
DB2 10 for z/OS

Managing Security

SC19-3496-00

���

DB2 10 for z/OS

Managing Security

SC19-3496-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (December 2011)

This edition applies to DB2 10 for z/OS (product number 5605-DB2), DB2 10 for z/OS Value Unit Edition (product
number 5697-P31), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1982, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . ix
Who should read this information . ix
DB2 Utilities Suite . ix
Terminology and citations. ix
Accessibility features for DB2 10 for z/OS . x
How to send your comments . xi
How to read syntax diagrams . xi

Chapter 1. Getting started with DB2 security . 1
DB2 security solutions . 1
What's new in DB2 10 for z/OS security?. 1
DB2 data access control . 4

ID-based access control within DB2 . 4
Role-based access control within DB2 . 5
Ownership-based access control within DB2 . 6
Access control through multilevel security . 6
Access control external to DB2 . 6

DB2 subsystem access control. 6
Managing access requests from local applications . 7
Managing access requests from remote applications . 7

Data set protection . 8
RACF for data protection . 8
Data encryption . 8

Scenario: Securing data access at Spiffy Computer . 9
Determining security objectives . 9
Securing manager access to employee data . 9
Securing access to payroll operations and management . 13
Managing access privileges of other authorities . 16

Chapter 2. Managing access through authorization IDs and roles 21
Authorization IDs and roles . 22

Authorization IDs . 22
Roles in a trusted context . 23

Privileges and authorities. 23
Explicit privileges . 24
Implicit privileges through object ownership . 30
Administrative authorities . 31
Common DB2 administrative authorities . 42
Utility authorities for DB2 catalog and directory . 44
Privileges by authorization ID and authority . 45

Managing administrative authorities . 51
Separating the SYSADM authority . 52
Migrating the SYSADM authority . 55
Creating roles or trusted contexts with the SECADM authority 57
Altering tables with the system DBADM authority . 58
Accessing data with the DATAACCESS authority. 59
Granting and revoking privileges with the ACCESSCTRL authority 59

Managing explicit privileges . 60
Granting privileges to a role . 60
Granting privileges to the PUBLIC ID . 61
Granting privileges to remote users . 62
Granting privileges through views. 62
Granting privileges with the GRANT statement . 63
Revoking privileges with the REVOKE statement . 68

Managing implicit privileges . 77

© Copyright IBM Corp. 1982, 2011 iii

||

||

||
||
||
||
||
||
||

Managing implicit privileges through object ownership. 77
Managing implicit privileges through plan or package ownership 80
Managing implicit privileges through routines. 87

Retrieving privilege records in the DB2 catalog . 101
Catalog tables with privilege records . 101
Retrieving all authorization IDs or roles with granted privileges 102
Retrieving multiple grants of the same privilege. 103
Retrieving all authorization IDs or roles with the DBADM and system DBADM authorities 103
Retrieving all IDs or roles with access to the same table 104
Retrieving all IDs or roles with access to the same routine 105
Retrieving plans or packages with access to the same table 105
Retrieving privilege information through views . 106

Implementing multilevel security with DB2 . 107
Multilevel security. 107
Mandatory access checking . 111
Implementing multilevel security at the object level . 113
Implementing multilevel security with row-level granularity 115
Restricting access to the security label column . 117
Managing data in a multilevel-secure environment . 118
Implementing multilevel security in a distributed environment 126

Chapter 3. Managing access through RACF 127
Establishing RACF protection for DB2 . 127

Defining DB2 resources to RACF . 127
Permitting RACF access . 129
Managing authorization for stored procedures . 137
Protecting connection requests that use the TCP/IP protocol 146
Establishing Kerberos authentication through RACF . 147

Implementing DB2 support for enterprise identity mapping 148
Configuring the z/OS LDAP server . 149
Setting up RACF for the z/OS LDAP server . 150
Setting up the EIM domain controller . 151
Adding the SAF user mapping plug-in data set to LNKLIST 152

Implementing DB2 support for distributed identity filters 152
Managing connection requests from local applications . 153

Processing of connection requests . 154
Using secondary IDs for connection requests . 155
Processing of sign-on requests . 157
Using secondary IDs for sign-on requests . 158
Using sample connection and sign-on exit routines for CICS transactions 159

