreaming is int. Valid values are
DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2). If the
progressiveStreaming property is not specified, the progressiveStreaming value
is DB2BaseDataSource.NOT_SET (0).

If the connection is to a data source that supports progressive streaming, and
the value of progressiveStreaming is DB2BaseDataSource.YES or
DB2BaseDataSource.NOT_SET, the JDBC driver uses progressive streaming to
return LOBs and XML data.

If the value of progressiveStreaming is DB2BaseDataSource.NO, or the data
source does not support progressive streaming, the way in which the JDBC
driver returns LOB or XML data depends on the value of the
fullyMaterializeLobData property.

queryCloseImplicit
Specifies whether cursors are closed immediately after all rows are fetched.
queryCloseImplicit applies only to connections to IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 8 or later, and
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data
Server Driver for JDBC and SQLJ type 2 connectivityDB2 for Linux, UNIX, and
Windows Version 9.7 or later. Possible values are:

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1)
Close cursors immediately after all rows are fetched.

A value of DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES can provide
better performance because this setting results in less network traffic.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2)
Do not close cursors immediately after all rows are fetched.

258 Application Programming Guide and Reference for Java

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_COMMIT (3)
Perform these actions:
v Implicitly close the cursor after all rows are fetched.
v If the application is in autocommit mode, implicitly send a commit

request to the data source for the current unit of work.

Important: When this value is set, there might be impacts on other
resources, just as an explicit commit operation might impact other
resources. For example, other non-held cursors are closed, LOB locators
go out of scope, progressive references are reset, and scrollable cursors
lose their position.

Restriction: The following restrictions apply to
QUERY_CLOSE_IMPLICIT_COMMIT behavior:
v This behavior applies only to SELECT statements that are issued by

the application. It does not apply to SELECT statements that are
generated by the IBM Data Server Driver for JDBC and SQLJ.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the application is
not in autocommit mode, the driver uses the default behavior
(QUERY_CLOSE_IMPLICIT_NOT_SET behavior). If
QUERY_CLOSE_IMPLICIT_COMMIT is the default behavior, the
driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the data source
does not support QUERY_CLOSE_IMPLICIT_COMMIT behavior, the
driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v This behavior is not supported for batched statements.
v This behavior is supported on an XA Connection only when the

connection is in a local transaction.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NOT_SET (0)
This is the default. The following table describes the behavior for a
connection to each type of data source.

Data source Version Data sharing environment Behavior

DB2 for z/OS Version 10 Data sharing or non-data sharing QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9 with
APAR PK68746

Non-data sharing, or in a data
sharing group but not in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9
without APAR
PK68746

Non-data sharing, or in a data
sharing group but not in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_YES

DB2 for z/OS Version 9 with
APAR PK68746

In a data sharing group in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9
without APAR
PK68746

In a data sharing group in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_YES

DB2 for z/OS Version 8 with
or without
APAR PK68746

QUERY_CLOSE_IMPLICIT_YES

Chapter 7. JDBC and SQLJ reference information 259

Data source Version Data sharing environment Behavior

DB2 for Linux,
UNIX, and Windows

Version 9.7 QUERY_CLOSE_IMPLICIT_YES

queryDataSize
Specifies a hint that is used to control the amount of query data, in bytes, that
is returned from the data source on each fetch operation. This value can be
used to optimize the application by controlling the number of trips to the data
source that are required to retrieve data.

Use of a larger value for queryDataSize can result in less network traffic,
which can result in better performance. For example, if the result set size is 50
KB, and the value of queryDataSize is 32767 (32KB), two trips to the database
server are required to retrieve the result set. However, if queryDataSize is set
to 65535 (64 KB), only one trip to the data source is required to retrieve the
result set.

The following table lists minimum, maximum, and default values of
queryDataSize for each data source.

Table 39. Default, minimum, and maximum values of queryDataSize

Data source
Product
Version Default Minimum Maximum Valid values

DB2 for Linux,
UNIX, and
Windows

All 32767 4096 262143 4096-32767, 98303, 131071, 163839, 196607,
229375, 2621431

IBM Informix All 32767 4096 10485760 4096-10485760

DB2 for i V5R4 32767 4096 65535 4096-65535

DB2 for i V6R1 32767 4096 262143 4096-65535, 98303, 131071, 163839, 196607,
229375, 2621431

DB2 for z/OS Version 8 (IBM
Data Server
Driver for
JDBC and
SQLJ type 4
connectivity)

32767 32767 32767 32767

DB2 for z/OS Version 9 (IBM
Data Server
Driver for
JDBC and
SQLJ type 4
connectivity)

32767 32767 65535 32767, 65535

DB2 for z/OS Version 10
(IBM Data
Server Driver
for JDBC and
SQLJ type 4
connectivity)

32767 32767 262143 32767, 65535, 98303, 131071, 163839, 196607,
229375, 2621431

DB2 for z/OS Version 10
(IBM Data
Server Driver
for JDBC and
SQLJ type 2
connectivity)

32767 32767 1048575 32767, 65535, 98303, 131071, 163839, 196607,
229375, 262143, 294911, 327679, 360447,
393215, 425983, 458751, 491519, 524287,
557055, 589823, 622591, 655359, 688127,
720895, 753663, 786431, 819199, 851967,
884735, 917503, 950271, 983039, 1015807,
10485751

260 Application Programming Guide and Reference for Java

Table 39. Default, minimum, and maximum values of queryDataSize (continued)

Data source
Product
Version Default Minimum Maximum Valid values

Note:

1. If you specify a value between the minimum and maximum value that is not a valid value, the IBM Data Server
Driver for JDBC and SQLJ sets queryDataSize to the nearest valid value.

queryTimeoutInterruptProcessingMode
Specifies what happens when the query timeout interval for a Statement object
expires. Valid values are:

DB2BaseDataSource.-
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)

Specifies that when the query timeout interval for a Statement object
expires, the IBM Data Server Driver for JDBC and SQLJ cancels the
currently executing SQL statement and throws an exception with SQL
error -952, if the data server supports interruption of SQL statements. If
the data server does not support interruption of SQL statements, the
driver throws an exception that indicates that the feature is not
supported.

For connections to data servers other than DB2 for z/OS,
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL is the
default.

For connections to DB2 for z/OS data servers,
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL is not a
possible value. If it is specified, the driver uses
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET instead.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET
(2) Specifies that the underlying socket is dropped and the connection is

closed when the query timeout interval for a Statement object expires.

For connections to data servers other than DB2 for z/OS, when the
Statement object times out:
v If automatic client reroute is not enabled and enableSysplexWLB is

set to false, an exception with SQL error code -4499 is thrown. Any
subsequent operations on the Statement object, or on any other
Statement objects that were created from the same connection
receive an Exception that indicates that the connection is closed.
After a Statement object times out, the application must establish a
new connection before it can execute a new transaction.

v If automatic client reroute is enabled, and enableSysplexWLB is set
to false, the IBM Data Server Driver for JDBC and SQLJ tries to
re-establish a connection. If a new connection is successfully
re-established, the driver returns an SQL error code of -4498.
However, the driver does not execute the timed-out SQL statements
again, even if enableSeamlessFailover is set to
DB2BaseDataSource.YES (1).

v If enableSysplexWLB is set to true, the IBM Data Server Driver for
JDBC and SQLJ tries to re-establish a connection. If a new
connection is successfully re-established, the driver returns an SQL
error code of -30108. However, the driver does not execute the
timed-out SQL statements again, even if enableSeamlessFailover is
set to DB2BaseDataSource.YES (1).

Chapter 7. JDBC and SQLJ reference information 261

For connections to DB2 for z/OS, when the Statement object times out:
v If enableSysplexWLB is set to false, an exception with SQL error

code -4499 is thrown. Any subsequent operations on the Statement
object, or on any other Statement objects that were created from the
same connection receive an Exception that indicates that the
connection is closed. After a Statement object times out, the
application must establish a new connection before it can execute a
new transaction.

v If enableSysplexWLB is set to true, the IBM Data Server Driver for
JDBC and SQLJ tries to re-establish a connection. If a new
connection is successfully re-established, the driver returns an SQL
error code of -30108. However, the driver does not execute the
timed-out SQL statements again, even if enableSeamlessFailover is
set to DB2BaseDataSource.YES (1).

resultSetHoldability
Specifies whether cursors remain open after a commit operation. The data type
of this property is int. Valid values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)
Leave cursors open after a commit operation.

This setting is not valid for a connection that is part of a distributed
(XA) transaction.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)
Close cursors after a commit operation.

DB2BaseDataSource.NOT_SET (0)
This is the default value. The behavior is:
v For connections that are part of distributed (XA) transactions,

cursors are closed after a commit operation.
v For connections that are not part of a distributed transaction:

– For connections to all versions of DB2 for z/OS, DB2 for Linux,
UNIX, and Windows, or DB2 for i servers, or to Cloudscape
Version 8.1 or later servers, cursors remain open after a commit
operation.

– For connections to all versions of IBM Informix, or to Cloudscape
versions earlier than Version 8.1, cursors are closed after a commit
operation.

retrieveMessagesFromServerOnGetMessage
Specifies whether JDBC SQLException.getMessage or SQLWarning.getMessage
calls cause the IBM Data Server Driver for JDBC and SQLJ to invoke a DB2 for
z/OS stored procedure that retrieves the message text for the error. The data
type of this property is boolean. The default is false, which means that the full
message text is not returned to the client.

For example, if retrieveMessagesFromServerOnGetMessage is set to true, a
message similar to this one is returned by SQLException.getMessage after an
attempt to perform an SQL operation on nonexistent table
ADMF001.NO_TABLE:
ADMF001.NO_TABLE IS AN UNDEFINED NAME. SQLCODE=-204,
SQLSTATE=42704, DRIVER=3.50.54

If retrieveMessagesFromServerOnGetMessage is set to false, a message similar
to this one is returned:
DB2 SQL Error: SQLCODE=-204, SQLSTATE=42704, DRIVER=3.50.54

262 Application Programming Guide and Reference for Java

An alternative to setting this property to true is to use the IBM Data Server
Driver for JDBC and SQLJ-only DB2Sqlca.getMessage method in applications.
Both techniques result in a stored procedure call, which starts a unit of work.

retryIntervalForClientReroute
For automatic client reroute, specifies the amount of time in seconds between
connection retries.

The data type of this property is int.

The meaning of a retry and the default depend on the data server:
v For connections to DB2 for Linux, UNIX, and Windows or IBM Informix

data servers:
– Meaning of a retry: If enableClientAffinitiesList is set to

DB2BaseDataSource.NO (2), an attempt to connect to the primary server
and alternate servers counts as one retry.
If enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), an
attempt to connect to each server that is specified by the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber
values counts as one retry. Each server connection is retried the number
of times that is specified by maxRetriesForClientReroute.

– Default: If enableClientAffinitiesList is set to DB2BaseDataSource.NO (2),
and maxRetriesForClientReroute and retryIntervalForClientReroute are
not set, the connection is retried for 10 minutes, with a wait time between
retries that increases as the length of time from the first retry increases.
If enableClientAffinitiesList is DB2BaseDataSource.YES (1), the default is
0.

v For connections to DB2 for z/OS data servers:
– Meaning of a retry:

- For version 3.66 or 4.16, or later, one retry means one attempt to
connect to all members of the data sharing group other than the failed
member, and to the group IP address.

- For versions of the IBM Data Server Driver for JDBC and SQLJ before
3.66 or 4.16, one retry means an attempt to connect to one member of
the data sharing group.

– Default:

- For version 3.64 or 4.14, or later, of the IBM Data Server Driver for
JDBC and SQLJ, the default is 0.

- For versions of the IBM Data Server Driver for JDBC and SQLJ before
3.64 and 4.14, the connection is retried for 10 minutes, with a wait time
between retries that increases as the length of time from the first retry
increases.

securityMechanism
Specifies the DRDA security mechanism. The data type of this property is int.
Possible values are:

CLEAR_TEXT_PASSWORD_SECURITY (3)
User ID and password

USER_ONLY_SECURITY (4)
User ID only

ENCRYPTED_PASSWORD_SECURITY (7)
User ID, encrypted password

Chapter 7. JDBC and SQLJ reference information 263

|
|
|

|
|

ENCRYPTED_USER_AND_PASSWORD_SECURITY (9)
Encrypted user ID and password

KERBEROS_SECURITY (11)
Kerberos. This value does not apply to connections to IBM Informix.

ENCRYPTED_USER_AND_DATA_SECURITY (12)
Encrypted user ID and encrypted security-sensitive data. This value
applies to connections to DB2 for z/OS only.

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY (13)
Encrypted user ID and password, and encrypted security-sensitive
data. This value does not apply to connections to IBM Informix.

PLUGIN_SECURITY (15)
Plug-in security. This value applies to connections to DB2 for Linux,
UNIX, and Windows only.

ENCRYPTED_USER_ONLY_SECURITY (16)
Encrypted user ID. This value does not apply to connections to IBM
Informix.

TLS_CLIENT_CERTIFICATE_SECURITY (18)
Client certificate security, using SSL. This value applies to connections
to DB2 for z/OS Version 10 and later only.

If this property is specified, the specified security mechanism is the only
mechanism that is used. If the security mechanism is not supported by the
connection, an exception is thrown.

The default value for securityMechanism is provided by the
db2.jcc.securityMechanism configuration property. If the
db2.jcc.securityMechanism configuration property is also not specified, the
default value for securityMechanism is CLEAR_TEXT_PASSWORD_SECURITY.

If the data server does not support CLEAR_TEXT_PASSWORD_SECURITY but
supports ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data
Server Driver for JDBC and SQLJ driver upgrades the security mechanism to
ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to
the server. Any other mismatch in security mechanism support between the
requester and the server results in an error.

This property does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

Security mechanisms ENCRYPTED_PASSWORD_SECURITY,
ENCRYPTED_USER_AND_PASSWORD_SECURITY,
ENCRYPTED_USER_AND_DATA_SECURITY,
ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY, and
ENCRYPTED_USER_ONLY_SECURITY use DRDA encryption. DRDA
encryption is not intended to provide confidentiality and integrity of
passwords or data over a network that is not secure, such as the Internet.
DRDA encryption uses an anonymous key exchange, Diffie-Hellman, which
does not provide authentication of the server or the client. DRDA encryption is
vulnerable to man-in-the-middle attacks.

sendDataAsIs
Specifies that the IBM Data Server Driver for JDBC and SQLJ does not convert
input parameter values to the target column data types. The data type of this
property is boolean. The default is false.

264 Application Programming Guide and Reference for Java

You should use this property only for applications that always ensure that the
data types in the application match the data types in the corresponding
database tables.

serverName
The host name or the TCP/IP address of the data source. The data type of this
property is String.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

sslConnection
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses an SSL
socket to connect to the data source. If sslConnection is set to true, the
connection uses an SSL socket. If sslConnection is set to false, the connection
uses a plain socket.

The default value for sslConnection is provided by the db2.jcc.sslConnection
configuration property. If the db2.jcc.sslConnection configuration property is
also not specified, the default value for sslConnection is false.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

sslTrustStoreLocation
Specifies the name of the Java truststore on the client that contains the server
certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
sslConnection property is set to true.

If sslTrustStoreLocation is set, and sslConnection is set to true, the IBM Data
Server Driver for JDBC and SQLJ uses the sslTrustStoreLocation value instead
of the value in the javax.net.ssl.trustStore Java property.

The default value for sslTrustStoreLocation is provided by the
db2.jcc.sslTrustStoreLocation configuration property. If the
db2.jcc.sslTrustStoreLocation configuration property is also not specified, the
default value for sslTrustStoreLocation is null.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

sslTrustStorePassword
Specifies the password for the Java truststore on the client that contains the
server certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
sslConnection property is set to true.

If sslTrustStorePassword is set, and sslConnection is set to true, the IBM Data
Server Driver for JDBC and SQLJ uses the sslTrustStorePassword value instead
of the value in the javax.net.ssl.trustStorePassword Java property.

The default value for sslTrustStorePassword is provided by the
db2.jcc.sslTrustStorePassword configuration property. If the
db2.jcc.sslTrustStorePassword configuration property is also not specified, the
default value for sslTrustStorePassword is null.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

stripTrailingZerosForDecimalNumbers
Specifies whether the IBM Data Server Driver for JDBC and SQLJ removes

Chapter 7. JDBC and SQLJ reference information 265

|
|
|

|
|
|
|

|
|
|
|

trailing zeroes when it retrieves data from a DECFLOAT, DECIMAL, or
NUMERIC column. This property is meaningful only if the SDK for Java is
Version 1.5 or later. The data type of this property is int.

Possible values are:

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not remove
trailing zeroes from the retrieved value. This is the default.

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ removes trailing
zeroes when it retrieves a value from a DECFLOAT, DECIMAL, or
NUMERIC column as a java.math.BigDecimal object.

For example, when the driver retrieves the value 234.04000, it returns
the value 234.04 to the application.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not remove
trailing zeroes from the retrieved value.

timerLevelForQueryTimeOut
Specifies the level at which the IBM Data Server Driver for JDBC and SQLJ
creates a java.util.Timer object for waiting for query execution to time out.
Possible values are:

DB2BaseDataSource.QUERYTIMEOUT_STATEMENT_LEVEL (1)
The IBM Data Server Driver for JDBC and SQLJ creates a Timer object
for each Statement object. When the Statement object is closed, the
driver deletes the Timer object. This is the default.

DB2BaseDataSource.QUERYTIMEOUT_CONNECTION_LEVEL (2)
The IBM Data Server Driver for JDBC and SQLJ creates a Timer object
for each Connection object. When the Connection object is closed, the
driver deletes the Timer object.

DB2BaseDataSource.QUERYTIMEOUT_DISABLED (-1)
The IBM Data Server Driver for JDBC and SQLJ does not create a
Timer object to control query execution timeout.

timestampFormat
Specifies the format in which the result of the ResultSet.getString or
CallableStatement.getString method against a TIMESTAMP column is
returned. The data type of timestampFormat is int.

Possible values of timestampFormat are:

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd-
hh.mm.ss.nnnnnnnnn1

com.ibm.db2.jcc.DB2BaseDataSource.JDBC 5 yyyy-mm-dd
hh:mm:ss.nnnnnnnnn1

Note:

1. The number of digits in the fractional part of the timestamp depends on the precision of
the TIMESTAMP(p) column in the source table. If p<9, p digits are returned. If p>=9, 9
digits are returned, and the remaining digits are truncated.

The default is com.ibm.db2.jcc.DB2BaseDataSource.JDBC.

timestampFormat affects the format of output only.

266 Application Programming Guide and Reference for Java

timestampPrecisionReporting
Specifies whether trailing zeroes are truncated in the result of a
Resultset.getString call for a TIMESTAMP value. The data type of this
property is int. Possible values are:

TIMESTAMP_JDBC_STANDARD (1)
Trailing zeroes are truncated in the result of a Resultset.getString call
for a TIMESTAMP value. This is the default.

For example:
v A TIMESTAMP value of 2009-07-19-10.12.00.000000 is truncated to

2009-07-19-10.12.00.0 after retrieval.
v A TIMESTAMP value of 2009-12-01-11.30.00.100000 is truncated to

2009-12-01-11.30.00.1 after retrieval.

TIMESTAMP_ZERO_PADDING (2)
Trailing zeroes are not truncated in the result of a Resultset.getString
call for a TIMESTAMP value.

traceDirectory
Specifies a directory into which trace information is written. The data type of
this property is String. When traceDirectory is specified, trace information for
multiple connections on the same DataSource is written to multiple files.

When traceDirectory is specified, a connection is traced to a file named
traceFile_origin_n.

n is the nth connection for a DataSource.

origin indicates the origin of the log writer that is in use. Possible values of
origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

If the traceFile property is also specified, the traceDirectory value is not used.

traceFile
Specifies the name of a file into which the IBM Data Server Driver for JDBC
and SQLJ writes trace information. The data type of this property is String.
The traceFile property is an alternative to the logWriter property for directing
the output trace stream to a file.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, the
db2.jcc.override.traceFile configuration property value overrides the traceFile
property value.

Recommendation: Set the db2.jcc.override.traceFile configuration property,
rather than setting the traceFile property for individual connections.

traceFileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile property. The data type of this property is boolean. The default is
false, which means that the file that is specified by the traceFile property is
overwritten.

Chapter 7. JDBC and SQLJ reference information 267

traceLevel
Specifies what to trace. The data type of this property is int.

You can specify one or more of the following traces with the traceLevel
property:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_T2ZOS (X'10000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For example, to

trace DRDA flows and connection calls, specify this value for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (~) operator with a trace value to specify all
except a certain trace. For example, to trace everything except DRDA flows,
specify this value for traceLevel:
~TRACE_DRDA_FLOWS

traceFileCount
Specifies the maximum number of trace files for circular tracing. The IBM Data
Server Driver for JDBC and SQLJ uses this property only when traceOption is
set to DB2BaseDataSource.TRACE_OPTION_CIRCULAR (1). The data type of this
property is int. The default value is 2.

traceFileSize
Specifies the maximum size of each trace file, for circular tracing. The IBM
Data Server Driver for JDBC and SQLJ uses this property only when
traceOption is set to DB2BaseDataSource.TRACE_OPTION_CIRCULAR (1). The data
type of this property is int. The default value is 10485760 (10 MB).

useJDBC41DefinitionForGetColumns
Specifies whether the DatabaseMetaData.getColumns method returns a result set
with a column with the name SCOPE_CATALOG or SCOPE_CATLOG.
Possible values are:

DB2BaseDataSource.NOT_SET (0)
Specifies that for version 4.13 or later of the IBM Data Server Driver
for JDBC and SQLJ, the result set from DatabaseMetaData.getColumns
contains a column named SCOPE_CATALOG. For version 4.12 or
earlier of the IBM Data Server Driver for JDBC and SQLJ, that column
is named SCOPE_CATLOG.

DB2BaseDataSource.YES (1)
Specifies that for version 4.13 or later of the IBM Data Server Driver

268 Application Programming Guide and Reference for Java

for JDBC and SQLJ, the result set from DatabaseMetaData.getColumns
contains a column named SCOPE_CATALOG. For version 4.12 or
earlier of the IBM Data Server Driver for JDBC and SQLJ, that column
is named SCOPE_CATLOG.

DB2BaseDataSource.NO (2)
Specifies that for all versions of the IBM Data Server Driver for JDBC
and SQLJ, the result set from DatabaseMetaData.getColumns contains a
column named SCOPE_CATLOG.

traceOption
Specifies the way in which trace data is collected. The data type of this
property is int. Possible values are:

DB2BaseDataSource.NOT_SET (0)
Specifies that a single trace file is generated, and that there is no limit
to the size of the file. This is the default.

If the value of traceOption is NOT_SET, the traceFileSize and
traceFileCount properties are ignored.

DB2BaseDataSource.TRACE_OPTION_CIRCULAR (1)
Specifies that the IBM Data Server Driver for JDBC and SQLJ does
circular tracing. Circular tracing is done as follows:
1. When an application writes its first trace record, the driver creates a

file.
2. The driver writes trace data to the file.
3. When the size of the file is equal to the value of property

traceFileSize, the driver creates another file.
4. The driver repeats steps 2 and 3 until the number of files to which

data has been written is equal to the value of property
traceFileCount.

5. The driver writes data to the first trace file, overwriting the existing
data.

6. The driver repeats steps 3 through 5 until the application
completes.

The file names for the trace files are the file names that are determined
by the traceFile or traceDirectory property, appended with .1 for the
first file, .2 for the second file, and so on.

user
The user ID to use for establishing connections. The data type of this property
is String. When you use the DataSource interface to establish a connection, you
can override this property value by invoking this form of the
DataSource.getConnection method:
getConnection(user, password);

xaNetworkOptimization
Specifies whether XA network optimization is enabled for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity. You might need to disable XA
network optimization in an environment in which an XA Start and XA End are
issued from one Java process, and an XA Prepare and an XA Commit are
issued from another Java process. With XA network optimization, the XA
Prepare can reach the data source before the XA End, which results in an
XAER_PROTO error. To prevent the XAER_PROTO error, disable XA network
optimization.

Chapter 7. JDBC and SQLJ reference information 269

The default is true, which means that XA network optimization is enabled. If
xaNetworkOptimization is false, which means that XA network optimization
is disabled, the driver closes any open cursors at XA End time.

xaNetworkOptimization can be set on a DataSource object, or in the url
parameter in a getConnection call. The value of xaNetworkOptimization
cannot be changed after a connection is obtained.

Common IBM Data Server Driver for JDBC and SQLJ
properties for DB2 servers

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to DB2
for z/OS and DB2 for Linux, UNIX, and Windows only.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

alternateGroupDatabaseName
Specifies the database names for alternate groups to which an application can
connect. The data type of this property is String. For a connection to a DB2 for
z/OS data server, this value is the location name for a data sharing group. For
a connection to a DB2 for Linux, UNIX, and Windows data server, each of
these values is the database name for a single-member or multiple-member
database instance. If more than one database name is specified, the database
names must be separated by commas.

For connections to DB2 for z/OS, only one value can be specified.

alternateGroupPortNumber
Specifies the port numbers for alternate groups to which an application can
connect. The data type of this property is String. For a connection to a DB2 for
z/OS data server, this value is the TCP/IP server port number that is assigned
to the data sharing group. For a connection to a DB2 for Linux, UNIX, and
Windows data server, each of these values is the TCP/IP server port number
that is assigned to a single-member or multiple-member database instance. If
more than one port number is specified, the port numbers must be separated
by commas.

For connections to DB2 for z/OS, only one value can be specified.

alternateGroupServerName
Specifies the host names for alternate groups to which an application can
connect. The data type of this property is String. The data type of this property
is String. For a connection to a DB2 for z/OS data server, this value is the
domain name or IP address that is assigned to the data sharing group. For a
connection to a DB2 for Linux, UNIX, and Windows data server, each of these
values is the domain name or IP address that is assigned to a a single-member
or multiple-member database instance. If more than one host name is specified,
the host names must be separated by commas.

For connections to DB2 for z/OS, only one value can be specified.

clientAccountingInformation
Specifies accounting information for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. The maximum length is
255 bytes. A Java empty string ("") is valid for this value, but a Java null value
is not valid.

270 Application Programming Guide and Reference for Java

clientApplicationInformation
Specifies the application or transaction name of the end user's application. You
can use this property to provide the identity of the client end user for
accounting and monitoring purposes. This value can change during a
connection. The data type of this property is String. For a DB2 for z/OS server,
the maximum length is 32 bytes. For a DB2 for Linux, UNIX, and Windows
server, the maximum length is 255 bytes. A Java empty string ("") is valid for
this value, but a Java null value is not valid.

clientProgramId
Specifies a value for the client program ID that can be used to identify the end
user. The data type of this property is String, and the length is 80 bytes. If the
program ID value is less than 80 bytes, the value must be padded with blanks.

clientProgramName
Specifies an application ID that is fixed for the duration of a physical
connection for a client. The value of this property becomes the correlation ID
on a DB2 for z/OS server. Database administrators can use this property to
correlate work on a DB2 for z/OS server to client applications. The data type
of this property is String. The maximum length is 12 bytes. If this value is
null, the IBM Data Server Driver for JDBC and SQLJ supplies a value of
db2jccthread-name.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

concurrentAccessResolution
Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that
a read transaction can access a committed and consistent image of rows that
are incompatibly locked by write transactions, if the data source supports
accessing currently committed data, and the application isolation level is cursor
stability (CS) or read stability (RS). This option has the same effect as the DB2
CONCURRENTACCESSRESOLUTION bind option. Possible values are:

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions access the currently committed data when the data

is being updated or deleted.
v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME (2)
The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions wait for a commit or rollback operation when they

encounter data that is being updated or deleted.
v Read transactions do not skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)
Enables the data server's default behavior for read transactions when
lock contention occurs. This is the default value.

currentDegree
Specifies the degree of parallelism for the execution of queries that are
dynamically prepared. The type of this property is String. The currentDegree
value is used to set the CURRENT DEGREE special register on the data source.
If currentDegree is not set, no value is passed to the data source.

currentExplainMode
Specifies the value for the CURRENT EXPLAIN MODE special register. The

Chapter 7. JDBC and SQLJ reference information 271

CURRENT EXPLAIN MODE special register enables and disables the Explain
facility. The data type of this property is String. The maximum length is 254
bytes. This property applies only to connections to data sources that support
the CURRENT EXPLAIN MODE special register.

currentFunctionPath
Specifies the SQL path that is used to resolve unqualified data type names and
function names in SQL statements that are in JDBC programs. The data type of
this property is String. For a DB2 for Linux, UNIX, and Windows server, the
maximum length is 254 bytes. For a DB2 for z/OS server, the maximum length
is 2048 bytes. The value is a comma-separated list of schema names. Those
names can be ordinary or delimited identifiers.

currentMaintainedTableTypesForOptimization
Specifies a value that identifies the types of objects that can be considered
when the data source optimizes the processing of dynamic SQL queries. This
register contains a keyword representing table types. The data type of this
property is String.

Possible values of currentMaintainedTableTypesForOptimization are:

ALL
Indicates that all materialized query tables will be considered.

NONE
Indicates that no materialized query tables will be considered.

SYSTEM
Indicates that only system-maintained materialized query tables that are
refresh deferred will be considered.

USER
Indicates that only user-maintained materialized query tables that are
refresh deferred will be considered.

currentPackagePath
Specifies a comma-separated list of collections on the server. The database
server searches these collections for JDBC and SQLJ packages.

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the CURRENT PACKAGESET and
CURRENT PACKAGE PATH special registers.

currentPackageSet
Specifies the collection ID to search for JDBC and SQLJ packages. The data
type of this property is String. The default is NULLID for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity. For IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity, if a value for currentPackageSet is not
specified, the property value is not set. If currentPackageSet is set, its value
overrides the value of jdbcCollection.

Multiple instances of the IBM Data Server Driver for JDBC and SQLJ can be
installed at a database server by running the DB2Binder utility multiple times.
The DB2binder utility includes a -collection option that lets the installer specify
the collection ID for each IBM Data Server Driver for JDBC and SQLJ instance.
To choose an instance of the IBM Data Server Driver for JDBC and SQLJ for a
connection, you specify a currentPackageSet value that matches the collection
ID for one of the IBM Data Server Driver for JDBC and SQLJ instances.

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the CURRENT PACKAGESET and
CURRENT PACKAGE PATH special registers.

272 Application Programming Guide and Reference for Java

currentRefreshAge
Specifies a timestamp duration value that is the maximum duration since a
REFRESH TABLE statement was processed on a system-maintained REFRESH
DEFERRED materialized query table such that the materialized query table can
be used to optimize the processing of a query. This property affects dynamic
statement cache matching. The data type of this property is long.

currentSchema
Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements. The value of this property
sets the value in the CURRENT SCHEMA special register on the database
server. The schema name is case-sensitive, and must be specified in uppercase
characters.

cursorSensitivity
Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a
JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute, the SENSITIVE
STATIC attribute, or the ASENSITIVE attribute for the underlying database
cursor. The data type of this property is int. Possible values are
TYPE_SCROLL_SENSITIVE_STATIC (0), TYPE_SCROLL_SENSITIVE_DYNAMIC (1), or
TYPE_SCROLL_ASENSITIVE (2). The default is TYPE_SCROLL_SENSITIVE_STATIC.

If the data source does not support sensitive dynamic scrollable cursors, and
TYPE_SCROLL_SENSITIVE_DYNAMIC is requested, the JDBC driver accumulates a
warning and maps the sensitivity to SENSITIVE STATIC. For DB2 for i
database servers, which do not support sensitive static cursors,
java.sql.ResultSet.TYPE_SCROLL_SENSITIVE always maps to SENSITIVE
DYNAMIC.

dateFormat
Specifies:
v The format in which the String argument of the

PreparedStatement.setString method against a DATE column must be
specified.

v The format in which the result of the ResultSet.getString or
CallableStatement.getString method against a DATE column is returned.

The data type of dateFormat is int.

Possible values of dateFormat are:

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 mm/dd/yyyy

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 dd.mm.yyyy

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 yyyy-mm-dd

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

decimalRoundingMode
Specifies the rounding mode for assignment to decimal floating-point variables
or DECFLOAT columns on DB2 for z/OS or DB2 for Linux, UNIX, and
Windows data servers.

Possible values are:

Chapter 7. JDBC and SQLJ reference information 273

DB2BaseDataSource.ROUND_DOWN (1)
Rounds the value towards 0 (truncation). The discarded digits are
ignored.

DB2BaseDataSource.ROUND_CEILING (2)
Rounds the value towards positive infinity. If all of the discarded digits
are zero or if the sign is negative the result is unchanged other than
the removal of the discarded digits. Otherwise, the result coefficient is
incremented by 1.

DB2BaseDataSource.ROUND_HALF_EVEN (3)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value so that the final digit is even. If the discarded digits
represents greater than half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. If they
represent less than half, then the result coefficient is not adjusted (that
is, the discarded digits are ignored). Otherwise the result coefficient is
unaltered if its rightmost digit is even, or is incremented by 1 if its
rightmost digit is odd (to make an even digit).

DB2BaseDataSource.ROUND_HALF_UP (4)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value away from zero. If the discarded digits represent
greater than or equal to half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. Otherwise the
discarded digits are ignored.

DB2BaseDataSource.ROUND_FLOOR (6)
Rounds the value towards negative infinity. If all of the discarded
digits are zero or if the sign is positive the result is unchanged other
than the removal of discarded digits. Otherwise, the sign is negative
and the result coefficient is incremented by 1.

DB2BaseDataSource.ROUND_UNSET (-2147483647)
No rounding mode was explicitly set. The IBM Data Server Driver for
JDBC and SQLJ does not use the decimalRoundingMode to set the
rounding mode on the data server. The rounding mode is
ROUND_HALF_EVEN.

If you explicitly set the decimalRoundingMode value, that value updates the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
for z/OS data server.

If you explicitly set the decimalRoundingMode value, that value does not
update the CURRENT DECFLOAT ROUNDING MODE special register value
on a DB2 for Linux, UNIX, and Windows data server. If the value to which
you set decimalRoundingMode is not the same as the value of the CURRENT
DECFLOAT ROUNDING MODE special register, an Exception is thrown. To
change the data server value, you need to set that value with the
decflt_rounding database configuration parameter.

decimalRoundingMode does not affect decimal value assignments. The IBM
Data Server Driver for JDBC and SQLJ always rounds decimal values down.

enableAlternateGroupSeamlessACR
Specifies whether failover to an alternate group is seamless or non-seamless.
The data type of this property is boolean. Possible values are:

false Failover is non-seamless. false is the default.

274 Application Programming Guide and Reference for Java

With non-seamless behavior, if an application that is currently
connected to a primary group is executing a transaction, and the entire
primary group goes down, the IBM Data Server Driver for JDBC and
SQLJ fails over to alternate group. If failover is successful, the driver
throws an SQLException with SQL error code -30108.

true Failover is seamless.

With seamless behavior, if an application that is currently connected to
a primary group is executing a transaction, and the entire primary
group goes down, the IBM Data Server Driver for JDBC and SQLJ fails
over to alternate group. If the transaction is eligible for seamless
failover, the connection is retried. If the connection is successful, no
SQLException is thrown.

For connections to DB2 for z/OS, only one value can be specified.

enableExtendedDescribe
Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests
extended describe information from the data server when it prepares a
statement.

Extended describe information provides:
v Additional descriptive information for a cursor or a result set
v Information about whether a column:

– Can be updated
– Is a primary key or a preferred candidate key member
– Is an expression or a table column
– is a generated column or a table column

v The fully qualified view or table name
v The fully qualified column name

Possible values are:

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ requests extended
describe information. This is the default.

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ requests extended
describe information.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not request
extended describe information.

Setting enableExtendedDescribe to DB2BaseDataSource.NO can result in
a performance benefit because it avoids the extra processing that the
driver must do to provide the additional information. However, if you
specify this is option, some methods throw an exception or return
unexpected results. The following table lists the behavior of methods
when enableExtendedDescribe is set to DB2BaseDataSource.NO.

Method Result when extended describe is off

Connection.findAutoGeneratedKeysColumn Returns an array of empty strings ("")

DB2ResultSetMetaData.getDBTemporalColumnType Returns -1

ResultSet.getMetaData on the ResultSet object that is
returned by PreparedStatement.getGeneratedKeys

Returns null

Chapter 7. JDBC and SQLJ reference information 275

Method Result when extended describe is off

ResultSet.insertRow, ResultSet.deleteRow,
ResultSet.updateRow

SQLException with error code -4474, SQLSTATE 42808
(column not updatable)

ResultSet.updateXXX methods SQLException with error code -4474, SQLSTATE 42808
(column not updatable)

ResultSetMetaData.getTableName,
ResultSetMetaData.getSchemaName,
ResultSetMetaData.getColumnName

Returns an empty string ("")

ResultSetMetaData.isAutoIncrement Returns false

enableExtendedIndicators
Specifies whether support for extended indicators is enabled in the IBM Data
Server Driver for JDBC and SQLJ. Possible values are:

DB2BaseDataSource.YES (1)
Support for extended indicators is enabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NO (2)
Support for extended indicators is disabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NOT_SET (0)
Support for extended indicators is enabled in the IBM Data Server
Driver for JDBC and SQLJ. This is the default value.

enableRowsetSupport
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH for forward-only cursors or scrollable cursors, if the data
server supports multiple-row FETCH. The data type of this property is int.

For connections to DB2 for z/OS, when enableRowsetSupport is set, its value
overrides the useRowsetCursor property value.

Possible values are:

DB2BaseDataSource.YES (1)
Specifies that:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row FETCH is used for scrollable cursors
and forward-only cursors, if the data server supports multiple-row
FETCH.

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
or IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to
DB2 for Linux, UNIX, and Windows, multiple-row fetch is used for
scrollable cursors, if the data server supports multiple-row FETCH.

DB2BaseDataSource.NO (2)
Specifies that multiple-row fetch is not used.

DB2BaseDataSource.NOT_SET (0)
Specifies that if the enableRowsetSupport property is not set:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row fetch is not used.
v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity

to DB2 for z/OS, multiple-row fetch is used if useRowsetCursor is
set to true.

276 Application Programming Guide and Reference for Java

v For connections to DB2 for Linux, UNIX, and Windows, multiple
row fetch is used for scrollable cursors, if the data server supports
multiple-row FETCH.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS, multiple-row fetch is not compatible with progressive streaming.
Therefore, if progressive streaming is used for a FETCH operation,
multiple-row FETCH is not used.

encryptionAlgorithm
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses 56-bit
DES (weak) encryption or 256-bit AES (strong) encryption. The data type of
this property is int. Possible values are:

1 The driver uses 56-bit DES encryption.

This value is the default, unless configuration property
db2.jcc.encryptionAlgorithm provides a different default.

2 The driver uses 256-bit AES encryption, if the database server supports
it. 256-bit AES encryption is available for IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity only.

For AES encryption, you need an unrestricted policy file for JCE. That
file is available at the following location:
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

encryptionAlgorithm can be specified only if the securityMechanism or
db2.jcc.securityMechanism value is ENCRYPTED_PASSWORD_SECURITY (7) or
ENCRYPTED_USER_AND_PASSWORD_SECURITY (9).

fullyMaterializeInputStreams
Indicates whether streams are fully materialized before they are sent from the
client to a data source. The data type of this property is boolean. The default is
false.

If the value of fullyMaterializeInputStreams is true, the JDBC driver fully
materialized the streams before sending them to the server.

gssCredential
For a data source that uses Kerberos security, specifies a delegated credential
that is passed from another principal. The data type of this property is
org.ietf.jgss.GSSCredential. Delegated credentials are used in multi-tier
environments, such as when a client connects to WebSphere Application Server,
which, in turn, connects to the data source. You obtain a value for this
property from the client, by invoking the GSSContext.getDelegCred method.
GSSContext is part of the IBM Java Generic Security Service (GSS) API. If you
set this property, you also need to set the Mechanism and
KerberosServerPrincipal properties.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

For more information on using Kerberos security with the IBM Data Server
Driver for JDBC and SQLJ, see "Using Kerberos security under the IBM Data
Server Driver for JDBC and SQLJ".

kerberosServerPrincipal
For a data source that uses Kerberos security, specifies the name that is used
for the data source when it is registered with the Kerberos Key Distribution
Center (KDC). The data type of this property is String.

Chapter 7. JDBC and SQLJ reference information 277

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

pdqProperties
Specifies properties that control the interaction between the IBM Data Server
Driver for JDBC and SQLJ and the client optimization feature of pureQuery.

The data type of this property is String.

Set the pdqProperties property only if you are using the client optimization
feature of pureQuery. See the Integrated Data Management Information Center
for information about valid values for pdqProperties.

readOnly
Specifies whether the connection is read-only. The data type of this property is
boolean. The default is false.

resultSetHoldabilityForCatalogQueries
Specifies whether cursors for queries that are executed on behalf of
DatabaseMetaData methods remain open after a commit operation. The data
type of this property is int.

When an application executes DatabaseMetaData methods, the IBM Data Server
Driver for JDBC and SQLJ executes queries against the catalog of the target
data source. By default, the holdability of those cursors is the same as the
holdability of application cursors. To use different holdability for catalog
queries, use the resultSetHoldabilityForCatalogQueries property. Possible
values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)
Leave cursors for catalog queries open after a commit operation,
regardless of the resultSetHoldability setting.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)
Close cursors for catalog queries after a commit operation, regardless
of the resultSetHoldability setting.

DB2BaseDataSource.NOT_SET (0)
Use the resultSetHoldability setting for catalog queries. This is the
default value.

returnAlias
Specifies whether the JDBC driver returns rows for table aliases and synonyms
for DatabaseMetaData methods that return table information, such as
getTables. The data type of returnAlias is int. Possible values are:

0 Do not return rows for aliases or synonyms of tables in output from
DatabaseMetaData methods that return table information.

1 For tables that have aliases or synonyms, return rows for aliases and
synonyms of those tables, as well as rows for the tables, in output from
DatabaseMetaData methods that return table information. This is the
default.

statementConcentrator
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data
source's statement concentrator functionality. The statement concentrator is the
ability to bypass preparation of a statement when it is the same as a statement
in the dynamic statement cache, except for literal values. Statement
concentrator functionality applies only to SQL statements that have literals but
no parameter markers. Possible values are:

278 Application Programming Guide and Reference for Java

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)
The IBM Data Server Driver for JDBC and SQLJ does not use the data
source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS (2)
The IBM Data Server Driver for JDBC and SQLJ uses the data source's
statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)
Enables the data server's default behavior for statement concentrator
functionality. This is the default value.

For DB2 for Linux, UNIX, and Windows data sources that support
statement concentrator functionality, the functionality is used if the
STMT_CONC configuration parameter is set to ON at the data source.
Otherwise, statement concentrator functionality is not used.

For DB2 for z/OS data sources that support statement concentrator
functionality, the functionality is not used if statementConcentrator is
not set.

streamBufferSize
Specifies the size, in bytes, of the JDBC driver buffers for chunking LOB or
XML data. The JDBC driver uses the streamBufferSize value whether or not it
uses progressive streaming. The data type of streamBufferSize is int. The
default is 1048576.

If the JDBC driver uses progressive streaming, LOB or XML data is
materialized if it fits in the buffers, and the driver does not use the
fullyMaterializeLobData property.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs
and XML objects. DB2 for Linux, UNIX, and Windows Version 9.5 and later,
and IBM Informix Version 11.50 and later support progressive streaming for
LOBs.

supportsAsynchronousXARollback
Specifies whether the IBM Data Server Driver for JDBC and SQLJ supports
asynchronous XA rollback operations. The data type of this property is int. The
default is DB2BaseDataSource.NO (2). If the application runs against a BEA
WebLogic Server application server, set supportsAsynchronousXARollback to
DB2BaseDataSource.YES (1).

sysSchema
Specifies the schema of the shadow catalog tables or views that are searched
when an application invokes a DatabaseMetaData method. The sysSchema
property was formerly called cliSchema.

timeFormat
Specifies:
v The format in which the String argument of the

PreparedStatement.setString method against a TIME column must be
specified.

v The format in which the result of the ResultSet.getString or
CallableStatement.getString method against a TIME column is returned.

The data type of timeFormat is int.

Possible values of timeFormat are:

Chapter 7. JDBC and SQLJ reference information 279

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 hh:mm:ss

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 hh:mm am or hh:mm
pm

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 hh.mm.ss

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 hh:mm:ss

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

timestampOutputType
Specifies whether the IBM Data Server Driver for JDBC and SQLJ returns a
java.sql.Timestamp object or a com.ibm.db2.jcc.DBTimestamp when the
standard JDBC interfaces ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject are called to return timestamp information.

Possible values are:

DB2BaseDataSource.JDBC_TIMESTAMP (1)
The IBM Data Server Driver for JDBC and SQLJ returns
java.sql.Timestamp objects from ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject calls.

DB2BaseDataSource.JCC_DBTIMESTAMP (2)
The IBM Data Server Driver for JDBC and SQLJ returns
com.ibm.db2.jcc.DBTimestamp objects from ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject calls.

DB2BaseDataSource.NOT_SET (0)
This is the default behavior.

The behavior is the same as the behavior for
DB2BaseDataSource.JDBC_TIMESTAMP.

useCachedCursor
Specifies whether the underlying cursor for PreparedStatement objects is
cached and reused on subsequent executions of the PreparedStatement. The
data type of useCachedCursor is boolean.

If useCachedCursor is set to true, the cursor for PreparedStatement objects is
cached, which can improve performance. true is the default.

Set useCachedCursor to false if PreparedStatement objects access tables whose
column types or lengths change between executions of those
PreparedStatement objects.

useIdentityValLocalForAutoGeneratedKeys
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses only the
SQL built-in function IDENTITY_VAL_LOCAL to determine automatically
generated key values. The data type of this property is boolean. Possible values
are:

true Specifies that the IBM Data Server Driver for JDBC and SQLJ always
uses the SQL built-in function IDENTITY_VAL_LOCAL to determine
automatically generated key values. The driver uses
IDENTITY_VAL_LOCAL even if it is possible to use SELECT FROM
INSERT.

280 Application Programming Guide and Reference for Java

Specify true if the target data server supports SELECT FROM INSERT,
but the target objects do not. For example, SELECT FROM INSERT is
not valid for a table on which a trigger is defined.

false Specifies that the IBM Data Server Driver for JDBC and SQLJ
determines whether to use SELECT FROM INSERT or
IDENTITY_VAL_LOCAL to determine automatically generated keys.
false is the default.

useJDBC4ColumnNameAndLabelSemantics
Specifies how the IBM Data Server Driver for JDBC and SQLJ handles column
labels in ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn method calls.

Possible values are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ uses the following
rules, which conform to the JDBC 4.0 specification, to determine the
value that ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:
v The column name that is returned by

ResultSetMetaData.getColumnName is its name from the database.
v The column label that is returned by

ResultSetMetaData.getColumnLabel is the label that is specified with
the SQL AS clause. If the SQL AS clause is not specified, the label is
the name of the column.

v ResultSet.findColumn takes the label for the column, as specified
with the SQL AS clause, as input. If the SQL AS clause was not
specified, the label is the column name.

v The IBM Data Server Driver for JDBC and SQLJ does not use a
column label that is assigned by the SQL LABEL ON statement.

These rules apply to IBM Data Server Driver for JDBC and SQLJ
version 3.50 and later, for connections to the following database
systems:
v DB2 for z/OS Version 8 or later
v DB2 for Linux, UNIX, and Windows Version 8.1 or later
v DB2 UDB for iSeries® V5R3 or later

For earlier versions of the driver or the database systems, the rules for
a useJDBC4ColumnNameAndLabelSemantics value of
DB2BaseDataSource.NO apply, even if
useJDBC4ColumnNameAndLabelSemantics is set to
DB2BaseDataSource.YES.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ uses the following
rules to determine the values that ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:

If the data source does not support the LABEL ON statement, or the
source column is not defined with the LABEL ON statement:
v The value that is returned by ResultSetMetaData.getColumnName is

its name from the database, if no SQL AS clause is specified. If the
SQL AS clause is specified, the value that is returned is the column
label.

Chapter 7. JDBC and SQLJ reference information 281

v The value that is returned by ResultSetMetaData.getColumnLabel is
the label that is specified with the SQL AS clause. If the SQL AS
clause is not specified, the value that is returned is the name of the
column.

v ResultSet.findColumn takes the column name as input.

If the source column is defined with the LABEL ON statement:
v The value that is returned by ResultSetMetaData.getColumnName is

the column name from the database, if no SQL AS clause is
specified. If the SQL AS clause is specified, the value that is returned
is the column label that is specified in the AS clause.

v The value that is returned by ResultSetMetaData.getColumnLabel is
the label that is specified in the LABEL ON statement.

v ResultSet.findColumn takes the column name as input.

These rules conform to the behavior of the IBM Data Server Driver for
JDBC and SQLJ before Version 3.50.

DB2BaseDataSource.NOT_SET (0)
This is the default behavior.

For the IBM Data Server Driver for JDBC and SQLJ version 3.50 and
earlier, the default behavior for
useJDBC4ColumnNameAndLabelSemantics is the same as the behavior
for DB2BaseDataSource.NO.

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and
later:
v The default behavior for useJDBC4ColumnNameAndLabelSemantics

is the same as the behavior for DB2BaseDataSource.YES, for
connections to the following database systems:
– DB2 for z/OS Version 8 or later
– DB2 for Linux, UNIX, and Windows Version 8.1 or later
– DB2 UDB for iSeries V5R3 or later

v For connections to earlier versions of these database systems, the
default behavior for useJDBC4ColumnNameAndLabelSemantics is
DB2BaseDataSource.NO.

xmlFormat
Specifies the format that is used to retrieve XML data from the data server. The
XML format cannot be modified after a connection is established. Possible
values are:

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_NOT_SET
(-Integer.MAX_VALUE)

Specifies that the default XML format is used. The default is textual
XML format.

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_TEXTUAL (0)
Specifies that the XML textual format is used.

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_BINARY (1)
Specifies that the binary XML format is used.

When binary XML is used, the XML data that is passed to the IBM
Data Server Driver for JDBC and SQLJ cannot refer to external entities,
internal entities, or internal DTDs. External DTDs are supported only if
those DTDs were previously registered in the data source.

282 Application Programming Guide and Reference for Java

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements
Controls an internal statement cache that is associated with a
PooledConnection. The data type of this property is int. Possible values are:

positive integer
Enables the internal statement cache for a PooledConnection, and
specifies the number of statements that the IBM Data Server Driver for
JDBC and SQLJ keeps open in the cache.

0 or negative integer
Disables internal statement caching for the PooledConnection. 0 is the
default.

maxStatements controls the internal statement cache that is associated with a
PooledConnection only when the PooledConnection object is created.
maxStatements has no effect on caching in an already existing
PooledConnection object.

maxStatements applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS, and toIBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

Related concepts:
“Examples of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values” on page 484
Related reference:

Setting properties locally for individual connections that use the IBM Data
Server Driver for JDBC and SQLJ

Common IBM Data Server Driver for JDBC and SQLJ
properties for DB2 for z/OS and IBM Informix

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM
Informix and DB2 for z/OS database servers.

Properties that apply to IBM Informix and DB2 for z/OS are:

enableConnectionConcentrator
Indicates whether the connection concentrator function of the IBM Data Server
Driver for JDBC and SQLJ is enabled.

The data type of enableConnectionConcentrator is boolean. The default is
false.

enablConnectionConcentrator applies only to IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

The following table shows the interaction between the
enableConnectionConcentrator and enableSysplexWLB property settings:

Table 40. Result of enableConnectionConcentrator and enableSysplexWLB settings

enableConnectionConcentrator
setting enableSysplexWLB setting Result

false false The connection of the application to the
data server is associated to one transport
for the life of that connection.

Chapter 7. JDBC and SQLJ reference information 283

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.javatool.static.doc/topics/rpdqprfhowsetprpgbllocal.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.javatool.static.doc/topics/rpdqprfhowsetprpgbllocal.html

Table 40. Result of enableConnectionConcentrator and enableSysplexWLB settings (continued)

enableConnectionConcentrator
setting enableSysplexWLB setting Result

false true The connection of the application to the
data server chooses a transport based on
the weights that are returned by the data
server. A transport is chosen at every
transaction boundary. This action
balances the load on different DB2 data
sharing members.

true false Several application connections can share
the same transport for executing their
transactions. The switching of the
transport between connections occurs at
each transaction boundary. Because
many connections share one transport to
the data server, fewer resources can be
used on the data server.

true true The connection of the application to the
data server chooses a transport based on
the weights that are returned by the data
server. A transport is chosen at every
transaction boundary. This action
balances the load on different DB2 data
sharing members. This is the same
behavior as the behavior when
enableConnectionConcentrator is false
and enableSysplexWLB is true.

keepDynamic
Specifies whether the data source keeps already prepared dynamic SQL
statements in the dynamic statement cache after commit points so that those
prepared statements can be reused. The data type of this property is int. Valid
values are DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2).

If the keepDynamic property is not specified, the keepDynamic value is
DB2BaseDataSource.NOT_SET (0). If the connection is to a DB2 for z/OS server,
caching of dynamic statements for a connection is not done if the property is
not set. If the connection is to an IBM Informix data source, caching of
dynamic statements for a connection is done if the property is not set.

keepDynamic is used with the DB2Binder -keepdynamic option. The
keepDynamic property value that is specified must match the -keepdynamic
value that was specified when DB2Binder was run.

For a DB2 for z/OS database server, dynamic statement caching can be done
only if the EDM dynamic statement cache is enabled on the data source. The
CACHEDYN subsystem parameter must be set to DB2BaseDataSource.YES to
enable the dynamic statement cache.

maxTransportObjects
Specifies the maximum number of transport objects that can be used for all
connections with the associated DataSource object. The IBM Data Server Driver
for JDBC and SQLJ uses transport objects and a global transport objects pool to
support the connection concentrator and Sysplex workload balancing. There is
one transport object for each physical connection to the data source.

The data type of this property is int.

284 Application Programming Guide and Reference for Java

The maxTransportObjects value is ignored if the enableConnectionConcentrator
or enableSysplexWLB properties are not set to enable the use of the connection
concentrator or Sysplex workload balancing.

If the maxTransportObjects value has not been reached, and a transport object
is not available in the global transport objects pool, the pool creates a new
transport object. If the maxTransportObjects value has been reached, the
application waits for the amount of time that is specified by the
db2.jcc.maxTransportObjectWaitTime configuration property. After that amount
of time has elapsed, if there is still no available transport object in the pool, the
pool throws an SQLException.

maxTransportObjects does not override the db2.jcc.maxTransportObjects
configuration property. maxTransportObjects has no effect on connections from
other DataSource objects. If the maxTransportObjects value is larger than the
db2.jcc.maxTransportObjects value, maxTransportObjects does not increase the
db2.jcc.maxTransportObjects value.

For version 3.63 or 4.13 or later of the IBM Data Server Driver for JDBC and
SQLJ, the default value for maxTransportObjects is 1000. For earlier versions of
the IBM Data Server Driver for JDBC and SQLJ, the default value for
maxTransportObjects is -1, which means that the number of transport objects
for the DataSource is limited only by the db2.jcc.maxTransportObjects value for
the driver.

Related concepts:
“Example of enabling DB2 for z/OS Sysplex workload balancing and automatic
client reroute in Java applications” on page 602

Common IBM Data Server Driver for JDBC and SQLJ
properties for IBM Informix and DB2 Database for Linux, UNIX,
and Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM
Informix and DB2 for Linux, UNIX, and Windows database servers.

Properties that apply to IBM Informix and DB2 for Linux, UNIX, and Windows
are:

currentLockTimeout
Specifies whether DB2 for Linux, UNIX, and Windows servers wait for a lock
when the lock cannot be obtained immediately. The data type of this property
is int. Possible values are:

integer Wait for integer seconds. integer is between -1 and 32767, inclusive.

LOCK_TIMEOUT_NO_WAIT
Do not wait for a lock. This is the default.

LOCK_TIMEOUT_WAIT_INDEFINITELY
Wait indefinitely for a lock.

LOCK_TIMEOUT_NOT_SET
Use the default for the data source.

IBM Data Server Driver for JDBC and SQLJ properties for DB2
Database for Linux, UNIX, and Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
DB2 for Linux, UNIX, and Windows servers.

Chapter 7. JDBC and SQLJ reference information 285

Those properties are:

connectNode
Specifies the target database partition server that an application connects to.
The data type of this property is int. The value can be between 0 and 999. The
default is database partition server that is defined with port 0. connectNode
applies to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to
DB2 for Linux, UNIX, and Windows servers only.

currentExplainSnapshot
Specifies the value for the CURRENT EXPLAIN SNAPSHOT special register.
The CURRENT EXPLAIN SNAPSHOT special register enables and disables the
Explain snapshot facility. The data type of this property is String. The
maximum length is eight bytes. This property applies only to connections to
data sources that support the CURRENT EXPLAIN SNAPSHOT special
register, such as DB2 for Linux, UNIX, and Windows.

currentQueryOptimization
Specifies a value that controls the class of query optimization that is performed
by the database manager when it binds dynamic SQL statements. The data
type of this property is int. The possible values of currentQueryOptimization
are:

0 Specifies that a minimal amount of optimization is performed to
generate an access plan. This class is most suitable for simple dynamic
SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 for Linux,
UNIX, and Windows Version 1 is performed to generate an access
plan.

2 Specifies a level of optimization higher than that of DB2 for Linux,
UNIX, and Windows Version 1, but at significantly less optimization
cost than levels 3 and above, especially for very complex queries.

3 Specifies that a moderate amount of optimization is performed to
generate an access plan.

5 Specifies a significant amount of optimization is performed to generate
an access plan. For complex dynamic SQL queries, heuristic rules are
used to limit the amount of time spent selecting an access plan. Where
possible, queries will use materialized query tables instead of the
underlying base tables.

7 Specifies a significant amount of optimization is performed to generate
an access plan. This value is similar to 5 but without the heuristic
rules.

9 Specifies the maximum amount of optimization is performed to
generate an access plan. This can greatly expand the number of
possible access plans that are evaluated. This class should be used to
determine if a better access plan can be generated for very complex
and very long-running queries using large tables. Explain and
performance measurements can be used to verify that a better plan has
been generated.

enableTimeoutForCursors
For DatabaseMetaData or ResultSet methods that use Statement objects in their
implementations, specifies whether the commandTimeout and
queryTimeoutInterruptProcessingMode property values control the timeout
behavior for those Statement objects.

286 Application Programming Guide and Reference for Java

|
|
|
|
|

Examples of methods that use Statement objects in their implementations are:
v ResultSet.updateRow
v ResultSet.insertRow
v ResultSet.deleteRow
v DatabaseMetaData.getProcedures
v DatabaseMetaData.getTables
v DatabaseMetaData.getColumns

The data type of this property is int. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.YES (1) or
com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

A Statement object that is used in the implementation of a
DatabaseMetaData or ResultSet method is controlled by the
commandTimeout and queryTimeoutInterruptProcessingMode
properties. This behavior is the default behavior.

com.ibm.db2.jcc.DB2BaseDataSource.NO (2)
A Statement object that is used in the implementation of a
DatabaseMetaData or ResultSet method is not controlled by the
commandTimeout and queryTimeoutInterruptProcessingMode
properties.

optimizationProfile
Specifies an optimization profile that is used during SQL optimization. The
data type of this property is String. The optimizationProfile value is used to set
the OPTIMIZATION PROFILE special register. The default is null.

optimizationProfile applies to DB2 for Linux, UNIX, and Windows servers
only.

optimizationProfileToFlush
Specifies the name of an optimization profile that is to be removed from the
optimization profile cache. The data type of this property is String. The default
is null.

plugin
The name of a client-side JDBC security plug-in. This property has the Object
type and contains a new instance of the JDBC security plug-in method.

pluginName
The name of a server-side security plug-in module.

retryWithAlternativeSecurityMechanism
Specifies whether the IBM Data Server Driver for JDBC and SQLJ retries a
connection with an alternative security mechanism if the security mechanism
that is specified by property securityMechanism is not supported by the data
source. The data type of this property is int. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Retry the connection using an alternative security mechanism. The IBM
Data Server Driver for JDBC and SQLJ issues warning code +4222 and
retries the connection with the most secure available security
mechanism.

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or
com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Do not retry the connection using an alternative security mechanism.

Chapter 7. JDBC and SQLJ reference information 287

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

retryWithAlternativeSecurityMechanism applies to IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity connections to DB2 for Linux, UNIX, and
Windows only.

useTransactionRedirect
Specifies whether the DB2 system directs SQL statements to different database
partitions for better performance. The data type of this property is boolean.
The default is false.

This property is applicable only under the following conditions:
v The connection is to a DB2 for Linux, UNIX, and Windows server that uses

a partitioned database environment.
v The partitioning key remains constant throughout a transaction.

If useTransactionRedirect is true, the IBM Data Server Driver for JDBC and
SQLJ sends connection requests to the DPF node that contains the target data
of the first directable statement in the transaction. DB2 for Linux, UNIX, and
Windows then directs the SQL statement to different partitions as needed.

IBM Data Server Driver for JDBC and SQLJ properties for DB2
for z/OS

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
DB2 for z/OS servers.

Those properties are:

accountingInterval
Specifies whether DB2 accounting records are produced at commit points or on
termination of the physical connection to the data source. The data type of this
property is String.

If the value of accountingInterval is "COMMIT", and there are no open, held
cursors, DB2 writes an accounting record each time that the application
commits work. If the value of accountingInterval is "COMMIT", and the
application performs a commit operation while a held cursor is open, the
accounting interval spans that commit point and ends at the next valid
accounting interval end point. If the value of accountingInterval is not
"COMMIT", accounting records are produced on termination of the physical
connection to the data source.

The accountingInterval property sets the accounting-interval parameter for an
underlying RRSAF signon call. If the value of subsystem parameter
ACCUMACC is not NO, the ACCUMACC value overrides the
accountingInterval setting.

accountingInterval applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS. accountingInterval is not applicable to
connections under CICS or IMS, or for Java stored procedures.

The accountingInterval property overrides the db2.jcc.accountingInterval
configuration property.

charOutputSize
Specifies the maximum number of bytes to use for INOUT or OUT stored
procedure parameters that are registered as Types.CHAR charOutputSize applies
only to IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2
for z/OS database servers.

Because DESCRIBE information for stored procedure INOUT and OUT
parameters is not available at run time, by default, the IBM Data Server Driver

288 Application Programming Guide and Reference for Java

for JDBC and SQLJ sets the maximum length of each character INOUT or OUT
parameter to 32767. For stored procedures with many Types.CHAR parameters,
this maximum setting can result in allocation of much more storage than is
necessary.

To use storage more efficiently, set charOutputSize to the largest expected
length for any Types.CHAR INOUT or OUT parameter.

charOutputSize has no effect on INOUT or OUT parameters that are registered
as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default length of
32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

The value that you choose for charOutputSize needs to take into account the
possibility of expansion during character conversion. Because the IBM Data
Server Driver for JDBC and SQLJ has no information about the server-side
CCSID that is used for output parameter values, the driver requests the stored
procedure output data in UTF-8 Unicode. The charOutputSize value needs to
be the maximum number of bytes that are needed after the parameter value is
converted to UTF-8 Unicode. UTF-8 Unicode characters can require up to three
bytes. (The euro symbol is an example of a three-byte UTF-8 character.) To
ensure that the value of charOutputSize is large enough, if you have no
information about the output data, set charOutputSize to three times the
defined length of the largest CHAR parameter.

clientUser
Specifies the current client user name for the connection. This information is
for client accounting purposes. Unlike the JDBC connection user name, this
value can change during a connection. For a DB2 for z/OS server, the
maximum length is 16 bytes.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS.

clientWorkstation
Specifies the workstation name for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. For a DB2 for z/OS server,
the maximum length is 18 bytes. A Java empty string ("") is valid for this
value, but a Java null value is not valid.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS.

currentLocaleLcCtype
Specifies the LC_CTYPE locale that is used to execute SQL statements that use
a built-in function that references a locale. The data type of this property is
String. If currentLocaleLcCtype is set, the IBM Data Server Driver for JDBC
and SQLJ sets the CURRENT LOCALE LC_CTYPE special register on the data
server to the property value. currentLocaleLcCtype has no default.

currentLocaleLcCtype can be set only at the start of a connection, and cannot
be changed while the connection is active.

currentSQLID
Specifies:
v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.
v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

Chapter 7. JDBC and SQLJ reference information 289

v The implicit qualifier of all table, view, alias, and index names specified in
dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2
for z/OS server. If the currentSQLID property is not set, the default schema
name is the value in the CURRENT SQLID special register.

enableMultiRowInsertSupport
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
multi-row INSERT for batched INSERT or MERGE operations, when the target
data server is a DB2 for z/OS server that supports multi-row INSERT. The
batch operations must be PreparedStatement calls with parameter markers. The
data type of this property is boolean. The default is true.

The enableMultiRowInsertSupport value cannot be changed for the duration of
a connection. enableMultiRowInsertSupport must be set to false if INSERT
FROM SELECT statements are executed in a batch. Otherwise, the driver
throws a BatchUpdateException.

jdbcCollection
Specifies the collection ID for the packages that are used by an instance of the
IBM Data Server Driver for JDBC and SQLJ at run time. The data type of
jdbcCollection is String. The default is NULLID.

This property is used with the DB2Binder -collection option. The DB2Binder
utility must have previously bound IBM Data Server Driver for JDBC and
SQLJ packages at the server using a -collection value that matches the
jdbcCollection value.

The jdbcCollection setting does not determine the collection that is used for
SQLJ applications. For SQLJ, the collection is determined by the -collection
option of the SQLJ customizer.

jdbcCollection does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

maxConnCachedParamBufferSize
Specifies the maximum size of an internal buffer that is used for caching input
parameter values for PreparedStatement objects. The buffer caches values on
the native code side that are passed from the driver's Java code side for IBM
Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.
The buffer is used by all PreparedStatement objects for a Connection. The
default is 1048576 (1MB). The default should be adequate for most users. Set
maxConnCachedParamBufferSize to a larger value if many applications that
run under the driver instance have PreparedStatement objects with large
numbers of input parameters or large input parameters. The
maxConnCachedParamBufferSize value should be larger than the maximum
size of all input parameter data for a Connection. However, you also need to
take into account the total number of connections and the maximum amount of
memory that is available when you set the maxConnCachedParamBufferSize
value.

The buffer exists for the life of a Connection, unless it reaches the maximum
size. If that happens, the buffer is freed on each call to the native code. The
corresponding buffer on the Java code side is freed on
PreparedStatement.clearParameters and PreparedStatement.close calls. The
buffers are not cleared if an application calls
PreparedStatement.clearParameters, and the buffers have not reached the
maximum size.

290 Application Programming Guide and Reference for Java

maxRowsetSize
Specifies the maximum number of bytes that are used for rowset buffering for
each statement, when the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH for cursors. The data type of this property is int. The
default is 32767.

maxRowsetSize applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

pkList
Specifies a package list that is used for the underlying RRSAF CREATE
THREAD call when a JDBC or SQLJ connection to a data source is established.
pkList applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS.

Specify this property if you do not bind plans for your SQLJ programs or for
the JDBC driver. If you specify this property, do not specify planName.

Recommendation: Use pkList instead of planName.

The format of the package list is:

�� �

,

collection-ID.* ��

pkList overrides the value of the db2.jcc.pkList configuration property. If
pkList, planName, and db2.jcc.pkList are not specified, the value of pkList is
NULLID.*.

planName
Specifies a DB2 plan name that is used for the underlying RRSAF CREATE
THREAD call when a JDBC or SQLJ connection to a data source is established.
planName applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS.

Specify this property if you bind plans for your SQLJ programs and for the
JDBC driver packages. If you specify this property, do not specify pkList.

planName overrides the value of the db2.jcc.planName configuration property.
If pkList, planName, and db2.jcc.planName are not specified, NULLID.* is
used as the package list for the underlying CREATE THREAD call.

reportLongTypes
Specifies whether DatabaseMetaData methods report LONG VARCHAR and
LONG VARGRAPHIC column data types as long data types. The data type of
this property is short. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or
com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Specifies that DatabaseMetaData methods that return information about
a LONG VARCHAR or LONG VARGRAPHIC column return
java.sql.Types.VARCHAR in the DATA_TYPE column and VARCHAR
or VARGRAPHIC in the TYPE_NAME column of the result set. This is
the default for DB2 for z/OS Version 9 or later.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Specifies that DatabaseMetaData methods that return information about
a LONG VARCHAR or LONG VARGRAPHIC column return

Chapter 7. JDBC and SQLJ reference information 291

java.sql.Types.LONGVARCHAR in the DATA_TYPE column and
LONG VARCHAR or LONG VARGRAPHIC in the TYPE_NAME
column of the result set.

sendCharInputsUTF8
Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the CCSID of the DB2 for z/OS database server, or
sends the data in UTF-8 encoding for conversion by the database server.
sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity to DB2 for z/OS database servers only. The data type of
this property is int. If this property is also set at the driver level
(db2.jcc.sendCharInputsUTF8), this value overrides the driver-level value.

Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2)
Specifies that the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the target encoding before the data is sent to
the DB2 for z/OS database server.
com.ibm.db2.jcc.DB2BaseDataSource.NO is the default.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Specifies that the IBM Data Server Driver for JDBC and SQLJ sends
character input data to the DB2 for z/OS database server in UTF-8
encoding. The database server converts the data from UTF-8 encoding
to the target CCSID.

Specify com.ibm.db2.jcc.DB2BaseDataSource.YES only if conversion to
the target CCSID by the SDK for Java causes character conversion
problems. The most common problem occurs when you use IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity to insert a
Unicode line feed character (U+000A) into a table column that has
CCSID 37, and then retrieve that data from a non-z/OS client. If the
SDK for Java does the conversion during insertion of the character into
the column, the line feed character is converted to the EBCDIC new
line character X'15'. However, during retrieval, some SDKs for Java on
operating systems other than z/OS convert the X'15' character to the
Unicode next line character (U+0085) instead of the line feed character
(U+000A). The next line character causes unexpected behavior for some
XML parsers. If you set sendCharInputsUTF8 to
com.ibm.db2.jcc.DB2BaseDataSource.YES, the DB2 for z/OS database
server converts the U+000A character to the EBCDIC line feed
character X'25' during insertion into the column, so the character is
always retrieved as a line feed character.

Conversion of data to the target CCSID on the database server might
cause the IBM Data Server Driver for JDBC and SQLJ to use more
memory than conversion by the driver. The driver allocates memory
for conversion of character data from the source encoding to the
encoding of the data that it sends to the database server. The amount
of space that the driver allocates for character data that is sent to a
table column is based on the maximum possible length of the data.
UTF-8 data can require up to three bytes for each character. Therefore,
if the driver sends UTF-8 data to the database server, the driver needs
to allocate three times the maximum number of characters in the input
data. If the driver does the conversion, and the target CCSID is a
single-byte CCSID, the driver needs to allocate only the maximum
number of characters in the input data.

292 Application Programming Guide and Reference for Java

sessionTimeZone
Specifies the setting for the CURRENT SESSION TIME ZONE special register.
The data type of this property is String.

The sessionTimeZone value is a time zone value that is in the format of sth:tm.
s is the sign, th is the time zone hour, and tm is time zone minutes. The range
of valid values is -12:59 to +14:00.

sqljEnableClassLoaderSpecificProfiles
Specifies whether the IBM Data Server Driver for JDBC and SQLJ allows using
and loading of SQLJ profiles with the same Java name in multiple J2EE
application (.ear) files. The data type of this property is boolean. The default is
false. sqljEnableClassLoaderSpecificProfiles is a DataSource property. This
property is primarily intended for use with WebSphere Application Server.

ssid
Specifies the name of the local DB2 for z/OS subsystem to which a connection
is established using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS. The data type of this property is String.

The ssid property overrides the db2.jcc.ssid configuration property.

ssid can be the subsystem name for a local subsystem or a group attachment
name or subgroup attachment name.

Specification of a single local subsystem name allows more than one subsystem
on a single LPAR to be accessed as a local subsystem for connections that use
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Specification of a group attachment name or subgroup attachment name allows
failover processing to occur if a data sharing group member fails. If the DB2
subsystem to which an application is connected fails, the connection
terminates. However, when new connections use that group attachment name
or subgroup attachment name, DB2 for z/OS uses group or subgroup
attachment processing to find an active DB2 subsystem to which to connect.

ssid applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

useRowsetCursor
Specifies whether the IBM Data Server Driver for JDBC and SQLJ always uses
multiple-row FETCH for scrollable cursors if the data source supports
multiple-row FETCH. The data type of this property is boolean.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, or to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS. If the enableRowsetSupport property is not set,
the default for useRowsetCursor is true. If the enableRowsetSupport property
is set, the useRowsetCursor property is not used.

Applications that use the JDBC 1 technique for performing positioned update
or delete operations should set useRowSetCursor to false. Those applications
do not operate properly if the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH.

Chapter 7. JDBC and SQLJ reference information 293

Related reference:

DDF/RRSAF ACCUM field (ACCUMACC subsystem parameter) (DB2
Installation and Migration)

IBM Data Server Driver for JDBC and SQLJ properties for IBM
Informix

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
IBM Informix databases. Those properties correspond to IBM Informix
environment variables.

Properties that are shown in uppercase characters in the following information
must be specified in uppercase. For those properties, getXXX and setXXX methods
are formed by prepending the uppercase property name with get or set. For
example:
boolean dbDate = DB2BaseDateSource.getDBDATE();

The IBM Informix-specific properties are:

DBANSIWARN
Specifies whether the IBM Data Server Driver for JDBC and SQLJ instructs the
IBM Informix database to return an SQLWarning to the application if an SQL
statement does not use ANSI-standard syntax. The data type of this property is
boolean. Possible values are:

false or 0
Do not send a value to the IBM Informix database that instructs the
database to return an SQLWarning to the application if an SQL
statement does not use ANSI-standard syntax. This is the default.

true or 1
Send a value to the IBM Informix database that instructs the database
to return an SQLWarning to the application if an SQL statement does not
use ANSI-standard syntax.

You can use the DBANSIWARN IBM Data Server Driver for JDBC and SQLJ
property to set the DBANSIWARN IBM Informix property, but you cannot use
the DBANSIWARN IBM Data Server Driver for JDBC and SQLJ property to
reset the DBANSIWARN IBM Informix property.

DBDATE
Specifies the end-user format of DATE values. The data type of this property is
String. Possible values are in the description of the DBDATE environment
variable in IBM Informix Guide to SQL: Reference.

The default value is "Y4MD-".

DBPATH
Specifies a colon-separated list of values that identify the database servers that
contain databases. The date type of this property is String. Each value can be:
v A full path name
v A relative path name
v The server name of an IBM Informix database server
v A server name and full path name

The default ".".

DBSPACETEMP
Specifies a comma-separated or colon-separated list of existing dbspaces in
which temporary tables are placed. The data type of this property is String.

294 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_accumacc.htm#db2z_dsntipn12
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_accumacc.htm#db2z_dsntipn12

If this property is not set, no value is sent to the server. The value for the
DBSPACETEMP environment variable is used.

DBTEMP
Specifies the full path name of an existing directory in which temporary files
and temporary tables are placed. The data type of this property is String. The
default is "/tmp".

DBUPSPACE
Specifies the maximum amount of system disk space and maximum amount of
memory, in kilobytes, that the UPDATE STATISTICS statement can use when it
constructs multiple column distributions simultaneously. The data type of this
property is String.

The format of DBUPSPACE is "maximum-disk-space:maximum-memory".

If this property is not set, no value is sent to the server. The value for the
DBUPSPACE environment variable is used.

DB_LOCALE
Specifies the database locale, which the database server uses to process
locale-sensitive data. The data type of this property is String. Valid values are
the same as valid values for the DB_LOCALE environment variable. The
default value is null.

DELIMIDENT
Specifies whether delimited SQL identifiers can be used in an application. The
data type of this property is boolean. Possible values are:

false The application cannot contain delimited SQL identifiers. Double
quotation marks (") or single quotation marks (') delimit literal strings.
This is the default.

true The application can contain delimited SQL identifiers. Delimited SQL
identifiers must be enclosed in double quotation marks ("). Single
quotation marks (') delimit literal strings.

IFX_DIRECTIVES
Specifies whether the optimizer allows query optimization directives from
within a query. The data type of this property is String. Possible values are:

"1" or "ON"
Optimization directives are accepted.

"0" or "OFF"
Optimization directives are not accepted.

If this property is not set, no value is sent to the server. The value for the
IFX_DIRECTIVES environment variable is used.

IFX_EXTDIRECTIVES
Specifies whether the optimizer allows external query optimization directives
from the sysdirectives system catalog table to be applied to queries in existing
applications. Possible values are:

"1" or "ON"
External query optimization directives are accepted.

"0" or "OFF"
External query optimization are not accepted.

If this property is not set, no value is sent to the server. The value for the
IFX_EXTDIRECTIVES environment variable is used.

Chapter 7. JDBC and SQLJ reference information 295

IFX_UPDDESC
Specifies whether a DESCRIBE of an UPDATE statement is permitted. The data
type of this property is String.

Any non-null value indicates that a DESCRIBE of an UPDATE statement is
permitted. The default is "1".

IFX_XASTDCOMPLIANCE_XAEND
Specifies whether global transactions are freed only after an explicit rollback, or
after any rollback. The data type of this property is String. Possible values are:

"0" Global transactions are freed only after an explicit rollback. This
behavior conforms to the X/Open XA standard.

"1" Global transactions are freed after any rollback.

If this property is not set, no value is sent to the server. The value for the
IFX_XASTDCOMPLIANCE_XAEND environment variable is used.

INFORMIXOPCACHE
Specifies the size of the memory cache, in kilobytes, for the staging-area
blobspace of the client application. The data type of this property is String. A
value of "0" indicates that the cache is not used.

If this property is not set, no value is sent to the server. The value for the
INFORMIXOPCACHE environment variable is used.

INFORMIXSTACKSIZE
Specifies the stack size, in kilobytes, that the database server uses for the
primary thread of a client session. The data type of this property is String.

If this property is not set, no value is sent to the server. The value for the
INFORMIXSTACKSIZE environment variable is used.

NODEFDAC
Specifies whether the database server prevents default table privileges
(SELECT, INSERT, UPDATE, and DELETE) from being granted to PUBLIC
when a new table is created during the current session, in a database that is
not ANSI compliant. The data type of this property is String. Possible values
are:

"yes" The database server prevents default table privileges from being
granted to PUBLIC when a new table is created during the current
session, in a database that is not ANSI compliant.

"no" The database server does not prevent default table privileges from
being granted to PUBLIC when a new table is created during the
current session, in a database that is not ANSI compliant. This is the
default.

OPTCOMPIND
Specifies the preferred method for performing a join operation on an ordered
pair of tables. The data type of this property is String. Possible values are:

"0" The optimizer chooses a nested-loop join, where possible, over a
sort-merge join or a hash join.

"1" When the isolation level is repeatable read, the optimizer chooses a
nested-loop join, where possible, over a sort-merge join or a hash join.
When the isolation level is not repeatable read, the optimizer chooses a
join method based on costs.

"2" The optimizer chooses a join method based on costs, regardless of the
transaction isolation mode.

296 Application Programming Guide and Reference for Java

If this property is not set, no value is sent to the server. The value for the
OPTCOMPIND environment variable is used.

OPTOFC
Specifies whether to enable optimize-OPEN-FETCH-CLOSE functionality. The
data type of this property is String. Possible values are:

"0" Disable optimize-OPEN-FETCH-CLOSE functionality for all threads of
applications.

"1" Enable optimize-OPEN-FETCH-CLOSE functionality for all cursors in
all threads of applications.

If this property is not set, no value is sent to the server. The value for the
OPTOFCD environment variable is used.

PDQPRIORITY
Specifies the degree of parallelism that the database server uses. The
PDQPRIORITY value affects how the database server allocates resources,
including memory, processors, and disk reads. The data type of this property is
String. Possible values are:

"HIGH"
When the database server allocates resources among all users, it gives
as many resources as possible to queries.

"LOW" or "1"
The database server fetches values from fragmented tables in parallel.

"OFF" or "0"
Parallel processing is disabled.

If this property is not set, no value is sent to the server. The value for the
PDQPRIORITY environment variable is used.

PSORT_DBTEMP
Specifies the full path name of a directory in which the database server writes
temporary files that are used for a sort operation. The data type of this
property is String.

If this property is not set, no value is sent to the server. The value for the
PSORT_DBTEMP environment variable is used.

PSORT_NPROCS
Specifies the maximum number of threads that the database server can use to
sort a query. The data type of this property is String. The maximum value of
PSORT_NPROCS is "10".

If this property is not set, no value is sent to the server. The value for the
PSORT_NPROCS environment variable is used.

STMT_CACHE
Specifies whether the shared-statement cache is enabled. The data type of this
property is String. Possible values are:

"0" The shared-statement cache is disabled.

"1" A 512 KB shared-statement cache is enabled.

If this property is not set, no value is sent to the server. The value for the
STMT_CACHE environment variable is used.

dumpPool
Specifies the types of statistics on global transport pool events that are written,

Chapter 7. JDBC and SQLJ reference information 297

in addition to summary statistics. The global transport pool is used for the
connection concentrator and Sysplex workload balancing.

The data type of dumpPool is int. dumpPoolStatisticsOnSchedule and
dumpPoolStatisticsOnScheduleFile must also be set for writing statistics before
any statistics are written.

You can specify one or more of the following types of statistics with the
db2.jcc.dumpPool property:
v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)
v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)
v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)
v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)
v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)
v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)
v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

To trace more than one type of event, add the values for the types of events
that you want to trace. For example, suppose that you want to trace
DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric
equivalents of these values are 2 and 16, so you specify 18 for the dumpPool
value.

The default is 0, which means that only summary statistics for the global
transport pool are written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnSchedule
Specifies how often, in seconds, global transport pool statistics are written to
the file that is specified by dumpPoolStatisticsOnScheduleFile. The global
transport object pool is used for the connection concentrator and Sysplex
workload balancing.

The default is -1. -1 means that global transport pool statistics are not written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnScheduleFile
Specifies the name of the file to which global transport pool statistics are
written. The global transport pool is used for the connection concentrator and
Sysplex workload balancing.

If dumpPoolStatisticsOnScheduleFile is not specified, global transport pool
statistics are not written.

This property does not have a setXXX or a getXXX method.

maxTransportObjectIdleTime
Specifies the amount of time in seconds that an unused transport object stays
in a global transport object pool before it can be deleted from the pool.
Transport objects are used for the connection concentrator and Sysplex
workload balancing.

The default value for maxTransportObjectIdleTime is 10. Setting
maxTransportObjectIdleTime to a value less than 0 causes unused transport
objects to be deleted from the pool immediately. Doing this is not
recommended because it can cause severe performance degradation.

This property does not have a setXXX or a getXXX method.

maxTransportObjectWaitTime
Specifies the maximum amount of time in seconds that an application waits for

298 Application Programming Guide and Reference for Java

a transport object if the maxTransportObjects value has been reached. Transport
objects are used for the connection concentrator and Sysplex workload
balancing. When an application waits for longer than the
maxTransportObjectWaitTime value, the global transport object pool throws an
SQLException.

The default value for maxTransportObjectWaitTime is 1. Any negative value
means that applications wait forever.