Managing connection requests from remote applications . 159
Security mechanisms for DRDA and SNA . 159
Communications database for the server . 161
Enabling change of user passwords . 163
Authorization failure code . 163
Managing inbound SNA-based connection requests . 163
Managing inbound TCP/IP-based connection requests 170
Managing denial-of-service attacks . 173
Preventing SQL injection attacks . 173
Managing outbound connection requests . 174
Translating outbound IDs . 183
Sending passwords or password phrases . 185

Chapter 4. Managing access through row permissions and column masks 189
Row and column access control . 189
Row permission . 190
Column mask . 191
Rules of row and column access control . 192
Creating row permissions . 196
Creating column masks . 198

iv Managing Security

|

||

||

|

||
||
||
||
||
||
||

Modifying column masks to reference UDFs . 200
Using INSERT on tables with row access control . 202
Creating triggers for tables with row and column access control 203

Chapter 5. Managing access through trusted contexts. 205
Trusted contexts . 205
Trusted connections . 206
Defining trusted contexts . 206
Creating local trusted connections . 207
Establishing remote trusted connections by DB2 for z/OS requesters 208
Establishing remote trusted connections to DB2 for z/OS servers 209
Switching users of a trusted connection . 210

Reusing a local trusted connection through the DSN command processor and DB2I 211
Reusing a remote trusted connection by DB2 for z/OS requesters 211
Reusing a remote trusted connection through DB2 for z/OS servers 211
Reusing a local trusted connection through RRSAF . 212
Reusing a local trusted connection through the SQL CONNECT statement 212

Defining external security profiles . 213
Enabling users to perform actions on behalf of others . 213
Performing tasks on objects for other users . 214

Chapter 6. Managing access through data definition control 215
Data definition statements . 215
Data definition control support . 215
Registration tables . 216
Installing data definition control support . 218
Enabling data definition control . 218

Controlling data definition by application name . 219
Controlling data definition by application name with exceptions 220
Controlling data definition by object name . 221
Controlling data definition by object name with exceptions 222

Registering object sets . 224
Disabling data definition control . 225
Managing registration tables and indexes . 225

Creating registration tables and indexes . 225
Naming registration tables and indexes. 226
Dropping registration tables and indexes . 226
Creating table spaces for registration tables . 227
Adding columns to registration tables . 227
Updating registration tables . 227

Chapter 7. Managing access through exit routines 229
Connection routines and sign-on routines . 229

Specifying connection and sign-on routines . 229
Sample connection and sign-on routines . 230
When connection and sign-on routines are taken . 231
Exit parameter list for connection and sign-on routines 231
Authorization ID parameter list for connection and sign-on routines 234
Input values for connection routines. 235
Input values for sign-on routines . 235
Expected output for connection and sign-on routines . 236
Processing in sample connection and sign-on routines . 236
Performance considerations for connection and sign-on routines 238
Debugging connection and sign-on routines . 238
Session variables in connection and sign-on routines . 240

Access control authorization exit routine . 241
Specifying the access control authorization routine . 242
The default access control authorization routine . 243
When access control authorization routine is taken . 243
Considerations for the access control authorization routine 243

Contents v

||
||
||

Parameter list for access control authorization routines 249
Expected output for access control authorization routines 259
Debugging access control authorization routines. 262
Determining whether the access control authorization routine is active 262

RACF access control module . 262

Chapter 8. Protecting data through encryption and RACF 263
Encrypting your data with Secure Socket Layer support . 263

AT-TLS configuration. 263
SSL authentication level . 264
Configuring the DB2 server for SSL . 267
Configuring the DB2 requester for SSL . 268

Protecting data sets through RACF . 269
Adding groups to control DB2 data sets . 269
Creating generic profiles for data sets . 270
Authorizing DB2 IDs to use data set profiles . 271
Enabling DB2 IDs to create data sets . 272

Encrypting your data through DB2 built-in functions . 272
Defining columns for encrypted data . 272
Defining column-level encryption . 273
Defining value-level encryption . 275
Using predicates for encrypted data . 277
Optimizing performance of encrypted data . 277

Chapter 9. Auditing access to DB2 . 281
Determining active security measures . 281
DB2 audit trace. 282

Authorization IDs traced by auditing . 282
Audit classes . 283
Audit trace reports . 284
Audit trace records . 285
Limitations of the audit trace . 285
Starting the audit trace . 286
Stopping the audit trace . 286
Collecting audit trace records . 287
Formatting audit trace records. 287
Auditing in a distributed data environment . 288

DB2 audit policy . 288
Audit category . 288
Creating and activating audit policies . 291
Auditing the use of an administrative authority . 292
Auditing tables without specifying the AUDIT clause . 293

Additional sources of audit information . 294
Determining ID privileges and authorities . 294
Auditing specific IDs or roles . 295
Auditing specific tables . 295
Ensuring data accuracy and integrity . 296

Ensuring data presence and uniqueness . 296
Protecting data integrity . 297
Tracking data changes . 298
Checking for lost and incomplete transactions . 298

Ensuring data consistency . 298
Using referential integrity for data consistency . 299
Using locks for data consistency . 299
Checking data consistency . 300

Information resources for DB2 for z/OS and related products 303

How to obtain DB2 information. 309

vi Managing Security

||

||
||
||
||
||

How to use the DB2 library . 311

Notices . 315
Programming Interface Information . 317
Trademarks . 317

Glossary . 319

Index . 365

Contents vii

viii Managing Security

About this information

This information provides guidance that you can use to manage security in a DB2®

for z/OS® environment.

This information assumes that your DB2 subsystem is running in Version 10
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise. In Versions 8 and 9, most utility
functions were available in conversion mode. However, for Version 10, most utility
functions work only in new-function mode.

Who should read this information
This information is primarily intended for security, system, and database
administrators. It assumes that the user is familiar with the basic concepts and
facilities of DB2 for z/OS (DB2), z/OS, RACF®, and Structured Query Language
(SQL).

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS

© Copyright IBM Corp. 1982, 2011 ix

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.ugref/src/tpc/db2z_utlpackaging.htm

v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 10 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 10 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 10 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 10 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 10 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 10 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://publib.boulder.ibm.com/infocenter/imzic

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

x Managing Security

http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/able

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can send comments from the web. Visit the DB2 for z/OS - Technical
Resources website at:

http://www.ibm.com/support/docview.wss?rs=64&uid=swg27011656

This website has an online reader comment form that you can use to send
comments.

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://publib.boulder.ibm.com/infocenter/imzic.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

About this information xi

http://www.ibm.com/support/docview.wss?rs=64&uid=swg27011656
http://publib.boulder.ibm.com/infocenter/imzic

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xii Managing Security

Chapter 1. Getting started with DB2 security

DB2 security refers to the protection of sensitive data and system resources by
controlling access to DB2 objects, subsystems, and other assets.

DB2 security is set through a security plan, implemented through privilege and
authority management, and reinforced through the audit of accesses to protected
data. A security plan defines the security objectives of your organization and
specifies the policies and techniques that you use to meet these objectives. A
security audit traces all data access and determines whether your security plan
works as designed and implemented.

If you are new to DB2 security, skim through the succeeding topics for a brief
overview of the techniques that you can use to manage access to your DB2 and
protect your data before reading the scenario.

DB2 security solutions
With each new release, DB2 gets faster and more secure.

Over the years, DB2 recognizes and addresses the following security problems:
v Privilege theft or mismanagement
v Application or application server tampering
v Data or log tampering
v Storage media theft
v Unauthorized access to objects

DB2 offers the following security solutions to address the problems:
v Authentication
v Authorization
v Data integrity
v Confidentiality
v System integrity
v Audit

What's new in DB2 10 for z/OS security?

DB2 10 for z/OS provides critical enhancements to security and auditing. These
enhancements strengthen DB2 security in the z/OS environment.

Increased granularity in DB2 administrative authorities

Any user (authorization ID or role) with the SYSADM authority can access data
from any table in an entire DB2 subsystem. Granting the SYSADM authority to too
many users may introduce security risks. You can minimize these risks by granting
the SYSADM authority to as few users as possible while taking advantage of the
following new DB2 administrative authorities. These authorities help improve the
granularity in DB2 administrative authorities and meet the increasingly demanding
security needs of your business.