This property does not have a setXXX or a getXXX method.

minTransportObjects
Specifies the lower limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When a JVM is created, there are no transport objects in the pool.
Transport objects are added to the pool as they are needed. After the
minTransportObjects value is reached, the number of transport objects in the
global transport object pool never goes below the minTransportObjects value
for the lifetime of that JVM.

The default value for minTransportObjects is 0. Any value that is less than or
equal to 0 means that the global transport object pool can become empty.

This property does not have a setXXX or a getXXX method.

IBM Data Server Driver for JDBC and SQLJ configuration properties
The IBM Data Server Driver for JDBC and SQLJ configuration properties have
driver-wide scope.

The following table summarizes the configuration properties and corresponding
Connection or DataSource properties, if they exist.

Table 41. Summary of Configuration properties and corresponding Connection and DataSource properties

Configuration property name
Connection or DataSource property
name

Introduced in
driver version Notes

db2.jcc.accountingInterval accountingInterval 3.6 1, 4

db2.jcc.allowSqljDuplicateStaticQueries 2.11 4

db2.jcc.charOutputSize charOutputSize 2.9 1, 4

db2.jcc.currentSchema currentSchema 1.2 1, 4, 6

db2.jcc.override.currentSchema currentSchema 1.2 2, 4, 6

db2.jcc.currentSQLID currentSQLID 1.3 1, 4

db2.jcc.override.currentSQLID currentSQLID 1.3 2, 4

db2.jcc.decimalRoundingMode decimalRoundingMode 3.4 1, 4, 6

db2.jcc.override.decimalRoundingMode decimalRoundingMode 3.4 2, 4, 6

db2.jcc.defaultSQLState 3.52, 4.2 4

db2.jcc.disableSQLJProfileCaching 1.8 4

db2.jcc.dumpPool dumpPool 3.52, 4.2 1, 3, 4, 5

db2.jcc.dumpPoolStatisticsOnSchedule dumpPoolStatisticsOnSchedule 3.52, 4.2 1, 3, 4, 5

db2.jcc.dumpPoolStatisticsOnScheduleFile dumpPoolStatisticsOnScheduleFile 3.52, 4.2 1, 3, 4, 5

db2.jcc.enableInetAddressGetHostName 3.63, 4.13 4, 5, 6

db2.jcc.override.enableMultirowInsertSupport enableMultirowInsertSupport 3.62, 4.12 2, 4

db2.jcc.encryptionAlgorithm encryptionAlgorithm 3.65, 4.15 1, 4, 6

db2.jcc.override.encryptionAlgorithm encryptionAlgorithm 3.65, 4.15 2, 4, 6

db2.jcc.jmxEnabled 4.0 4, 5, 6

Chapter 7. JDBC and SQLJ reference information 299

Table 41. Summary of Configuration properties and corresponding Connection and DataSource properties (continued)

Configuration property name
Connection or DataSource property
name

Introduced in
driver version Notes

db2.jcc.lobOutputSize 1.8 4

db2.jcc.maxConnCachedParamBufferSize maxConnCachedParamBufferSize 3.63, 4.13 1, 4

db2.jcc.maxRefreshInterval 3.58, 4.8 4, 5, 6

db2.jcc.maxTransportObjectIdleTime 3.52, 4.2 1, 4, 5, 6

db2.jcc.maxTransportObjectWaitTime 3.52, 4.2 1, 4, 5, 6

db2.jcc.maxTransportObjects maxTransportObjects 2.6 1, 4, 5, 6

db2.jcc.minTransportObjects 3.52, 4.2 1, 4, 5, 6

db2.jcc.outputDirectory 3.61, 4.11 6

db2.jcc.pkList pkList 1.4 1, 4

db2.jcc.planName planName 1.4 1, 4

db2.jcc.progressiveStreaming progressiveStreaming 3.0 1, 4, 5, 6

db2.jcc.override.progressiveStreaming progressiveStreaming 3.0 2, 4, 5, 6

db2.jcc.rollbackOnShutdown 3.50, 4.0 4

db2.jcc.securityMechanism securityMechanism 3.65, 4.15 1, 4, 5, 6

db2.jcc.override.securityMechanism securityMechanism 3.65, 4.15 2, 4, 5, 6

db2.jcc.sendCharInputsUTF8 sendCharInputsUTF8 3.50, 4.0 4

db2.jcc.sqljStmtCacheSize 3.66, 4.16 4

db2.jcc.sqljToolsExitJVMOnCompletion 3.62, 4.12 4, 6

db2.jcc.sqljUncustomizedWarningOrException 2.2 4, 6

db2.jcc.ssid ssid 3.6 1, 4

db2.jcc.sslConnection sslConnection 3.66, 4.16 1, 4, 5, 6

db2.jcc.override.sslConnection sslConnection 3.66, 4.16 2, 4, 5, 6

db2.jcc.sslTrustStoreLocation sslTrustStoreLocation 3.66, 4.16 1, 4, 5, 6

db2.jcc.override.sslTrustStoreLocation sslTrustStoreLocation 3.66, 4.16 2, 4, 5, 6

db2.jcc.sslTrustStorePassword sslTrustStorePassword 3.66, 4.16 1, 4, 5, 6

db2.jcc.override.sslTrustStorePassword sslTrustStorePassword 3.66, 4.16 2, 4, 5, 6

db2.jcc.traceDirectory traceDirectory 1.5 1, 4, 5, 6

db2.jcc.override.traceDirectory traceDirectory 1.5 2, 4, 5, 6

db2.jcc.traceFile traceFile 1.1 1, 4, 5, 6

db2.jcc.override.traceFile traceFile 1.1 2, 4, 5, 6

db2.jcc.traceFileAppend traceFileAppend 1.2 1, 4, 5, 6

db2.jcc.override.traceFileAppend traceFileAppend 1.2 2, 4, 5, 6

db2.jcc.traceFileCount traceFileCount 3.63, 4.13 1, 4, 5, 6

db2.jcc.traceFileSize traceFileSize 3.63, 4.13 1, 4, 5, 6

db2.jcc.traceLevel traceLevel 3.51, 4.1 1, 4, 5, 6

db2.jcc.override.traceLevel traceLevel 3.51, 4.1 2, 4, 5, 6

db2.jcc.traceOption traceOption 3.63, 4.13 1, 4, 5, 6

db2.jcc.tracePolling 3.51, 4.1 4, 5, 6

db2.jcc.tracePollingInterval 3.51, 4.1 4, 5, 6

db2.jcc.t2zosTraceFile 3.51, 4.1 4

db2.jcc.t2zosTraceBufferSize 3.51, 4.1 4

db2.jcc.t2zosTraceWrap 3.51, 4.1 4

db2.jcc.useCcsid420ShapedConverter 3.2 4

300 Application Programming Guide and Reference for Java

||||

||||

||||

||||

||||

||||

||||

Table 41. Summary of Configuration properties and corresponding Connection and DataSource properties (continued)

Configuration property name
Connection or DataSource property
name

Introduced in
driver version Notes

Note:

1. The Connection or DataSource property setting overrides the configuration property setting. The configuration property provides
a default value for the Connection or DataSource property.

2. The configuration property setting overrides the Connection or DataSource property.

3. The corresponding Connection or DataSource property is defined only for IBM Informix.

4. The configuration property applies to DB2 for z/OS.

5. The configuration property applies to IBM Informix.

6. The configuration property applies to DB2 for Linux, UNIX, and Windows.

The meanings of the configuration properties are:

db2.jcc.accountingInterval
Specifies whether DB2 accounting records are produced at commit points or on
termination of the physical connection to the data source. If the value of
db2.jcc.accountingInterval is COMMIT, DB2 accounting records are produced at
commit points. For example:
db2.jcc.accountingInterval=COMMIT

Otherwise, accounting records are produced on termination of the physical
connection to the data source.

db2.jcc.accountingInterval applies only to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS. db2.jcc.accountingInterval is
not applicable to connections under CICS or IMS, or for Java stored
procedures.

You can override db2.jcc.accountingInterval by setting the accountingInterval
property for a Connection or DataSource object.

This configuration property applies only to DB2 for z/OS.

db2.jcc.allowSqljDuplicateStaticQueries
Specifies whether multiple open iterators on a single SELECT statement in an
SQLJ application are allowed under IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity.

To enable this support, set db2.jcc.allowSqljDuplicateStaticQueries to YES or
true.

db2.jcc.charOutputSize
Specifies the maximum number of bytes to use for INOUT or OUT stored
procedure parameters that are registered as Types.CHAR.

Because DESCRIBE information for stored procedure INOUT and OUT
parameters is not available at run time, by default, the IBM Data Server Driver
for JDBC and SQLJ sets the maximum length of each character INOUT or OUT
parameter to 32767. For stored procedures with many Types.CHAR parameters,
this maximum setting can result in allocation of much more storage than is
necessary.

To use storage more efficiently, set db2.jcc.charOutputSize to the largest
expected length for any Types.CHAR INOUT or OUT parameter.

db2.jcc.charOutputSize has no effect on INOUT or OUT parameters that are
registered as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default
length of 32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

Chapter 7. JDBC and SQLJ reference information 301

The value that you choose for db2.jcc.charOutputSize needs to take into
account the possibility of expansion during character conversion. Because the
IBM Data Server Driver for JDBC and SQLJ has no information about the
server-side CCSID that is used for output parameter values, the driver requests
the stored procedure output data in UTF-8 Unicode. The
db2.jcc.charOutputSize value needs to be the maximum number of bytes that
are needed after the parameter value is converted to UTF-8 Unicode. UTF-8
Unicode characters can require up to three bytes. (The euro symbol is an
example of a three-byte UTF-8 character.) To ensure that the value of
db2.jcc.charOutputSize is large enough, if you have no information about the
output data, set db2.jcc.charOutputSize to three times the defined length of the
largest CHAR parameter.

This configuration property applies only to DB2 for z/OS.

db2.jcc.currentSchema or db2.jcc.override.currentSchema
Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements. This value of this property
sets the value in the CURRENT SCHEMA special register on the database
server. The schema name is case-sensitive, and must be specified in uppercase
characters.

This configuration property applies only to DB2 for z/OS or DB2 for Linux,
UNIX, and Windows.

db2.jcc.currentSQLID or db2.jcc.override.currentSQLID
Specifies:
v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.
v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.
v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2
for z/OS server. If the currentSQLID property is not set, the default schema
name is the value in the CURRENT SQLID special register.

This configuration property applies only to DB2 for z/OS.

db2.jcc.decimalRoundingMode or db2.jcc.override.decimalRoundingMode
Specifies the rounding mode for assignment to decimal floating-point variables
or DECFLOAT columns on DB2 for z/OS or DB2 for Linux, UNIX, and
Windows data servers.

Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_DOWN (1)
Rounds the value towards 0 (truncation). The discarded digits are
ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_CEILING (2)
Rounds the value towards positive infinity. If all of the discarded digits
are zero or if the sign is negative the result is unchanged other than
the removal of the discarded digits. Otherwise, the result coefficient is
incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_EVEN (3)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value so that the final digit is even. If the discarded digits

302 Application Programming Guide and Reference for Java

represents greater than half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. If they
represent less than half, then the result coefficient is not adjusted (that
is, the discarded digits are ignored). Otherwise the result coefficient is
unaltered if its rightmost digit is even, or is incremented by 1 if its
rightmost digit is odd (to make an even digit).

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_UP (4)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value away from zero. If the discarded digits represent
greater than or equal to half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. Otherwise the
discarded digits are ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_FLOOR (6)
Rounds the value towards negative infinity. If all of the discarded
digits are zero or if the sign is positive the result is unchanged other
than the removal of discarded digits. Otherwise, the sign is negative
and the result coefficient is incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_UNSET (-2147483647)
No rounding mode was explicitly set. The IBM Data Server Driver for
JDBC and SQLJ does not use the decimalRoundingMode to set the
rounding mode on the database server. The rounding mode is
ROUND_HALF_EVEN.

If you explicitly set the db2.jcc.decimalRoundingMode or
db2.jcc.override.decimalRoundingMode value, that value updates the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
for z/OS data server.

If you explicitly set the db2.jcc.decimalRoundingMode or
db2.jcc.override.decimalRoundingMode value, that value does not update the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
for Linux, UNIX, and Windows data server. If the value to which you set
db2.jcc.decimalRoundingMode or db2.jcc.override.decimalRoundingMode is
not the same as the value of the CURRENT DECFLOAT ROUNDING MODE
special register, an Exception is thrown. To change the data server value, you
need to set that value with the decflt_rounding database configuration
parameter.

decimalRoundingMode does not affect decimal value assignments. The IBM
Data Server Driver for JDBC and SQLJ always rounds decimal values down.

db2.jcc.defaultSQLState
Specifies the SQLSTATE value that the IBM Data Server Driver for JDBC and
SQLJ returns to the client for SQLException or SQLWarning objects that have null
SQLSTATE values. This configuration property can be specified in the
following ways:

db2.jcc.defaultSQLState
If db2.jcc.defaultSQLState is specified with no value, the IBM Data
Server Driver for JDBC and SQLJ returns 'FFFFF'.

db2.jcc.defaultSQLState=xxxxx
xxxxx is the value that the IBM Data Server Driver for JDBC and SQLJ
returns when the SQLSTATE value is null. If xxxxx is longer than five
bytes, the driver truncates the value to five bytes. If xxxxx is shorter
than five bytes, the driver pads xxxxx on the right with blanks.

Chapter 7. JDBC and SQLJ reference information 303

If db2.jcc.defaultSQLState is not specified, the IBM Data Server Driver for
JDBC and SQLJ returns a null SQLSTATE value.

This configuration property applies only to DB2 for z/OS.

db2.jcc.disableSQLJProfileCaching
Specifies whether serialized profiles are cached when the JVM under which
their application is running is reset. db2.jcc.disableSQLJProfileCaching applies
only to applications that run in a resettable JVM (applications that run in the
CICS, IMS, or Java stored procedure environment), and use IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS. Possible
values are:

YES SQLJ serialized profiles are not cached every time the JVM is reset, so
that new versions of the serialized profiles are loaded when the JVM is
reset. Use this option when an application is under development, and
new versions of the application and its serialized profiles are produced
frequently.

NO SQLJ serialized profiles are cached when the JVM is reset. NO is the
default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.dumpPool
Specifies the types of statistics on global transport pool events that are written,
in addition to summary statistics. The global transport pool is used for the
connection concentrator and Sysplex workload balancing.

db2.jcc.dumpPoolStatisticsOnSchedule and
db2.jcc.dumpPoolStatisticsOnScheduleFile must also be set for writing statistics
before any statistics are written.

You can specify one or more of the following types of statistics with the
db2.jcc.dumpPool property:
v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)
v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)
v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)
v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)
v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)
v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)
v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

To trace more than one type of event, add the values for the types of events
that you want to trace. For example, suppose that you want to trace
DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric
equivalents of these values are 2 and 16, so you specify 18 for the
db2.jcc.dumpPool value.

The default is 0, which means that only summary statistics for the global
transport pool are written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.dumpPoolStatisticsOnSchedule
Specifies how often, in seconds, global transport pool statistics are written to
the file that is specified by db2.jcc.dumpPoolStatisticsOnScheduleFile. The
global transport object pool is used for the connection concentrator and
Sysplex workload balancing.

The default is -1. -1 means that global transport pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

304 Application Programming Guide and Reference for Java

db2.jcc.dumpPoolStatisticsOnScheduleFile
Specifies the name of the file to which global transport pool statistics are
written. The global transport pool is used for the connection concentrator and
Sysplex workload balancing.

If db2.jcc.dumpPoolStatisticsOnScheduleFile is not specified, global transport
pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.enableInetAddressGetHostName
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the
InetAddress.getHostName and InetAddress.getCanonicalHostName methods to
determine the host name for an IP address.
db2.jcc.enableInetAddressGetHostName applies only to IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity. Possible values are:

true The IBM Data Server Driver for JDBC and SQLJ uses the
InetAddress.getHostName and InetAddress.getCanonicalHostName
methods to determine the host name for an IP address.

When you specify true, applications might take longer to run because
of the additional time that is required for DNS lookup operations.

false The IBM Data Server Driver for JDBC and SQLJ uses the
InetAddress.getHostAddress method to determine the host name for
an IP address.

For versions 3.65 and 4.15 or later of the IBM Data Server Driver for JDBC and
SQLJ, the default is false. For versions 3.64 and 4.14 or earlier, the default is
true.

db2.jcc.override.enableMultiRowInsertSupport
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
multi-row INSERT for batched INSERT or MERGE operations, when the target
data server is a DB2 for z/OS server that supports multi-row INSERT. The
batch operations must be PreparedStatement calls with parameter markers. The
default is true.

db2.jcc.override.enableMultiRowInsertSupport must be set to false if INSERT
FROM SELECT statements are executed in a batch. Otherwise, the driver
throws a BatchUpdateException.

Possible values are:

true Specifies that the IBM Data Server Driver for JDBC and SQLJ uses
multi-row INSERT for batched INSERT or MERGE operations, when
the target data server is a DB2 for z/OS server that supports multi-row
INSERT. This is the default.

false Specifies that the IBM Data Server Driver for JDBC and SQLJ does not
use multi-row INSERT for batched INSERT or MERGE operations,
when the target data server is a DB2 for z/OS server that supports
multi-row INSERT.

db2.jcc.encryptionAlgorithm or db2.jcc.override.encryptionAlgorithm
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses 56-bit
DES (weak) encryption or 256-bit AES (strong) encryption.

db2.jcc.encryptionAlgorithm or db2.jcc.override.encryptionAlgorithm can be
specified only if db2.jcc.securityMechanism or db2.jcc.securityMechanism is set
to 7 or 9.

Chapter 7. JDBC and SQLJ reference information 305

Possible values are:

1 The driver uses 56-bit DES encryption.

2 The driver uses 256-bit AES encryption, if the database server supports
it. 256-bit AES encryption is available for IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity only.

For AES encryption, you need an unrestricted policy file for JCE. That
file is available at the following location:
https://www.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

db2.jcc.encryptionAlgorithm can be specified only if the
db2.jcc.securityMechanism, db2.jcc.override.securityMechanism, or
securityMechanisim value is set for encrypted password security or encrypted
user ID and password security.

db2.jcc.jmxEnabled
Specifies whether the Java Management Extensions (JMX) is enabled for the
IBM Data Server Driver for JDBC and SQLJ instance. JMX must be enabled
before applications can use the remote trace controller.

Possible values are:

true or yes
Indicates that JMX is enabled.

Any other value
Indicates that JMX is disabled. This is the default.

db2.jcc.lobOutputSize
Specifies the number of bytes of storage that the IBM Data Server Driver for
JDBC and SQLJ needs to allocate for output LOB values when the driver
cannot determine the size of those LOBs. This situation occurs for LOB stored
procedure output parameters. db2.jcc.lobOutputSize applies only to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

The default value for db2.jcc.lobOutputSize is 1048576. For systems with
storage limitations and smaller LOBs, set the db2.jcc.lobOutputSize value to a
lower number.

For example, if you know that the output LOB size is at most 64000, set
db2.jcc.lobOutputSize to 64000.

This configuration property applies only to DB2 for z/OS.

db2.jcc.maxConnCachedParamBufferSize
Specifies the maximum size of an internal buffer that is used for caching input
parameter values for PreparedStatement objects. The buffer caches values on
the native code side that are passed from the driver's Java code side for IBM
Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.
The buffer is used by all PreparedStatement objects for a Connection. The
default is 1048576 (1MB). The default should be adequate for most users. Set
db2.jcc.maxConnCachedParamBufferSize to a larger value if many applications
that run under the driver instance have PreparedStatement objects with large
numbers of input parameters or large input parameters. The
db2.jcc.maxConnCachedParamBufferSize should be larger than the maximum
size of all input parameter data for a Connection. However, you also need to
take into account the total number of connections and the maximum amount of
memory that is available when you set the
db2.jcc.maxConnCachedParamBufferSize value.

306 Application Programming Guide and Reference for Java

https://www.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

The buffer exists for the life of a Connection, unless it reaches the maximum
specified size. If that happens, the buffer is freed on each call to the native
code. The corresponding buffer on the Java code side is freed on
PreparedStatement.clearParameters and PreparedStatement.close calls. The
buffers are not cleared if an application calls
PreparedStatement.clearParameters, and the buffers have not reached the
maximum size.

db2.jcc.maxRefreshInterval
For workload balancing, specifies the maximum amount of time in seconds
between refreshes of the client copy of the server list. The minimum valid
value is 1.

For version 3.63 or 4.13 or later of the IBM Data Server Driver for JDBC and
SQLJ, the default is 10 seconds. For earlier versions of the driver, the default is
30 seconds.

db2.jcc.maxTransportObjectIdleTime
Specifies the amount of time in seconds that an unused transport object stays
in a global transport object pool before it can be deleted from the pool.
Transport objects are used for the connection concentrator and Sysplex
workload balancing.

The default value for db2.jcc.maxTransportObjectIdleTime is 10. Setting
db2.jcc.maxTransportObjectIdleTime to a value less than 0 causes unused
transport objects to be deleted from the pool immediately. Doing this is not
recommended because it can cause severe performance degradation.

db2.jcc.maxTransportObjects
Specifies the upper limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When the number of transport objects in the pool reaches the
db2.jcc.maxTransportObjects value, transport objects that have not been used
for longer than the db2.jcc.maxTransportObjectIdleTime value are deleted from
the pool.

For version 3.63 or 4.13 or later of the IBM Data Server Driver for JDBC and
SQLJ, the default is 1000. For earlier versions of the driver, the default is -1.

Any value that is less than or equal to 0 means that there is no limit to the
number of transport objects in the global transport object pool.

db2.jcc.maxTransportObjectWaitTime
Specifies the maximum amount of time in seconds that an application waits for
a transport object if the db2.jcc.maxTransportObjects value has been reached.
Transport objects are used for the connection concentrator and Sysplex
workload balancing. When an application waits for longer than the
db2.jcc.maxTransportObjectWaitTime value, the global transport object pool
throws an SQLException.

Any negative value means that applications wait forever.

For version 3.63 or 4.13 or later of the IBM Data Server Driver for JDBC and
SQLJ, the default is 1 second. For earlier versions of the driver, the default is
-1.

db2.jcc.minTransportObjects
Specifies the lower limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When a JVM is created, there are no transport objects in the pool.
Transport objects are added to the pool as they are needed. After the

Chapter 7. JDBC and SQLJ reference information 307

db2.jcc.minTransportObjects value is reached, the number of transport objects
in the global transport object pool never goes below the
db2.jcc.minTransportObjects value for the lifetime of that JVM.

The default value for db2.jcc.minTransportObjects is 0. Any value that is less
than or equal to 0 means that the global transport object pool can become
empty.

db2.jcc.outputDirectory
Specifies where the IBM Data Server Driver for JDBC and SQLJ stores
temporary log or cache files.

If this property is set, the IBM Data Server Driver for JDBC and SQLJ stores
the following files in the specified directory:

jccServerListCache.bin
Contains a copy of the primary and alternate server information for
automatic client reroute in a DB2 pureScale environment.

This file applies only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity to DB2 for Linux, UNIX, and Windows.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver uses only the in-memory cache for the
primary and alternate server information. If a directory is specified, but
jccServerListCache.bin cannot be accessed, the driver uses only the
in-memory cache for the server list.

jccdiag.log
Contains diagnostic information that is written by the IBM Data Server
Driver for JDBC and SQLJ.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver does not write diagnostic information to
jccdiag.log. If a directory is specified, but jccdiag.log cannot be
accessed, the driver does not write diagnostic information to
jccdiag.log.

connlicj.bin
Contains information about IBM Data Server Driver for JDBC and
SQLJ license verification, for direct connections to DB2 for z/OS. The
IBM Data Server Driver for JDBC and SQLJ writes this file when server
license verification is performed successfully for a data server. When a
copy of the license verification information is stored at the client,
performance of license verification on subsequent connections can be
improved.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver does not store a copy of server license
verification information at the client. If a directory is specified, but
connlicj.bin cannot be accessed, the driver does not store a copy of
server license verification information at the client.

The IBM Data Server Driver for JDBC and SQLJ does not create the directory.
You must create the directory and assign the required file permissions.

308 Application Programming Guide and Reference for Java

db2.jcc.outputDirectory can specify an absolute path or a relative path.
However, an absolute path is recommended.

db2.jcc.pkList
Specifies a package list that is used for the underlying RRSAF CREATE
THREAD call when a JDBC or SQLJ connection to a data source is established.
Specify this property if you do not bind plans for your SQLJ programs or for
the JDBC driver. If you specify this property, do not specify db2.jcc.planName.

db2.jcc.pkList applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS. db2.jcc.pkList does not apply to applications
that run under CICS or IMS, or to Java stored procedures. The JDBC driver
ignores the db2.jcc.pkList setting in those cases.

Recommendation: Use db2.jcc.pkList instead of db2.jcc.planName.

The format of the package list is:

�� �

,

collection-ID.* ��

The default value of db2.jcc.pkList is NULLID.*.

If you specify the -collection parameter when you run
com.ibm.db2.jcc.DB2Binder, the collection ID that you specify for IBM Data
Server Driver for JDBC and SQLJ packages when you run
com.ibm.db2.jcc.DB2Binder must also be in the package list for the
db2.jcc.pkList property.

You can override db2.jcc.pkList by setting the pkList property for a Connection
or DataSource object.

The following example specifies a package list for a IBM Data Server Driver
for JDBC and SQLJ instance whose packages are in collection JDBCCID. SQLJ
applications that are prepared under this driver instance are bound into
collections SQLJCID1, SQLJCID2, or SQLJCID3.
db2.jcc.pkList=JDBCCID.*,SQLJCID1.*,SQLJCID2.*,SQLJCID3.*

This configuration property applies only to DB2 for z/OS.

db2.jcc.planName
Specifies a DB2 for z/OS plan name that is used for the underlying RRSAF
CREATE THREAD call when a JDBC or SQLJ connection to a data source is
established. Specify this property if you bind plans for your SQLJ programs
and for the JDBC driver packages. If you specify this property, do not specify
db2.jcc.pkList.

db2.jcc.planName applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS. db2.jcc.planName does not apply to
applications that run under CICS or IMS, or to Java stored procedures. The
JDBC driver ignores the db2.jcc.planName setting in those cases.

If you do not specify this property or the db2.jcc.pkList property, the IBM Data
Server Driver for JDBC and SQLJ uses the db2.jcc.pkList default value of
NULLID.*.

If you specify db2.jcc.planName, you need to bind the packages that you
produce when you run com.ibm.db2.jcc.DB2Binder into a plan whose name is
the value of this property. You also need to bind all SQLJ packages into a plan
whose name is the value of this property.

Chapter 7. JDBC and SQLJ reference information 309

You can override db2.jcc.planName by setting the planName property for a
Connection or DataSource object.

The following example specifies a plan name of MYPLAN for the IBM Data
Server Driver for JDBC and SQLJ JDBC packages and SQLJ packages.
db2.jcc.planName=MYPLAN

This configuration property applies only to DB2 for z/OS.

db2.jcc.progressiveStreaming or db2.jcc.override.progressiveStreaming
Specifies whether the JDBC driver uses progressive streaming when
progressive streaming is supported on the data source.

With progressive streaming, also known as dynamic data format, the data
source dynamically determines the most efficient mode in which to return LOB
or XML data, based on the size of the LOBs or XML objects.

Valid values are:

1 Use progressive streaming, if the data source supports it.

2 Do not use progressive streaming.

db2.jcc.rollbackOnShutdown
Specifies whether DB2 for z/OS forces a rollback operation and disables
further operations on JDBC connections that are in a unit of work during
processing of JVM shutdown hooks.

db2.jcc.rollbackOnShutdown applies to IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity only.

db2.jcc.rollbackOnShutdown does not apply to the CICS, IMS, stored
procedure, or WebSphere Application Server environments.

Possible values are:

yes or true
The IBM Data Server Driver for JDBC and SQLJ directs DB2 for z/OS
to force a rollback operation and disables further operations on JDBC
connections that are in a unit of work during processing of JVM
shutdown hooks.

Any other value
The IBM Data Server Driver for JDBC and SQLJ takes no action with
respect to rollback processing during processing of JVM shutdown
hooks. This is the default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.securityMechanism or db2.jcc.override.securityMechanism
Specifies the DRDA security mechanism. Possible values are:

3 User ID and password

4 User ID only

7 User ID, encrypted password

9 Encrypted user ID and password

11 Kerberos. This value does not apply to connections to IBM Informix.

12 Encrypted user ID and encrypted security-sensitive data. This value
applies to connections to DB2 for z/OS only.

310 Application Programming Guide and Reference for Java

13 Encrypted user ID and password, and encrypted security-sensitive
data. This value does not apply to connections to IBM Informix.

15 Plug-in security. This value applies to connections to DB2 for Linux,
UNIX, and Windows only.

16 Encrypted user ID. This value does not apply to connections to IBM
Informix.

18 Client certificate security, using SSL. This value applies to connections
to DB2 for z/OS Version 10 and later only.

The security mechanism that is specified by this property is the only
mechanism that is used. If the security mechanism is not supported by the
connection, an exception is thrown.

The default value for db2.jcc.securityMechanism is 3. If the server does not
support user ID and password security, but supports encrypted user ID and
password security (9), the IBM Data Server Driver for JDBC and SQLJ driver
upgrades the security mechanism to encrypted user ID and password security
and attempts to connect to the server. Any other mismatch in security
mechanism support between the requester and the server results in an error.

This property does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

db2.jcc.sendCharInputsUTF8
Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the CCSID of the DB2 for z/OS database server, or
sends the data in UTF-8 encoding for conversion by the database server.
db2.jcc.sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity to DB2 for z/OS database servers only. If this
property is also set at the connection level, the connection-level setting
overrides this value.

Possible values are:

no, false, or 2
Specifies that the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the target encoding before the data is sent to
the DB2 for z/OS database server. This is the default.

yes, true, or 1
Specifies that the IBM Data Server Driver for JDBC and SQLJ sends
character input data to the DB2 for z/OS database server in UTF-8
encoding. The data source converts the data from UTF-8 encoding to
the target CCSID.

Specify yes, true, or 1 only if conversion to the target CCSID by the
SDK for Java causes character conversion problems. The most common
problem occurs when you use IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity to insert a Unicode line feed character
(U+000A) into a table column that has CCSID 37, and then retrieve that
data from a non-z/OS client. If the SDK for Java does the conversion
during insertion of the character into the column, the line feed
character is converted to the EBCDIC new line character X'15'.
However, during retrieval, some SDKs for Java on operating systems
other than z/OS convert the X'15' character to the Unicode next line
character (U+0085) instead of the line feed character (U+000A). The
next line character causes unexpected behavior for some XML parsers.
If you set db2.jcc.sendCharInputsUTF8 to yes, the DB2 for z/OS

Chapter 7. JDBC and SQLJ reference information 311

database server converts the U+000A character to the EBCDIC line feed
character X'25' during insertion into the column, so the character is
always retrieved as a line feed character.

Conversion of data to the target CCSID on the data source might cause
the IBM Data Server Driver for JDBC and SQLJ to use more memory
than conversion by the driver. The driver allocates memory for
conversion of character data from the source encoding to the encoding
of the data that it sends to the data source. The amount of space that
the driver allocates for character data that is sent to a table column is
based on the maximum possible length of the data. UTF-8 data can
require up to three bytes for each character. Therefore, if the driver
sends UTF-8 data to the data source, the driver needs to allocate three
times the maximum number of characters in the input data. If the
driver does the conversion, and the target CCSID is a single-byte
CCSID, the driver needs to allocate only the maximum number of
characters in the input data.

For example, any of the following settings for db2.jcc.sendCharInputsUTF8
causes the IBM Data Server Driver for JDBC and SQLJ to convert input
character strings to UTF-8, rather than the target encoding, before sending the
data to the data source:
db2.jcc.sendCharInputsUTF8=yes
db2.jcc.sendCharInputsUTF8=true
db2.jcc.sendCharInputsUTF8=1

This configuration property applies only to DB2 for z/OS.

db2.jcc.sqljStmtCacheSize
Specifies the maximum number of statements that are in the SQLJ statement
cache for each DefaultContext instance and each JVM thread. This value
applies to SQLJ stored procedures that run in a 64-bit, multi-threaded
environment. The default is 10 statements.

In a multi-threaded environment, the IBM Data Server Driver for JDBC and
SQLJ caches statements that are associated with each instance of a
DefaultContext object that is used by each JVM thread. When the driver
attempts to cache a statement after the db2.jcc.sqljStmtCacheSize value is
reached, the least recently used cached statement is purged and replaced by
the new statement.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS Version 11 or later.

db2.jcc.sqljToolsExitJVMOnCompletion
Specifies whether the Java programs that underlie SQLJ tools such as
db2sqljcustomize and db2sqljbind issue the System.exit call on return to the
calling programs.

Possible values are:

true Specifies that the Java programs that underlie SQLJ tools issue the
System.exit call upon completion. true is the default.

false Specifies that the Java programs that underlie SQLJ tools do not issue
the System.exit call.

db2.jcc.sqljUncustomizedWarningOrException
Specifies the action that the IBM Data Server Driver for JDBC and SQLJ takes
when an uncustomized SQLJ application runs.
db2.jcc.sqljUncustomizedWarningOrException can have the following values:

312 Application Programming Guide and Reference for Java

|
|
|
|
|

|
|
|
|
|
|

|
|

0 The IBM Data Server Driver for JDBC and SQLJ does not throw a
Warning or Exception when an uncustomized SQLJ application is run.
This is the default.

1 The IBM Data Server Driver for JDBC and SQLJ throws a Warning
when an uncustomized SQLJ application is run.

2 The IBM Data Server Driver for JDBC and SQLJ throws an Exception
when an uncustomized SQLJ application is run.

This configuration property applies only to DB2 for z/OS or DB2 for Linux,
UNIX, and Windows.

db2.jcc.ssid
Specifies the DB2 for z/OS subsystem to which applications make connections
with IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2
for z/OS.

The db2.jcc.ssid value can be the name of the local DB2 subsystem or a group
attachment name or subgroup attachment name.

For example:
db2.jcc.ssid=DB2A

The ssid Connection and DataSource property overrides db2.jcc.ssid.

If you specify a group attachment name or subgroup attachment name, and the
DB2 subsystem to which an application is connected fails, the connection
terminates. However, when new connections use that group attachment name
or subgroup attachment name, DB2 for z/OS uses group attachment or
subgroup attachment processing to find an active DB2 subsystem to which to
connect.

If you do not specify the db2.jcc.ssid property, the IBM Data Server Driver for
JDBC and SQLJ uses the SSID value from the application defaults load module.
When you install DB2 for z/OS, an application defaults load module is created
in the prefix.SDSNEXIT data set and the prefix.SDSNLOAD data set. Other
application defaults load modules might be created in other data sets for
selected applications.

The IBM Data Server Driver for JDBC and SQLJ must load an application
defaults load module before it can read the SSID value. z/OS searches data
sets in the following places, and in the following order, for the application
defaults load module:
1. Job pack area (JPA)
2. TASKLIB
3. STEPLIB or JOBLIB
4. LPA
5. Libraries in the link list

You need to ensure that if your system has more than one copy of the
application defaults load module, z/OS finds the data set that contains the
correct copy for the IBM Data Server Driver for JDBC and SQLJ first.

This configuration property applies only to DB2 for z/OS.

db2.jcc.sslConnection or db2.jcc.override.sslConnection
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses an SSL
socket to connect to the data source. If the value is true, the connection uses
an SSL socket. If the value is false, the connection uses a plain socket.

The db2.jcc.override.sslConnection property overrides the sslConnection
property for a Connection or DataSource object.

Chapter 7. JDBC and SQLJ reference information 313

|
|
|
|

|
|

If no property is specified, the default value is false.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

db2.jcc.sslTrustStoreLocation or db2.jcc.override.sslTrustStoreLocation
Specifies the name of the Java truststore on the client that contains the server
certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
db2.jcc.sslConnection, db2.jcc.override.sslConnection, or sslConnection property
is set to true.

If db2.jcc.sslTrustStoreLocation or db2.jcc.override.sslTrustStoreLocation, or
sslTrustStoreLocation is set, and db2.jcc.sslConnection,
db2.jcc.override.sslConnection, or sslConnection is set to true, the IBM Data
Server Driver for JDBC and SQLJ uses the db2.jcc.sslTrustStoreLocation,
db2.jcc.override.sslTrustStoreLocation, or sslTrustStoreLocation value instead of
the value in the javax.net.ssl.trustStore Java property.

The db2.jcc.override.sslTrustStoreLocation property overrides the
sslTrustStoreLocation property for a Connection or DataSource object.

If no property is specified, the default value is null.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

db2.jcc.sslTrustStorePassword or db2.jcc.override.sslTrustStorePassword
Specifies the password for the Java truststore on the client that contains the
server certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
db2.jcc.sslConnection, db2.jcc.override.sslConnection, or sslConnection property
is set to true.

If db2.jcc.sslTrustStorePassword, db2.jcc.override.sslTrustStorePassword, or
sslTrustStorePassword is set, and db2.jcc.sslConnection,
db2.jcc.override.sslConnection, or sslConnection is set to true, the IBM Data
Server Driver for JDBC and SQLJ uses the db2.jcc.sslTrustStorePassword,
db2.jcc.override.sslTrustStorePassword, or sslTrustStorePassword value instead
of the value in the javax.net.ssl.trustStorePassword Java property.

The db2.jcc.override.sslTrustStorePassword property overrides the
sslTrustStorePassword property for a Connection or DataSource object.

If no property is specified, the default value is null.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

db2.jcc.traceDirectory or db2.jcc.override.traceDirectory
Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver
code, and specifies a directory into which trace information is written. These
properties do not apply to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS. When db2.jcc.override.traceDirectory is
specified, trace information for multiple connections on the same DataSource is
written to multiple files.

When db2.jcc.override.traceDirectory is specified, a connection is traced to a
file named file-name_origin_n.
v n is the nth connection for a DataSource.

314 Application Programming Guide and Reference for Java

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|

v If neither db2.jcc.traceFileName nor db2.jcc.override.traceFileName is
specified, file-name is traceFile. If db2.jcc.traceFileName or
db2.jcc.override.traceFileName is also specified, file-name is the value of
db2.jcc.traceFileName or db2.jcc.override.traceFileName.

v origin indicates the origin of the log writer that is in use. Possible values of
origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

The db2.jcc.override.traceDirectory property overrides the traceDirectory
property for a Connection or DataSource object.

For example, specifying the following setting for db2.jcc.override.traceDirectory
enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to
files in a directory named /SYSTEM/tmp:
db2.jcc.override.traceDirectory=/SYSTEM/tmp

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceLevel or db2.jcc.override.traceLevel
Specifies what to trace.

The db2.jcc.override.traceLevel property overrides the traceLevel property for
a Connection or DataSource object.

You specify one or more trace levels by specifying a decimal value. The trace
levels are the same as the trace levels that are defined for the traceLevel
property on a Connection or DataSource object.

To specify more than one trace level, do an OR (|) operation on the values,
and specify the result in decimal in the db2.jcc.traceLevel or
db2.jcc.override.traceLevel specification.

For example, suppose that you want to specify TRACE_DRDA_FLOWS and
TRACE_CONNECTIONS for db2.jcc.override.traceLevel.
TRACE_DRDA_FLOWS has a hexadecimal value of X'40'.
TRACE_CONNECTION_CALLS has a hexadecimal value of X'01'. To specify
both traces, do a bitwise OR operation on the two values, which results in
X'41'. The decimal equivalent is 65, so you specify:
db2.jcc.override.traceLevel=65

db2.jcc.traceFile or db2.jcc.override.traceFile
Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver
code, and specifies the name on which the trace file names are based.The
db2.jcc.traceFile property does not apply to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS.

Specify a fully qualified z/OS UNIX System Services file name for the
db2.jcc.override.traceFile property value.

The db2.jcc.override.traceFile property overrides the traceFile property for a
Connection or DataSource object.

Chapter 7. JDBC and SQLJ reference information 315

For example, specifying the following setting for db2.jcc.override.traceFile
enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to
a file named /SYSTEM/tmp/jdbctrace:
db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceFileAppend or db2.jcc.override.traceFileAppend
Specifies whether to append to or overwrite the file that is specified by the
db2.jcc.override.traceFile property. These properties do not apply to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS. Valid
values are true or false. The default is false, which means that the file that is
specified by the traceFile property is overwritten.

The db2.jcc.override.traceFileAppend property overrides the traceFileAppend
property for a Connection or DataSource object.

For example, specifying the following setting for
db2.jcc.override.traceFileAppend causes trace data to be added to the existing
trace file:
db2.jcc.override.traceFileAppend=true

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceFileCount
Specifies the maximum number of trace files for circular tracing. The IBM Data
Server Driver for JDBC and SQLJ uses this property only when
db2.jcc.traceOption is set to 1. The default value is 2.

This property does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceFileSize
Specifies the maximum size of each trace file, for circular tracing. The IBM
Data Server Driver for JDBC and SQLJ uses this property only when
db2.jcc.traceOption is set to 1. The default value is 10485760 (10 MB).

This property does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceOption
Specifies the way in which trace data is collected. The data type of this
property is int. Possible values are:

0 Specifies that a single trace file is generated, and that there is no limit
to the size of the file. This is the default.

1 Specifies that the IBM Data Server Driver for JDBC and SQLJ does
circular tracing. Circular tracing is done as follows:
1. When an application writes its first trace record, the driver creates a

file.
2. The driver writes trace data to the file.
3. When the size of the file is equal to the value of property

db2.jcc.traceFileSize, the driver creates another file.

316 Application Programming Guide and Reference for Java

4. The driver repeats steps 2 and 3 until the number of files to which
data has been written is equal to the value of property
db2.jcc.traceFileCount.

5. The driver writes data to the first trace file, overwriting the existing
data.

6. The driver repeats steps 3 through 5 until the application
completes.

The file names for the trace files are the file names that are determined
by the db2.jcc.traceFile, db2.jcc.override.traceFile, db2.jcc.traceDirectory,
db2.jcc.override.traceDirectory property, appended with .1 for the first
file, .2 for the second file, and so on.

This property does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.tracePolling
Indicates whether the IBM Data Server Driver for JDBC and SQLJ polls the
global configuration file for changes in trace directives and modifies the trace
behavior to match the new trace directives. Possible values are true or false.
False is the default.

The IBM Data Server Driver for JDBC and SQLJ modifies the trace behavior at
the beginning of the next polling interval after the configuration properties file
is changed. If db2.jcc.tracePolling is set to true while an application is running,
the trace is enabled, and information about all the PreparedStatement objects
that were created by the application before the trace was enabled are dumped
to the trace destination.

db2.jcc.tracePolling polls the following global configuration properties:
v db2.jcc.override.traceLevel
v db2.jcc.override.traceFile
v db2.jcc.override.traceDirectory
v db2.jcc.override.traceFileAppend
v db2.jcc.t2zosTraceFile
v db2.jcc.t2zosTraceBufferSize
v db2.jcc.t2zosTraceWrap

db2.jcc.tracePollingInterval
Specifies the interval, in seconds, for polling the IBM Data Server Driver for
JDBC and SQLJ global configuration file for changes in trace directives. The
property value is a positive integer. The default is 60. For the specified trace
polling interval to be used, the db2.jcc.tracePollingInterval property must be
set before the driver is loaded and initialized. Changes to
db2.jcc.tracePollingInterval after the driver is loaded and initialized have no
effect.

db2.jcc.t2zosTraceFile
Enables the IBM Data Server Driver for JDBC and SQLJ trace for C/C++ native
driver code for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,
and specifies the name on which the trace file names are based. This property
is required for collecting trace data for C/C++ native driver code.

Specify a fully qualified z/OS UNIX System Services file name for the
db2.jcct.t2zosTraceFile property value.

Chapter 7. JDBC and SQLJ reference information 317

For example, specifying the following setting for db2.jcct.t2zosTraceFile enables
tracing of the IBM Data Server Driver for JDBC and SQLJ C/C++ native code
to a file named /SYSTEM/tmp/jdbctraceNative:
db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

You should set the trace properties under the direction of IBM Software
Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceBufferSize
Specifies the size, in kilobytes, of a trace buffer in virtual storage that is used
for tracing the processing that is done by the C/C++ native driver code. This
value is also the maximum amount of C/C++ native driver trace information
that can be collected.

Specify an integer between 64 (64 KB) and 4096 (4096 KB). The default is 256
(256 KB).

The JDBC driver determines the trace buffer size as shown in the following
table:

Specified value (n) Trace buffer size (KB)

<64 64

64<=n<128 64

128<=n<256 128

256<=n<512 256

512<=n<1024 512

1024<=n<2048 1024

2048<=n<4096 2048

n>=4096 4096

db2.jcc.t2zosTraceBufferSize is used only if the db2.jcc.t2zosTraceFile property
is set.

Recommendation: To avoid a performance impact, specify a value of 1024 or
less.

For example, to set a trace buffer size of 1024 KB, use this setting:
db2.jcc.t2zosTraceBufferSize=1024

You should set the trace properties under the direction of IBM Software
Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceWrap
Enables or disables wrapping of the SQLJ trace. db2.jcc.t2zosTraceWrap can
have one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:
DB2SQLJ_TRACE_WRAP=0

318 Application Programming Guide and Reference for Java

You should set db2.jcc.t2zosTraceWrap only under the direction of IBM
Software Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.useCcsid420ShapedConverter
Specifies whether Arabic character data that is in EBCDIC CCSID 420 maps to
Cp420S encoding.

db2.jcc.useCcsid420ShapedConverter applies only to connections to DB2 for
z/OS database servers.

If the value of db2.jcc.useCcsid420ShapedConverter is true, CCSID 420 maps
to Cp420S encoding. If the value of db2.jcc.useCcsid420ShapedConverter is
false, CCSID 420 maps to Cp420 encoding. false is the default.

This configuration property applies only to DB2 for z/OS.
Related concepts:
“Customization of IBM Data Server Driver for JDBC and SQLJ configuration
properties” on page 518

Driver support for JDBC APIs
The JDBC drivers that are supported by DB2 and IBM Informix database systems
have different levels of support for JDBC methods.

The following tables list the JDBC interfaces and indicate which drivers supports
them. The drivers and their supported platforms are:

Table 42. JDBC drivers for DB2 and IBM Informix database systems

JDBC driver name Associated data source

IBM Data Server Driver for JDBC and SQLJ DB2 for Linux, UNIX, and Windows, DB2 for
z/OS, or IBM Informix

IBM Informix JDBC Driver (IBM Informix
JDBC Driver)

IBM Informix

If a method has JDBC 2.0 and JDBC 3.0 forms, the IBM Data Server Driver for
JDBC and SQLJ supports all forms. The DB2 JDBC Type 2 Driver for Linux, UNIX
and Windows supports only the JDBC 2.0 forms.

Table 43. Support for java.sql.Array methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ1 support

IBM Informix JDBC Driver
support

free2 Yes No

getArray Yes Yes

getBaseType Yes Yes

getBaseTypeName Yes Yes

getResultSet Yes Yes

Notes:

1. Under the IBM Data Server Driver for JDBC and SQLJ, Array methods are supported for connections to DB2 for
Linux, UNIX, and Windows data sources only.

2. This is a JDBC 4.0 method.

Chapter 7. JDBC and SQLJ reference information 319

Table 44. Support for java.sql.BatchUpdateException methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes Yes

getUpdateCounts Yes Yes

Table 45. Support for java.sql.Blob methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

free1 Yes No

getBinaryStream Yes2 Yes

getBytes Yes Yes

length Yes Yes

position Yes Yes

setBinaryStream3 Yes No

setBytes3 Yes No

truncate3 Yes No

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getBinaryStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used
if a Blob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Blob in
the stored procedure.

Table 46. Support for java.sql.CallableStatement methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.sql.Statement Yes Yes

Methods inherited from
java.sql.PreparedStatement

Yes1 Yes

getArray No No

getBigDecimal Yes3 Yes

getBlob Yes3 Yes

getBoolean Yes3 Yes

getByte Yes3 Yes

getBytes Yes3 Yes

getClob Yes3 Yes

getDate Yes3,5 Yes

getDouble Yes3 Yes

getFloat Yes3 Yes

getInt Yes3 Yes

getLong Yes3 Yes

getObject Yes3,4,6 Yes

getRef No No

320 Application Programming Guide and Reference for Java

Table 46. Support for java.sql.CallableStatement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getRowId2 Yes No

getShort Yes3 Yes

getString Yes3 Yes

getTime Yes3,5 Yes

getTimestamp Yes3,5 Yes

getURL Yes No

registerOutParameter Yes7 Yes7

setAsciiStream Yes8 Yes

setBigDecimal Yes8 Yes

setBinaryStream Yes8 Yes

setBoolean Yes8 Yes

setByte Yes8 Yes

setBytes Yes8 Yes

setCharacterStream Yes8 Yes

setDate Yes8 Yes

setDouble Yes8 Yes

setFloat Yes8 Yes

setInt Yes8 Yes

setLong Yes8 Yes

setNull Yes8,,9 Yes

setObject Yes8, Yes

setShort Yes8 Yes

setString Yes8 Yes

setTime Yes8 Yes

setTimestamp Yes8 Yes

setURL Yes No

wasNull Yes Yes

Chapter 7. JDBC and SQLJ reference information 321

Table 46. Support for java.sql.CallableStatement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Notes:

1. The inherited getParameterMetaData method is not supported if the data source is DB2 for z/OS.

2. This is a JDBC 4.0 method.

3. The following forms of CallableStatement.getXXX methods are not supported if the data source is DB2 for z/OS:

getXXX(String parameterName)

4. The following JDBC 4.1 method is supported:

getObject(int parameterIndex, java.lang.Class<T> type)
getObject(java.lang.String parameterName, java.lang.Class<T> type)

5. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or
getTimestamp method that includes a java.util.Calendar parameter.

6. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

7. The following form of the registerOutParameter method is not supported:

registerOutParameter(int parameterIndex, int jdbcType, String typeName)

8. The following forms of CallableStatement.setXXX methods are not supported if the data source is DB2 for z/OS:

setXXX(String parameterName,...)

9. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

Table 47. Support for java.sql.Clob methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

free1 Yes No

getAsciiStream Yes Yes

getCharacterStream Yes2 Yes

getSubString Yes Yes

length Yes Yes

position Yes Yes

setAsciiStream
3

Yes Yes

setCharacterStream3 Yes Yes

setString3 Yes Yes

truncate3 Yes Yes

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getCharacterStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used
if a Clob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Clob in
the stored procedure.

322 Application Programming Guide and Reference for Java

Table 48. Support for javax.sql.CommonDataSource methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getLoginTimeout Yes Yes

getLogWriter Yes Yes

getParentLogger1 Yes No

setLoginTimeout Yes Yes

setLogWriter Yes Yes

Notes:

1. This is a JDBC 4.1 method.

Table 49. Support for java.sql.Connection methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

abort1 Yes No

clearWarnings Yes Yes

close Yes Yes

commit Yes Yes

createBlob2 Yes No

createClob2 Yes No

createStatement Yes Yes

getAutoCommit Yes Yes

getCatalog Yes Yes

getClientInfo2 Yes No

getHoldability Yes No

getMetaData Yes Yes

getNetworkTimeout1 Yes No

getSchema1 Yes No

getTransactionIsolation Yes Yes

getTypeMap No Yes

getWarnings Yes Yes

isClosed Yes Yes

isReadOnly Yes Yes

isValid2,3 Yes No

nativeSQL Yes Yes

prepareCall Yes4 Yes

prepareStatement Yes Yes

releaseSavepoint Yes No

rollback Yes Yes

setAutoCommit Yes Yes

setCatalog Yes No

setClientInfo2 Yes No

setNetworkTimeout1 Yes No

Chapter 7. JDBC and SQLJ reference information 323

Table 49. Support for java.sql.Connection methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

setReadOnly Yes5 No

setSavepoint Yes No

setSchema1 Yes No

setTransactionIsolation Yes Yes

setTypeMap No Yes

Notes:

1. This is a JDBC 4.1 method.

2. This is a JDBC 4.0 method.

3. Under IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, an SQLException is thrown if the timeout
parameter value is less than 0. Under IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, an
SQLException is thrown if the if the timeout parameter value is not 0.

4. If the stored procedure in the CALL statement is on DB2 for z/OS, the parameters of the CALL statement cannot
be expressions.

5. The driver does not use the setting. For the IBM Data Server Driver for JDBC and SQLJ, a connection can be set
as read-only through the readOnly property for a Connection or DataSource object.

Table 50. Support for javax.sql.ConnectionEvent methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.util.EventObject Yes Yes

getSQLException Yes Yes

Table 51. Support for javax.sql.ConnectionEventListener methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

connectionClosed Yes Yes

connectionErrorOccurred Yes Yes

Table 52. Support for javax.sql.ConnectionPoolDataSource methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getLoginTimeout Yes Yes

getLogWriter Yes Yes

getPooledConnection Yes Yes

setLoginTimeout Yes1 Yes

setLogWriter Yes Yes

Note:

1. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

324 Application Programming Guide and Reference for Java

Table 53. Support for java.sql.DatabaseMetaData methods

JDBC method

IBM Data Server
Driver for JDBC
and SQLJ
support

IBM Informix
JDBC Driver
support

allProceduresAreCallable Yes Yes

allTablesAreSelectable Yes1 Yes1

dataDefinitionCausesTransactionCommit Yes Yes

dataDefinitionIgnoredInTransactions Yes Yes

deletesAreDetected Yes Yes

doesMaxRowSizeIncludeBlobs Yes Yes

generatedKeyAlwaysReturned2 Yes No

getAttributes Yes3 No

getBestRowIdentifier Yes Yes

getCatalogs Yes Yes

getCatalogSeparator Yes Yes

getCatalogTerm Yes Yes

getClientInfoProperties7 Yes No

getColumnPrivileges Yes Yes

getColumns Yes8 Yes11

getConnection Yes Yes

getCrossReference Yes Yes

getDatabaseMajorVersion Yes No

getDatabaseMinorVersion Yes No

getDatabaseProductName Yes Yes

getDatabaseProductVersion Yes Yes

getDefaultTransactionIsolation Yes Yes

getDriverMajorVersion Yes Yes

getDriverMinorVersion Yes Yes

getDriverName Yes9 Yes

getDriverVersion Yes Yes

getExportedKeys Yes Yes

getFunctionColumns7 Yes No

getFunctions7 Yes No

getExtraNameCharacters Yes Yes

getIdentifierQuoteString Yes Yes

getImportedKeys Yes Yes

getIndexInfo Yes Yes

getJDBCMajorVersion Yes No

getJDBCMinorVersion Yes No

getMaxBinaryLiteralLength Yes Yes

getMaxCatalogNameLength Yes Yes

getMaxCharLiteralLength Yes Yes

Chapter 7. JDBC and SQLJ reference information 325

Table 53. Support for java.sql.DatabaseMetaData methods (continued)

JDBC method

IBM Data Server
Driver for JDBC
and SQLJ
support

IBM Informix
JDBC Driver
support

getMaxColumnNameLength Yes Yes

getMaxColumnsInGroupBy Yes Yes

getMaxColumnsInIndex Yes Yes

getMaxColumnsInOrderBy Yes Yes

getMaxColumnsInSelect Yes Yes

getMaxColumnsInTable Yes Yes

getMaxConnections Yes Yes

getMaxCursorNameLength Yes Yes

getMaxIndexLength Yes Yes

getMaxProcedureNameLength Yes Yes

getMaxRowSize Yes Yes

getMaxSchemaNameLength Yes Yes

getMaxStatementLength Yes Yes

getMaxStatements Yes Yes

getMaxTableNameLength Yes Yes

getMaxTablesInSelect Yes Yes

getMaxUserNameLength Yes Yes

getNumericFunctions Yes Yes

getPrimaryKeys Yes Yes

getProcedureColumns Yes8 on page 329 Yes

getProcedures Yes8 on page 329 Yes

getProcedureTerm Yes Yes

getPseudoColumns2 Yes No

getResultSetHoldability Yes No

getRowIdLifetime7 Yes No

getSchemas Yes10 on page 329 Yes11

getSchemaTerm Yes Yes

getSearchStringEscape Yes Yes

getSQLKeywords Yes Yes

getSQLStateType Yes No

getStringFunctions Yes Yes

getSuperTables Yes3 No

getSuperTypes Yes3 No

getSystemFunctions Yes Yes

getTablePrivileges Yes Yes

getTables Yes Yes11

getTableTypes Yes Yes

getTimeDateFunctions Yes Yes

326 Application Programming Guide and Reference for Java

Table 53. Support for java.sql.DatabaseMetaData methods (continued)

JDBC method

IBM Data Server
Driver for JDBC
and SQLJ
support

IBM Informix
JDBC Driver
support

getTypeInfo Yes Yes

getUDTs No Yes12

getURL Yes Yes

getUserName Yes Yes

getVersionColumns Yes Yes

insertsAreDetected Yes Yes

isCatalogAtStart Yes Yes

isReadOnly Yes Yes

locatorsUpdateCopy Yes4 Yes4

nullPlusNonNullIsNull Yes Yes

nullsAreSortedAtEnd Yes5 Yes5

nullsAreSortedAtStart Yes Yes

nullsAreSortedHigh Yes6 Yes6

nullsAreSortedLow Yes1 Yes1

othersDeletesAreVisible Yes Yes

othersInsertsAreVisible Yes Yes

othersUpdatesAreVisible Yes Yes

ownDeletesAreVisible Yes Yes

ownInsertsAreVisible Yes Yes

ownUpdatesAreVisible Yes Yes

storesLowerCaseIdentifiers Yes1 Yes1

storesLowerCaseQuotedIdentifiers Yes5 Yes5

storesMixedCaseIdentifiers Yes Yes

storesMixedCaseQuotedIdentifiers Yes Yes

storesUpperCaseIdentifiers Yes6 Yes6

storesUpperCaseQuotedIdentifiers Yes Yes

supportsAlterTableWithAddColumn Yes Yes

supportsAlterTableWithDropColumn Yes1 Yes1

supportsANSI92EntryLevelSQL Yes Yes

supportsANSI92FullSQL Yes Yes

supportsANSI92IntermediateSQL Yes Yes

supportsBatchUpdates Yes Yes

supportsCatalogsInDataManipulation Yes1 Yes1

supportsCatalogsInIndexDefinitions Yes Yes

supportsCatalogsInPrivilegeDefinitions Yes Yes

supportsCatalogsInProcedureCalls Yes1 Yes1

supportsCatalogsInTableDefinitions Yes Yes

SupportsColumnAliasing Yes Yes

Chapter 7. JDBC and SQLJ reference information 327

Table 53. Support for java.sql.DatabaseMetaData methods (continued)

JDBC method

IBM Data Server
Driver for JDBC
and SQLJ
support

IBM Informix
JDBC Driver
support

supportsConvert Yes Yes

supportsCoreSQLGrammar Yes Yes

supportsCorrelatedSubqueries Yes Yes

supportsDataDefinitionAndDataManipulationTransactions Yes Yes

supportsDataManipulationTransactionsOnly Yes Yes

supportsDifferentTableCorrelationNames Yes5 Yes5

supportsExpressionsInOrderBy Yes Yes

supportsExtendedSQLGrammar Yes Yes

supportsFullOuterJoins Yes4 Yes4

supportsGetGeneratedKeys Yes No

supportsGroupBy Yes Yes

supportsGroupByBeyondSelect Yes Yes

supportsGroupByUnrelated Yes Yes

supportsIntegrityEnhancementFacility Yes Yes

supportsLikeEscapeClause Yes Yes

supportsLimitedOuterJoins Yes Yes

supportsMinimumSQLGrammar Yes Yes

supportsMixedCaseIdentifiers Yes Yes

supportsMixedCaseQuotedIdentifiers Yes4 Yes4

supportsMultipleOpenResults Yes6 Yes6

supportsMultipleResultSets Yes6 Yes6

supportsMultipleTransactions Yes Yes

supportsNamedParameters Yes No

supportsNonNullableColumns Yes Yes

supportsOpenCursorsAcrossCommit Yes4 Yes4

supportsOpenCursorsAcrossRollback Yes Yes

supportsOpenStatementsAcrossCommit Yes4 Yes4

supportsOpenStatementsAcrossRollback Yes4 Yes4

supportsOrderByUnrelated Yes Yes

supportsOuterJoins Yes Yes

supportsPositionedDelete Yes Yes

supportsPositionedUpdate Yes Yes

supportsResultSetConcurrency Yes Yes

supportsResultSetHoldability Yes No

supportsResultSetType Yes Yes

supportsSavepoints Yes Yes

supportsSchemasInDataManipulation Yes Yes

supportsSchemasInIndexDefinitions Yes Yes

328 Application Programming Guide and Reference for Java

Table 53. Support for java.sql.DatabaseMetaData methods (continued)

JDBC method

IBM Data Server
Driver for JDBC
and SQLJ
support

IBM Informix
JDBC Driver
support

supportsSchemasInPrivilegeDefinitions Yes Yes

supportsSchemasInProcedureCalls Yes Yes

supportsSchemasInTableDefinitions Yes Yes

supportsSelectForUpdate Yes Yes

supportsStoredProcedures Yes Yes

supportsSubqueriesInComparisons Yes Yes

supportsSubqueriesInExists Yes Yes

supportsSubqueriesInIns Yes Yes

supportsSubqueriesInQuantifieds Yes Yes

supportsSuperTables Yes No

supportsSuperTypes Yes No

supportsTableCorrelationNames Yes Yes

supportsTransactionIsolationLevel Yes Yes

supportsTransactions Yes Yes

supportsUnion Yes Yes

supportsUnionAll Yes Yes

updatesAreDetected Yes Yes

usesLocalFilePerTable Yes Yes

usesLocalFiles Yes Yes

Notes:

1. DB2 data sources return false for this method. IBM Informix data sources return true.

2. This is a JDBC 4.1 method.

3. This method is supported for connections to DB2 for Linux, UNIX, and Windows and IBM Informix only.

4. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IBM Informix data sources return
true for this method. Under the IBM Informix JDBC Driver, IBM Informix data sources return false.

5. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IBM Informix data sources return
false for this method. Under the IBM Informix JDBC Driver, IBM Informix data sources return true.

6. DB2 data sources return true for this method. IBM Informix data sources return false.

7. This is a JDBC 4.0 method.

8. This method returns the additional column that is described by the JDBC 4.0 specification.

9. JDBC 3.0 and earlier implementations of the IBM Data Server Driver for JDBC and SQLJ return "IBM DB2 JDBC
Universal Driver Architecture."

The JDBC 4.0 implementation of the IBM Data Server Driver for JDBC and SQLJ returns "IBM Data Server
Driver for JDBC and SQLJ."

10. The JDBC 4.0 form and previous forms of this method are supported.

11. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this method.

12. The method can be executed, but it returns an empty ResultSet.

Chapter 7. JDBC and SQLJ reference information 329

Table 54. Support for java.sql.DataSource methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getConnection Yes Yes

getLoginTimeout Yes Yes

getLogWriter Yes Yes

setLoginTimeout Yes1 Yes

setLogWriter Yes Yes

Notes:

1. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

Table 55. Support for java.sql.DataTruncation methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Throwable Yes Yes

Methods inherited from java.sql.SQLException Yes Yes

Methods inherited from java.sql.SQLWarning Yes Yes

getDataSize Yes Yes

getIndex Yes Yes

getParameter Yes Yes

getRead Yes Yes

getTransferSize Yes Yes

Table 56. Support for java.sql.Driver methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

acceptsURL Yes Yes

connect Yes Yes

getMajorVersion Yes Yes

getMinorVersion Yes Yes

getParentLogger Yes No

getPropertyInfo Yes Yes

jdbcCompliant Yes Yes

Table 57. Support for java.sql.DriverManager methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

deregisterDriver Yes Yes

getConnection Yes Yes

getDriver Yes Yes

getDrivers Yes Yes

getLoginTimeout Yes Yes

getLogStream Yes Yes

330 Application Programming Guide and Reference for Java

Table 57. Support for java.sql.DriverManager methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getLogWriter Yes Yes

println Yes Yes

registerDriver Yes Yes

setLoginTimeout Yes1 Yes

setLogStream Yes Yes

setLogWriter Yes Yes

Notes:

1. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

Table 58. Support for java.sql.ParameterMetaData methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getParameterClassName No No

getParameterCount Yes No

getParameterMode Yes No

getParameterType Yes No

getParameterTypeName Yes No

getPrecision Yes No

getScale Yes No

isNullable Yes No

isSigned Yes No

Table 59. Support for javax.sql.PooledConnection methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

addConnectionEventListener Yes Yes

addStatementEventListener1 Yes No

close Yes Yes

getConnection Yes Yes

removeConnectionEventListener Yes Yes

removeStatementEventListener1 Yes No

Notes:

1. This is a JDBC 4.0 method.

Table 60. Support for java.sql.PreparedStatement methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.sql.Statement Yes Yes

addBatch Yes Yes

clearParameters Yes Yes

Chapter 7. JDBC and SQLJ reference information 331

Table 60. Support for java.sql.PreparedStatement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

execute Yes Yes

executeQuery Yes Yes

executeUpdate Yes Yes

getMetaData Yes Yes

getParameterMetaData Yes Yes

setArray No No

setAsciiStream Yes1,2 Yes

setBigDecimal Yes Yes

setBinaryStream Yes1,3 Yes

setBlob Yes4 Yes

setBoolean Yes Yes

setByte Yes Yes

setBytes Yes Yes

setCharacterStream Yes1,5 Yes

setClob Yes6 Yes

setDate Yes8 Yes8

setDouble Yes Yes

setFloat Yes Yes

setInt Yes Yes

setLong Yes Yes

setNull Yes9 Yes9

setObject Yes Yes

setRef No No

setRowId7 Yes No

setShort Yes Yes

setString Yes10 Yes10

setTime Yes8 Yes8

setTimestamp Yes8 Yes8

setUnicodeStream Yes Yes

setURL Yes Yes

332 Application Programming Guide and Reference for Java

Table 60. Support for java.sql.PreparedStatement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Notes:

1. If the value of the length parameter is -1, all of the data from the InputStream or Reader is read and sent to the
data source.

2. Supported forms of this method include the following JDBC 4.0 forms:

setAsciiStream(int parameterIndex, InputStream x, long length)
setAsciiStream(int parameterIndex, InputStream x)

3. Supported forms of this method include the following JDBC 4.0 forms:

setBinaryStream(int parameterIndex, InputStream x, long length)
setBinaryStream(int parameterIndex, InputStream x)

4. Supported forms of this method include the following JDBC 4.0 form:

setBlob(int parameterIndex, InputStream inputStream, long length)

5. Supported forms of this method include the following JDBC 4.0 forms:

setCharacterStream(int parameterIndex, Reader reader, long length)
setCharacterStream(int parameterIndex, Reader reader)

6. Supported forms of this method include the following JDBC 4.0 form:

setClob(int parameterIndex, Reader reader, long length)

7. This is a JDBC 4.0 method.

8. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone before sending the value to the server if you specify a form of the setDate, setTime, or
setTimestamp method that includes a java.util.Calendar parameter.

9. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

10. setString is not supported if the column has the FOR BIT DATA attribute or the data type is BLOB.

Table 61. Support for java.sql.Ref methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

get BaseTypeName No No

Table 62. Support for java.sql.ResultSet methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

absolute Yes Yes

afterLast Yes Yes

beforeFirst Yes Yes

cancelRowUpdates Yes No

clearWarnings Yes Yes

close Yes Yes

deleteRow Yes No

findColumn Yes Yes

first Yes Yes

getArray No No

getAsciiStream Yes Yes

getBigDecimal Yes Yes

Chapter 7. JDBC and SQLJ reference information 333

Table 62. Support for java.sql.ResultSet methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getBinaryStream Yes1 Yes

getBlob Yes Yes

getBoolean Yes Yes

getByte Yes Yes

getBytes Yes Yes

getCharacterStream Yes Yes

getClob Yes Yes

getConcurrency Yes Yes

getCursorName Yes Yes

getDate Yes3 Yes3

getDouble Yes Yes

getFetchDirection Yes Yes

getFetchSize Yes Yes

getFloat Yes Yes

getInt Yes Yes

getLong Yes Yes

getMetaData Yes Yes

getObject Yes4 Yes4

getRef No No

getRow Yes Yes

getRowId10 Yes No

getShort Yes Yes

getStatement Yes Yes

getString Yes Yes

getTime Yes3 Yes3

getTimestamp Yes3 Yes3

getType Yes Yes

getUnicodeStream Yes Yes

getURL Yes Yes

getWarnings Yes Yes

insertRow Yes No

isAfterLast Yes Yes

isBeforeFirst Yes Yes

isFirst Yes Yes

isLast Yes Yes

last Yes Yes

moveToCurrentRow Yes No

moveToInsertRow Yes No

next Yes Yes

334 Application Programming Guide and Reference for Java

Table 62. Support for java.sql.ResultSet methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

previous Yes Yes

refreshRow Yes No

relative Yes Yes

rowDeleted Yes No

rowInserted Yes No

rowUpdated Yes No

setFetchDirection Yes Yes

setFetchSize Yes Yes

updateArray No No

updateAsciiStream Yes5 No

updateBigDecimal Yes No

updateBinaryStream Yes6 No

updateBlob Yes7 No

updateBoolean Yes No

updateByte Yes No

updateBytes Yes No

updateCharacterStream Yes8 No

updateClob Yes9 No

updateDate Yes No

updateDouble Yes No

updateFloat Yes No

updateInt Yes No

updateLong Yes No

updateNull Yes No

updateObject Yes No

updateRef No No

updateRow Yes No

updateRowId10 Yes No

updateShort Yes No

updateString Yes No

updateTime Yes No

updateTimestamp Yes No

wasNull Yes Yes

Chapter 7. JDBC and SQLJ reference information 335

Table 62. Support for java.sql.ResultSet methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Notes:

1. getBinaryStream is not supported for CLOB columns.

2. getMetaData pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

3. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or
getTimestamp method that includes a java.util.Calendar parameter.

4. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

5. Supported forms of this method include the following JDBC 4.0 forms:

updateAsciiStream(int columnIndex, InputStream x)
updateAsciiStream(String columnLabel, InputStream x)
updateAsciiStream(int columnIndex, InputStream x, long length)
updateAsciiStream(String columnLabel, InputStream x, long length)

6. Supported forms of this method include the following JDBC 4.0 forms:

updateBinaryStream(int columnIndex, InputStream x)
updateBinaryStream(String columnLabel, InputStream x)
updateBinaryStream(int columnIndex, InputStream x, long length)
updateBinaryStream(String columnLabel, InputStream x, long length)

7. Supported forms of this method include the following JDBC 4.0 forms:

updateBlob(int columnIndex, InputStream x)
updateBlob(String columnLabel, InputStream x)
updateBlob(int columnIndex, InputStream x, long length)
updateBlob(String columnLabel, InputStream x, long length)

8. Supported forms of this method include the following JDBC 4.0 forms:

updateCharacterStream(int columnIndex, Reader reader)
updateCharacterStream(String columnLabel, Reader reader)
updateCharacterStream(int columnIndex, Reader reader, long length)
updateCharacterStream(String columnLabel, Reader reader, long length)

9. Supported forms of this method include the following JDBC 4.0 forms:

updateClob(int columnIndex, Reader reader)
updateClob(String columnLabel, Reader reader)
updateClob(int columnIndex, Reader reader, long length)
updateClob(String columnLabel, Reader reader, long length)

10. This is a JDBC 4.0 method.

Table 63. Support for java.sql.ResultSetMetaData methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getCatalogName Yes Yes

getColumnClassName No Yes

getColumnCount Yes Yes

getColumnDisplaySize Yes Yes

getColumnLabel Yes Yes

getColumnName Yes Yes

getColumnType Yes Yes

getColumnTypeName Yes Yes

getPrecision Yes Yes

getScale Yes Yes

336 Application Programming Guide and Reference for Java

Table 63. Support for java.sql.ResultSetMetaData methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getSchemaName Yes Yes

getTableName Yes1 Yes

isAutoIncrement Yes Yes

isCaseSensitive Yes Yes

isCurrency Yes Yes

isDefinitelyWritable Yes Yes

isNullable Yes Yes

isReadOnly Yes Yes

isSearchable Yes Yes

isSigned Yes Yes

isWritable Yes Yes

Notes:

1. For IBM Informix data sources, getTableName does not return a value.

2. getSchemaName pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

Table 64. Support for java.sql.RowId methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support2

IBM Informix JDBC Driver
support

equals Yes No

getBytes Yes No

hashCode No No

toString Yes No

Notes:

1. These methods are JDBC 4.0 methods.

2. These methods are supported for connections to DB2 for z/OS, DB2 for i, and IBM Informix data sources.

Table 65. Support for java.sql.SQLClientInfoException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

getFailedProperties Yes No

Note:

1. This is a JDBC 4.0 class.

Table 66. Support for java.sql.SQLData methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getSQLTypeName No No

readSQL No No

Chapter 7. JDBC and SQLJ reference information 337

Table 66. Support for java.sql.SQLData methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

writeSQL No No

Table 67. Support for java.sql.SQLDataException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 68. Support for java.sql.SQLDataException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 69. Support for java.sql.SQLException methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes Yes

getSQLState Yes Yes

getErrorCode Yes Yes

getNextException Yes Yes

setNextException Yes Yes

Table 70. Support for java.sql.SQLFeatureNotSupported methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 71. Support for java.sql.SQLInput methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

readArray No No

338 Application Programming Guide and Reference for Java

Table 71. Support for java.sql.SQLInput methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

readAsciiStream No No

readBigDecimal No No

readBinaryStream No No

readBlob No No

readBoolean No No

readByte No No

readBytes No No

readCharacterStream No No

readClob No No

readDate No No

readDouble No No

readFloat No No

readInt No No

readLong No No

readObject No No

readRef No No

readShort No No

readString No No

readTime No No

readTimestamp No No

wasNull No No

Table 72. Support for java.sql.SQLIntegrityConstraintViolationException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 73. Support for java.sql.SQLInvalidAuthorizationSpecException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Chapter 7. JDBC and SQLJ reference information 339

Table 74. Support for java.sql.SQLNonTransientConnectionException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 75. Support for java.sql.SQLNonTransientException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 76. Support for java.sql.SQLOutput methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

writeArray No No

writeAsciiStream No No

writeBigDecimal No No

writeBinaryStream No No

writeBlob No No

writeBoolean No No

writeByte No No

writeBytes No No

writeCharacterStream No No

writeClob No No

writeDate No No

writeDouble No No

writeFloat No No

writeInt No No

writeLong No No

writeObject No No

writeRef No No

writeShort No No

writeString No No

writeStruct No No

writeTime No No

writeTimestamp No No

340 Application Programming Guide and Reference for Java

Table 77. Support for java.sql.SQLRecoverableException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 78. Support for java.sql.SQLSyntaxErrorException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 79. Support for java.sql.SQLTimeoutException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 80. Support for java.sql.SQLTransientConnectionException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 81. Support for java.sql.SQLTransientException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Chapter 7. JDBC and SQLJ reference information 341

Table 82. Support for java.sql.SQLTransientRollbackException methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Methods inherited from java.lang.Exception Yes No

Methods inherited from java.lang.Throwable Yes No

Methods inherited from java.lang.Object Yes No

Note:

1. This is a JDBC 4.0 class.

Table 83. Support for java.sql.SQLXML methods1

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

free Yes No

getBinaryStream Yes No

getCharacterStream Yes No

getSource Yes No

getString Yes No

setBinaryStream Yes No

setCharacterStream Yes No

setResult Yes No

setString Yes No

Notes:

1. These are JDBC 4.0 methods. These methods are not supported for connections to IBM Informix servers.

Table 84. Support for java.sql.Statement methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

abort1 Yes No

addBatch Yes Yes

cancel Yes2 Yes

clearBatch Yes Yes

clearWarnings Yes Yes

close Yes Yes

closeOnCompletion1 Yes No

execute Yes Yes

executeBatch Yes Yes

executeQuery Yes Yes

executeUpdate Yes Yes

getConnection Yes Yes

getFetchDirection Yes Yes

getFetchSize Yes Yes

getGeneratedKeys Yes No

getMaxFieldSize Yes Yes

342 Application Programming Guide and Reference for Java

Table 84. Support for java.sql.Statement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getMaxRows Yes Yes

getMoreResults Yes Yes

getQueryTimeout Yes7,5 Yes

getResultSet Yes Yes

getResultSetConcurrency Yes Yes

getResultSetHoldability Yes No

getResultSetType Yes Yes

getUpdateCount3 Yes Yes

getWarnings Yes Yes

isCloseOnCompletion1 Yes No

isClosed8 Yes No

isPoolable8 Yes No

setCursorName Yes Yes

setEscapeProcessing Yes Yes

setFetchDirection Yes Yes

setFetchSize Yes Yes

setMaxFieldSize Yes Yes

setMaxRows Yes Yes

setPoolable8 Yes No

setQueryTimeout Yes4,5,6,7 Yes

Chapter 7. JDBC and SQLJ reference information 343

Table 84. Support for java.sql.Statement methods (continued)

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

Notes:

1. This is a JDBC 4.1 method.

2. For the IBM Data Server Driver for JDBC and SQLJ, Statement.cancel is supported only in the following
environments:

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 for Linux, UNIX, and
Windows server, Version 8 or later

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 for z/OS server, Version 9 or
later

v Type 4 connectivity from a z/OS client to a DB2 for Linux, UNIX, and Windows server, Version 8 or later

v Type 4 connectivity from a z/OS client to a DB2 for z/OS server, Version 8 or later

The action that the IBM Data Server Driver for JDBC and SQLJ takes when the application executes
Statement.cancel is also dependent on the setting of the DB2BaseDataSource.interruptProcessingMode property.

3. Not supported for stored procedure ResultSets.

4. For DB2 for i, this method is supported only for a seconds value of 0.

5. For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS, Statement.setQueryTimeout
is supported only if Connection or DataSource property queryTimeoutInterruptProcessingMode is set to
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET.

6. For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for Linux, UNIX, and Windows,
Statement.setQueryTimeout is supported only if Connection or DataSource property
queryTimeoutInterruptProcessingMode is set to INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL.

7. For the IBM Data Server Driver for JDBC and SQLJ Version 4.0 and later, Statement.setQueryTimeout is
supported for the following methods:
v Statement.execute
v Statement.executeUpdate
v Statement.executeQuery

Statement.setQueryTimeout is supported for the Statement.executeBatch method only when property
queryTimeoutInterruptProcessingMode is set to INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2).

8. This is a JDBC 4.0 method.

Table 85. Support for java.sql.Struct methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getSQLTypeName No No

getAttributes No No

Table 86. Support for java.sql.Wrapper methods

JDBC method1
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

isWrapperFor Yes No

unWrap Yes No

Notes:

1. These are JDBC 4.0 methods.

344 Application Programming Guide and Reference for Java

|
|
|

Table 87. Support for javax.sql.XAConnection methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support1

IBM Informix JDBC Driver
support

Methods inherited from
javax.sql.PooledConnection

Yes Yes

getXAResource Yes Yes

Notes:

1. These methods are supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2 for
Linux, UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Table 88. Support for javax.sql.XADataSource methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

getLoginTimeout Yes Yes

getLogWriter Yes Yes

getXAConnection Yes Yes

setLoginTimeout Yes Yes

setLogWriter Yes Yes

Table 89. Support for javax.transaction.xa.XAResource methods

JDBC method
IBM Data Server Driver for
JDBC and SQLJ support

IBM Informix JDBC Driver
support

commit Yes1 Yes

end Yes1,2 Yes

forget Yes1 Yes

getTransactionTimeout Yes3 Yes

isSameRM Yes1 Yes

prepare Yes1 Yes

recover Yes1 Yes

rollback Yes1 Yes

setTransactionTimeout Yes3 Yes

start Yes1 Yes

Notes:

1. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2 for Linux,
UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

2. When the end method is called, the IBM Data Server Driver for JDBC and SQLJ closes the underlying cursor,
even if the TMSUSPEND flag is specified.

3. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for Linux,
UNIX, and Windows Version 9.1 or later.

IBM Data Server Driver for JDBC and SQLJ support for SQL escape
syntax

The IBM Data Server Driver for JDBC and SQLJ supports SQL escape syntax, as
described in the JDBC 1.0 specification.

Chapter 7. JDBC and SQLJ reference information 345

This is the same syntax that is used in vendor escape clauses in ODBC and CLI
applications.

SQL escape syntax is supported in JDBC and SQLJ applications.

SQLJ statement reference information
SQLJ statements are used for transaction control and SQL statement execution.

SQLJ clause
The SQL statements in an SQLJ program are in SQLJ clauses.

Syntax

�� #sql connection-declaration-clause
iterator-declaration-clause
executable-clause

; ��

Usage notes

Keywords in an SQLJ clause are case sensitive, unless those keywords are part of
an SQL statement in an executable clause.
Related reference:
“SQLJ iterator-declaration-clause” on page 351
“SQLJ executable-clause” on page 352
“SQLJ connection-declaration-clause” on page 350

SQLJ host-expression
A host expression is a Java variable or expression that is referenced by SQLJ
clauses in an SQLJ application program.

Syntax

�� : simple-variable
IN (complex-expression) INDICATOR
OUT : simple-variable
INOUT (complex-expression)

��

Description

: Indicates that the variable or expression that follows is a host expression. The
colon must immediately precede the variable or expression.

IN|OUT|INOUT
For a host expression that is used as a parameter in a stored procedure call,
identifies whether the parameter provides data to the stored procedure (IN),
retrieves data from the stored procedure (OUT), or does both (INOUT). The
default is IN.

simple-variable
Specifies a Java unqualified identifier.

complex-expression
Specifies a Java expression that results in a single value.

346 Application Programming Guide and Reference for Java

INDICATOR :simple-variable or INDICATOR :(complex-expression)
Specifies the optional indicator variable for the corresponding Java host
variable. The data type of the indicator variable must be the Java short type.
The only valid values for :simple-variable or :(complex-expression) are:

For customized applications, and for input, only these values are valid:

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-2, -3, -4, -6 Null

-5 sqlj.runtime.ExecutionContext.DBDefault Default

-7 sqlj.runtime.ExecutionContext.DBUnassigned Unassigned

short-value >=0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

For uncustomized applications, and for input, only these values are valid:

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-7 <= short-value < -1 Null

0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

short-value >0 Non-null

For customized or uncustomized applications, and for output, SQLJ sets one of
these values:

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Retrieved value is SQL NULL

0 Retrieved value is not SQL NULL

Usage notes
v A complex expression must be enclosed in parentheses.
v ANSI/ISO rules govern where a host expression can appear in a static SQL

statement.
v Indicator variables are required in the following cases:

– For input, when a Java primitive type is used to assign the NULL value to a
table column.

– For output, when a Java primitive type is used for a host variable, and the
source column can return NULL values.
If an SQL NULL value is returned, and no indicator variable is defined, an
SQLNullException is thrown.

Indicator variables are not required for input or output of a Java null value as an
SQL NULL, if the data type of the host variable is:
– The data type of a Java class
– A custom database type that the driver supports

v , ... variable-n

v For output, indicator variables are valid in the following types of statements:
– CALL statement with OUT or INOUT parameters
– FETCH positioned-iterator INTO variable-1, ... variable-n
– SELECT column-1, ... column-n INTO variable-1, ... variable-n

Chapter 7. JDBC and SQLJ reference information 347

Related concepts:
“Variables in SQLJ applications” on page 135

SQLJ implements-clause
The implements clause derives one or more classes from a Java interface.

Syntax

�� implements �

,

interface-element ��

interface-element:

�� sqlj.runtime.ForUpdate
sqlj.runtime.Scrollable
user-specified-interface-class

��

Description

interface-element
Specifies a user-defined Java interface, the SQLJ interface
sqlj.runtime.ForUpdate or the SQLJ interface sqlj.runtime.Scrollable.

You need to implement sqlj.runtime.ForUpdate when you declare an iterator
for a positioned UPDATE or positioned DELETE operation. See "Perform
positioned UPDATE and DELETE operations in an SQLJ application" for
information on performing a positioned UPDATE or positioned DELETE
operation in SQLJ.

You need to implement sqlj.runtime.Scrollable when you declare a
scrollable iterator. See "Use scrollable iterators in an SQLJ application" for
information on scrollable iterators.

Related tasks:
“Using scrollable iterators in an SQLJ application” on page 157
“Performing positioned UPDATE and DELETE operations in an SQLJ application”
on page 141

SQLJ with-clause
The with clause specifies a set of one or more attributes for an iterator or a
connection context.

Syntax

�� with �

,

(with-element) ��

with-element:

348 Application Programming Guide and Reference for Java

��

�

holdability=true
holdability=false
sensitivity=sqlj.runtime.ResultSetIterator.ASENSITIVE
sensitivity=sqlj.runtime.ResultSetIterator.INSENSITIVE
sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE

dynamic=false
, dynamic=true

,

updateColumns= " column-name "
Java-ID=Java-constant-expression
dataSource= " logical-datasource-name "

��

Description

holdability
For an iterator, specifies whether an iterator keeps its position in a table after a
COMMIT is executed. The value for holdability must be true or false.

sensitivity
For an iterator, specifies whether changes that are made to the underlying table
can be visible to the iterator after it is opened. The value must be
sqlj.runtime.ResultSetIterator.INSENSITIVE,
sqlj.runtime.ResultSetIterator.SENSITIVE, or
sqlj.runtime.ResultSetIterator.ASENSITIVE. The default is
sqlj.runtime.ResultSetIterator.ASENSITIVE.

For connections to IBM Informix, only
sqlj.runtime.ResultSetIterator.INSENSITIVE is supported.

dynamic
For an iterator that is defined with
sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE, specifies whether the
following cases are true:
v When the application executes positioned UPDATE and DELETE statements

with the iterator, those changes are visible to the iterator.
v When the application executes INSERT, UPDATE, and DELETE statements

within the application but outside the iterator, those changes are visible to
the iterator.

The value for dynamic must be true or false. The default is false.

DB2 for Linux, UNIX, and Windows servers do not support dynamic scrollable
cursors. Specify true only if your application accesses data on DB2 for z/OS
servers, at Version 9 or later.

For connections to IBM Informix, only false is supported. IBM Informix does
not support dynamic cursors.

updateColumns
For an iterator, specifies the columns that are to be modified when the iterator
is used for a positioned UPDATE statement. The value for updateColumns
must be a literal string that contains the column names, separated by commas.

column-name
For an iterator, specifies a column of the result table that is to be updated
using the iterator.

Java-ID
For an iterator or connection context, specifies a Java variable that identifies a

Chapter 7. JDBC and SQLJ reference information 349

user-defined attribute of the iterator or connection context. The value of
Java-constant-expression is also user-defined.

dataSource
For a connection context, specifies the logical name of a separately-created
DataSource object that represents the data source to which the application will
connect. This option is available only for the IBM Data Server Driver for JDBC
and SQLJ.

Usage notes
v The value on the left side of a with element must be unique within its with

clause.
v If you specify updateColumns in a with element of an iterator declaration

clause, the iterator declaration clause must also contain an implements clause
that specifies the sqlj.runtime.ForUpdate interface.

v If you do not customize your SQLJ program, the JDBC driver ignores the value
of holdability that is in the with clause. Instead, the driver uses the JDBC driver
setting for holdability.

Related concepts:
“SQLJ and JDBC in the same application” on page 166
Related tasks:
“Using scrollable iterators in an SQLJ application” on page 157
“Performing positioned UPDATE and DELETE operations in an SQLJ application”
on page 141
“Connecting to a data source using SQLJ” on page 127

SQLJ connection-declaration-clause
The connection declaration clause declares a connection to a data source in an
SQLJ application program.

Syntax

��
Java-modifiers

context Java-class-name
implements-clause with-clause

��

Description

Java-modifiers
Specifies modifiers that are valid for Java class declarations, such as static,
public, private, or protected.

Java-class-name
Specifies a valid Java identifier. During the program preparation process, SQLJ
generates a connection context class whose name is this identifier.

implements-clause
See "SQLJ implements-clause" for a description of this clause. In a connection
declaration clause, the interface class to which the implements clause refers
must be a user-defined interface class.

with-clause
See "SQLJ with-clause" for a description of this clause.

350 Application Programming Guide and Reference for Java

Usage notes
v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated
connection classes.

v You can specify a connection declaration clause anywhere that a Java class
definition can appear in a Java program.

Related tasks:
“Connecting to a data source using SQLJ” on page 127
Related reference:
“SQLJ with-clause” on page 348
“SQLJ implements-clause” on page 348

SQLJ iterator-declaration-clause
An iterator declaration clause declares a positioned iterator class or a named
iterator class in an SQLJ application program.

An iterator contains the result table from a query. SQLJ generates an iterator class
for each iterator declaration clause you specify. An iterator is an object of an
iterator class.

An iterator declaration clause has a form for a positioned iterator and a form for a
named iterator. The two kinds of iterators are distinct and incompatible Java types
that are implemented with different interfaces.

Syntax

��
Java-modifiers

iterator Java-class-name
implements-clause with-clause

�

� (positioned-iterator-column-declarations)
named-iterator-column-declarations

��

positioned-iterator-column declarations:

�� �

,

Java-data-type ��

named-iterator-column-declarations:

�� �

,

Java-data-type Java-ID ��

Description

Java-modifiers
Any modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Chapter 7. JDBC and SQLJ reference information 351

Java-class-name
Any valid Java identifier. During the program preparation process, SQLJ
generates an iterator class whose name is this identifier.

implements-clause
See "SQLJ implements-clause" for a description of this clause. For an iterator
declaration clause that declares an iterator for a positioned UPDATE or
positioned DELETE operation, the implements clause must specify interface
sqlj.runtime.ForUpdate. For an iterator declaration clause that declares a
scrollable iterator, the implements clause must specify interface
sqlj.runtime.Scrollable.

with-clause
See "SQLJ with-clause" for a description of this clause.

positioned-iterator-column-declarations
Specifies a list of Java data types, which are the data types of the columns in
the positioned iterator. The data types in the list must be separated by
commas. The order of the data types in the positioned iterator declaration is
the same as the order of the columns in the result table. For online checking
during serialized profile customization to succeed, the data types of the
columns in the iterator must be compatible with the data types of the columns
in the result table. See "Java, JDBC, and SQL data types" for a list of compatible
data types.

named-iterator-column-declarations
Specifies a list of Java data types and Java identifiers, which are the data types
and names of the columns in the named iterator. Pairs of data types and names
must be separated by commas. The name of a column in the iterator must
match, except for case, the name of a column in the result table. For online
checking during serialized profile customization to succeed, the data types of
the columns in the iterator must be compatible with the data types of the
columns in the result table. See "Java, JDBC, and SQL data types" for a list of
compatible data types.

Usage notes
v An iterator declaration clause can appear anywhere in a Java program that a

Java class declaration can appear.
v When a named iterator declaration contains more than one pair of Java data

types and Java IDs, all Java IDs within the list must be unique. Two Java IDs are
not unique if they differ only in case.

Related concepts:
“Data retrieval in SQLJ applications” on page 151
Related tasks:
“Using scrollable iterators in an SQLJ application” on page 157
“Using a positioned iterator in an SQLJ application” on page 153
“Using a named iterator in an SQLJ application” on page 151
Related reference:
“SQLJ with-clause” on page 348
“SQLJ implements-clause” on page 348

SQLJ executable-clause
An executable clause contains an SQL statement or an assignment statement. An
assignment statement assigns the result of an SQL operation to a Java variable.

352 Application Programming Guide and Reference for Java

This topic describes the general form of an executable clause.

Syntax

��
context-clause

statement-clause
assignment-clause

��

Usage notes
v An executable clause can appear anywhere in a Java program that a Java

statement can appear.
v SQLJ reports negative SQL codes from executable clauses through class

java.sql.SQLException.
If SQLJ raises a run-time exception during the execution of an executable clause,
the value of any host expression of type OUT or INOUT is undefined.

Related reference:
“SQLJ statement-clause” on page 354
“SQLJ context-clause”
“SQLJ assignment-clause” on page 357

SQLJ context-clause
A context clause specifies a connection context, an execution context, or both. You
use a connection context to connect to a data source. You use an execution context
to monitor and modify SQL statement execution.

Syntax

�� [connection-context]
execution-context
connection-context , execution context

��

Description

connection-context
Specifies a valid Java identifier that is declared earlier in the SQLJ program.
That identifier must be declared as an instance of the connection context class
that SQLJ generates for a connection declaration clause.

execution-context
Specifies a valid Java identifier that is declared earlier in the SQLJ program.
That identifier must be declared as an instance of class
sqlj.runtime.ExecutionContext.

Usage notes
v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.
v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

Chapter 7. JDBC and SQLJ reference information 353

Related tasks:
“Controlling the execution of SQL statements in SQLJ” on page 170
“Connecting to a data source using SQLJ” on page 127

SQLJ statement-clause
A statement clause contains an SQL statement or a SET TRANSACTION clause.

Syntax

�� { SQL-statement }
SET-TRANSACTION-clause

��

Description

SQL-statement
You can include SQL statements in Table 90 in a statement clause.

SET-TRANSACTION-clause
Sets the isolation level for SQL statements in the program and the access mode
for the connection. The SET TRANSACTION clause is equivalent to the SET
TRANSACTION statement, which is described in the ANSI/ISO SQL standard
of 1992 and is supported in some implementations of SQL.

Table 90. Valid SQL statements in an SQLJ statement clause

Statement Applicable data sources

ALTER DATABASE 1, 2

ALTER FUNCTION 1, 2, 3

ALTER INDEX 1, 2, 3

ALTER PROCEDURE 1, 2, 3

ALTER STOGROUP 1, 2

ALTER TABLE 1, 2, 3

ALTER TABLESPACE 1, 2

CALL 1, 2, 3

COMMENT ON 1, 2

COMMIT 1, 2, 3

Compound SQL (BEGIN ATOMIC...END) 2

CREATE ALIAS 1, 2

CREATE DATABASE 1, 2, 3a on page 356

CREATE DISTINCT TYPE 1, 2, 3

CREATE FUNCTION 1, 2, 3

CREATE GLOBAL TEMPORARY TABLE 1, 2

CREATE TEMP TABLE 3

CREATE INDEX 1, 2, 3

CREATE PROCEDURE 1, 2, 3

CREATE STOGROUP 1, 2

CREATE SYNONYM 1, 2, 3

CREATE TABLE 1, 2, 3

354 Application Programming Guide and Reference for Java

Table 90. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

CREATE TABLESPACE 1, 2

CREATE TYPE (cursor) 2

CREATE TRIGGER 1, 2, 3

CREATE VIEW 1, 2, 3

DECLARE GLOBAL TEMPORARY TABLE 1, 2

DELETE 1, 2, 3

DROP ALIAS 1, 2

DROP DATABASE 1, 2, 3a on page 356

DROP DISTINCT TYPE 1, 2

DROP TYPE 3

DROP FUNCTION 1, 2, 3

DROP INDEX 1, 2, 3

DROP PACKAGE 1, 2

DROP PROCEDURE 1, 2, 3

DROP STOGROUP 1, 2

DROP SYNONYM 1, 2, 3

DROP TABLE 1, 2, 3

DROP TABLESPACE 1, 2

DROP TRIGGER 1, 2, 3

DROP VIEW 1, 2, 3

FETCH 1, 2, 3

GRANT 1, 2, 3

INSERT 1, 2, 3

LOCK TABLE 1, 2, 3

MERGE 1, 2

REVOKE 1, 2, 3

ROLLBACK 1, 2, 3

SAVEPOINT 1, 2, 3

SELECT INTO 1, 2, 3

SET CURRENT APPLICATION ENCODING SCHEME 1

SET CURRENT DEBUG MODE 1

SET CURRENT DEFAULT TRANSFORM GROUP 2

SET CURRENT DEGREE 1, 2

SET CURRENT EXPLAIN MODE 2

SET CURRENT EXPLAIN SNAPSHOT 2

SET CURRENT ISOLATION 1, 2

SET CURRENT LOCALE LC_CTYPE 1

SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION

1, 2

SET CURRENT OPTIMIZATION HINT 1, 2

Chapter 7. JDBC and SQLJ reference information 355

Table 90. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

SET CURRENT PACKAGE PATH 1

SET CURRENT PACKAGESET (USER is not supported) 1, 2

SET CURRENT PRECISION 1, 2

SET CURRENT QUERY ACCELERATION 1

SET CURRENT QUERY OPTIMIZATION 2

SET CURRENT REFRESH AGE 1, 2

SET CURRENT ROUTINE VERSION 1

SET CURRENT RULES 1

SET CURRENT SCHEMA 2

SET CURRENT SQLID 1

SET PATH 1, 2

TRUNCATE 1

UPDATE 1, 2, 3

Note: The SQL statement applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 for Linux, UNIX, and Windows

3. IBM Informix

a. IBM Informix, for the SYSMASTER database only.

Usage notes
v SQLJ supports both positioned and searched DELETE and UPDATE operations.
v For a FETCH statement, a positioned DELETE statement, or a positioned

UPDATE statement, you must use an iterator to refer to rows in a result table.
Related tasks:
“Setting the isolation level for an SQLJ transaction” on page 184
Related reference:
“SQLJ SET-TRANSACTION-clause”

Statements (DB2 SQL)

SQLJ SET-TRANSACTION-clause
The SET TRANSACTION clause sets the isolation level for the current unit of
work.

Syntax

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE

��

Description

ISOLATION LEVEL
Specifies one of the following isolation levels:

356 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_statementsintro.htm#db2z_sql_statementsintro

READ COMMITTED
Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED
Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ
Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE
Specifies that the current DB2 isolation level is repeatable read.

Usage notes

You can execute SET TRANSACTION only at the beginning of a transaction.
Related tasks:
“Setting the isolation level for an SQLJ transaction” on page 184

SQLJ assignment-clause
The assignment clause assigns the result of an SQL operation to a Java variable.

Syntax

�� Java-ID = { fullselect }
order-by-clause optimize-for-clause

isolation-clause
queryno-clause
fetch-first-clause

iterator-conversion-clause

��

Description

Java-ID
Identifies an iterator that was declared previously as an instance of an iterator
class.

fullselect
Generates a result table.

iterator-conversion-clause
See "SQLJ iterator-conversion-clause" for a description of this clause.

Usage notes
v If the object that is identified by Java-ID is a positioned iterator, the number of

columns in the result set must match the number of columns in the iterator. In
addition, the data type of each column in the result set must be compatible with
the data type of the corresponding column in the iterator. See "Java, JDBC, and
SQL data types" for a list of compatible Java and SQL data types.

v If the object that is identified by Java-ID is a named iterator, the name of each
accessor method must match, except for case, the name of a column in the result
set. In addition, the data type of the object that an accessor method returns must
be compatible with the data type of the corresponding column in the result set.

v You can put an assignment clause anywhere in a Java program that a Java
assignment statement can appear. However, you cannot put an assignment
clause where a Java assignment expression can appear. For example, you cannot
specify an assignment clause in the control list of a for statement.

Chapter 7. JDBC and SQLJ reference information 357

Related concepts:
“SQLJ and JDBC in the same application” on page 166
Related reference:
“SQLJ iterator-conversion-clause”

SQLJ iterator-conversion-clause
The iterator conversion clause converts a JDBC ResultSet to an iterator.

Syntax

�� CAST host-expression ��

Description

host-expression
Identifies the JDBC ResultSet that is to be converted to an SQLJ iterator.

Usage notes
v If the iterator to which the JDBC ResultSet is to be converted is a positioned

iterator, the number of columns in the ResultSet must match the number of
columns in the iterator. In addition, the data type of each column in the
ResultSet must be compatible with the data type of the corresponding column
in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match,
except for case, the name of a column in the ResultSet. In addition, the data
type of the object that an accessor method returns must be compatible with the
data type of the corresponding column in the ResultSet.

v When an iterator that is generated through the iterator conversion clause is
closed, the ResultSet from which the iterator is generated is also closed.

Related concepts:
“SQLJ and JDBC in the same application” on page 166

Interfaces and classes in the sqlj.runtime package
The sqlj.runtime package defines the run-time classes and interfaces that are used
directly or indirectly by the SQLJ programmer.

Classes such as AsciiStream are used directly by the SQLJ programmer. Interfaces
such as ResultSetIterator are implemented as part of generated class
declarations.

sqlj.runtime interfaces

The following table summarizes the interfaces in sqlj.runtime.

Table 91. Summary of sqlj.runtime interfaces

Interface name Purpose

ConnectionContext Manages the SQL operations that are performed during a connection to a data
source.

ForUpdate Implemented by iterators that are used in a positioned UPDATE or DELETE
statement.

NamedIterator Implemented by iterators that are declared as named iterators.

358 Application Programming Guide and Reference for Java

Table 91. Summary of sqlj.runtime interfaces (continued)

Interface name Purpose

PositionedIterator Implemented by iterators that are declared as positioned iterators.

ResultSetIterator Implemented by all iterators to allow query results to be processed using a JDBC
ResultSet.

Scrollable Provides a set of methods for manipulating scrollable iterators.

sqlj.runtime classes

The following table summarizes the classes in sqlj.runtime.

Table 92. Summary of sqlj.runtime classes

Class name Purpose

AsciiStream A class for handling an input stream whose bytes should be interpreted as ASCII.

BinaryStream A class for handling an input stream whose bytes should be interpreted as binary.

CharacterStream A class for handling an input stream whose bytes should be interpreted as
Character.

DefaultRuntime Implemented by SQLJ to satisfy the expected runtime behavior of SQLJ for most
JVM environments. This class is for internal use only and is not described in this
documentation.

ExecutionContext Implemented when an SQLJ execution context is declared, to control the execution
of SQL operations.

Indicator Defines constants for indicator variable values.

RuntimeContext Defines system-specific services that are provided by the runtime environment. This
class is for internal use only and is not described in this documentation.

SQLNullException Derived from the java.sql.SQLException class. An sqlj.runtime.SQLNullException
is thrown when an SQL NULL value is fetched into a host identifier with a Java
primitive type.

StreamWrapper Wraps a java.io.InputStream instance.

UnicodeStream A class for handling an input stream whose bytes should be interpreted as Unicode.

sqlj.runtime.ConnectionContext interface
The sqlj.runtime.ConnectionContext interface provides a set of methods that
manage SQL operations that are performed during a session with a specific data
source.

Translation of an SQLJ connection declaration clause causes SQLJ to create a
connection context class. A connection context object maintains a JDBC Connection
object on which dynamic SQL operations can be performed. A connection context
object also maintains a default ExecutionContext object.

Variables

CLOSE_CONNECTION
Format:
public static final boolean CLOSE_CONNECTION=true;

A constant that can be passed to the close method. It indicates that the
underlying JDBC Connection object should be closed.

Chapter 7. JDBC and SQLJ reference information 359

KEEP_CONNECTION
Format:
public static final boolean KEEP_CONNECTION=false;

A constant that can be passed to the close method. It indicates that the
underlying JDBC Connection object should not be closed.

Methods

close()
Format:
public abstract void close() throws SQLException

Performs the following functions:
v Releases all resources that are used by the given connection context object
v Closes any open ConnectedProfile objects
v Closes the underlying JDBC Connection object

close() is equivalent to close(CLOSE_CONNECTION).

close(boolean)
Format:
public abstract void close (boolean close-connection)
throws SQLException

Performs the following functions:
v Releases all resources that are used by the given connection context object
v Closes any open ConnectedProfile objects
v Closes the underlying JDBC Connection object, depending on the value of

the close-connection parameter

Parameters:

close-connection
Specifies whether the underlying JDBC Connection object is closed when a
connection context object is closed:

CLOSE_CONNECTION
Closes the underlying JDBC Connection object.

KEEP_CONNECTION
Does not close the underlying JDBC Connection object.

getConnectedProfile
Format:
public abstract ConnectedProfile getConnectedProfile(Object profileKey)
throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getConnection
Format:
public abstract Connection getConnection()

Returns the underlying JDBC Connection object for the given connection
context object.

getExecutionContext
Format:

360 Application Programming Guide and Reference for Java

public abstract ExecutionContext getExecutionContect()

Returns the default ExecutionContext object that is associated with the given
connection context object.

isClosed
Format:
public abstract boolean isClosed()

Returns true if the given connection context object has been closed. Returns
false if the connection context object has not been closed.

Constructors

The following constructors are defined in a concrete implementation of the
ConnectionContext interface that results from translation of the statement #sql
context Ctx;:

Ctx(String, boolean)
Format:
public Ctx(String url, boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(String, String, String, boolean)
Format:
public Ctx(String url, String user, String password,
boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

user
The user ID under which the connection to the data source is made.

password
The password for the user ID under which the connection to the data
source is made.

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(String, Properties, boolean)
Format:

Chapter 7. JDBC and SQLJ reference information 361

public Ctx(String url, Properties info, boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

info
An object that contains a set of driver properties for the connection. Any of
the IBM Data Server Driver for JDBC and SQLJ properties can be specified.

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(Connection)
Format:
public Ctx(java.sql.Connection JDBC-connection-object)
throws SQLException

Parameters:

JDBC-connection-object
A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object
remains open.

Ctx(ConnectionContext)
Format:
public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)
throws SQLException

Parameters:

SQLJ-connection-context-object
A previously created SQLJ ConnectionContext object.

The following constructors are defined in a concrete implementation of the
ConnectionContext interface that results from translation of the statement #sql
context Ctx with (dataSource ="jdbc/TestDS");:

Ctx()
Format:
public Ctx()
throws SQLException

Ctx(String, String)
Format:
public Ctx(String user, String password,
)
throws SQLException

Parameters:

user
The user ID under which the connection to the data source is made.

362 Application Programming Guide and Reference for Java

password
The password for the user ID under which the connection to the data
source is made.

Ctx(Connection)
Format:
public Ctx(java.sql.Connection JDBC-connection-object)
throws SQLException

Parameters:

JDBC-connection-object
A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object
remains open.

Ctx(ConnectionContext)
Format:
public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)
throws SQLException

Parameters:

SQLJ-connection-context-object
A previously created SQLJ ConnectionContext object.

Methods

The following additional methods are generated in a concrete implementation of
the ConnectionContext interface that results from translation of the statement #sql
context Ctx;:

getDefaultContext
Format:
public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

getProfileKey
Format:
public static Object getProfileKey(sqlj.runtime.profile.Loader loader,
String profileName) throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getProfile
Format:
public static sqlj.runtime.profile.Profile getProfile(Object key)

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getTypeMap
Format:
public static java.util.Map getTypeMap()

Chapter 7. JDBC and SQLJ reference information 363

Returns an instance of a class that implements java.util.Map, which is the
user-defined type map that is associated with the ConnectionContext. If there is
no associated type map, Java null is returned.

This method is used by code that is generated by the SQLJ translator for
executable clauses and iterator declaration clauses, but it can also be invoked
in an SQLJ application for direct use in JDBC statements.

SetDefaultContext
Format:
public static void Ctx setDefaultContext(Ctx default-context)

Sets the default connection context object for the Ctx class.

Recommendation: Do not use this method for multithreaded applications.
Instead, use explicit contexts.

sqlj.runtime.ForUpdate interface
SQLJ implements the sqlj.runtime.ForUpdate interface in SQLJ programs that
contain an iterator declaration clause with implements sqlj.runtime.ForUpdate.

An SQLJ program that does positioned UPDATE or DELETE operations
(UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF) must
include an iterator declaration clause with implements sqlj.runtime.ForUpdate.

Methods

getCursorName
Format:
public abstract String getCursorName() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

sqlj.runtime.NamedIterator interface
The sqlj.runtime.NamedIterator interface is implemented when an SQLJ
application executes an iterator declaration clause for a named iterator.

A named iterator includes result table column names, and the order of the columns
in the iterator is not important.

An implementation of the sqlj.runtime.NamedIterator interface includes an
accessor method for each column in the result table. An accessor method returns
the data from its column of the result table. The name of an accessor method
matches the name of the corresponding column in the named iterator.

Methods (inherited from the ResultSetIterator interface)

close
Format:
public abstract void close() throws SQLException

Releases database resources that the iterator uses.

isClosed
Format:
public abstract boolean isClosed() throws SQLException

364 Application Programming Guide and Reference for Java

Returns a value of true if the close method has been invoked. Returns false if
the close method has not been invoked.

next
Format:
public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is
invoked for the first time, the iterator is positioned before the first row of the
result table. next returns a value of true when a next row is available and
false when all rows have been retrieved.

sqlj.runtime.PositionedIterator interface
The sqlj.runtime.PositionedIterator interface is implemented when an SQLJ
application executes an iterator declaration clause for a positioned iterator.

The order of columns in a positioned iterator must be the same as the order of
columns in the result table, and a positioned iterator does not include result table
column names.

Methods

sqlj.runtime.PositionedIterator inherits all ResultSetIterator methods, and
includes the following additional method:

endFetch
Format:
public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row. Returns a
value of false if the iterator is positioned on a row.

sqlj.runtime.ResultSetIterator interface
The sqlj.runtime.ResultSetIterator interface is implemented by SQLJ for all
iterator declaration clauses.

An untyped iterator can be generated by declaring an instance of the
sqlj.runtime.ResultSetIterator interface directly. In general, use of untyped
iterators is not recommended.

Variables

ASENSITIVE
Format:
public static final int ASENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as ASENSITIVE.

This value is not returned by IBM Informix.

FETCH_FORWARD
Format:
public static final int FETCH_FORWARD

A constant that can be used by the following methods:

Chapter 7. JDBC and SQLJ reference information 365

v Set by sqlj.runtime.Scrollable.setFetchDirection and
sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the forward
direction, from first to last.

FETCH_REVERSE
Format:
public static final int FETCH_REVERSE

A constant that can be used by the following methods:
v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection
v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the backward
direction, from last to first.

This value is not returned by IBM Informix.

FETCH_UNKNOWN
Format:
public static final int FETCH_UNKNOWN

A constant that can be used by the following methods:
v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection
v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in an unknown order.

This value is not returned by IBM Informix.

INSENSITIVE
Format:
public static final int INSENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as INSENSITIVE.

SENSITIVE
Format:
public static final int SENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as SENSITIVE.

This value is not returned by IBM Informix.

Methods

clearWarnings
Format:
public abstract void clearWarnings() throws SQLException

After clearWarnings is called, getWarnings returns null until a new warning is
reported for the iterator.

close
Format:

366 Application Programming Guide and Reference for Java

public abstract void close() throws SQLException

Closes the iterator and releases underlying database resources.

getFetchSize
Format:
synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows
are needed. The returned value is the value that was set by the setFetchSize
method, or 0 if no value was set by setFetchSize.

getResultSet
Format:
public abstract ResultSet getResultSet() throws SQLException

Returns the JDBC ResultSet object that is associated with the iterator.

getRow
Format:
synchronized public int getRow() throws SQLException

Returns the current row number. The first row is number 1, the second is
number 2, and so on. If the iterator is not positioned on a row, 0 is returned.

getSensitivity
Format:
synchronized public int getSensitivity() throws SQLException

Returns the sensitivity of the iterator. The sensitivity is determined by the
sensitivity value that was specified or defaulted in the with clause of the
iterator declaration clause.

getWarnings
Format:
public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on the iterator. Subsequent
iterator warnings are be chained to this SQLWarning. The warning chain is
automatically cleared each time the iterator moves to a new row.

isClosed
Format:
public abstract boolean isClosed() throws SQLException

Returns a value of true if the iterator is closed. Returns false otherwise.

next
Format:
public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before next is invoked for the first time,
the iterator is positioned before the first row of the result table. next returns a
value of true when a next row is available and false when all rows have been
retrieved.

setFetchSize
Format:
synchronized public void setFetchSize(int number-of-rows) throws SQLException

Chapter 7. JDBC and SQLJ reference information 367

Gives SQLJ a hint as to the number of rows that should be fetched when more
rows are needed.

Parameters:

number-of-rows
The expected number of rows that SQLJ should fetch for the iterator that is
associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows
that can be fetched, an SQLException is thrown.

sqlj.runtime.Scrollable interface
sqlj.runtime.Scrollable provides methods to move around in the result table and
to check the position in the result table.

sqlj.runtime.Scrollable is implemented when a scrollable iterator is declared.

Methods

absolute(int)
Format:
public abstract boolean absolute (int n) throws SQLException

Moves the iterator to a specified row.

If n>0, positions the iterator on row n of the result table. If n<0, and m is the
number of rows in the result table, positions the iterator on row m+n+1 of the
result table.

If the absolute value of n is greater than the number of rows in the result table,
positions the cursor after the last row if n is positive, or before the first row if
n is negative.

absolute(0) is the same as beforeFirst(). absolute(1) is the same as first().
absolute(-1) is the same as last().

Returns true if the iterator is on a row. Otherwise, returns false.

afterLast()
Format:
public abstract void afterLast() throws SQLException

Moves the iterator after the last row of the result table.

beforeFirst()
Format:
public abstract void beforeFirst() throws SQLException

Moves the iterator before the first row of the result table.

first()
Format:
public abstract boolean first() throws SQLException

Moves the iterator to the first row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

getFetchDirection()
Format:

368 Application Programming Guide and Reference for Java

public abstract int getFetchDirection() throws SQLException

Returns the fetch direction of the iterator. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of processing is not known.

isAfterLast()
Format:
public abstract boolean isAfterLast() throws SQLException

Returns true if the iterator is positioned after the last row of the result table.
Otherwise, returns false.

isBeforeFirst()
Format:
public abstract boolean isBeforeFirst() throws SQLException

Returns true if the iterator is positioned before the first row of the result table.
Otherwise, returns false.

isFirst()
Format:
public abstract boolean isFirst() throws SQLException

Returns true if the iterator is positioned on the first row of the result table.
Otherwise, returns false.

isLast()
Format:
public abstract boolean isLast() throws SQLException

Returns true if the iterator is positioned on the last row of the result table.
Otherwise, returns false.

last()
Format:
public abstract boolean last() throws SQLException

Moves the iterator to the last row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

previous()
Format:
public abstract boolean previous() throws SQLException

Moves the iterator to the previous row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

relative(int)
Format:
public abstract boolean relative(int n) throws SQLException

Chapter 7. JDBC and SQLJ reference information 369

If n>0, positions the iterator on the row that is n rows after the current row. If
n<0, positions the iterator on the row that is n rows before the current row. If
n=0, positions the iterator on the current row.

The cursor must be on a valid row of the result table before you can use this
method. If the cursor is before the first row or after the last throw, the method
throws an SQLException.

Suppose that m is the number of rows in the result table and x is the current
row number in the result table. If n>0 and x+n>m, the iterator is positioned
after the last row. If n<0 and x+n<1, the iterator is positioned before the first
row.

Returns true if the iterator is on a row. Otherwise, returns false.

setFetchDirection(int)
Format:
public abstract void setFetchDirection (int) throws SQLException

Gives the SQLJ runtime environment a hint as to the direction in which rows
of this iterator object are processed. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of processing is not known.

sqlj.runtime.AsciiStream class
The sqlj.runtime.AsciiStream class is for an input stream of ASCII data with a
specified length.

The sqlj.runtime.AsciiStream class is derived from the java.io.InputStream
class, and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes
in an sqlj.runtime.AsciiStream object as ASCII characters. An InputStream object
with ASCII characters needs to be passed as a sqlj.runtime.AsciiStream object.

Constructors

AsciiStream(InputStream)
Format:
public AsciiStream(java.io.InputStream input-stream)

Creates an ASCII java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an AsciiStream object.

AsciiStream(InputStream, int)
Format:
public AsciiStream(java.io.InputStream input-stream, int length)

Creates an ASCII java.io.InputStream object with a specified length.

Parameters:

370 Application Programming Guide and Reference for Java

input-stream
The InputStream object that SQLJ interprets as an AsciiStream object.

length
The length of the InputStream object that SQLJ interprets as an
AsciiStream object.

sqlj.runtime.BinaryStream class
The sqlj.runtime.BinaryStream class is for an input stream of binary data with a
specified length.

The sqlj.runtime.BinaryStream class is derived from the java.io.InputStream class,
and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an
sqlj.runtime.BinaryStream object are interpreted as Binary characters. An
InputStream object with Binary characters needs to be passed as a
sqlj.runtime.BinaryStream object.

Constructors

BinaryStream(InputStream)
Format:
public BinaryStream(java.io.InputStream input-stream)

Creates an Binary java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an BinaryStream object.

BinaryStream(InputStream, int)
Format:
public BinaryStream(java.io.InputStream input-stream, int length)

Creates an Binary java.io.InputStream object with a specified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an BinaryStream object.

length
The length of the InputStream object that SQLJ interprets as an
BinaryStream object.

sqlj.runtime.CharacterStream class
The sqlj.runtime.CharacterStream class is for an input stream of character data
with a specified length.

The sqlj.runtime.CharacterStream class is derived from the java.io.Reader class,
and extends the java.io.FilterReader class. SQLJ interprets the bytes in an
sqlj.runtime.CharacterStream object are interpreted as Unicode data. A Reader
object with Unicode data needs to be passed as a sqlj.runtime.CharacterStream
object.

Constructors

CharacterStream(InputStream)
Format:

Chapter 7. JDBC and SQLJ reference information 371

public CharacterStream(java.io.Reader input-stream)

Creates a character java.io.Reader object with an unspecified length.

Parameters:

input-stream
The Reader object that SQLJ interprets as an CharacterStream object.

CharacterStream(InputStream, int)
Format:
public CharacterStream(java.io.Reader input-stream, int length)

Creates a character java.io.Reader object with a specified length.

Parameters:

input-stream
The Reader object that SQLJ interprets as an CharacterStream object.

length
The length of the Reader object that SQLJ interprets as an CharacterStream
object.

Methods

getReader
Format:
public Reader getReader()

Returns the underlying Reader object that is wrapped by the CharacterStream
object.

getLength
Format:
public void getLength()

Returns the length in characters of the wrapped Reader object, as specified by
the constructor or in the last call to setLength.

setLength
Format:
public void setLength (int length)

Sets the number of characters that are read from the Reader object when the
object is passed as an input argument to an SQL operation.

Parameters:

length
The number of characters that are read from the Reader object.

sqlj.runtime.ExecutionContext class
The sqlj.runtime.ExecutionContext class is defined for execution contexts. An
execution context is used to control the execution of SQL statements.

Variables

ADD_BATCH_COUNT
Format:
public static final int ADD_BATCH_COUNT

372 Application Programming Guide and Reference for Java

A constant that can be returned by the getUpdateCount method. It indicates
that the previous statement was not executed but was added to the existing
statement batch.

AUTO_BATCH
Format:
public static final int AUTO_BATCH

A constant that can be passed to the setBatchLimit method. It indicates that
implicit batch execution should be performed, and that SQLJ should determine
the batch size.

DBDefault
Format:
public static final short DBDefault=-5;

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is the
default value.

DBNonNull
Format:
public static final short DBNonNull=0;

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is a
non-null value.

DBNull
Format:
public static final short DBNull=-1;

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is the SQL
NULL value.

DBUnassigned
Format:
public static final short DBUnassigned=-7;

A constant that can be assigned to an indicator variable. It specifies that no
value for the corresponding host variable is passed to the data server.

EXEC_BATCH_COUNT
Format:
public static final int EXEC_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that a statement batch was just executed.

EXCEPTION_COUNT
Format:
public static final int EXCEPTION_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that an exception was thrown before the previous execution completed, or that
no operation has been performed on the execution context object.

Chapter 7. JDBC and SQLJ reference information 373

NEW_BATCH_COUNT
Format:
public static final int NEW_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that the previous statement was not executed, but was added to a new
statement batch.

QUERY_COUNT
Format:
public static final int QUERY_COUNT

A constant that can be passed to the setBatchLimit method. It indicates that the
previous execution produced a result set.

UNLIMITED_BATCH
Format:
public static final int UNLIMITED_BATCH

A constant that can be returned from the getUpdateCount method. It indicates
that statements should continue to be added to a statement batch, regardless of
the batch size.

Constructors:

ExecutionContext
Format:
public ExecutionContext()

Creates an ExecutionContext instance.

Methods

cancel
Format:
public void cancel() throws SQLException

Cancels an SQL operation that is currently being executed by a thread that
uses the execution context object. If there is a pending statement batch on the
execution context object, the statement batch is canceled and cleared.

The cancel method throws an SQLException if the statement cannot be
canceled.

execute
Format:
public boolean execute () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

executeBatch
Format:
public synchronized int[] executeBatch() throws SQLException

Executes the pending statement batch and returns an array of update counts. If
no pending statement batch exists, null is returned. When this method is
called, the statement batch is cleared, even if the call results in an exception.

374 Application Programming Guide and Reference for Java

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

The executeBatch method throws an SQLException if a database error occurs
while the statement batch executes.

executeQuery
Format:
public RTResultSet executeQuery () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

executeUpdate
Format:
public int executeUpdate() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getBatchLimit
Format:
synchronized public int getBatchLimit()

Returns the number of statements that are added to a batch before the batch is
implicitly executed.

The returned value is one of the following values:

UNLIMITED_BATCH
This value indicates that the batch size is unlimited.

AUTO_BATCH
This value indicates that the batch size is finite but unknown.

Other integer
The current batch limit.

getBatchUpdateCounts
Format:
public synchronized int[] getBatchUpdateCounts()

Returns an array that contains the number of rows that were updated by each
statement that successfully executed in a batch. The order of elements in the
array corresponds to the order in which statements were inserted into the
batch. Returns null if no statements in the batch completed successfully.

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

Chapter 7. JDBC and SQLJ reference information 375

getFetchDirection
Format:
synchronized public int getFetchDirection() throws SQLException

Returns the current fetch direction for scrollable iterator objects that were
generated from the given execution context. If a fetch direction was not set for
the execution context, sqlj.runtime.ResultSetIterator.FETCH_FORWARD is
returned.

getFetchSize
Format:
synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows
are needed. This value applies only to iterator objects that were generated from
the given execution context. The returned value is the value that was set by the
setFetchSize method, or 0 if no value was set by setFetchSize.

getMaxFieldSize
Format:
public synchronized int getMaxFieldSize()

Returns the maximum number of bytes that are returned for any string
(character, graphic, or varying-length binary) column in queries that use the
given execution context. If this limit is exceeded, SQLJ discards the remaining
bytes. A value of 0 means that the maximum number of bytes is unlimited.

getMaxRows
Format:
public synchronized int getMaxRows()

Returns the maximum number of rows that are returned for any query that
uses the given execution context. If this limit is exceeded, SQLJ discards the
remaining rows. A value of 0 means that the maximum number of rows is
unlimited.

getNextResultSet()
Format:
public ResultSet getNextResultSet() throws SQLException

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:
v There are no more result sets to be returned.
v The stored procedure call did not produce any result sets.
v A stored procedure call has not been executed under the execution context.

When you invoke getNextResultSet(), SQLJ closes the currently-open result
set and advances to the next result set.

If an error occurs during a call to getNextResultSet, resources for the current
JDBC ResultSet object are released, and an SQLException is thrown.
Subsequent calls to getNextResultSet return null.

getNextResultSet(int)
Formats:
public ResultSet getNextResultSet(int current)

376 Application Programming Guide and Reference for Java

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:
v There are no more result sets to be returned.
v The stored procedure call did not produce any result sets.
v A stored procedure call has not been executed under the execution context.

If an error occurs during a call to getNextResultSet, resources for the current
JDBC ResultSet object are released, and an SQLException is thrown.
Subsequent calls to getNextResultSet return null.

Parameters:

current
Indicates what SQLJ does with the currently open result set before it
advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT
Specifies that the current ResultSet object is closed when the next
ResultSet object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT
Specifies that the current ResultSet object stays open when the next
ResultSet object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS
Specifies that all open ResultSet objects are closed when the next
ResultSet object is returned.

getQueryTimeout
Format:
public synchronized int getQueryTimeout()

Returns the maximum number of seconds that SQL operations that use the
given execution context object can execute. If an SQL operation exceeds the
limit, an SQLException is thrown. The returned value is the value that was set
by the setQueryTimeout method, or 0 if no value was set by setQueryTimeout.
0 means that execution time is unlimited.

getUpdateCount
Format:
public abstract int getUpdateCount() throws SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT
If the statement was added to an existing batch.

ExecutionContext.NEW_BATCH_COUNT
If the statement was the first statement in a new batch.

ExecutionContext.EXCEPTION_COUNT
If the previous statement generated an SQLException, or no previous
statement was executed.

ExecutionContext.EXEC_BATCH_COUNT
If the statement was part of a batch, and the batch was executed.

ExecutionContext.QUERY_COUNT
If the previous statement created an iterator object or JDBC ResultSet.

Chapter 7. JDBC and SQLJ reference information 377

Other integer
If the statement was executed rather than added to a batch. This value is
the number of rows that were updated by the statement.

getWarnings
Format:
public synchronized SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was
executed using the given execution context. Subsequent warnings are chained
to the first warning. If no warnings occurred, null is returned.

getWarnings is used to retrieve positive SQLCODEs.

isBatching
Format:
public synchronized boolean isBatching()

Returns true if batching is enabled for the execution context. Returns false if
batching is disabled.

registerStatement
Format:
public RTStatement registerStatement(ConnectionContext connCtx,
Object profileKey, int stmtNdx)
throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

releaseStatement
Format:
public void releaseStatement() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

setBatching
Format:
public synchronized void setBatching(boolean batching)

Parameters:

batching
Indicates whether batchable statements that are registered with the given
execution context can be added to a statement batch:

true
Statements can be added to a statement batch.

false
Statements are executed individually.

setBatching affects only statements that occur in the program after setBatching
is called. It does not affect previous statements or an existing statement batch.

setBatchLimit
Format:
public synchronized void setBatchLimit(int batch-size)

378 Application Programming Guide and Reference for Java

Sets the maximum number of statements that are added to a batch before the
batch is implicitly executed.

Parameters:

batch-size
One of the following values:

ExecutionContext.UNLIMITED_BATCH
Indicates that implicit execution occurs only when SQLJ encounters a
statement that is batchable but incompatible, or not batchable. Setting
this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH
Indicates that implicit execution occurs when the number of statements
in the batch reaches a number that is set by SQLJ.

Positive integer
The number of statements that are added to the batch before SQLJ
executes the batch implicitly. The batch might be executed before this
many statements have been added if SQLJ encounters a statement that
is batchable but incompatible, or not batchable.

setBatchLimit affects only statements that occur in the program after
setBatchLimit is called. It does not affect an existing statement batch.

setFetchDirection
Format:
public synchronized void setFetchDirection(int direction) throws SQLException

Gives SQLJ a hint as to the current fetch direction for scrollable iterator objects
that were generated from the given execution context.

Parameters:

direction
One of the following values:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are fetched in a forward direction. This is the default.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are fetched in a backward direction.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of fetching is unknown.

Any other input value results in an SQLException.

setFetchSize
Format:
synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more
rows are needed.

Parameters:

number-of-rows
The expected number of rows that SQLJ should fetch for the iterator that is
associated with the given execution context.

Chapter 7. JDBC and SQLJ reference information 379

If number-of-rows is less than 0 or greater than the maximum number of rows
that can be fetched, an SQLException is thrown.

setMaxFieldSize
Format:
public void setMaxFieldSize(int max-bytes)

Specifies the maximum number of bytes that are returned for any string
(character, graphic, or varying-length binary) column in queries that use the
given execution context. If this limit is exceeded, SQLJ discards the remaining
bytes.

Parameters:

max-bytes
The maximum number of bytes that SQLJ should return from a BINARY,
VARBINARY, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC column. A
value of 0 means that the number of bytes is unlimited. 0 is the default.

setMaxRows
Format:
public synchronized void setMaxRows(int max-rows)

Specifies the maximum number of rows that are returned for any query that
uses the given execution context. If this limit is exceeded, SQLJ discards the
remaining rows.

When setMaxRows is invoked at run time on a statically executed SELECT
statement, setMaxRows limits the maximum number of rows in the result table
through IBM Data Server Driver for JDBC and SQLJ processing only. Data
server optimization that limits the number of rows in the result table does not
occur unless the FETCH FIRST n ROWS ONLY clause is also added to the
SELECT statement. If FETCH FIRST n rows ONLY is added to the SELECT
statement, and setMaxRows(m) is called, the maximum number of rows is the
smaller of n and m. The driver discards the rest of the rows.

Parameters:

max-rows
The maximum number of rows that SQLJ should return for a query that
uses the given execution context. A value of 0 means that the number of
rows is unlimited. 0 is the default.

setQueryTimeout
Format:
public synchronized void setQueryTimeout(int timeout-value)

Specifies the maximum number of seconds that SQL operations that use the
given execution context object can execute. If an SQL operation exceeds the
limit, an SQLException is thrown.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS data servers, setQueryTimeout is supported only if Connection or
DataSource property queryTimeoutInterruptProcessingMode is set to
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET.

Parameters:

380 Application Programming Guide and Reference for Java

timeout-value
The maximum number of seconds that SQL operations that use the given
execution context object can execute. 0 means that execution time is
unlimited. 0 is the default.

Related tasks:
“Controlling the execution of SQL statements in SQLJ” on page 170

sqlj.runtime.SQLNullException class
The sqlj.runtime.SQLNullException class is derived from the
java.sql.SQLException class.

An sqlj.runtime.SQLNullException is thrown when an SQL NULL value is fetched
into a host identifier with a Java primitive type. The SQLSTATE value for an
instance of SQLNullException is '22002'.

sqlj.runtime.StreamWrapper class
The sqlj.runtime.StreamWrapper class wraps a java.io.InputStream instance and
extends the java.io.InputStream class.

The sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and
sqlj.runtime.UnicodeStream classes extend sqlj.runtime.StreamWrapper.
sqlj.runtime.StreamWrapper supports methods for specifying the length of
sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and
sqlj.runtime.UnicodeStream objects.

Constructors

StreamWrapper(InputStream)
Format:
protected StreamWrapper(InputStream input-stream)

Creates an sqlj.runtime.StreamWrapper object with an unspecified length.

Parameters:

input-stream
The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

StreamWrapper(InputStream, int)
Format:
protected StreamWrapper(java.io.InputStream input-stream, int length)

Creates an sqlj.runtime.StreamWrapper object with a specified length.

Parameters:

input-stream
The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

length
The length of the InputStream object in bytes.

Methods

getInputStream
Format:
public InputStream getInputStream()

Chapter 7. JDBC and SQLJ reference information 381

Returns the underlying InputStream object that is wrapped by the
StreamWrapper object.

getLength
Format:
public void getLength()

Returns the length in bytes of the wrapped InputStream object, as specified by
the constructor or in the last call to setLength.

setLength
Format:
public void setLength (int length)

Sets the number of bytes that are read from the wrapped InputStream object
when the object is passed as an input argument to an SQL operation.

Parameters:

length
The number of bytes that are read from the wrapped InputStream object.

Related reference:
“sqlj.runtime.UnicodeStream class”
“sqlj.runtime.CharacterStream class” on page 371
“sqlj.runtime.BinaryStream class” on page 371
“sqlj.runtime.AsciiStream class” on page 370

sqlj.runtime.UnicodeStream class
The sqlj.runtime.UnicodeStream class is for an input stream of Unicode data with
a specified length.

The sqlj.runtime.UnicodeStream class is derived from the java.io.InputStream
class, and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes
in an sqlj.runtime.UnicodeStream object as Unicode characters. An InputStream
object with Unicode characters needs to be passed as a
sqlj.runtime.UnicodeStream object.

Constructors

UnicodeStream(InputStream)
Format:
public UnicodeStream(java.io.InputStream input-stream)

Creates a Unicode java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an UnicodeStream object.

UnicodeStream(InputStream, int)
Format:
public UnicodeStream(java.io.InputStream input-stream, int length)

Creates a Unicode java.io.InputStream object with a specified length.

Parameters:

382 Application Programming Guide and Reference for Java

input-stream
The InputStream object that SQLJ interprets as an UnicodeStream object.

length
The length of the InputStream object that SQLJ interprets as an
UnicodeStream object.

Related reference:
“sqlj.runtime.StreamWrapper class” on page 381
“sqlj.runtime.CharacterStream class” on page 371
“sqlj.runtime.BinaryStream class” on page 371
“sqlj.runtime.AsciiStream class” on page 370

IBM Data Server Driver for JDBC and SQLJ extensions to JDBC
The IBM Data Server Driver for JDBC and SQLJ provides a set of extensions to the
support that is provided by the JDBC specification.

To use IBM Data Server Driver for JDBC and SQLJ-only methods in classes that
have corresponding, standard classes, cast an instance of the related, standard
JDBC class to an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class. For example:
javax.sql.DataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

Table 93 summarizes the IBM Data Server Driver for JDBC and SQLJ-only
interfaces.

Table 93. Summary of IBM Data Server Driver for JDBC and SQLJ-only interfaces provided by the IBM Data Server
Driver for JDBC and SQLJ

Interface name Applicable data sources Purpose

DB2CallableStatement 1, 2 Extends the java.sql.CallableStatement and the
com.ibm.db2.jcc.DB2PreparedStatement
interfaces.

DB2Connection 1, 2, 3 Extends the java.sql.Connection interface.

DB2DatabaseMetaData 1, 2, 3 Extends the java.sql.DatabaseMetaData interface.

DB2Diagnosable 1, 2, 3 Provides a mechanism for getting DB2
diagnostics from a DB2 SQLException.

DB2ParameterMetaData 2 Extends the java.sql.ParameterMetaData
interface.

DB2PreparedStatement 1, 2, 3 Extends the com.ibm.db2.jcc.DB2Statement and
java.sql.PreparedStatement interfaces.

DB2ResultSet 1, 2, 3 Extends the java.sql.ResultSet interface.

DB2RowID 1, 2 Used for declaring Java objects for use with the
ROWID data type.

DB2Statement 1, 2, 3 Extends the java.sql.Statement interface.

DB2Struct 2 Provides methods for working with
java.sql.Struct objects.

DB2SystemMonitor 1, 2, 3 Used for collecting system monitoring data for a
connection.

DB2TraceManagerMXBean 1, 2, 3 Provides the MBean interface for the remote trace
controller.

Chapter 7. JDBC and SQLJ reference information 383

Table 93. Summary of IBM Data Server Driver for JDBC and SQLJ-only interfaces provided by the IBM Data Server
Driver for JDBC and SQLJ (continued)

Interface name Applicable data sources Purpose

DB2Xml 1, 2 Used for updating data in XML columns and
retrieving data from XML columns.

DBBatchUpdateException 1, 2, 3 Used for retrieving error information about batch
execution of statements that return automatically
generated keys.

Note: The interface applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 for Linux, UNIX, and Windows

3. IBM Informix

Table 94 summarizes the IBM Data Server Driver for JDBC and SQLJ-only classes.

Table 94. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server
Driver for JDBC and SQLJ

Class name Applicable data sources Purpose

DB2Administrator 2 Instances of the DB2Administrator class are used
to retrieve DB2CataloguedDatabase objects.

DB2BaseDataSource 1, 2, 3 The abstract data source parent class for all IBM
Data Server Driver for JDBC and SQLJ-specific
implementations of javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, and
javax.sql.XADataSource.

DB2Binder 1, 2 Provides the runJDBCBinder method as an
alternative to the DB2Binder utility for binding
IBM Data Server Driver for JDBC and SQLJ
packages.

DB2BlobFileReference 1 A subclass of DB2FileReference for creating
BLOB file reference variable objects.

DB2CataloguedDatabase 2 Contains methods that retrieve information about
a local DB2 for Linux, UNIX, and Windows
database.

DB2ClientRerouteServerList 1, 2 Implements the java.io.Serializable and
javax.naming.Referenceable interfaces.

DB2ClobFileReference 1 A subclass of DB2FileReference for creating
CLOB file reference variable objects.

DB2ConnectionPoolDataSource 1, 2, 3 A factory for PooledConnection objects.

DB2DataSource 1, 2, 3 Extends the extends DB2BaseDataSource class, and
implements the javax.sql.DataSource,
java.io.Serializable, and
javax.naming.Referenceable interfaces.

DB2Driver 1, 2, 3 Extends the java.sql.Driver interface.

DB2ExceptionFormatter 1, 2, 3 Contains methods for printing diagnostic
information to a stream.

DB2FileReference 1 Provides methods for inserting data into tables
from file reference variables.

DB2JCCPlugin 2 The abstract class for implementation of JDBC
security plug-ins.

384 Application Programming Guide and Reference for Java

Table 94. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server
Driver for JDBC and SQLJ (continued)

Class name Applicable data sources Purpose

DB2PooledConnection 1, 2, 3 Provides methods that an application server can
use to switch users on a preexisting trusted
connection.

DB2PoolMonitor 1, 2 Provides methods for monitoring the global
transport objects pool for the connection
concentrator and Sysplex workload balancing.

DB2SimpleDataSource 1, 2, 3 Extends the DataBaseDataSource class. Does not
support connection pooling or distributed
transactions.

DB2Sqlca 1, 2, 3 An encapsulation of the DB2 SQLCA.

DB2TraceManager 1, 2, 3 Controls the global log writer.

DB2Types 1 Defines data type constants.

DB2XADataSource 1, 2, 3 A factory for XADataSource objects. An object that
implements this interface is registered with a
naming service that is based on the Java Naming
and Directory Interface (JNDI).

DB2XmlAsBlobFileReference 1 A subclass of DB2FileReference for creating XML
AS BLOB file reference variable objects.

DB2XmlAsClobFileReference 1 A subclass of DB2FileReference for creating XML
AS CLOB file reference variable objects.

DBTimestamp 1, 2, 3 A subclass of Timestamp that handles timestamp
values with extra precision or time zone
information.

Note: The class applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 for Linux, UNIX, and Windows

3. IBM Informix

DBBatchUpdateException interface
The com.ibm.db2.jcc.DBBatchUpdateException interface is used for retrieving error
information about batch execution of statements that return automatically
generated keys.

DBBatchUpdateException methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDBGeneratedKeys
Format:
public java.sql.ResultSet[] getDBGeneratedKeys()

throws java.sql.SQLException

Retrieves automatically generated keys that were created when INSERT
statements were executed in a batch. Each ResultSet object that is returned
contains the automatically generated keys for a single statement in the batch.
ResultSet objects that are null correspond to failed statements.

Chapter 7. JDBC and SQLJ reference information 385

DB2BaseDataSource class
The com.ibm.db2.jcc.DB2BaseDataSource class is the abstract data source parent
class for all IBM Data Server Driver for JDBC and SQLJ-specific implementations
of javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and
javax.sql.XADataSource.

DB2BaseDataSource implements the java.sql.Wrapper interface.

DB2BaseDataSource properties

The following properties are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

You can set all properties on a DataSource or in the url parameter in a
DriverManager.getConnection call.

All properties except the following properties have a setXXX method to set the
value of the property and a getXXX method to retrieve the value:
v dumpPool
v dumpPoolStatisticsOnSchedule
v dumpPoolStatisticsOnScheduleFile
v maxTransportObjectIdleTime
v maxTransportObjectWaitTime
v minTransportObjects
v xmlFormat

A setXXX method has this form:
void setProperty-name(data-type property-value)

A getXXX method has this form:
data-type getProperty-name()

Property-name is the unqualified property name. For properties that are not specific
to IBM Informix, the first character of the property name is capitalized. For
properties that are used only by IBM Informix, all characters of the property name
are capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties
and their data types.

Table 95. DB2BaseDataSource properties and their data types

Property name
Applicable
data sources Data type

Introduced
in driver
version

com.ibm.db2.jcc.DB2BaseDataSource.accountingInterval 1 String 3.6

com.ibm.db2.jcc.DB2BaseDataSource.alternateGroupDatabaseName 1, 2 String 3.66, 4.16

com.ibm.db2.jcc.DB2BaseDataSource.alternateGroupPortNumber 1, 2 String 3.66, 4.16

com.ibm.db2.jcc.DB2BaseDataSource.alternateGroupServerName 1, 2 String 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.affinityFailbackInterval 1, 2, 3 int 3.58, 4.8

com.ibm.db2.jcc.DB2BaseDataSource.allowNextOnExhaustedResultSet 1, 2, 3 int 3.51, 4.1

com.ibm.db2.jcc.DB2BaseDataSource.allowNullResultSetForExecuteQuery 1, 2, 3 int 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.atomicMultiRowInsert 1, 2, 3 int 3.57, 4.7

com.ibm.db2.jcc.DB2BaseDataSource.blockingReadConnectionTimeout 1, 2, 3 int 2.8

com.ibm.db2.jcc.DB2BaseDataSource.charOutputSize 1 short 2.10

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation 1, 2 String 1.2

386 Application Programming Guide and Reference for Java

Table 95. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable
data sources Data type

Introduced
in driver
version

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation 1, 2 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.clientDebugInfo (IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity)

1, 2 String 3.0

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramId 1, 2 String 2.3

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramName (IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity)

1, 2 String 2.2

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternateServerName 1, 2, 3 String 3.4

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternatePortNumber 1, 2, 3 String 3.4

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIContext 1, 2, 3 javax.naming.Context 3.3

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIName 1, 2, 3 String 2.1

com.ibm.db2.jcc.DB2BaseDataSource.clientUser (IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS only)

1 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation (IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS only)

1 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.commandTimeout (IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity)

1, 2, 3 int 3.64, 4.14

com.ibm.db2.jcc.DB2BaseDataSource.connectionCloseWithInFlightTransaction 1, 2, 3 String 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.concurrentAccessResolution 1, 2 int 3.53, 4.3

com.ibm.db2.jcc.DB2BaseDataSource.connectNode 2 int 3.4

com.ibm.db2.jcc.DB2BaseDataSource.connectionTimeout (IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity)

1, 2, 3 int 3.64, 4.14

com.ibm.db2.jcc.DB2BaseDataSource.currentDegree 1, 2 String 3.0

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainMode 1, 2 String 2.6

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainSnapshot 2 String 2.6

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath 1, 2 String 1.3

currentLocaleLcCtype 1 String 3.64, 4.14

com.ibm.db2.jcc.DB2BaseDataSource.currentLockTimeout 2, 3 int 2.2

com.ibm.db2.jcc.DB2BaseDataSource.currentMaintainedTableTypesForOptimization 1, 2 String 2.2

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath 1, 2 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.currentPackageSet 1, 2 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.currentQueryOptimization 2 int 2.2

com.ibm.db2.jcc.DB2BaseDataSource.currentRefreshAge 1, 2 long 2.2

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema 1, 2 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity 1, 2 int 1.5

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID 1 String 1.3

com.ibm.db2.jcc.DB2BaseDataSource.databaseName 1, 2, 3 String 1.0

com.ibm.db2.jcc.DB2BaseDataSource.dateFormat 1, 2 int 3.3

com.ibm.db2.jcc.DB2BaseDataSource.decimalRoundingMode 1, 2 int 3.4

com.ibm.db2.jcc.DB2BaseDataSource.decimalSeparator 1, 2, 3 int 3.53, 4.3

com.ibm.db2.jcc.DB2BaseDataSource.decimalStringFormat 1, 2, 3 int 3.8

com.ibm.db2.jcc.DB2BaseDataSource.defaultIsolationLevel 1, 2, 3 int 3.4

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares 1, 2, 3 boolean 1.0

com.ibm.db2.jcc.DB2BaseDataSource.description 1, 2, 3 String 1.0

com.ibm.db2.jcc.DB2BaseDataSource.downgradeHoldCursorsUnderXa 1, 2,3 boolean 3.3

com.ibm.db2.jcc.DB2BaseDataSource.driverType 1, 2, 3 int 1.0

com.ibm.db2.jcc.DB2BaseDataSource.dumpPool 3 int 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnSchedule 3 int 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnScheduleFile 3 String 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.enableAlternateGroupSeamlessACR 1, 2 boolean 3.66, 4.16

com.ibm.db2.jcc.DB2BaseDataSource.enableClientAffinitiesList 1, 2, 3 int 3.51, 4.1

com.ibm.db2.jcc.DB2BaseDataSource.enableExtendedIndicators 1, 2 int 3.59, 4.9

Chapter 7. JDBC and SQLJ reference information 387

Table 95. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable
data sources Data type

Introduced
in driver
version

com.ibm.db2.jcc.DB2BaseDataSource.enableNamedParameterMarkers 1, 2, 3 int 3.57, 4.7

com.ibm.db2.jcc.DB2BaseDataSource.enableConnectionConcentrator (IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity)

1, 3 boolean 2.6

com.ibm.db2.jcc.DB2BaseDataSource.enableMultiRowInsertSupport 1 boolean 3.58, 4.8

com.ibm.db2.jcc.DB2BaseDataSource.enableRowsetSupport 1, 2 int 3.7

com.ibm.db2.jcc.DB2BaseDataSource.enableSeamlessFailover 1, 2, 3 int 3.51, 4.1

com.ibm.db2.jcc.DB2BaseDataSource.enableSysplexWLB (IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity)

1, 2, 3 boolean 2.6

com.ibm.db2.jcc.DB2BaseDataSource.encryptionAlgorithm 1, 2 int 2.11

com.ibm.db2.jcc.DB2BaseDataSource.enableExtendedDescribe 1, 2 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.enableTimeoutForCursors 2 int 3.66, 4.16

com.ibm.db2.jcc.DB2BaseDataSource.fetchSize 1, 2, 3 int 3.53, 4.3

com.ibm.db2.jcc.DB2BaseDataSource.floatingPointStringFormat 1, 2, 3 int 3.58, 4.8

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeInputStreams 1, 2 boolean 2.7

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData 1, 2, 3 boolean 1.0

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential 1, 2 Object 1.0

com.ibm.db2.jcc.DB2BaseDataSource.implicitRollbackOption 1, 2, 3 int 3.64, 4.14

com.ibm.db2.jcc.DB2BaseDataSource.interruptProcessingMode (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity)

1, 2, 3 int 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection 1 String 1.2

com.ibm.db2.jcc.DB2BaseDataSource.keepAliveTimeout (IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity)

1, 2, 3 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic 1, 3 int 1.5

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal 1, 2 String 1.1

com.ibm.db2.jcc.DB2BaseDataSource.loginTimeout (not supported for IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for z/OS)

1, 2, 3 int 1.4

com.ibm.db2.jcc.DB2BaseDataSource.logWriter 1, 2, 3 PrintWriter 1.0

com.ibm.db2.jcc.DB2BaseDataSource.maxConnCachedParamBufferSize (IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for z/OS only)

1 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.maxRetriesForClientReroute 1, 2, 3 int 2.7

com.ibm.db2.jcc.DB2BaseDataSource.maxStatements 1, 2, 3 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.maxRowsetSize (IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS only)

1 int 3.7

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectIdleTime 3 int 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectWaitTime 3 int 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjects 1, 3 int 2.6

com.ibm.db2.jcc.DB2BaseDataSource.memberConnectTimeout (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity)

1, 2, 3 int 3.65, 4.15

com.ibm.db2.jcc.DB2BaseDataSource.minTransportObjects 3 int 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfile 2 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfileToFlush 2 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.password 1, 2, 3 String 1.0

com.ibm.db2.jcc.DB2BaseDataSource.pdqProperties 1, 2 String 3.52, 4.2

com.ibm.db2.jcc.DB2BaseDataSource.pkList (IBM Data Server Driver for JDBC and SQLJ type 2
connectivity)

1 String 1.4

com.ibm.db2.jcc.DB2BaseDataSource.planName (IBM Data Server Driver for JDBC and SQLJ type 2
connectivity only)

1 String 1.4

com.ibm.db2.jcc.DB2BaseDataSource.plugin 2 Object 2.8

com.ibm.db2.jcc.DB2BaseDataSource.pluginName 2 String 2.8

com.ibm.db2.jcc.DB2BaseDataSource.portNumber 1, 2, 3 int 1.0

com.ibm.db2.jcc.DB2BaseDataSource.progressiveStreaming 1, 2, 3 int 3.0

com.ibm.db2.jcc.DB2BaseDataSource.queryCloseImplicit 1, 2, 3 int 3.0

388 Application Programming Guide and Reference for Java

||||

Table 95. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable
data sources Data type

Introduced
in driver
version

com.ibm.db2.jcc.DB2BaseDataSource.queryDataSize 1, 2, 3 int 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.queryTimeoutInterruptProcessingMode 1, 2, 3 int 3.62, 4.12

com.ibm.db2.jcc.DB2BaseDataSource.readOnly 1, 2 boolean 1.0

com.ibm.db2.jcc.DB2BaseDataSource.reportLongTypes 1 short 3.6

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability 1, 2,3 int 1.0

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldabilityForCatalogQueries 1, 2 int 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.retrieveMessagesFromServerOnGetMessage 1, 2, 3 boolean 1.1

com.ibm.db2.jcc.DB2BaseDataSource.retryIntervalForClientReroute 1, 2, 3 int 2.7

com.ibm.db2.jcc.DB2BaseDataSource.retryWithAlternativeSecurityMechanism (IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity)

2 int 3.6

com.ibm.db2.jcc.DB2BaseDataSource.returnAlias 1, 2 short 2.5

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism 1, 2, 3 int 1.0

com.ibm.db2.jcc.DB2BaseDataSource.sendCharInputsUTF8 1 int 3.2

com.ibm.db2.jcc.DB2BaseDataSource.sendDataAsIs 1, 2, 3 boolean 3.0

com.ibm.db2.jcc.DB2BaseDataSource.serverName 1, 2, 3 String 1.0

com.ibm.db2.jcc.DB2BaseDataSource.sessionTimeZone 1 String 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.sqljEnableClassLoaderSpecificProfiles 1 boolean 2.10

com.ibm.db2.jcc.DB2BaseDataSource.ssid (IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS only)

1 String 3.6

com.ibm.db2.jcc.DB2BaseDataSource.sslConnection (IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity)

1, 2, 3 boolean 3.0

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStoreLocation (IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity)

1, 2, 3 String 3.53, 4.3

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStorePassword (IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity)

1, 2, 3 String 3.53, 4.3

com.ibm.db2.jcc.DB2BaseDataSource.statementConcentrator 1, 2 int 3.57, 4.7

com.ibm.db2.jcc.DB2BaseDataSource.streamBufferSize 1, 2 int 3.0

com.ibm.db2.jcc.DB2BaseDataSource.stripTrailingZerosForDecimalNumbers 1, 2, 3 int 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.supportsAsynchronousXARollback 1, 2 int 2.7

com.ibm.db2.jcc.DB2BaseDataSource.sysSchema 1, 2 String 2.5

com.ibm.db2.jcc.DB2BaseDataSource.timerLevelForQueryTimeOut 1, 2, 3 int 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.timeFormat 1, 2 int 3.3

com.ibm.db2.jcc.DB2BaseDataSource.timestampFormat 1, 2, 3 int 3.6

com.ibm.db2.jcc.DB2BaseDataSource.timestampOutputType 1 int 3.59, 4.9

com.ibm.db2.jcc.DB2BaseDataSource.timestampPrecisionReporting 1, 2, 3 int 3.8

com.ibm.db2.jcc.DB2BaseDataSource.traceDirectory 1, 2, 3 String 1.5

com.ibm.db2.jcc.DB2BaseDataSource.traceFile 1, 2, 3 String 1.1

com.ibm.db2.jcc.DB2BaseDataSource.traceFileAppend 1, 2, 3 boolean 1.2

com.ibm.db2.jcc.DB2BaseDataSource.traceFileCount 1, 2, 3 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.traceFileSize 1, 2, 3 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel 1, 2, 3 int 1.0

com.ibm.db2.jcc.DB2BaseDataSource.traceOption 1, 2, 3 int 3.63, 4.13

com.ibm.db2.jcc.DB2BaseDataSource.useCachedCursor 1, 2 boolean 2.2

com.ibm.db2.jcc.DB2BaseDataSource.useJDBC4ColumnNameAndLabelSemantics 1, 2 int 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.useJDBC41DefinitionForGetColumns 1, 2, 3 int 4.13

com.ibm.db2.jcc.DB2BaseDataSource.user 1, 2, 3 String 1.0

com.ibm.db2.jcc.DB2BaseDataSource.useIdentityValLocalForAutoGeneratedKeys 1, 2 boolean 3.62, 4.12

com.ibm.db2.jcc.DB2BaseDataSource.useRowsetCursor 1 boolean 3.1

com.ibm.db2.jcc.DB2BaseDataSource.useTransactionRedirect 2 boolean 2.6

com.ibm.db2.jcc.DB2BaseDataSource.xaNetworkOptimization 1, 2, 3 boolean 3.3

com.ibm.db2.jcc.DB2BaseDataSource.xmlFormat 1, 2 int 3.53, 4.3

Chapter 7. JDBC and SQLJ reference information 389

Table 95. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable
data sources Data type

Introduced
in driver
version

com.ibm.db2.jcc.DB2BaseDataSource.DBANSIWARN 3 boolean 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DBDATE 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DBPATH 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DBSPACETEMP 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DBTEMP 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DBUPSPACE 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.DELIMIDENT 3 boolean 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.IFX_DIRECTIVES 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.IFX_EXTDIRECTIVES 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.IFX_UPDDESC 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.IFX_XASTDCOMPLIANCE_XAEND 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXOPCACHE 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXSTACKSIZE 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.NODEFDAC 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.OPTCOMPIND 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.OPTOFC 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.PDQPRIORITY 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_DBTEMP 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_NPROCS 3 String 3.50, 4.0

com.ibm.db2.jcc.DB2BaseDataSource.STMT_CACHE 3 String 3.50, 4.0

Note: The property applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 for Linux, UNIX, and Windows

3. IBM Informix

DB2BaseDataSource fields

The following constants are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

public final static int IMPLICIT_ROLLBACK_OPTION_NOT_SET = 0
A constant for the implicitRollbackOption property. This value indicates that a
connection is not closed when a deadlock or timeout occurs. This value causes
the same behavior as
IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION.

public final static int IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION = 1
A constant for the implicitRollbackOption property. This value indicates that a
connection is not closed when a deadlock or timeout occurs. The IBM Data
Server Driver for JDBC and SQLJ returns the error code that the data server
generates for a deadlock or timeout.

public final static int IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION = 2
A constant for the implicitRollbackOption property. This value indicates that a
connection is closed when a deadlock or timeout occurs.

public final static int INTERRUPT_PROCESSING_MODE_DISABLED = 0
A constant for the interruptProcessingMode property. This value indicates that
interrupt processing is disabled.

public final static int INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL = 1
A constant for the interruptProcessingMode property. This value indicates that

390 Application Programming Guide and Reference for Java

the IBM Data Server Driver for JDBC and SQLJ cancels the currently executing
statement when an application executes Statement.cancel, if the data server
supports interrupt processing.

public final static int INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET = 2
A constant for the interruptProcessingMode property. This value indicates that
the IBM Data Server Driver for JDBC and SQLJ drops the underlying socket
and closes the connection when an application executes Statement.cancel.

public final static int NOT_SET = 0
The default value for properties.

public final static int YES = 1
The YES value for properties.

public final static int NO = 2
The NO value for properties.

public final static int QUERYTIMEOUT_DISABLED = -1
A constant for the timerLevelForQueryTimeOut property. This value indicates
that Timer objects for waiting for queries to time out are not created.

public final static int QUERYTIMEOUT_STATEMENT_LEVEL = 1
A constant for the timerLevelForQueryTimeOut property. This value indicates
that Timer objects for waiting for queries to time out are created at the
Statement level.

public final static int QUERYTIMEOUT_CONNECTION_LEVEL = 2
A constant for the timerLevelForQueryTimeOut property. This value indicates
that Timer objects for waiting for queries to time out are created at the
Connection level.

public final static int TRACE_OPTION_CIRCULAR = 1
A constant for the traceOption property. This value indicates that the IBM Data
Server Driver for JDBC and SQLJ uses circular tracing.

DB2BaseDataSource methods

In addition to the getXXX and setXXX methods for the DB2BaseDataSource
properties, the following methods are defined only for the IBM Data Server Driver
for JDBC and SQLJ.

getReference
Format:
public javax.naming.Reference getReference()

throws javax.naming.NamingException

Retrieves the Reference of a DataSource object. For an explanation of a
Reference, see the description of javax.naming.Referenceable in the Java
Platform Standard Edition documentation.

Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

DB2Binder class
The com.ibm.db2.jcc.DB2Binder class provides the runJDBCBinder method as an
alternative to the DB2Binder utility for binding IBM Data Server Driver for JDBC
and SQLJ packages.

Chapter 7. JDBC and SQLJ reference information 391

DB2Binder methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

runJDBCBinder
Format:
public void runJDBCBinder(DB2Connection connection,
java.util.Properties db2BinderOptions)
throws SQLException

Binds a IBM Data Server Driver for JDBC and SQLJ package.

Parameters:

connection
A DB2Connection object for a connection that was established at the data
server on which the packages are being bound.

db2BinderOptions
A java.util.Properties object that contains key and value pairs, in which
each key is the name of a DB2Binder utility option, and each value is the
value to which you want to set that DB2Binder option. See “DB2Binder
utility” on page 522 for a list of DB2Binder options.

For example, suppose that con is a previously defined Connection object.
Set the property values in the following way.
DB2Binder db2binder = new DB2Binder();
Properties prop = new Properties();
prop.put ("action", "replace");
prop.put ("bindoptions", "DEFER(PREPARE) IMMEDWRITE(NO) REOPT(NONE)");
db2binder.runJDBCBinder((DB2Connection)con,prop);

This method is not supported for connections to IBM Informix.

DB2BlobFileReference class
The com.ibm.db2.jcc.DB2BlobFileReference class is subclass of DB2FileReference
that is used for creating BLOB file reference variable objects. This class applies only
to IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for z/OS
Version 9 or later.

DB2BlobFileReference constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DB2BlobFileReference
Format:
public DB2BlobFileReference(String fileName)

throws java.sql.SQLException

Constructs a DB2BlobFileReference object for a BLOB file reference variable.

Parameter descriptions:

fileName
The name of the file for the file reference variable. The name must specify
the absolute path name for an existing HFS file.

392 Application Programming Guide and Reference for Java

DB2CallableStatement interface
The com.ibm.db2.jcc.DB2CallableStatement interface extends the
java.sql.CallableStatement and the com.ibm.db2.jcc.DB2PreparedStatement
interfaces.

DB2CallableStatement methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDBTimestamp
Formats:
public DBTimestamp getDBTimestamp(int parameterIndex)

throws SQLException
public DBTimestamp getDBTimestamp(String parameterName)

throws SQLException

Returns the value of a TIMESTAMP OUT or INOUT parameter as a
DBTimestamp object. If the value of the parameter is NULL, the returned value
is null.

Parameters:

parameterIndex
The number of the parameter whose value is being retrieved.

parameterName
The name of the parameter whose value is being retrieved.

This method is not supported for connections to IBM Informix.

getJccArrayAtName
Format:
public java.sql.Array getJccArrayAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves an ARRAY value that is designated by a named parameter marker as
a java.sql.Array value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccBigDecimalAtName
Format:
public java.math.BigDecimal getJccBigDecimalAtName(String parameterMarkerName)

throws java.sql.SQLException
public java.math.BigDecimal getJccBigDecimalAtName(String parameterMarkerName,

int scale)
throws java.sql.SQLException

Retrieves a DECIMAL value that is designated by a named parameter marker
as a java.math.BigDecimal value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

Chapter 7. JDBC and SQLJ reference information 393

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

scale
The scale of the value that is retrieved.

getJccBlobAtName
Formats:
public java.sql.Blob getJccBlobAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a BLOB value that is designated by a named parameter marker as a
java.sql.Blob value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccBooleanAtName
Format:
public boolean getJccBooleanAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a BIT or BOOLEAN value that is designated by a named parameter
marker as a boolean value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccByteAtName
Format:
public byte getJccByteAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a TINYINT value that is designated by a named parameter marker as
a byte value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccBytesAtName
Format:
public byte[] getJccBytesAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a BINARY or VARBINARY value that is designated by a named
parameter marker as an array of byte values.

394 Application Programming Guide and Reference for Java

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccClobAtName
Format:
public java.sql.Blob getJccClobAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a CLOB value that is designated by a named parameter marker as a
java.sql.Clob value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccDateAtName
Formats:
public java.sql.Date getJccDateAtName(String parameterMarkerName)

throws java.sql.SQLException
public java.sql.Date getJccDateAtName(String parameterMarkerName,

java.util.Calendar cal)
throws java.sql.SQLException

Retrieves a DATE value that is designated by a named parameter marker as a
java.sql.Date value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the date.

getJccDoubleAtName
Format:
public double getJccDoubleAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a DOUBLE value that is designated by a named parameter marker as
a double value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

Chapter 7. JDBC and SQLJ reference information 395

getJccFloatAtName
Format:
public double getJccFloatAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a FLOAT value that is designated by a named parameter marker as a
double value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccIntAtName
Format:
public int getJccIntAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a INTEGER value that is designated by a named parameter marker
as a int value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccLongAtName
Format:
public long getJccLongAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a BIGINT value that is designated by a named parameter marker as
a long value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccObjectAtName
Formats:
public java.sql.Object getJccObjectAtName(String parameterMarkerName)

throws java.sql.SQLException
public java.sql.Object getJccObjectAtName(String parameterMarkerName,

Map map)
throws java.sql.SQLException

Retrieves a value that is designated by a named parameter marker as a
java.sql.Object value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

396 Application Programming Guide and Reference for Java

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

map
The mapping from SQL type names to Java classes.

getJccRowIdAtName
Format:
public java.sql.RowId getJccRowIdAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a ROWID value that is designated by a named parameter marker as
a java.sql.RowId value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

This method requires the IBM Data Server Driver for JDBC and SQLJ Version
4.8 or later.

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccShortAtName
Format:
public short getJccShortAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a SMALLINT value that is designated by a named parameter marker
as a short value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccSQLXMLAtName
Format:
public java.sql.SQLXML getJccSQLXMLAtName(String parameterMarkerName)

throws java.sql.SQLException

Retrieves a SQLXML value that is designated by a named parameter marker as
a java.sql.SQLXML value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

This method requires the IBM Data Server Driver for JDBC and SQLJ Version
4.8 or later.

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccStringAtName
Format:
public java.lang.String getJccStringAtName(String parameterMarkerName)

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 397

Retrieves a CHAR, VARcHAR, or LONGVARCHAR value that is designated
by a named parameter marker as a java.lang.String value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

getJccTimeAtName
Formats:
public java.sql.Time getJccTimeAtName(String parameterMarkerName)

throws java.sql.SQLException
public java.sql.Time getJccTimeAtName(String parameterMarkerName,

java.util.Calendar cal)
throws java.sql.SQLException

Retrieves a TIME value that is designated by a named parameter marker as a
java.sql.Time value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the time.

getJccTimestampAtName
Formats:
public java.sql.Timestamp getJccTimestampAtName(String parameterMarkerName)

throws java.sql.SQLException
public java.sql.Timestamp getJccTimestampAtName(String parameterMarkerName,

java.util.Calendar cal)
throws java.sql.SQLException

Retrieves a TIMESTAMP value that is designated by a named parameter
marker as a java.sql.Timestamp value.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for which a value is retrieved.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the timestamp.

registerJccOutParameterAtName
Formats:
public void registerJccOutParameterAtName(String parameterMarkerName,

int sqlType)
throws java.sql.SQLException

public void registerJccOutParameterAtName(String parameterMarkerName,
int sqlType,
int scale)

398 Application Programming Guide and Reference for Java

throws java.sql.SQLException
public void registerJccOutParameterAtName(String parameterMarkerName,

int sqlType,
String typeName)
throws java.sql.SQLException

Registers an OUT parameter that is identified by parameterMarkerName as the
JDBC type sqlType.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker for the parameter that is to be
registered.

sqlType
The JDBC type code, as defined in java.sql.Types, of the parameter that is
to be registered.

scale
The scale of the parameter that is to be registered. This parameter applies
only to this case:
v If sqlType is java.sql.Types.DECIMAL or java.sql.Types.NUMERIC, scale is

the number of digits to the right of the decimal point.

typeName
If jdbcType is java.sql.Types.DISTINCT or java.sql.Types.REF, the
fully-qualified name of the SQL user-defined type of the parameter that is
to be registered.

setDBTimestamp
Format:
public void setDBTimestamp(String parameterName,

DBTimestamp timestamp)
throws java.sql.SQLException

Assigns a DBTimestamp value to an IN or INOUT parameter.

Parameters:

parameterName
The name of the parameter to which a DBTimestamp variable value is
assigned.

timestamp
The DBTimestamp value that is assigned to the parameter.

This method is not supported for connections to IBM Informix.

setJccXXXAtName methods
These methods are inherited from DB2PreparedStatement.

DB2ClientRerouteServerList class
The com.ibm.db2.jcc.DB2ClientRerouteServerList class implements the
java.io.Serializable and javax.naming.Referenceable interfaces.

DB2ClientRerouteServerList methods

getAlternatePortNumber
Format:

Chapter 7. JDBC and SQLJ reference information 399

public int[] getAlternatePortNumber()

Retrieves the port numbers that are associated with the alternate servers.

getAlternateServerName
Format:
public String[] getAlternateServerName()

Retrieves an array that contains the names of the alternate servers. These
values are IP addresses or DNS server names.

getPrimaryPortNumber
Format:
public int getPrimaryPortNumber()

Retrieves the port number that is associated with the primary server.

getPrimaryServerName
Format:
public String[] getPrimaryServerName()

Retrieves the name of the primary server. This value is an IP address or a DNS
server name.

setAlternatePortNumber
Format:
public void setAlternatePortNumber(int[] alternatePortNumberList)

Sets the port numbers that are associated with the alternate servers.

setAlternateServerName
Format:
public void setAlternateServerName(String[] alternateServer)

Sets the alternate server names for servers. These values are IP addresses or
DNS server names.

setPrimaryPortNumber
Format:
public void setPrimaryPortNumber(int primaryPortNumber)

Sets the port number that is associated with the primary server.

setPrimaryServerName
Format:
public void setPrimaryServerName(String primaryServer)

Sets the primary server name for a server. This value is an IP address or a
DNS server name.

400 Application Programming Guide and Reference for Java

Related concepts:
Chapter 11, “Java client support for high availability on IBM data servers,” on page
561

DB2ClobFileReference class
The com.ibm.db2.jcc.DB2ClobFileReference class is subclass of DB2FileReference
that is used for creating CLOB file reference variable objects. This class applies
only to IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS Version 9 or later.

DB2ClobFileReference constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DB2ClobFileReference
Format:
public DB2ClobFileReference(String fileName,

int fileCcsid)
throws java.sql.SQLException

public DB2ClobFileReference(String fileName,
String fileEncoding)

throws java.sql.SQLException

Constructs a DB2ClobFileReference object for a CLOB file reference variable.

Parameter descriptions:

fileName
The name of the file for the file reference variable. The name must specify
the absolute path name for an existing HFS file.

fileCcsid
The CCSID of the data in the file for the file reference variable.

fileEncoding
The encoding scheme of the data in the file for the file reference variable.

DB2Connection interface
The com.ibm.db2.jcc.DB2Connection interface extends the java.sql.Connection
interface.

DB2Connection implements the java.sql.Wrapper interface.

DB2Connection methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

alternateWasUsedOnConnect
Format:
public boolean alternateWasUsedOnConnect()

throws java.sql.SQLException

Returns true if the driver used alternate server information to obtain the
connection. The alternate server information is available in the transient
clientRerouteServerList information on the DB2BaseDataSource, which the
database server updates as primary and alternate servers change.

Chapter 7. JDBC and SQLJ reference information 401

changeDB2Password
Format:
public abstract void changeDB2Password(String oldPassword,

String newPassword)
throws java.sql.SQLException

Changes the password for accessing the data source, for the user of the
Connection object.

Parameter descriptions:

oldPassword
The original password for the Connection.

newPassword
The new password for the Connection.

createArrayOf
Format:
Array createArrayOf(String typeName,

Object[] elements)
throws SQLException;

Creates a java.sql.Array object.

Parameter descriptions:

typeName
The SQL data type of the elements of the array map to. typeName can be a
built-in data type or a distinct type.

elements
The elements that populate the Array object.

deregisterDB2XmlObject
Formats:
public void deregisterDB2XmlObject(String sqlIdSchema,

String sqlIdName)
throws SQLException

Removes a previously registered XML schema from the data source.

Parameter descriptions:

sqlIdSchema
The SQL schema name for the XML schema. sqlIdSchema is a String value
with a maximum length of 128 bytes. The value of sqlIdSchema must be the
string 'SYSXSR' or null. If the value of sqlIdSchema is null, the database
system uses the string 'SYSXSR'.

sqlIdName
The SQL name for the XML schema. sqlIdName is a String value with a
maximum length of 128 bytes. The value of sqlIdName must conform to the
rules for an SQL identifier and cannot be null.

getDB2ClientAccountingInformation
Format:
public String getDB2ClientAccountingInformation()

throws SQLException

Returns accounting information for the current client.

402 Application Programming Guide and Reference for Java

Important: getDB2ClientAccountingInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientApplicationInformation
Format:
public String getDB2ClientApplicationInformation()

throws java.sql.SQLException

Returns application information for the current client.

Important: getDB2ClientApplicationInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientCorrelationToken
Format:
public String getDB2ClientCorrelationToken()

throws SQLException

Returns the client correlation token for the current client.

getDB2ClientCorrelationToken applies only to connections to DB2 for z/OS.

Important: getDB2ClientCorrelationToken is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientProgramId
Format:
public String getDB2ClientProgramId()

throws java.sql.SQLException

Returns the user-defined program identifier for the client. The program
identifier can be used to identify the application at the data source.

getDB2ClientProgramId does not apply to DB2 for Linux, UNIX, and Windows
data servers.

getDB2ClientUser
Format:
public String getDB2ClientUser()

throws java.sql.SQLException

Returns the current client user name for the connection. This name is not the
user value for the JDBC connection.

Important: getDB2ClientUser is deprecated in the JDBC 4.0 implementation of
the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientWorkstation
Format:
public String getDB2ClientWorkstation()

throws java.sql.SQLException

Returns current client workstation name for the current client.

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

Chapter 7. JDBC and SQLJ reference information 403

|
|

|
|

|

|

|
|
|

getDB2Correlator
Format:
String getDB2Correlator()

throws java.sql.SQLException

Returns the value of the crrtkn (correlation token) instance variable that DRDA
sends with the ACCRDB command. The correlation token uniquely identifies a
logical connection to a server.

getDB2CurrentPackagePath
Format:
public String getDB2CurrentPackagePath()

throws java.sql.SQLException

Returns the list of DB2 package collections that are searched for JDBC and
SQLJ packages.

The getDB2CurrentPackagePath method applies only to connections to DB2
database systems.

getDB2CurrentPackageSet
Format:
public String getDB2CurrentPackageSet()

throws java.sql.SQLException

Returns the collection ID for the connection.

The getDB2CurrentPackageSet method applies only to connections to DB2
database systems.

getDB2ProgressiveStreaming
Format:
public int getDB2ProgressiveStreaming()

throws java.sql.SQLException

Returns the current progressive streaming setting for the connection.

The returned value depends on whether the data source supports progressive
streaming, how the progressiveStreaming property is set, and whether
DB2Connection.setProgressiveStreaming was called:
v If the data source does not support progressive streaming, 2 (NO) is always

returned, regardless of the progressiveStreaming property setting.
v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was called, the returned value is
the value that DB2Connection.setProgressiveStreaming set.

v If the data source supports progressive streaming, and
DB2Connection.setProgressiveStreaming was not called, the returned value
is 2 (NO) if progressiveStreaming was set to DB2BaseDataSource.NO. If
progressiveStreaming was set to DB2BaseDataSource.YES or was not set, the
returned value is 1 (YES).

getDB2SecurityMechanism
Format:
public int getDB2SecurityMechanism()

throws java.sql.SQLException

Returns the security mechanism that is in effect for the connection:

3 Clear text password security

404 Application Programming Guide and Reference for Java

4 User ID-only security

7 Encrypted password security

9 Encrypted user ID and password security

11 Kerberos security

12 Encrypted user ID and data security

13 Encrypted user ID, password, and data security

15 Plugin security

16 Encrypted user ID-only security

getDB2SystemMonitor
Format:
public abstract DB2SystemMonitor getDB2SystemMonitor()

throws java.sql.SQLException

Returns the system monitor object for the connection. Each IBM Data Server
Driver for JDBC and SQLJ connection can have a single system monitor.

getDBConcurrentAccessResolution
Format:
public int getDBConcurrentAccessResolution()

throws java.sql.SQLException

Returns the concurrent access setting for the connection. The concurrent access
setting is set by the setDBConcurrentAccessResolution method or by the
concurrentAccessResolution property.

getDBConcurrentAccessResolution applies only to connections to DB2 for z/OS
and DB2 for Linux, UNIX, and Windows.

getDBProgressiveStreaming
Format:
public int getDB2ProgressiveStreaming()

throws java.sql.SQLException

Returns the current progressive streaming setting for the connection.

The returned value depends on whether the data source supports progressive
streaming, how the progressiveStreaming property is set, and whether
DB2Connection.setProgressiveStreaming was called:
v If the data source does not support progressive streaming, 2 (NO) is always

returned, regardless of the progressiveStreaming property setting.
v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was called, the returned value is
the value that DB2Connection.setProgressiveStreaming set.

v If the data source supports progressive streaming, and
DB2Connection.setProgressiveStreaming was not called, the returned value
is 2 (NO) if progressiveStreaming was set to DB2BaseDataSource.NO. If
progressiveStreaming was set to DB2BaseDataSource.YES or was not set, the
returned value is 1 (YES).

getDBStatementConcentrator
Format:
public int getDBStatementConcentrator()

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 405

Returns the statement concentrator use setting for the connection. The
statement concentrator use setting is set by the setDBStatementConcentrator
method or by the statementConcentrator property.

getJccLogWriter
Format:
public PrintWriter getJccLogWriter()

throws java.sql.SQLException

Returns the current trace destination for the IBM Data Server Driver for JDBC
and SQLJ trace.

getJccSpecialRegisterProperties
Format:
public java.util.Properties getJccSpecialRegisterProperties()

throws java.sql.SQLException

Returns a java.util.Properties object, in which the keys are the special
registers that are supported at the target data source, and the key values are
the current values of those special registers.

This method does not apply to connections to IBM Informix data sources.

getSavePointUniqueOption
Format:
public boolean getSavePointUniqueOption()

throws java.sql.SQLException

Returns true if setSavePointUniqueOption was most recently called with a
value of true. Returns false otherwise.

installDB2JavaStoredProcedure
Format:
public void DB2Connection.installDB2JavaStoredProcedure(

java.io.InputStream jarFile,
int jarFileLength,
String jarId)
throws java.sql.SQLException

Invokes the SQLJ.DB2_INSTALL_JAR stored procedure on a DB2 for z/OS
server to create a new definition of a JAR file in the catalog for that server.

Parameter descriptions:

jarFile
The contents of the JAR file that is to be defined to the server.

jarFileLength
The length of the JAR file that is to be defined to the server.

jarId
The name of the JAR in the database, in the form schema.JAR-id or JAR-id.
This is the name that you use when you refer to the JAR in SQL
statements. If you omit schema, the database system uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The
owner of the JAR is the authorization ID in the CURRENT SQLID special
register.

This method does not apply to connections to IBM Informix data sources.

isDB2Alive
Format:

406 Application Programming Guide and Reference for Java

public boolean DB2Connection.isDB2Alive()
throws java.sql.SQLException

Returns true if the socket for a connection to the data source is still active.

Important: isDB2Alive is deprecated in the JDBC 4.0 implementation of the
IBM Data Server Driver for JDBC and SQLJ. Use Connection.isDBValid
instead.

isDBValid
Format:
public boolean DB2Connection.isDBValid(boolean throwException, int timeout)

throws java.sql.SQLException

Returns true if the connection has not been closed and is still valid. Returns
false otherwise.

Parameter descriptions:

throwException
Specifies whether isDBValid throws an SQLException if the connection is
not valid. Possible values are:

true isDBValid throws an SQLException if the connection is not valid.

false isDBValid throws an SQLException only if the value of timeout is
not valid.

timeout
The time in seconds to wait for completion of a database operation that the
driver submits. The driver submits that database operation to the data
source to validate the connection. If the timeout period expires before the
database operation completes, isDBValid returns false. A value of 0
indicates that there is no timeout period for the database operation.

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
isDBValid throws an SQLException if the value of timeout is less than 0.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,
isDBValid throws an SQLException if the value of timeout is not equal to 0.

This method does not apply to connections to IBM Informix data sources.

reconfigureDB2Connection
Format:
public void reconfigureDB2Connection(java.util.Properties properties)

throws SQLException

Reconfigures a connection with new settings. The connection does not need to
be returned to a connection pool before it is reconfigured. This method can be
called while a transaction is in progress, and can be used for trusted or
untrusted connections.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

Chapter 7. JDBC and SQLJ reference information 407

Parameter descriptions:

properties
New properties for the connection. These properties override any
properties that are already defined on the DB2Connection instance.

registerDB2XmlSchema
Formats:
public void registerDB2XmlSchema(String[] sqlIdSchema,

String[] sqlIdName,
String[] xmlSchemaLocations,
InputStream[] xmlSchemaDocuments,
int[] xmlSchemaDocumentsLengths,
InputStream[] xmlSchemaDocumentsProperties,
int[] xmlSchemaDocumentsPropertiesLengths,
InputStream xmlSchemaProperties,
int xmlSchemaPropertiesLength,
boolean isUsedForShredding)
throws SQLException

public void registerDB2XmlSchema(String[] sqlIdSchema,
String[] sqlIdName,
String[] xmlSchemaLocations,
String[] xmlSchemaDocuments,
String[] xmlSchemaDocumentsProperties,
String xmlSchemaProperties,
boolean isUsedForShredding)
throws SQLException

Registers an XML schema with one or more XML schema documents. If
multiple XML schema documents are processed with one call to
registerDB2XmlSchema, those documents are processed as part of a single
transaction.

The first form of registerDB2XmlSchema is for XML schema documents that are
read from an input stream. The second form of registerDB2XmlSchema is for
XML schema documents that are read from strings.

Parameter descriptions:

sqlIdSchema
The SQL schema name for the XML schema. Only the first element of the
sqlIdSchema array is used. sqlIdSchema is a String value with a maximum
length of 128 bytes. The value of sqlIdSchema must be the string 'SYSXSR'
or null. If the value of sqlIdSchema is null, the database system uses the
string 'SYSXSR'.

sqlIdName
The SQL name for the XML schema. Only the first element of the
sqlIdName array is used. sqlIdName is a String value with a maximum
length of 128 bytes. The value of sqlIdName must conform to the rules for
an SQL identifier and cannot be null.

xmlSchemaLocations
XML schema locations for the primary XML schema documents of the
schemas that are being registered. XML schema location values are
normally in URI format. Each xmlSchemaLocations value is a String value
with a maximum length of 1000 bytes. The value is used only to match the
information that is specified in the XML schema document that references
this document. The database system does no validation of the format, and
no attempt is made to resolve the URI.

xmlSchemaDocuments
The content of the primary XML schema documents. Each

408 Application Programming Guide and Reference for Java

xmlSchemaDocuments value is a String or InputStream value with a
maximum length of 30 MB. The values must not be null.

xmlSchemaDocumentsLengths
The lengths of the XML schema documents in the xmlSchemaDocuments
parameter, if the first form of registerDB2XmlSchema is used. Each
xmlSchemaDocumentsLengths value is an int value.

xmlSchemaDocumentsProperties
Contains properties of the primary XML schema documents, such as
properties that are used by an external XML schema versioning system.
The database system does no validation of the contents of these values.
They are stored in the XSR table for retrieval and used in other tools and
XML schema repository implementations. Each
xmlSchemaDocumentsProperties value is a String or InputStream value with a
maximum length of 5 MB. A value is null if there are no properties to be
passed.

xmlSchemaDocumentsPropertiesLengths
The lengths of the XML schema properties in the
xmlSchemaDocumentsProperties parameter, if the first form of
registerDB2XmlSchema is used. Each xmlSchemaDocumentsPropertiesLengths
value is an int value.

xmlSchemaProperties
Contains properties of the entire XML schema, such as properties that are
used by an external XML schema versioning system. The database system
does no validation of the contents of this value. They are stored in the XSR
table for retrieval and used in other tools and XML schema repository
implementations. The xmlSchemaProperties value is a String or InputStream
value with a maximum length of 5 MB. The value is null if there are no
properties to be passed.

xmlSchemaPropertiesLengths
The length of the XML schema property in the xmlSchemaProperties
parameter, if the first form of registerDB2XmlSchema is used. The
xmlSchemaPropertiesLengths value is an int value.

isUsedForShredding
Indicates whether there are annotations in the schema that are to be used
for XML decomposition. isUsedForShredding is a boolean value.

The isUsedForShredding parameter value must be false for connections to
DB2 for z/OS data sources.

This method does not apply to connections to IBM Informix data sources.

setDBConcurrentAccessResolution
Format:
public void setDBConcurrentAccessResolution(int concurrentAccessResolution)

throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that
a read transaction can access a committed and consistent image of rows that
are incompatibly locked by write transactions, if the data source supports
accessing currently committed data, and the application isolation level is cursor
stability (CS) or read stability (RS). This option has the same effect as the DB2
CONCURRENTACCESSRESOLUTION bind option.
setDBConcurrentAccessResolution affects only statements that are created after
setDBConcurrentAccessResolution is executed.

Chapter 7. JDBC and SQLJ reference information 409

setDBConcurrentAccessResolution applies only to connections to DB2 for z/OS
and DB2 for Linux, UNIX, and Windows.

Parameter descriptions:

concurrentAccessResolution
One of the following integer values:

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions access the currently committed data when the

data is being updated or deleted.
v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME
(2) The IBM Data Server Driver for JDBC and SQLJ requests that:

v Read transactions wait for a commit or rollback operation when
they encounter data that is being updated or deleted.

v Read transactions do not skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)
Enables the data server's default behavior for read transactions
when lock contention occurs. This is the default value.

setDBProgressiveStreaming
Format:
public void setDB2ProgressiveStreaming(int newSetting)

throws java.sql.SQLException

Sets the progressive streaming setting for all ResultSet objects that are created
on the connection.

Parameter descriptions:

newSetting
The new progresssive streaming setting. Possible values are:

DB2BaseDataSource.YES (1)
Enable progressive streaming. If the data source does not support
progressive streaming, this setting has no effect.

DB2BaseDataSource.NO (2)
Disable progressive streaming.

setDBStatementConcentrator
Format:
public void setDBStatementConcentrator(int statementConcentratorUse)

throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data
source's statement concentrator functionality. The statement concentrator is the
ability to bypass preparation of a statement when it is the same as a statement
in the dynamic statement cache, except for literal values. Statement
concentrator functionality applies only to SQL statements that have literals but
no parameter markers. setDBStatementConcentrator overrides the setting of
the statementConcentrator Connection or DataSource property.
setDBStatementConcentrator affects only statements that are created after
setDBStatementConcentrator is executed.

410 Application Programming Guide and Reference for Java

Parameter descriptions:

statementConcentratorUse
One of the following integer values:

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)
The IBM Data Server Driver for JDBC and SQLJ does not use the
data source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS
(2) The IBM Data Server Driver for JDBC and SQLJ uses the data

source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)
Enables the data server's default behavior for statement
concentrator functionality. This is the default value.

For DB2 for Linux, UNIX, and Windows data sources that support
statement concentrator functionality, the functionality is used if the
STMT_CONC configuration parameter is set to ON at the data
source. Otherwise, statement concentrator functionality is not used.

For DB2 for z/OS data sources that support statement concentrator
functionality, the functionality is not used if statementConcentrator
is not set.

removeDB2JavaStoredProcedure
Format:
public void DB2Connection.removeDB2JavaStoredProcedure(

String jarId)
throws java.sql.SQLException

Invokes the SQLJ.DB2_REMOVE_JAR stored procedure on a DB2 for z/OS
server to delete the definition of a JAR file from the catalog for that server.

Parameter descriptions:

jarId
The name of the JAR in the database, in the form schema.JAR-id or JAR-id.
This is the name that you use when you refer to the JAR in SQL
statements. If you omit schema, the database system uses the SQL
authorization ID that is in the CURRENT SCHEMA special register.

This method does not apply to connections to IBM Informix data sources.

replaceDB2JavaStoredProcedure
Format:
public void DB2Connection.replaceDB2JavaStoredProcedure(

java.io.InputStream jarFile,
int jarFileLength,
String jarId)
throws java.sql.SQLException

Invokes the SQLJ.DB2_REPLACE_JAR stored procedure on a DB2 for z/OS
server to replace the definition of a JAR file in the catalog for that server.

Parameter descriptions:

jarFile
The contents of the JAR file that is to be replaced on the server.

jarFileLength
The length of the JAR file that is to be replace on the server.

Chapter 7. JDBC and SQLJ reference information 411

jarId
The name of the JAR in the database, in the form schema.JAR-id or JAR-id.
This is the name that you use when you refer to the JAR in SQL
statements. If you omit schema, the database system uses the SQL
authorization ID that is in the CURRENT SCHEMA special register. The
owner of the JAR is the authorization ID in the CURRENT SQLID special
register.

This method does not apply to connections to IBM Informix data sources.

reuseDB2Connection (trusted connection reuse)
Formats:
public void reuseDB2Connection(byte[] cookie,

String user,
String password,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

public void reuseDB2Connection(byte[] cookie,
org.ietf.GSSCredential gssCredential,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The second of these forms of reuseDB2Connection does not apply to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

These forms of reuseDB2Connection are used by a trusted application server to
reuse a preexisting trusted connection on behalf of a new user. Properties that
can be reset are passed, including the new user ID. The database server resets
the associated physical connection. If reuseDB2Connection executes successfully,
the connection becomes available for immediate use, with different properties,
by the new user.

Parameter descriptions:

cookie
A unique cookie that the JDBC driver generates for the Connection
instance. The cookie is known only to the application server and the
underlying JDBC driver that established the initial trusted connection. The
application server passes the cookie that was created by the driver when
the pooled connection instance was created. The JDBC driver checks that
the supplied cookie matches the cookie of the underlying trusted physical
connection to ensure that the request originated from the application server
that established the trusted physical connection. If the cookies match, the
connection becomes available for immediate use, with different properties,
by the new user .

412 Application Programming Guide and Reference for Java

user
The client ID that the database system uses to establish the database
authorization ID. If the user was not authenticated by the application
server, the application server needs to pass a client ID that represents an
unauthenticated user.

password
The password for user.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

userNameRegistry
A name that identifies a mapping service that maps a workstation user ID
to a z/OS RACF ID. An example of a mapping service is the Integrated
Security Services Enterprise Identity Mapping (EIM). The mapping service
is defined by a plugin. Valid values for userNameRegistry are defined by the
plugin providers. If userNameRegistry is null, no mapping of user is done.

userSecToken
The client's security tokens. This value is traced as part of DB2 for z/OS
accounting data. The content of userSecToken is described by the application
server and is referred to by the database system as an application server
security token.

originalUser
The original user ID that was used by the application server.

properties
Properties for the reused connection.

reuseDB2Connection (untrusted reuse with reauthentication)
Formats:
public void reuseDB2Connection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public void reuseDB2Connection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

The first of these forms of reuseDB2Connection is not supported for IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

The second of these forms of reuseDB2Connection does not apply to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

In a heterogeneous pooling environment, these forms of reuseDB2Connection
reuse an existing Connection instance after reauthentication.

Parameter description:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

Chapter 7. JDBC and SQLJ reference information 413

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2Connection instance.

reuseDB2Connection (untrusted or trusted reuse without reauthentication)
Formats:
public void reuseDB2Connection(java.util.Properties properties)

throws java.sql.SQLException

Reuses an existing Connection instance without reauthentication. This method
is intended for reuse of a Connection instance when the properties do not
change.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

Parameter description:

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2Connection instance.

setDB2ClientAccountingInformation
Format:
public void setDB2ClientAccountingInformation(String info)

throws java.sql.SQLException

Specifies accounting information for the connection. This information is for
client accounting purposes. This value can change during a connection.

setDB2ClientAccountingToken applies only to connections to DB2 for z/OS.

setDB2ClientAccountingInformation sets the value in the CURRENT
CLIENT_ACCTNG special register.

Parameter description:

info
User-specified accounting information.

The maximum length depends on the data server version. See “Client info
properties support by the IBM Data Server Driver for JDBC and SQLJ” on
page 91 for the maximum lengths.

414 Application Programming Guide and Reference for Java

|
|
|

A Java empty string ("") or a Java null value is valid for this parameter.

Important: setDB2ClientAccountingInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

setDB2ClientApplicationInformation
Format:
public String setDB2ClientApplicationInformation(String info)

throws java.sql.SQLException

Specifies application information for the current client.

Important: setDB2ClientApplicationInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

Parameter description:

info
User-specified application information.

The maximum length depends on the data server version. See “Client info
properties support by the IBM Data Server Driver for JDBC and SQLJ” on
page 91 for the maximum lengths.

A Java empty string ("") or a Java null value is valid for this parameter.

setDB2ClientCorrelationToken
Format:
public String setDB2ClientCorrelationToken(String client-correlation-token)

throws SQLException

Specifies a unique value that allows you to correlate your business processes
across the enterprise.

setDB2ClientCorrelationToken sets the value in the CURRENT
CLIENT_CORR_TOKEN special register. The client correlation token value is
available in the accounting correlation header record of a DB2 trace, and in the
-DISPLAY THREAD command output.

Important: setDB2ClientCorrelationToken is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

Parameter description:

client-correlation-token
A unique value that can be used to correlate business processes across an
enterprise. The maximum length is 255 bytes.

setDB2ClientDebugInfo
Formats:
public void setDB2ClientDebugInfo(String debugInfo)
throws java.sql.SQLException

public void setDB2ClientDebugInfo(String mgrInfo,
String traceInfo)
throws java.sql.SQLException

Sets a value for the CLIENT DEBUGINFO connection attribute, to notify the
database system that stored procedures and user-defined functions that are
using the connection are running in debug mode. CLIENT DEBUGINFO is
used by the DB2 Unified Debugger. Use the first form to set the entire CLIENT

Chapter 7. JDBC and SQLJ reference information 415

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|
|
|

DEBUGINFO string. Use the second form to modify only the session manager
and trace information in the CLIENT DEBUGINFO string.

Setting the CLIENT DEBUGINFO attribute to a string of length greater than
zero requires one of the following privileges:
v The DEBUGSESSION privilege
v SYSADM authority

Parameter description:

debugInfo
A string of up to 254 bytes, in the following form:
Mip:port,Iip,Ppid,Ttid,Cid,Llvl

The parts of the string are:

Mip:port
Session manager IP address and port number

Iip Client IP address

Ppid Client process ID

Ttid Client thread ID (optional)

Cid Data connection generated ID

Llvl Debug library diagnostic trace level

For example:
M9.72.133.89:8355,I9.72.133.89,P4552,T123,C1,L0

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

mgrInfo
A string of the following form, which specifies the IP address and port
number for the Unified Debugger session manager.
Mip:port

For example:
M9.72.133.89:8355

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

trcInfo
A string of the following form, which specifies the debug library
diagnostics trace level.
Llvl

For example:
L0

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

setDB2ClientProgramId
Format:
public abstract void setDB2ClientProgramId(String program-ID)
throws java.sql.SQLException

416 Application Programming Guide and Reference for Java

Sets a user-defined program identifier for the connection, on DB2 for z/OS
servers. That program identifier is an 80-byte string that is used to identify the
caller.

setDB2ClientProgramId does not apply to DB2 for Linux, UNIX, and Windows
or IBM Informix data servers.

The DB2 for z/OS server places the string in IFCID 316 trace records along
with other statistics, so that you can identify which program is associated with
a particular SQL statement.

setDB2ClientUser
Format:
public void setDB2ClientUser(String user)

throws java.sql.SQLException

Specifies the current client user name for the connection. This name is for
client accounting purposes, and is not the user value for the JDBC connection.
Unlike the user for the JDBC connection, the current client user name can
change during a connection.

setDB2ClientUser sets the value in the CLIENT USERID special register.

Parameter description:

user
The user ID for the current client. The maximum length depends on the
server.

The maximum length depends on the data server version. See “Client info
properties support by the IBM Data Server Driver for JDBC and SQLJ” on
page 91 for the maximum lengths.

A Java empty string ("") or a Java null value is valid for this parameter.

Important: setDB2ClientUser is deprecated in the JDBC 4.0 implementation of
the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

setDB2ClientWorkstation
Format:
public void setDB2ClientWorkstation(String name)

throws java.sql.SQLException

Specifies the current client workstation name for the connection. This name is
for client accounting purposes. The current client workstation name can change
during a connection.

setDB2ClientWorkstation sets the value in the CLIENT WRKSTNNAME
special register.

Parameter description:

name
The workstation name for the current client.

The maximum length depends on the data server version. See “Client info
properties support by the IBM Data Server Driver for JDBC and SQLJ” on
page 91 for the maximum lengths.

A Java empty string ("") or a Java null value is valid for this parameter.

Chapter 7. JDBC and SQLJ reference information 417

|
|
|

|
|
|

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

setDB2CurrentPackagePath
Format:
public void setDB2CurrentPackagePath(String packagePath)

throws java.sql.SQLException

Specifies a list of collection IDs that the database system searches for JDBC and
SQLJ packages.

The setDB2CurrentPackagePath method applies only to connections to DB2
database systems.

Parameter description:

packagePath
A comma-separated list of collection IDs.

setDB2CurrentPackageSet
Format:
public void setDB2CurrentPackageSet(String packageSet)

throws java.sql.SQLException

Specifies the collection ID for the connection. When you set this value, you
also set the collection ID of the IBM Data Server Driver for JDBC and SQLJ
instance that is used for the connection.

The setDB2CurrentPackageSet method applies only to connections to DB2
database systems.

Parameter description:

packageSet
The collection ID for the connection. The maximum length for the
packageSet value is 18 bytes. You can invoke this method as an alternative
to executing the SQL SET CURRENT PACKAGESET statement in your
program.

setDB2ProgressiveStreaming
Format:
public void setDB2ProgressiveStreaming(int newSetting)

throws java.sql.SQLException

Sets the progressive streaming setting for all ResultSet objects that are created
on the connection.

Parameter descriptions:

newSetting
The new progresssive streaming setting. Possible values are:

DB2BaseDataSource.YES (1)
Enable progressive streaming. If the data source does not support
progressive streaming, this setting has no effect.

DB2BaseDataSource.NO (2)
Disable progressive streaming.

setGlobalSessionVariable
Format:

418 Application Programming Guide and Reference for Java

|
|

public void setGlobalSessionVariable(String global-variable-name,
String global-variable-value)
throws java.sql.SQLException

Sets the value of a global variable. This method applies only to connections to
DB2 for z/OS Version 11 or later data servers.

Parameter descriptions:

global-variable-name
The name of a global variable that is defined on the data server.

global-variable-value
The value that is assigned to the global variable.

setJccLogWriter
Formats:
public void setJccLogWriter(PrintWriter logWriter)

throws java.sql.SQLException

public void setJccLogWriter(PrintWriter logWriter, int traceLevel)
throws java.sql.SQLException

Enables or disables the IBM Data Server Driver for JDBC and SQLJ trace, or
changes the trace destination during an active connection.

Parameter descriptions:

logWriter
An object of type java.io.PrintWriter to which the IBM Data Server
Driver for JDBC and SQLJ writes trace output. To turn off the trace, set the
value of logWriter to null.

traceLevel
Specifies the types of traces to collect. See the description of the traceLevel
property in "Properties for the IBM Data Server Driver for JDBC and SQLJ"
for valid values.

setSavePointUniqueOption
Format:
public void setSavePointUniqueOption(boolean flag)

throws java.sql.SQLException

Specifies whether an application can reuse a savepoint name within a unit of
recovery. Possible values are:

true A Connection.setSavepoint(savepoint-name) method cannot specify
the same value for savepoint-name more than once within the same unit
of recovery.

false A Connection.setSavepoint(savepoint-name) method can specify the
same value for savepoint-name more than once within the same unit of
recovery.

When false is specified, if the Connection.setSavepoint(savepoint-
name) method is executed, and a savepoint with the name
savepoint-name already exists within the unit of recovery, the database
manager destroys the existing savepoint, and creates a new savepoint
with the name savepoint-name.

Reuse of a savepoint is not the same as executing
Connection.releaseSavepoint(savepoint-name).

Chapter 7. JDBC and SQLJ reference information 419

|
|
|

|
|

|

|
|

|
|

Connection.releaseSavepoint(savepoint-name) releases savepoint-name,
and any savepoints that were subsequently set.

updateDB2XmlSchema
Format:
public void updateDB2XmlSchema(String[] targetSqlIdSchema,
String[] targetSqlIdName,
String[] sourceSqlIdSchema,
String[] sourceSqlIdName,
String[] xmlSchemaLocations,
boolean dropSourceSchema)
throws SQLException

Updates the contents of an XML schema with the contents of another XML
schema in the XML schema repository, and optionally drops the source
schema. The schema documents in the target XML schema are replaced with
the schema documents from the source XML schema. Before
updateDB2XmlSchema can be called, registration of the source and target XML
schemas must be completed.

The SQL ALTERIN privilege is required for updating the target XML schema.
The SQL DROPIN privilege is required for dropping the source XML schema.

Parameter descriptions:

targetSqlIdSchema
The SQL schema name for a registered XML schema that is to be updated.
targetSqlIdSchema is a String value with a maximum length of 128 bytes.

targetSqlIdName
The name of the registered XML schema that is to be updated.
targetSqlIdName is a String value with a maximum length of 128 bytes.

sourceSqlIdSchema
The SQL schema name for a registered XML schema that is used to update
the target XML schema. sourceSqlIdSchema is a String value with a
maximum length of 128 bytes.

sourceSqlIdName
The name of the registered XML schema that is used to update the target
XML schema. sourceSqlIdName is a String value with a maximum length of
128 bytes.

dropSourceSchema
Indicates whether the source XML schema is to be dropped after the target
XML schema is updated. dropSourceSchema is a boolean value. false is the
default.

This method does not apply to connections to IBM Informix data sources.

420 Application Programming Guide and Reference for Java

Related concepts:
Chapter 16, “Problem diagnosis with the IBM Data Server Driver for JDBC and
SQLJ,” on page 621
Related tasks:
“Providing extended client information to the data source with IBM Data Server
Driver for JDBC and SQLJ-only methods” on page 89
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers”
on page 270
“IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for
Linux, UNIX, and Windows” on page 285

DB2ConnectionPoolDataSource class
DB2ConnectionPoolDataSource is a factory for PooledConnection objects. An object
that implements this interface is registered with a naming service that is based on
the Java Naming and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2ConnectionPoolDataSource class extends the
com.ibm.db2.jcc.DB2BaseDataSource class, and implements the
javax.sql.ConnectionPoolDataSource, java.io.Serializable, and
javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource properties

These properties are defined only for the IBM Data Server Driver for JDBC and
SQLJ. "Properties for the IBM Data Server Driver for JDBC and SQLJ" for
explanations of these properties.

These properties have a setXXX method to set the value of the property and a
getXXX method to retrieve the value. A setXXX method has this form:
void setProperty-name(data-type property-value)

A getXXX method has this form:
data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties
and their data types.

Table 96. DB2ConnectionPoolDataSource properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements int

DB2ConnectionPoolDataSource methods

getDB2PooledConnection
Formats:
public DB2PooledConnection getDB2PooledConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 421

public DB2PooledConnection getDB2PooledConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling
environment.

The first form getDB2PooledConnection provides a user ID and password. The
second form of getDB2PooledConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

getDB2TrustedPooledConnection
Formats:
public Object[] getDB2TrustedPooledConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a trusted DB2PooledConnection instance.
v The second element is a unique cookie for the generated pooled connection

instance.

The first form getDB2TrustedPooledConnection provides a user ID and
password, while the second form of getDB2TrustedPooledConnection uses the

422 Application Programming Guide and Reference for Java

user ID and password of the DB2ConnectionPoolDataSource object. The third
form of getDB2TrustedPooledConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The DB2 authorization ID that is used to establish the trusted connection to
the database server.

password
The password for the authorization ID that is used to establish the trusted
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

Related concepts:
Chapter 12, “JDBC and SQLJ connection pooling support,” on page 609
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

DB2DatabaseMetaData interface
The com.ibm.db2.jcc.DB2DatabaseMetaData interface extends the
java.sql.DatabaseMetaData interface.

DB2DatabaseMetaData methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

isIDSDatabaseAnsiCompliant
Format:
public boolean isIDSDatabaseAnsiCompliant();

Returns true if the current active IBM Informix database is ANSI-compliant.
Returns false otherwise.

An ANSI-compliant database is a database that was created with the WITH
LOG MODE ANSI option.

This method applies to connections to IBM Informix data sources only. An
SQLException is thrown if the data source is not an IBM Informix data source.

isIDSDatabaseLogging
Format:
public boolean isIDSDatabaseLogging();

Returns true if the current active IBM Informix database supports logging.
Returns false otherwise.

An IBM Informix database that supports logging is a database that was created
with the WITH LOG MODE ANSI option, the WITH BUFFERED LOG, or the
WITH LOG option.

This method applies to connections to IBM Informix data sources only. An
SQLException is thrown if the data source is not an IBM Informix data source.

Chapter 7. JDBC and SQLJ reference information 423

isResetRequiredForDB2eWLM
Format:
public boolean isResetRequiredForDB2eWLM();

Returns true if the target database server requires clean reuse to support
eWLM. Returns false otherwise.

supportsDB2ProgressiveStreaming
Format:
public boolean supportsDB2ProgressiveStreaming();

Returns true if the target data source supports progressive streaming. Returns
false otherwise.

DB2Diagnosable interface
The com.ibm.db2.jcc.DB2Diagnosable interface provides a mechanism for getting
DB2 diagnostics from an SQLException.

DB2Diagnosable methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getSqlca
Format:
public DB2Sqlca getSqlca();

Returns a DB2Sqlca object from a java.sql.Exception that is produced under a
IBM Data Server Driver for JDBC and SQLJ.

getThrowable
Format:
public Throwable getThrowable();

Returns a java.lang.Throwable object from a java.sql.Exception that is
produced under a IBM Data Server Driver for JDBC and SQLJ.

printTrace
Format:
static public void printTrace(java.io.PrintWriter printWriter,

String header);

Prints diagnostic information after a java.sql.Exception is thrown under a
IBM Data Server Driver for JDBC and SQLJ.

Parameter descriptions:

printWriter
The destination for the diagnostic information.

header
User-defined information that is printed at the beginning of the output.

424 Application Programming Guide and Reference for Java

Related tasks:
“Handling SQL warnings in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117

DB2DataSource class
The com.ibm.db2.jcc.DB2DataSource class extends the DB2BaseDataSource class,
and implements the javax.sql.DataSource, java.io.Serializable, and
javax.naming.Referenceable interfaces.

DB2DataSource methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

setSpecialRegisters
Format:
public void setSpecialRegisters(java.util.Properties properties)

throws java.sql.SQLException

For each key and value pair in the java.util.Properties object, sets the data
server special register that is specified by the key to the corresponding value.

This method does not apply to connections to IBM Informix data servers.

Parameter description:

properties
A java.util.Properties object that contains key and value pairs, in which
each key is the name of a special register, and each value is the value to
which you want to set that special register. For example, suppose that ds is
a previously defined DataSource object. Set the property values in the
following way.
Properties prop = new Properties();
prop.put ("CURRENT SCHEMA", "SYSPROC");
prop.put ("CURRENT PACKAGESET", "PRODUCTION");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setSpecialRegisters(prop);

Certain special registers can be set through IBM Data Server Driver for JDBC
and SQLJ properties. If you set a special register value by setting one of those
properties in a java.util.Properties object, and then use
setSpecialRegisters to set a value for the same special register, the value that
is set through setSpecialRegisters overrides the value that is set through the
property. In the following example, CURRENT SCHEMA is set to USER002:
Properties prop = new Properties();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setCurrentSchema("USER001");
properties. put ("CURRENT SCHEMA", "USER002");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setSpecialRegisters(prop);

For a complete description of the rules for using setSpecialRegisters to set
special registers on DB2 for z/OS data servers, see General rules for special
registers (DB2 SQL).

setGlobalSessionVariables
Format:
public void setGlobalSessionVariables(java.util.Properties properties)

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 425

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_rules4specialregisters.htm#db2z_rules4specialregisters
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_rules4specialregisters.htm#db2z_rules4specialregisters

For each key and value pair in the java.util.Properties object, sets the
session variable that is specified by the key to the corresponding value.

This method applies only to connections to DB2 for z/OS Version 11 or later
data servers.

Parameter description:

properties
A java.util.Properties object that contains key and value pairs, in which
each key is the name of a session variable, and each value is the value to
which you want to set that session variable. For example, suppose that ds
is a previously defined DataSource object. Set the property values in the
following way.
Properties prop = new Properties();
prop.put ("SESSION.TEST", "TEST FAILED");
prop.put ("SYSIBMADM.GET_ARCHIVE", "Y");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setGlobalSessionVariables(prop);

DB2Driver class
The com.ibm.db2.jcc.DB2Driver class extends the java.sql.Driver interface.

DB2Driver methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

changeDB2Password
Format:
public static void changeDB2Password (String url,
String userid,
String oldPassword,
String newPassword)
throws java.sql.SQLException

Changes the password for accessing a data server that is specified by the url
parameter, for the user that is specified by the userid parameter. This method
can change an unexpired or expired password.

changeDB2Password is supported for IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity only.

changeDB2Password is not supported for connections to IBM Informix.

Parameter descriptions:

url
The URL for the data server for which a user's password is being changed.
The url value uses the syntax for a URL for IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity.

userid
The user whose password is being changed.

oldPassword
The original password for the user.

newPassword
The new password for the user.

426 Application Programming Guide and Reference for Java

Related reference:
“URL format for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity”
on page 16

DB2ExceptionFormatter class
The com.ibm.db2.jcc.DB2ExceptionFormatter class contains methods for printing
diagnostic information to a stream.

DB2ExceptionFormatter methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

printTrace
Formats:
static public void printTrace(java.sql.SQLException sqlException,

java.io.PrintWriter printWriter, String header)

static public void printTrace(DB2Sqlca sqlca,
java.io.PrintWriter printWriter, String header)

static public void printTrace(java.lang.Throwable throwable,
java.io.PrintWriter printWriter, String header)

Prints diagnostic information after an exception is thrown.

Parameter descriptions:

sqlException|sqlca|throwable
The exception that was thrown during a previous JDBC or Java operation.

printWriter
The destination for the diagnostic information.

header
User-defined information that is printed at the beginning of the output.

Related concepts:
“Example of a trace program under the IBM Data Server Driver for JDBC and
SQLJ” on page 627

DB2FileReference class
The com.ibm.db2.jcc.DB2FileReference class is an abstract class that defines
methods that support insertion of data into tables from file reference variables.
This class applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS Version 9 or later.

DB2FileReference fields

The following constants define types codes only for the IBM Data Server Driver for
JDBC and SQLJ.

public static final short MAX_FILE_NAME_LENGTH = 255
The maximum length of the file name for a file reference variable.

DB2FileReference methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

Chapter 7. JDBC and SQLJ reference information 427

getDriverType
Format:
public int getDriverType()

Returns the server data type of the file reference variable. This type is one of
the values in com.ibm.db2.jcc.DB2Types.

getFileEncoding
Format:
public String getFileEncoding()

Returns the encoding of the data in the file for a DB2FileReference object.

getFileName
Format:
public String getFileName()

Returns the file name for a DB2FileReference object.

getFileCcsid
Format:
public int getFileCcsid()

Returns the CCSID of the data in the file for a DB2FileReference object.

setFileName
Format:
public String setFileName(String fileName)

throws java.sql.SQLException

Sets the file name in a DB2FileReference object.

Parameter descriptions:

fileName
The name of the input file for the file reference variable. The name must
specify an existing HFS file.

DB2JCCPlugin class
The com.ibm.db2.jcc.DB2JCCPlugin class is an abstract class that defines methods
that can be implemented to provide DB2 for Linux, UNIX, and Windows plug-in
support. This class applies only to DB2 for Linux, UNIX, and Windows.

DB2JCCPlugin methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getTicket
Format:
public abstract byte[] getTicket(String user,

String password,
byte[] returnedToken)
throws org.ietf.jgss.GSSException

Retrieves a Kerberos ticket for a user.

Parameter descriptions:

428 Application Programming Guide and Reference for Java

user
The user ID for which the Kerberos ticket is to be retrieved.

password
The password for user.

returnedToken

DB2ParameterMetaData interface
The com.ibm.db2.jcc.DB2ParameterMetaData interface extends the
java.sql.ParameterMetaData interface.

DB2ParameterMetaData methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getMaxStringUnitBits
Format:
public int getMaxStringUnitBits (int param)

throws java.sql.SQLException

Returns the maximum number of bits in a string unit for single-byte and
double-byte character data types. The value that is returned is:

8 For a character column that is defined with OCTETS.

16 For a character column that is defined with CODEUNITS16.

32 For a character column that is defined with CODEUNITS32.

Parameter descriptions:

param
The ordinal position of a parameter in the CALL statement.

This method applies only to connections to DB2 for Linux, UNIX, and
Windows Version 10.5 or later data servers.

getParameterMarkerNames
Format:
public String[] getParameterMarkerNames()

throws java.sql.SQLException

Returns a list of the parameter marker names that are used in an SQL
statement.

This method returns null if the enableNamedParameterMarkers property is set
DB2BaseDataSource.NOT_SET or DB2BaseDataSource.NO, or if there are no named
parameter markers in the SQL statement.

getProcedureParameterName
Format:
public String getProcedureParameterName(int param)

throws java.sql.SQLException

Returns the name in the CREATE PROCEDURE statement of a parameter in an
SQL CALL statement. If the parameter has no name in the CREATE
PROCEDURE statement, the ordinal position of the parameter in the CREATE
PROCEDURE statement is returned.

Parameter descriptions:

Chapter 7. JDBC and SQLJ reference information 429

|
|

|
|

|
|

||

||

||

|

|
|

|
|

param
The ordinal position of the parameter in the CALL statement.

This method applies to connections to DB2 for Linux, UNIX, and Windows 9.7
or later data servers only.

DB2PooledConnection class
The com.ibm.db2.jcc.DB2PooledConnection class provides methods that an
application server can use to switch users on a preexisting trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
Version 9.1 or later

DB2PooledConnection methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getConnection (untrusted or trusted reuse without reauthentication)
Format:
public DB2Connection getConnection()

throws java.sql.SQLException

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

getDB2Connection (trusted reuse)
Formats:
public DB2Connection getDB2Connection(byte[] cookie,

String user,
String password,
String userRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

public Connection getDB2Connection(byte[] cookie,
org.ietf.GSSCredential gssCredential,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

Switches the user that is associated with a trusted connection without
authentication.

430 Application Programming Guide and Reference for Java

The second form of getDB2Connection is supported only for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

Parameter descriptions:

cookie
A unique cookie that the JDBC driver generates for the Connection
instance. The cookie is known only to the application server and the
underlying JDBC driver that established the initial trusted connection. The
application server passes the cookie that was created by the driver when
the pooled connection instance was created. The JDBC driver checks that
the supplied cookie matches the cookie of the underlying trusted physical
connection to ensure that the request originated from the application server
that established the trusted physical connection. If the cookies match, the
connection can become available, with different properties, for immediate
use by a new user .

user
The client identity that is used by the data source to establish the
authorization ID for the database server. If the user was not authenticated
by the application server, the application server must pass a user identity
that represents an unauthenticated user.

password
The password for user.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

userNameRegistry
A name that identifies a mapping service that maps a workstation user ID
to a z/OS RACF ID. An example of a mapping service is the Integrated
Security Services Enterprise Identity Mapping (EIM). The mapping service
is defined by a plugin. Valid values for userNameRegistry are defined by the
plugin providers. If userNameRegistry is null, the connection does not use a
mapping service.

userSecToken
The client's security tokens. This value is traced as part of DB2 for z/OS
accounting data. The content of userSecToken is described by the application
server and is referred to by the data source as an application server
security token.

originalUser
The client identity that sends the original request to the application server.
originalUser is included in DB2 for z/OS accounting data as the original
user ID that was used by the application server.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted reuse with reauthentication)
Formats:
public DB2Connection getDB2Connection(

String user,
String password,
java.util.Properties properties)

Chapter 7. JDBC and SQLJ reference information 431

throws java.sql.SQLException
public DB2Connection getDB2Connection(org.ietf.jgss.GSSCredential gssCredential,

java.util.Properties properties)
throws java.sql.SQLException

Switches the user that is associated with a untrusted connection, with
authentication.

The first form getDB2Connection provides a user ID and password. The second
form of getDB2Connection is for connections that use Kerberos security.

Parameter descriptions:

user
The user ID that is used by the data source to establish the authorization
ID for the database server.

password
The password for user.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted or trusted reuse without reauthentication)
Formats:
public java.sql.Connection getDB2Connection(

java.util.Properties properties)
throws java.sql.SQLException

Reuses an untrusted connection, without reauthentication.

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

Parameter descriptions:

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

Related concepts:
Chapter 12, “JDBC and SQLJ connection pooling support,” on page 609
Related reference:
“DB2ConnectionPoolDataSource class” on page 421

DB2PoolMonitor class
The com.ibm.db2.jcc.DB2PoolMonitor class provides methods for monitoring the
global transport objects pool that is used for the connection concentrator and
Sysplex workload balancing.

DB2PoolMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ.

432 Application Programming Guide and Reference for Java

public static final int TRANSPORT_OBJECT = 1
This value is a parameter for the DB2PoolMonitor.getPoolMonitor method.

DB2PoolMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

agedOutObjectCount
Format:
public abstract int agedOutObjectCount()

Retrieves the number of objects that exceeded the idle time that was specified
by db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

createdObjectCount
Format:
public abstract int createdObjectCount()

Retrieves the number of objects that the IBM Data Server Driver for JDBC and
SQLJ created since the pool was created.

getMonitorVersion
Format:
public int getMonitorVersion()

Retrieves the version of the DB2PoolMonitor class that is shipped with the IBM
Data Server Driver for JDBC and SQLJ.

getPoolMonitor
Format:
public static DB2PoolMonitor getPoolMonitor(int monitorType)

Retrieves an instance of the DB2PoolMonitor class.

Parameter descriptions:

monitorType
The monitor type. This value must be
DB2PoolMonitor.TRANSPORT_OBJECT.

heavyWeightReusedObjectCount
Format:
public abstract int heavyWeightReusedObjectCount()

Retrieves the number of objects that were reused from the pool.

lightWeightReusedObjectCount
Format:
public abstract int lightWeightReusedObjectCount()

Retrieves the number of objects that were reused but were not in the pool. This
can happen if a Connection object releases a transport object at a transaction
boundary. If the Connection object needs a transport object later, and the
original transport object has not been used by any other Connection object, the
Connection object can use that transport object.

longestBlockedRequestTime
Format:

Chapter 7. JDBC and SQLJ reference information 433

public abstract long longestBlockedRequestTime()

Retrieves the longest amount of time that a request was blocked, in
milliseconds.

numberOfConnectionReleaseRefused
Format:
public abstract int numberOfConnectionReleaseRefused()

Retrieves the number of times that the release of a connection was refused.

numberOfRequestsBlocked
Format:
public abstract int numberOfRequestsBlocked()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the pool reached its
maximum capacity. A blocked request might be successful if an object is
returned to the pool before the db2.jcc.maxTransportObjectWaitTime is
exceeded and an exception is thrown.

numberOfRequestsBlockedDataSourceMax
Format:
public abstract int numberOfRequestsBlockedDataSourceMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the pool reached the
maximum for the DataSource object.

numberOfRequestsBlockedPoolMax
Format:
public abstract int numberOfRequestsBlockedPoolMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the maximum
number for the pool was reached.

removedObjectCount
Format:
public abstract int removedObjectCount()

Retrieves the number of objects that have been deleted from the pool since the
pool was created.

shortestBlockedRequestTime
Format:
public abstract long shortestBlockedRequestTime()

Retrieves the shortest amount of time that a request was blocked, in
milliseconds.

successfullRequestsFromPool
Format:
public abstract int successfullRequestsFromPool()

Retrieves the number of successful requests that the IBM Data Server Driver
for JDBC and SQLJ has made to the pool since the pool was created. A
successful request means that the pool returned an object.

434 Application Programming Guide and Reference for Java

totalPoolObjects
Format:
public abstract int totalPoolObjects()

Retrieves the number of objects that are currently in the pool.

totalRequestsToPool
Format:
public abstract int totalRequestsToPool()

Retrieves the total number of requests that the IBM Data Server Driver for
JDBC and SQLJ has made to the pool since the pool was created.

totalTimeBlocked
Format:
public abstract long totalTimeBlocked()

Retrieves the total time in milliseconds for requests that were blocked by the
pool. This time can be much larger than the elapsed execution time of the
application if the application uses multiple threads.

DB2PreparedStatement interface
The com.ibm.db2.jcc.DB2PreparedStatement interface extends the
com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement interfaces.

DB2PreparedStatement fields

The following constants are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

public static DBIndicatorDefault DB_PARAMETER_DEFAULT
This constant can be used with standard interfaces, such as
PreparedStatement.setObject or ResultSet.updateObject to indicate that the
default value is assigned to the associated parameter.

public static DBIndicatorUnassigned DB_PARAMETER_UNASSIGNED
This constant can be used with standard interfaces, such as
PreparedStatement.setObject or ResultSet.updateObject to indicate that the
associated parameter is unaassigned.

DB2PreparedStatement methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

executeDB2QueryBatch
Format:
public void executeDB2QueryBatch()

throws java.sql.SQLException

Executes a statement batch that contains queries with parameters.

This method is not supported for connections to IBM Informix data sources.

getDBGeneratedKeys
Format:
public java.sql.ResultSet[] getDBGeneratedKeys()

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 435

Retrieves automatically generated keys that were created when INSERT
statements were executed in a batch. Each ResultSet object that is returned
contains the automatically generated keys for a single statement in the batch.

getDBGeneratedKeys returns an array of length 0 under the following
conditions:
v getDBGeneratedKeys is called out of sequence. For example, if

getDBGeneratedKeys is called before executeBatch, an array of length 0 is
returned.

v The PreparedStatement that is executed in a batch was not created using one
of the following methods:
Connection.prepareStatement(String sql, int[] autoGeneratedKeys)
Connection.prepareStatement(String sql, String[] autoGeneratedColumnNames)
Connection.prepareStatement(String sql, Statement.RETURN_GENERATED_KEYS)

If getDBGeneratedKeys is called against a PreparedStatement that was created
using one of the previously listed methods, and the PreparedStatement is not
in a batch, a single ResultSet is returned.

getEstimateCost
Format:
public int getEstimateCost()

throws java.sql.SQLException

Returns the estimated cost of an SQL statement from the data server after the
data server dynamically prepares the statement successfully. This value is the
same as the fourth element in the sqlerrd array of the SQLCA.

If the deferPrepares property is set to true, calling getEstimateCost causes the
data server to execute a dynamic prepare operation.

If the SQL statement cannot be prepared, or the data server does not return
estimated cost information at prepare time, getEstimateCost returns -1.

getEstimateRowCount
Format:
public int getEstimateRowCount()

throws java.sql.SQLException

Returns the estimated row count for an SQL statement from the data server
after the data server dynamically prepares the statement successfully. This
value is the same as the third element in the sqlerrd array of the SQLCA.

If the deferPrepares property is set to true, calling getEstimateRowCount causes
the data server to execute a dynamic prepare operation.

If the SQL statement cannot be prepared, or the data server does not return
estimated row count information at prepare time, getEstimateRowCount returns
-1.

setDB2BlobFileReference
Format:
public void setDB2BlobFileReference(int parameterIndex,

com.ibm.db2.jcc.DB2BlobFileReference fileRef)
throws java.sql.SQLException

Assigns a BLOB file reference variable value to a parameter.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

436 Application Programming Guide and Reference for Java

Parameters:

parameterIndex
The index of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2BlobFileReference value that is assigned to the
parameter marker.

setDB2ClobFileReference
Format:
public void setDB2ClobFileReference(int parameterIndex,

com.ibm.db2.jcc.DB2ClobFileReference fileRef)
throws java.sql.SQLException

Assigns a CLOB file reference variable value to a parameter.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

Parameters:

parameterIndex
The index of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2ClobFileReference value that is assigned to the
parameter marker.

setDB2XmlAsBlobFileReference
Format:
public void setDB2XmlAsBlobFileReference(int parameterIndex,

com.ibm.db2.jcc.DB2XmlAsBlobFileReference fileRef)
throws java.sql.SQLException

Assigns a XML AS BLOB file reference variable value to a parameter.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

Parameters:

parameterIndex
The index of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2XmlAsBlobFileReference value that is assigned to
the parameter marker.

setDB2XmlAsClobFileReference
Format:
public void setDB2XmlAsClobFileReference(int parameterIndex,

com.ibm.db2.jcc.DB2XmlAsClobFileReference fileRef)
throws java.sql.SQLException

Assigns a XML AS CLOB file reference variable value to a parameter.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

Parameters:

Chapter 7. JDBC and SQLJ reference information 437

parameterIndex
The index of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2XmlAsClobFileReference value that is assigned to
the parameter marker.

setDBTimestamp
Format:
public void setDBTimestamp(int parameterIndex,

DBTimestamp timestamp)
throws java.sql.SQLException

Assigns a DBTimestamp value to a parameter.

Parameters:

parameterIndex
The index of the parameter marker to which a DBTimestamp variable value
is assigned.

timestamp
The DBTimestamp value that is assigned to the parameter marker.

This method is not supported for connections to IBM Informix data sources.

setJccArrayAtName
Format:
public void setJccArrayAtName(String parameterMarkerName,

java.sql.Array x)
throws java.sql.SQLException

Assigns a java.sql.Array value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Array value that is assigned to the named parameter marker.

setJccAsciiStreamAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccAsciiStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccAsciiStreamAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccAsciiStreamAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

438 Application Programming Guide and Reference for Java

Assigns an ASCII value in a java.io.InputStream to a named parameter
marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The ASCII java.io.InputStream value that is assigned to the parameter
marker.

length
The length in bytes of the java.io.InputStream value that is assigned to
the named parameter marker.

setJccBigDecimalAtName
Format:
public void setJccBigDecimalAtName(String parameterMarkerName,

java.math.BigDecimal x)
throws java.sql.SQLException

Assigns a java.math.BigDecimal value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.math.BigDecimal value that is assigned to the named parameter
marker.

setJccBinaryStreamAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccBinaryStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccBinaryStreamAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccBinaryStreamAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

Assigns a binary value in a java.io.InputStream to a named parameter
marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

Chapter 7. JDBC and SQLJ reference information 439

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The binary java.io.InputStream value that is assigned to the parameter
marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccBlobAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccBlobAtName(String parameterMarkerName,

java.sql.Blob x)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccBlobAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccBlobAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

Assigns a BLOB value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Blob value or java.io.InputStream value that is assigned to
the parameter marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccBooleanAtName
Format:
public void setJccBooleanAtName(String parameterMarkerName,

boolean x)
throws java.sql.SQLException

Assigns a boolean value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The boolean value that is assigned to the named parameter marker.

440 Application Programming Guide and Reference for Java

setJccByteAtName
Format:
public void setJccByteAtName(String parameterMarkerName,

byte x)
throws java.sql.SQLException

Assigns a byte value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The byte value that is assigned to the named parameter marker.

setJccBytesAtName
Format:
public void setJccBytesAtName(String parameterMarkerName,

byte[] x)
throws java.sql.SQLException

Assigns an array of byte values to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The byte array that is assigned to the named parameter marker.

setJccCharacterStreamAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccCharacterStreamAtName(String parameterMarkerName,

java.io.Reader x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccCharacterStreamAtName(String parameterMarkerName,

java.io.Reader x)
throws java.sql.SQLException

public void setJccCharacterStreamAtName(String parameterMarkerName,
java.io.Reader x, long length)
throws java.sql.SQLException

Assigns a Unicode value in a java.io.Reader to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

Chapter 7. JDBC and SQLJ reference information 441

x The Unicode java.io.Reader value that is assigned to the named
parameter marker.

length
The number of characters of the java.io.InputStream value that are
assigned to the named parameter marker.

setJccClobAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccClobAtName(String parameterMarkerName,

java.sql.Clob x)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccClobAtName(String parameterMarkerName,

java.io.Reader x)
throws java.sql.SQLException

public void setJccClobAtName(String parameterMarkerName,
java.io.Reader x, long length)
throws java.sql.SQLException

Assigns a CLOB value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Clob value or java.io.Reader value that is assigned to the
named parameter marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccDateAtName
Formats:
public void setJccDateAtName(String parameterMarkerName,

java.sql.Date x)
throws java.sql.SQLException

public void setJccDateAtName(String parameterMarkerName,
java.sql.Date x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Date value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Date value that is assigned to the named parameter marker.

442 Application Programming Guide and Reference for Java

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the date.

setJccDB2BlobFileReferenceAtName
Format:
public void setJccDB2BlobFileReferenceAtName(int parameterMarkerName,

com.ibm.db2.jcc.DB2BlobFileReference fileRef)
throws java.sql.SQLException

Assigns a BLOB file reference variable value to a named parameter marker.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2BlobFileReference value that is assigned to the
named parameter marker.

setJccDB2ClobFileReferenceAtName
Format:
public void setJccDB2ClobFileReferenceAtName(int parameterMarkerName,

com.ibm.db2.jcc.DB2ClobFileReference fileRef)
throws java.sql.SQLException

Assigns a CLOB file reference variable value to a named parameter marker.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2ClobFileReference value that is assigned to the
named parameter marker.

setJccDB2XmlAsBlobFileReferenceAtName
Format:
public void setJccDB2XmlAsBlobFileReferenceAtName(String parameterMarkerName,

com.ibm.db2.jcc.DB2XmlAsBlobFileReference fileRef)
throws java.sql.SQLException

Assigns a XML AS BLOB file reference variable value to a named parameter
marker.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS Version 9 or later.

Chapter 7. JDBC and SQLJ reference information 443

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2XmlAsBlobFileReference value that is assigned to
the named parameter marker.

setJccDB2XmlAsClobFileReferenceAtName
Format:
public void setJccDB2XmlAsClobFileReferenceAtName(int parameterMarkerName,

com.ibm.db2.jcc.DB2XmlAsClobFileReference fileRef)
throws java.sql.SQLException

Assigns a XML AS CLOB file reference variable value to a named parameter
marker.

This method applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS Version 9 or later.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a file reference variable value
is assigned.

fileRef
The com.ibm.db2.jcc.DB2XmlAsClobFileReference value that is assigned to
the named parameter marker.

setJccDBTimestampAtName
Format:
public void setJccDBTimestampAtName(String parameterMarkerName,

DBTimestamp timestamp)
throws java.sql.SQLException

Assigns a DBTimestamp value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a DBTimestamp variable value
is assigned.

timestamp
The DBTimestamp value that is assigned to the named parameter marker.

This method is not supported for connections to IBM Informix data sources.

setJccDBDefaultAtName
Formats:
public void setJccDBDefaultAtName(String parameterMarkerName)

throws SQLException

444 Application Programming Guide and Reference for Java

Assigns the default value to a named parameter marker. Execution of
setJccDBDefaultAtName produces the same results as using the literal
DEFAULT in the SQL string, instead of the parameter marker name.

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

This method is not supported for connections to IBM Informix data sources.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

setJccDBUnassignedAtName
Formats:
public void setJccDBUnassignedAtName(String parameterMarkerName)

throws SQLException

Does not assign a value to the specified named parameter. Execution of
setJccDBUnassignedAtName produces the same result as if the specified
parameter marker name had not appeared in the SQL string.

Parameters:

parameterMarkerName
The name of the parameter marker whose value is to be unassigned.

This method is not supported for connections to IBM Informix data sources.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

setJccDoubleAtName
Format:
public void setJccDoubleAtName(String parameterMarkerName,

double x)
throws java.sql.SQLException

Assigns a value of type double to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type double that is assigned to the parameter marker.

setJccFloatAtName
Format:
public void setJccFloatAtName(String parameterMarkerName,

float x)
throws java.sql.SQLException

Assigns a value of type float to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

Chapter 7. JDBC and SQLJ reference information 445

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type float that is assigned to the parameter marker.

setJccIntAtName
Format:
public void setJccIntAtName(String parameterMarkerName,

int x)
throws java.sql.SQLException

Assigns a value of type int to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type int that is assigned to the parameter marker.

setJccLongAtName
Format:
public void setJccLongAtName(String parameterMarkerName,

long x)
throws java.sql.SQLException

Assigns a value of type long to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type long that is assigned to the parameter marker.

setJccNullAtName
Format:
public void setJccNullAtName(String parameterMarkerName,

int jdbcType)
throws java.sql.SQLException

public void setJccNullAtName(String parameterMarkerName,
int jdbcType,
String typeName)
throws java.sql.SQLException

Assigns the SQL NULL value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

jdbcType
The JDBC type code of the NULL value that is assigned to the parameter
marker, as defined in java.sql.Types.

446 Application Programming Guide and Reference for Java

typeName
If jdbcType is java.sql.Types.DISTINCT or java.sql.Types.REF, the
fully-qualified name of the SQL user-defined type of the NULL value that
is assigned to the parameter marker.

setJccObjectAtName
Formats:
public void setJccObjectAtName(String parameterMarkerName,

java.sql.Object x)
throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,
java.sql.Object x,
int targetJdbcType)
throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,
java.sql.Object x,
int targetJdbcType,
int scale)
throws java.sql.SQLException

Assigns a value with type java.lang.Object to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value with type Object that is assigned to the parameter marker.

targetJdbcType
The data type, as defined in java.sql.Types, that is assigned to the input
value when it is sent to the data source.

scale
The scale of the value that is assigned to the parameter marker. This
parameter applies only to these cases:
v If targetJdbcType is java.sql.Types.DECIMAL or java.sql.Types.NUMERIC,

scale is the number of digits to the right of the decimal point.
v If x has type java.io.InputStream or java.io.Reader, scale is the this is

the length of the data in the Stream or Reader object.

setJccShortAtName
Format:
public void setJccShortAtName(String parameterMarkerName,

short x)
throws java.sql.SQLException

Assigns a value of type short to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type short that is assigned to the parameter marker.

setJccSQLXMLAtName
Format:

Chapter 7. JDBC and SQLJ reference information 447

public void setJccSQLXMLAtName(String parameterMarkerName,
java.sql.SQLXML x)
throws java.sql.SQLException

Assigns a value of type java.sql.SQLXML to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

This method is supported only for connections to DB2 for Linux, UNIX, and
Windows Version 9.1 or later or DB2 for z/OS Version 9 or later.

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type java.sql.SQLXML that is assigned to the parameter
marker.

setJccStringAtName
Format:
public void setJccStringAtName(String parameterMarkerName,

String x)
throws java.sql.SQLException

Assigns a value of type String to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type String that is assigned to the parameter marker.

setJccTimeAtName
Formats:
public void setJccTimeAtName(String parameterMarkerName,

java.sql.Time x)
throws java.sql.SQLException

public void setJccTimeAtName(String parameterMarkerName,
java.sql.Time x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Time value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Time value that is assigned to the parameter marker.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the time.

setJccTimestampAtName
Formats:

448 Application Programming Guide and Reference for Java

public void setJccTimestampAtName(String parameterMarkerName,
java.sql.Timestamp x)
throws java.sql.SQLException

public void setJccTimestampAtName(String parameterMarkerName,
java.sql.Timestamp x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Timestamp value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Timestamp value that is assigned to the parameter marker.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC
and SQLJ uses to construct the timestamp.

setJccUnicodeStreamAtName
Format:
public void setJccUnicodeStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Assigns a Unicode value in a java.io.InputStream to a named parameter
marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The Unicode java.io.InputStream value that is assigned to the parameter
marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the parameter marker.

setDBDefault
Formats:
public void setDBDefault(int parameterIndex)

throws SQLException

Assigns the default value to the specified parameter. Execution of setDBDefault
produces the same results as using the literal DEFAULT in the SQL string,
instead of the parameter.

Parameters:

parameterIndex
The number of the parameter whose value is being updated.

This method is not supported for connections to IBM Informix data sources.

Chapter 7. JDBC and SQLJ reference information 449

setDBUnassigned
Formats:
public void setDBUnassigned(int parameterIndex)

throws SQLException

Does not assign a value to the specified parameter. Execution of
setDBUnassigned produces the same result as if the specified parameter had
not appeared in the SQL string.

Parameters:

parameterIndex
The number of the parameter whose value is to be unassigned.

This method is not supported for connections to IBM Informix data sources.
Related tasks:
“Making batch queries in JDBC applications” on page 44

DB2ResultSet interface
The com.ibm.db2.jcc.DB2ResultSet interface is used to create objects from which
IBM Data Server Driver for JDBC and SQLJ-only query information can be
obtained.

DB2ResultSet implements the java.sql.Wrapper interface.

DB2ResultSet fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ.

The integer constants in the following table are used in the column descriptor
information that getDBRowDescriptor returns. These constants contain information
about the column values that are returned by getDBRowAsBytes. All fields are
defined as public static int.

Field value Description of returned data

REPRESENTATION_FIXED_STRING (0) Fixed-length string data

REPRESENTATION_BIG_ENDIAN (1) Signed binary format in which the most significant byte
is stored in the highest address

REPRESENTATION_LITTLE_ENDIAN (2) Signed binary format in which the least significant byte
is stored in the highest address

REPRESENTATION_VARIABLE_STRING (2) String data that begins with a two-byte length field

REPRESENTATION_NUL_TERMINATED_STRING (3) Nul-terminated string data

REPRESENTATION_FIXED_BYTES (4) Fixed-length byte string

REPRESENTATION_VARIABLE_BYTES (5) Byte string that begins with a two-byte length field

REPRESENTATION_NUL_TERMINATED_BYTES (7) Nul-terminated byte data

REPRESENTATION_FIXED_BINARY (15) Fixed-length binary string

REPRESENTATION_VARIABLE_BINARY (16) Binary string that begins with a two-byte length field

REPRESENTATION_PACKED_DECIMAL (48) Nul-terminated binary string

REPRESENTATION_NUMERIC_CHARACTER (50) Character-based, fixed-point format

REPRESENTATION_ZONED_DECIMAL (51) Zoned-decimal format that is returned by IBM System i®

and IBM System z®

REPRESENTATION_COBOL2_ZONED_DECIMAL (53) Zoned-decimal format that is returned by Windows or
UNIX systems

450 Application Programming Guide and Reference for Java

Field value Description of returned data

REPRESENTATION_HEXADECIMAL_FLOATING_POINT (64) S/390® hexadecimal floating point format

REPRESENTATION_DECIMAL_FLOATING_POINT (66) Decimal floating point format

REPRESENTATION_IEEE_754_FLOATING_POINT_BYTE_REVERSED
(71)

IEEE floating-point format in which the least significant
byte is stored in the highest address

REPRESENTATION_IEEE_754_FLOATING_POINT (72) IEEE floating-point format in which the most significant
byte is stored in the highest address

DB2ResultSet methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDB2RowChangeToken
Format:
public long DB2ResultSet.getDB2RowChangeToken()

throws java.sql.SQLException

Returns the row change token for the current row, if it is available. Returns 0 if
optimistic locking columns were not requested or are not available.

This method applies only to connections to DB2 for Linux, UNIX, and
Windows.

getDB2RID
Format:
public Object DB2ResultSet.getDB2RID()

throws java.sql.SQLException

Returns the RID for the current row, if it is available. The RID is available if
optimistic locking columns were requested and are available. Returns null if
optimistic locking columns were not requested or are not available.

This method applies only to connections to DB2 for Linux, UNIX, and
Windows.

getDB2RIDType
Format:
public int DB2ResultSet.getDB2RIDType()

throws java.sql.SQLException

Returns the data type of the RID column in a DB2ResultSet. The returned
value maps to a java.sql.Types constant. If the DB2ResultSet does not contain
a RID column, java.sql.Types.NULL is returned.

This method applies only to connections to DB2 for Linux, UNIX, and
Windows.

getDBRowDataAsBytes
Format:
public Object [] getDBRowDataAsBytes()

throws SQLException

Returns an Object array that represents the data in the current row of an open
ResultSet object.

This method does not apply to connections to IBM Informix.

Chapter 7. JDBC and SQLJ reference information 451

getDBRowDataAsBytes cannot be called if the ResultSet object on which it
operates meets any of the following conditions:
v A ResultSet row that is being retrieved has been updated, deleted, or

inserted.
v The ResultSet object was created for optimistic locking.

The returned information includes:
v The data in raw byte array format
v The offset to the data for each column

Suppose that obj is an instance of the returned Object array. The format of the
Object array is:

obj[0] A byte array that describes the row data.

obj[1] An integer array that contains the offset into obj[0] of each column
description. The offsets can be used to determine the length of the data
that is returned for each column. That length represents the length of
the raw data, and not the defined length of the column.

If a ResultSet object contains a column of any of the following types,
the offset value for that column value in obj[1] is -1. -1 indicates that a
value for that column is not returned.
v BLOB
v CLOB
v DBCLOB
v XML

The byte array in obj[0] has the following format:
rnndd...dd...nndd...dd

There is one nndd...dd set for each column in the row.

The following table describes the contents of the row data:

Item Description

r A single byte that has one of the following values:

0 The row data is not valid. One reason for
invalid data is that the row has not yet been
fetched.

1 The row data is valid.

nn A two-byte NULL indicator for a column value.
Possible values are:

-1 The column value that follows is null.

0 The column value that follows is not null.

dd...dd Raw byte data for a column value.

getDBRowDescriptor
Format:
public int [] getDBRowDescriptor()

throws SQLException

Returns an int array that contains descriptive information about each column
of the row data that is returned by getDBRowDataAsBytes.

This method does not apply to connections to IBM Informix.

452 Application Programming Guide and Reference for Java

Suppose that returnedInfo is an instance of the array that is returned by
getDBRowDescriptor. The format of the returned array is:

returnedInfo[0]
The number of columns in the row data. Suppose that this value is n.

returnedInfo[1] through returnedInfo[4*n]
n repeating groups of four integer values. Each group contains
descriptive information for a single column. That information is:

Column
descriptor
number Description

1 The data type of the column, expressed as an SQLTYPE value. This value
is the same as the SQLTYPE value that is returned in an SQLDA.

2 The CCSID of the column, for a character data type. For a DECIMAL
data type, this value is the scale of the column.

3 The defined length of the column, for all data types except DECIMAL.
For a DECIMAL data type, this value is the precision of the column. For
varying-length character data types, this value might be greater than the
number of returned bytes.

4 Additional information about the column. Possible values are described
in “DB2ResultSet fields” on page 450.

getDBTimestamp
Formats:
public DBTimestamp getDBTimestamp(int parameterIndex)

throws SQLException
public DBTimestamp getDBTimestamp(String parameterName)

throws SQLException

Returns the value in the current row of a TIMESTAMP or TIMESTAMP WITH
TIME ZONE column that is in a DB2ResultSet object as a DBTimestamp object.
For a TIMESTAMP column, the returned value has the local time zone. If the
value of the DB2ResultSet column is NULL, the returned value is null.

Parameters:

parameterIndex
The number of the column in the DB2ResultSet whose value is being
retrieved.

parameterName
The name of the column in the DB2ResultSet whose value is being
retrieved.

updateDBDefault
Formats:
public void updateDBDefault(int parameterIndex)

throws SQLException
public void updateDBDefault(String columnName)
throws SQLException

Assigns the default value to the specified column in a DB2ResultSet object.
This method does not update the underlying table.

Parameters:

Chapter 7. JDBC and SQLJ reference information 453

parameterIndex
The number of the column in the DB2ResultSet whose value is being
updated.

columnName
The name of the column in the DB2ResultSet whose value is being
updated.

This method is not supported for connections to IBM Informix data sources.

DB2ResultSetMetaData interface
The com.ibm.db2.jcc.DB2ResultSetMetaData interface provides methods that
provide information about a ResultSet object.

Before a com.ibm.db2.jcc.DB2ResultSetMetaData method can be used, a
java.sql.ResultSetMetaData object that is returned from a
java.sql.ResultSet.getMetaData call needs to be cast to
com.ibm.db2.jcc.DB2ResultSetMetaData.

DB2ResultSetMetaData methods:

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDBTemporalColumnType
Format:
public int getDBTemporalColumnType (int column)

throws java.sql.SQLException

Returns:

-1 If column is not a ROW BEGIN, ROW END or TRANSACTION START
ID column.

1 If column is a ROW BEGIN column.

2 If column is a ROW END column.

3 If column is a TRANSACTION START ID column.

Parameter descriptions:

column
The ordinal position of a column in the ResultSet.

getMaxStringUnitBits
Format:
public int getMaxStringUnitBits (int column)

throws java.sql.SQLException

Returns the maximum number of bits in a string unit for single-byte and
double-byte character data types. The value that is returned is:

8 For a character column that is defined with OCTETS.

16 For a character column that is defined with CODEUNITS16.

32 For a character column that is defined with CODEUNITS32.

Parameter descriptions:

column
The ordinal position of a column in the ResultSet.

454 Application Programming Guide and Reference for Java

|
|

|
|

|
|

||

||

||

|

|
|

This method applies only to connections to DB2 for Linux, UNIX, and
Windows Version 10.5 or later data servers.

isDB2ColumnNameDerived
Format:
public boolean isDB2ColumnNameDerived (int column)

throws java.sql.SQLException

Returns true if the name of a ResultSet column is in the SQL SELECT list that
generated the ResultSet.

For example, suppose that a ResultSet is generated from the SQL statement
SELECT EMPNAME, SUM(SALARY) FROM EMP. Column name EMPNAME
is derived from the SQL SELECT list, but the name of the column in the
ResultSet that corresponds to SUM(SALARY) is not derived from the SELECT
list.

Parameter descriptions:

column
The ordinal position of a column in the ResultSet.

DB2RowID interface
The com.ibm.db2.jcc.DB2RowID interface is used for declaring Java objects for use
with the SQL ROWID data type.

The com.ibm.db2.jcc.DB2RowID interface does not apply to connection to IBM
Informix.

DB2RowID methods

The following method is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getBytes
Format:
public byte[] getBytes()

Converts a com.ibm.jcc.DB2RowID object to bytes.
Related concepts:
“ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ” on page
170
“ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ” on page
68

DB2SimpleDataSource class
The com.ibm.db2.jcc.DB2SimpleDataSource class extends the DB2BaseDataSource
class.

A DB2BaseDataSource object does not support connection pooling or distributed
transactions. It contains all of the properties and methods that the
DB2BaseDataSource class contains. In addition, DB2SimpleDataSource contains the
following IBM Data Server Driver for JDBC and SQLJ-only properties.

DB2SimpleDataSource implements the java.sql.Wrapper interface.

Chapter 7. JDBC and SQLJ reference information 455

|
|

DB2SimpleDataSource methods

The following method is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

setPassword
Format:
public synchronized void setPassword(String password)

Sets the password for the DB2SimpleDataSource object. There is no
corresponding getPassword method. Therefore, the password cannot be
encrypted because there is no way to retrieve the password so that you can
decrypt it.

Related tasks:
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

DB2Sqlca class
The com.ibm.db2.jcc.DB2Sqlca class is an encapsulation of the SQLCA.

DB2Sqlca methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getMessage
Format:
public abstract String getMessage()

Returns error message text.

getSqlCode
Format:
public abstract int getSqlCode()

Returns an SQL error code value.

getSqlErrd
Format:
public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRD.

getSqlErrmc
Format:
public abstract String getSqlErrmc()

Returns a string that contains the SQLCA SQLERRMC values, delimited with
spaces.

getSqlErrmcTokens
Format:
public abstract String[] getSqlErrmcTokens()

456 Application Programming Guide and Reference for Java

Returns an array, each element of which contains an SQLCA SQLERRMC
token.

getSqlErrp
Format:
public abstract String getSqlErrp()

Returns the SQLCA SQLERRP value.

getSqlState
Format:
public abstract String getSqlState()

Returns the SQLCA SQLSTATE value.

getSqlWarn
Format:
public abstract char[] getSqlWarn()

Returns an array, each element of which contains an SQLCA SQLWARN value.
Related tasks:
“Handling SQL warnings in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117
Related reference:

Description of SQLCA fields (DB2 SQL)

DB2Statement interface
The com.ibm.db2.jcc.DB2Statement interface extends the java.sql.Statement
interface.

DB2Statement implements the java.sql.Wrapper interface.

DB2Statement methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getAffectedRowCount
Format:
public int getAffectedRowCount()

throws java.sql.SQLException

Returns the number of rows that are affected by successful execution of an
SQL statement. If the SQL statement is INSERT, UPDATE, or DELETE,
getAffectedRowCount returns the same value that is returned by
java.sql.Statement.getUpdateCount.

The value that is returned by getAffectedRowCount is the same information
that is returned by the data server in the SQLCA after successful execution of
an SQL statement.

getDB2ClientProgramId
Format:
public String getDB2ClientProgramId()

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 457

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields

Returns the user-defined client program identifier for the connection, which is
stored on the data source.

getDB2ClientProgramId does not apply to DB2 for Linux, UNIX, and Windows
data servers.

setDB2ClientProgramId
Format:
public abstract void setDB2ClientProgramId(String program-ID)
throws java.sql.SQLException

Sets a user-defined program identifier for the connection on a data server. That
program identifier is an 80-byte string that is used to identify the caller.

setDB2ClientProgramId does not apply to DB2 for Linux, UNIX, and Windows
data servers.

The DB2 for z/OS server places the string in IFCID 316 trace records along
with other statistics, so that you can identify which program is associated with
a particular SQL statement.

getIDSBigSerial
Format:
public int getIDSBigSerial()

throws java.sql.SQLException

Retrieves an automatically generated key from a BIGSERIAL column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSBigSerial to execute
successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a BIGSERIAL column.
v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix databases.

getIDSSerial
Format:
public int getIDSSerial()

throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSSerial to execute
successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a SERIAL column.

458 Application Programming Guide and Reference for Java

v The form of the JDBC Connection.prepareStatement method or
Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix databases.

getIDSSerial8
Format:
public long getIDSSerial8()

throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL8 column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSSerial8 to execute
successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a SERIAL8 column.
v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix data sources.

getIDSSQLStatementOffSet
Format:
public int getIDSSQLStatementOffSet()

throws java.sql.SQLException

After an SQL statement executes on an IBM Informix data source, if the
statement has a syntax error, getIDSSQLStatementOffSet returns the offset into
the statement text of the syntax error.

getIDSSQLStatementOffSet returns:
v 0, if the statement does not have a syntax error.
v -1, if the data source is not IBM Informix.

This method applies only to connections to IBM Informix data sources.
Related reference:
“DB2PreparedStatement interface” on page 435

DB2SystemMonitor interface
The com.ibm.db2.jcc.DB2SystemMonitor interface is used for collecting system
monitoring data for a connection. Each connection can have one DB2SystemMonitor
instance.

DB2SystemMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ.

public final static int RESET_TIMES
public final static int ACCUMULATE_TIMES

These values are arguments for the DB2SystemMonitor.start method.

Chapter 7. JDBC and SQLJ reference information 459

RESET_TIMES sets time counters to zero before monitoring starts.
ACCUMULATE_TIMES does not set time counters to zero.

DB2SystemMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

enable
Format:
public void enable(boolean on)
throws java.sql.SQLException

Enables the system monitor that is associated with a connection. This method
cannot be called during monitoring. All times are reset when enable is
invoked.

getApplicationTimeMillis
Format:
public long getApplicationTimeMillis()

throws java.sql.SQLException

Returns the sum of the application, JDBC driver, network I/O, and database
server elapsed times. The time is in milliseconds.

A monitored elapsed time interval is the difference, in milliseconds, between
these points in the JDBC driver processing:

Interval beginning
When start is called.

Interval end
When stop is called.

getApplicationTimeMillis returns 0 if system monitoring is disabled. Calling
this method without first calling the stop method results in an SQLException.

getCoreDriverTimeMicros
Format:
public long getCoreDriverTimeMicros()

throws java.sql.SQLException

Returns the sum of elapsed monitored API times that were collected while
system monitoring was enabled. The time is in microseconds.

A monitored API is a JDBC driver method for which processing time is
collected. In general, elapsed times are monitored only for APIs that might
result in network I/O or database server interaction. For example,
PreparedStatement.setXXX methods and ResultSet.getXXX methods are not
monitored.

Monitored API elapsed time includes the total time that is spent in the driver
for a method call. This time includes any network I/O time and database
server elapsed time.

A monitored API elapsed time interval is the difference, in microseconds,
between these points in the JDBC driver processing:

Interval beginning
When a monitored API is called by the application.

460 Application Programming Guide and Reference for Java

Interval end
Immediately before the monitored API returns control to the application.

getCoreDriverTimeMicros returns 0 if system monitoring is disabled. Calling
this method without first calling the stop method, or calling this method when
the underlying JVM does not support reporting times in microseconds results
in an SQLException.

getNetworkIOTimeMicros
Format:
public long getNetworkIOTimeMicros()

throws java.sql.SQLException

Returns the sum of elapsed network I/O times that were collected while
system monitoring was enabled. The time is in microseconds.

Elapsed network I/O time includes the time to write and read DRDA data
from network I/O streams. A network I/O elapsed time interval is the time
interval to perform the following operations in the JDBC driver:
v Issue a TCP/IP command to send a DRDA message to the database server.

This time interval is the difference, in microseconds, between points
immediately before and after a write and flush to the network I/O stream is
performed.

v Issue a TCP/IP command to receive DRDA reply messages from the
database server. This time interval is the difference, in microseconds,
between points immediately before and after a read on the network I/O
stream is performed.

Network I/O time intervals are captured for all send and receive operations,
including the sending of messages for commits and rollbacks.

The time spent waiting for network I/O might be impacted by delays in CPU
dispatching at the database server for low-priority SQL requests.

getNetworkIOTimeMicros returns 0 if system monitoring is disabled. Calling this
method without first calling the stop method, or calling this method when the
underlying JVM does not support reporting times in microseconds results in an
SQLException.

getServerTimeMicros
Format:
public long getServerTimeMicros()

throws java.sql.SQLException

Returns the sum of all reported database server elapsed times that were
collected while system monitoring was enabled. The time is in microseconds.

The database server reports elapsed times under these conditions:
v The database server supports returning elapsed time data to the client.

DB2 for Linux, UNIX, and Windows Version 9.5 and later and DB2 for z/OS
support this function.

v The database server performs operations that can be monitored. For
example, database server elapsed time is not returned for commits or
rollbacks.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
Linux, UNIX, and Windows, and IBM Data Server Driver for JDBC and SQLJ type 4
connectivity: The database server elapsed time is defined as the elapsed time to
parse the request data stream, process the command, and generate the reply

Chapter 7. JDBC and SQLJ reference information 461

data stream at the database server. Network time to receive or send the data
stream is not included. The database server elapsed time interval is the
difference, in microseconds, between these points in the database server
processing:

Interval beginning
When the operating system dispatches the database server to process a
TCP/IP message that is received from the JDBC driver.

Interval end
When the database server is ready to issue the TCP/IP command to return
the reply message to the client.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS: The database server elapsed time interval is the difference, in
microseconds, between these points in the JDBC driver native processing:

Interval beginning
The z/OS Store Clock (STCK) value when a JDBC driver native method
calls the RRS attachment facility to process an SQL request.

Interval end
The z/OS Store Clock (STCK) value when control returns to the JDBC
driver native method following an RRS attachment facility call to process
an SQL request.

getServerTimeMicros returns 0 if system monitoring is disabled. Calling this
method without first calling the stop method results in an SQLException.

start
Format:
public void start (int lapMode)

throws java.sql.SQLException

If the system monitor is enabled, start begins the collection of system
monitoring data for a connection. Valid values for lapMode are RESET_TIMES
or ACCUMULATE_TIMES.

Calling this method with system monitoring disabled does nothing. Calling
this method more than once without an intervening stop call results in an
SQLException.

stop
Format:
public void stop()

throws java.sql.SQLException

If the system monitor is enabled, stop ends the collection of system monitoring
data for a connection. After monitoring is stopped, monitored times can be
obtained with the getXXX methods of DB2SystemMonitor.

Calling this method with system monitoring disabled does nothing. Calling
this method without first calling start, or calling this method more than once
without an intervening start call results in an SQLException.

Related concepts:
Chapter 18, “System monitoring for the IBM Data Server Driver for JDBC and
SQLJ,” on page 637

DB2TraceManager class
The com.ibm.db2.jcc.DB2TraceManager class controls the global log writer.

462 Application Programming Guide and Reference for Java

The global log writer is driver-wide, and applies to all connections. The global log
writer overrides any other JDBC log writers. In addition to starting the global log
writer, the DB2TraceManager class provides the ability to suspend and resume
tracing of any type of log writer. That is, the suspend and resume methods of the
DB2TraceManager class apply to all current and future DriverManager log writers,
DataSource log writers, or IBM Data Server Driver for JDBC and SQLJ-only
connection-level log writers.

DB2TraceManager methods

getTraceManager
Format:
static public DB2TraceManager getTraceManager()

throws java.sql.SQLException

Gets an instance of the global log writer.

setLogWriter
Formats:
public abstract void setLogWriter(String traceDirectory,

String baseTraceFileName, int traceLevel)
throws java.sql.SQLException

public abstract void setLogWriter(String traceFile,
boolean fileAppend, int traceLevel)
throws java.sql.SQLException

public abstract void setLogWriter(java.io.PrintWriter logWriter,
int traceLevel)
throws java.sql.SQLException

Enables a global trace. After setLogWriter is called, all calls for DataSource or
Connection traces are discarded until DB2TraceManager.unsetLogWriter is
called.

When setLogWriter is called, all future Connection or DataSource traces are
redirected to a trace file or PrintWriter, depending on the form of
setLogWriter that you use. If the global trace is suspended when setLogWriter
is called, the specified settings take effect when the trace is resumed.

Parameter descriptions:

traceDirectory
Specifies a directory into which global trace information is written. This
setting overrides the settings of the traceDirectory and logWriter properties
for a DataSource or DriverManager connection.

When the form of setLogWriter with the traceDirectory parameter is used,
the JDBC driver sets the traceFileAppend property to false when
setLogWriter is called, which means that the existing log files are
overwritten. Each JDBC driver connection is traced to a different file in the
specified directory. The naming convention for the files in that directory
depends on whether a non-null value is specified for baseTraceFileName:
v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.
n is the nth JDBC driver connection.

v If a non-null value is specified for baseTraceFileName, a connection is
traced to a file named baseTraceFileName_global_n.
baseTraceFileName is the value of the baseTraceFileName parameter.
n is the nth JDBC driver connection.

Chapter 7. JDBC and SQLJ reference information 463

baseTraceFileName
Specifies the stem for the names of the files into which global trace
information is written. The combination of baseTraceFileName and
traceDirectory determines the full path name for the global trace log files.

traceFileName
Specifies the file into which global trace information is written. This setting
overrides the settings of the traceFile and logWriter properties for a
DataSource or DriverManager connection.

When the form of setLogWriter with the traceFileName parameter is used,
only one log file is written.

traceFileName can include a directory path.

logWriter
Specifies a character output stream to which all global log records are
written.

This value overrides the logWriter property on a DataSource or
DriverManager connection.

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity for DB2 for Linux,
UNIX, and Windows only) (X'800')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_T2ZOS (X'10000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

464 Application Programming Guide and Reference for Java

fileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile parameter. true means that the existing file is not overwritten.

unsetLogWriter
Format:
public abstract void unsetLogWriter()

throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace
Format:
public void suspendTrace()

throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current
and future connections. suspendTrace can be called when the global log writer
is enabled or disabled.

resumeTrace
Format:
public void resumeTrace()

throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and
future connections. resumeTrace can be called when the global log writer is
enabled or disabled. If the global log writer is disabled, resumeTrace resumes
Connection-level or DataSource-level traces. If the global log writer is enabled,
resumeTrace resumes the global trace.

getLogWriter
Format:
public abstract java.io.PrintWriter getLogWriter()

throws java.sql.SQLException

Returns the PrintWriter for the global log writer, if it is set. Otherwise,
getLogWriter returns null.

getTraceFile
Format:
public abstract String getTraceFile()

throws java.sql.SQLException

Returns the name of the destination file for the global log writer, if it is set.
Otherwise, getTraceFile returns null.

getTraceDirectory
Format:
public abstract String getTraceDirectory()

throws java.sql.SQLException

Returns the name of the destination directory for global log writer files, if it is
set. Otherwise, getTraceDirectory returns null.

getTraceLevel
Format:
public abstract int getTraceLevel()

throws java.sql.SQLException

Chapter 7. JDBC and SQLJ reference information 465

Returns the trace level for the global trace, if it is set. Otherwise,
getTraceLevel returns -1 (TRACE_ALL).

getTraceFileAppend
Format:
public abstract boolean getTraceFileAppend()

throws java.sql.SQLException

Returns true if the global trace records are appended to the trace file.
Otherwise, getTraceFileAppend returns false.

Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

DB2TraceManagerMXBean interface
The com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface is the means by which
an application makes DB2TraceManager available as an MXBean for the remote trace
controller.

DB2TraceManagerMXBean methods

setTraceFile
Format:
public void setTraceFile(String traceFile,

boolean fileAppend, int traceLevel)
throws java.sql.SQLException

Specifies the name of the file into which the remote trace manager writes trace
information, and the type of information that is to be traced.

Parameter descriptions:

traceFileName
Specifies the file into which global trace information is written. This setting
overrides the settings of the traceFile and logWriter properties for a
DataSource or DriverManager connection.

When the form of setLogWriter with the traceFileName parameter is used,
only one log file is written.

traceFileName can include a directory path.

fileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile parameter. true means that the existing file is not overwritten.

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')

466 Application Programming Guide and Reference for Java

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_T2ZOS (X'10000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

getTraceFile
Format:
public void getTraceFile()

throws java.sql.SQLException

Returns the name of the destination file for the remote trace controller, if it is
set. Otherwise, getTraceFile returns null.

setTraceDirectory
Format:
public void setTraceDirectory(String traceDirectory,

String baseTraceFileName,
int traceLevel) throws java.sql.SQLException

Specifies the name of the directory into which the remote trace controller
writes trace information, and the type of information that is to be traced.

Parameter descriptions:

traceDirectory
Specifies a directory into which trace information is written. This setting
overrides the settings of the traceDirectory and logWriter properties for a
DataSource or DriverManager connection.

Each JDBC driver connection is traced to a different file in the specified
directory. The naming convention for the files in that directory depends on
whether a non-null value is specified for baseTraceFileName:
v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.
n is the nth JDBC driver connection.

v If a non-null value is specified for baseTraceFileName, a connection is
traced to a file named baseTraceFileName_global_n.
baseTraceFileName is the value of the baseTraceFileName parameter.
n is the nth JDBC driver connection.

baseTraceFileName
Specifies the stem for the names of the files into which global trace
information is written. The combination of baseTraceFileName and
traceDirectory determines the full path name for the global trace log files.

Chapter 7. JDBC and SQLJ reference information 467

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_T2ZOS (X'10000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

getTraceFileAppend
Format:
public abstract boolean getTraceFileAppend()

throws java.sql.SQLException

Returns true if trace records that are generated by the trace controller are
appended to the trace file. Otherwise, getTraceFileAppend returns false.

getTraceDirectory
Format:
public void getTraceDirectory()

throws java.sql.SQLException

Returns the name of the destination directory for trace records that are
generated by the trace controller, if it is set. Otherwise, getTraceDirectory
returns null.

getTraceLevel
Format:
public void getTraceLevel()

throws java.sql.SQLException

Returns the trace level for the trace records that are generated by the trace
controller, if it is set. Otherwise, getTraceLevel returns -1 (TRACE_ALL).

468 Application Programming Guide and Reference for Java

unsetLogWriter
Format:
public abstract void unsetLogWriter()

throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace
Format:
public void suspendTrace()

throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current
and future connections. suspendTrace can be called when the global log writer
is enabled or disabled.

resumeTrace
Format:
public void resumeTrace()

throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and
future connections. resumeTrace can be called when the global log writer is
enabled or disabled. If the global log writer is disabled, resumeTrace resumes
Connection-level or DataSource-level traces. If the global log writer is enabled,
resumeTrace resumes the global trace.

DB2Types class
The com.ibm.db2.jcc.DB2Types class provides fields that define IBM Data Server
Driver for JDBC and SQLJ-only data types.

DB2Types fields

The following constants define types codes only for the IBM Data Server Driver for
JDBC and SQLJ.
v public final static int BLOB_FILE = -100002
v public final static int CLOB_FILE = -100003
v public final static int CURSOR = -100008
v public final static int DECFLOAT = -100001
v public final static int XML_AS_BLOB_FILE = -100004
v public final static int XML_AS_CLOB_FILE = -100005
v public final static int TIMESTAMPTZ =-100010

DB2XADataSource class
DB2XADataSource is a factory for XADataSource objects. An object that implements
this interface is registered with a naming service that is based on the Java Naming
and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2XADataSource class extends the
com.ibm.db2.jcc.DB2BaseDataSource class, and implements the
javax.sql.XADataSource, java.io.Serializable, and javax.naming.Referenceable
interfaces.

Chapter 7. JDBC and SQLJ reference information 469

DB2XADataSource methods

getDB2TrustedXAConnection
Formats:
public Object[] getDB2TrustedXAConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a DB2TrustedXAConnection instance.
v The second element is a unique cookie for the generated XA connection

instance.

The first form getDB2TrustedXAConnection provides a user ID and password.
The second form of getDB2TrustedXAConnection uses the user ID and password
of the DB2XADataSource object. The third form of getDB2TrustedXAConnection is
for connections that use Kerberos security.

Parameter descriptions:

user
The authorization ID that is used to establish the trusted connection.

password
The password for the authorization ID that is used to establish the trusted
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

getDB2TrustedPooledConnection
Format:
public Object[] getDB2TrustedPooledConnection(java.util.Properties properties)

throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection, using the user ID and password for the
DB2XADataSource object.

470 Application Programming Guide and Reference for Java

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a trusted DB2TrustedPooledConnection instance.
v The second element is a unique cookie for the generated pooled connection

instance.

Parameter descriptions:

properties
Properties for the connection.

getDB2XAConnection
Formats:
public DB2XAConnection getDB2XAConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public DB2XAConnection getDB2XAConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling
environment.

The first form getDB2PooledConnection provides a user ID and password. The
second form of getDB2XAConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

Related concepts:
“Example of a distributed transaction that uses JTA methods” on page 614
Related tasks:
“Creating and deploying DataSource objects” on page 26

DB2Xml interface
The com.ibm.db2.jcc.DB2Xml interface is used for declaring Java objects for use
with the DB2 XML data type.

Chapter 7. JDBC and SQLJ reference information 471

DB2Xml methods

The following method is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

closeDB2Xml
Format:
public void closeDB2Xml()

throws SQLException

Releases the resources that are associated with a com.ibm.jcc.DB2Xml object.

getDB2AsciiStream
Format:
public java.io.InputStream getDB2AsciiStream()

throws SQLExceptionn

Retrieves data from a DB2Xml object, and converts the data to US-ASCII
encoding.

getDB2BinaryStream
Format:
public java.io.InputStream getDB2BinaryStream()

throws SQLException

Retrieves data from a DB2Xml object as a binary stream. The character encoding
of the bytes in the binary stream is defined in the XML 1.0 specification.

getDB2Bytes
Format:
public byte[] getDB2Bytes()

throws SQLExceptionn

Retrieves data from a DB2Xml object as a byte array. The character encoding of
the bytes is defined in the XML 1.0 specification.

getDB2CharacterStream
Format:
public java.io.Reader getDB2CharacterStream()

throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object.

getDB2String
Format:
public String getDB2String()

throws SQLExceptionn

Retrieves data from a DB2Xml object as a String value.

getDB2XmlAsciiStream
Format:
public InputStream getDB2XmlAsciiStream()

throws SQLExceptionn

Retrieves data from a DB2Xml object, converts the data to US-ASCII encoding,
and imbeds an XML declaration with an encoding specification for US-ASCII
in the returned data.

472 Application Programming Guide and Reference for Java

getDB2XmlBinaryStream
Format:
public java.io.InputStream getDB2XmlBinaryStream(String targetEncoding)

throws SQLExceptionn

Retrieves data from a DB2Xml object as a binary stream, converts the data to
targetEncoding, and imbeds an XML declaration with an encoding specification
for targetEncoding in the returned data.

Parameter:

targetEncoding
A valid encoding name that is listed in the IANA Charset Registry. The
encoding names that are supported by the DB2 server are listed in
"Mappings of CCSIDs to encoding names for serialized XML output data".

getDB2XmlBytes
Format:
public byte[] getDB2XmlBytes(String targetEncoding)

throws SQLExceptionn

Retrieves data from a DB2Xml object as a byte array, converts the data to
targetEncoding, and imbeds an XML declaration with an encoding specification
for targetEncoding in the returned data.

Parameter:

targetEncoding
A valid encoding name that is listed in the IANA Charset Registry. The
encoding names that are supported by the DB2 server are listed in
"Mappings of CCSIDs to encoding names for serialized XML output data".

getDB2XmlCharacterStream
Format:
public java.io.Reader getDB2XmlCharacterStream()

throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object, converts the
data to ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an
encoding specification for ISO-10646-UCS-2 in the returned data.

getDB2XmlString
Format:
public String getDB2XmlString()

throws SQLExceptionn

Retrieves data from a DB2Xml object as a String object, converts the data to
ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an encoding
specification for ISO-10646-UCS-2 in the returned data.

isDB2XmlClosed
Format:
public boolean isDB2XmlClosed()

throws SQLException

Indicates whether a com.ibm.jcc.DB2Xml object has been closed.

Chapter 7. JDBC and SQLJ reference information 473

Related concepts:
“XML data retrieval in SQLJ applications” on page 178
“XML column updates in SQLJ applications” on page 176
“XML data retrieval in JDBC applications” on page 101
“XML column updates in JDBC applications” on page 98

DB2XmlAsBlobFileReference class
The com.ibm.db2.jcc.DB2XmlAsBlobFileReference class is subclass of
DB2FileReference that is used for creating XML AS BLOB file reference variable
objects. This class applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity to DB2 for z/OS Version 9 or later.

DB2XmlAsBlobFileReference constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DB2XmlAsBlobFileReference
Format:
public DB2XmlAsBlobFileReference(String fileName)

throws java.sql.SQLException

Constructs a DB2XmlAsBlobFileReference object for an XML AS BLOB file
reference variable.

Parameter descriptions:

fileName
The name of the file for the file reference variable. The name must specify
the absolute path name for an existing HFS file.

DB2XmlAsClobFileReference class
The com.ibm.db2.jcc.DB2XmlAsClobFileReference class is subclass of
DB2FileReference that is used for creating XML AS CLOB file reference variable
objects. This class applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity to DB2 for z/OS Version 9 or later.

DB2XmlAsClobFileReference constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DB2XmlAsClobFileReference
Format:
public DB2XmlAsClobFileReference(String fileName,

int fileCcsid)
throws java.sql.SQLException

public DB2XmlAsClobFileReference(String fileName,
String fileEncoding)

throws java.sql.SQLException

Constructs a DB2XmlAsClobFileReference object for an XML AS CLOB file
reference variable.

Parameter descriptions:

474 Application Programming Guide and Reference for Java

fileName
The name of the file for the file reference variable. The name must specify
the absolute path name for an existing HFS file.

fileCcsid
The CCSID of the data in the file for the file reference variable.

fileEncoding
The encoding scheme of the data in the file for the file reference variable.

DBTimestamp class
The com.ibm.db2.jcc.DBTimestamp class can be used to create timestamp objects
with a precision of up to picoseconds and time zone information. This class is
primarily for support of the SQL TIMESTAMP WITH TIME ZONE data type,
which is supported only by DB2 for z/OS.

The com.ibm.db2.jcc.DBTimestamp class is a subclass of the java.sql.Timestamp
class. Therefore, a com.ibm.db2.jcc.DBTimestamp object can be used with any
methods that normally operate on a java.sql.Timestamp object, or take a
java.sql.Timestamp object as an argument.

The IBM Data Server Driver for JDBC and SQLJ returns a DBTimestamp object for
all JDBC methods that return timestamp information, such as
ResultSet.getTimestamp or CallableStatement.getTimestamp.

DBTimestamp constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DBTimestamp
Formats:
public DBTimestamp(long time,

java.util.Calendar calendar)
throws java.sql.SQLException

public DBTimestamp(long time)
throws java.sql.SQLException

public DBTimestamp(java.sql.Timestamp timestamp)
throws java.sql.SQLException

public DBTimestamp(java.sql.Timestamp timestamp,
java.util.Calendar calendar)
throws java.sql.SQLException

Constructs a DBTimestamp object.

Parameter descriptions:

time
The number of milliseconds since January 1, 1970.

timestamp
A Timestamp value with a precision of up to picoseconds.

calendar
The Calendar value that provides the time zone.

DBTimestamp methods

getPicos
Formats:
public long getPicos()

Chapter 7. JDBC and SQLJ reference information 475

Returns the fractional seconds component of a DBTimestamp value.

getTimeZone
Formats:
public java.util.TimeZone getTimeZone()

Returns the time zone component of a DBTimestamp value.

setPicos
Format:
public void setPicos(long p)

throws SQLException

Assigns the given value to the fractional seconds component of a DBTimestamp
value.

Parameter descriptions:

p A value between 0 and 999999999999, inclusive, which is the fractional
sections component of a DBTimestamp value.

setTimeZone
Format:
public void setTimeZone(java.util.TimeZone timeZone)

throws SQLException

Assigns the given value to the time zone component of a DBTimestamp value.

Parameter descriptions:

timeZone
The time zone component of a DBTimestamp value.

valueOfDBString
Format:
public static DBTimestamp valueOfDBString(String s)

throws java.lang.IllegalArgumentException

Constructs a DBTimestamp value from the string representation of a timestamp
value.

Parameter descriptions:

s The string representation of a timestamp value. The value must be in one
of the following formats:
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]-th:tm
yyyy-mm-dd hh:mm:ss[.ffffffffffff]-th:tm
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]
yyyy-mm-dd hh:mm:ss[.ffffffffffff]
v yyyy is a year.
v mm is a month.
v dd is a day.
v hh is hours.
v mm is minutes.
v ss is seconds.
v [.ffffffffffff] is one to 12 optional fractions of seconds.
v th is the hours component of a time zone.
v tm is the minutes component of a time zone.

toDBString
Format:

476 Application Programming Guide and Reference for Java

public String toDBString(boolean includeTimeZone)

Returns the string representation of a DBTimestamp object.

The returned value has one of the following formats:
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]-th:tm
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]

Parameter description:

includeTimeZone
Specifies whether to include the time zone (-th:tm) in the returned string.

JDBC differences between versions of the IBM Data Server Driver for
JDBC and SQLJ

Before you can upgrade your JDBC applications from older to newer versions of
the IBM Data Server Driver for JDBC and SQLJ, you need to understand the
differences between those drivers.

Supported methods

For a list of methods that the IBM Data Server Driver for JDBC and SQLJ supports,
see the information on driver support for JDBC APIs.

Use of progressive streaming by the JDBC drivers

For IBM Data Server Driver for JDBC and SQLJ, Version 3.50 and later, progressive
streaming, which is also known as dynamic data format, behavior is the default for
LOB retrieval, for connections to DB2 for Linux, UNIX, and Windows Version 9.5
and later.

Progressive streaming is supported in the IBM Data Server Driver for JDBC and
SQLJ Version 3.1 and later, but for IBM Data Server Driver for JDBC and SQLJ
version 3.2 and later, progressive streaming behavior is the default for LOB and
XML retrieval, for connections to DB2 for z/OS Version 9.1 and later.

Previous versions of the IBM Data Server Driver for JDBC and SQLJ did not
support progressive streaming.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:
...
ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRow1 = rs.getClob(1);

// Put the CLOB from the first column of
// the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.
// clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);

Chapter 7. JDBC and SQLJ reference information 477

// This statement would yield an SQLException
Clob clobFromRow2 = rs.getClob(1);

// Put the CLOB from the first column of
// the second row in an application variable

rs.close(); // Close the ResultSet.
// clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow2 are no longer available.

To avoid errors that are due to this changed behavior, you need to take one of the
following actions:
v Modify your applications.

Applications that retrieve LOB data into application variables can manipulate
the data in those application variables only until the cursors that were used to
retrieve the data are moved or closed.

v Disable progressive streaming by setting the progressiveStreaming property to
DB2BaseDataSource.NO (2).

ResultSetMetaData values for IBM Data Server Driver for JDBC
and SQLJ

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the
default behavior of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel differs from the default behavior for earlier
JDBC drivers.

If you need to use IBM Data Server Driver for JDBC and SQLJ version 4.0 or later,
but your applications need to return the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values that were returned with older JDBC
drivers, you can set the useJDBC4ColumnNameAndLabelSemantics Connection
and DataSource property to DB2BaseDataSource.NO (2).

Batch updates with automatically generated keys have different
results in different driver versions

With the IBM Data Server Driver for JDBC and SQLJ version 3.52 or later,
preparing an SQL statement for retrieval of automatically generated keys is
supported.

With the IBM Data Server Driver for JDBC and SQLJ version 3.50 or version 3.51,
preparing an SQL statement for retrieval of automatically generated keys and
using the PreparedStatement object for batch updates causes an SQLException.

Versions of the IBM Data Server Driver for JDBC and SQLJ before Version 3.50 do
not throw an SQLException when an application calls the addBatch or executeBatch
method on a PreparedStatement object that is prepared to return automatically
generated keys. However, the PreparedStatement object does not return
automatically generated keys.

478 Application Programming Guide and Reference for Java

Batch updates of data on DB2 for z/OS servers have different
results in different driver versions

After you successfully invoke an executeBatch statement, the IBM Data Server
Driver for JDBC and SQLJ returns an array. The purpose of the array is to indicate
the number of rows that are affected by each SQL statement that is executed in the
batch.

If the following conditions are true, the IBM Data Server Driver for JDBC and SQLJ
returns Statement.SUCCESS_NO_INFO (-2) in the array elements:
v The application is connected to a subsystem that is in DB2 for z/OS Version 8

new-function mode, or later.
v The application is using Version 3.1 or later of the IBM Data Server Driver for

JDBC and SQLJ.
v The IBM Data Server Driver for JDBC and SQLJ uses multi-row INSERT

operations to execute batch updates.

This occurs because with multi-row INSERT, the database server executes the
entire batch as a single operation, so it does not return results for individual SQL
statements.

If you are using an earlier version of the IBM Data Server Driver for JDBC and
SQLJ, or you are connected to a data source other than DB2 for z/OS Version 8 or
later, the array elements contain the number of rows that are affected by each SQL
statement.

Batch updates and deletes of data on DB2 for z/OS servers have
different size limitations in different driver versions

Before IBM Data Server Driver for JDBC and SQLJ version 3.59 or 4.9, a
DisconnectException with error code -4499 was thrown for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS if the size of an
update or delete batch was greater than 32KB. Starting with version 3.59 or 4.9,
this restriction no longer exists, and the exception is no longer thrown.

Initial value of the CURRENT CLIENT_ACCTNG special register

For a JDBC or SQLJ application that runs under the IBM Data Server Driver for
JDBC and SQLJ version 2.6 or later, using type 4 connectivity, the initial value for
the DB2 for z/OS CURRENT CLIENT_ACCTNG special register is the
concatenation of the DB2 for z/OS version and the value of the clientWorkStation
property. For any other JDBC driver, version, and connectivity, the initial value is
not set.

Properties that control the use of multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, multi-row FETCH support was enabled and disabled through the
useRowsetCursor property, and was available only for scrollable cursors, and for
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS.
Starting with version 3.7 and 3.51:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS, the IBM Data Server Driver for JDBC and SQLJ uses only the
enableRowsetSupport property to determine whether to use multi-row FETCH
for scrollable or forward-only cursors.

Chapter 7. JDBC and SQLJ reference information 479

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for
z/OS or DB2 for Linux, UNIX, and Windows, or IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for Linux, UNIX, and Windows, the
IBM Data Server Driver for JDBC and SQLJ uses the enableRowsetSupport
property to determine whether to use multi-row FETCH for scrollable cursors, if
enableRowsetSupport is set. If enableRowsetSupport is not set, the driver uses
the useRowsetCursor property to determine whether to use multi-row FETCH.

JDBC 1 positioned updates and deletes and multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, multi-row FETCH from DB2 for z/OS tables was controlled by the
useRowsetCursor property. If an application contained JDBC 1 positioned update
or delete operations, and multi-row FETCH support was enabled, the IBM Data
Server Driver for JDBC and SQLJ permitted the update or delete operations, but
unexpected updates or deletes might occur.

Starting with version 3.7 and 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, the enableRowsetSupport property enables or disables multi-row FETCH
from DB2 for z/OS tables or DB2 for Linux, UNIX, and Windows tables. The
enableRowsetSupport property overrides the useRowsetCursor property. If
multi-row FETCH is enabled through the enableRowsetSupport property, and an
application contains a JDBC 1 positioned update or delete operation, the IBM Data
Server Driver for JDBC and SQLJ throws an SQLException.

Valid forms of prepareStatement for retrieval of automatically
generated keys from a DB2 for z/OS view

Starting with version 3.57 or version 4.7 of the IBM Data Server Driver for JDBC
and SQLJ, if you are inserting data into a view on a DB2 for z/OS data server, and
you want to retrieve automatically generated keys, you need to use one of the
following methods to prepare the SQL statement that inserts rows into the view:
Connection.prepareStatement(sql-statement, String [] columnNames);
Connection.prepareStatement(sql-statement, int [] columnIndexes);
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);

Data loss for TIMESTAMP(p) column updates using setString

If you use a setString call to pass an input value to a TIMESTAMP(p) column, it
is possible to send a value with a precision of greater than nine to the column.

Before version 3.59 or version 4.9 of the IBM Data Server Driver for JDBC and
SQLJ, data loss could occur if the sendDataAsIs property was set to false, and the
precision of the input value was greater than nine.

Starting with version 3.59 and version 4.9 of the IBM Data Server Driver for JDBC
and SQLJ, data loss does not occur if the TIMESTAMP(p) column is large enough
to accommodate the input value.

Change to result set column name for getColumns

In version 4.12 or earlier of the IBM Data Server Driver for JDBC and SQLJ, the
DatabaseMetaData.getColumns method returned a result set that contained a
column named SCOPE_CATLOG. In version 4.13 or later of the IBM Data Server
Driver for JDBC and SQLJ, the name of that column is SCOPE_CATALOG. If you

480 Application Programming Guide and Reference for Java

want the IBM Data Server Driver for JDBC and SQLJ to continue to use the
column name SCOPE_CATLOG, set DataSource or Connection property
useJDBC41DefinitionForGetColumns to DB2BaseDataSource.NO (2).

Changes to defaults for global configuration properties
db2.jcc.maxRefreshInterval, db2.jcc.maxTransportObjects, and
db2.jcc.maxTransportObjectWaitTime

The default values for global configuration properties db2.jcc.maxRefreshInterval,
db2.jcc.maxTransportObjects, and db2.jcc.maxTransportObjectWaitTime change in
version 3.63 and 4.13 of the IBM Data Server Driver for JDBC and SQLJ. The
following table lists the old and new defaults.

Configuration property
Default before versions
3.63 and 4.13

Default for versions 3.63
and 4.13 or later

db2.jcc.maxRefreshInterval 30 seconds 10 seconds

db2.jcc.maxTransportObjects -1 (unlimited) 1000

db2.jcc.maxTransportObjectWaitTime -1 (unlimited) 1 second

Changes to default values for Connection and DataSource
property maxTransportObjects

The default value for Connection and DataSource properties maxTransportObjects
changes in version 3.63 and 4.13 of the IBM Data Server Driver for JDBC and SQLJ.
The following table lists the old and new defaults.

Connection and DataSource
property

Default value before
versions 3.63 and 4.13

Default value for versions
3.63 and 4.13 or later

maxTransportObjects -1 (unlimited) 1000

Changes to default value and meaning of a retry for Connection
and DataSource properties maxRetriesForClientReroute and
retryIntervalForClientReroute for connections to a DB2 for z/OS
data sharing group

The default value and meaning of a retry for Connection and DataSource
properties maxRetriesForClientReroute and retryIntervalForClientReroute change in
version 3.64 and 4.14, and again in 3.66 and 4.16, of the IBM Data Server Driver for
JDBC and SQLJ for connections to a DB2 for z/OS data sharing group. The
following table lists the new defaults.

Change for property Versions 3.64, 4.14, 3.65, and 4.15 Versions 3.66 and 4.16, or later

Meaning of a retry One attempt to connect to one
member of the data sharing group.

One attempt to connect to all
members of the data sharing group
other than the failed member, and to
the group IP address.

Default values
maxRetriesForClientReroute

5

retryIntervalForClientReroute
0

maxRetriesForClientReroute
1

retryIntervalForClientReroute
0

Chapter 7. JDBC and SQLJ reference information 481

Changes to the meaning and default value for Connection and
DataSource property maxRetriesForClientReroute for
connections to a DB2 for z/OS data sharing group (driver
versions 3.66 and 4.16)

The meaning and default value for Connection and DataSource property
maxRetriesForClientReroute change in version 3.66 and 4.16 of the IBM Data
Server Driver for JDBC and SQLJ for connections to a DB2 for z/OS data sharing
group.

The following table shows the old and new defaults.

Connection and DataSource property
Default value before versions 3.66
and 4.16

Default value for versions 3.66 and
4.16 or later

maxRetriesForClientReroute For connections to a DB2 for z/OS
data server:

v For the first connection to a data
sharing group, if
maxRetriesForClientReroute and
retryIntervalForClientReroute are
not set, and the enableSysplexWLB
property is set to true, the default
is to retry five times with a retry
interval of 0.

v For a failover during a subsequent
connection to a data sharing group,
if maxRetriesForClientReroute and
retryIntervalForClientReroute are
not set, the enableSysplexWLB
property is set to true, and a
cached server list or an alternate
server is specified, the default is to
retry the connection for 10 minutes,
with a wait time between retries
that increases as the length of time
from the first retry increases.

If the enableSysplexWLB property is
set to true, the default is 1.

The meaning of an attempt to access the data sharing group has changed, so the
meaning of a retry has changed. Formerly, an attempt to connect was an attempt to
connect to one data sharing member, or to the group IP address. With versions 3.66
and 4.16 or later of the driver, a single attempt to access the data sharing group is
an attempt to connect to all members except the failed member, and to the group
IP address. As a result, it might be appropriate to lower the value of
maxRetriesForClientReroute.

Changes to default values for client info properties for IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS

The default values for client info properties for IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS change in version 3.64 and 4.14 of
the IBM Data Server Driver for JDBC and SQLJ. The following table lists the old
and new defaults.

482 Application Programming Guide and Reference for Java

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

Client into property
Default value before
versions 3.64 and 4.14

Default value for versions
3.64 and 4.14 or later

ApplicationName Empty string The string
"db2jcc_application"

ClientAccountingInformation Empty string Empty string

ClientHostname Empty string The string "RRSAF".

ClientUser Empty string The user ID that was
specified for the connection.
If no user ID was specified,
the RACF user ID is used.

Changes to maximum lengths for client info properties for DB2
for z/OS

The maximum lengths for client info properties for IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity on DB2 for z/OS change in version 3.66 and
4.16 of the IBM Data Server Driver for JDBC and SQLJ. The following table lists
the old and new lengths.

Client into property
Maximum length before
versions 3.66 and 4.16

Maximum length for
versions 3.66 and 4.16 or
later

ApplicationName 32 255

ClientAccountingInformation 200 255

ClientHostname 18 255

ClientUser 16 128

Change to default for global configuration property
db2.jcc.enableInetAddressGetHostName

Starting with versions 3.65 and 4.15 of the IBM Data Server Driver for JDBC and
SQLJ, the default for db2.jcc.enableInetAddressGetHostName is false. For versions
3.64 and 4.14 or earlier, the default is true.

Changes to the behavior of the xmlFormat property

Starting with version 4.15 of the IBM Data Server Driver for JDBC and SQLJ, the
xmlFormat Connection and DataSource property applies only to XML data
retrieval, instead of to XML data update and retrieval. In addition, the default
behavior has changed to retrieval of XML data in textual XML format, regardless
of whether the data server supports binary XML format.

For update of data in XML columns, xmlFormat has no effect. If the input data is
binary XML data, and the data server does not support binary XML data, the input
data is converted to textual XML data. Otherwise, no conversion occurs.

Chapter 7. JDBC and SQLJ reference information 483

|
|

|
|
|
|

|

|
|
|

|
|
|

|||

|||

|||

|||
|

|
|

|
|
|

Related concepts:
“Examples of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values”

Examples of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the
default behavior of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel differs from the default behavior for earlier
JDBC drivers. You can use the useJDBC4ColumnNameAndLabelSemantics property
to change this behavior.

The following examples show the values that are returned for IBM Data Server
Driver for JDBC and SQLJ Version 4.0, and for previous JDBC drivers, when the
useJDBC4ColumnNameAndLabelSemantics property is not set.

All queries use a table that is defined like this:
CREATE TABLE MYTABLE(INTCOL INT)

Example: The following query contains an AS CLAUSE, which defines a label for a
column in the result set:
SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query:

Table 97. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a query with an AS CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0 and later

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 for Linux, UNIX,
and Windows

MYLABEL MYLABEL MYCOL MYLABEL

IBM Informix MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version
8 or later, and DB2
UDB for iSeries V5R3
and later

MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version
7, and DB2 UDB for
iSeries V5R2

MYLABEL MYLABEL MYLABEL MYLABEL

Example: The following query contains no AS clause:
SELECT MYCOL FROM MYTABLE

The ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel
methods on the query return MYCOL, regardless of the target data source.

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is
used to define a label for a column:
LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

484 Application Programming Guide and Reference for Java

The following query contains an AS CLAUSE, which defines a label for a column
in the ResultSet:
SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query.

Table 98. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with an AS
CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0 and later

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 for z/OS Version
8 or later, and DB2
UDB for iSeries V5R3
and later

MYLABEL LABELONCOL MYCOL MYLABEL

DB2 for z/OS Version
7, and DB2 UDB for
iSeries V5R2

MYLABEL LABELONCOL MYCOL LABELONCOL

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is
used to define a label for a column:
LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

The following query contains no AS CLAUSE:
SELECT MYCOL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query.

Table 99. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with no AS
CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 for z/OS Version
8 or later, and DB2
UDB for i5/OS V5R3
and later

MYCOL LABELONCOL MYCOL MYCOL

DB2 for z/OS Version
7, and DB2 UDB for
i5/OS V5R2

MYCOL LABELONCOL MYLABEL LABELONCOL

Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
Warning codes in the ranges +4200 to +4299, and +4450 to +4499, and error codes
in the ranges -4200 to -4299, and -4450 to -4499 are reserved for the IBM Data
Server Driver for JDBC and SQLJ.

Chapter 7. JDBC and SQLJ reference information 485

When you call the SQLException.getMessage method after a IBM Data Server
Driver for JDBC and SQLJ error occurs, a string is returned that includes:
v Whether the connection is a type 2 or type 4 connection
v Diagnostic information for IBM Software Support
v The level of the driver
v An explanatory message
v The error code
v The SQLSTATE

For example:
[jcc][t4][20128][12071][3.50.54] Invalid queryBlockSize specified: 1,048,576,012.
Using default query block size of 32,767. ERRORCODE=0, SQLSTATE=

The IBM Data Server Driver for JDBC and SQLJ issues the following warning
codes:

+4204 Message text: Errors were encountered and tolerated as specified by the
RETURN DATA UNTIL clause.

Explanation: Tolerated errors include federated connection, authentication,
and authorization errors. This warning applies only to connections to DB2
for Linux, UNIX, and Windows servers. It is issued only when a cursor
operation, such as a ResultSet.next or ResultSet.previous call, returns
false.

SQLSTATE: 02506

+4222 Message text: text-from-getMessage

Explanation: A warning condition occurred during connection to the data
source.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4223 Message text: text-from-getMessage

Explanation: A warning condition occurred during initialization.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4225 Message text and explanation: text-from-getMessage

Explanation: A warning condition occurred when data was sent to a server
or received from a server.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4226 Message text and explanation: text-from-getMessage

Explanation: A warning condition occurred during customization or bind.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4228 Message text: text-from-getMessage

Explanation: An warning condition occurred that does not fit in another
category.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4450 Message text: Feature not supported: feature-name

486 Application Programming Guide and Reference for Java

+4460 Message text: text-from-getMessage

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4461 Message text: text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4462 Message text: text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4470 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is closed.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4471 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is in use.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4472 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is unavailable.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

+4474 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

The IBM Data Server Driver for JDBC and SQLJ issues the following error codes:

-1224 Message text: The database manager is not able to accept new requests,
has terminated all requests in progress, or has terminated the specified
request because of an error or a forced interrupt.

Explanation: For connections to DB2 for Linux, UNIX, and Windows data
servers, see SQL1224N for details.

For connections to DB2 for z/OS data servers, this error indicates the DB2
for z/OS server thread that is associated with the application abnormally
terminated. Server diagnostics that are related to the application need to be
collected. The application can be identified by its unique application ID.
DB2 for z/OS externalizes the application ID in messages and traces as the

Chapter 7. JDBC and SQLJ reference information 487

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.messages.sql.doc/doc/msql01224n.html

connection correlation token (CRRTKN) and logical unit of work ID
(LUWID). Message DSNL027I is generated on the z/OS console when a
DB2 for z/OS thread abnormally terminates. DSNL027I provides a reason
code for the failure. In most cases, DB2 for z/OS generates a z/OS SVC
dump, which is needed to solve the problem.

SQLSTATE: 2D521

-4200 Message text: Invalid operation: An invalid COMMIT or ROLLBACK has
been called in an XA environment during a Global Transaction.

Explanation: An application that was in a global transaction in an XA
environment issued a commit or rollback. A commit or rollback operation
in a global transaction is invalid.

SQLSTATE: 2D521

-4201 Message text: Invalid operation: setAutoCommit(true) is not allowed
during Global Transaction.

Explanation: An application that was in a global transaction in an XA
environment executed the setAutoCommit(true) statement. Issuing
setAutoCommit(true) in a global transaction is invalid.

SQLSTATE: 2D521

-4203 Message text: Error executing function. Server returned rc.

Explanation: An error occurred on an XA connection during execution of
an SQL statement.

For network optimization, the IBM Data Server Driver for JDBC and SQLJ
delays some XA flows until the next SQL statement is executed. If an error
occurs in a delayed XA flow, that error is reported as part of the
SQLException that is thrown by the current SQL statement.

-4210 Message text: Timeout getting a transport object from pool.

SQLSTATE: 57033

-4211 Message text: Timeout getting an object from pool.

SQLSTATE: 57033

-4212 Message text: Sysplex member unavailable.

-4213 Message text: Timeout.

SQLSTATE: 57033

-4214 Message text: text-from-getMessage

Explanation: Authorization failed.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

SQLSTATE: 28000

-4220 Message text: text-from-getMessage

Explanation: An error occurred during character conversion.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4221 Message text: text-from-getMessage

Explanation: An error occurred during encryption or decryption.

488 Application Programming Guide and Reference for Java

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4222 Message text: text-from-getMessage

Explanation: An error occurred during connection to the data source.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4223 Message text: text-from-getMessage

Explanation: An error occurred during initialization.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4224 Message text: text-from-getMessage

Explanation: An error occurred during resource cleanup.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4225 Message text: text-from-getMessage

Explanation: An error occurred when data was sent to a server or received
from a server.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4226 Message text: text-from-getMessage

Explanation: An error occurred during customization or bind.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4227 Message text: text-from-getMessage

Explanation: An error occurred during reset.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4228 Message text: text-from-getMessage

Explanation: An error occurred that does not fit in another category.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4229 Message text: text-from-getMessage

Explanation: An error occurred during a batch execution.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4231 Message text: An error occurred during the conversion of column
column-number of type sql-data-type with value value to a value of type
java.math.BigDecimal.

-4450 Message text: Feature not supported: feature-name

SQLSTATE: 0A504

-4460 Message text: text-from-getMessage

Chapter 7. JDBC and SQLJ reference information 489

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4461 Message text: text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

SQLSTATE: 42815

-4462 Message text: text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4463 Message text: text-from-getMessage

Explanation: The specified value has a syntax error.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

SQLSTATE: 42601

-4470 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is closed.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4471 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is in use.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4472 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is unavailable.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4473 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource is no longer available.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4474 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

490 Application Programming Guide and Reference for Java

-4475 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because access
to the target resource is restricted.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4476 Message text: text-from-getMessage

Explanation: The requested operation cannot be performed because the
operation is not allowed on the target resource.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

-4496 Message text: An SQL OPEN for a held cursor was issued on an XA
connection. The JDBC driver does not allow a held cursor to be opened on
the database server for an XA connection.

-4497 Message text: The application must issue a rollback. The unit of work has
already been rolled back in the DB2 server, but other resource managers
involved in the unit of work might not have rolled back their changes. To
ensure integrity of the application, all SQL requests are rejected until the
application issues a rollback.

-4498 Message text: A connection failed but has been re-established. Special
register settings have been replayed if necessary. Host name or IP address
of the connection: host-name. Service name or port number of the
connection: service-name. Reason code: reason-code. Failure code: failure-code.
Error code: error-code.

Explanation: The connection has been reestablished. In some cases, the
network connection or transport to the server is not established until the
next use. After the connection is reestablished, all session resources are set
to their initial default values. The application is rolled back to the previous
commit point. The reason code indicates which special register values are
applied to the new connection. Possible values for the reason code are:

1 All special register settings were returned to their values at the
point of failure. The connection was reestablished within the
current group.

2 All special register settings were returned to their values at the
previous commit point. The connection was reestablished within
the current group.

3 All special registers were returned to their settings at the point of
failure. The connection was reestablished in a new group.

4 All special register settings were returned to their values at the
previous commit point. The connection was reestablished in a new
group.

failure-code indicates the error that caused the connection to fail:

1 A communication failure occurred.

2 The data server closed the connection.

3 An SQL error occurred.

4 The client closed the connection.

error-code depends on the value of failure-code:

Chapter 7. JDBC and SQLJ reference information 491

Failure code: 1 or 2
Error code: The Java SocketException message that was returned.

Failure code: 3
Error code: The SQL error code that was returned by the SQL
statement that caused the connection to fail.

Failure code: 4
Error code: The following value:

2 The driver received an interrupt or cancel request.

For client reroute against DB2 for z/OS servers, special register values that
were set after the last commit point are not re-established.

The application is rolled back to the previous commit point. The
connection state and global resources such as global temporary tables and
open held cursors might not be maintained.

-4499 Message text: text-from-getMessage

Explanation: A fatal error occurred that resulted in a disconnect from the
data source. The existing connection has become unusable.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

SQLSTATE: 08001 or 58009

-30108 Message text: A connection failed in an automatic client reroute
environment. The transaction was rolled back. Host name or IP address:
host-name. Service name or port number: service-name. Reason code:
reason-code. Connection failure code: connection-failure-code. Underlying
error: underlying-error.

Explanation: See SQL30108N.

User response: Call SQLException.getMessage to retrieve specific
information about the problem.

SQLSTATE: 08506

-99999 Message text: The IBM Data Server Driver for JDBC and SQLJ issued an
error that does not yet have an error code.

Related tasks:
“Handling SQL errors in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117

SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ
SQLSTATEs in the range 46600 to 466ZZ are reserved for the IBM Data Server
Driver for JDBC and SQLJ.

The following table lists the SQLSTATEs that are generated or used by the IBM
Data Server Driver for JDBC and SQLJ.

Table 100. SQLSTATEs returned by the IBM Data Server Driver for JDBC and SQLJ

SQLSTATE
class SQLSTATE Description

01xxx Warning

492 Application Programming Guide and Reference for Java

|
|

||

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.messages.sql.doc/doc/msql30108n.html

Table 100. SQLSTATEs returned by the IBM Data Server Driver for JDBC and
SQLJ (continued)

SQLSTATE
class SQLSTATE Description

02xxx No data

02xxx 02501 The cursor position is not valid for a FETCH of the current
row.

02xxx 02506 Tolerable error

08xxx Connection exception

08xxx 08001 The application requester is unable to establish the
connection.

08xxx 08003 A connection does not exist

08xxx 08004 The application server rejected establishment of the
connection

08xxx 08506 Client reroute exception

0Axxx Feature not supported

0Axxx 0A502 The action or operation is not enabled for this database
instance

0Axxx 0A504 The feature is not supported by the driver

22xxx Data exception

22xxx 22007 The string representation of a datetime value is invalid

22xxx 22021 A character is not in the coded character set

23xxx Constraint violation

23xxx 23502 A value that is inserted into a column or updates a column is
null, but the column cannot contain null values.

24xxx Invalid cursor state

24xxx 24501 The identified cursor is not open

28xxx Authorization exception

28xxx 28000 Authorization name is invalid.

2Dxxx Invalid transaction termination

2Dxxx 2D521 SQL COMMIT or ROLLBACK are invalid in the current
operating environment.

34xxx Invalid cursor name

34xxx 34000 Cursor name is invalid.

3Bxxx Invalid savepoint

3Bxxx 3B503 A SAVEPOINT, RELEASE SAVEPOINT, or ROLLBACK TO
SAVEPOINT statement is not allowed in a trigger or global
transaction.

40xxx Transaction rollback

42xxx Syntax error or access rule violation

42xxx 42601 A character, token, or clause is invalid or missing

42xxx 42734 A duplicate parameter name, SQL variable name, cursor
name, condition name, or label was detected.

42xxx 42807 The INSERT, UPDATE, or DELETE is not permitted on this
object

Chapter 7. JDBC and SQLJ reference information 493

Table 100. SQLSTATEs returned by the IBM Data Server Driver for JDBC and
SQLJ (continued)

SQLSTATE
class SQLSTATE Description

42xxx 42808 A column identified in the insert or update operation is not
updateable

42xxx 42815 The data type, length, scale, value, or CCSID is invalid

42xxx 42820 A numeric constant is too long, or it has a value that is not
within the range of its data type

42xxx 42968 The connection failed because there is no current software
license.

57xxx Resource not available or operator intervention

57xxx 57033 A deadlock or timeout occurred without automatic rollback

58xxx System error

58xxx 58008 Execution failed due to a distribution protocol error that will
not affect the successful execution of subsequent DDM
commands or SQL statements

58xxx 58009 Execution failed due to a distribution protocol error that
caused deallocation of the conversation

58xxx 58012 The bind process with the specified package name and
consistency token is not active

58xxx 58014 The DDM command is not supported

58xxx 58015 The DDM object is not supported

58xxx 58016 The DDM parameter is not supported

58xxx 58017 The DDM parameter value is not supported

Related tasks:
“Handling SQL errors in an SQLJ application” on page 185
“Handling an SQLException under the IBM Data Server Driver for JDBC and
SQLJ” on page 117

How to find IBM Data Server Driver for JDBC and SQLJ version and
environment information

To determine the version of the IBM Data Server Driver for JDBC and SQLJ, as
well as information about the environment in which the driver is running, run the
DB2Jcc utility on the UNIX System Services command line.

DB2Jcc syntax

�� java com.ibm.db2.jcc.DB2Jcc
-version -configuration -help

��

DB2Jcc option descriptions

-version
Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name
and version.

494 Application Programming Guide and Reference for Java

-configuration
Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name
and version, and information about its environment, such as information about
the Java runtime environment, operating system, path information, and license
restrictions.

-help
Specifies that the DB2Jcc utility describes each of the options that it supports. If
any other options are specified with -help, they are ignored.

Commands for SQLJ program preparation
To prepare SQLJ programs for execution, you use commands to translate SQLJ
source code into Java source code, compile the Java source code, create and
customize SQLJ serialized profiles, and bind DB2 packages.

sqlj - SQLJ translator
The sqlj command translates an SQLJ source file into a Java source file and zero or
more SQLJ serialized profiles. By default, the sqlj command also compiles the Java
source file.

Authorization

None

Command syntax

�� sqlj
-help -dir=directory -d=directory -props=properties-file

�

�
-compile=true

-compile=false

-linemap=NO

-linemap=YES

-smap=NO

-smap=YES -encoding=encoding -db2optimize
�

�
-ser2class -status -version -C-help

� -Ccompiler-option

�

�

� -JJVM-option � SQLJ-source-file-name

��

Command parameters

-help
Specifies that the SQLJ translator describes each of the options that the
translator supports. If any other options are specified with -help, they are
ignored.

-dir=directory
Specifies the name of the directory into which SQLJ puts .java files that are

Chapter 7. JDBC and SQLJ reference information 495

generated by the translator and .class files that are generated by the compiler.
The default is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts
the generated files in directories. For example, suppose that you want the
translator to process two files:
v file1.sqlj, which is not in a Java package
v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the
translator. The translator puts the Java source file for file1.sqlj in directory /src
and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

-d=directory
Specifies the name of the directory into which SQLJ puts the binary files that
are generated by the translator and compiler. These files include the .ser files,
the name_SJProfileKeys.class files, and the .class files that are generated by the
compiler.

The default is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts
the generated files in directories. For example, suppose that you want the
translator to process two files:
v file1.sqlj, which is not in a Java package
v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -d=/src when you invoke the
translator. The translator puts the serialized profiles for file1.sqlj in directory
/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-compile=true|false
Specifies whether the SQLJ translator compiles the generated Java source into
bytecodes.

true
The translator compiles the generated Java source code. This is the default.

false
The translator does not compile the generated Java source code.

-linemap=no|yes
Specifies whether line numbers in Java exceptions match line numbers in the
SQLJ source file (the .sqlj file), or line numbers in the Java source file that is
generated by the SQLJ translator (the .java file).

no Line numbers in Java exceptions match line numbers in the Java source
file. This is the default.

yes
Line numbers in Java exceptions match line numbers in the SQLJ source
file.

-smap=no|yes
Specifies whether the SQLJ translator generates a source map (SMAP) file for
each SQLJ source file. An SMAP file is used by some Java language debug
tools. This file maps lines in the SQLJ source file to lines in the Java source file
that is generated by the SQLJ translator. The file is in the Unicode UTF-8
encoding scheme. Its format is described by Original Java Specification Request
(JSR) 45, which is available from this web site:
http://www.jcp.org

no Do not generated SMAP files. This is the default.

496 Application Programming Guide and Reference for Java

yes
Generate SMAP files. An SMAP file name is SQLJ-source-file-
name.java.smap. The SQLJ translator places the SMAP file in the same
directory as the generated Java source file.

-encoding=encoding-name
Specifies the encoding of the source file. Examples are JIS or EUC. If this
option is not specified, the default converter for the operating system is used.

-db2optimize
Specifies that the SQLJ translator generates code that enables SQLJ context
caching in a WebSphere Application Server environment for applications that
run against DB2 data servers.

-db2optimize causes a user-defined context to extend a custom driver class,
which enables context caching and connection caching in WebSphere
Application Server.

Because context caching is enabled by using an instance of IBM Data Server
Driver for JDBC and SQLJ class sqlj.runtime.ref.DefaultContext, db2jcc.jar
must be in the CLASSPATH when you translate and compile the Java
application.

You cannot use connection sharing in WebSphere Application Server if you use
context caching.

Important: Context caching that is enabled by the -db2optimize option can
provide performance benefits over connection pooling and statement pooling
that is provided by WebSphere Application Server. However, context caching
can result in significant resource consumption in the application server, and
might have unintended side effects if it is not used correctly. For example, if
two applications use an SQLJ profile with the same name, they might
overwrite each other, because both use sqlj.runtime.ref.DefaultContext. Use
context caching only if:
v The system is not storage-contrained.
v Cached statements are often reused on the same Connection.
v All applications have distinct names for their SQLJ profiles.

-ser2class
Specifies that the SQLJ translator converts .ser files to .class files.

-status
Specifies that the SQLJ translator displays status messages as it runs.

-version
Specifies that the SQLJ translator displays the version of the IBM Data Server
Driver for JDBC and SQLJ. The information is in this form:
IBM SQLJ xxxx.xxxx.xx

-C-help
Specifies that the SQLJ translator displays help information for the Java
compiler.

-Ccompiler-option
Specifies a valid Java compiler option that begins with a dash (-). Do not
include spaces between -C and the compiler option. If you need to specify
multiple compiler options, precede each compiler option with -C. For example:
-C-g -C-verbose

Chapter 7. JDBC and SQLJ reference information 497

All options are passed to the Java compiler and are not used by the SQLJ
translator, except for the following options:

-classpath
Specifies the user class path that is to be used by the SQLJ translator
and the Java compiler. This value overrides the CLASSPATH
environment variable.

-sourcepath
Specifies the source code path that the SQLJ translator and the Java
compiler search for class or interface definitions. The SQLJ translator
searches for .sqlj and .java files only in directories, not in JAR or zip
files.

-JJVM-option
Specifies an option that is to be passed to the Java virtual machine (JVM) in
which the sqlj command runs. The option must be a valid JVM option that
begins with a dash (-). Do not include spaces between -J and the JVM option.
If you need to specify multiple JVM options, precede each compiler option
with -J. For example:
-J-Xmx128m -J-Xmine2M

SQLJ-source-file-name
Specifies a list of SQLJ source files to be translated. This is a required
parameter. All SQLJ source file names must have the extension .sqlj.

Output

For each source file, program-name.sqlj, the SQLJ translator produces the following
files:
v The generated source program

The generated source file is named program-name.java.
v A serialized profile file for each connection context class that is used in an SQLJ

executable clause
A serialized profile name is of the following form:
program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler
generates.

Examples
sqlj -encoding=UTF8 -C-O MyApp.sqlj

db2sqljcustomize - SQLJ profile customizer
db2sqljcustomize processes an SQLJ profile, which contains embedded SQL
statements.

By default, db2sqljcustomize produces four DB2 packages: one for each isolation
level. db2sqljcustomize augments the profile with DB2-specific information for use
at run time.

Authorization

The privilege set of the process must include one of the following authorities:
v SYSADM authority
v DBADM authority

498 Application Programming Guide and Reference for Java

v If the package does not exist, the BINDADD privilege, and one of the following
privileges:
– CREATEIN privilege
– PACKADM authority on the collection or on all collections

v If the package exists, the BIND privilege on the package

Command syntax

�� db2sqljcustomize
-help

�

�

�

-url jdbc:db2://server /database
: port

: property=value;
-datasource JNDI-name

-user user-ID
�

�
-password password

-automaticbind YES

-automaticbind NO -pkgversion AUTO
-pkgversion version-id

�

�
-bindoptions " options-string " -storebindoptions -collection collection-name

�

�
-onlinecheck YES

-onlinecheck NO -qualifier qualifier-name -rootpkgname package-name-stem
-singlepkgname package-name

�

�
-longpkgname

-staticpositioned NO

-staticpositioned YES
�

Chapter 7. JDBC and SQLJ reference information 499

�

�

-tracelevel TRACE_SQLJ
-tracefile file-name

,

-tracelevel TRACE_NONE
TRACE_CONNECTION_CALLS
TRACE_STATEMENT_CALLS
TRACE_RESULT_SET_CALLS
TRACE_DRIVER_CONFIGURATION
TRACE_CONNECTS
TRACE_DRDA_FLOWS
TRACE_RESULT_SET_META_DATA
TRACE_PARAMETER_META_DATA
TRACE_DIAGNOSTICS
TRACE_SQLJ
TRACE_XA_CALLS
TRACE_TRACEPOINTS
TRACE_ALL

�

�
-zosDescProcParms -zosProcedurePath procedure-path -genDBRM

�

�
-DBRMDir directory-name

� serialized-profile-name
file-name.grp

��

Command parameters

-help
Specifies that the SQLJ customizer describes each of the options that the
customizer supports. If any other options are specified with -help, they are
ignored.

-url
Specifies the URL for the data source for which the profile is to be customized.
A connection is established to the data source that this URL represents if the
-automaticbind or -onlinecheck option is specified as YES or defaults to YES.
The variable parts of the -url value are:

server
The domain name or IP address of the z/OS system on which the DB2
subsystem resides.

port
The TCP/IP server port number that is assigned to the DB2 subsystem.
The default is 446.

-url
Specifies the URL for the data source for which the profile is to be
customized. A connection is established to the data source that this URL
represents if the -automaticbind or -onlinecheck option is specified as YES
or defaults to YES. The variable parts of the -url value are:

500 Application Programming Guide and Reference for Java

server
The domain name or IP address of the operating system on which the
database server resides.

port
The TCP/IP server port number that is assigned to the database server.
The default is 446.

database
A name for the database server for which the profile is to be
customized.

If the connection is to a DB2 for z/OS server, database is the DB2
location name that is defined during installation. All characters in this
value must be uppercase characters. You can determine the location
name by executing the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 for Linux, UNIX, and Windows server,
database is the database name that is defined during installation.

If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name
must be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

property=value;
A property for the JDBC connection.

property=value;
A property for the JDBC connection.

-datasource JNDI-name
Specifies the logical name of a DataSource object that was registered with
JNDI. The DataSource object represents the data source for which the profile is
to be customized. A connection is established to the data source if the
-automaticbind or -onlinecheck option is specified as YES or defaults to YES.
Specifying -datasource is an alternative to specifying -url. The DataSource
object must represent a connection that uses IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

-user user-ID
Specifies the user ID to be used to connect to the data source for online
checking or binding a package. You must specify -user if you specify -url. You
must specify -user if you specify -datasource, and the DataSource object that
JNDI-name represents does not contain a user ID.

-password password
Specifies the password to be used to connect to the data source for online
checking or binding a package. You must specify -password if you specify -url.
You must specify -password if you specify -datasource, and the DataSource
object that JNDI-name represents does not contain a password.

-automaticbind YES|NO
Specifies whether the customizer binds DB2 packages at the data source that is
specified by the -url parameter.

The default is YES.

The number of packages and the isolation levels of those packages are
controlled by the -rootpkgname and -singlepkgname options.

Before the bind operation can work, the following conditions need to be met:

Chapter 7. JDBC and SQLJ reference information 501

v TCP/IP and DRDA must be installed at the target data source.
v Valid -url, -username, and -password values must be specified.
v The -username value must have authorization to bind a package at the

target data source.

-pkgversion AUTO|version-id
Specifies the package version that is to be used when packages are bound at
the server for the serialized profile that is being customized. db2sqljcustomize
stores the version ID in the serialized profile and in the DB2 package.
Run-time version verification is based on the consistency token, not the version
name. To automatically generate a version name that is based on the
consistency token, specify -pkgversion AUTO.

The default is that there is no version.

-bindoptions options-string
Specifies a list of options, separated by spaces. These options have the same
function as DB2 precompile and bind options with the same names. If you are
preparing your program to run on a DB2 for z/OS system, specify DB2 for
z/OS options. If you are preparing your program to run on a DB2 for Linux,
UNIX, and Windows system, specify DB2 for Linux, UNIX, and Windows
options.

Notes on bind options:

v Specify ISOLATION only if you also specify the -singlepkgname option.

Important: Specify only those program preparation options that are
appropriate for the data source at which you are binding a package. Some
values and defaults for the IBM Data Server Driver for JDBC and SQLJ are
different from the values and defaults for DB2.

-storebindoptions
Specifies that values for the -bindoptions and -staticpositioned parameters are
stored in the serialized profile. If db2sqljbind is invoked without the
-bindoptions or -staticpositioned parameter, the values that are stored in the
serialized profile are used during the bind operation. When multiple serialized
profiles are specified for one invocation of db2sqljcustomize, the parameter
values are stored in each serialized profile. The stored values are displayed in
the output from the db2sqljprint utility.

-collection collection-name
The qualifier for the packages that db2sqljcustomize binds. db2sqljcustomize
stores this value in the customized serialied profile, and it is used when the
associated packages are bound. If you do not specify this parameter,
db2sqljcustomize uses a collection ID of NULLID.

-onlinecheck YES|NO
Specifies whether online checking of data types in the SQLJ program is to be
performed. The -url or -datasource option determines the data source that is to
be used for online checking. The default is YES if the -url or -datasource
parameter is specified. Otherwise, the default is NO.

-qualifier qualifier-name
Specifies the qualifier that is to be used for unqualified objects in the SQLJ
program during online checking. This value is not used as the qualifier when
the packages are bound.

502 Application Programming Guide and Reference for Java

-rootpkgname|-singlepkgname
Specifies the names for the packages that are associated with the program. If
-automaticbind is NO, these package names are used when db2sqljbind runs.
The meanings of the parameters are:

-rootpkgname package-name-stem
Specifies that the customizer creates four packages, one for each of the four
DB2 isolation levels. The names for the four packages are:

package-name-stem1
For isolation level UR

package-name-stem2
For isolation level CS

package-name-stem3
For isolation level RS

package-name-stem4
For isolation level RR

If -longpkgname is not specified, package-name-stem must be an
alphanumeric string of seven or fewer bytes.

If -longpkgname is specified, package-name-stem must be an alphanumeric
string of 127 or fewer bytes.

-singlepkgname package-name
Specifies that the customizer creates one package, with the name
package-name. If you specify this option, your program can run at only one
isolation level. You specify the isolation level for the package by specifying
the ISOLATION option in the -bindoptions options string.

If -longpkgname is not specified, package-name must be an alphanumeric
string of eight or fewer bytes.

If -longpkgname is specified, package-name must be an alphanumeric string
of 128 or fewer bytes.

Using the -singlepkgname option is not recommended.

Recommendation: If the target data source is DB2 for z/OS, use uppercase
characters for the package-name-stem or package-name value. DB2 for z/OS
systems that are defined with certain CCSID values cannot tolerate lowercase
characters in package names or collection names.

If you do not specify -rootpkgname or -singlepkgname, db2sqljcustomize
generates four package names that are based on the serialized profile name. A
serialized profile name is of the following form:
program-name_SJProfileIDNumber.ser

The four generated package names are of the following form:
Bytes-from-program-nameIDNumberPkgIsolation

Table 101 on page 504 shows the parts of a generated package name and the
number of bytes for each part.

The maximum length of a package name is maxlen. maxlen is 8 if -longpkgname
is not specified. maxlen is 128 if -longpkgname is specified.

Chapter 7. JDBC and SQLJ reference information 503

Table 101. Parts of a package name that is generated by db2sqljcustomize

Package name part Number of bytes Value

Bytes-from-program-name m=min(Length(program-name),
maxlen–1–Length(IDNumber))

First m bytes of program-name, in
uppercase

IDNumber Length(IDNumber) IDNumber

PkgIsolation 1 1, 2, 3, or 4. This value represents the
transaction isolation level for the
package. See Table 102.

Table 102 shows the values of the PkgIsolation portion of a package name that is
generated by db2sqljcustomize.

Table 102. PkgIsolation values and associated isolation levels

PkgNumber value Isolation level for package

1 Uncommitted read (UR)

2 Cursor stability (CS)

3 Read stability (RS)

4 Repeatable read (RR)

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The
db2sqljcustomize option -longpkgname is not specified. Therefore,
Bytes-from-program-name is the first four bytes of ThisIsMyProg, translated to
uppercase, or THIS. IDNumber is 111. The four package names are:
THIS1111
THIS1112
THIS1113
THIS1114

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The
db2sqljcustomize option -longpkgname is specified. Therefore,
Bytes-from-program-name is ThisIsMyProg, translated to uppercase, or
THISISMYPROG. IDNumber is 111. The four package names are:
THISISMYPROG1111
THISISMYPROG1112
THISISMYPROG1113
THISISMYPROG1114

Example: Suppose that a profile name is A_SJProfile0.ser. Bytes-from-program-
name is A. IDNumber is 0. Therefore, the four package names are:
A01
A02
A03
A04

Letting db2sqljcustomize generate package names is not recommended. If any
generated package names are the same as the names of existing packages,
db2sqljcustomize overwrites the existing packages. To ensure uniqueness of
package names, specify -rootpkgname.

-longpkgname
Specifies that the names of the DB2 packages that db2sqljcustomize generates
can be up to 128 bytes. Use this option only if you are binding packages at a
server that supports long package names. If you specify -singlepkgname or
-rootpkgname, you must also specify -longpkgname under the following
conditions:
v The argument of -singlepkgname is longer than eight bytes.

504 Application Programming Guide and Reference for Java

v The argument of -rootpkgname is longer than seven bytes.

-staticpositioned NO|YES
For iterators that are declared in the same source file as positioned UPDATE
statements that use the iterators, specifies whether the positioned UPDATEs
are executed as statically bound statements. The default is NO. NO means that
the positioned UPDATEs are executed as dynamically prepared statements.

-zosDescProcParms
Specifies that db2sqljcustomize queries the DB2 catalog at the target data
source to determine the SQL parameter data types that correspond to the host
variables in CALL statements.

-zosDescProcParms applies only to programs that run on DB2 for z/OS data
servers.

If -zosDescProcParms is specified, and the authorization ID under which
db2sqljcustomize runs does not have read access to the SYSIBM.SYSROUTINES
catalog table, db2sqljcustomize returns an error and uses the host variable data
types in the CALL statements to determine the SQL data types.

Specification of -zosDescProcParms can lead to more efficient storage usage at
run time. If SQL data type information is available, SQLJ has information
about the length and precision of INOUT and OUT parameters, so it allocates
only the amount of memory that is needed for those parameters. Availability of
SQL data type information can have the biggest impact on storage usage for
character INOUT parameters, LOB OUT parameters, and decimal OUT
parameters.

When -zosDescProcParms is specified, the DB2 data server uses the specified
or default value of -zosProcedurePath to resolve unqualified names of stored
procedures for which SQL data type information is requested.

If -zosDescProcParms is not specified, db2sqljcustomize uses the host variable
data types in the CALL statements to determine the SQL data types. If
db2sqljcustomize determines the wrong SQL data type, an SQL error might
occur at run time. For example, if the Java host variable type is String, and the
corresponding stored procedure parameter type is VARCHAR FOR BIT DATA,
an SQL run-time error such as -4220 might occur.

-zosProcedurePath procedure-path
Specifies a list of schema names that DB2 for z/OS uses to resolve unqualified
stored procedure names during online checking of an SQLJ program.

-zosProcedurePath applies to programs that are to be run on DB2 for z/OS
database servers only.

The list is a String value that is a comma-separated list of schema names that
is enclosed in double quotation marks. The DB2 database server inserts that list
into the SQL path for resolution of unqualified stored procedure names. The
SQL path is:
SYSIBM, SYSFUN, SYSPROC, procedure-path, qualifier-name, user-ID

qualifier-name is the value of the -qualifier parameter, and user-ID is the value
of the -user parameter.

The DB2 database server tries the schema names in the SQL path from left to
right until it finds a match with the name of a stored procedure that exists on
that database server. If the DB2 database server finds a match, it obtains the
information about the parameters for that stored procedure from the DB2

Chapter 7. JDBC and SQLJ reference information 505

catalog. If the DB2 database server does not find a match, SQLJ sets the
parameter data without any DB2 catalog information.

If -zosProcedurePath is not specified, the DB2 database server uses this SQL
path:
SYSIBM, SYSFUN, SYSPROC, qualifier-name, user-ID

If the -qualifier parameter is not specified, the SQL path does not include
qualifier-name.

-genDBRM
Specifies that db2sqljcustomize generates database request modules (DBRMs).
Those DBRMs can be used to create DB2 for z/OS packages.

-genDBRM applies to programs that are to be run on DB2 for z/OS database
servers only.

If -genDBRM and -automaticbind NO are specified, db2sqljcustomize creates
the DBRMs but does not bind them into DB2 packages. If -genDBRM and
-automaticbind YES are specified, db2sqljcustomize creates the DBRMs and
binds them into DB2 packages.

One DBRM is created for each DB2 isolation level. The naming convention for
the generated DBRM files is the same as the naming convention for packages.
For example, if -rootpkgname SQLJSA0 is specified, and -genDBRM is also
specified, the names of the four DBRM files are:
v SQLJSA01
v SQLJSA02
v SQLJSA03
v SQLJSA04

-DBRMDir directory-name
When -genDBRM is specified, -DBRMDir specifies the local directory into
which db2sqljcustomize puts the generated DBRM files. The default is the
current directory.

-DBRMdir applies to programs that are to be run on DB2 for z/OS database
servers only.

-tracefile file-name
Enables tracing and identifies the output file for trace information. This option
should be specified only under the direction of IBM Software Support.

-tracelevel
If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.
The default is TRACE_SQLJ. This option should be specified only under the
direction of IBM Software Support.

serialized-profile-name|file-name.grp
Specifies the names of one or more serialized profiles that are to be
customized. The specified serialized profile must be in a directory that is
named in the CLASSPATH environment variable.

A serialized profile name is of the following form:
program-name_SJProfileIDNumber.ser

You can specify the serialized profile name with or without the .ser extension.

program-name is the name of the SQLJ source program, without the extension
.sqlj. n is an integer between 0 and m-1, where m is the number of serialized
profiles that the SQLJ translator generated from the SQLJ source program.

506 Application Programming Guide and Reference for Java

You can specify serialized profile names in one of the following ways:
v List the names in the db2sqljcustomize command. Multiple serialized profile

names must be separated by spaces.
v Specify the serialized profile names, one on each line, in a file with the name

file-name.grp, and specify file-name.grp in the db2sqljcustomize command.

If you specify more than one serialized profile name, and if you specify or use
the default value of -automaticbind YES, db2sqljcustomize binds a single DB2
package from the profiles. When you use db2sqljcustomize to create a single
DB2 package from multiple serialized profiles, you must also specify the
-rootpkgname or -singlepkgname option.

If you specify more than one serialized profile name, and you specify
-automaticbind NO, if you want to bind the serialized profiles into a single
DB2 package when you run db2sqljbind, you need to specify the same list of
serialized profile names, in the same order, in db2sqljcustomize and
db2sqljbind.

If you specify one or more file-name.grp files, and you specify -automaticbind
NO, when you run db2sqljbind, you must specify that same list of files, and in
the same order in which the files were customized.

You cannot run db2sqljcustomize on individual files, and then group those files
when you run db2sqljbind.

Output

When db2sqljcustomize runs, it creates a customized serialized profile. It also
creates DB2 packages, if the automaticbind value is YES.

Examples
db2sqljcustomize -user richler -password mordecai

-url jdbc:db2:/server:50000/sample -collection duddy
-bindoptions "EXPLAIN YES" pgmname_SJProfile0.ser

Usage notes

Online checking is always recommended: It is highly recommended that you use
online checking when you customize your serialized profiles. Online checking
determines information about the data types and lengths of DB2 host variables,
and is especially important for the following items:
v Predicates with java.lang.String host variables and CHAR columns

Unlike character variables in other host languages, Java String host variables are
not declared with a length attribute. To optimize a query properly that contains
character host variables, DB2 needs the length of the host variables. For
example, suppose that a query has a predicate in which a String host variable is
compared to a CHAR column, and an index is defined on the CHAR column. If
DB2 cannot determine the length of the host variable, it might do a table space
scan instead of an index scan. Online checking avoids this problem by providing
the lengths of the corresponding character columns.

v Predicates with java.lang.String host variables and GRAPHIC columns
Without online checking, DB2 might issue a bind error (SQLCODE -134) when it
encounters a predicate in which a String host variable is compared to a
GRAPHIC column.

v Column names in the result table of an SQLJ SELECT statement at a remote
server:

Chapter 7. JDBC and SQLJ reference information 507

Without online checking, the driver cannot determine the column names for the
result table of a remote SELECT.

Customizing multiple serialized profiles together: Multiple serialized profiles can
be customized together to create a single DB2 package. If you do this, and if you
specify -staticpostioned YES, any positioned UPDATE or DELETE statement that
references a cursor that is declared earlier in the package executes statically, even if
the UPDATE or DELETE statement is in a different source file from the cursor
declaration. If you want -staticpositioned YES behavior when your program
consists of multiple source files, you need to order the profiles in the
db2sqljcustomize command to cause cursor declarations to be ahead of positioned
UPDATE or DELETE statements in the package. To do that, list profiles that
contain SELECT statements that assign result tables to iterators before profiles that
contain the positioned UPDATE or DELETE statements that reference those
iterators.

Using a customized serialized profile at one data source that was customized at
another data source: You can run db2sqljcustomize to produce a customized
serialized profile for an SQLJ program at one data source, and then use that profile
at another data source. You do this by running db2sqljbind multiple times on
customized serialized profiles that you created by running db2sqljcustomize once.
When you run the programs at these data sources, the DB2 objects that the
programs access must be identical at every data source. For example, tables at all
data sources must have the same encoding schemes and the same columns with
the same data types.

Using the -collection parameter: db2sqljcustomize stores the DB2 collection name
in each customized serialized profile that it produces. When an SQLJ program is
executed, the driver uses the collection name that is stored in the customized
serialized profile to search for packages to execute. The name that is stored in the
customized serialized profile is determined by the value of the -collection
parameter. Only one collection ID can be stored in the serialized profile. However,
you can bind the same serialized profile into multiple package collections by
specifying the COLLECTION option in the -bindoptions parameter. To execute a
package that is in a collection other than the collection that is specified in the
serialized profile, include a SET CURRENT PACKAGESET statement in the
program.

Using the VERSION parameter: Use the VERSION parameter to bind two or more
versions of a package for the same SQLJ program into the same collection. You
might do this if you have changed an SQLJ source program, and you want to run
the old and new versions of the program.

To maintain two versions of a package, follow these steps:
1. Change the code in your source program.
2. Translate the source program to create a new serialized profile. Ensure that you

do not overwrite your original serialized profile.
3. Run db2sqljcustomize to customize the serialized profile and create DB2

packages with the same package names and in the same collection as the
original packages. Do this by using the same values for -rootpkgname and
-collection when you bind the new packages that you used when you created
the original packages. Specify the VERSION option in the -bindoptions
parameter to put a version ID in the new customized serialized profile and in
the new packages.

508 Application Programming Guide and Reference for Java

It is essential that you specify the VERSION option when you perform this
step. If you do not, you overwrite your original packages.

When you run the old version of the program, DB2 loads the old versions of the
packages. When you run the new version of the program, DB2 loads the new
versions of the packages.

Binding packages and plans on DB2 for z/OS: You can use the db2sqljcustomize
-genDBRM parameter to create DBRMs on your local system. You can then transfer
those DBRMs to a DB2 for z/OS system, and bind them into packages there. If you
plan to use this technique, you need to transfer the DBRM files to the z/OS system
as binary files, to a partitioned data set with record format FB and record length
80. When you bind the packages, you need to specify the following bind option
values:

ENCODING(EBCDIC)
The IBM Data Server Driver for JDBC and SQLJ on DB2 for z/OS requires
EBCDIC encoding for your packages.

DYNAMICRULES(BIND)
This option ensures consistent authorization rules when SQLJ uses
dynamic SQL. SQLJ uses dynamic SQL for positioned UPDATE or DELETE
operations that involve multiple SQLJ programs.

EXTENDEDINDICATOR bind option behavior: If the EXTENDEDINDICATOR
bind option is not specified in the -bindoptions options string, and the target data
server supports extended indicators, bind operations use
EXTENDEDINDICATOR(YES). If EXTENDEDINDICATOR(NO) is explicitly
specified, and the application contains extended indicator syntax, unexpected
behavior can occur because the IBM Data Server Driver for JDBC and SQLJ treats
extended indicators as NULL values.
Related reference:

BIND and REBIND options (DB2 Commands)

db2sqljbind - SQLJ profile binder
db2sqljbind binds DB2 packages for a serialized profile that was previously
customized with the db2sqljcustomize command.

Applications that run with the IBM Data Server Driver for JDBC and SQLJ require
packages but no plans. If the db2sqljcustomize -automaticbind option is specified
as YES or defaults to YES, db2sqljcustomize binds packages for you at the data
source that you specify in the -url parameter. However, if -automaticbind is NO, if
a bind fails when db2sqljcustomize runs, or if you want to create identical
packages at multiple locations for the same serialized profile, you can use the
db2sqljbind command to bind packages.

Authorization

The privilege set of the process must include one of the following authorities:
v SYSADM authority
v DBADM authority
v If the package does not exist, the BINDADD privilege, and one of the following

privileges:
– CREATEIN privilege
– PACKADM authority on the collection or on all collections

v If the package exists, the BIND privilege on the package

Chapter 7. JDBC and SQLJ reference information 509

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Command syntax

�� db2sqljbind
-help

�

�

�

-url jdbc:db2://server /database
: port

: property=value;
-datasource JNDI-name

-user user-ID �

� -password password
-bindoptions " options-string "

-staticpositioned NO

-staticpositioned YES
�

�
-genDBRM -DBRMDir directory-name

�

�

�

-tracelevel TRACE_SQLJ
-tracefile file-name

,

-tracelevel TRACE_NONE
TRACE_CONNECTION_CALLS
TRACE_STATEMENT_CALLS
TRACE_RESULT_SET_CALLS
TRACE_DRIVER_CONFIGURATION
TRACE_CONNECTS
TRACE_DRDA_FLOWS
TRACE_RESULT_SET_META_DATA
TRACE_PARAMETER_META_DATA
TRACE_DIAGNOSTICS
TRACE_SQLJ
TRACE_XA_CALLS
TRACE_TRACEPOINTS
TRACE_ALL

�

� � serialized-profile-name
file-name.grp

��

Command parameters

-help
Specifies that db2sqljbind describes each of the options that it supports. If any
other options are specified with -help, they are ignored.

510 Application Programming Guide and Reference for Java

-url
Specifies the URL for the data source for which the profile is to be customized.
A connection is established to the data source that this URL represents if the
-automaticbind or -onlinecheck option is specified as YES or defaults to YES.
The variable parts of the -url value are:

server
The domain name or IP address of the operating system on which the
database server resides.

port
The TCP/IP server port number that is assigned to the database server.
The default is 446.

database
A name for the database server for which the profile is to be customized.

If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in this value must
be uppercase characters. You can determine the location name by executing
the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 for Linux, UNIX, and Windows server,
database is the database name that is defined during installation.

If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

property=value;
A property for the JDBC connection.

-datasource JNDI-name
Specifies the logical name of a DataSource object that was registered with
JNDI. The DataSource object represents the data source for which the profile is
to be customized. A connection is established to the data source if the
-automaticbind or -onlinecheck option is specified as YES or defaults to YES.
Specifying -datasource is an alternative to specifying -url. The DataSource
object must represent a connection that uses IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

-user user-ID
Specifies the user ID to be used to connect to the data source for binding the
package.

-password password
Specifies the password to be used to connect to the data source for binding the
package.

-bindoptions options-string
Specifies a list of options, separated by spaces. These options have the same
function as DB2 precompile and bind options with the same names. If you are
preparing your program to run on a DB2 for z/OS system, specify DB2 for
z/OS options. If you are preparing your program to run on a DB2 for Linux,
UNIX, and Windows system, specify DB2 for Linux, UNIX, and Windows
options.

Notes on bind options:

v Specify VERSION only if the following conditions are true:

Chapter 7. JDBC and SQLJ reference information 511

– If you are binding a package at a DB2 for Linux, UNIX, and Windows
system, the system is at Version 8 or later.

– You rerun the translator on a program before you bind the associated
package with a new VERSION value.

Important: Specify only those program preparation options that are
appropriate for the data source at which you are binding a package. Some
values and defaults for the IBM Data Server Driver for JDBC and SQLJ are
different from the values and defaults for DB2.

-staticpositioned NO|YES
For iterators that are declared in the same source file as positioned UPDATE
statements that use the iterators, specifies whether the positioned UPDATEs
are executed as statically bound statements. The default is NO. NO means that
the positioned UPDATEs are executed as dynamically prepared statements.
This value must be the same as the -staticpositioned value for the previous
db2sqljcustomize invocation for the serialized profile.

-genDBRM
Specifies that db2sqljbind generates database request modules (DBRMs) from
the serialized profile, and that db2sqljbind does not perform remote bind
operations.

-genDBRM applies to programs that are to be run on DB2 for z/OS database
servers only.

-DBRMDir directory-name
When -genDBRM is specified, -DBRMDir specifies the local directory into
which db2sqljbind puts the generated DBRM files. The default is the current
directory.

-DBRMdir applies to programs that are to be run on DB2 for z/OS database
servers only.

-tracefile file-name
Enables tracing and identifies the output file for trace information. This option
should be specified only under the direction of IBM Software Support.

-tracelevel
If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.
The default is TRACE_SQLJ. This option should be specified only under the
direction of IBM Software Support.

serialized-profile-name|file-name.grp
Specifies the names of one or more serialized profiles from which the package
is bound. A serialized profile name is of the following form:
program-name_SJProfileIDNumber.ser

program-name is the name of the SQLJ source program, without the extension
.sqlj. n is an integer between 0 and m-1, where m is the number of serialized
profiles that the SQLJ translator generated from the SQLJ source program.

You can specify serialized profile names in one of the following ways:
v List the names in the db2sqljcustomize command. Multiple serialized profile

names must be separated by spaces.
v Specify the serialized profile names, one on each line, in a file with the name

file-name.grp, and specify file-name.grp in the db2sqljbind command.

512 Application Programming Guide and Reference for Java

If you specify more than one serialized profile name to bind a single DB2
package from several serialized profiles, you must have specified the same
serialized profile names, in the same order, when you ran db2sqljcustomize.

If you specify one or more file-name.grp files, you must have run
db2sqljcustomize once with that same list of files. The order in which you
specify the files in db2sqljbind must be the same as the order in
db2sqljcustomize.

You cannot run db2sqljcustomize on individual files, and then group those files
when you run db2sqljbind.

Examples
db2sqljbind -user richler -password mordecai

-url jdbc:db2://server:50000/sample -bindoptions "EXPLAIN YES"
pgmname_SJProfile0.ser

Usage notes

Package names produced by db2sqljbind: The names of the packages that are
created by db2sqljbind are the names that you specified using the-rootpkgname or
-singlepkgname parameter when you ran db2sqljcustomize. If you did not specify
-rootpkgname or -singlepkgname, the package names are the first seven bytes of
the profile name, appended with the isolation level character.

DYNAMICRULES value for db2sqljbind: The DYNAMICRULES bind option
determines a number of run-time attributes for the DB2 package. Two of those
attributes are the authorization ID that is used to check authorization, and the
qualifier that is used for unqualified objects. To ensure the correct authorization for
dynamically executed positioned UPDATE and DELETE statements in SQLJ
programs, db2sqljbind always binds the DB2 packages with the
DYNAMICRULES(BIND) option. You cannot modify this option. The
DYNAMICRULES(BIND) option causes the SET CURRENT SQLID statement to
have no impact on an SQLJ program, because those statements affect only dynamic
statements that are bound with DYNAMICRULES values other than BIND.

With DYNAMICRULES(BIND), unqualified table, view, index, and alias names in
dynamic SQL statements are implicitly qualified with value of the bind option
QUALIFIER. If you do not specify QUALIFIER, DB2 uses the authorization ID of
the package owner as the implicit qualifier. If this behavior is not suitable for your
program, you can use one of the following techniques to set the correct qualifier:
v Force positioned UDPATE and DELETE statements to execute statically. You can

use the -staticpositioned YES option of db2sqljcustomize or db2sqljbind to do
this if the cursor (iterator) for a positioned UPDATE or DELETE statement is in
the same package as the positioned UPDATE or DELETE statement.

v Fully qualify DB2 table names in positioned UPDATE and positioned DELETE
statements.

EXTENDEDINDICATOR bind option behavior: If the EXTENDEDINDICATOR
bind option is not specified in the -bindoptions options string, and the target data
server supports extended indicators, bind operations use
EXTENDEDINDICATOR(YES). If EXTENDEDINDICATOR(NO) is explicitly
specified, and the application contains extended indicator syntax, unexpected
behavior can occur because the IBM Data Server Driver for JDBC and SQLJ treats
extended indicators as NULL values.

Chapter 7. JDBC and SQLJ reference information 513

Related reference:

BIND and REBIND options (DB2 Commands)

db2sqljprint - SQLJ profile printer
db2sqljprint prints the contents of the customized version of a profile as plain text.

Authorization

None

Command syntax

�� db2sqljprint profilename ��

Command parameters

profilename
Specifies the relative or absolute name of an SQLJ profile file. When an
SQLJ file is translated into a Java source file, information about the SQL
operations it contains is stored in SQLJ-generated resource files called
profiles. Profiles are identified by the suffix _SJProfileN (where N is an
integer) following the name of the original input file. They have a .ser
extension. Profile names can be specified with or without the .ser
extension.

Examples
db2sqljprint pgmname_SJProfile0.ser

514 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Chapter 8. Installing the IBM Data Server Driver for JDBC and
SQLJ

After you install DB2 for z/OS or migrate to the current version of DB2 for z/OS,
you need to install the current version of the IBM Data Server Driver for JDBC and
SQLJ.

Installing the IBM Data Server Driver for JDBC and SQLJ as part of a
DB2 installation

Installation of the IBM Data Server Driver for JDBC and SQLJ on your DB2
subsystem allows you to build and run Java database applications.

Before you begin

Prerequisites for the IBM Data Server Driver for JDBC and SQLJ:
v Java 2 Technology Edition, V5 or later.

JDBC 4.0 methods require Java 2 Technology Edition, V6 or later.
The IBM Data Server Driver for JDBC and SQLJ supports 31-bit or 64-bit Java
applications.
For stand-alone applications that require a 64-bit JVM, you need to install the
IBM 64-bit SDK for z/OS, Java 2 Technology Edition, V5 or later.
For Java stored procedures and user-defined functions that require a 64-bit JVM,
you need to install the IBM 64-bit SDK for z/OS, Java 2 Technology Edition, V6
or later.

v TCP/IP
TCP/IP is required on the client and all database servers to which you connect.

v DB2 for z/OS distributed data facility (DDF) and TCP/IP support.
v Unicode support for OS/390® and z/OS servers.

Procedure

To install the IBM Data Server Driver for JDBC and SQLJ, follow these steps:
1. When you allocate and load the DB2 for z/OS libraries, include the steps that

allocate and load the IBM Data Server Driver for JDBC and SQLJ libraries.
2. On DB2 for z/OS, set subsystem parameter DESCSTAT to YES. DESCSTAT

corresponds to installation field DESCRIBE FOR STATIC on panel DSNTIPF.
This step is necessary for SQLJ support.

3. In z/OS UNIX System Services, edit your .profile file to customize the
environment variable settings. You use this step to set the libraries, paths, and
files that the IBM Data Server Driver for JDBC and SQLJ uses. You also use this
step to indicate the versions of JDBC and SQLJ support that you need.

4. Optional: Customize the IBM Data Server Driver for JDBC and SQLJ
configuration properties.

5. On DB2 for z/OS, enable the DB2-supplied stored procedures and define the
tables that are used by the IBM Data Server Driver for JDBC and SQLJ.

6. In z/OS UNIX System Services, run the DB2Binder utility to bind the packages
for the IBM Data Server Driver for JDBC and SQLJ.

© Copyright IBM Corp. 1998, 2013 515

7. Verify the installation by running a simple JDBC application.
Related tasks:

Connecting distributed database systems (DB2 Installation and Migration)

Connecting systems with TCP/IP (DB2 Installation and Migration)
Related reference:

DESCRIBE FOR STATIC field (DESCSTAT subsystem parameter) (DB2
Installation and Migration)

Jobs for loading the IBM Data Server Driver for JDBC and
SQLJ libraries

When you install DB2 for z/OS, allocate the HFS or zFS directory structure, and
use SMP/E to load the IBM Data Server Driver for JDBC and SQLJ libraries.

The following jobs perform those functions.

DSNISMKD
Invokes the DSNMKDIR EXEC to allocate the HFS or zFS directory
structures.

DSNDDEF1
Includes steps to define DDDEFs for the IBM Data Server Driver for JDBC
and SQLJ libraries.

DSNRECV3
Includes steps that perform the SMP/E RECEIVE function for the IBM
Data Server Driver for JDBC and SQLJ libraries.

DSNAPPL1
Includes the steps that perform the SMP/E APPLY CHECK and APPLY
functions for the IBM Data Server Driver for JDBC and SQLJ libraries.

DSNACEP1
Includes the steps that perform the SMP/E ACCEPT CHECK and ACCEPT
functions for the IBM Data Server Driver for JDBC and SQLJ libraries.

See IBM DB2 for z/OS Program Directory for information on allocating and loading
DB2 data sets.

Environment variables for the IBM Data Server Driver for
JDBC and SQLJ

If you set specific environment variables, the operating system can locate the IBM
Data Server Driver for JDBC and SQLJ.

The environment variables that you must set are:

STEPLIB
Modify STEPLIB to include the SDSNEXIT, SDSNLOAD, and SDSNLOD2 data
sets. For example:
export STEPLIB=DSNB10.SDSNEXIT:DSNB10.SDSNLOAD:DSNB10.SDSNLOD2:$STEPLIB

PATH
Modify PATH to include the directory that contains the shell scripts that
invoke IBM Data Server Driver for JDBC and SQLJ program preparation and
debugging functions.

516 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_connectdistdbsys.htm#db2z_connectdistdbsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_connectwtcpip.htm#db2z_connectwtcpip
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404

For example, if the IBM Data Server Driver for JDBC and SQLJ is installed in
/usr/lpp/db2b10/jdbc, modify PATH as follows:
export PATH=/usr/lpp/db2b10/jdbc/bin:$PATH

LIBPATH
The IBM Data Server Driver for JDBC and SQLJ contains the following
dynamic load libraries (DLLs):
v libdb2jcct2zos.so
v libdb2jcct2zos_64.so

Those DLLs contain the native (C or C++) implementation of the IBM Data
Server Driver for JDBC and SQLJ. The driver uses this code when you use IBM
Data Server Driver for JDBC and SQLJ type 2 connectivity.

Modify LIBPATH to include the directory that contains these DLLs.

For example, if the IBM Data Server Driver for JDBC and SQLJ is installed in
/usr/lpp/db2b10/jdbc, modify LIBPATH as follows:
export LIBPATH=/usr/lpp/db2b10/jdbc/lib:$LIBPATH

CLASSPATH
The IBM Data Server Driver for JDBC and SQLJ contains the following class
files:

db2jcc.jar or db2jcc4.jar
Contains all JDBC classes and the SQLJ runtime classes for the IBM Data
Server Driver for JDBC and SQLJ.

Include db2jcc.jar in the CLASSPATH if you plan to use the version of the
IBM Data Server Driver for JDBC and SQLJ that includes only JDBC 3.0
and earlier functions.

Include db2jcc4.jar in the CLASSPATH if you plan to use the version of the
IBM Data Server Driver for JDBC and SQLJ that includes JDBC 4.0 and
later functions, as well as JDBC 3.0 and earlier functions.

Important: Include db2jcc.jar or db2jcc4.jar in the CLASSPATH. Do not
include both files.

sqlj.zip or sqlj4.zip
Contains the classes that are needed to prepare SQLJ applications for
execution under the IBM Data Server Driver for JDBC and SQLJ.

Include sqlj.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include only JDBC 3.0 and earlier functions.

Include sqlj4.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include JDBC 4.0 and later functions, as well as JDBC
3.0 and earlier functions.

Important: Include sqlj.zip or sqlj4.jar in the CLASSPATH. Do not include
both files.

db2jcc_license_cisuz.jar
A license file that permits access to the DB2 server.

Modify your CLASSPATH to include these files. If the IBM Data Server Driver
for JDBC and SQLJ is installed in /usr/lpp/db2b10/jdbc, modify CLASSPATH
as follows:

For JDBC 3.0 and earlier support:

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 517

export CLASSPATH=/usr/lpp/db2b10/jdbc/classes/db2jcc.jar: \
/usr/lpp/db2b10/jdbc/classes/db2jcc_javax.jar: \
/usr/lpp/db2b10/jdbc/classes/sqlj.zip: \
/usr/lpp/db2b10/jdbc/classes/db2jcc_license_cisuz.jar: \
$CLASSPATH

For JDBC 4.0 and later, and JDBC 3.0 and earlier support:
export CLASSPATH=/usr/lpp/db2b10_jdbc/classes/db2jcc4.jar: \
/usr/lpp/db2b10/jdbc/classes/db2jcc_javax.jar: \
/usr/lpp/db2b10/jdbc/classes/sqlj4.zip: \
/usr/lpp/db2b10/jdbc/classes/db2jcc_license_cisuz.jar: \
$CLASSPATH

If you use Java stored procedures, you need to set additional environment
variables in a JAVAENV data set.
Related concepts:
“WLM application environment values for Java routines” on page 191
“Runtime environment for Java routines” on page 193

Customization of IBM Data Server Driver for JDBC and SQLJ
configuration properties

The IBM Data Server Driver for JDBC and SQLJ configuration properties let you
set property values that have driver-wide scope. Those settings apply across
applications and DataSource instances. You can change the settings without having
to change application source code or DataSource characteristics.

Each IBM Data Server Driver for JDBC and SQLJ configuration property setting is
of this form:
property=value

You can set configuration properties in the following ways:
v Set the configuration properties as Java system properties. Configuration

property values that are set as Java system properties override configuration
property values that are set in any other ways.
For stand-alone Java applications, you can set the configuration properties as
Java system properties by specifying -Dproperty=value for each configuration
property when you execute the java command.
For Java stored procedures or user-defined functions, you can set the
configuration properties by specifying -Dproperty=value for each configuration
property in a file whose name you specify in the JVMPROPS option. You specify
the JVMPROPS options in the ENVAR option of the Language Environment
options string. The Language Environment options string is in a data set that is
specified by the JAVAENV DD statement in the WLM address space startup
procedure.

v Set the configuration properties in a resource whose name you specify in the
db2.jcc.propertiesFile Java system property. For example, you can specify an
absolute path name for the db2.jcc.propertiesFile value.
For stand-alone Java applications, you can set the configuration properties by
specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java
command.
For Java stored procedures or user-defined functions, you can set the
configuration properties by specifying the -Ddb2.jcc.propertiesFile=path/
properties-file-name option in a file whose name you specify in the JVMPROPS
option. You specify the JVMPROPS options in the ENVAR option of the

518 Application Programming Guide and Reference for Java

Language Environment options string. The Language Environment options
string is in a data set that is specified by the JAVAENV DD statement in the
WLM address space startup procedure.

v Set the configuration properties in a resource named
DB2JccConfiguration.properties. A standard Java resource search is used to find
DB2JccConfiguration.properties. The IBM Data Server Driver for JDBC and SQLJ
searches for this resource only if you have not set the db2.jcc.propertiesFile Java
system property.
DB2JccConfiguration.properties can be a stand-alone file, or it can be included in
a JAR file. If DB2JccConfiguration.properties is a stand-alone file, the contents
are automatically converted to Unicode. If you include
DB2JccConfiguration.properties in a JAR file, you need to convert the contents to
Unicode before you put them in the JAR file.
If DB2JccConfiguration.properties is a stand-alone file, the path for
DB2JccConfiguration.properties must be in the following places:
– For stand-alone Java applications: Include the directory that contains

DB2JccConfiguration.properties in the CLASSPATH concatenation.
– For Java stored procedures or user-defined functions: Include the directory that

contains DB2JccConfiguration.properties in the CLASSPATH concatenation in
the ENVAR option of the Language Environment options string. The
Language Environment options string is in a data set that is specified by the
JAVAENV DD statement in the WLM address space startup procedure.

If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the
CLASSPATH concatenation.

Example: Putting DB2JccConfiguration.properties in a JAR file: Suppose that your
configuration properties are in a file that is in EBCDIC code page 1047. To put the
properties file into a JAR file, follow these steps:
1. Rename DB2JccConfiguration.properties to another name, such as

EBCDICVersion.properties.
2. Run the iconv shell utility on the z/OS UNIX System Services command line to

convert the file contents to Unicode. For example, to convert
EBCDICVersion.properties to a Unicode file named
DB2JccConfiguration.properties, issue this command:
iconv -f ibm-1047 -t utf-8 EBCDICVersion.properties \

> DB2JccConfiguration.properties

3. Execute the jar command to add the Unicode file to the JAR file. In the JAR
file, the configuration properties file must be named
DB2JccConfiguration.properties. For example:
jar -cvf jdbcProperties.jar DB2JccConfiguration.properties

Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299

Enabling the DB2-supplied stored procedures used by the IBM
Data Server Driver for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ requires a set of stored procedures
to make certain methods work on DB2 for z/OS.

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 519

Before you begin

WLM must be installed on the z/OS system, and a WLM environment must be set
up for running the DB2-supplied stored procedures that are required by the IBM
Data Server Driver for JDBC and SQLJ.

About this task

The stored procedures that you need to install are:
v SQLCOLPRIVILEGES
v SQLCOLUMNS
v SQLFOREIGNKEYS
v SQLFUNCTIONCOLS
v SQLFUNCTIONS
v SQLGETTYPEINFO
v SQLPRIMARYKEYS
v SQLPROCEDURECOLS
v SQLPROCEDURES
v SQLPSEUDOCOLUMNS
v SQLSPECIALCOLUMNS
v SQLSTATISTICS
v SQLTABLEPRIVILEGES
v SQLTABLES
v SQLUDTS
v SQLCAMESSAGE

Procedure

Follow these steps to install the stored procedures:
1. Set up a WLM environment for running the stored procedures.

Define WLM application environment DSNWLM_GENERAL to WLM.
Application environment DSNWLM_GENERAL and its associated JCL startup
procedure, DSNWLMG, are created during DB2 installation.
DSNWLM_GENERAL is designed for running the DB2-supplied stored
procedures that support JDBC.

2. Define the stored procedures to DB2, and bind the stored procedure packages.
To perform those tasks, use job DSNTIJRT.

Values for the WLM environment for IBM Data Server Driver for
JDBC and SQLJ stored procedures
You need to define an application environment for DB2-supplied stored procedures
that support the IBM Data Server Driver for JDBC and SQLJ to WLM.

The following example shows a WLM Definition Menu for an application
environment for DB2-supplied stored procedures that support the IBM Data Server
Driver for JDBC and SQLJ.

520 Application Programming Guide and Reference for Java

File Utilities Notes Options Help
--

Definition Menu WLM Appl
Command ===> ___

Definition data set . : none
Definition name DSNWLM_GENERAL
Description Environment for stored procedures for JDBC
Select one of the
following options. . . 9 1. Policies

2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments

10. Scheduling Environments

Definition name
Specify the name of the WLM application environment that you are setting up
for stored procedures. The Definition name value needs to match the
APPLENV value in the WLM address space startup procedure.

Description
Specify any value.

Options
Specify 9 (Application Environments).

The following example shows a WLM Create an Application Environment menu
with values for the application environment that is used by DB2-supplied stored
procedures that support the IBM Data Server Driver for JDBC and SQLJ.

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> ___

Application Environment Name . : DSNWLM_GENERAL
Description Environment for stored procedures for JDBC
Subsystem Type DB2
Procedure Name DSN8WLMG
Start Parameters DB2SSN=DB2T,NUMTCB=40,APPLENV=WLMENV

Limit on starting server address spaces for a subsystem instance:
1 1. No limit.

2. Single address space per system.
3. Single address spaces per sysplex.

Subsystem Type
Specify DB2.

Procedure Name
Specify a name that matches the name of the JCL startup procedure for the
stored procedure address spaces that are associated with this application
environment.

Start Parameters
If the DB2 subsystem in which the stored procedure runs is not in a sysplex,
specify a DB2SSN value that matches the name of that DB2 subsystem. If the
same JCL is used for multiple DB2 subsystems, specify DB2SSN=&IWMSSNM.

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 521

Specify a NUMTCB value between 40 and 60. Specify an APPLENV value that
matches the value that you specify in the WLM address space startup
procedure and on the CREATE PROCEDURE statements for the stored
procedures.

Limit on starting server address spaces for a subsystem instance
Specify 1 (no limit).

Creation of IBM Data Server Driver for JDBC and SQLJ stored
procedures
DB2 provides a JCL job that includes statements that you can use to define the
DB2-supplied stored procedures for JDBC and to bind the stored procedure
packages.

Job DSNTIJRT is customized by the DB2 installation process to specify WLM
environment DSNWLM_GENERAL, which is designed to work with the
DB2-supplied stored procedures that support JDBC methods. In general, you run
job DSNTIJRT when you install or migration your DB2 subsystem.

DB2Binder utility
The DB2Binder utility binds the DB2 packages that are used at the data server by
the IBM Data Server Driver for JDBC and SQLJ, and grants EXECUTE authority on
the packages to PUBLIC. Optionally, the DB2Binder utility can rebind DB2
packages that are not part of the IBM Data Server Driver for JDBC and SQLJ.

DB2Binder syntax

�� java com.ibm.db2.jcc.DB2Binder -url jdbc : db2 : // server / database
: port

�

� -user user-ID -password password
-size integer

�

�
-collection collection-name

�

,

-tracelevel trace-option

-action add

-action replace
-action drop
-action rebind

�

� -reopt none
-reopt always
-reopt once
-reopt auto

-blocking all
-blocking unambig
-blocking no -optprofile profile-name

�

�
-owner authorization-ID -sqlid authorization-ID -generic

�

�
-package package-name -version version-id -keepdynamic no

-keepdynamic yes

�

522 Application Programming Guide and Reference for Java

�
-release commit
-release deallocate

-bindOptions " options-string " -verbose -help
��

DB2Binder option descriptions

-url
Specifies the data source at which the IBM Data Server Driver for JDBC and
SQLJ packages are to be bound. The variable parts of the -url value are:

server
The domain name or IP address of the operating system on which the data
server resides.

port
The TCP/IP server port number that is assigned to the data server. The
default is 446.

database
The location name for the data server, as defined in the
SYSIBM.LOCATIONS catalog table.

-user
Specifes the user ID under which the packages are to be bound. This user must
have BIND authority on the packages.

-action
Specifies the action to perform on the packages.

add Indicates that a package can be created only if it does not already exist.
Add is the default.

replace
Indicates that a package can be created even if a package with the
same name already exists. The new package replaces the old package.

rebind
Indicates that the existing package should be rebound. This option
does not apply to IBM Data Server Driver for JDBC and SQLJ
packages. If -action rebind is specified, -generic must also be specified.

drop Indicates that packages should be dropped:
v For IBM Data Server Driver for JDBC and SQLJ packages, -action

drop indicates that some or all IBM Data Server Driver for JDBC and
SQLJ packages should be dropped. The number of packages
depends on the -size parameter.

v For user packages, -action drop indicates that the specified package
should be dropped.

-action drop applies only if the target data server is DB2 for z/OS.

-size
Controls the number of Statement, PreparedStatement, or CallableStatement
objects that can be open concurrently, or the number of IBM Data Server
Driver for JDBC and SQLJ packages that are dropped.

The meaning of the -size parameter depends on the -action parameter:

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 523

v If the value of -action is add or replace, the value of -size is an integer that
is used to calculate the number of DB2 packages that the IBM Data Server
Driver for JDBC and SQLJ binds. If the value of -size is integer, the total
number of packages is:
number-of-isolation-levels*
number-of-holdability-values*
integer+
number-of-packages-for-static-SQL
= 4*2*integer+1

The default -size value for -action add or -action replace is 3.
In most cases, the default of 3 is adequate. If your applications throw
SQLExceptions with -805 SQLCODEs, check that the applications close all
unused resources. If they do, increase the -size value.
If the value of -action is replace, and the value of -size results in fewer
packages than already exist, no packages are dropped.

v If the value of -action is drop, the value of -size is the number of packages
that are dropped. If -size is not specified, all IBM Data Server Driver for
JDBC and SQLJ packages are dropped.

v If the value of -action is rebind, -size is ignored.

-collection
Specifies the collection ID for IBM Data Server Driver for JDBC and SQLJ or
user packages. The default is NULLID. DB2Binder translates this value to
uppercase.

You can create multiple instances of the IBM Data Server Driver for JDBC and
SQLJ packages on a single data server by running com.ibm.db2.jcc.DB2Binder
multiple times, and specifying a different value for -collection each time. At
run time, you select a copy of the IBM Data Server Driver for JDBC and SQLJ
by setting the currentPackageSet property to a value that matches a -collection
value.

-tracelevel
Specifies what to trace while DB2Binder runs.

-reopt
Specifies whether data servers determine access paths at run time. This option
is not sent to the data server if it is not specified. In that case, the data server
determines the reoptimization behavior.

-reopt applies to connections to DB2 for z/OS Version 8 or later, or DB2 for
Linux, UNIX, and Windows Version 9.1 or later.

none Specifies that access paths are not determined at run time.

always
Specifies that access paths are determined each time a statement is run.

once Specifies that DB2 determines and caches the access path for a
dynamic statement only once at run time. DB2 uses this access path
until the prepared statement is invalidated, or until the statement is
removed from the dynamic statement cache and needs to be prepared
again.

auto Specifies that access paths are automatically determined by the data
server. auto is valid only for connections to DB2 for z/OS data servers.

-blocking
Specifies the type of row blocking for cursors.

524 Application Programming Guide and Reference for Java

ALL For cursors that are specified with the FOR READ ONLY clause or are
not specified as FOR UPDATE, blocking occurs.

UNAMBIG
For cursors that are specified with the FOR READ ONLY clause,
blocking occurs.

Cursors that are not declared with the FOR READ ONLY or FOR
UPDATE clause which are not ambiguous and are read-only will be
blocked. Ambiguous cursors will not be blocked

NO Blocking does not occur for any cursor.

For the definition of a read-only cursor and an ambiguous cursor, refer
to "DECLARE CURSOR".

-optprofile
Specifies an optimization profile that is used for optimization of data change
statements in the packages. This profile is an XML file that must exist on the
target server. If -optprofile is not specified, and the CURRENT
OPTIMIZATION PROFILE special register is set, the value of CURRENT
OPTIMIZATION PROFILE is used. If -optprofile is not specified, and
CURRENT OPTIMIZATION PROFILE is not set, no optimization profile is
used.

-optprofile is valid only for connections to DB2 for Linux, UNIX, and Windows
data servers.

-owner
Specifies the authorization ID of the owner of the packages. The default value
is set by the data server.

-owner applies only to IBM Data Server Driver for JDBC and SQLJ packages.

-sqlid
Specifies a value to which the CURRENT SQLID special register is set before
DB2Binder executes GRANT operations on the IBM Data Server Driver for
JDBC and SQLJ packages. If the primary authorization ID does not have a
sufficient level of authority to grant privileges on the packages, and the
primary authorization ID has an associated secondary authorization ID that
has those privileges, set -sqlid to the secondary authorization ID.

-sqlid is valid only for connections to DB2 for z/OS data servers.

-generic
Specifies that DB2Binder rebinds a user package instead of the IBM Data
Server Driver for JDBC and SQLJ packages. If -generic is specified, -action
rebind and -package must also be specified.

-package
Specifies the name of the package that is to be rebound. This option applies
only to user packages. If -package is specified, -action rebind and -generic
must also be specified.

-version
Specifies the version ID of the package that is to be rebound. If -version is
specified, -action rebind, -package, and -generic must also be specified.

-keepdynamic
Specifies whether the data server keeps already prepared dynamic SQL
statements in the dynamic statement cache after commit points, so that those
prepared statements can be reused. -keepdynamic applies only to connections
to DB2 for z/OS. Possible values are:

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 525

no The data server does not keep already prepared dynamic SQL
statements in the dynamic statement cache after commit points.

yes The data server keeps already prepared dynamic SQL statements in the
dynamic statement cache after commit points.

There is no default value for -keepdynamic. If you do not send a value to the
data server, the setting at the data server determines whether dynamic
statement caching is in effect. Dynamic statement caching occurs only if the
EDM dynamic statement cache is enabled on the data server. The CACHEDYN
subsystem parameter must be set to YES to enable the dynamic statement
cache.

-release
Specifies when to release data server resources that a program uses. -release
applies only to connections to DB2 for z/OS. Possible values are:

deallocate
Specifies that resources are released when a program terminates.
-release deallocate is the default for DB2 for z/OS Version 10 and later.

commit
Specifies that resources are released at commit points. -release commit
is the default for DB2 for z/OS Version 9 and earlier.

-bindOptions
Specifies a string that is enclosed in quotation marks. The contents of that
string are one or more parameter and value pairs that represent options for
rebinding a user package. All items in the string are delimited with spaces:
"parm1 value1 parm2 value2 ... parmn valuen"

-bindOptions does not apply to IBM Data Server Driver for JDBC and SQLJ
packages that are bound on DB2 for Linux, UNIX, and Windows data servers.

You can specify the following -bindOptions values only when you rebind user
packages:

bindObjectExistenceRequired
Specifies whether the data server issues an error and does not rebind
the package, if all objects or needed privileges do not exist at rebind
time. Possible values are:

true This option corresponds to the SQLERROR(NOPACKAGE)
bind option.

false This option corresponds to the SQLERROR(CONTINUE) bind
option.

degreeIOParallelism
Specifies whether to attempt to run static queries using parallel
processing to maximize performance. Possible values are:

1 No parallel processing.

This option corresponds to the DEGREE(1) bind option.

-1 Allow parallel processing.

This option corresponds to the DEGREE(ANY) bind option.

packageAuthorizationRules
Determines the values that apply at run time for the following
dynamic SQL attributes:
v The authorization ID that is used to check authorization

526 Application Programming Guide and Reference for Java

v The qualifier that is used for unqualified objects
v The source for application programming options that the data server

uses to parse and semantically verify dynamic SQL statements
v Whether dynamic SQL statements can include GRANT, REVOKE,

ALTER, CREATE, DROP, and RENAME statements

Possible values are:

0 Use run behavior. This is the default.

This option corresponds to the DYNAMICRULES(RUN) bind
option.

1 Use bind behavior.

This option corresponds to the DYNAMICRULES(BIND) bind
option.

2 When the package is run as or runs under a stored procedure
or user-defined function package, the data server processes
dynamic SQL statements using invoke behavior. Otherwise, the
data server processes dynamic SQL statements using run
behavior.

This option corresponds to the
DYNAMICRULES(INVOKERUN) bind option.

3 When the package is run as or runs under a stored procedure
or user-defined function package, the data server processes
dynamic SQL statements using invoke behavior. Otherwise, the
data server processes dynamic SQL statements using bind
behavior.

This option corresponds to the
DYNAMICRULES(INVOKEBIND) bind option.

4 When the package is run as or runs under a stored procedure
or user-defined function package, the data server processes
dynamic SQL statements using define behavior. Otherwise, the
data server processes dynamic SQL statements using run
behavior.

This option corresponds to the
DYNAMICRULES(DEFINERUN) bind option.

5 When the package is run as or runs under a stored procedure
or user-defined function package, the data server processes
dynamic SQL statements using define behavior. Otherwise, the
data server processes dynamic SQL statements using bind
behavior.

This option corresponds to the
DYNAMICRULES(DEFINEBIND) bind option.

packageOwnerIdentifier
Specifies the authorization ID of the owner of the packages.

isolationLevel
Specifies how far to isolate an application from the effects of other
running applications. Possible values are:

1 Uncommitted read

This option corresponds to the ISOLATION(UR) bind option.

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 527

2 Cursor stability

This option corresponds to the ISOLATION(CS) bind option.

3 Read stability

This option corresponds to the ISOLATION(RS) bind option.

4 Repeatable read

This option corresponds to the ISOLATION(RR) bind option.

releasePackageResourcesAtCommit
Specifies when to release resources that a program uses at each commit
point. Possible values are:

true This option corresponds to the RELEASE(COMMIT) bind
option.

false This option corresponds to the RELEASE(DEALLOCATE) bind
option.

For connections to DB2 for z/OS data servers, you can also specify any bind
package options and their values that are listed in BIND and REBIND options
(DB2 Commands).
v DB2 for z/OS Version 11:
v DB2 for z/OS Version 10:
v DB2 for z/OS Version 9:

If -action rebind and -bindOptions are specified, -generic must also be
specified.

-verbose
Specifies that the DB2Binder utility displays detailed information about the
bind process.

-help
Specifies that the DB2Binder utility describes each of the options that it
supports. If any other options are specified with -help, they are ignored.

DB2Binder return codes when the target operating system is not
Windows

If the target data source for DB2Binder is not on the Windows operating system,
DB2Binder returns one of the following return codes.

Table 103. DB2Binder return codes when the target operating system is not Windows

Return
code Meaning

0 Successful execution.

1 An error occurred during DB2Binder execution.

DB2Binder return codes when the target operating system is
Windows

If the target data source for DB2Binder is on the Windows operating system,
DB2Binder returns one of the following return codes.

528 Application Programming Guide and Reference for Java

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Table 104. DB2Binder return codes when the target operating system is Windows

Return
code Meaning

0 Successful execution.

-100 No bind options were specified.

-101 -url value was not specified.

-102 -user value was not specified.

-103 -password value was not specified.

-200 No valid bind options were specified.

-114 The -package option was not specified, but the -generic option was specified.

-201 -url value is invalid.

-204 -action value is invalid.

-205 -blocking value is invalid.

-206 -collection value is invalid.

-207 -dbprotocol value is invalid.

-208 -keepdynamic value is invalid.

-210 -reopt value is invalid.

-211 -size value is invalid.

-212 -tracelevel value is invalid.

-307 -dbprotocol value is not supported by the target data server.

-308 -keepdynamic value is not supported by the target data server.

-310 -reopt value is not supported by the target data server.

-313 -optprofile value is not supported by the target data server.

-401 The Binder class was not found.

-402 Connection to the data server failed.

-403 DatabaseMetaData retrieval for the data server failed.

-501 No more packages are available in the cluster.

-502 An existing package is not valid.

-503 The bind process returned an error.

-999 An error occurred during processing of an undocumented bind option.

DB2LobTableCreator utility
The DB2LobTableCreator utility creates tables on a DB2 for z/OS database server.
Those tables are required by JDBC or SQLJ applications that use LOB locators to
access data in DBCLOB or CLOB columns.

DB2LobTableCreator syntax

�� java com.ibm.db2.jcc.DB2LobTableCreator -url jdbc:db2: //server / database
:port

�

� -user user-ID -password password
-help

��

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 529

DB2LobTableCreator option descriptions

-url
Specifies the data source at which DB2LobTableCreator is to run. The variable
parts of the -url value are:

jdbc:db2:
Indicates that the connection is to a server in the DB2 family.

server
The domain name or IP address of the database server.

port
The TCP/IP server port number that is assigned to the database server.
This is an integer between 0 and 65535. The default is 446.

database
A name for the database server.

database is the DB2 location name that is defined during installation. All
characters in this value must be uppercase characters. You can determine
the location name by executing the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user
Specifes the user ID under which DB2LobTableCreator is to run. This user
must have authority to create tables in the DSNATPDB database.

-password
Specifes the password for the user ID.

-help
Specifies that the DB2LobTableCreator utility describes each of the options that
it supports. If any other options are specified with -help, they are ignored.

Verify the installation of the IBM Data Server Driver for JDBC
and SQLJ

To verify the installation of the IBM Data Server Driver for JDBC and SQLJ,
compile and run any simple JDBC application.

For example, you can compile and run this program to verify your installation:
/**
* File: TestJDBCSelect.java
*
* Purpose: Verify IBM Data Server Driver for JDBC and SQLJ installation.
* This program uses IBM Data Server Driver for JDBC and SQLJ
* type 2 connectivity on DB2 for z/OS.
*
* Authorization: This program requires SELECT authority on
* DB2 catalog table SYSIBM.SYSTABLES.
*
* Flow:
* - Load the IBM Data Server Driver for JDBC and SQLJ.
* - Get the driver version and display it.
* - Establish a connection to the local DB2 for z/OS server.
* - Get the DB2 version and display it.
* - Execute a query against SYSIBM.SYSTABLES.
* - Clean up by closing all open objects.
*/

import java.sql.*;

public class TestJDBCSelect

530 Application Programming Guide and Reference for Java

{
public static void main(String[] args)
{

try
{

// Load the driver and get the version
System.out.println("\nLoading IBM Data Server Driver for JDBC and SQLJ");
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println(" Successful load. Driver version: " +

com.ibm.db2.jcc.DB2Version.getVersion());

// Connect to the local DB2 for z/OS server
System.out.println("\nEstablishing connection to local server");
Connection conn = DriverManager.getConnection("jdbc:db2:");
System.out.println(" Successful connect");
conn.setAutoCommit(false);

// Use DatabaseMetaData to determine the DB2 version
System.out.println("\nAcquiring DatabaseMetaData");
DatabaseMetaData dbmd = conn.getMetaData();
System.out.println(" DB2 version: " +

dbmd.getDatabaseProductVersion());

// Create a Statement object for executing a query
System.out.println("\nCreating Statement");
Statement stmt = conn.createStatement();
System.out.println(" successful creation of Statement");
// Execute the query and retrieve the ResultSet object
String sqlText =

"SELECT CREATOR, " +
"NAME " +

"FROM SYSIBM.SYSTABLES " +
"ORDER BY CREATOR, NAME";

System.out.println("\nPreparing to execute SELECT");
ResultSet results = stmt.executeQuery(sqlText);
System.out.println(" Successful execution of SELECT");

// Retrieve and display the rows from the ResultSet
System.out.println("\nPreparing to fetch from ResultSet");
int recCnt = 0;
while(results.next())
{

String creator = results.getString("CREATOR");
String name = results.getString("NAME");
System.out.println("CREATOR: <" + creator + "> NAME: <" + name + ">");

recCnt++;
if(recCnt == 10) break;

}
System.out.println(" Successful processing of ResultSet");

// Close the ResultSet, Statement, and Connection objects
System.out.println("\nPreparing to close ResultSet");
results.close();
System.out.println(" Successful close of ResultSet");

System.out.println("\nPreparing to close Statement");
stmt.close();
System.out.println(" Successful close of Statement");

System.out.println("\nPreparing to rollback Connection");
conn.rollback();
System.out.println(" Successful rollback");

System.out.println("\nPreparing to close Connection");
conn.close();
System.out.println(" Successful close of Connection");

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 531

}
// Handle errors
catch(ClassNotFoundException e)
{

System.err.println("Unable to load IBM Data Server Driver " +
"for JDBC and SQLJ, " + e);

}
catch(SQLException e)
{

System.out.println("SQLException: " + e);
e.printStackTrace();

}
}

}

Upgrading the IBM Data Server Driver for JDBC and SQLJ to a new
version

Upgrading to a new version of the IBM Data Server Driver for JDBC and SQLJ is
similar to installing the IBM Data Server Driver for JDBC and SQLJ for the first
time. However, you need to adjust your application programs to work with the
new version of the driver.

Before you begin

You should have already completed these steps when you installed the earlier
version of the IBM Data Server Driver for JDBC and SQLJ:
1. On DB2 for z/OS, set subsystem parameter DESCSTAT to YES. DESCSTAT

corresponds to installation field DESCRIBE FOR STATIC on panel DSNTIPF.
This step is necessary for SQLJ support.

2. On DB2 for z/OS, enable the DB2-supplied stored procedures and define the
tables that are used by the IBM Data Server Driver for JDBC and SQLJ.

3.

About this task

Procedure

To upgrade the IBM Data Server Driver for JDBC and SQLJ to a new version,
follow these steps:
1. In z/OS UNIX System Services, edit your .profile file to customize the

environment variable settings. You use this step to set the libraries, paths, and
files that the IBM Data Server Driver for JDBC and SQLJ uses.

2. Optional: Customize the IBM Data Server Driver for JDBC and SQLJ
configuration properties.

3. In z/OS UNIX System Services, run the DB2Binder utility to bind the packages
for the IBM Data Server Driver for JDBC and SQLJ.

4. Modify your applications to account for differences between the driver
versions.

5. Verify the installation by running a simple JDBC application.

532 Application Programming Guide and Reference for Java

Related concepts:
“Verify the installation of the IBM Data Server Driver for JDBC and SQLJ” on page
530
“Environment variables for the IBM Data Server Driver for JDBC and SQLJ” on
page 516
“Runtime environment for Java routines” on page 193
“Customization of IBM Data Server Driver for JDBC and SQLJ configuration
properties” on page 518
Related tasks:
“Enabling the DB2-supplied stored procedures used by the IBM Data Server Driver
for JDBC and SQLJ” on page 519
Related reference:
“JDBC differences between versions of the IBM Data Server Driver for JDBC and
SQLJ” on page 477
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“DB2LobTableCreator utility” on page 529
“DB2Binder utility” on page 522

Installing the z/OS Application Connectivity to DB2 for z/OS feature
z/OS Application Connectivity to DB2 for z/OS is a DB2 for z/OS feature. It
allows IBM Data Server Driver for JDBC and SQLJ type 4 connectivity from clients
that do not have DB2 for z/OS installed to DB2 for z/OS or DB2 for Linux, UNIX,
and Windows servers.

Before you begin

Prerequisites for the IBM Data Server Driver for JDBC and SQLJ:
v Java 2 Technology Edition, V5 or later

The IBM Data Server Driver for JDBC and SQLJ supports 31-bit or 64-bit Java
applications.
If your applications require a 64-bit JVM, you need to install the IBM 64-bit SDK
for z/OS, Java 2 Technology Edition, V5 or later.

v TCP/IP
TCP/IP is required on the client and all database servers to which you connect.

v DB2 for z/OS distributed data facility (DDF) and TCP/IP support.
v Unicode support for OS/390 and z/OS servers.

About this task

To install the z/OS Application Connectivity to DB2 for z/OS, follow this process.
Unless otherwise noted, all steps apply to the z/OS system on which you are
installing z/OS Application Connectivity to DB2 for z/OS.

Procedure

To install the z/OS Application Connectivity to DB2 for z/OS feature:
1. Allocate and load the z/OS Application Connectivity to DB2 for z/OS libraries.
2. On all DB2 for z/OS servers to which you plan to connect, set subsystem

parameter DESCSTAT to YES. DESCSTAT corresponds to installation field
DESCRIBE FOR STATIC on panel DSNTIPF.

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 533

This step is necessary for SQLJ support.
3. In z/OS UNIX System Services, edit your .profile file to customize the

environment variable settings. You use this step to set the libraries, paths, and
files that the IBM Data Server Driver for JDBC and SQLJ uses.

4. On all DB2 for z/OS servers to which you plan to connect, enable the
DB2-supplied stored procedures that are used by the IBM Data Server Driver
for JDBC and SQLJ.

5. In z/OS UNIX System Services, run the DB2Binder utility against the z/OS
system on which you are installing z/OS Application Connectivity to DB2 for
z/OS to bind the packages for the IBM Data Server Driver for JDBC and SQLJ
at all DB2 for z/OS servers to which you plan to connect. You need to run
DB2Binder once for each server.

6. Verify the installation by running a simple JDBC application.
Related concepts:
“Verify the installation of the IBM Data Server Driver for JDBC and SQLJ” on page
530
“Environment variables for the IBM Data Server Driver for JDBC and SQLJ” on
page 516
“Runtime environment for Java routines” on page 193
“Customization of IBM Data Server Driver for JDBC and SQLJ configuration
properties” on page 518
Related tasks:
“Enabling the DB2-supplied stored procedures used by the IBM Data Server Driver
for JDBC and SQLJ” on page 519

Connecting distributed database systems (DB2 Installation and Migration)

Connecting systems with TCP/IP (DB2 Installation and Migration)
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“DB2LobTableCreator utility” on page 529
“DB2Binder utility” on page 522

DESCRIBE FOR STATIC field (DESCSTAT subsystem parameter) (DB2
Installation and Migration)

Jobs for loading the z/OS Application Connectivity to DB2 for
z/OS libraries

To allocate the HFS or zFS directory structure and to use SMP/E to load the z/OS
Application Connectivity to DB2 for z/OS libraries, you need to run jobs that are
provided by DB2.

Those jobs are:

DDAALA
Creates the SMP/E consolidate software inventory (CSI) file. DDAALA is
required only if the SMP/E target and distribution zones are not created
and allocated to the SMP/E global zone.

DDAALB
Creates the z/OS Application Connectivity to DB2 for z/OS target and
distribution zones. Also creates DDDEFs for SMP/E data sets. DDAALB is
required only if the SMP/E target and distribution zones are not created
and allocated to the SMP/E global zone.

534 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_connectdistdbsys.htm#db2z_connectdistdbsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_connectwtcpip.htm#db2z_connectwtcpip
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_descstat.htm#db2z_dsntip404

DDAALLOC
Creates the z/OS Application Connectivity to DB2 for z/OS target and
distribution libraries and defines them in the SMP/E target and
distribution zones.

DDADDDEF
Creates DDDEFs for the z/OS Application Connectivity to DB2 for z/OS
target and distribution libraries.

DDAISMKD
Invokes the DDAMKDIR EXEC to allocate the HFS or zFS directory
structure for the z/OS Application Connectivity to DB2 for z/OS.

DDARECEV
Performs the SMP/E RECEIVE function for the z/OS Application
Connectivity to DB2 for z/OS libraries.

DDAAPPLY
Performs the SMP/E APPLY CHECK and APPLY functions for the z/OS
Application Connectivity to DB2 for z/OS libraries.

DDAACCEP
Performs the SMP/E ACCEPT CHECK and ACCEPT functions for the
z/OS Application Connectivity to DB2 for z/OS libraries.

See z/OS Application Connectivity to DB2 for z/OS Program Directory for information
on allocating and loading z/OS Application Connectivity to DB2 for z/OS data
sets.

Environment variables for the z/OS Application Connectivity to
DB2 for z/OS feature

You need to set environment variables so that the operating system can locate the
z/OS Application Connectivity to DB2 for z/OS feature.

The environment variables that you must set are:

PATH
Modify PATH to include the directory that contains the shell scripts that
invoke IBM Data Server Driver for JDBC and SQLJ program preparation and
debugging functions. If z/OS Application Connectivity to DB2 for z/OS is
installed in /usr/lpp/jcct4v3, modify PATH as follows:
export PATH=/usr/lpp/jcct4v3/bin:$PATH

CLASSPATH
z/OS Application Connectivity to DB2 for z/OS contains the following class
files:

db2jcc.jar or db2jcc4.jar
Include db2jcc.jar in the CLASSPATH if you plan to use the version of the
IBM Data Server Driver for JDBC and SQLJ that includes only JDBC 3.0 or
earlier functions. Include db2jcc4.jar in the CLASSPATH if you plan to use
the version of the IBM Data Server Driver for JDBC and SQLJ that includes
JDBC 4.0 or later functions, and JDBC 3.0 or earlier functions.

Important: Include db2jcc.jar or db2jcc4.jar in the CLASSPATH. Do not
include both files.

sqlj.zip or sqlj4.zip
Include sqlj.zip in the CLASSPATH if you plan to prepare SQLJ

Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ 535

applications that include only JDBC 3.0 or earlier functions. Include
sqlj4.zip in the CLASSPATH if you plan to prepare SQLJ applications that
include JDBC 4.0 or later functions, and JDBC 3.0 or earlier functions.

Important: Include sqlj.zip or sqlj4.zip in the CLASSPATH. Do not include
both files. Do not include db2jcc.jar with sqlj4.zip, or db2jcc4.jar with
sqlj.zip.

db2jcc_license_cisuz.jar
A license file that permits access to DB2 for z/OS servers.

Modify your CLASSPATH to include these files. If z/OS Application
Connectivity to DB2 for z/OS is installed in /usr/lpp/jcct4v3, modify
CLASSPATH as follows:
export CLASSPATH=/usr/lpp/jcct4v3/classes/db2jcc.jar: \
/usr/lpp/jcct4v3/classes/db2jcc_javax.jar: \
/usr/lpp/jcct4v3/classes/sqlj.zip: \
/usr/lpp/jcct4v3/classes/db2jcc_license_cisuz.jar: \
$CLASSPATH

536 Application Programming Guide and Reference for Java

Chapter 9. Setting the DB2 for z/OS application compatibility
for your JDBC and SQLJ applications

You can set the DB2 for z/OS application compatibility for Java applications by
specifying a bind option for static applications, or a special register for dynamic
applications.

About this task

Starting with DB2 for z/OS Version 11, you can choose whether to use SQL
behavior that is available in new-function mode of the new DB2 for z/OS version,
or continue to use SQL behavior from the previous version. This feature is called
application compatibility. You can set the application compatibility level for an
entire DB2 for z/OS subsystem, or for individual application packages.

The IBM Data Server Driver for JDBC and SQLJ provides several ways to set the
application static SQLJ applications or for dynamic JDBC or SQLJ applications.

Procedure

To set the application compatibility for Java applications, follow one of these
procedures.
v For JDBC or dynamic SQLJ applications, set the CURRENT APPLICATION

COMPATIBILITY special register.
You can do that using the DB2DataSource.setSpecialRegisters method, or by
specifying the specialRegisters option in the connection URL.

v For static SQLJ applications, specify the APPLCOMPAT bind option in the
-bindoptions string when you bind the application packages using the
db2sqljcustomize or db2sqljbind command. You can also specify the
APPLCOMPAT rebind option using the DB2Binder utility.

Examples

Example: In a JDBC application that uses the DriverManager interface, set the
application compatibility to V11R1 in the connection URL.
String url =

"jdbc:db2://sysmvs1.svl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"specialRegisters=CURRENT APPLICATION COMPATIBILITY=’V11R1’" + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

Example: In a JDBC application that uses the DataSource interface, set the
application compatibility to V10R1 using the setSpecialRegisters method.
DB2DataSource ds = new DB2DataSource();
...
Properties prop = new Properties();
prop.add("CURRENT APPLICATION COMPATIBILITY","V10R1");
...
ds.setSpecialRegisters(prop);

© Copyright IBM Corp. 1998, 2013 537

|

|

|

|
|
|

|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

Example: Customize and bind the package for serialized profile
EzSqlj_SJProfile0.ser so that the application is compatible with DB2 for z/OS
Version 10.
db2sqljcustomize -user myid -password mypw

-url jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1
-bindoptions "APPLCOMPAT(V10R1)" EzSqlj_SJProfile0.ser

Example: Rebind packages EZSQLJ01, EZSQLJ02, EZSQLJ03, and EXSQLJ04 for
serialized profile EzSqlj_SJProfile0.ser so that the application is compatible with
DB2 for z/OS Version 11.
java com.ibm.db2.jcc.DB2Binder

-url jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1 -user myid -password mypw
-bindoptions "APPLCOMPAT V11R1" -generic -action rebind -collection mycoll
-package EZSQLJ01

java com.ibm.db2.jcc.DB2Binder
-url jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1 -user myid -password mypw
-bindoptions "APPLCOMPAT V11R1" -generic -action rebind -collection mycoll
-package EZSQLJ02

java com.ibm.db2.jcc.DB2Binder
-url jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1 -user myid -password mypw
-bindoptions "APPLCOMPAT V11R1" -generic -action rebind -collection mycoll
-package EZSQLJ03

java com.ibm.db2.jcc.DB2Binder
-url jdbc:db2://sysmvs1.stl.ibm.com:5021/STLEC1 -user myid -password mypw
-bindoptions "APPLCOMPAT V11R1" -generic -action rebind -collection mycoll
-package EZSQLJ04

Related concepts:

Application compatibility of packages (DB2 Application programming and
SQL)

538 Application Programming Guide and Reference for Java

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility

Chapter 10. Security under the IBM Data Server Driver for
JDBC and SQLJ

When you use the IBM Data Server Driver for JDBC and SQLJ, you choose a
security mechanism by specifying a value for the securityMechanism Connection or
DataSource property, or the db2.jcc.securityMechanism global configuration
property.

You can set the securityMechanism property in one of the following ways:
v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection
method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your
own DataSource objects, invoke the DataSource.setSecurityMechanism method
after you create a DataSource object.

You can determine the security mechanism that is in effect for a connection by
calling the DB2Connection.getDB2SecurityMechanism method.

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the data sources that support those security
mechanisms.

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the value that you need to specify for the
securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the
server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports
ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server Driver
for JDBC and SQLJ driver updates the security mechanism to
ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the
server. Any other mismatch in security mechanism support between the requester
and the server results in an error.

Table 105. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password1 DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID1 DB2BaseDataSource.ENCRYPTED_USER_ONLY_SECURITY

Encrypted user ID and encrypted
password1

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted
security-sensitive data1

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

Encrypted user ID, encrypted
password, and encrypted
security-sensitive data1

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos DB2BaseDataSource.KERBEROS_SECURITY

© Copyright IBM Corp. 1998, 2013 539

Table 105. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ (continued)

Security mechanism securityMechanism property value

Plugin DB2BaseDataSource.PLUGIN_SECURITY

Certificate authentication DB2BaseDataSource.TLS_CLIENT_CERTIFICATE_SECURITY

Note:

1. DRDA encryption is not intended to provide confidentiality and integrity of passwords or data over a network
that is not secure, such as the Internet. DRDA encryption uses an anonymous key exchange, Diffie-Hellman,
which does not provide authentication of the server or the client. DRDA encryption is vulnerable to
man-in-the-middle attacks.

Related concepts:
“User ID and password security under the IBM Data Server Driver for JDBC and
SQLJ”
“User ID-only security under the IBM Data Server Driver for JDBC and SQLJ” on
page 543
“Kerberos security under the IBM Data Server Driver for JDBC and SQLJ” on page
547
“Encrypted password, user ID, or data security under the IBM Data Server Driver
for JDBC and SQLJ” on page 544
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

User ID and password security under the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user ID and password security.

To specify user ID and password security for a JDBC connection, use one of the
following techniques.

For the DriverManager interface: You can specify the user ID and password directly
in the DriverManager.getConnection invocation. For example:
import java.sql.*; // JDBC base
...
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password
String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

// Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);
// Create connection

Another method is to set the user ID and password directly in the URL string. For
example:
import java.sql.*; // JDBC base
...
String url =

"jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=dbadm;password=dbadm;";

// Set URL for the data source
Connection con = DriverManager.getConnection(url);

// Create connection

540 Application Programming Guide and Reference for Java

Alternatively, you can set the user ID and password by setting the user and
password properties in a Properties object, and then invoking the form of the
getConnection method that includes the Properties object as a parameter.
Optionally, you can set the securityMechanism property to indicate that you are
using user ID and password security. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new java.util.Properties();

// Create Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +
""));

// Set security mechanism to
// user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create connection

For the DataSource interface: you can specify the user ID and password directly in
the DataSource.getConnection invocation. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Context ctx=new InitialContext(); // Create context for JNDI
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

// Get DataSource object
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password
Connection con = ds.getConnection(id, pw);

// Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user
ID and password by invoking the DataSource.setUser and
DataSource.setPassword methods after you create the DataSource object.
Optionally, you can invoke the DataSource.setSecurityMechanism method property
to indicate that you are using user ID and password security. For example:
...
com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object

new com.ibm.db2.jcc.DB2SimpleDataSource();
ds.setDriverType(4); // Set driver type
ds.setDatabaseName("san_jose"); // Set location
ds.setServerName("mvs1.sj.ibm.com"); // Set server name
ds.setPortNumber(5021); // Set port number
ds.setUser("dbadm"); // Set user ID
ds.setPassword("dbadm"); // Set password
ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);
// Set security mechanism to
// user ID and password

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity with no user ID
or password: For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, if
you use user ID and password security, but you do not specify a user ID and
password, the database system uses the external security environment, such as the
RACF security environment, that was previously established for the user. For a
CICS connection, you cannot specify a user ID or password.

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 541

Valid characters in passwords: All characters in the ASCII range X'20' (decimal 32)
through X'7E' (decimal 126) are valid in passwords, except for the following
characters:
v X'20' (space) at the end of a password. The IBM Data Server Driver for JDBC

and SQLJ strips space characters at the end of a password.
v X'3B' (semicolon)
v Any characters that cannot be converted to EBCDIC characters, if passwords in

plain text are sent to a data server.

RACF password phrase security: If you are connecting to a DB2 for z/OS that is
configured for RACF protection, and the RACF version supports RACF password
phrases, you can supply a RACF password phrase for the password property
value, instead of a simple password. A password phrase must conform to the
following rules:
v A password phrase is a character string that can consist of mixed-case letters,

numbers, and special characters, including blanks.
v The length of the password phrase can be 9 to 100 characters, or 14 to 100

characters.
Password phrases of between 9 and 13 characters are allowed when the
new-password-phrase exit (ICHPWX11) is installed on the z/OS system, and the
exit allows password phrases of fewer than 14 characters.

v A password phrase must not contain the user ID, as sequential uppercase or
sequential lowercase characters.

v A password phrase must contain at least two alphabetic characters (A through Z
or a through z).

v A password phrase must contain at least two non-alphabetic characters
(numerics, punctuation, or special characters).

v A password phrase must not contain more than two consecutive characters that
are identical.

v If a single quotation mark (') is part of the password phrase, the single quotation
mark must be represented as two consecutive single quotation marks ('').

The following example uses a password phrase for a connection:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new java.util.Properties();

// Create Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "a*b!c@ D12345 678");

// Set password phrase for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +
""));

// Set security mechanism to
// user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create connection

542 Application Programming Guide and Reference for Java

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

User ID-only security under the IBM Data Server Driver for JDBC and
SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user-ID only security.

To specify user ID security for a JDBC connection, use one of the following
techniques.

For the DriverManager interface: Set the user ID and security mechanism by setting
the user and securityMechanism properties in a Properties object, and then
invoking the form of the getConnection method that includes the Properties object
as a parameter. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver

// for JDBC and SQLJ
// implementation of JDBC

...
Properties properties = new Properties();

// Create a Properties object
properties.put("user", "db2adm"); // Set user ID for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));
// Set security mechanism to
// user ID only

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID and security mechanism by invoking the DataSource.setUser
and DataSource.setSecurityMechanism methods after you create the DataSource
object. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver

// for JDBC and SQLJ
// implementation of JDBC

...
com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create DB2SimpleDataSource object

db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setServerName("mvs1.sj.ibm.com");

// Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setUser("db2adm"); // Set the user ID
db2ds.setSecurityMechanism(

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 543

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);
// Set security mechanism to
// user ID only

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Encrypted password, user ID, or data security under the IBM Data
Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ supports encryption of user IDs,
passwords, or data when Java applications access data servers.

Those security mechanisms use DRDA encryption. DRDA encryption is not
intended to provide confidentiality and integrity of passwords or data over a
network that is not secure, such as the Internet. DRDA encryption uses an
anonymous key exchange, Diffie-Hellman, which does not provide authentication
of the server or the client. DRDA encryption is vulnerable to man-in-the-middle
attacks.

The IBM Data Server Driver for JDBC and SQLJ supports 56-bit DES (weak)
encryption or 256-bit AES (strong) encryption. AES encryption is available with
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only. You set the
encryptionAlgorithm driver property to choose between 56-bit DES encryption
(encryptionAlgorithm value of 1) and 256-bit AES encryption (encryptionAlgorithm
value of 2). 256-bit AES encryption is used for a connection only if the database
server supports it and is configured to use it.

If you use encrypted password security, encrypted user ID security, or encrypted
user ID and encrypted password security from a DB2 for z/OS client, the Java
Cryptography Extension, IBMJCE for z/OS needs to be enabled on the client. The
Java Cryptography Extension is part of the IBM Developer Kit for z/OS, Java 2
Technology Edition. For information on how to enable IBMJCE, go to this URL on
the web: http://www.ibm.com/servers/eserver/zseries/software/java/j5jce.html

For AES encryption, you need to get the unrestricted policy file for JCE. It is
available at the following URL: https://www14.software.ibm.com/webapp/iwm/
web/preLogin.do?source=jcesdk

Connections to DB2 for i V6R1 or later servers can use encrypted password
security or encrypted user ID and encrypted password security. For encrypted
password security or encrypted user ID and encrypted password security, the IBM
Java Cryptography Extension (ibmjceprovidere.jar) must be installed on your client.
The IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

You can also use encrypted security-sensitive data in addition to encrypted user ID
security or encrypted user ID and encrypted password security. You specify
encryption of security-sensitive data through the
ENCRYPTED_USER_AND_DATA_SECURITY or
ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY securityMechanism value.

544 Application Programming Guide and Reference for Java

http://www.ibm.com/servers/eserver/zseries/software/java/j5jce.html
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

ENCRYPTED_USER_AND_DATA_SECURITY is valid for connections to DB2 for z/OS
servers only, and only for DES encryption (encryptionAlgorithm value of 1).

DB2 for z/OS or DB2 for Linux, UNIX, and Windows database servers encrypt the
following data when you specify encryption of security-sensitive data:
v SQL statements that are being prepared, executed, or bound into a package
v Input and output parameter information
v Result sets
v LOB data
v XML data
v Results of describe operations

Before you can use encrypted security-sensitive data, the z/OS Integrated
Cryptographic Services Facility needs to be installed and enabled on the z/OS
operating system.

To specify encrypted user ID or encrypted password security for a JDBC
connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security
mechanism by setting the user, password, and securityMechanism properties in a
Properties object, and then invoking the form of the getConnection method that
includes the Properties object as a parameter. For example, use code like this to
set the encrypted user ID, encrypted password, and encrypted security-sensitive
data mechanism, with AES encryption:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new Properties(); // Create a Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism",

new String("" +
com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY +
""));

// Set security mechanism to
// user ID and encrypted password

properties.put("encryptionAlgorithm", "2");
// Request AES security

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID, password, and security mechanism by invoking the
DataSource.setUser, DataSource.setPassword, and
DataSource.setSecurityMechanism methods after you create the DataSource object.
For example, use code like this to set the encrypted user ID, encrypted password,
and encrypted security-sensitive data security mechanism, with AES encryption:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
com.ibm.db2.jcc.DB2SimpleDataSource ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create the DataSource object

ds.setDriverType(4); // Set the driver type
ds.setDatabaseName("san_jose"); // Set the location

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 545

ds.setServerName("mvs1.sj.ibm.com");
// Set the server name

ds.setPortNumber(5021); // Set the port number
ds.setUser("db2adm"); // Set the user ID
ds.setPassword("db2adm"); // Set the password
ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY);
// Set security mechanism to
// User ID and encrypted password

ds.setEncryptionAlgorithm(2); // Request AES encryption

Valid characters in passwords: All characters in the ASCII range X'20' (decimal 32)
through X'7E' (decimal 126) are valid in passwords, except for the following
characters:
v X'20' (space) at the end of a password. The IBM Data Server Driver for JDBC

and SQLJ strips space characters at the end of a password.
v X'3B' (semicolon)
v Any characters that cannot be converted to EBCDIC characters, if passwords in

plain text are sent to a data server.

RACF password phrase security: If you are connecting to a DB2 for z/OS that is
configured for RACF protection, and the RACF version supports RACF password
phrases, you can supply a RACF password phrase for the password property
value, instead of a simple password. A password phrase must conform to the
following rules:
v A password phrase is a character string that can consist of mixed-case letters,

numbers, and special characters, including blanks.
v The length of the password phrase can be 9 to 100 characters, or 14 to 100

characters.
Password phrases of between 9 and 13 characters are allowed when the
new-password-phrase exit (ICHPWX11) is installed on the z/OS system, and the
exit allows password phrases of fewer than 14 characters.

v A password phrase must not contain the user ID, as sequential uppercase or
sequential lowercase characters.

v A password phrase must contain at least two alphabetic characters (A through Z
or a through z).

v A password phrase must contain at least two non-alphabetic characters
(numerics, punctuation, or special characters).

v A password phrase must not contain more than two consecutive characters that
are identical.

v If a single quotation mark (') is part of the password phrase, the single quotation
mark must be represented as two consecutive single quotation marks ('').

546 Application Programming Guide and Reference for Java

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

Kerberos security under the IBM Data Server Driver for JDBC and
SQLJ

JDBC support for Kerberos security is available for IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity only.

To enable JDBC support for Kerberos security, you also need to enable the
following components of your software development kit (SDK) for Java:
v Java Cryptography Extension
v Java Generic Security Service (JGSS)
v Java Authentication and Authorization Service (JAAS)

See the documentation for your SDK for Java for information on how to enable
these components.

There are three ways to specify Kerberos security for a connection:
v With a user ID and password
v Without a user ID or password
v With a delegated credential

Kerberos security with a user ID and password

For this case, Kerberos uses the specified user ID and password to obtain a
ticket-granting ticket (TGT) that lets you authenticate to the database server.

You need to set the user, password, kerberosServerPrincipal, and
securityMechanism properties. Set the securityMechanism property to
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11). The
kerberosServerPrincipal property specifies the principal name that the database
server registers with a Kerberos Key Distribution Center (KDC).

For the DriverManager interface: Set the user ID, password, Kerberos server, and
security mechanism by setting the user, password, kerberosServerPrincipal, and
securityMechanism properties in a Properties object, and then invoking the form
of the getConnection method that includes the Properties object as a parameter.
For example, use code like this to set the Kerberos security mechanism with a user
ID and password:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new Properties(); // Create a Properties object
properties.put("user", "db2adm"); // Set user ID for the connection
properties.put("password", "db2adm"); // Set password for the connection
properties.put("kerberosServerPrincipal",

"sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

properties.put("securityMechanism",

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 547

new String("" +
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

// Set security mechanism to
// Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set
the Kerberos server and security mechanism by invoking the
DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism
methods after you create the DataSource object. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create the DataSource object

db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setUser("db2adm"); // Set the user
db2ds.setPassword("db2adm"); // Set the password
db2ds.setServerName("mvs1.sj.ibm.com");

// Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setKerberosServerPrincipal(

"sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

db2ds.setSecurityMechanism(
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

// Set security mechanism to
// Kerberos

Kerberos security with no user ID or password

For this case, the Kerberos default credentials cache must contain a ticket-granting
ticket (TGT) that lets you authenticate to the database server.

You need to set the kerberosServerPrincipal and securityMechanism properties.
Set the securityMechanism property to
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

For the DriverManager interface: Set the Kerberos server and security mechanism
by setting the kerberosServerPrincipal and securityMechanism properties in a
Properties object, and then invoking the form of the getConnection method that
includes the Properties object as a parameter. For example, use code like this to
set the Kerberos security mechanism without a user ID and password:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new Properties(); // Create a Properties object
properties.put("kerberosServerPrincipal",

“sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

properties.put("securityMechanism",
new String("" +
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

// Set security mechanism to
// Kerberos

548 Application Programming Guide and Reference for Java

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set
the Kerberos server and security mechanism by invoking the
DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism
methods after you create the DataSource object. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
DB2SimpleDataSource db2ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create the DataSource object

db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setServerName("mvs1.sj.ibm.com");

// Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setKerberosServerPrincipal(

"sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

db2ds.setSecurityMechanism(
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

// Set security mechanism to
// Kerberos

Kerberos security with a delegated credential from another
principal

For this case, you authenticate to the database server using a delegated credential
that another principal passes to you.

You need to set the kerberosServerPrincipal, gssCredential, and
securityMechanism properties. Set the securityMechanism property to
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

For the DriverManager interface: Set the Kerberos server, delegated credential, and
security mechanism by setting the kerberosServerPrincipal, and
securityMechanism properties in a Properties object. Then invoke the form of the
getConnection method that includes the Properties object as a parameter. For
example, use code like this to set the Kerberos security mechanism without a user
ID and password:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new Properties(); // Create a Properties object
properties.put("kerberosServerPrincipal",

“sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

properties.put("gssCredential",delegatedCredential);
// Set the delegated credential

properties.put("securityMechanism",
new String("" +

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));
// Set security mechanism to
// Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 549

// Set URL for the data source
Connection con = DriverManager.getConnection(url, properties);

// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set
the Kerberos server, delegated credential, and security mechanism by invoking the
DataSource.setKerberosServerPrincipal, DataSource.setGssCredential, and
DataSource.setSecurityMechanism methods after you create the DataSource object.
For example:
DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

// Create the DataSource object
db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setKerberosServerPrincipal(

"sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");
// Set the Kerberos server

db2ds.setGssCredential(delegatedCredential);
// Set the delegated credential

db2ds.setSecurityMechanism(
com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

// Set security mechanism to
// Kerberos

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

IBM Data Server Driver for JDBC and SQLJ trusted context support
The IBM Data Server Driver for JDBC and SQLJ provides methods that allow you
to establish and use trusted connections in Java programs.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
Version 9.1 or later

A three-tiered application model consists of a database server, a middleware server
such as WebSphere Application Server, and end users. With this model, the
middleware server is responsible for accessing the database server on behalf of end
users. Trusted context support ensures that an end user's database identity and
database privileges are used when the middleware server performs any database
requests on behalf of that end user.

A trusted context is an object that the database administrator defines that contains
a system authorization ID and a set of trust attributes. Currently, for DB2 database
servers, a database connection is the only type of context that is supported. The
trust attributes identify a set of characteristics of a connection that are required for

550 Application Programming Guide and Reference for Java

the connection to be considered a trusted connection. The relationship between a
database connection and a trusted context is established when the connection to
the database server is first created, and that relationship remains for the life of the
database connection.

After a trusted context is defined, and an initial trusted connection to the data
server is made, the middleware server can use that database connection under a
different user without reauthenticating the new user at the database server.

To avoid vulnerability to security breaches, an application server that uses these
trusted methods should not use untrusted connection methods.

The DB2ConnectionPoolDataSource class provides several versions of the
getDB2TrustedPooledConnection method, and the DB2XADataSource class provides
several versions of the getDB2TrustedXAConnection method, which allow an
application server to establish the initial trusted connection. You choose a method
based on the types of connection properties that you pass and whether you use
Kerberos security. When an application server calls one of these methods, the IBM
Data Server Driver for JDBC and SQLJ returns an Object[] array with two
elements:
v The first element contains a connection instance for the initial connection.
v The second element contains a unique cookie for the connection instance. The

cookie is generated by the JDBC driver and is used for authentication during
subsequent connection reuse.

The DB2PooledConnection class provides several versions of the getDB2Connection
method, and the DB2Connection class provides several versions of the
reuseDB2Connection method, which allow an application server to reuse an existing
trusted connection on behalf of a new user. The application server uses the method
to pass the following items to the new user:
v The cookie from the initial connection
v New connection properties for the reused connection

The JDBC driver checks that the supplied cookie matches the cookie of the
underlying trusted physical connection, to ensure that the connection request
originates from the application server that established the trusted physical
connection. If the cookies match, the connection becomes available for immediate
use by this new user, with the new properties.

Example: Obtain the initial trusted connection:
// Create a DB2ConnectionPoolDataSource instance
com.ibm.db2.jcc.DB2ConnectionPoolDataSource dataSource =

new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();
// Set properties for this instance
dataSource.setDatabaseName ("STLEC1");
dataSource.setServerName ("v7ec167.svl.ibm.com");
dataSource.setDriverType (4);
dataSource.setPortNumber(446);
java.util.Properties properties = new java.util.Properties();
// Set other properties using
// properties.put("property", "value");
// Supply the user ID and password for the connection
String user = "user";
String password = "password";
// Call getDB2TrustedPooledConnection to get the trusted connection
// instance and the cookie for the connection
Object[] objects = dataSource.getDB2TrustedPooledConnection(

user,password, properties);

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 551

Example: Reuse an existing trusted connection:
// The first item that was obtained from the previous getDB2TrustedPooledConnection
// call is a connection object. Cast it to a PooledConnection object.
javax.sql.PooledConnection pooledCon =

(javax.sql.PooledConnection)objects[0];
properties = new java.util.Properties();
// Set new properties for the reused object using
// properties.put("property", "value");
// The second item that was obtained from the previous getDB2TrustedPooledConnection
// call is the cookie for the connection. Cast it as a byte array.
byte[] cookie = ((byte[])(objects[1]);
// Supply the user ID for the new connection.
String newuser = "newuser";
// Supply the name of a mapping service that maps a workstation user
// ID to a z/OS RACF ID
String userRegistry = "registry";
// Do not supply any security token data to be traced.
byte[] userSecTkn = null;
// Do not supply a previous user ID.
String originalUser = null;
// Call getDB2Connection to get the connection object for the new
// user.
java.sql.Connection con =

((com.ibm.db2.jcc.DB2PooledConnection)pooledCon).getDB2Connection(
cookie,newuser,password,userRegistry,userSecTkn,originalUser,properties);

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243

IBM Data Server Driver for JDBC and SQLJ support for SSL
The IBM Data Server Driver for JDBC and SQLJ provides support for the Secure
Sockets Layer (SSL) through the Java Secure Socket Extension (JSSE).

You can use SSL support in your Java applications if you use IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 9 or later,
to DB2 for Linux, UNIX, and Windows Version 9.1, Fix Pack 2 or later, or to IBM
Informix Version 11.50 or later.

If you use SSL support for a connection to a DB2 for z/OS data server, and the
z/OS version is V1.8, V1.9, or V1.10, the appropriate PTF for APAR PK72201 must
be applied to Communication Server for z/OS IP Services.

Connections to all supported data servers can use server authentication. For server
authentication, the server sends a certificate to the client, and the client confirms
the identity of the server. Connections to DB2 for z/OS data servers can also use
client authentication. For client authentication, the client sends a certificate to the
server, and the server confirms the identity of the client. Client authentication can
be used with SSL encryption or without SSL encryption.

To use SSL connections, you need to:
v Configure connections to the data server to use SSL.
v Configure your Java Runtime Environment to use SSL.

552 Application Programming Guide and Reference for Java

Related concepts:
“IBM Data Server Driver for JDBC and SQLJ support for certificate authentication”
on page 557
Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Creating and deploying DataSource objects” on page 26
“Connecting to a data source using the DataSource interface” on page 23

Configuring the DB2 server for SSL (Managing Security)
Related reference:
“Properties for the IBM Data Server Driver for JDBC and SQLJ” on page 243
Related information:

DB2 10 for z/OS: Configuring SSL for Secure Client-Server Communications

Configuring connections under the IBM Data Server Driver for
JDBC and SQLJ to use SSL

To configure database connections under the IBM Data Server Driver for JDBC and
SQLJ to use SSL, you need to set the DB2BaseDataSource.sslConnection property to
true.

Before you begin

Before a connection to a data source can use SSL, the port to which the application
connects must be configured in the database server as the SSL listener port.

Procedure
1. Set DB2BaseDataSource.sslConnection on a Connection or DataSource instance.

Alternatively, you can set the db2.jcc.override.sslConnection or
db2.jcc.sslConnection configuration parameter on the driver instance.

2. Optional: Set DB2BaseDataSource.sslTrustStoreLocation on a Connection or
DataSource instance to identify the location of the truststore. Alternatively, you
can set the db2.jcc.override.sslTrustStoreLocation or
db2.jcc.sslTrustStoreLocation configuration parameter on the driver instance.
Setting the sslTrustStoreLocation property is an alternative to setting the Java
javax.net.ssl.trustStore property. If you set
DB2BaseDataSource.sslTrustStoreLocation, javax.net.ssl.trustStore is not
used.

3. Optional: Set DB2BaseDataSource.sslTrustStorePassword on a Connection or
DataSource instance to identify the truststore password. Alternatively, you can
set the db2.jcc.override.sslTrustStorePassword or db2.jcc.sslTrustStorePassword
configuration parameter on the driver instance. Setting the
sslTrustStorePassword property is an alternative to setting the Java
javax.net.ssl.trustStorePassword property. If you set
DB2BaseDataSource.sslTrustStorePassword, javax.net.ssl.trustStorePassword
is not used.

Example

The following example demonstrates how to set the sslConnection property on a
Connection instance:

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 553

|
|

|
|
|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_configssl4serv.htm#db2z_configssl4serv
http://www.redbooks.ibm.com/redpieces/abstracts/redp4799.html?Open

java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");
properties.put("password", "yyyy");
properties.put("sslConnection", "true");
java.sql.Connection con =

java.sql.DriverManager.getConnection(url, properties);

Configuring the Java Runtime Environment to use SSL
Before you can use Secure Sockets Layer (SSL) connections in your JDBC and SQLJ
applications, you need to configure the Java Runtime Environment to use SSL. An
example procedure is provided. However, the procedure might be different
depending on the Java Runtime Environment that you use.

Before you begin

Before you can configure your Java Runtime Environment for SSL, you need to
satisfy the following prerequisites:
v The Java Runtime Environment must include a Java security provider. The IBM

JSSE provider or the SunJSSE provider must be installed. The IBM JSSE provider
is automatically installed with the IBM SDK for Java.

Restriction: You can only use the SunJSSE provider only with an Oracle Java
Runtime Environment. The SunJSSE provider does not work with an IBM Java
Runtime Environment.

v SSL support must be configured on the database server.

Procedure

To configure your Java Runtime Environment to use SSL, follow these steps:
1. Import a certificate from the database server to a Java truststore on the client.

Use the Java keytool utility to import the certificate into the truststore.
For example, suppose that the server certificate is stored in a file named
jcc.cacert. Issue the following keytool utility statement to read the certificate
from file jcc.cacert, and store it in a truststore named cacerts.
keytool -import -file jcc.cacert -keystore cacerts

2. Configure the Java Runtime Environment for the Java security providers by
adding entries to the java.security file.
The format of a security provider entry is:
security.provider.n=provider-package-name

A provider with a lower value of n takes precedence over a provider with a
higher value of n.
The Java security provider entries that you add depend on whether you use the
IBM JSSE provider or the SunJSSE provider.
v If you use the SunJSSE provider, add entries for the Oracle security providers

to your java.security file.
v If you use the IBM JSSE provider, use one of the following methods:

– Use the IBMJSSE2 provider (supported for the IBM SDK for Java 1.4.2
and later):

Recommendation: Use the IBMJSSE2 provider, and use it in FIPS mode.
- If you do not need to operate in FIPS-compliant mode:

v For the IBM SDK for Java 1.4.2, add an entry for the
IBMJSSE2Provider to the java.security file. Ensure that an entry for the

554 Application Programming Guide and Reference for Java

IBMJCE provider is in the java.security file. The java.security file that
is shipped with the IBM SDK for Java contains an entry for entries
for IBMJCE.

v For later versions of the IBM SDK for Java, ensure that entries for the
IBMJSSE2Provider and the IBMJCE provider are in the java.security
file. The java.security file that is shipped with the IBM SDK for Java
contains entries for those providers.

- If you need to operate in FIPS-compliant mode:
v Add an entry for the IBMJCEFIPS provider to your java.security file

before the entry for the IBMJCE provider. Do not remove the entry for
the IBMJCE provider.

v Enable FIPS mode in the IBMJSSE2 provider. See step 3.
– Use the IBMJSSE provider (supported for the IBM SDK for Java 1.4.2

only):

- If you do not need to operate in FIPS-compliant mode, ensure that
entries for the IBMJSSEProvider and the IBMJCE provider are in the
java.security file. The java.security file that is shipped with the IBM
SDK for Java contains entries for those providers.

- If you need to operate in FIPS-compliant mode, add entries for the
FIPS-approved provider IBMJSSEFIPSProvider and the IBMJCEFIPS
provider to your java.security file, before the entry for the IBMJCE
provider.

Restriction: If you use the IBMJSSE provider on the Solaris operating
system, you need to include an entry for the SunJSSE provider before entries
for the IBMJCE, IBMJCEFIPS, IBMJSSE, or IBMJSSE2 providers.

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you enable FIPS mode in the IBMJSSE2 provider:
Set the Java security providers
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you use the IBMJSSE provider:
Set the Java security providers
security.provider.1=com.ibm.fips.jsse.IBMJSSEFIPSProvider
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you use the SunJSSE
provider:
Set the Java security providers
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.sun.crypto.provider.SunJCE
security.provider.4=com.sun.net.ssl.internal.ssl.Provider

3. If you plan to use the IBM Data Server Driver for JDBC and SQLJ in
FIPS-compliant mode, you need to set the com.ibm.jsse2.JSSEFIPS Java system
property:
com.ibm.jsse2.JSSEFIPS=true

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 555

Restriction: Non-FIPS-mode JSSE applications cannot run in a JVM that is in
FIPS mode.

Restriction: When the IBMJSSE2 provider runs in FIPS mode, it cannot use
hardware cryptography.

4. Configure the Java Runtime Environment for the SSL socket factory providers
by adding entries to the java.security file. This step is not necessary if you are
using the SunJSSE provider and the Java Runtime Environment, 7 or later.
The format of SSL socket factory provider entries are:
ssl.SocketFactory.provider=provider-package-name
ssl.ServerSocketFactory.provider=provider-package-name

Specify the SSL socket factory provider for the Java security provider that you
are using.
Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE2 provider:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl

Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE provider:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=com.ibm.fips.jsse.JSSEServerSocketFactory

Example: Include SSL socket factory provider entries like these when you use
the SunJSSE provider, and the Java Runtime Environment, 6 or earlier:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLServerSocketFactoryImpl

5. Configure Java system properties to use the truststore.
To do that, set the following Java system properties:

javax.net.ssl.trustStore
Specifies the name of the truststore that you specified with the
-keystore parameter in the keytool utility in step 1 on page 554.

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStoreLocation,
db2.jcc.override.sslTrustStoreLocation, or db2.jcc.sslTrustStoreLocation is
set, its value overrides the javax.net.ssl.trustStore property value.

javax.net.ssl.trustStorePassword (optional)
Specifies the password for the truststore. You do not need to set a
truststore password. However, if you do not set the password, you
cannot protect the integrity of the truststore.

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStorePassword,
db2.jcc.override.sslTrustStorePassword, or db2.jcc.sslTrustStorePassword
is set, its value overrides the javax.net.ssl.trustStore property value.

Example: One way that you can set Java system properties is to specify them as
the arguments of the -D option when you run a Java application. Suppose that
you want to run a Java application named MySSL.java, which accesses a data
source using an SSL connection. You have defined a truststore named cacerts.
The following command sets the truststore name when you run the application.
java -Djavax.net.ssl.trustStore=cacerts MySSL

556 Application Programming Guide and Reference for Java

|
|
|
|

|
|
|
|

IBM Data Server Driver for JDBC and SQLJ support for certificate
authentication

The IBM Data Server Driver for JDBC and SQLJ provides support for client
support for certificate authentication for connections to DB2 for z/OS Version 10 or
later data servers.

Client certificate authentication security on a DB2 for z/OS data server supports
the use of digital certificates for mutual authentication by requesters and servers.
By using z/OS digital certificates, the Secure Socket Layer (SSL) protocol supports
server and client authentication during the handshake phase. A data server can
validate the certificates of a client at the server, which prevents the client from
obtaining a secure connection without an installation-approved certificate. The
authentication of the remote client's digital certificate is performed by Application
Transparent Transport Layer Security (AT-TLS) that is provided with the z/OS
Communications Server TCP/IP stack.

The IBM Data Server Driver for JDBC and SQLJ supports certificate authentication
for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only.

You enable IBM Data Server Driver for JDBC and SQLJ certificate authentication by
specifying DB2BaseDataSource.TLS_CLIENT_CERTIFICATE_SECURITY as the value of
the securityMechanism Connection or DataSource property. If the target data server
supports client certificate authentication, and the mutual authentication succeeds,
the driver passes a valid Connection object to the application. If the data server
does not support client certificate authentication, or the connection was not
authenticated using AT-TLS and SSL, the driver throws DisconnectException.

You can use certificate authentication with or without a user ID or a password. If
the application does not provide a user ID or password, authentication is
performed at the network layer only. If a user ID or password is provided,
authentication is performed at the network layer and the data server layer.

To use SSL encryption with certificate authentication, you can set the sslConnection
Connection or DataSource property or the db2.jcc.override.sslConnection or
db2.jcc.sslConnection configuration property to true.

The following example demonstrates how to enable certificate authentication and
user ID and password security in a JDBC application.
com.ibm.db2.jcc.DB2SimpleDataSource dataSource = new

com.ibm.db2.jcc.DB2SimpleDataSource();
// Specify certificate authentication
dataSource.setSecurityMechanism
(com.ibm.db2.jcc.DB2BaseDataSource.TLS_CLIENT_CERTIFICATE_SECURITY);
// Set a user ID and password to be passed to the data server
((com.ibm.db2.jcc.DB2BaseDataSource)dataSource).setUser("sysadm");
dataSource.setPassword("password”);
// Identify the SSL truststore, keystore and their passwords
System.setProperty("javax.net.ssl.trustStore","c:/temp/SSL/cacerts");
System.setProperty("javax.net.ssl.trustStorePassword","password");
System.setProperty("javax.net.ssl.keyStore","c:/temp/SSL/myKS");
System.setProperty("javax.net.ssl.keyStorePassword","123456");
...
// Create a connection
con = dataSource.getConnection ();

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 557

|
|
|

Related information:

DB2 10 for z/OS: Configuring SSL for Secure Client-Server Communications

Security for preparing SQLJ applications with the IBM Data Server
Driver for JDBC and SQLJ

You can provide security during SQLJ application preparation by allowing users to
customize applications only and limiting access to a specific set of tables during
customization. If the target data server is DB2 for z/OS, you can also provide
security by allowing customers to prepare but not execute applications.

Allowing users to customize only

You can use one of the following techniques to allow a set of users to customize
SQLJ applications, but not to bind or run those applications:
v Create a database system for customization only (recommended solution):

Follow these steps:
1. Create a new DB2 subsystem. This is the customization-only system.
2. On the customization-only system, define all the tables and views that are

accessed by the SQLJ applications. The table or view definitions must be the
same as the definitions on the DB2 subsystem where the application will be
bound and will run (the bind-and-run system). Executing the DESCRIBE
statement on the tables or views must give the same results on the
customization-only system and the bind-and-run system.

3. On the customization-only system, grant the necessary table or view
privileges to users who will customize SQLJ applications.

4. On the customization-only system, users run the sqlj command with the
-compile=true option to create Java byte codes and serialized profiles for
their programs. Then they run the db2sqljcustomize command with the
-automaticbind NO option to create customized serialized profiles.

5. Copy the java byte code files and customized serialized profiles to the
bind-and-run system.

6. A user with authority to bind packages on the bind-and-run system runs the
db2sqljbind command on the customized serialized profiles that were copied
from the customization-only system.

v Use a stored procedure to do customization: Write a Java stored procedure that
customizes serialized profiles and binds packages for SQLJ applications on
behalf of the end user. This Java stored procedure needs to use a JDBC driver
package that was bound with one of the DYNAMICRULES options that causes
dynamic SQL to be performed under a different user ID from the end user's
authorization ID. For example, you might use the DYNAMICRULES option
DEFINEBIND or DEFINERUN to execute dynamic SQL under the authorization
ID of the creator of the Java stored procedure. You need to grant EXECUTE
authority on the stored procedure to users who need to do SQLJ customization.
The stored does the following things:
1. Receives the compiled SQLJ program and serialized profiles in BLOB input

parameters
2. Copies the input parameters to its file system
3. Runs db2sqljcustomize to customize the serialized profiles and bind the

packages for the SQLJ program
4. Returns the customized serialized profiles in output parameters

558 Application Programming Guide and Reference for Java

http://www.redbooks.ibm.com/redpieces/abstracts/redp4799.html?Open

v Use a stand-alone program to do customization: This technique involves
writing a program that performs the same steps as a Java stored procedure that
customizes serialized profiles and binds packages for SQLJ applications on
behalf of the end user. However, instead of running the program as a stored
procedure, you run the program as a stand-alone program under a library
server.

Allowing users to customize and bind only

If the target data server is DB2 for z/OS Version 10 or later, you can allow users to
customize and bind SQLJ applications, but not to execute the SQL statements in
them, by granting those users the EXPLAIN privilege.

Restricting table access during customization

When you customize serialized profiles, you should do online checking, to give the
application program information about the data types and lengths of table columns
that the program accesses. By default, customization includes online checking.

Online checking requires that the user who customizes a serialized profile has
authorization to execute PREPARE and DESCRIBE statements against SQL
statements in the SQLJ program. That authorization includes the SELECT privilege
on tables and views that are accessed by the SQL statements. If SQL statements
contain unqualified table names, the qualifier that is used during online checking
is the value of the db2sqljcustomize -qualifier parameter. Therefore, for online
checking of tables and views with unqualified names in an SQLJ application, you
can grant the SELECT privilege only on tables and views with a qualifier that
matches the value of the -qualifier parameter.

Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ 559

560 Application Programming Guide and Reference for Java

Chapter 11. Java client support for high availability on IBM
data servers

Client applications that connect to DB2 for Linux, UNIX, and Windows, DB2 for
z/OS, or IBM Informix can easily take advantage of the high availability features
of those data servers.

Client applications can use the following high availability features:
v Automatic client reroute

Automatic client reroute capability is available on all IBM data servers.
Automatic client reroute uses information that is provided by the data servers to
redirect client applications from a server that experiences an outage to an
alternate server. Automatic client reroute enables applications to continue their
work with minimal interruption. Redirection of work to an alternate server is
called failover.
For connections to DB2 for z/OS data servers, automatic client reroute is part of
the workload balancing feature. In general, for DB2 for z/OS, automatic client
reroute should not be enabled without workload balancing.

v Client affinities
Client affinities is a failover solution that is controlled completely by the client. It
is intended for situations in which you need to connect to a particular primary
server. If an outage occurs during the connection to the primary server, you use
client affinities to enforce a specific order for failover to alternate servers.
Client affinities is not applicable to a DB2 for z/OS data sharing environment,
because all members of a data sharing group can access data concurrently. Data
sharing is the recommended solution for high availability for DB2 for z/OS.

v Workload balancing
Workload balancing is available on all IBM data servers. Workload balancing
ensures that work is distributed efficiently among servers in an IBM Informix
high-availability cluster, DB2 for z/OS data sharing group, or DB2 for Linux,
UNIX, and Windows DB2 pureScale instance.

The following table provides links to server-side information about these features.

Table 106. Server-side information on high availability

Data server Related topics

DB2 for Linux, UNIX, and Windows v DB2 pureScale: DB2 pureScale Feature roadmap

v Automatic client reroute: DB2 automatic client reroute
roadmap

IBM Informix Manage Cluster Connections with the Connection
Manager

DB2 for z/OS Communicating with data sharing groups (DB2 Data
Sharing Planning and Administration)

Important: For connections to DB2 for z/OS, this information discusses direct
connections to DB2 for z/OS. For information about high availability for
connections through DB2 Connect Server, see the DB2 Connect documentation.

© Copyright IBM Corp. 1998, 2013 561

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.licensing.doc/doc/c0056030.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_communicatedsgroups.htm#db2z_communicatedsgroups
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_communicatedsgroups.htm#db2z_communicatedsgroups

Java client support for high availability for connections to DB2 for
Linux, UNIX, and Windows servers

DB2 for Linux, UNIX, and Windows servers provide high availability for client
applications, through workload balancing and automatic client reroute. This
support is available for applications that use Java clients (JDBC, SQLJ, or
pureQuery), as well as non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby, or
embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQLJ type
4 connectivity to take advantage of DB2 for Linux, UNIX, and Windows
high-availability support. You need IBM Data Server Driver for JDBC and SQLJ
version 3.58 or 4.8, or later.

High availability support for connections to DB2 for Linux, UNIX, and Windows
servers includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through an alternate server. Reconnection to another
server is called failover. For Java clients, automatic client reroute support is
always enabled.

Servers can provide automatic client reroute capability in any of the following
ways:
v Several servers are configured in a DB2 pureScale instance. A connection to a

database is a connection to a member of that DB2 pureScale instance.
Failover involves reconnection to another member of the DB2 pureScale
instance. This environment requires that clients use TCP/IP to connect to the
DB2 pureScale instance.

v A DB2 pureScale instance and an alternate server are defined for a database.
Failover first involves reconnection to another member of the DB2 pureScale
instance. Failover to the alternate server is attempted only if no member of
the DB2 pureScale instance is available.

v A DB2 pureScale instance is defined for the primary server, and another DB2
pureScale instance is defined for the alternate server. Failover first involves
reconnection to another member of the primary DB2 pureScale instance.
Failover to the alternate DB2 pureScale instance is attempted only if no
member of the primary DB2 pureScale instance is available.

v A database is defined on a single server. The configuration for that database
includes specification of an alternate server. Failover involves reconnection
to the alternate server.

For Java, client applications, failover for automatic client reroute can be
seamless or non-seamless. With non-seamless failover, when the client application
reconnects to another server, an error is always returned to the application, to
indicate that failover (connection to the alternate server) occurred. With
seamless failover, the driver does not return an error if a connection failure and
successful reconnection to an alternate server occur during execution of the
first SQL statement in a transaction.

In a DB2 pureScale instance, automatic client reroute support can be used
without workload balancing or with workload balancing.

Workload balancing
Workload balancing can improve availability of a DB2 pureScale instance.

562 Application Programming Guide and Reference for Java

With workload balancing, a DB2 pureScale instance ensures that work is
distributed efficiently among members.

Java clients on any operating system support workload balancing. The
connection from the client to the DB2 pureScale instance must use TCP/IP.

When workload balancing is enabled, the client gets frequent status
information about the members of the DB2 pureScale instance through a server
list. The client caches the server list and uses the information in it to determine
the member to which the next transaction should be routed.

For Java applications, when JNDI is used, the cached server list can be shared
by multiple JVMs for the first connection. However workload balancing is
always performed within the context of a single JVM.

DB2 for Linux, UNIX, and Windows supports two types of workload
balancing:

Connection-level workload balancing
Connection-level workload balancing is performed at connection
boundaries. It is not supported for Java clients.

Transaction-level workload balancing
Transaction-level workload balancing is performed at transaction
boundaries. Client support for transaction-level workload balancing is
disabled by default for clients that connect to DB2 for Linux, UNIX, and
Windows.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of DB2 for Linux, UNIX, and Windows automatic
client reroute support for Java clients

For connections to DB2 for Linux, UNIX, and Windows databases, the process for
configuration of automatic client reroute support on Java clients is the same for
connections to a non-DB2 pureScale environment and a DB2 pureScale
environment.

Automatic client reroute support for Java client applications that connect to DB2
for Linux, UNIX, and Windows works for connections that are obtained using the
javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
javax.sql.XADataSource, or java.sql.DriverManager interface.

To configure automatic client reroute on a IBM Data Server Driver for JDBC and
SQLJ client:
1. Set the appropriate properties to specify the primary and alternate server

addresses to use if the first connection fails.
v If your application is using the DriverManager interface for connections:

a. Specify the server name and port number of the primary server that you
want to use in the connection URL.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and port
number of the alternate server that you want to use.

Chapter 11. Java client support for high availability on IBM data servers 563

Restriction: Automatic client reroute support for connections that are made
with the DriverManager interface has the following restrictions:
– Alternate server information is shared between DriverManager connections

only if you create the connections with the same URL and properties.
– You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager
connection.

– Automatic client reroute is not enabled for default connections
(jdbc:default:connection).

v If your application is using the DataSource interface for connections, use one
or both of the following techniques:
– Set the server names and port numbers in DataSource properties:

a. Set the serverName and portNumber properties to the server name
and port number of the primary server that you want to use.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and
port number of the alternate server that you want to use.

– Configure JNDI for automatic client reroute by using a
DB2ClientRerouteServerList instance to identify the primary server and
alternate server.
a. Create an instance of DB2ClientRerouteServerList.

DB2ClientRerouteServerList is a serializable Java bean with the
following properties:

Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.
b. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName and
com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber
properties to the server name and port number of the primary server
that you want to use.

c. Set the
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName
and
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber
properties to the server names and port numbers of the alternate
server that you want to use.

d. To make the DB2ClientRerouteServerList persistent:
1) Bind the DB2ClientRerouteServerList instance to the JNDI registry.
2) Assign the JNDI name of the DB2ClientRerouteServerList object to

the IBM Data Server Driver for JDBC and SQLJ
clientRerouteServerListJNDIName property.

3) Assign the name of the JNDI context that is used for binding and
lookup of the DB2ClientRerouteServerList instance to the
clientRerouteServerListJNDIContext property.

564 Application Programming Guide and Reference for Java

When a DataSource is configured to use JNDI for storing automatic client
reroute alternate information, the standard server and port properties of
the DataSource are not used for a getConnection request. Instead, the
primary server address is obtained from the transient
clientRerouteServerList information. If the JNDI store is not available
due to a JNDI bind or lookup failure, the IBM Data Server Driver for
JDBC and SQLJ attempts to make a connection using the standard server
and port properties of the DataSource. Warnings are accumulated to
indicate that a JNDI bind or lookup failure occurred.
After a failover:
- The IBM Data Server Driver for JDBC and SQLJ attempts to propagate

the updated server information to the JNDI store.
- primaryServerName and primaryPortNumber values that are specified

in DB2ClientRerouteServerList are used for the connection. If
primaryServerName is not specified, the serverName and portNumber
values for the DataSource instance are used.

If you configure DataSource properties as well as configuring JNDI for
automatic client reroute, the DataSource properties have precedence over the
JNDI configuration.

2. Set properties to control the number of retries, time between retries, and the
frequency with which the server list is refreshed.
The following properties control retry behavior for automatic client reroute.

maxRetriesForClientReroute
The maximum number of connection retries for automatic client reroute.

When client affinities support is not configured, if
maxRetriesForClientReroute or retryIntervalForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
maxRetriesForClientReroute is 3.

retryIntervalForClientReroute
The number of seconds between consecutive connection retries.

When client affinities support is not configured, if
retryIntervalForClientReroute or maxRetriesForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
retryIntervalForClientReroute is 0 (no wait).

Chapter 11. Java client support for high availability on IBM data servers 565

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
“Connecting to a data source using the DataSource interface” on page 23
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Example of enabling DB2 for Linux, UNIX, and Windows
automatic client reroute support in Java applications

Java client setup for DB2 for Linux, UNIX, and Windows automatic client reroute
support includes setting several IBM Data Server Driver for JDBC and SQLJ
properties.

The following example demonstrates setting up Java client applications for DB2 for
Linux, UNIX, and Windows automatic client reroute support.

Suppose that your installation has a primary server and an alternate server with
the following server names and port numbers:

Server name Port number

srv1.sj.ibm.com 50000

srv3.sj.ibm.com 50002

The following code sets up DataSource properties in an application so that the
application connects to srv1.sj.ibm.com as the primary server, and srv3.sj.ibm.com
as the alternative server. That is, if srv1.sj.ibm.com is down during the initial
connection, the driver should connect to srv3.sj.ibm.com.
ds.setDriverType(4);
ds.setServerName("srv1.sj.ibm.com");
ds.setPortNumber("50000");
ds.setClientRerouteAlternateServerName("srv3.sj.ibm.com");
ds.setClientRerouteAlternatePortNumber("50002");

The following code configures JNDI for automatic client reroute. It creates an
instance of DB2ClientRerouteServerList, binds that instance to the JNDI registry,
and assigns the JNDI name of the DB2ClientRerouteServerList object to the
clientRerouteServerListJNDIName property.
// Create a starting context for naming operations
InitialContext registry = new InitialContext();
// Create a DB2ClientRerouteServerList object
DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server
address.setPrimaryPortNumber(50000);
address.setPrimaryServerName("srv1.sj.ibm.com");

// Set the port number and server name for the alternate server
int[] port = {50002};
String[] server = {"srv3.sj.ibm.com"};
address.setAlternatePortNumber(port);
address.setAlternateServerName(server);

registry.rebind("serverList", address);

566 Application Programming Guide and Reference for Java

// Assign the JNDI name of the DB2ClientRerouteServerList object to the
// clientRerouteServerListJNDIName property
datasource.setClientRerouteServerListJNDIName("serverList");

Related concepts:
“Configuration of DB2 for Linux, UNIX, and Windows automatic client reroute
support for Java clients” on page 563
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Configuration of DB2 for Linux, UNIX, and Windows workload
balancing support for Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects to a DB2 for Linux, UNIX, and Windows DB2 pureScale instance for
workload balancing, you need to connect to a member of the DB2 pureScale
instance, and set the properties that enable workload balancing and the maximum
number of connections.

Java client applications support transaction-level workload balancing. They do not
support connection-level workload balancing. Workload balancing is supported
only for connections to a DB2 pureScale instance.

Workload balancing support for Java client applications that connect to DB2 for
Linux, UNIX, and Windows works for connections that are obtained using the
javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
javax.sql.XADataSource, or java.sql.DriverManager interface.

Restriction: Workload balancing support for connections that are made with the
DriverManager interface has the following restrictions:
v Alternate server information is shared between DriverManager connections only

if you create the connections with the same URL and properties.
v You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager connection.
v Workload balancing is not enabled for default connections

(jdbc:default:connection).

The following table describes the basic property settings for enabling DB2 for
Linux, UNIX, and Windows workload balancing for Java applications.

Table 107. Basic settings to enable workload support in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property true

maxTransportObjects property The maximum number of connections that
the requester can make to the DB2 pureScale
instance

Connection address: server The IP address of a member of a DB2
pureScale instance1

Connection address: port The SQL port number for the DB2 pureScale
instance1

Connection address: database The database name

Chapter 11. Java client support for high availability on IBM data servers 567

Table 107. Basic settings to enable workload support in Java applications (continued)

IBM Data Server Driver for JDBC and SQLJ
setting Value

Note:

1. Alternatively, you can use a distributor, such as Websphere Application Server Network
Deployment, or multihomed DNS to establish the initial connection to the database.

v For a distributor, you specify the IP address and port number of the distributor. The
distributor analyzes the current workload distribution, and uses that information to
forward the connection request to one of the members of the DB2 pureScale instance.

v For multihomed DNS, you specify an IP address and port number that can resolve to
the IP address and port number of any member of the DB2 pureScale instance.
Multihomed DNS processing selects a member based on some criterion, such as
simple round-robin selection or member workload distribution.

If you want to fine-tune DB2 for Linux, UNIX, and Windows workload balancing
support, global configuration properties are available. The properties for the IBM
Data Server Driver for JDBC and SQLJ are listed in the following table.

Table 108. Configuration properties for fine-tuning DB2 for Linux, UNIX, and Windows workload balancing support for
connections from the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxRefreshInterval Specifies the maximum amount of time in seconds between
refreshes of the client copy of the server list that is used for
workload balancing. The default is 10. The minimum valid
value is 1.

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds
before an idle transport is dropped. The default is 10. The
minimum supported value is 0.

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is 1. The minimum
supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

Example of enabling DB2 for Linux, UNIX, and Windows
workload balancing support in Java applications

Java client setup for DB2 for Linux, UNIX, and Windows workload balancing
support includes setting several IBM Data Server Driver for JDBC and SQLJ
properties.

The following example demonstrates setting up Java client applications for DB2 for
Linux, UNIX, and Windows workload balancing support.

Before you can set up the client, the servers to which the client connects must be
configured in a DB2 pureScale instance.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support workload balancing by following these steps:

568 Application Programming Guide and Reference for Java

a. Issue the following command in a command line window:
java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.58 or later.
c.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ properties to enable the
connection concentrator or workload balancing:
a. Set these Connection or DataSource properties:

v enableSysplexWLB
v maxTransportObjects

b. Set the db2.jcc.maxRefreshInterval global configuration property in a
DB2JccConfiguration.properties file to set the maximum refresh interval for
all DataSource or Connection instances that are created under the driver.

Start with settings similar to these:

Table 109. Example of property settings for workload balancing for DB2 for Linux, UNIX, and
Windows

Property Setting

enableSysplexWLB true

maxTransportObjects 80

db2.jcc.maxRefreshInterval 10

The values that are specified are not intended to be recommended values. You
need to determine values based on factors such as the number of physical
connections that are available. The number of transport objects must be equal
to or greater than the number of connection objects.

3. To fine-tune workload balancing for all DataSource or Connection instances that
are created under the driver, set the db2.jcc.maxTransportObjects configuration
property in a DB2JccConfiguration.properties file.
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=1000

4. Optional: Specify alternate server names in the
clientRerouteAlternateServername and clientRerouteAlternatePortNumber
properties. This step is not necessary for enabling workload balancing.
However, specifying an alternate server list is useful to ensure that the first
connection is successful if the primary server is unavailable.

Operation of automatic client reroute for connections to DB2
for Linux, UNIX, and Windows from Java clients

When IBM Data Server Driver for JDBC and SQLJ client reroute support is
enabled, a Java application that is connected to a DB2 for Linux, UNIX, and
Windows database can continue to run when the primary server has a failure.

Automatic client reroute for a Java application that is connected to a DB2 for
Linux, UNIX, and Windows database operates in the following way when support
for client affinities is disabled:
1. During each connection to the data source, the IBM Data Server Driver for

JDBC and SQLJ obtains primary and alternate server information.
v For the first connection to a DB2 for Linux, UNIX, and Windows database:

a. If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are set, the IBM Data

Chapter 11. Java client support for high availability on IBM data servers 569

Server Driver for JDBC and SQLJ loads those values into memory as the
alternate server values, along with the primary server values serverName
and portNumber.

b. If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are not set, and a JNDI
store is configured by setting the property
clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM
Data Server Driver for JDBC and SQLJ loads the primary and alternate
server information from the JNDI store into memory.

c. If no DataSource properties are set for the alternate servers, and JNDI is
not configured, the IBM Data Server Driver for JDBC and SQLJ checks
DNS tables for primary and alternate server information. If DNS
information exists, the IBM Data Server Driver for JDBC and SQLJ loads
those values into memory.
In a DB2 pureScale environment, regardless of the outcome of the DNS
lookup:
1) If configuration property db2.jcc.outputDirectory is set, the IBM Data

Server Driver for JDBC and SQLJ searches the directory that is
specified by db2.jcc.outputDirectory for a file named
jccServerListCache.bin.

2) If db2.jcc.outputDirectory is not set, and the java.io.tmpdir system
property is set, the IBM Data Server Driver for JDBC and SQLJ
searches the directory that is specified by java.io.tmpdir for a file
named jccServerListCache.bin.

3) If jccServerListCache.bin can be accessed, the IBM Data Server Driver
for JDBC and SQLJ loads the cache into memory, and obtains the
alternate server information from jccServerListCache.bin for the
serverName value that is defined for the DataSource object.

d. If no primary or alternate server information is available, a connection
cannot be established, and the IBM Data Server Driver for JDBC and
SQLJ throws an exception.

v For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ
obtains primary and alternate server values from driver memory.

2. The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the data
source using the primary server name and port number.
In a non-DB2 pureScale environment, the primary server is a stand-alone
server. In a DB2 pureScale environment, the primary server is a member of a
DB2 pureScale instance.
If the connection is through the DriverManager interface, the IBM Data Server
Driver for JDBC and SQLJ creates an internal DataSource object for automatic
client reroute processing.

3. If the connection to the primary server fails:
a. If this is the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to a server using information that is provided
by driver properties such as clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber.

b. If this is not the first connection, the IBM Data Server Driver for JDBC and
SQLJ attempts to make a connection using the information from the latest
server list that is returned from the server.

Connection to an alternate server is called failover.
The IBM Data Server Driver for JDBC and SQLJ uses the
maxRetriesForClientReroute and retryIntervalForClientReroute properties to

570 Application Programming Guide and Reference for Java

determine how many times to retry the connection and how long to wait
between retries. An attempt to connect to the primary server and alternate
servers counts as one retry.

4. If the connection is not established, maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and the original serverName and
portNumber values that are defined on the DataSource are different from the
serverName and portNumber values that were used for the current connection,
the connection is retried with the serverName and portNumber values that are
defined on the DataSource.

5. If failover is successful during the initial connection, the driver generates an
SQLWarning. If a successful failover occurs after the initial connection:
v If seamless failover is enabled, and the following conditions are satisfied, the

driver retries the transaction once on the new server, without notifying the
application.
– The enableSeamlessFailover property is set to DB2BaseDataSource.YES (1).
– The connection is not in a transaction. That is, the failure occurs when the

first SQL statement in the transaction is executed.
– There are no global temporary tables in use on the server.
– There are no open, held cursors.

v If seamless failover is not in effect, the driver throws an SQLException to the
application with error code -4498, to indicate to the application that the
connection was automatically reestablished and the transaction was implicitly
rolled back. The application can then retry its transaction without doing an
explicit rollback first.
A reason code that is returned with error code -4498 indicates whether any
database server special registers that were modified during the original
connection are reestablished in the failover connection.

You can determine whether alternate server information was used in
establishing the initial connection by calling the
DB2Connection.alternateWasUsedOnConnect method.

6. After failover, driver memory is updated with new primary and alternate
server information that is returned from the new primary server.

Examples

Example: Automatic client reroute to a DB2 for Linux, UNIX, and Windows server when
maxRetriesForClientReroute and retryIntervalForClientReroute are not set: Suppose that
the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 for Linux, UNIX, and Windows server:
1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the
alternate server address.

Chapter 11. Java client support for high availability on IBM data servers 571

|
|
|

2. On the initial connection, the driver tries to connect to host1:port1.
3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.
4. The reconnection to host1:port1 fails, so the driver tries to connect to

host2:port2.
5. The connection to host2:port2 succeeds.
6. The driver retrieves alternate server information that was received from server

host2:port2, and updates its memory with that information.
Assume that the driver receives a server list that contains host2:port2,
host2a:port2a. host2:port2 is stored as the new primary server, and
host2a:port2a is stored as the new alternate server. If another communication
failure is detected on this same connection, or on another connection that is
created from the same DataSource, the driver tries to connect to host2:port2 as
the new primary server. If that connection fails, the driver tries to connect to
the new alternate server host2a:port2a.

7. A communication failure occurs during the connection to host2:port2.
8. The driver tries to connect to host2a:port2a.
9. The connection to host2a:port2a is successful.

10. The driver retrieves alternate server information that was received from server
host2a:port2a, and updates its memory with that information.

Example: Automatic client reroute to a DB2 for Linux, UNIX, and Windows server in a
DB2 pureScale environment, when maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and configuration property
db2.jcc.outputDirectory is set: Suppose that the following properties are set for a
connection that is established from DataSource A:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

db2.jcc.outputDirectory
(configuration property)

/home/tmp

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 for Linux, UNIX, and Windows server:
1. Using the information in DataSource A, the IBM Data Server Driver for JDBC

and SQLJ loads host1:port1 into its memory as the primary server address.
The driver searches for cache file jccServerListCache.bin in /home/tmp, but
the cache file does not exist.

2. The connection to host1:port1 succeeds. Suppose that the server returns a
server list that contains host1:port1 and host2:port2.

3. The driver creates a cache in memory, with an entry that specifies host2:port2
as the alternate server list for host1:port1. The driver then creates the cache
file /home/tmp/jccServerListCache.bin, and writes the cache from memory to
this file.

4. The connection of Application A to host1:port1 fails, so the driver tries to
connect to host2:port2.

572 Application Programming Guide and Reference for Java

5. The connection of Application A to host2:port2 succeeds. Suppose that the
server returns a server list that contains host2:port2 and host2a:port2a.
host2:port2 is the new primary server, and host2a:port2a is the new alternate
server.

6. The driver looks for alternate server information for host2:port2 in the
in-memory cache, but does not find any. It creates a new entry in the
in-memory cache for host2:port2, with host2a:port2a as the alternate server
list. The driver updates cache file /home/tmp/jccServerListCache.bin with the
new entry that was added to the in-memory cache.

7. Application A completes, and the JVM exits.
8. Application B, which also uses DataSource A, starts.
9. The driver loads the server list from cache file /home/tmp/

jccServerListCache.bin into memory, and finds the entry for host1:port1, which
specifies host2:port2 as the alternate server list. The driver sets host2:port2 as
the alternate server list for host1:port1.

10. A communication failure occurs when Application B tries to connect to
host1:port1.

11. Application B attempts to connect to alternate server host2:port2.
12. The connection to host2:port2 succeeds. Application B continues.

Example: Automatic client reroute to a DB2 for Linux, UNIX, and Windows server when
maxRetriesForClientReroute and retryIntervalForClientReroute are set for multiple retries:
Suppose that the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 for Linux, UNIX, and Windows server:
1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the
alternate server address.

2. On the initial connection, the driver tries to connect to host1:port1.
3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.
4. The connection to host1:port1 fails again, so the driver tries to connect to

host2:port2.
5. The connection to host2:port2 fails.
6. The driver waits two seconds.
7. The driver tries to connect to host1:port1 and fails.
8. The driver tries to connect to host2:port2 and fails.
9. The driver waits two seconds.

10. The driver tries to connect to host1:port1 and fails.

Chapter 11. Java client support for high availability on IBM data servers 573

11. The driver tries to connect to host2:port2 and fails.
12. The driver waits two seconds.
13. The driver throws an SQLException with error code -4499.
Related concepts:
“Example of enabling client affinities in Java clients for DB2 for Linux, UNIX, and
Windows connections” on page 581
“Configuration of DB2 for Linux, UNIX, and Windows automatic client reroute
support for Java clients” on page 563
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Operation of alternate group support for connections to DB2
for Linux, UNIX, and Windows

Alternate group support is a high-availability feature that allows the IBM Data
Server Driver for JDBC and SQLJ to execute an application workload on one group
at a time. A group can be a primary group or one of several alternate groups.

Each group is a DB2 for Linux, UNIX, and Windows instance, which can be
single-member instance, or a multiple-member instance, such a DB2 pureScale
instance.

You can control whether seamless failover behavior is in effect for alternate group
support by setting the enableAlternateGroupSeamlessACR Connection or
DataSource property.

You enable alternate group support by providing the addresses of the alternate
groups in the alternateGroupServerName, alternateGroupPortNumber, and
alternateGroupDatabaseName Connection or DataSource properties. You provide
the address of the primary group in the serverName, portNumber, and
databaseName Connection or DataSource properties.

In an HADR environment, you enable alternate group support by providing the
addresses of the standby clusters in the alternateGroupServerName,
alternateGroupPortNumber, and alternateGroupDatabaseName Connection or
DataSource properties. The address for the primary connection is the address of the
primary cluster.

Alternate group support allows failover from the primary group to any alternate
group. After a connection on a DataSource instance fails over to an alternate group,
subsequent connections on the DataSource instance connect directly to that
alternate group. If an alternate group becomes unavailable during a connection, the
connection can fail over to any other alternate group. A group is unavailable if any
of the following conditions are true:
v The IBM Data Server Driver for JDBC and SQLJ receives a communication

failure from all members of the group.
v The members of the group return SQL errors to the IBM Data Server Driver for

JDBC and SQLJ to indicate that the driver should drop the connection to that
group. For example, if the role of a primary HADR database changes to a
standby role, the database server might return an SQL error to the driver that
indicates that the request cannot be issued on an HADR standby database. The
driver interprets that SQL error as a group failure.

574 Application Programming Guide and Reference for Java

Alternate group support operates in the following way:
v For the first connection, the process is as follows:

1. After the first connection to the primary group fails, the driver attempts to
connect the application to the alternate group that is specified by the first set
of values in the alternateGroupServerName, alternateGroupPortNumber, and
alternateGroupDatabaseName properties.

2. The driver attempts to connect to the alternate group. The number of
attempts and the amount of time between retries depends on whether a
cached server list exists on the client, and whether
maxRetriesForClientReroute and retryIntervalForClientReroute are set:
– If a cached server list does not exist, and maxRetriesForClientReroute and

retryIntervalForClientReroute are not set, the driver makes at most five
attempts to connect to the alternate group, with no time between retries.

– If a cached server list exists, and maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, the driver retries the connection
for up to two minutes.

– If maxRetriesForClientReroute and retryIntervalForClientReroute are set,
the driver retries the connection the number of times that is specified by
maxRetriesForClientReroute, with an interval between retries that is
specified by retryIntervalForClientReroute.

3. If all attempts to connect to the first alternate group fail, the driver attempts
to connect the application to the alternate group that is specified by the next
set of values in the alternateGroupServerName, alternateGroupPortNumber,
and alternateGroupDatabaseName properties. The driver uses the same rules
for the number of retries and interval between retries as it uses for the
connection to the first alternate group.
The driver continues this process until all alternate groups have been tried,
or a connection has been established.

4. If a connection is not established after all alternate group members have been
tried, the driver returns SQL error -4499 to the application.

v After a connection has been established, the process is as follows:
1. If an error occurs for which automatic client reroute can be performed, the

IBM Data Server Driver for JDBC and SQLJ attempts to reconnect to the
same group. The amount of time that the driver spends on retries or the
number of retries depends on the maxRetriesForClientReroute property
setting. However, if the data server returns an SQL error that the driver
interprets as a group failure, such as SQL error -1776, the driver does not
retry the connection to the same group. SQL error -1776 indicates that the
driver is attempting to connect to a standby instance.

2. If reconnection to the same group is unsuccessful, the driver attempts to
connect to each alternate group that is specified by the
alternateGroupServerName, alternateGroupPortNumber, and
alternateGroupDatabaseName properties, starting with the next alternate
group in the list after the one that failed. The amount of time that the driver
spends on retries or the number of retries depends on the
maxRetriesForClientReroute property setting. If the last group in the
alternate server list has been tried, the driver attempts to connect to the first
server in the alternate group list, and continues through the list again.

3. If a connection is not established, the driver returns SQL error -4499 to the
application.

maxRetriesForClientReroute controls the amount of time that the driver spends
on retries and the number of retries in the following way:

Chapter 11. Java client support for high availability on IBM data servers 575

– If maxRetriesForClientReroute is not set, the driver tries to connect to each
group in the list until one of the following events occurs:
- The connection succeeds.
- The connection has been retried for two minutes.
- The data server returns SQL error -1776.
If the connection is unsuccessful after two minutes, or if the data server
returns SQL error -1776, the driver tries the connection to the next alternate
server. This process continues until (2*number-of-groups) minutes have elapsed.

– If maxRetriesForClientReroute is set, the driver tries to connect to each group
in the list until one of the following events occurs:
- The connection succeeds.
- The driver has attempted to connect to all members of the group the

number of times that is specified by maxRetriesForClientReroute.
- The data server returns SQL error -1776.
If the connection is unsuccessful after the number of retries exceeds the value
that is specified by maxRetriesForClientReroute, or if the data server returns
SQL error -1776, the driver tries the connection to the next alternate server.
This process continues until (maxRetriesForClientReroute*number-of-groups)
attempts have occurred.

Examples

Suppose that three groups are defined as shown in the following table:

Group Server type Members in group

A Primary A1, A2

B Alternate B1

C Alternate C1, C2, C3

The address of A1 is the primary group address. The addresses of B1 and C1 are
the alternate group addresses. Workload balancing and automatic client reroute are
enabled.

The following example shows how properties are set on a DataSource object to
enable alternate group support and define the alternate group list:
com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object

new com.ibm.db2.jcc.DB2SimpleDataSource();
... // Set other properties
ds.setDatabaseName("mydb2a"); // Set primary group database

// for group A
ds.setServerName("myservera.ibm.com"); // Set primary server name

// for group A
ds.setPortNumber(5912); // Set primary port number

// for group A
ds.setAlternateGroupDatabaseName("mydb2b,mydb2c");

// Set alternate group databases
// for groups B and C

ds.setAlternateGroupServerName("myserverb.ibm.com,myserverc.ibm.com");
// Set alternate group server names
// for groups B and C

ds.setAlternateGroupPortNumber(5912,5912);
// Set alternate group port numbers
// for groups B and C

576 Application Programming Guide and Reference for Java

Example: Alternate group failover when maxRetriesForClientReroute is not set:
The following steps demonstrate an alternate group scenario when
maxRetriesForClientReroute is not set:
1. The driver connects to group A.
2. While A1 is executing an SQL statement, A1 returns a communication error to

the driver.
3. The driver unsuccessfully retries the connection to the members in group A

for two minutes.
4. The driver tries the connection to group B (server B1), which is the first server

in the alternate group list. The driver tries to connect for two minutes. The
connection is unsuccessful.

5. The driver tries the connection to group C, which is the next server in the
alternate group list.

6. The connection to group C succeeds.
7. SQL work is performed on the connection to group C.
8. While C2 is executing an SQL statement, C2 returns SQL error -1776 to the

driver, indicating that it has switched to a standby role.
9. The driver retries the connection to the members in group A, which has taken

over the primary role. The connection to group A succeeds.
10. While A1 is executing an SQL statement, A1 returns a communication error to

the driver.
11. The driver unsuccessfully retries the connection to the members in group A

for two minutes.
12. The driver unsuccessfully tries the connection to group B (server B1) for two

minutes.
13. The driver unsuccessfully retries the connection to the members in group C

for two minutes.
14. The driver has retried for six minutes (three groups * two minutes per group)

so it returns an SQLException with SQL error -4499 to the application.

Example: Alternate group failover when maxRetriesForClientReroute is set: The
following steps demonstrate an alternate group scenario when
maxRetriesForClientReroute is set to 2:
1. The driver connects to group A.
2. While A1 is executing an SQL statement, A1 returns a communication error to

the driver.
3. The driver unsuccessfully retries the connection to the members in group A

twice.
4. The driver tries the connection to group B (server B1), which is the first server

in the alternate group list. The driver tries to connect twice. The connection is
unsuccessful.

5. The driver tries the connection to group C (server C1), which is the next
server in the alternate group list.

6. The connection to group C succeeds.
7. SQL work is performed on the connection to group C.
8. While C2 is executing an SQL statement, C2 returns SQL error -1776 to the

driver, indicating that it has switched to a standby role.
9. The driver retries the connection to the members in group A, which has taken

over the primary role. The connection succeeds.

Chapter 11. Java client support for high availability on IBM data servers 577

10. While A1 is executing an SQL statement, A1 returns a communication error to
the driver.

11. The driver unsuccessfully retries the connection to the members in group A
twice.

12. The driver unsuccessfully tries the connection to group B (server B1) twice.
13. The driver unsuccessfully retries the connection to the members in group C

twice.
14. The driver has retried six times (three groups * two retries per group) so it

returns an SQLException with SQL error -4499 to the application.

Operation of workload balancing for connections to DB2 for
Linux, UNIX, and Windows

Workload balancing (also called transaction-level workload balancing) for
connections to DB2 for Linux, UNIX, and Windows contributes to high availability
by balancing work among servers in a DB2 pureScale instance at the start of a
transaction.

The following overview describes the steps that occur when a client connects to a
DB2 for Linux, UNIX, and Windows DB2 pureScale instance, and transaction-level
workload balancing is enabled:
1. When the client first establishes a connection to the DB2 pureScale instance, the

member to which the client connects returns a server list with the connection
details (IP address, port, and weight) for the members of the DB2 pureScale
instance.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has unused capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout period

(db2.jcc.maxTransportObjectWaitTime for a Java client or
maxTransportWaitTime for a non-Java client), no idle transport is available in
the transport pool and no new transport can be allocated because the
transport pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
When the first SQL statement in a transaction runs, if the IBM Data Server
Driver for JDBC and SQLJ receives a communication failure because the data
server drops the connection or the blockingReadConnectionTimeout value was
exceeded, the driver retries the SQL statement 10 times before it reports an
error. On every retry, the driver closes the existing transport, obtains a new
transport and then executes the transaction. During these retries, if the
maxRetriesForClientReroute and retryIntervalForClientReroute properties are
set, their values apply only to the process of obtaining a new transport during
each retry.

4. When the transaction ends, the client verifies with the server that transport
reuse is still allowed for the connection object.

5. If transport reuse is allowed, the server returns a list of SET statements for
special registers that apply to the execution environment for the connection
object.

578 Application Programming Guide and Reference for Java

The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or the user-configured interval.

8. When transaction-level workload balancing is required for a new transaction,
the client uses the previously described process to associate the connection
object with a transport.

Application programming requirements for high availability for
connections to DB2 for Linux, UNIX, and Windows servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 for Linux, UNIX, and Windows is not seamless, you need
to add code to account for the errors that are returned when failover occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for failover for connections to DB2 for
Linux, UNIX, and Windows to be seamless:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v If transaction-level load balancing is enabled, the data server allows transport

reuse at the end of the previous transaction.
v All global session data is closed or dropped.
v There are no open, held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v Autocommit is not enabled. Seamless failover can occur when autocommit is

enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the
connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

Chapter 11. Java client support for high availability on IBM data servers 579

Related reference:
“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on page
485

Client affinities for DB2 for Linux, UNIX, and Windows
Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for Java clients for DB2 for
Linux, UNIX, and Windows connections
To enable support for client affinities in Java applications, you set properties to
indicate that you want to use client affinities, and to specify the primary and
alternate servers.

The following table describes the property settings for enabling client affinities for
Java applications.

Table 110. Property settings to enable client affinities for Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServerName A comma-separated list of the primary server
and alternate servers

clientRerouteAlternatePortNumber A comma-separated list of the port numbers
for the primary server and alternate servers

580 Application Programming Guide and Reference for Java

Table 110. Property settings to enable client affinities for Java applications (continued)

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSeamlessFailover DB2BaseDataSource.YES (1) for seamless
failover; DB2BaseDataSource.NO (2) or
enableSeamlessFailover not specified for no
seamless failover

maxRetriesForClientReroute The number of times to retry the connection
to each server, including the primary server,
after a connection to the primary server fails.
The default is 3.

retryIntervalForClientReroute The number of seconds to wait between
retries. The default is no wait.

affinityFailbackInterval The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server.

Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Example of enabling client affinities in Java clients for DB2 for
Linux, UNIX, and Windows connections
Before you can use client affinities for automatic client reroute in Java applications,
you need to set properties to indicate that you want to use client affinities, and to
identify the primary alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

Suppose that a communication failure occurs during a connection to the server that
is identified by host1:port1. The following steps demonstrate automatic client
reroute with client affinities.
1. The driver tries to connect to host1:port1.
2. The connection to host1:port1 fails.
3. The driver waits two seconds.
4. The driver tries to connect to host1:port1.
5. The connection to host1:port1 fails.
6. The driver waits two seconds.
7. The driver tries to connect to host1:port1.

Chapter 11. Java client support for high availability on IBM data servers 581

8. The connection to host1:port1 fails.
9. The driver waits two seconds.

10. The driver tries to connect to host2:port2.
11. The connection to host2:port2 fails.
12. The driver waits two seconds.
13. The driver tries to connect to host2:port2.
14. The connection to host2:port2 fails.
15. The driver waits two seconds.
16. The driver tries to connect to host2:port2.
17. The connection to host2:port2 fails.
18. The driver waits two seconds.
19. The driver tries to connect to host3:port3.
20. The connection to host3:port3 fails.
21. The driver waits two seconds.
22. The driver tries to connect to host3:port3.
23. The connection to host3:port3 fails.
24. The driver waits two seconds.
25. The driver tries to connect to host3:port3.
26. The connection to host3:port3 fails.
27. The driver waits two seconds.
28. The driver throws an SQLException with error code -4499.

The following example shows how to enable client affinities for failover with
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

affinityFailbackInterval 300

Suppose that the database administrator takes the server that is identified by
host1:port1 down for maintenance after a connection is made to host1:port1. The
following steps demonstrate failover to an alternate server and failback to the
primary server after maintenance is complete.
1. The driver successfully connects to host1:port1 on behalf of an application.
2. The database administrator brings down host1:port1.
3. The application tries to do work on the connection.
4. The driver successfully fails over to host2:port2.
5. After a total of 200 seconds have elapsed, the work is committed.
6. After a total of 300 seconds have elapsed, the failback interval has elasped.

The driver checks whether the primary server is up. It is not up, so no
failback occurs.

582 Application Programming Guide and Reference for Java

7. After a total of 350 seconds have elapsed, host1:port1 is brought back online.
8. The application continues to do work on host2:port2, because the latest

failback interval has not elapsed.
9. After a total of 600 seconds have elapsed, the failback interval has elapsed

again. The driver checks whether the primary server is up. It is now up.
10. After a total of 650 seconds have elapsed, the work is committed.
11. After a total of 651 seconds have elapsed, the application tries to start a new

transaction on host2:port2. Failback to host1:port1 occurs, so the new
transaction starts on host1:port1.

Related concepts:
“Configuration of client affinities for Java clients for DB2 for Linux, UNIX, and
Windows connections” on page 580
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Java client support for high availability for connections to IBM
Informix servers

High-availability cluster support on IBM Informix servers provides high
availability for client applications, through workload balancing and automatic
client reroute. This support is available for applications that use Java clients (JDBC,
SQLJ, or pureQuery), or non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby,
or embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQLJ type
4 connectivity to take advantage of IBM Informix high-availability cluster support.

For non-Java clients, you need to use one of the following clients or client
packages to take advantage of high-availability cluster support:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

Cluster support for high availability for connections to IBM Informix servers
includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through any available server in a high-availability
cluster. Reconnection to another server is called failover. You enable automatic
client reroute on the client by enabling workload balancing on the client.

In an IBM Informix environment, primary and standby servers correspond to
members of a high-availability cluster that is controlled by a Connection
Manager. If multiple Connection Managers exist, the client can use them to
determine primary and alternate server information. The client uses alternate
Connection Managers only for the initial connection.

Failover for automatic client reroute can be seamless or non-seamless. With
non-seamless failover, when the client application reconnects to an alternate
server, the server always returns an error to the application, to indicate that
failover (connection to the alternate server) occurred.

Chapter 11. Java client support for high availability on IBM data servers 583

For Java, CLI, or .NET client applications, failover for automatic client reroute
can be seamless or non-seamless. Seamless failover means that when the
application successfully reconnects to an alternate server, the server does not
return an error to the application.

Workload balancing
Workload balancing can improve availability of an IBM Informix
high-availability cluster. When workload balancing is enabled, the client gets
frequent status information about the members of a high-availability cluster.
The client uses this information to determine the server to which the next
transaction should be routed. With workload balancing, IBM Informix
Connection Managers ensure that work is distributed efficiently among servers
and that work is transferred to another server if a server has a failure.

Connection concentrator
This support is available for Java applications that connect to IBM Informix.
The connection concentrator reduces the resources that are required on IBM
Informix database servers to support large numbers of workstation and web
users. With the connection concentrator, only a few concurrent, active physical
connections are needed to support many applications that concurrently access
the database server. When you enable workload balancing on a Java client, you
automatically enable the connection concentrator.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of IBM Informix high-availability support for
Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects to an IBM Informix high-availability cluster, you need to connect to an
address that represents a Connection Manager, and set the properties that enable
workload balancing and the maximum number of connections.

High availability support for Java clients that connect to IBM Informix works for
connections that are obtained using the javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, javax.sql.XADataSource, or
java.sql.DriverManager interface.

Restriction: High availability support for connections that are made with the
DriverManager interface has the following restrictions:
v Alternate server information is shared between DriverManager connections only

if you create the connections with the same URL and properties.
v You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager connection.
v High availability support is not enabled for default connections

(jdbc:default:connection).

Before you can enable IBM Data Server Driver for JDBC and SQLJ for high
availability for connections to IBM Informix, your installation must have one or
more Connection Managers, a primary server, and one or more alternate servers.

584 Application Programming Guide and Reference for Java

The following table describes the basic property settings for enabling workload
balancing for Java applications.

Table 111. Basic settings to enable IBM Informix high availability support in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property true

maxTransportObjects property The maximum number of connections that
the requester can make to the
high-availability cluster

Connection address: server The IP address of a Connection Manager. See
“Setting server and port properties for
connecting to a Connection Manager” on
page 586.

Connection address: port The SQL port number for the Connection
Manager. See “Setting server and port
properties for connecting to a Connection
Manager” on page 586.

Connection address: database The database name

If you want to enable the connection concentrator, but you do not want to enable
workload balancing, you can use these properties.

Table 112. Settings to enable the IBM Informix connection concentrator without workload
balancing in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property false

enableConnectionConcentrator property true

If you want to fine-tune IBM Informix high-availability support, additional
properties are available. The properties for the IBM Data Server Driver for JDBC
and SQLJ are listed in the following table. Those properties are configuration
properties, and not Connection or DataSource properties.

Table 113. Properties for fine-tuning IBM Informix high-availability support for connections from the IBM Data Server
Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds
before an idle transport is dropped. The default is 10. The
minimum supported value is 0.

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is 1. The minimum
supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

Chapter 11. Java client support for high availability on IBM data servers 585

Setting server and port properties for connecting to a
Connection Manager

To set the server and port number for connecting to a Connection Manager, follow
this process:
v If your high-availability cluster is using a single Connection Manager, and your

application is using the DataSource interface for connections, set the serverName
and portNumber properties to the server name and port number of the
Connection Manager.

v If your high-availability cluster is using a single Connection Manager, and your
application is using the DriverManager interface for connections, specify the
server name and port number of the Connection manager in the connection
URL.

v If your high-availability cluster is using more than one Connection manager, and
your application is using the DriverManager interface for connections:
1. Specify the server name and port number of the main Connection Manager

that you want to use in the connection URL.
2. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server names and port
numbers of the alternative Connection Managers that you want to use.

v If your high-availability cluster is using more than one Connection Manager, and
your application is using the DataSource interface for connections, use one of the
following techniques:
– Set the server names and port numbers in DataSource properties:

1. Set the serverName and portNumber properties to the server name and
port number of the main Connection Manager that you want to use.

2. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server names and
port numbers of the alternative Connection Managers that you want to
use.

– Configure JNDI for high availability by using a DB2ClientRerouteServerList
instance to identify the main Connection Manager and alternative Connection
Managers.
1. Create an instance of DB2ClientRerouteServerList.

DB2ClientRerouteServerList is a serializable Java bean with the following
properties:

Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.
2. Set the com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName

and com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber
properties to the server name and port number of the main Connection
Manager that you want to use.

3. Set the
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber

586 Application Programming Guide and Reference for Java

properties to the server names and port numbers of the alternative
Connection Managers that you want to use.

4. To make the DB2ClientRerouteServerList persistent:
a. Bind the DB2ClientRerouteServerList instance to the JNDI registry.
b. Assign the JNDI name of the DB2ClientRerouteServerList object to the

IBM Data Server Driver for JDBC and SQLJ
clientRerouteServerListJNDIName property.

c. Assign the name of the JNDI context that is used for binding and
lookup of the DB2ClientRerouteServerList instance to the
clientRerouteServerListJNDIContext property.

When a DataSource is configured to use JNDI for storing automatic client
reroute alternate information, the standard server and port properties of the
DataSource are not used for a getConnection request. Instead, the primary
server address is obtained from the transient clientRerouteServerList
information. If the JNDI store is not available due to a JNDI bind or lookup
failure, the IBM Data Server Driver for JDBC and SQLJ attempts to make a
connection using the standard server and port properties of the DataSource.
Warnings are accumulated to indicate that a JNDI bind or lookup failure
occurred.
After a failover:
- The IBM Data Server Driver for JDBC and SQLJ attempts to propagate the

updated server information to the JNDI store.
- primaryServerName and primaryPortNumber values that are specified in

DB2ClientRerouteServerList are used for the connection. If
primaryServerName is not specified, the serverName value for the
DataSource instance is used.

Related tasks:
“Connecting to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ” on page 15
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
and IBM Informix” on page 283
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Example of enabling IBM Informix high availability support in
Java applications

Java client setup for IBM Informix high availability support includes setting several
IBM Data Server Driver for JDBC and SQLJ properties.

The following example demonstrates setting up Java client applications for IBM
Informix high availability support.

Before you can set up the client, you need to configure one or more high
availability clusters that are controlled by Connection Managers.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support workload balancing by following these steps:
a. Issue the following command in a command line window:

Chapter 11. Java client support for high availability on IBM data servers 587

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.52 or later.
c.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ properties to enable the
connection concentrator or workload balancing:
a. Set these Connection or DataSource properties:

v enableSysplexWLB
v maxTransportObjects

b. Set the db2.jcc.maxRefreshInterval global configuration property in a
DB2JccConfiguration.properties file to set the maximum refresh interval for
all DataSource or Connection instances that are created under the driver.

Start with settings similar to these:

Table 114. Example of property settings for workload balancing for DB2 for Linux, UNIX, and
Windows

Property Setting

enableSysplexWLB true

maxTransportObjects 80

db2.jcc.maxRefreshInterval 10

The values that are specified are not intended to be recommended values. You
need to determine values based on factors such as the number of physical
connections that are available. The number of transport objects must be equal
to or greater than the number of connection objects.

3. Set IBM Data Server Driver for JDBC and SQLJ configuration properties to
fine-tune the workload balancing for all DataSource or Connection instances
that are created under the driver. Set the configuration properties in a
DB2JccConfiguration.properties file by following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the following configuration property:

v db2.jcc.maxTransportObjects
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=1000

c. Include the directory that contains DB2JccConfiguration.properties in the
CLASSPATH concatenation.

588 Application Programming Guide and Reference for Java

Related concepts:
“Configuration of IBM Informix high-availability support for Java clients” on page
584
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
and IBM Informix” on page 283
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Operation of automatic client reroute for connections to IBM
Informix from Java clients

When IBM Data Server Driver for JDBC and SQLJ client reroute support is
enabled, a Java application that is connected to an IBM Informix high-availability
cluster can continue to run when the primary server has a failure.

Automatic client reroute for a Java application that is connected to an IBM
Informix server operates in the following way when automatic client reroute is
enabled:
1. During each connection to the data source, the IBM Data Server Driver for

JDBC and SQLJ obtains primary and alternate server information.
v For the first connection to IBM Informix:

a. The application specifies a server and port for the initial connection.
Those values identify a Connection Manager.

b. The IBM Data Server Driver for JDBC and SQLJ uses the information
from the Connection Manager to obtain information about the primary
and alternate servers. IBM Data Server Driver for JDBC and SQLJ loads
those values into memory.

c. If the initial connection to the Connection Manager fails:
– If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set, the IBM Data
Server Driver for JDBC and SQLJ connects to the Connection Manager
that is identified by clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber, and obtains information about
primary and alternate servers from that Connection Manager. The IBM
Data Server Driver for JDBC and SQLJ loads those values into memory
as the primary and alternate server values.

– If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are not set, and a JNDI
store is configured by setting the property
clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM
Data Server Driver for JDBC and SQLJ connects to the Connection
Manager that is identified by
DB2ClientRerouteServerList.alternateServerName and
DB2ClientRerouteServerList.alternatePortNumber, and obtains
information about primary and alternate servers from that Connection
Manager. IBM Data Server Driver for JDBC and SQLJ loads the
primary and alternate server information from the Connection
Manager into memory.

d. If clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber are not set, and JNDI is not
configured, the IBM Data Server Driver for JDBC and SQLJ checks DNS

Chapter 11. Java client support for high availability on IBM data servers 589

tables for Connection Manager server and port information. If DNS
information exists, the IBM Data Server Driver for JDBC and SQLJ
connects to the Connection Manager, obtains information about primary
and alternate servers, and loads those values into memory.

e. If no primary or alternate server information is available, a connection
cannot be established, and the IBM Data Server Driver for JDBC and
SQLJ throws an exception.

v For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ
obtains primary and alternate server values from driver memory.

2. The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the data
source using the primary server name and port number.
If the connection is through the DriverManager interface, the IBM Data Server
Driver for JDBC and SQLJ creates an internal DataSource object for automatic
client reroute processing.

3. If the connection to the primary server fails:
a. If this is the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the original primary server.
b. If this is not the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the new primary server, whose server name
and port number were provided by the server.

c. If reconnection to the primary server fails, the IBM Data Server Driver for
JDBC and SQLJ attempts to connect to the alternate servers.
If this is not the first connection, the latest alternate server list is used to
find the next alternate server.

Connection to an alternate server is called failover.
The IBM Data Server Driver for JDBC and SQLJ uses the
maxRetriesForClientReroute and retryIntervalForClientReroute properties to
determine how many times to retry the connection and how long to wait
between retries. An attempt to connect to the primary server and alternate
servers counts as one retry.

4. If the connection is not established, maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and the original serverName and
portNumber values that are defined on the DataSource are different from the
serverName and portNumber values that were used for the original connection,
retry the connection with the serverName and portNumber values that are
defined on the DataSource.

5. If failover is successful during the initial connection, the driver generates an
SQLWarning. If a successful failover occurs after the initial connection:
v If seamless failover is enabled, the driver retries the transaction on the new

server, without notifying the application.
The following conditions must be satisfied for seamless failover to occur:
– The enableSeamlessFailover property is set to DB2BaseDataSource.YES (1).

If Sysplex workload balancing is in effect (the value of the
enableSysplexWLB is true), seamless failover is attempted, regardless of
the enableSeamlessFailover setting.

– The connection is not in a transaction. That is, the failure occurs when the
first SQL statement in the transaction is executed.

– There are no global temporary tables in use on the server.
– There are no open, held cursors.

v If seamless failover is not in effect, the driver throws an SQLException to the
application with error code -4498, to indicate to the application that the

590 Application Programming Guide and Reference for Java

connection was automatically reestablished and the transaction was implicitly
rolled back. The application can then retry its transaction without doing an
explicit rollback first.
A reason code that is returned with error code -4498 indicates whether any
database server special registers that were modified during the original
connection are reestablished in the failover connection.

You can determine whether alternate server information was used in
establishing the initial connection by calling the
DB2Connection.alternateWasUsedOnConnect method.

6. After failover, driver memory is updated with new primary and alternate
server information from the new primary server.

Examples

Example: Automatic client reroute to an IBM Informix server when
maxRetriesForClientReroute and retryIntervalForClientReroute are not set: Suppose that
the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

The following steps demonstrate an automatic client reroute scenario for a
connection to IBM Informix:
1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.
2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.
3. The connection to host2:port2 succeeds.
4. The driver retrieves alternate server information that was received from server

host2:port2, and updates its memory with that information.
Assume that the driver receives a server list that contains host2:port2,
host2a:port2a. host2:port2 is stored as the new primary server, and
host2a:port2a is stored as the new alternate server. If another communication
failure is detected on this same connection, or on another connection that is
created from the same DataSource, the driver tries to connect to host2:port2 as
the new primary server. If that connection fails, the driver tries to connect to
the new alternate server host2a:port2a.

5. The driver connects to host1a:port1a.
6. A failure occurs during the connection to host1a:port1a.
7. The driver tries to connect to host2a:port2a.
8. The connection to host2a:port2a is successful.
9. The driver retrieves alternate server information that was received from server

host2a:port2a, and updates its memory with that information.

Chapter 11. Java client support for high availability on IBM data servers 591

Example: Automatic client reroute to an IBM Informix server when
maxRetriesForClientReroute and retryIntervalForClientReroute are set for multiple retries:
Suppose that the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

The following steps demonstrate an automatic client reroute scenario for a
connection to IBM Informix:
1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.
2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.
3. The connection to host2:port2 succeeds.
4. The driver retrieves alternate server information from the connection manager

that is identified by host2:port2, and updates its memory with that
information. Assume that the Connection Manager identifies host1a:port1a as
the new primary server, and host2a:port2a as the new alternate server.

5. The driver tries to connect to host1a:port1a.
6. The connection to host1a:port1a fails.
7. The driver tries to connect to host2a:port2a.
8. The connection to host2a:port2a fails.
9. The driver waits two seconds.

10. The driver tries to connect to host1a:port1a.
11. The connection to host1a:port1a fails.
12. The driver tries to connect to host2a:port2a.
13. The connection to host2a:port2a fails.
14. The driver waits two seconds.
15. The driver tries to connect to host1a:port1a.
16. The connection to host1a:port1a fails.
17. The driver tries to connect to host2a:port2a.
18. The connection to host2a:port2a fails.
19. The driver waits two seconds.
20. The driver throws an SQLException with error code -4499.

592 Application Programming Guide and Reference for Java

Related reference:
“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on page
485
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Operation of workload balancing for connections to IBM
Informix from Java clients

Workload balancing (also called transaction-level workload balancing) for
connections to IBM Informix contributes to high availability by balancing work
among servers in a high-availability cluster at the start of a transaction.

The following overview describes the steps that occur when a client connects to an
IBM Informix Connection Manager, and workload balancing is enabled:
1. When the client first establishes a connection using the IP address of the

Connection Manager, the Connection Manager returns the server list and the
connection details (IP address, port, and weight) for the servers in the cluster.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has untapped capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
When the first SQL statement in a transaction runs, if the IBM Data Server
Driver for JDBC and SQLJ receives a communication failure because the data
server drops the connection or the blockingReadConnectionTimeout value was
exceeded, the driver retries the SQL statement 10 times before it reports an
error. On every retry, the driver closes the existing transport, obtains a new
transport and then executes the transaction. During these retries, if the
maxRetriesForClientReroute and retryIntervalForClientReroute properties are
set, their values apply only to the process of obtaining a new transport during
each retry.

4. When the transaction ends, the client verifies with the server that transport
reuse is still allowed for the connection object.

5. If transport reuse is allowed, the server returns a list of SET statements for
special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or at the user-configured interval.

Chapter 11. Java client support for high availability on IBM data servers 593

8. When workload balancing is required for a new transaction, the client uses the
previously described process to associate the connection object with a transport.

Application programming requirements for high availability for
connections from Java clients to IBM Informix servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to IBM Informix is not seamless, you need to add code to account
for the errors that are returned when failover occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for seamless failover to occur during
connections to IBM Informix databases:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server must allow transport reuse at the end of the previous

transaction.
v All global session data is closed or dropped.
v There are no open held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v Autocommit is not enabled. Seamless failover can occur when autocommit is

enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the
connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

In addition, seamless automatic client reroute might not be successful if the
application has autocommit enabled. With autocommit enabled, a statement might
be executed and committed multiple times.

594 Application Programming Guide and Reference for Java

Related reference:
“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on page
485

Client affinities for connections to IBM Informix from Java
clients

Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for Java clients for IBM Informix
connections
To enable support for client affinities in Java applications, you set properties to
indicate that you want to use client affinities, and to specify the primary and
alternate servers.

The following table describes the property settings for enabling client affinities for
Java applications.

Table 115. Property settings to enable client affinities for Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServerName A comma-separated list of the primary server
and alternate servers

Chapter 11. Java client support for high availability on IBM data servers 595

Table 115. Property settings to enable client affinities for Java applications (continued)

IBM Data Server Driver for JDBC and SQLJ
setting Value

clientRerouteAlternatePortNumber A comma-separated list of the port numbers
for the primary server and alternate servers

enableSeamlessFailover DB2BaseDataSource.YES (1) for seamless
failover; DB2BaseDataSource.NO (2) or
enableSeamlessFailover not specified for no
seamless failover

maxRetriesForClientReroute The number of times to retry the connection
to each server, including the primary server,
after a connection to the primary server fails.
The default is 3.

retryIntervalForClientReroute The number of seconds to wait between
retries. The default is no wait.

affinityFailbackInterval The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server.

Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Example of enabling client affinities in Java clients for IBM
Informix connections
Before you can use client affinities for automatic client reroute in Java applications,
you need to set properties to indicate that you want to use client affinities, and to
identify the primary alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

Suppose that a communication failure occurs during a connection to the server that
is identified by host1:port1. The following steps demonstrate automatic client
reroute with client affinities.
1. The driver tries to connect to host1:port1.
2. The connection to host1:port1 fails.
3. The driver waits two seconds.
4. The driver tries to connect to host1:port1.
5. The connection to host1:port1 fails.
6. The driver waits two seconds.

596 Application Programming Guide and Reference for Java

7. The driver tries to connect to host1:port1.
8. The connection to host1:port1 fails.
9. The driver waits two seconds.

10. The driver tries to connect to host2:port2.
11. The connection to host2:port2 fails.
12. The driver waits two seconds.
13. The driver tries to connect to host2:port2.
14. The connection to host2:port2 fails.
15. The driver waits two seconds.
16. The driver tries to connect to host2:port2.
17. The connection to host2:port2 fails.
18. The driver waits two seconds.
19. The driver tries to connect to host3:port3.
20. The connection to host3:port3 fails.
21. The driver waits two seconds.
22. The driver tries to connect to host3:port3.
23. The connection to host3:port3 fails.
24. The driver waits two seconds.
25. The driver tries to connect to host3:port3.
26. The connection to host3:port3 fails.
27. The driver waits two seconds.
28. The driver throws an SQLException with error code -4499.

The following example shows how to enable client affinities for failover with
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

affinityFailbackInterval 300

Suppose that the database administrator takes the server that is identified by
host1:port1 down for maintenance after a connection is made to host1:port1. The
following steps demonstrate failover to an alternate server and failback to the
primary server after maintenance is complete.
1. The driver successfully connects to host1:port1 on behalf of an application.
2. The database administrator brings down host1:port1.
3. The application tries to do work on the connection.
4. The driver successfully fails over to host2:port2.
5. After a total of 200 seconds have elapsed, the work is committed.

Chapter 11. Java client support for high availability on IBM data servers 597

6. After a total of 300 seconds have elapsed, the failback interval has elasped.
The driver checks whether the primary server is up. It is not up, so no
failback occurs.

7. After a total of 350 seconds have elapsed, host1:port1 is brought back online.
8. The application continues to do work on host2:port2, because the latest

failback interval has not elapsed.
9. After a total of 600 seconds have elapsed, the failback interval has elapsed

again. The driver checks whether the primary server is up. It is now up.
10. After a total of 650 seconds have elapsed, the work is committed.
11. After a total of 651 seconds have elapsed, the application tries to start a new

transaction on host2:port2. Failback to host1:port1 occurs, so the new
transaction starts on host1:port1.

Related concepts:
“Configuration of client affinities for Java clients for DB2 for Linux, UNIX, and
Windows connections” on page 580
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Java client direct connect support for high availability for connections
to DB2 for z/OS servers

Sysplex workload balancing functionality on DB2 for z/OS servers provides high
availability for client applications that connect directly to a data sharing group.
Sysplex workload balancing functionality provides workload balancing and
automatic client reroute capability. This support is available for applications that
use Java clients (JDBC, SQLJ, or pureQuery) that use IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity, or non-Java clients (ODBC, CLI, .NET, OLE
DB, PHP, Ruby, or embedded SQL). Workload balancing is transparent to
applications.

A Sysplex is a set of z/OS systems that communicate and cooperate with each
other through certain multisystem hardware components and software services to
process customer workloads. DB2 for z/OS subsystems on the z/OS systems in a
Sysplex can be configured to form a data sharing group. With data sharing,
applications that run on more than one DB2 for z/OS subsystem can read from
and write to the same set of data concurrently. One or more coupling facilities
provide high-speed caching and lock processing for the data sharing group. The
Sysplex, together with the Workload Manager (WLM), dynamic virtual IP address
(DVIPA), and the Sysplex Distributor, allow a client to access a DB2 for z/OS
database over TCP/IP with network resilience, and distribute transactions for an
application in a balanced manner across members within the data sharing group.

Central to these capabilities is a server list that the data sharing group returns on
connection boundaries and optionally on transaction boundaries. This list contains
the IP address and WLM weight for each data sharing group member. With this
information, a client can distribute transactions in a balanced manner, or identify
the member to use when there is a communication failure.

The server list is returned on the first successful connection to the DB2 for z/OS
data server. After the client has received the server list, the client directly accesses
a data sharing group member based on information in the server list.

598 Application Programming Guide and Reference for Java

DB2 for z/OS provides several methods for clients to access a data sharing group.
The access method that is set up for communication with the data sharing group
determines whether Sysplex workload balancing is possible. The following table
lists the access methods and indicates whether Sysplex workload balancing is
possible.

Table 116. Data sharing access methods and Sysplex workload balancing

Data sharing access
method1 Description

Sysplex
workload
balancing
possible?

Group access A requester uses the DB2 group IP address to
make an initial connection to the DB2 for z/OS
location. A connection to the data sharing group
that uses the group IP address and SQL port is
always successful if at least one member is
started. The server list that is returned by the
data sharing group contains:

v A list of members that are currently active
and can perform work

v The WLM weight for each member

The group IP address is configured using the
z/OS Sysplex distributor. To clients that are
outside the Sysplex, the Sysplex distributor
provides a single IP address that represents a
DB2 location. In addition to providing fault
tolerance, the Sysplex distributor can be
configured to provide connection load
balancing.

Yes

Member-specific access A requester uses a location alias to make an
initial connection to one of the members that is
represented by the alias. A connection to the
data sharing group that uses the group IP
address and alias SQL port is always successful
if at least one member is started. The server list
that is returned by the data sharing group
contains:

v A list of members that are currently active,
can perform work, and have been configured
as an alias

v The WLM weight for each member

The requester uses this information to connect to
the member or members with the most capacity
that are also associated with the location alias.
Member-specific access is used when requesters
need to take advantage of Sysplex workload
balancing among a subset of members of a data
sharing group.

Yes

Single-member access Single-member access is used when requesters
need to access only one member of a data
sharing group. For single-member access, the
connection uses the member-specific IP address.

No

Note:

1. For more information on data sharing access methods, see TCP/IP access methods (DB2
Data Sharing Planning and Administration).

Chapter 11. Java client support for high availability on IBM data servers 599

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tcpipaccessmethods.htm#db2z_tcpipaccessmethods
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tcpipaccessmethods.htm#db2z_tcpipaccessmethods

Sysplex workload balancing includes automatic client reroute: Automatic client reroute
support enables a client to recover from a failure by attempting to reconnect to the
data server through any available member of a Sysplex. Reconnection to another
member is called failover. Automatic client reroute can be seamless when the
application is rerouted, and the application does not receive an error after a
network failure to a data sharing member. An example of a situation in which
automatic reroute can be seamless is when a member is shut down for
maintenance.

For Java, CLI, or .NET client applications, failover for automatic client reroute can
be seamless or non-seamless. Seamless failover means that when the application
successfully reconnects to an alternate server, the server does not return an error to
the application.

With seamless failover, the IBM Data Server Driver for JDBC and SQLJ sets the
application environment from the old server on the new server. This environment
includes special register values and global variable values.

Client direct connect support for high availability with a DB2 Connect server: Client
direct connect support for high availability requires a DB2 Connect license, but
does not need a DB2 Connect server. The client connects directly to DB2 for z/OS.
If you use a DB2 Connect server, but set up your environment for client high
availability, you cannot take advantage of some of the features that a direct
connection to DB2 for z/OS provides, such as transaction-level workload balancing
or automatic client reroute capability that is provided by the Sysplex.

Do not use client affinities: Client affinities should not be used as a high availability
solution for direct connections to DB2 for z/OS. Client affinities is not applicable to
a DB2 for z/OS data sharing environment, because all members of a data sharing
group can access data concurrently. A major disadvantage of client affinities in a
data sharing environment is that if failover occurs because a data sharing group
member fails, the member that fails might have retained locks that can severely
affect transactions on the member to which failover occurs.

Configuration of Sysplex workload balancing and automatic
client reroute for Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects directly to DB2 for z/OS to use Sysplex workload balancing and
automatic client reroute, you need to use IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity. You also need to connect to an address that represents
the data sharing group (for group access) or a subset of the data sharing group (for
member-specific access), and set the properties that enable workload balancing and
the maximum number of connections.

You should always configure Sysplex workload balancing and automatic client
reroute together. When you configure a client to use Sysplex workload balancing,
automatic client reroute is also enabled. Therefore, you need to change property
settings that are related to automatic client reroute only to fine tune automatic
client reroute operation.

The following table describes the basic property settings for Java applications.

600 Application Programming Guide and Reference for Java

|
|
|

Table 117. Basic settings to enable Sysplex high availability support in Java applications

Data sharing access
method

IBM Data Server Driver for JDBC and SQLJ
setting Value

Group access enableSysplexWLB property true

Connection address:

server The group IP address or domain name of the
data sharing group

port The SQL port number for the DB2 location

database The DB2 location name that is defined during
installation

Member-specific
access

enableSysplexWLB property true

Connection address:

server The group IP address or domain name of the
data sharing group

port The port number for the DB2 location alias

database The name of the DB2 location alias that
represents a subset of the members of the
data sharing group

Group access or
member-specific
access

commandTimeout Specifies the maximum time in seconds that
an application that runs under the IBM Data
Server Driver for JDBC and SQLJ waits for
any kind of request to the data server to
complete before the driver throws an
SQLException. The wait time includes time to
obtain a transport, perform failover if needed,
send the request, and wait for a response. The
default is 0.

connectionTimeout Specifies the maximum time in seconds that
the IBM Data Server Driver for JDBC and
SQLJ waits for a reply from a data sharing
group when the driver attempts to establish a
connection. If the driver If the driver does not
receive a reply after the amount of time that
is specified by connectionTimeout, it throws
an SQLException with SQL error code -4499.
The default is 0. If connectionTimeout is set to
a positive value, that value overrides any
other timeout values that are set on a
connection, such as loginTimeout.

Group access or
member-specific
access

maxTransportObjects Specifies the maximum number of
connections that the requester can make to the
data sharing group. The default is 1000. To
determine the maxTransportObjects value,
multiply the expected number of concurrent
active connections to the DB2 for z/OS data
sharing group by the number of members in
the data sharing group.

Additional properties are available for fine tuning Sysplex workload balancing and
automatic client reroute. You should initially set up Sysplex workload balancing
using only the basic properties. In most cases, you should not need to set any of
the additional properties.

Chapter 11. Java client support for high availability on IBM data servers 601

The following IBM Data Server Driver for JDBC and SQLJ Connection or
DataSource properties can be used to fine-tune Sysplex workload balancing and
automatic client reroute:
v blockingReadConnectionTimeout
v enableSeamlessFailover
v loginTimeout
v maxRetriesForClientReroute
v memberConnectTimeout
v retryIntervalForClientReroute

The following IBM Data Server Driver for JDBC and SQLJ configuration properties
can be used to fine-tune Sysplex workload balancing and automatic client reroute:
v db2.jcc.maxRefreshInterval
v db2.jcc.maxTransportObjectIdleTime
v db2.jcc.maxTransportObjectWaitTime
v db2.jcc.minTransportObjects
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
and IBM Informix” on page 283
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

Example of enabling DB2 for z/OS Sysplex workload
balancing and automatic client reroute in Java applications

Java client setup for Sysplex workload balancing and automatic client reroute
includes setting several IBM Data Server Driver for JDBC and SQLJ properties.

The following examples demonstrate setting up Java client applications for Sysplex
workload balancing and automatic client reroute for high availability.

Before you can set up the client, you need to configure the following server
software:
v WLM for z/OS

For workload balancing to work efficiently, DB2 work needs to be classified.
Classification applies to the first non-SET SQL statement in each transaction.
Among the areas by which you need to classify the work are:
– Authorization ID
– Client info properties
– Stored procedure name

The stored procedure name is used for classification only if the first statement
that is issued by the client in the transaction is an SQL CALL statement.

For a complete list of classification attributes, see the information on
classification attributes at Classification attributes (DB2 Performance).

v DB2 for z/OS, set up for data sharing

Example of setup with WebSphere Application Server

This example assumes that you are using WebSphere Application Server. The
minimum level of WebSphere Application Server is Version 5.1.

Follow these steps to set up the client:

602 Application Programming Guide and Reference for Java

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_classificationattributes.htm#db2z_classificationattributes

1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level
to support the Sysplex workload balancing by following these steps:
a. Issue the following command in UNIX System Services

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.50 or later.
[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. In the WebSphere Application Server administrative console, set the IBM Data
Server Driver for JDBC and SQLJ data source property enableSysplexWLB to
true, to enable Sysplex workload balancing. Enabling Sysplex workload
balancing enables automatic client reroute by default.

3. In the WebSphere Application Server administrative console, set other
properties for which the defaults are unacceptable. Modify these WebSphere
Application Server connection properties. The following settings are
recommended when enableSysplexWLB is set to true:

Connection
property Recommended setting Description

Reap Time 0 Specifies the interval, in seconds, between runs of the pool maintenance
thread. The Reap Time interval affects performance. Because connections are
not physical connections, disabling pool maintenance by setting this value to
0 is recommended.

Aged
Timeout

0 Specifies the interval in seconds before a physical connection is discarded.
Setting Aged Timeout to 0 allows connections to remain in the pool
indefinitely.

Purge
Policy

FailingConnectionOnly
without alternate group
support; EntirePool with
alternate group support

Specifies how to purge connections when a stale connection or fatal
connection error is detected. Because Sysplex workload balancing isolates
WebSphere Application Server from stale connections or fatal connections
errors, FailingConnectionOnly is the recommended setting. However, if
alternate group support is enabled, the recommended setting is EntirePool.
If failover to another group occurs, the EntirePool setting forces all
connections to fail over the entire pool to the alternate group.

The Maximum Connections value does not need to be changed. Member
Connections specifies the maximum number of physical connections that you
create in your pool. It does not control the number of physical connections to a
data sharing group. With Sysplex workload balancing, connections are logical,
and use transports to associate a connection to a data sharing member. Physical
connections are managed by transport pools in the driver. The
maxTransportObjects property controls the maximum number of connections to
the group.

4. Optional: Set IBM Data Server Driver for JDBC and SQLJ configuration
properties to fine-tune workload balancing for all DataSource or Connection
instances that are created under the driver. Beginning with versions 3.63 and
4.13 of the IBM Data Server Driver for JDBC and SQLJ, the default values
should work for most environments.
Set the configuration properties in a DB2JccConfiguration.properties file by
following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the configuration properties in the DB2JccConfiguration.properties file:

property=value

Chapter 11. Java client support for high availability on IBM data servers 603

c. Add the directory path for DB2JccConfiguration.properties to the
WebSphere Application Server IBM Data Server Driver for JDBC and SQLJ
classpath.

d. Restart WebSphere Application Server.

Example of setup for DriverManager connections

This example assumes that you are using the DriverManager interface to establish a
connection.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support the Sysplex workload balancing and automatic client reroute by
following these steps:
a. Issue the following command in UNIX System Services

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.50 or later. A
minimum driver level of 3.50 is required for using Sysplex workload
balancing and automatic client reroute for DriverManager connections.

c.
[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set the IBM Data Server Driver for JDBC and SQLJ Connection property
enableSysplexWLB to enable workload balancing. Enabling Sysplex workload
balancing enables automatic client reroute by default. Set any other properties
for which the defaults are unacceptable. For most users, the default values do
not need to be changed.
java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");
properties.put("password", "yyyy");
properties.put("enableSysplexWLB", "true");
java.sql.Connection con =

java.sql.DriverManager.getConnection(url, properties);

3. Optional: Set IBM Data Server Driver for JDBC and SQLJ configuration
properties to fine-tune workload balancing for all DataSource or Connection
instances that are created under the driver. Beginning with versions 3.63 and
4.13 of the IBM Data Server Driver for JDBC and SQLJ, the default values
should work for most environments. Set the configuration properties in a
DB2JccConfiguration.properties file by following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the configuration properties in the DB2JccConfiguration.properties file:

property=value

c. Include the directory that contains DB2JccConfiguration.properties in the
CLASSPATH concatenation.

604 Application Programming Guide and Reference for Java

Related concepts:
“Configuration of Sysplex workload balancing and automatic client reroute for
Java clients” on page 600
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

WebSphere Application Server configuring a data source using the
administrative console

Operation of Sysplex workload balancing for connections
from Java clients to DB2 for z/OS servers

Sysplex workload balancing (also called transaction-level workload balancing) for
connections to DB2 for z/OS contributes to high availability by balancing work
among members of a data sharing group at the start of a transaction.

The following overview describes the steps that occur when a client connects to a
DB2 for z/OS Sysplex, and Sysplex workload balancing is enabled:
1. When the client first establishes a connection using the sysplex-wide IP address

called the group IP address, or when a connection is reused by another
connection object, the server returns member workload distribution
information.
The default lifespan of the cached server list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a member that has untapped capacity, and looks in the transport pool
for an idle transport that is tied to the under-utilized member. (An idle
transport is a transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the member that is tied to the transport.
When the first SQL statement in a transaction runs, if the IBM Data Server
Driver for JDBC and SQLJ receives a communication failure because the data
server drops the connection or the blockingReadConnectionTimeout value was
exceeded, the driver retries the SQL statement 10 times before it reports an
error. On every retry, the driver closes the existing transport, obtains a new
transport and then executes the transaction. During these retries, if the
maxRetriesForClientReroute and retryIntervalForClientReroute properties are
set, their values apply only to the process of obtaining a new transport during
each retry.

4. When the transaction ends, the client verifies with the server that transport
reuse is still allowed for the connection object.

5. If transport reuse is allowed, the server returns a list of SET statements for
special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then disassociated from the transport.

Chapter 11. Java client support for high availability on IBM data servers 605

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/tdat_ccrtpds.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/tdat_ccrtpds.html

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds.

8. When workload balancing is required for a new transaction, the client uses the
same process to associate the connection object with a transport.

Operation of automatic client reroute for connections from
Java clients to DB2 for z/OS

Automatic client reroute support provides failover support when an IBM data
server client loses connectivity to a member of a DB2 for z/OS Sysplex. Automatic
client reroute enables the client to recover from a failure by attempting to
reconnect to the database through any available member of the Sysplex.

Automatic client reroute is enabled by default when Sysplex workload balancing is
enabled. Automatic client reroute should never be enabled when Sysplex workload
balancing is disabled.

Client support for automatic client reroute is available in IBM data server clients
that have a DB2 Connect license. The DB2 Connect server is not required to
perform automatic client reroute.

Automatic client reroute for connections to DB2 for z/OS operates in the following
way:
1. The IBM Data Server Driver for JDBC and SQLJ uses the distributed IP address

as the group IP address to establish the initial connection to the data sharing
group. If the connection to the group IP address fails, the connection is retried
five times, with no wait between retries.

2. After a transaction has been established, if an SQL statement in the transaction
fails, the application receives SQL error -30108 with reason code 2. The IBM
Data Server Driver for JDBC and SQLJ does not acquire an active transport.

3. The application retries the transaction.
4. The driver attempts to acquire a transport to each member of the data sharing

group in the order of their calculated priorities (WLM member weights) until a
transport is acquired. The driver does not attempt to acquire a transport to the
member to which the connection failed in step 2.

5. If the driver cannot acquire a transport, the driver attempts to contact the
group IP address to check for any members that have become available.

6. If the driver still cannot acquire a transport, the driver continues to execute
steps 4 and 5 until a transport is acquired, or the maxRetriesForClientReroute
value is reached.

Related reference:
“Error codes issued by the IBM Data Server Driver for JDBC and SQLJ” on page
485

Application programming requirements for high availability for
connections from Java clients to DB2 for z/OS servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 for z/OS is not seamless, you need to add code to account
for the errors that are returned when failover occurs.

606 Application Programming Guide and Reference for Java

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

If failover is not seamless, and a connection is reestablished with the server,
SQLCODE -30108 (SQL30108N) is returned to the application. All work that
occurred within the current transaction is rolled back. In the application, you need
to:
v Check the reason code that is returned with the -30108 error to determine

whether special register settings that were carried over from the failing data
sharing member to the new (failover) data sharing member were the settings at
the most recent commit point, or the settings at the point of failure. Reset any
special register values that are not current.

v Execute all SQL operations that occurred since the previous commit operation.

The following conditions must be satisfied for seamless failover to occur for direct
connections to DB2 for z/OS:
v The application language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server allows transport reuse at the end of the previous transaction. An

exception to this condition is if transport reuse is not granted because the
application was bound with KEEPDYNAMIC(YES).

v All global session data is closed or dropped.
v There are no open, held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v The application is not running in a Federated environment.
v Two-phase commit is used, if transactions are dependent on the success of

previous transactions. When a failure occurs during a commit operation, the
client has no information about whether work was committed or rolled back at
the server. If each transaction is dependent on the success of the previous
transaction, use two-phase commit. Two-phase commit requires the use of XA
support.

Seamless failover is attempted once. If a data sharing member on which seamless
failover is attempted goes down, failover to another data sharing member is
non-seamless.

Failover support with IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS

When you use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on
DB2 for z/OS, you can configure connections to a data sharing group so that when
a connection to a data sharing member fails, new connections switch automatically
to an alternative member of the DB2 data sharing group that is running on the
same LPAR.

To enable this function, you set the ssid Connection or DataSource property, or the
db2.jcc.ssid configuration property to the group attachment name or subgroup
attachment name that is associated with a data sharing group. The Connection or
DataSource property value overrides the configuration property value.

Chapter 11. Java client support for high availability on IBM data servers 607

When a Java application uses IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to connect to a data source that represents a data sharing group for
which a group attachment name or subgroup attachment name is defined, the IBM
Data Server Driver for JDBC and SQLJ connects to a member of the data sharing
group. While the data sharing member is active, all new type 2 connections to the
data sharing group also connect to that same data sharing member. If the data
sharing member terminates, existing connections to that member terminate.
However, when new type 2 connections to the data sharing group are requested,
DB2 for z/OS connects the application to a member of the data sharing group that
is active on the same LPAR.
Related concepts:
“Environment variables for the IBM Data Server Driver for JDBC and SQLJ” on
page 516
Related reference:
“IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS” on page
288

608 Application Programming Guide and Reference for Java

Chapter 12. JDBC and SQLJ connection pooling support

Connection pooling is part of JDBC DataSource support, and is supported by the
IBM Data Server Driver for JDBC and SQLJ.

The IBM Data Server Driver for JDBC and SQLJ provides a factory of pooled
connections that are used by WebSphere Application Server or other application
servers. The application server actually does the pooling. Connection pooling is
completely transparent to a JDBC or SQLJ application.

Connection pooling is a framework for caching physical data source connections,
which are equivalent to DB2 threads. When JDBC reuses physical data source
connections, the expensive operations that are required for the creation and
subsequent closing of java.sql.Connection objects are minimized.

Without connection pooling, each java.sql.Connection object represents a physical
connection to the data source. When the application establishes a connection to a
data source, DB2 creates a new physical connection to the data source. When the
application calls the java.sql.Connection.close method, DB2 terminates the
physical connection to the data source.

In contrast, with connection pooling, a java.sql.Connection object is a temporary,
logical representation of a physical data source connection. The physical data
source connection can be serially reused by logical java.sql.Connection instances.
The application can use the logical java.sql.Connection object in exactly the same
manner as it uses a java.sql.Connection object when there is no connection
pooling support.

With connection pooling, when a JDBC application invokes the
DataSource.getConnection method, the data source determines whether an
appropriate physical connection exists. If an appropriate physical connection exists,
the data source returns a java.sql.Connection instance to the application. When
the JDBC application invokes the java.sql.Connection.close method, JDBC does
not close the physical data source connection. Instead, JDBC closes only JDBC
resources, such as Statement or ResultSet objects. The data source returns the
physical connection to the connection pool for reuse.

Connection pooling can be homogeneous or heterogeneous.

With homogeneous pooling, all Connection objects that come from a connection
pool should have the same properties. The first logical Connection that is created
with the DataSource has the properties that were defined for the DataSource.
However, an application can change those properties. When a Connection is
returned to the connection pool, an application server or a pooling module should
reset the properties to their original values. However, an application server or
pooling module might not reset the changed properties. The JDBC driver does not
modify the properties. Therefore, depending on the application server or pool
module design, a reused logical Connection might have the same properties as
those that are defined for the DataSource or different properties.

With heterogeneous pooling, Connection objects with different properties can share
the same connection pool.

© Copyright IBM Corp. 1998, 2013 609

610 Application Programming Guide and Reference for Java

Chapter 13. IBM Data Server Driver for JDBC and SQLJ
statement caching

The IBM Data Server Driver for JDBC and SQLJ can use an internal statement
cache to improve the performance of Java applications by caching and pooling
prepared statements.

Internal statement caching is available for connections that use IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity, or for connections that use IBM
Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

You enable internal statement caching in any of the following ways:
v By setting one of the following properties to a positive value:

– com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements, for objects
that are created using the javax.sql.ConnectionPoolDataSource interface.

– com.ibm.db2.jcc.DB2XADataSource.maxStatements, for objects that are created
using the javax.sql.XADataSource interface.

– com.ibm.db2.jcc.DB2SimpleDataSource.maxStatements, for objects that are
created using the com.ibm.db2.jcc.DB2SimpleDataSource interfaces.

v By setting the maxStatements property in a URL, and passing the URL to the
DriverManager.getConnection method.

When internal statement caching is enabled, the IBM Data Server Driver for JDBC
and SQLJ can cache PreparedStatement objects, CallableStatement objects, and
JDBC resources that are used by SQLJ statements when those objects or resources
are logically closed. When you explicitly or implicitly invoke the close method on
a statement, you logically close the statement.

Reuse of a previously cached statement is transparent to applications. The
statement cache exists for the life of an open connection. When the connection is
closed, the driver deletes the statement cache and closes all pooled statements.

A logically open statement becomes ineligible for caching under either of the
following circumstances:
v An exception occurs on the statement.
v JDBC 4.0 method Statement.setPoolable(false) is called.

When the IBM Data Server Driver for JDBC and SQLJ attempts to cache a
statement, and the internal statement cache is full, the driver purges the least
recently used cached statement, and inserts the new statement.

The internal statement cache is purged under the following conditions:
v A SET statement is issued that affects target objects of the SQL statement.
v A SET statement is executed that the IBM Data Server Driver for JDBC and SQLJ

does not recognize.
v The IBM Data Server Driver for JDBC and SQLJ detects that a property that

modifies target objects of the SQL statement was modified during connection
reuse. currentSchema is an example of a property that modifies target objects of
an SQL statement.

© Copyright IBM Corp. 1998, 2013 611

In a Java program, you can test whether the internal statement cache is enabled by
issuing the DatabaseMetaData.supportsStatementPooling method. The method
returns true if the internal statement cache is enabled.

The IBM Data Server Driver for JDBC and SQLJ does not check whether the
definitions of target objects of statements in the internal statement cache have
changed. If you execute SQL data definition language statements in an application,
you need to disable internal statement caching for that application.

The internal statement cache requires extra memory. If memory becomes
constrained, you can increase the JVM size, or decrease the value of
maxStatements.
Related reference:
“Common IBM Data Server Driver for JDBC and SQLJ properties for all supported
database products” on page 244

612 Application Programming Guide and Reference for Java

Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4
connectivity JDBC and SQLJ distributed transaction support

The IBM Data Server Driver for JDBC and SQLJ in the z/OS environment supports
distributed transaction management when you use IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity.

This support implements the Java 2 Platform, Enterprise Edition (J2EE) Java
Transaction Service (JTS) and Java Transaction API (JTA) specifications, and
conforms to the X/Open standard for global transactions (Distributed Transaction
Processing: The XA Specification, available from http://www.opengroup.org). IBM
Data Server Driver for JDBC and SQLJ distributed transaction support lets
Enterprise Java Beans (EJBs) and Java servlets that run under WebSphere
Application Server Version 5.01 and above participate in a distributed transaction
system.

JDBC and SQLJ distributed transaction support provides similar function to JDBC
and SQLJ global transaction support. However, JDBC and SQLJ global transaction
support is available with IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS only.

JDBC and SQLJ distributed transaction support is available for connections to DB2
for z/OS, DB2 for Linux, UNIX, and Windows, and DB2 for i servers.

A distributed transaction system consists of a resource manager, a transaction
manager, and transactional applications. The following table lists the products and
programs in the z/OS environment that provide those components.

Table 118. Components of a distributed transaction system on DB2 for z/OS

Distributed transaction system component Component function provided by

Resource manager DB2 for z/OS or DB2 for Linux, UNIX, and
Windows

Transaction manager WebSphere Application Server or another
application server

Transactional applications JDBC or SQLJ applications

Your client application programs that run under the IBM Data Server Driver for
JDBC and SQLJ can use distributed transaction support for connections to DB2 for
z/OS or DB2 for Linux, UNIX, and Windows servers.

In JDBC or SQLJ applications, distributed transactions are supported for
connections that are established using the DataSource interface. A connection is
normally established by the application server.

© Copyright IBM Corp. 1998, 2013 613

Related concepts:
Chapter 15, “JDBC and SQLJ global transaction support,” on page 619

Example of a distributed transaction that uses JTA methods
Distributed transactions typically involve multiple connections to the same data
source or different data sources, which can include data sources from different
manufacturers.

The best way to demonstrate distributed transactions is to contrast them with local
transactions. With local transactions, a JDBC application makes changes to a
database permanent and indicates the end of a unit of work in one of the
following ways:
v By calling the Connection.commit or Connection.rollback methods after

executing one or more SQL statements
v By calling the Connection.setAutoCommit(true) method at the beginning of the

application to commit changes after every SQL statement

Figure 49 outlines code that executes local transactions.

In contrast, applications that participate in distributed transactions cannot call the
Connection.commit, Connection.rollback, or Connection.setAutoCommit(true)
methods within the distributed transaction. With distributed transactions, the
Connection.commit or Connection.rollback methods do not indicate transaction
boundaries. Instead, your applications let the application server manage
transaction boundaries.

Figure 50 on page 615 demonstrates an application that uses distributed
transactions. While the code in the example is running, the application server is
also executing other EJBs that are part of this same distributed transaction. When
all EJBs have called utx.commit(), the entire distributed transaction is committed
by the application server. If any of the EJBs are unsuccessful, the application server
rolls back all the work done by all EJBs that are associated with the distributed
transaction.

con1.setAutoCommit(false); // Set autocommit off
// execute some SQL
...
con1.commit(); // Commit the transaction
// execute some more SQL
...
con1.rollback(); // Roll back the transaction
con1.setAutoCommit(true); // Enable commit after every SQL statement
...
// Execute some more SQL, which is automatically committed after
// every SQL statement.

Figure 49. Example of a local transaction

614 Application Programming Guide and Reference for Java

Figure 51 illustrates a program that uses JTA methods to execute a distributed
transaction. This program acts as the transaction manager and a transactional
application. Two connections to two different data sources do SQL work under a
single distributed transaction.

class XASample
{

javax.sql.XADataSource xaDS1;
javax.sql.XADataSource xaDS2;
javax.sql.XAConnection xaconn1;
javax.sql.XAConnection xaconn2;
javax.transaction.xa.XAResource xares1;
javax.transaction.xa.XAResource xares2;
java.sql.Connection conn1;
java.sql.Connection conn2;

public static void main (String args []) throws java.sql.SQLException
{

XASample xat = new XASample();
xat.runThis(args);

}
// As the transaction manager, this program supplies the global
// transaction ID and the branch qualifier. The global
// transaction ID and the branch qualifier must not be
// equal to each other, and the combination must be unique for
// this transaction manager.
public void runThis(String[] args)
{

byte[] gtrid = new byte[] { 0x44, 0x11, 0x55, 0x66 };
byte[] bqual = new byte[] { 0x00, 0x22, 0x00 };
int rc1 = 0;
int rc2 = 0;

try
{

javax.naming.InitialContext context = new javax.naming.InitialContext();
/*

* Note that javax.sql.XADataSource is used instead of a specific
* driver implementation such as com.ibm.db2.jcc.DB2XADataSource.
*/

xaDS1 = (javax.sql.XADataSource)context.lookup("checkingAccounts");
xaDS2 = (javax.sql.XADataSource)context.lookup("savingsAccounts");

// The XADatasource contains the user ID and password.
// Get the XAConnection object from each XADataSource

javax.transaction.UserTransaction utx;
// Use the begin method on a UserTransaction object to indicate
// the beginning of a distributed transaction.
utx.begin();
...
// Execute some SQL with one Connection object.
// Do not call Connection methods commit or rollback.
...
// Use the commit method on the UserTransaction object to
// drive all transaction branches to commit and indicate
// the end of the distributed transaction.

utx.commit();
...

Figure 50. Example of a distributed transaction under an application server

Figure 51. Example of a distributed transaction that uses the JTA

Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4 connectivity JDBC and SQLJ distributed transaction support 615

xaconn1 = xaDS1.getXAConnection();
xaconn2 = xaDS2.getXAConnection();

// Get the java.sql.Connection object from each XAConnection
conn1 = xaconn1.getConnection();
conn2 = xaconn2.getConnection();

// Get the XAResource object from each XAConnection
xares1 = xaconn1.getXAResource();
xares2 = xaconn2.getXAResource();
// Create the Xid object for this distributed transaction.
// This example uses the com.ibm.db2.jcc.DB2Xid implementation
// of the Xid interface. This Xid can be used with any JDBC driver
// that supports JTA.
javax.transaction.xa.Xid xid1 =

new com.ibm.db2.jcc.DB2Xid(100, gtrid, bqual);

// Start the distributed transaction on the two connections.
// The two connections do NOT need to be started and ended together.
// They might be done in different threads, along with their SQL operations.
xares1.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);
xares2.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

...
// Do the SQL operations on connection 1.
// Do the SQL operations on connection 2.

...
// Now end the distributed transaction on the two connections.
xares1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);
xares2.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

// If connection 2 work had been done in another thread,
// a thread.join() call would be needed here to wait until the
// connection 2 work is done.

try
{ // Now prepare both branches of the distributed transaction.

// Both branches must prepare successfully before changes
// can be committed.
// If the distributed transaction fails, an XAException is thrown.
rc1 = xares1.prepare(xid1);
if(rc1 == javax.transaction.xa.XAResource.XA_OK)
{ // Prepare was successful. Prepare the second connection.

rc2 = xares2.prepare(xid1);
if(rc2 == javax.transaction.xa.XAResource.XA_OK)
{ // Both connections prepared successfully and neither was read-only.

xares1.commit(xid1, false);
xares2.commit(xid1, false);

}
else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)
{ // The second connection is read-only, so just commit the

// first connection.
xares1.commit(xid1, false);

}
}
else if(rc1 == javax.transaction.xa.XAException.XA_RDONLY)
{ // SQL for the first connection is read-only (such as a SELECT).

// The prepare committed it. Prepare the second connection.
rc2 = xares2.prepare(xid1);
if(rc2 == javax.transaction.xa.XAResource.XA_OK)
{ // The first connection is read-only but the second is not.

// Commit the second connection.
xares2.commit(xid1, false);

}
else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)
{ // Both connections are read-only, and both already committed,

// so there is nothing more to do.
}

616 Application Programming Guide and Reference for Java

}
} catch (javax.transaction.xa.XAException xae)
{ // Distributed transaction failed, so roll it back.

// Report XAException on prepare/commit.
System.out.println("Distributed transaction prepare/commit failed. " +

"Rolling it back.");
System.out.println("XAException error code = " + xae.errorCode);
System.out.println("XAException message = " + xae.getMessage());
xae.printStackTrace();
try
{

xares1.rollback(xid1);
}
catch (javax.transaction.xa.XAException xae1)
{ // Report failure of rollback.

System.out.println("distributed Transaction rollback xares1 failed");
System.out.println("XAException error code = " + xae1.errorCode);
System.out.println("XAException message = " + xae1.getMessage());

}
try
{

xares2.rollback(xid1);
}
catch (javax.transaction.xa.XAException xae2)
{ // Report failure of rollback.

System.out.println("distributed Transaction rollback xares2 failed");
System.out.println("XAException error code = " + xae2.errorCode);
System.out.println("XAException message = " + xae2.getMessage());

}
}

try
{

conn1.close();
xaconn1.close();

}
catch (Exception e)
{

System.out.println("Failed to close connection 1: " + e.toString());
e.printStackTrace();

}
try
{

conn2.close();
xaconn2.close();

}
catch (Exception e)
{

System.out.println("Failed to close connection 2: " + e.toString());
e.printStackTrace();

}
}
catch (java.sql.SQLException sqe)
{

System.out.println("SQLException caught: " + sqe.getMessage());
sqe.printStackTrace();

}
catch (javax.transaction.xa.XAException xae)
{

System.out.println("XA error is " + xae.getMessage());
xae.printStackTrace();

}
catch (javax.naming.NamingException nme)
{

Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4 connectivity JDBC and SQLJ distributed transaction support 617

System.out.println(" Naming Exception: " + nme.getMessage());
}

}
}

Recommendation: For better performance, complete a distributed transaction
before you start another distributed or local transaction.

618 Application Programming Guide and Reference for Java

Chapter 15. JDBC and SQLJ global transaction support

JDBC and SQLJ global transaction support lets Enterprise Java Beans (EJB) and
Java servlets access DB2 for z/OS relational data within global transactions.

WebSphere Application Server provides the environment to deploy EJBs and
servlets, and RRS provides the transaction management.

JDBC and SQLJ global transaction support provides similar function to JDBC and
SQLJ distributed transaction support. However, JDBC and SQLJ distributed
transaction support is available with IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity on DB2 for z/OS or DB2 for Linux, UNIX, and Windows.

You can use global transactions in JDBC or SQLJ applications. Global transactions
are supported for connections that are established using the DriverManager or the
DataSource interface.

The best way to demonstrate global transactions is to contrast them with local
transactions. With local transactions, you call the commit or rollback methods of
the Connection class to make the changes to the database permanent and indicate
the end of each unit or work. Alternatively, you can use the setAutoCommit(true)
method to perform a commit operation after every SQL statement. The following
code shows an example of a local transaction.
con1.setAutoCommit(false); // Set autocommit off
// execute some SQL
...
con1.commit(); // Commit the transaction
// execute some more SQL
...
con1.rollback(); // Roll back the transaction
con1.setAutoCommit(true); // Enable commit after every SQL statement
...

In contrast, applications cannot call the commit, rollback, or setAutoCommit(true)
methods on the Connection object when the applications are in a global
transaction. With global transactions, the commit or rollback methods on the
Connection object do not indicate transaction boundaries. Instead, your
applications let WebSphere manage transaction boundaries. Alternatively, you can
use DB2-customized Java Transaction API (JTA) interfaces to indicate the
boundaries of transactions. Although DB2 for z/OS does not implement the JTA
specification, the methods for delimiting transaction boundaries are available with
the JDBC driver. The following code demonstrates the use of the JTA interfaces to
indicate global transaction boundaries.
javax.transaction.UserTransaction utx;
// Use the begin method on a UserTransaction object to indicate
// the beginning of a global transaction.
utx.begin();
...
// Execute some SQL with one Connection object.
// Do not call Connection methods commit or rollback.
...
// Use the commit method on the UserTransaction object to
// drive all transaction branches to commit and indicate
// the end of the global transaction.
utx.commit();
...

© Copyright IBM Corp. 1998, 2013 619

Related concepts:
Chapter 14, “IBM Data Server Driver for JDBC and SQLJ type 4 connectivity JDBC
and SQLJ distributed transaction support,” on page 613

620 Application Programming Guide and Reference for Java

Chapter 16. Problem diagnosis with the IBM Data Server
Driver for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ includes diagnostic tools and
traces for diagnosing problems during connection and SQL statement execution.

Testing a data server connection

Run the DB2Jcc utility to test a connection to a data server. You provide DB2Jcc
with the URL for the data server, for IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity or IBM Data Server Driver for JDBC and SQLJ type 2
connectivity. DB2Jcc attempts to connect to the data server, and to execute an SQL
statement and a DatabaseMetaData method. If the connection or statement
execution fails, DB2Jcc provides diagnostic information about the failure.

Collecting JDBC trace data

Use one of the following procedures to start the trace:

Procedure 1: For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, the
recommended method is to start the trace by setting the db2.jcc.override.traceFile
property and the db2.jcc.t2zosTraceFile property in the IBM Data Server Driver for
JDBC and SQLJ configuration properties file.

You can set the db2.jcc.tracePolling and db2.jcc.tracePollingInterval properties
before you start the driver to allow you to change global configuration trace
properties while the driver is running.

Procedure 2: For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the
recommended method is to start the trace by setting the db2.jcc.override.traceFile
property or the db2.jcc.override.traceDirectory property in the IBM Data Server
Driver for JDBC and SQLJ configuration properties file. You can set the
db2.jcc.tracePolling and db2.jcc.tracePollingInterval properties before you start the
driver to allow you to change global configuration trace properties while the driver
is running.

Procedure 3: If you use the DataSource interface to connect to a data source, follow
this method to start the trace:
1. Invoke the DB2BaseDataSource.setTraceLevel method to set the type of tracing

that you need. The default trace level is TRACE_ALL. See "Properties for the IBM
Data Server Driver for JDBC and SQLJ" for information on how to specify more
than one type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace
destination and turn the trace on.

Procedure 4:

If you use the DataSource interface to connect to a data source, invoke the
javax.sql.DataSource.setLogWriter method to turn the trace on. With this
method, TRACE_ALL is the only available trace level.

© Copyright IBM Corp. 1998, 2013 621

If you use the DriverManager interface to connect to a data source, follow this
procedure to start the trace.
1. Invoke the DriverManager.getConnection method with the traceLevel property

set in the info parameter or url parameter for the type of tracing that you need.
The default trace level is TRACE_ALL. See "Properties for the IBM Data Server
Driver for JDBC and SQLJ" for information on how to specify more than one
type of tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination
and turn the trace on.

After a connection is established, you can turn the trace off or back on, change the
trace destination, or change the trace level with the
DB2Connection.setJccLogWriter method. To turn the trace off, set the logWriter
value to null.

The logWriter property is an object of type java.io.PrintWriter. If your
application cannot handle java.io.PrintWriter objects, you can use the traceFile
property to specify the destination of the trace output. To use the traceFile
property, set the logWriter property to null, and set the traceFile property to the
name of the file to which the driver writes the trace data. This file and the
directory in which it resides must be writable. If the file already exists, the driver
overwrites it.

Procedure 5: If you are using the DriverManager interface, specify the traceFile and
traceLevel properties as part of the URL when you load the driver. For example:
String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +
":traceFile=/u/db2p/jcctrace;" +
"traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Procedure 6: Use DB2TraceManager methods. The DB2TraceManager class provides the
ability to suspend and resume tracing of any type of log writer.

Example of starting a trace using configuration properties: For a complete example of
using configuration parameters to collect trace data, see "Example of using
configuration properties to start a JDBC trace".

Trace example program: For a complete example of a program for tracing under the
IBM Data Server Driver for JDBC and SQLJ, see "Example of a trace program
under the IBM Data Server Driver for JDBC and SQLJ".

Collecting SQLJ trace data during customization or bind

To collect trace data to diagnose problems during the SQLJ customization or bind
process, specify the -tracelevel and -tracefile options when you run the
db2sqljcustomize or db2sqljbind bind utility.

Formatting information about an SQLJ serialized profile

The profp utility formats information about each SQLJ clause in a serialized
profile. The format of the profp utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error
occurs. If an exception is thrown, a Java stack trace is generated. You can

622 Application Programming Guide and Reference for Java

determine which serialized profile was in use when the exception was thrown
from the stack trace.

Formatting information about an SQLJ customized serialized
profile

The db2sqljprint utility formats information about each SQLJ clause in a
serialized profile that is customized for the IBM Data Server Driver for JDBC and
SQLJ.

Run the db2sqljprint utility on the customized serialized profile for the
connection in which the error occurs.
Related reference:
“db2sqljprint - SQLJ profile printer” on page 514

DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility
DB2Jcc verifies that a data server is configured for database access.

To verify the connection, DB2Jcc connects to the specified data server, executes an
SQL statement, and executes a java.sql.DatabaseMetadata method.

Authorization

The user ID under which DB2Jcc runs must have the authority to connect to the
specified data server and to execute the specified SQL statement.

DB2Jcc Syntax

�� java com.ibm.db2.jcc.DB2Jcc
-version -configuration -help

�

�
url-spec

-user user-ID -password password sql-spec -tracing

��

url-spec:

��
-url jdbc:db2://server /database

: port
jdbc:db2:database

��

sql-spec:

��
-sql ' SELECT * FROM SYSIBM.SYSDUMMY1 '

-sql ' sql-statement '
��

DB2Jcc parameters

-help
Specifies that DB2Jcc describes each of the options that it supports. If any other
options are specified with -help, they are ignored.

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 623

-version
Specifies that DB2Jcc displays the driver name and version.

-configuration
Specifies that DB2Jcc displays driver configuration information.

-url
Specifies the URL for the data server for which the connection is being tested.
The URL can be a URL for IBM Data Server Driver for JDBC and SQLJ type 2
connectivity or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.
The variable parts of the -url value are:

server
The domain name or IP address of the operating system on which the
database server resides. server is used only for type 4 connectivity.

port
The TCP/IP server port number that is assigned to the data server. The
default is 446. port is used only for type 4 connectivity.

database
A name for the database server for which the profile is to be customized.

If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in this value must
be uppercase characters. You can determine the location name by executing
the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 for Linux, UNIX, and Windows server,
database is the database name that is defined during installation.

If the connection is to an IBM Informix data server, database is the database
name. The name is case-insensitive. The server converts the name to
lowercase.

If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

-user user-ID
Specifies the user ID that is to be used to test the connection to the data
server.

-password password
Specifies the password for the user ID that is to be used to test the
connection to the data server.

-sql 'sql-statement'
Specifies the SQL statement that is sent to the data server to verify the
connection. If the -sql parameter is not specified, this SQL statement is sent
to the data server:
SELECT * FROM SYSIBM.SYSDUMMY1

-tracing
Specifies that tracing is enabled. The trace destination is System.out.

If you omit the -tracing parameter, tracing is disabled.

624 Application Programming Guide and Reference for Java

Examples

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity. Use the default SQL statement to test the
connection. Enable tracing for the test.
java com.ibm.db2.jcc.DB2Jcc
-url jdbc:db2://mysys.myloc.svl.ibm.com:446/MYDB
-user db2user -password db2pass -tracing

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity. Use the following SQL statement to test the
connection:
SELECT COUNT(*) FROM EMPLOYEE

Disable tracing for the test.
java com.ibm.db2.jcc.DB2Jcc
-url jdbc:db2:MYDB
-user db2user -password db2pass
-sql ’SELECT COUNT(*) FROM EMPLOYEE’

Examples of using configuration properties to start a JDBC trace
You can control tracing of JDBC applications without modifying those applications.

Example of writing trace data to one trace file for each
connection

Suppose that you want to collect trace data for a program named Test.java, which
uses IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. Test.java does
no tracing, and you do not want to modify the program, so you enable tracing
using configuration properties. You want your trace output to have the following
characteristics:
v Trace information for each connection on the same DataSource is written to a

separate trace file. Output goes into a directory named /Trace.
v Each trace file name begins with jccTrace1.
v If trace files with the same names already exist, the trace data is appended to

them.

Although Test.java does not contain any code to do tracing, you want to set the
configuration properties so that if the application is modified in the future to do
tracing, the settings within the program will take precedence over the settings in
the configuration properties. To do that, use the set of configuration properties that
begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:
v db2.jcc.traceDirectory=/Trace
v db2.jcc.traceFile=jccTrace1
v db2.jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test.java, so
you create a file with these settings, and then refer to the file when you invoke the
Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that the
file that contains the settings is /Test/jcc.properties. To enable tracing when you
run Test.java, you issue a command like this:
java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 625

Suppose that Test.java creates two connections for one DataSource. The program
does not define a logWriter object, so the driver creates a global logWriter object
for the trace output. When the program completes, the following files contain the
trace data:
v /Trace/jccTrace1_global_0
v /Trace/jccTrace1_global_1

Example of doing a circular trace with a fixed number of files
and fixed file size

Suppose that you want to collect trace data for a program named Test.java, which
uses IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. Test.java does
no tracing, and you do not want to modify the program, so you enable tracing
using configuration properties. You want your trace output to have the following
characteristics:
v Trace information for each connection on the same DataSource is written to a

separate set of trace files.
v The maximum number of trace files that are written for each connection is 4.
v When all trace files are full, the trace overwrites existing trace data, beginning

with the first trace file that was written.
v The maximum size of each trace file is 4 MB.
v Each trace file name begins with jcc.log, and is written into a directory named

/Trace.
v If trace files with the same names already exist, the trace data is overwritten.

Although Test.java does not contain any code to do tracing, you want to set the
configuration properties so that if the application is modified in the future to do
tracing, the settings within the program will take precedence over the settings in
the configuration properties. To do that, use the set of configuration properties that
begin with db2.jcc.

The configuration property settings look like this:
v db2.jcc.traceFile=jcc.log
v db2.jcc.traceOption=1
v db2.jcc.traceFileSize=4194304
v db2.jcc.traceFileCount=4
v db2.jcc.traceFileAppend=false

You want the trace settings to apply only to your stand-alone program Test.java, so
you create a file with these settings, and then refer to the file when you invoke the
Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that the
file that contains the settings is /Test/jcc.properties. To enable tracing when you
run Test.java, you issue a command like this:
java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test

Suppose that Test.java creates two connections for one DataSource. The program
does not define a logWriter object, so the driver creates a global logWriter object
for the trace output. During execution of the program, the IBM Data Server Driver
for JDBC and SQLJ writes 17 MB of data for the first connection, and 10 MB of
data for the second connection.

When the program completes, the following files contain the trace data:
v /Trace/jcc.log_global_0.1
v /Trace/jcc.log_global_0.2

626 Application Programming Guide and Reference for Java

v /Trace/jcc.log_global_0.3
v /Trace/jcc.log_global_0.4
v /Trace/jcc.log_global_1.1
v /Trace/jcc.log_global_1.2
v /Trace/jcc.log_global_1.3

/Trace/jcc.log_global_0.1 contains the last 1 MB of trace data that is written for the
first connection, which overwrites the first 1 MB of trace data that was written for
that connection.
Related reference:
“IBM Data Server Driver for JDBC and SQLJ configuration properties” on page 299

Example of a trace program under the IBM Data Server Driver for
JDBC and SQLJ

You might want to write a single class that includes methods for tracing under the
DriverManager interface, as well as the DataSource interface.

The following example shows such a class. The example uses IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

public class TraceExample
{

public static void main(String[] args)
{

sampleConnectUsingSimpleDataSource();
sampleConnectWithURLUsingDriverManager();

}

private static void sampleConnectUsingSimpleDataSource()
{

java.sql.Connection c = null;
java.io.PrintWriter printWriter =
new java.io.PrintWriter(System.out, true);

// Prints to console, true means
// auto-flush so you don’t lose trace

try {
javax.sql.DataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

ds.setLogWriter(printWriter); // This turns on tracing

// Refine the level of tracing detail
((com.ibm.db2.jcc.DB2BaseDataSource) ds).
setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |
com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

// This connection request is traced using trace level
// TRACE_CONNECTS | TRACE_DRDA_FLOWS
c = ds.getConnection("myname", "mypass");

// Change the trace level to TRACE_ALL
// for all subsequent requests on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

Figure 52. Example of tracing under the IBM Data Server Driver for JDBC and SQLJ

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 627

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);
// The following INSERT is traced using trace level TRACE_ALL
java.sql.Statement s1 = c.createStatement();
s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s1.close();

// This code disables all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

// The following INSERT statement is not traced
java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s2.close();

c.close();
}
catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,
printWriter, "[TraceExample]");

}
finally {

cleanup(c, printWriter);
printWriter.flush();

}
}

// If the code ran successfully, the connection should
// already be closed. Check whether the connection is closed.
// If so, just return.
// If a failure occurred, try to roll back and close the connection.

private static void cleanup(java.sql.Connection c,
java.io.PrintWriter printWriter)
{

if(c == null) return;

try {
if(c.isClosed()) {

printWriter.println("[TraceExample] " +
"The connection was successfully closed");
return;

}

// If we get to here, something has gone wrong.
// Roll back and close the connection.
printWriter.println("[TraceExample] Rolling back the connection");
try {

c.rollback();
}
catch(java.sql.SQLException e) {

printWriter.println("[TraceExample] " +
"Trapped the following java.sql.SQLException while trying to roll back:");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
printWriter.println("[TraceExample] " +
"Unable to roll back the connection");

}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Trapped the " +
"following java.lang.Throwable while trying to roll back:");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,
printWriter, "[TraceExample]");
printWriter.println("[TraceExample] Unable to " +
"roll back the connection");

}

// Close the connection

628 Application Programming Guide and Reference for Java

printWriter.println("[TraceExample] Closing the connection");
try {

c.close();
}
catch(java.sql.SQLException e) {

printWriter.println("[TraceExample] Exception while " +
"trying to close the connection");
printWriter.println("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Throwable caught " +
"while trying to close the connection");
printWriter.println("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Unable to " +
"force the connection to close");
printWriter.println("[TraceExample] Deadlocks " +
"could occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
}
private static void sampleConnectWithURLUsingDriverManager()
{

java.sql.Connection c = null;

// This time, send the printWriter to a file.
java.io.PrintWriter printWriter = null;
try {

printWriter =
new java.io.PrintWriter(

new java.io.BufferedOutputStream(
new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

}
catch(java.io.FileNotFoundException e) {

java.lang.System.err.println("Unable to establish a print writer for trace");
java.lang.System.err.flush();
return;

}

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch(ClassNotFoundException e) {

printWriter.println("[TraceExample] " +
"IBM Data Server Driver for JDBC and SQLJ type 4 connectivity " +
"is not in the application classpath. Unable to load driver.");
printWriter.flush();
return;

}

// This URL describes the target data source for Type 4 connectivity.
// The traceLevel property is established through the URL syntax,
// and driver tracing is directed to file "/temp/driverLog.txt"
// The traceLevel property has type int. The constants
// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS and
// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS represent
// int values. Those constants cannot be used directly in the
// first getConnection parameter. Resolve the constants to their

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 629

// int values by assigning them to a variable. Then use the
// variable as the first parameter of the getConnection method.
String databaseURL =
"jdbc:db2://sysmvs1.stl.ibm.com:5021" +
"/sample:traceFile=/temp/driverLog.txt;traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS |
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

// Set other properties
java.util.Properties properties = new java.util.Properties();
properties.setProperty("user", "myname");
properties.setProperty("password", "mypass");

try {
// This connection request is traced using trace level
// TRACE_CONNECTS | TRACE_DRDA_FLOWS
c = java.sql.DriverManager.getConnection(databaseURL, properties);

// Change the trace level for all subsequent requests
// on the connection to TRACE_ALL
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

// The following INSERT is traced using trace level TRACE_ALL
java.sql.Statement s1 = c.createStatement();
s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s1.close();

// Disable all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

// The following SQL insert code is not traced
java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");
s2.close();

c.close();
}
catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
finally {

cleanup(c, printWriter);
printWriter.flush();

}
}

}

Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ
Sysplex support

To monitor IBM Data Server Driver for JDBC and SQLJ Sysplex support, you need
to monitor the global transport objects pool.

You can monitor the global transport objects pool in either of the following ways:
v Using traces that you start by setting IBM Data Server Driver for JDBC and

SQLJ configuration properties
v Using an application programming interface

630 Application Programming Guide and Reference for Java

Configuration properties for monitoring the global transport
objects pool

The db2.jcc.dumpPool, db2.jcc.dumpPoolStatisticsOnSchedule, and
db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing
of the global transport objects pool.

Example: The following set of configuration property settings cause error
messages, dump pool error messages, and transport pool statistics to be written
every 60 seconds to a file named /home/WAS/logs/srv1/poolstats:
db2.jcc.dumpPool=DUMP_SYSPLEX_MSG|DUMP_POOL_ERROR
db2.jcc.dumpPoolStatisticsOnSchedule=60
db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

An entry in the pool statistics file looks like this:
time Scheduled PoolStatistics npr:2575 nsr:2575 lwroc:439 hwroc:1764 coc:372
aooc:362 rmoc:362 nbr:2872 tbt:857520 tpo:10
group: DSNDB port: 446 hwmpo: 20 twte: 5 ngipr: 50 ttcpto: 2

member: port: 446 DB1A hwmiut: 6 hwmt: 2 tmct: 1 trto: 0
member: port: 446 DB1B hwmiut: 7 hwmt: 2 tmct: 1 trto: 0
member: port: 446 DB1C hwmiut: 6 hwmt: 1 tmct: 0 trto: 1

The meanings of the fields are:

npr
The total number of requests that the IBM Data Server Driver for JDBC and
SQLJ has made to the pool since the pool was created.

nsr
The number of successful requests that the IBM Data Server Driver for JDBC
and SQLJ has made to the pool since the pool was created. A successful
request means that the pool returned an object.

lwroc
The number of objects that were reused but were not in the pool. This can
happen if a Connection object releases a transport object at a transaction
boundary. If the Connection object needs a transport object later, and the
original transport object has not been used by any other Connection object, the
Connection object can use that transport object.

hwroc
The number of objects that were reused from the pool.

coc
The number of objects that the IBM Data Server Driver for JDBC and SQLJ
created since the pool was created.

aooc
The number of objects that exceeded the idle time that was specified by
db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

rmoc
The number of objects that have been deleted from the pool since the pool was
created.

nbr
The number of requests that the IBM Data Server Driver for JDBC and SQLJ
made to the pool that the pool blocked because the pool reached its maximum
capacity. A blocked request might be successful if an object is returned to the
pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and an
exception is thrown.

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 631

|
|
|

|
|
|

|
|
|
|
|
|

tbt
The total time in milliseconds for requests that were blocked by the pool. This
time can be much larger than the elapsed execution time of the application if
the application uses multiple threads.

sbt
The shortest time in milliseconds that a thread waited to get a transport object
from the pool. If the time is under one millisecond, the value in this field is
zero.

lbt
The longest time in milliseconds that a thread waited to get a transport object
from the pool.

abt
The average amount of time in milliseconds that threads waited to get a
transport object from the pool. This value is tbt/nbr.

tpo
The number of objects that are currently in the pool.

group
The data sharing group for which transport pool statistics were gathered.

port
The port number of the data sharing group or member.

hwmpo
The maximum number of pool objects that were created since the pool was
created.

twte
The number of times that the maxTransportWaitTime value was exceeded since
the pool was created.

ngipr
The number of times that the group IP address was used since the pool was
created.

ttcpto
The total number of times that members of the data sharing group had a
connection timeout when they were establishing a new connection.

member
The member of the data sharing group for which transport statistics were
gathered.

hwmiut
The maximum number of in-use transports for the data sharing member since
the pool was created.

hwmt
The maximum number of transports that have been allocated to the data
sharing member since the pool was created.

tmct
The number of times that the memberConnectTimeout value was reached for
the data sharing member since the pool was created.

trto
The number of times that a read timeout occurred for the data sharing member
since the pool was created.

632 Application Programming Guide and Reference for Java

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

Application programming interfaces for monitoring the global
transport objects pool

You can write applications to gather statistics on the global transport objects pool.
Those applications create objects in the DB2PoolMonitor class and invoke methods
to retrieve information about the pool.

For example, the following code creates an object for monitoring the global
transport objects pool:
import com.ibm.db2.jcc.DB2PoolMonitor;
DB2PoolMonitor transportObjectPoolMonitor =

DB2PoolMonitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT_OBJECT);

After you create the DB2PoolMonitor object, you can use methods in the
DB2PoolMonitor class to monitor the pool.

Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 633

634 Application Programming Guide and Reference for Java

Chapter 17. Tracing IBM Data Server Driver for JDBC and
SQLJ C/C++ native driver code

To debug applications that use IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, you might need to trace the C/C++ native driver
code.

Procedure

To collect, format, and print the trace data for the C/C++ native driver code,
follow these steps:
1. Enable tracing of C/C++ native driver code by setting a value for the

db2.jcc.t2zosTraceFile global configuration property.
That value is the name of the file to which the IBM Data Server Driver for
JDBC and SQLJ writes the trace data.

2. Run the db2jcctrace command from the z/OS UNIX System Services command
line.
By default, the trace data goes to stdout. You can pipe the data to another file.

Example

Suppose that db2.jcc.t2zosTraceFile has this setting:
db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

Execute this command to format all available trace data for the C/C++ native
driver code, and send the output to stdout:
db2jcctrace format flow /SYSTEM/tmp/jdbctraceNative

Related concepts:
“Customization of IBM Data Server Driver for JDBC and SQLJ configuration
properties” on page 518
Related reference:
“db2jcctrace - Format IBM Data Server Driver for JDBC and SQLJ trace data for
C/C++ native driver code”

db2jcctrace - Format IBM Data Server Driver for JDBC and SQLJ trace
data for C/C++ native driver code

db2jcctrace writes formatted trace data for traces of C/C++ native driver code
under IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

By default, the trace data is written to stdout. You can pipe the output to any file.

db2jcctrace syntax

�� db2jcctrace
(1)

format
flow
information

input-file-name ��

© Copyright IBM Corp. 1998, 2013 635

Notes:

1 You must specify one of these parameters.

db2jcctrace parameters

format
Specifies that the output trace file contains formatted trace data.

Abbreviation: fmt

flow
Specifies that the output trace file contains control flow information.

Abbreviation: flw

information
Specifies that the output trace file contains information about the trace, such as
the version of the driver, the time at which the trace was taken, and whether
the trace file wrapped or was truncated. This information is also included in
the output trace file when you specify format or flow.

Abbreviation: inf or info

input-file-name
Specifies the name of the file from which db2jcctrace is to read the
unformatted trace data. input-file-name is the same as the value of the
db2.jcc.t2zosTraceFile global configuration parameter.

Related concepts:
“Customization of IBM Data Server Driver for JDBC and SQLJ configuration
properties” on page 518
Related tasks:
Chapter 17, “Tracing IBM Data Server Driver for JDBC and SQLJ C/C++ native
driver code,” on page 635

636 Application Programming Guide and Reference for Java

Chapter 18. System monitoring for the IBM Data Server Driver
for JDBC and SQLJ

To assist you in monitoring the performance of your applications with the IBM
Data Server Driver for JDBC and SQLJ, the driver provides two methods to collect
information for a connection.

That information is:

Core driver time
The sum of elapsed monitored API times that were collected while system
monitoring was enabled, in microseconds. In general, only APIs that might
result in network I/O or database server interaction are monitored.

Network I/O time
The sum of elapsed network I/O times that were collected while system
monitoring was enabled, in microseconds.

Server time
The sum of all reported database server elapsed times that were collected
while system monitoring was enabled, in microseconds.

Application time
The sum of the application, JDBC driver, network I/O, and database server
elapsed times, in milliseconds.

The two methods are:
v The DB2SystemMonitor interface
v The TRACE_SYSTEM_MONITOR trace level

To collect system monitoring data using the DB2SystemMonitor interface: Perform these
basic steps:
1. Invoke the DB2Connection.getDB2SystemMonitor method to create a

DB2SystemMonitor object.
2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor

object for the connection.
3. Invoke the DB2SystemMonitor.start method to start system monitoring.
4. When the activity that is to be monitored is complete, invoke

DB2SystemMonitor.stop to stop system monitoring.
5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,

DB2SystemMonitor.getNetworkIOTimeMicros,
DB2SystemMonitor.getServerTimeMicros, or
DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed
time data.
The server time that is returned by DB2SystemMonitor.getServerTimeMicros
does not include commit or rollback time.

For example, the following code demonstrates how to collect each type of elapsed
time data. The numbers to the right of selected statements correspond to the
previously described steps.

© Copyright IBM Corp. 1998, 2013 637

To collect system monitoring information using the trace method: Start a JDBC trace,
using configuration properties or Connection or DataSource properties. Include
TRACE_SYSTEM_MONITOR when you set the traceLevel property. For example:
String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +
":traceFile=/u/db2p/jcctrace;" +
"traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR + ";";

The trace records with system monitor information look similar to this:

import java.sql.*;
import com.ibm.db2.jcc.*;
public class TestSystemMonitor
{

public static void main(String[] args)
{

String url = "jdbc:db2://sysmvs1.svl.ibm.com:5021/san_jose";
String user="db2adm";
String password="db2adm";
try
{

// Load the IBM Data Server Driver for JDBC and SQLJ
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println("**** Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
Connection conn = DriverManager.getConnection (url,user,password);
// Commit changes manually
conn.setAutoCommit(false);
System.out.println("**** Created a JDBC connection to the data source");
DB2SystemMonitor systemMonitor = �1�

((DB2Connection)conn).getDB2SystemMonitor();
systemMonitor.enable(true); �2�
systemMonitor.start(DB2SystemMonitor.RESET_TIMES); �3�
Statement stmt = conn.createStatement();
int numUpd = stmt.executeUpdate(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");
systemMonitor.stop(); �4�
System.out.println("Server elapsed time (microseconds)="

+ systemMonitor.getServerTimeMicros()); �5�
System.out.println("Network I/O elapsed time (microseconds)="

+ systemMonitor.getNetworkIOTimeMicros());
System.out.println("Core driver elapsed time (microseconds)="

+ systemMonitor.getCoreDriverTimeMicros());
System.out.println("Application elapsed time (milliseconds)="

+ systemMonitor.getApplicationTimeMillis());
conn.rollback();
stmt.close();
conn.close();

}
// Handle errors
catch(ClassNotFoundException e)
{

System.err.println("Unable to load the driver, " + e);
}
catch(SQLException e)
{

System.out.println("SQLException: " + e);
e.printStackTrace();

}
}

}

Figure 53. Example of using DB2SystemMonitor methods to collect system monitoring data

638 Application Programming Guide and Reference for Java

[jcc][SystemMonitor:start]
...
[jcc][SystemMonitor:stop] core: 565.67ms | network: 211.695ms | server: 207.771ms

Chapter 18. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 639

640 Application Programming Guide and Reference for Java

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available from the IBM Publications Center
(http://www.ibm.com/shop/publications/order). The following formats are
available:
v CD-ROM: Books for DB2 for z/OS are available on a CD-ROM that is included

with your product shipment:
– DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

v DVD: The books for DB2 for z/OS are available on the IBM z/OS Software
Products DVD Collection, SK3T–4271 (in English), which contains books for
many IBM products.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF™, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 1998, 2013 641

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

642 Application Programming Guide and Reference for Java

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1998, 2013 643

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you write applications that use Java to access
DB2 11 for z/OS servers. This book primarily documents General-use
Programming Interface and Associated Guidance Information provided by DB2 11
for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

644 Application Programming Guide and Reference for Java

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 645

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

646 Application Programming Guide and Reference for Java

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1998, 2013 647

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

648 Application Programming Guide and Reference for Java

Index

Special characters
-Infinity

retrieving in Java applications 240

A
accessibility

keyboard x
shortcut keys x

ALLOW DEBUG MODE
CREATE PROCEDURE parameter 199

alternate groups
DB2 for Linux, UNIX, and Windows 574

application compatibility 537
DB2 for z/OS 537

application development
high availability

connections to IBM Informix 594
direct connections to DB2 for z/OS servers 607

JDBC
application programming 11

SQLJ 125
application programming for high availability

connections to DB2 for Linux, UNIX, and Windows 579
ARRAY parameters

invoking stored procedures from JDBC programs 79
assignment-clause

SQLJ 357
auto-generated keys

retrieving for DELETE, JDBC application 84
retrieving for INSERT, JDBC application 82
retrieving for MERGE, JDBC application 84
retrieving for UPDATE, JDBC application 84
retrieving in JDBC application 82

autocommit modes
default JDBC 114

automatic client reroute
client applications 561
DB2 for z/OS 606
IBM Informix servers 589

automatic client reroute support, client operation 569
automatically generated keys

retrieving
DELETE statement, JDBC application 84
INSERT statement, JDBC application 82
JDBC applications 82
MERGE statement, JDBC application 84
UPDATE statement, JDBC application 84

B
batch queries

JDBC 44
batch updates

JDBC 36
SQLJ 146

BatchUpdateException exception
retrieving information 121

binary XML format
Java applications 106

binding SQLJ applications
accessing multiple servers 220

C
CallableStatement class 57
client affinities

.NET 580, 595
CLI 580, 595
IBM Data Server Driver for JDBC and SQLJ 580, 595

client affinities, example of enabling
Java clients 581, 596

client application
automatic client reroute 561
high availability 561
transaction-level load balancing 561

client authentication
IBM Data Server Driver for JDBC and SQLJ 557

client configuration, automatic client reroute support
DB2 for Linux, UNIX, and Windows 563

client configuration, high-availability support
IBM Informix 584

client configuration, Sysplex workload balancing
DB2 for z/OS 600

client configuration, workload balancing support
DB2 for Linux, UNIX, and Windows 567

client info properties
IBM Data Server Driver for JDBC and SQLJ 91, 92

clients
alternate groups

connections to DB2 for Linux, UNIX, and
Windows 574

automatic client reroute
connections to DB2 for z/OS 606
connections to IBM Informix 589

commands
db2sqljbind 509
db2sqljprint 514
sqlj 495
SQLJ 495

comments
JDBC applications 31
SQLJ applications 140

commits
SQLJ transactions 184
transactions

JDBC 113
configuration

JDBC 518
SQLJ 518

configuration properties
customizing 518
details 299
parameters 518

connection context
class 127
closing 186
default 127
object 127

connection declaration clause
SQLJ 350

© Copyright IBM Corp. 1998, 2013 649

connection pooling
overview 609

connections
closing

importance 124, 186
data sources using SQLJ 127
DataSource interface 23
existing 133

context clause
SQLJ 353, 354

D
data

retrieving
JDBC 41

data server connection
testing with DB2Jcc 621

data sources
connecting to

DriverManager 15
JDBC 13
JDBC DataSource 23

data type mappings
Java types to other types 229

DatabaseMetaData methods 28
databases

compatibility
IBM Data Server Driver for JDBC and SQLJ 4

DataSource interface
SQLJ

connection technique 3 130
connection technique 4 132

DataSource objects
creating 26
deploying 26

date value adjustment
JDBC applications 236
SQLJ applications 236

DB2 for Linux, UNIX, and Windows
client configuration, automatic client reroute support 563
client configuration, workload balancing support 567
high-availability support 562
workload balancing 578

DB2 for Linux, UNIX, and Windows high availability support,
example of enabling

IBM Data Server Driver for JDBC and SQLJ 566
DB2 for Linux, UNIX, and Windows versions

associated IBM Data Server Driver for JDBC and SQLJ
versions 8

DB2 for Linux, UNIX, and Windows workload balancing
support, example of enabling

IBM Data Server Driver for JDBC and SQLJ 568
DB2 for Linux, UNIX, and Windows, connections

application programming for high availability 579
DB2 for z/OS 537

binding packages 498
client configuration, Sysplex workload balancing 600
direct connections 605, 607
Sysplex support

overview 598
DB2 for z/OS versions

associated IBM Data Server Driver for JDBC and SQLJ
versions 5

DB2BaseDataSource class 386
DB2Binder class 392
DB2Binder utility 522

DB2BlobFileReference class 392
DB2CallableStatement interface 393
DB2ClientRerouteServerList class 399
DB2ClobFileReference class 401
DB2Connection interface 401
DB2ConnectionPoolDataSource class 421
DB2DatabaseMetaData interface 423
DB2DataSource class 425
DB2Diagnosable class

retrieving the SQLCA 184, 185
DB2Diagnosable interface 424
DB2Driver class 426
DB2ExceptionFormatter class 427
DB2FileReference class 427
DB2Jcc utility

details 623
testing a data server connection 621

DB2JCCPlugin interface 428
db2jcctrace command 635
DB2LobTableCreator utility 529
DB2ParameterMetaData interface 429
DB2PooledConnection interface 430
DB2PoolMonitor class 432
DB2PreparedStatement interface 435
DB2ResultSet interface 450
DB2ResultSetMetaData interface 454
DB2RowID interface 455
DB2SimpleDataSource class

definition 26
details 455

DB2Sqlca class 456
db2sqljbind command 509
db2sqljcustomize command 498
db2sqljprint

formation JCC customized profile 623
db2sqljprint command

details 514
formatting information about SQLJ customized profile 621

DB2Statement interface 457
DB2SystemMonitor interface 459
DB2TraceManager class 463
DB2TraceManagerMXBean interface 466
DB2Types class 469
DB2XADataSource class 469
DB2Xml interface 472
DB2XmlAsBlobFileReference class 474
DB2XmlAsClobFileReference class 474
DBBatchUpdateException interface 385
DBINFO

CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

DBTimestamp class 475
DBTimestamp object

IBM Data Server Driver for JDBC and SQLJ 70
default connection context 134
deregisterDB2XMLObject method 108
disability x
DISABLE DEBUG MODE

CREATE PROCEDURE parameter 199
DISALLOW DEBUG MODE

CREATE PROCEDURE parameter 199
distinct types

JDBC applications 78
SQLJ applications 173

distributed transactions
example 614

650 Application Programming Guide and Reference for Java

distributed transactions (continued)
IBM Data Server Driver for JDBC and SQLJ type 4

connectivity 613
DriverManager interface

SQLJ
SQLJ connection technique 1 127
SQLJ connection technique 2 129

drivers
determining IBM Data Server Driver for JDBC and SQLJ

version 494
dynamic data format 164

E
enabling

IBM Data Server Driver for JDBC and SQLJ support
routines 520

encryption
IBM Data Server Driver for JDBC and SQLJ 544

environment
Java stored procedures 189
Java user-defined functions 189

environment variables
IBM Data Server Driver for JDBC and SQLJ 516
JDBC 518
settings for Java routine 193
SQLJ 518
z/OS Application Connectivity to DB2 for z/OS

feature 535
errors

SQLJ 184, 185
escape syntax

IBM Data Server Driver for JDBC and SQLJ 346
examples

deregisterDB2XMLObject 108
registerDB2XMLSchema 108

exceptions
IBM Data Server Driver for JDBC and SQLJ 114

executable clause 353
executeUpdate methods 35
extended client information 89

DB2PreparedStatement constants 95, 97
DB2PreparedStatement methods 95
DB2ResultSet methods 97

extended parameter information
IBM Data Server Driver for JDBC and SQLJ 94

EXTERNAL
CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

F
failover

IBM Data Server Driver for JDBC and SQLJ type 2
connectivity 607

FINAL CALL
CREATE FUNCTION parameter 199

G
general-use programming information, described 644
getCause method 114
getDatabaseProductName method 30
getDatabaseProductVersion method 30
global transactions

JDBC and SQLJ 619

H
high availability

client application 561
IBM Informix 583

high-availability support
DB2 for Linux, UNIX, and Windows 562

host expressions
SQLJ 135, 136, 346

I
IBM data server clients

alternate groups
DB2 for Linux, UNIX, and Windows 574

automatic client reroute
DB2 for z/OS 606
IBM Informix 589

IBM Data Server Driver for JDBC and SQLJ
client info properties 91
compatibility with databases 4
connecting to data sources 15
connection concentrator monitoring 630
diagnostic utility 623
errors 486
example of enabling DB2 for Linux, UNIX, and Windows

high availability support 566
example of enabling DB2 for Linux, UNIX, and Windows

workload balancing support 568
example of enabling IBM Informix high availability

support 587
example of enabling Sysplex workload balancing 602
exceptions 114
extended client information 89
installing 515
installing with DB2 515
JDBC extensions 383
Kerberos security 547
LOB support

JDBC 63, 65
SQLJ 164

properties 243
security

details 539
encrypted password 544
encrypted user ID 544
user ID and password 540
user ID-only 543

SQL escape syntax 346
SQLExceptions 117
SQLSTATEs 492
trace program example 627
tracing with configuration parameters example 625
trusted context support 550
type 2 connectivity

DB2 for z/OS failover support 607
overview 25

type 4 connectivity 25
upgrading to a new version 532
version determination 494
warnings 114
XML support 175

IBM Data Server Driver for JDBC and SQLJ versions
associated DB2 for Linux, UNIX, and Windows versions 8
associated DB2 for z/OS versions 5

IBM Data Server Driver for JDBC and SQLJ-only fields
DB2Types class 469

Index 651

IBM Data Server Driver for JDBC and SQLJ-only methods
DB2BaseDataSource class 386
DB2Binder class 392
DB2BlobFileReference class 392
DB2CallableStatement interface 393
DB2ClientRerouteServerList class 399
DB2ClobFileReference class 401
DB2Connection interface 401
DB2ConnectionPoolDataSource class 421
DB2DatabaseMetaData interface 423
DB2DataSource class 425
DB2Diagnosable interface 424
DB2Driver class 426
DB2ExceptionFormatter class 427
DB2FileReference class 427
DB2JCCPlugin interface 428
DB2ParameterMetaData interface 429
DB2PooledConnection interface 430
DB2PoolMonitor class 432
DB2PreparedStatement interface 435
DB2ResultSet interface 450
DB2ResultSetMetaData interface 454
DB2RowID interface 455
DB2SimpleDataSource class 455
DB2sqlca class 456
DB2Statement interface 457
DB2SystemMonitor interface 459
DB2TraceManager class 463
DB2TraceManagerMXBean interface 466
DB2XADataSource class 469
DB2Xml interface 472
DB2XmlAsBlobFileReference class 474
DB2XmlAsClobFileReference class 474
DBBatchUpdateException interface 385
DBTimestamp class 475

IBM Data Server Driver for JDBC and SQLJ-only properties
DB2BaseDataSource class 386
DB2ClientRerouteServerList class 399
DB2ConnectionPoolDataSource class 421
DB2SimpleDataSource class 455

IBM data server drivers
alternate groups

DB2 for Linux, UNIX, and Windows 574
automatic client reroute

DB2 for z/OS 606
IBM Informix 589

IBM Informix
client configuration, high-availability support 584
high availability

application programming 594
cluster support 583

workload balancing 593
IBM Informix high availability support, example of enabling

IBM Data Server Driver for JDBC and SQLJ 587
implements clause

SQLJ 348
Infinity

retrieving in Java applications 240
installing

IBM Data Server Driver for JDBC and SQLJ 515
installing IBM Data Server Driver for JDBC and SQLJ

with DB2 515
internal statement cache

IBM Data Server Driver for JDBC and SQLJ 611
isolation levels

JDBC 112
SQLJ 184

iterator conversion clause
SQLJ 358

iterator declaration clause
SQLJ 351

iterators
obtaining JDBC result sets from 166
positioned DELETE 141
positioned UPDATE 141

J
JAR files

creating for JDBC routines 227
defining to DB2 198, 203

Java
applications

overview 1
environment

customization 518
Java programs

preparing and running 219
Java routines

environment variable settings 193
moving to a 64-bit environment 196
preparing 222
testing 217
WLM environment 190

Java routines with no SQLJ
preparing 222, 224
program preparation 223

Java routines with SQLJ
program preparation 224, 226

Java stored procedures
defining to DB2 198
differences from Java programs 213
differences from other stored procedures 214
parameters specific to 199
WLM environment definitions 520
writing 213

Java user-defined functions
defining to DB2 198
differences from Java program 213
differences from other user-defined functions 214
parameters specific to 199
writing 213

JAVAENV data set
characteristics 193

JDBC
4.0

getColumnLabel change 484
getColumnName change 484

accessing packages 28
APIs 319
applications

24 as hour value 236
data retrieval 41
example 11
invalid Gregorian date 236
programming overview 11
transaction control 112
variables 30

batch errors 121
batch queries 44
batch updates 36
comments 31
configuring 518
connections 26

652 Application Programming Guide and Reference for Java

JDBC (continued)
data type mappings 229
drivers

details 3
differences 477

environment variables 518
executeUpdate methods 35
executing SQL 32
extensions 383
file reference variables 110
input file reference variables 110
isolation levels 112
named parameter markers 85, 86, 87
objects

creating 32
modifying 32

problem diagnosis 621
program preparation 219
ResultSet holdability 47
ResultSets

delete holes 53
holdability 46
inserting row 54, 55

running programs 228
sample program 530
scrollable ResultSet 46, 47
SQLWarning 120
transactions

committing 113
default autocommit modes 114
rolling back 113

updatable ResultSet 46, 47

K
Kerberos authentication protocol

IBM Data Server Driver for JDBC and SQLJ 547

L
LANGUAGE

CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

large objects (LOBs)
compatible Java data types

JDBC applications 67
SQLJ applications 164

IBM Data Server Driver for JDBC and SQLJ 63, 65, 164
locators

IBM Data Server Driver for JDBC and SQLJ 64, 65
SQLJ 164

loading libraries
IBM Data Server Driver for JDBC and SQLJ 516

M
memory

IBM Data Server Driver for JDBC and SQLJ 123
monitoring

system
IBM Data Server Driver for JDBC and SQLJ 637

multi-row operations 51
multiple result sets

retrieving from stored procedure in JDBC application
keeping result sets open 62
known number 60

multiple result sets (continued)
retrieving from stored procedure in JDBC application

(continued)
overview 60
unknown number 61

retrieving from stored procedure in SQLJ application 162

N
named iterators

passed as variables 145
result set iterator 151

named parameter markers
CallableStatement objects 87
JDBC 85
PreparedStatement objects 86

NaN
retrieving in Java applications 240

NO SQL
CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

P
packages

JDBC 28
SQLJ 134

PARAMETER STYLE
CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

ParameterMetaData methods 40
positioned deletes

SQLJ 141
positioned iterators

passed as variables 145
result set iterators 154

positioned updates
SQLJ 141

PreparedStatement methods
SQL statements with no parameter markers 33
SQL statements with parameter markers 33, 42

problem determination
JDBC 621
SQLJ 621

program preparation
example, Java routine with SQLJ 224
Java routines with no SQLJ 223
Java routines with SQLJ 224, 226
JDBC programs 219

PROGRAM TYPE
CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

programming interface information, described 644
progressive streaming

IBM Data Server Driver for JDBC and SQLJ 63, 65
JDBC 164

properties
IBM Data Server Driver for JDBC and SQLJ

customizing 518
for all database products 244
for DB2 Database for Linux, UNIX, and Windows 283,

285, 286
for DB2 for z/OS 288
for DB2 servers 270
for IBM Informix 283, 285, 294
overview 243

Index 653

R
reference information

Java 229
registerDB2XMLSchema method 108
resources

releasing
closing connections 124, 186

restrictions
SQLJ variable names 135, 136

result set iterator
public declaration in separate file 167

result set iterators
details 151
generating JDBC ResultSets from SQLJ iterators 166
named 151
positioned 154
retrieving data from JDBC result sets using SQLJ

iterators 166
ResultSet

holdability 46
inserting row 54
testing for delete hole 53
testing for inserted row 55

ResultSet holdability
JDBC 47

ResultSetMetaData methods
ResultSetMetaData.getColumnLabel change in value 484
ResultSetMetaData.getColumnName change in value 484
retrieving result set information 45

retrieving a row as byte data
IBM Data Server Driver for JDBC and SQLJ 56

retrieving data
JDBC

data source information 28
PreparedStatement.executeQuery method 42
result set information 45
tables 41

SQLJ 151, 156, 157
retrieving parameter information

JDBC 40
retrieving SQLCA

DB2Diagnosable class 184, 185
return codes

IBM Data Server Driver for JDBC and SQLJ errors 486
rollbacks

JDBC transactions 113
SQLJ transactions 184

routines
invoking

XML parameters in Java applications 104
ROWID 171
RUN OPTIONS

CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

running programs
SQLJ and JDBC 228

S
sample program

JDBC 530
savepoints

JDBC applications 80
SQLJ applications 174

SCRATCHPAD
CREATE FUNCTION parameter 199

scrollable iterators
SQLJ 158

scrollable ResultSet
JDBC 47

scrollable ResultSets
JDBC 46

SDKs
version 1.5 181

security
IBM Data Server Driver for JDBC and SQLJ

encrypted security-sensitive data 544
encrypted user ID or encrypted password 544
Kerberos 547
security mechanisms 539
user ID and password 540
user ID only 543

SQLJ program preparation 558
SECURITY

CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

SET TRANSACTION clause 356
shortcut keys

keyboard x
SQL statements

error handling
SQLJ applications 184, 185

executing
JDBC interfaces 32
SQLJ applications 140, 170

SQLException
IBM Data Server Driver for JDBC and SQLJ 117

SQLJ
accessing packages for 134
applications

24 as hour value 236
examples 125
invalid Gregorian date 236
programming 125
transaction control 184

assignment clause 357
batch updates 146
binding applications to access multiple servers 220
calling stored procedures 162
clauses 346
collecting trace data 621
comments 140
connecting to data source 127
connecting using default context 134
connection declaration clause 350
context clause 353, 354
DataSource interface 130, 132
DB2 tables

creating 141
modifying 141

DriverManager interface 127, 129
drivers 3
environment variables 518
error handling 184, 185
executable clauses 353
executing SQL 140
execution context 170
execution control 170
existing connections 133
file reference variables 180
host expressions 135, 136, 346
implements clause 348
input file reference variables 180

654 Application Programming Guide and Reference for Java

SQLJ (continued)
installing runtime environment 518
isolation levels 184
iterator conversion clause 358
iterator declaration clause 351
multiple instances of iterator 157
multiple iterators on table 156
problem diagnosis 621
Profile Binder command 509
Profile Printer command 514
program preparation 495
result set iterator 151
retrieving SQLCA 184, 185
running programs 228
scrollable iterators 158
SDK for Java Version 5 functions 181
security 558
SET TRANSACTION clause 356
SQLWarning 185
statement reference 346
transactions 184
translator command 495
variable names 135, 136
with-clause 348

sqlj command 495
SQLJ programs

preparing 219
SQLJ variable names

restrictions 135, 136
SQLJ.ALTER_JAVA_PATH stored procedure 210
SQLJ.DB2_INSTALL_JAR stored procedure 205
SQLJ.DB2_REPLACE_JAR stored procedure 207
SQLJ.INSTALL_JAR stored procedure 204
SQLJ.REMOVE_JAR stored procedure 209
SQLJ.REPLACE_JAR stored procedure 206
sqlj.runtime package 358
sqlj.runtime.AsciiStream 370, 381
sqlj.runtime.BinaryStream 371
sqlj.runtime.CharacterStream 371
sqlj.runtime.ConnectionContext 359
sqlj.runtime.ExecutionContext 372
sqlj.runtime.ForUpdate 364
sqlj.runtime.NamedIterator 364
sqlj.runtime.PositionedIterator 365
sqlj.runtime.ResultSetIterator 365
sqlj.runtime.Scrollable 368
sqlj.runtime.SQLNullException 381
sqlj.runtime.UnicodeStream 382
SQLSTATE

IBM Data Server Driver for JDBC and SQLJ errors 492
SQLWarning

IBM Data Server Driver for JDBC and SQLJ 120
SQLJ applications 185

SSID
IBM Data Server Driver for JDBC and SQLJ 299

SSL
configuring

Java Runtime Environment 554
IBM Data Server Driver for JDBC and SQLJ 552
sslConnection property 553

sslConnection property 553
statement caching

IBM Data Server Driver for JDBC and SQLJ 611
Statement.executeQuery 41
static and non-final variables

Java routines 215

stored procedures
calling

CallableStatement class 57
JDBC applications 79
SQLJ applications 162

DB2 for z/OS 57
Java 189
keeping result sets open in JDBC applications 62
retrieving result sets

known number (JDBC) 60
multiple (JDBC) 60
multiple (SQLJ) 162
unknown number (JDBC) 61

returning result sets 216
stored procedures for IBM Data Server Driver support

creating 522
syntax diagram

how to read xi
Sysplex

direct connections to DB2 for z/OS 605
support 598

Sysplex support, example of enabling
IBM Data Server Driver for JDBC and SQLJ 602

T
testing

Java routines 217
time stamps

data loss avoidance
JDBC applications 239
SQLJ applications 239

time value adjustment
JDBC applications 236
SQLJ applications 236

TIMESTAMP data type
data loss

JDBC applications 239
SQLJ applications 239

TIMESTAMP WITH TIME ZONE
IBM Data Server Driver for JDBC and SQLJ 70, 172

timestamps with time zones
setting TIMESTAMP WITH TIME ZONE columns 242

trace C/C++ native driver code
db2jcctrace 635

traces
IBM Data Server Driver for JDBC and SQLJ 621, 625, 627

transaction control
JDBC 112
SQLJ 184

transaction-level load balancing
client application 561

trusted contexts
JDBC support 550

U
updatable ResultSet

inserting row 54
JDBC 46, 47
testing for delete hole 53
testing for inserted row 55

updates
data

PreparedStatement.executeUpdate method 33

Index 655

URL format
DB2BaseDataSource class 16, 20

user ID and password security
IBM Data Server Driver for JDBC and SQLJ 540

user ID-only security
IBM Data Server Driver for JDBC and SQLJ 543

user-defined functions
access to z/OS UNIX System Services 199
Java 189

W
warnings

IBM Data Server Driver for JDBC and SQLJ 114
with clause

SQLJ 348
WLM ENVIRONMENT

CREATE FUNCTION parameter 199
CREATE PROCEDURE parameter 199

WLM environments
definiing for Java stored procedures 520
values for Java routines 192

WLM setup
Java stored procedures 190
Java user-defined functions 190

WLM startup procedures
Java routines 190

workload balancing
connections to DB2 for Linux, UNIX, and Windows 578
IBM Informix

operation 593

X
XML

IBM Data Server Driver for JDBC and SQLJ 175
parameters

invoking routines from Java programs 104
XML data

Java applications 98
updating

tables in Java applications 98, 176
XML data retrieval

Java applications 101, 178
XML schemas

registering 108
removing 108

XMLCAST
SQLJ applications 180

xmlFormat property
binary XML format 106

Z
z/OS Application Connectivity to DB2 for z/OS

SMP/E jobs for loading 534
z/OS Application Connectivity to DB2 for z/OS feature

environment variables 535
z/OS Application Connectivity to z/OS

installing 533
z/OS UNIX System Services

accessing by Java routines 199

656 Application Programming Guide and Reference for Java

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4052-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
Ap

pl
ic

at
io

n
Pr

og
ra

m
m

in
g

Gu
id

e
an

d
Re

fe
re

nc
e

fo
rJ

av
a

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Java application development for IBM data servers
	Chapter 2. Supported drivers for JDBC and SQLJ
	JDBC driver and database version compatibility
	DB2 for z/OS and IBM Data Server Driver for JDBC and SQLJ levels
	DB2 for Linux, UNIX, and Windows and IBM Data Server Driver for JDBC and SQLJ levels

	Chapter 3. JDBC application programming
	Example of a simple JDBC application
	How JDBC applications connect to a data source
	Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and SQLJ
	URL format for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity
	URL format for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

	Connecting to a data source using the DataSource interface
	How to determine which type of IBM Data Server Driver for JDBC and SQLJ connectivity to use
	JDBC connection objects
	Creating and deploying DataSource objects

	Java packages for JDBC support
	Learning about a data source using DatabaseMetaData methods
	DatabaseMetaData methods for identifying the type of data source

	Variables in JDBC applications
	Comments in a JDBC application
	JDBC interfaces for executing SQL
	Creating and modifying database objects using the Statement.executeUpdate method
	Updating data in tables using the PreparedStatement.executeUpdate method
	JDBC executeUpdate methods against a DB2 for z/OS server
	Making batch updates in JDBC applications
	Learning about parameters in a PreparedStatement using ParameterMetaData methods
	Data retrieval in JDBC applications
	Retrieving data from tables using the Statement.executeQuery method
	Retrieving data from tables using the PreparedStatement.executeQuery method
	Making batch queries in JDBC applications
	Learning about a ResultSet using ResultSetMetaData methods
	Characteristics of a JDBC ResultSet under the IBM Data Server Driver for JDBC and SQLJ
	Retrieving rows as byte data in JDBC applications

	Calling stored procedures in JDBC applications
	Retrieving multiple result sets from a stored procedure in a JDBC application

	LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ
	Progressive streaming with the IBM Data Server Driver for JDBC and SQLJ
	LOB locators with the IBM Data Server Driver for JDBC and SQLJ
	LOB operations with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in JDBC applications

	ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ
	Update and retrieval of timestamps with time zone information in JDBC applications
	Distinct types in JDBC applications
	Invocation of stored procedures with ARRAY parameters in JDBC applications
	Savepoints in JDBC applications
	Retrieval of automatically generated keys in JDBC applications
	Retrieving auto-generated keys for an INSERT statement
	Retrieving auto-generated keys for an UPDATE, DELETE, or MERGE statement

	Named parameter markers in JDBC applications
	Using named parameter markers with PreparedStatement objects
	Using named parameter markers with CallableStatement objects

	Providing extended client information to the data source with IBM Data Server Driver for JDBC and SQLJ-only methods
	Providing extended client information to the data source with client info properties
	Client info properties support by the IBM Data Server Driver for JDBC and SQLJ

	Extended parameter information with the IBM Data Server Driver for JDBC and SQLJ
	Using DB2PreparedStatement methods or constants to provide extended parameter information
	Using DB2ResultSet methods or DB2PreparedStatement constants to provide extended parameter information

	XML data in JDBC applications
	XML column updates in JDBC applications
	XML data retrieval in JDBC applications
	Invocation of routines with XML parameters in Java applications
	Binary XML format in Java applications
	Java support for XML schema registration and removal

	Inserting data from file reference variables into tables in JDBC applications
	Transaction control in JDBC applications
	IBM Data Server Driver for JDBC and SQLJ isolation levels
	Committing or rolling back JDBC transactions
	Default JDBC autocommit modes

	Exceptions and warnings under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ
	Retrieving information from a BatchUpdateException

	Memory use for IBM Data Server Driver for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
	Disconnecting from data sources in JDBC applications

	Chapter 4. SQLJ application programming
	Example of a simple SQLJ application
	Connecting to a data source using SQLJ
	SQLJ connection technique 1: JDBC DriverManager interface
	SQLJ connection technique 2: JDBC DriverManager interface
	SQLJ connection technique 3: JDBC DataSource interface
	SQLJ connection technique 4: JDBC DataSource interface
	SQLJ connection technique 5: Use a previously created connection context
	SQLJ connection technique 6: Use the default connection

	Java packages for SQLJ support
	Variables in SQLJ applications
	Indicator variables in SQLJ applications
	Comments in an SQLJ application
	SQL statement execution in SQLJ applications
	Creating and modifying database objects in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Making batch updates in SQLJ applications

	Data retrieval in SQLJ applications
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Calling stored procedures in SQLJ applications
	Retrieving multiple result sets from a stored procedure in an SQLJ application

	LOBs in SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in SQLJ applications

	SQLJ and JDBC in the same application
	Controlling the execution of SQL statements in SQLJ
	ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ
	TIMESTAMP WITH TIME ZONE values in SQLJ applications
	Distinct types in SQLJ applications
	Savepoints in SQLJ applications

	XML data in SQLJ applications
	XML column updates in SQLJ applications
	XML data retrieval in SQLJ applications
	XMLCAST in SQLJ applications

	Inserting data from file reference variables into tables in SQLJ applications
	SQLJ utilization of SDK for Java Version 5 function
	Transaction control in SQLJ applications
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions

	Handling SQL errors and warnings in SQLJ applications
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Closing the connection to a data source in an SQLJ application

	Chapter 5. Java stored procedures and user-defined functions
	Setting up the environment for Java routines
	Setting up the WLM application environment for Java routines
	WLM address space startup procedure for Java routines
	WLM application environment values for Java routines

	Runtime environment for Java routines

	Moving from 31-bit Java routines to 64-bit Java routines
	Defining Java routines and JAR files to DB2
	Definition of a Java routine to DB2
	Definition of a JAR file for a Java routine to DB2
	SQLJ.INSTALL_JAR stored procedure
	SQLJ.DB2_INSTALL_JAR stored procedure
	SQLJ.REPLACE_JAR stored procedure
	SQLJ.DB2_REPLACE_JAR stored procedure
	SQLJ.REMOVE_JAR stored procedure
	SQLJ.ALTER_JAVA_PATH stored procedure

	Java routine programming
	Differences between Java routines and stand-alone Java programs
	Differences between Java routines and other routines
	Static and non-final variables in a Java routine
	Writing a Java stored procedure to return result sets

	Techniques for testing a Java routine

	Chapter 6. Preparing and running JDBC and SQLJ programs
	Program preparation for JDBC programs
	Program preparation for SQLJ programs
	Binding SQLJ applications to access multiple database servers
	Program preparation for Java routines
	Preparation of Java routines with no SQLJ clauses
	Preparing Java routines with no SQLJ clauses to run from a JAR file
	Preparing Java routines with no SQLJ clauses and no JAR file

	Preparation of Java routines with SQLJ clauses
	Preparing Java routines with SQLJ clauses to run from a JAR file
	Preparing Java routines with SQLJ clauses and no JAR file

	Creating JAR files for Java routines

	Running JDBC and SQLJ programs

	Chapter 7. JDBC and SQLJ reference information
	Data types that map to database data types in Java applications
	Date, time, and timestamp values that can cause problems in JDBC and SQLJ applications
	Data loss for timestamp data in JDBC and SQLJ applications
	Retrieval of special values from DECFLOAT columns in Java applications
	Use of PreparedStatement.setTimestamp to set values in TIMESTAMP WITH TIME ZONE columns

	Properties for the IBM Data Server Driver for JDBC and SQLJ
	Common IBM Data Server Driver for JDBC and SQLJ properties for all supported database products
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS and IBM Informix
	Common IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix and DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
	IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix

	IBM Data Server Driver for JDBC and SQLJ configuration properties
	Driver support for JDBC APIs
	IBM Data Server Driver for JDBC and SQLJ support for SQL escape syntax
	SQLJ statement reference information
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	Interfaces and classes in the sqlj.runtime package
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface
	sqlj.runtime.Scrollable interface
	sqlj.runtime.AsciiStream class
	sqlj.runtime.BinaryStream class
	sqlj.runtime.CharacterStream class
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.SQLNullException class
	sqlj.runtime.StreamWrapper class
	sqlj.runtime.UnicodeStream class

	IBM Data Server Driver for JDBC and SQLJ extensions to JDBC
	DBBatchUpdateException interface
	DB2BaseDataSource class
	DB2Binder class
	DB2BlobFileReference class
	DB2CallableStatement interface
	DB2ClientRerouteServerList class
	DB2ClobFileReference class
	DB2Connection interface
	DB2ConnectionPoolDataSource class
	DB2DatabaseMetaData interface
	DB2Diagnosable interface
	DB2DataSource class
	DB2Driver class
	DB2ExceptionFormatter class
	DB2FileReference class
	DB2JCCPlugin class
	DB2ParameterMetaData interface
	DB2PooledConnection class
	DB2PoolMonitor class
	DB2PreparedStatement interface
	DB2ResultSet interface
	DB2ResultSetMetaData interface
	DB2RowID interface
	DB2SimpleDataSource class
	DB2Sqlca class
	DB2Statement interface
	DB2SystemMonitor interface
	DB2TraceManager class
	DB2TraceManagerMXBean interface
	DB2Types class
	DB2XADataSource class
	DB2Xml interface
	DB2XmlAsBlobFileReference class
	DB2XmlAsClobFileReference class
	DBTimestamp class

	JDBC differences between versions of the IBM Data Server Driver for JDBC and SQLJ
	Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values
	Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
	SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ
	How to find IBM Data Server Driver for JDBC and SQLJ version and environment information
	Commands for SQLJ program preparation
	sqlj - SQLJ translator
	db2sqljcustomize - SQLJ profile customizer
	db2sqljbind - SQLJ profile binder
	db2sqljprint - SQLJ profile printer

	Chapter 8. Installing the IBM Data Server Driver for JDBC and SQLJ
	Installing the IBM Data Server Driver for JDBC and SQLJ as part of a DB2 installation
	Jobs for loading the IBM Data Server Driver for JDBC and SQLJ libraries
	Environment variables for the IBM Data Server Driver for JDBC and SQLJ
	Customization of IBM Data Server Driver for JDBC and SQLJ configuration properties
	Enabling the DB2-supplied stored procedures used by the IBM Data Server Driver for JDBC and SQLJ
	Values for the WLM environment for IBM Data Server Driver for JDBC and SQLJ stored procedures
	Creation of IBM Data Server Driver for JDBC and SQLJ stored procedures

	DB2Binder utility
	DB2LobTableCreator utility
	Verify the installation of the IBM Data Server Driver for JDBC and SQLJ

	Upgrading the IBM Data Server Driver for JDBC and SQLJ to a new version
	Installing the z/OS Application Connectivity to DB2 for z/OS feature
	Jobs for loading the z/OS Application Connectivity to DB2 for z/OS libraries
	Environment variables for the z/OS Application Connectivity to DB2 for z/OS feature

	Chapter 9. Setting the DB2 for z/OS application compatibility for your JDBC and SQLJ applications
	Chapter 10. Security under the IBM Data Server Driver for JDBC and SQLJ
	User ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	User ID-only security under the IBM Data Server Driver for JDBC and SQLJ
	Encrypted password, user ID, or data security under the IBM Data Server Driver for JDBC and SQLJ
	Kerberos security under the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ trusted context support
	IBM Data Server Driver for JDBC and SQLJ support for SSL
	Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use SSL
	Configuring the Java Runtime Environment to use SSL

	IBM Data Server Driver for JDBC and SQLJ support for certificate authentication
	Security for preparing SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ

	Chapter 11. Java client support for high availability on IBM data servers
	Java client support for high availability for connections to DB2 for Linux, UNIX, and Windows servers
	Configuration of DB2 for Linux, UNIX, and Windows automatic client reroute support for Java clients
	Example of enabling DB2 for Linux, UNIX, and Windows automatic client reroute support in Java applications
	Configuration of DB2 for Linux, UNIX, and Windows workload balancing support for Java clients
	Example of enabling DB2 for Linux, UNIX, and Windows workload balancing support in Java applications
	Operation of automatic client reroute for connections to DB2 for Linux, UNIX, and Windows from Java clients
	Operation of alternate group support for connections to DB2 for Linux, UNIX, and Windows
	Operation of workload balancing for connections to DB2 for Linux, UNIX, and Windows
	Application programming requirements for high availability for connections to DB2 for Linux, UNIX, and Windows servers
	Client affinities for DB2 for Linux, UNIX, and Windows
	Configuration of client affinities for Java clients for DB2 for Linux, UNIX, and Windows connections
	Example of enabling client affinities in Java clients for DB2 for Linux, UNIX, and Windows connections

	Java client support for high availability for connections to IBM Informix servers
	Configuration of IBM Informix high-availability support for Java clients
	Example of enabling IBM Informix high availability support in Java applications
	Operation of automatic client reroute for connections to IBM Informix from Java clients
	Operation of workload balancing for connections to IBM Informix from Java clients
	Application programming requirements for high availability for connections from Java clients to IBM Informix servers
	Client affinities for connections to IBM Informix from Java clients
	Configuration of client affinities for Java clients for IBM Informix connections
	Example of enabling client affinities in Java clients for IBM Informix connections

	Java client direct connect support for high availability for connections to DB2 for z/OS servers
	Configuration of Sysplex workload balancing and automatic client reroute for Java clients
	Example of enabling DB2 for z/OS Sysplex workload balancing and automatic client reroute in Java applications
	Operation of Sysplex workload balancing for connections from Java clients to DB2 for z/OS servers
	Operation of automatic client reroute for connections from Java clients to DB2 for z/OS
	Application programming requirements for high availability for connections from Java clients to DB2 for z/OS servers

	Failover support with IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS

	Chapter 12. JDBC and SQLJ connection pooling support
	Chapter 13. IBM Data Server Driver for JDBC and SQLJ statement caching
	Chapter 14. IBM Data Server Driver for JDBC and SQLJ type 4 connectivity JDBC and SQLJ distributed transaction support
	Example of a distributed transaction that uses JTA methods

	Chapter 15. JDBC and SQLJ global transaction support
	Chapter 16. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ
	DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility
	Examples of using configuration properties to start a JDBC trace
	Example of a trace program under the IBM Data Server Driver for JDBC and SQLJ
	Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support

	Chapter 17. Tracing IBM Data Server Driver for JDBC and SQLJ C/C++ native driver code
	db2jcctrace - Format IBM Data Server Driver for JDBC and SQLJ trace data for C/C++ native driver code

	Chapter 18. System monitoring for the IBM Data Server Driver for JDBC and SQLJ
	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	W
	X
	Z