© Copyright IBM Corp. 1982, 2011 1

|

|
|

|

|
|
|
|
|
|
|

SECADM
The SECADM authority can manage security-related objects in DB2 and
control access to all database resources. It, however, doesn't have any
inherent privilege to access any user data in those databases.

ACCESSCTRL
The ACCESSCTRL authority allows you to grant explicit privileges to
authorization IDs or roles by issuing SQL GRANT statements and revoke
privileges by issuing SQL REVOKE statements with the BY clause. It does
not allow you to grant or revoke the CREATE_SECURE_OBJECT privilege
or the system DBADM, DATAACCESS, and ACCESSCTRL authorities.

DATAACCESS
The DATAACCESS authority allows you to access data in tables, views,
and materialized query tables in a DB2 subsystem. It also allows you to
execute plans, packages, functions, and procedures.

System DBADM
The system DBADM authority allows an administrator to manage all
databases in a DB2 subsystem. By default, the system DBADM has all the
privileges of the DATAACCESS and ACCESSCTRL authorities. If you do
not want a user (an authorization ID or role) with the system DBADM
authority to grant any explicit privileges, you can specify the WITHOUT
ACCESSCTRL clause in the GRANT statement when you grant the
authority. If you do not want a user with the system DBADM authority to
access any user data in the databases, you can specify the WITHOUT
DATAACCESS clause in the GRANT statement when you grant the
authority. If necessary, you can still grant explicit privileges (i.e., SELECT)
to the system DBADM user to access data or perform grants.

SQLADM
The SQLADM authority allows you to issue the SQL EXPLAIN statements,
execute the PROFILE commands, run the RUNSTATS and MODIFY
STATISTICS utilities on all user databases, and execute system-defined
routines, such as stored procedures or functions, and any packages that are
executed within the routines.

Separation of DB2 administrative authorities

The separation of DB2 administrative authorities allows you to comply with the
increasingly complex governance or compliance regulations of your business. It
also helps reduce the potential security risks that are caused by the general use of
the SYSADM authority. Separating the administrative tasks into multiple auditable
authorities prevents a single user with the SYSADM authority from having control
over several phases of a task and from committing any security fraud. Both DB2
for z/OS and DB2 for Linux, UNIX, and Windows provides the same separation of
DB2 administrative authorities.

Depending on how you set the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 during installation or migration, you can separate DB2 security
administration from system administration.

If you set SEPARATE_SECURITY to YES, the SYSADM authority can no longer
control access or manage security-related objects (i.e., roles, trusted contexts, row
permissions, and column masks). It cannot grant or revoke privileges that are
granted by others, either. In addition, the SYSCTRL authority can no longer
manage roles or grant or revoke privileges that are granted by others. Instead, the

2 Managing Security

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

new SECADM authority will manage all security-related objects and control access
to all databases even though it cannot access any data stored in the databases.

If you set SEPARATE_SECURITY to NO (which is the default), the SYSADM
authority retains all the existing privileges and responsibilities and gets implicit
privileges of the SECADM authority. In other words, the SYSADM authority
continues to be the security administrator and manage all security-related objects,
perform grants, and revoke privileges that are granted by others. In addition, it
gets implicit insert, update, delete access on the SYSIBM. SYSAUDITPOLICIES
table and is able to set CURRENT SQLID and BIND OWNER to any value.

Setting SEPARATE_SECURITY to NO also allows the SYSCTRL authority to get
most of the implicit privileges of the ACCESSCTRL authority. SYSCTRL can
manage roles, perform certain grants, and revoke privileges that are granted by
others, and set BIND OWNER to any value.

EXPLAIN system privilege

The EXPLAIN system privilege provides you the ability to issue EXPLAIN,
PREPARE, and DESCRIBE statements without requiring the privilege to execute
the statements. It allows you to validate your applications and SQL syntaxes,
without requiring access to data, before putting them into production.

Row and column access control

Row and column access control is an SQL security solution that enables you to
manage access to a table at the level of a row, a column, or both. It allows
administrators to establish security policies within DB2 and enforce security
controls on all applications and tools (except utilities) that access data in DB2. It
enables you to separate applications from security implementation and comply
with new security regulations without having to change the existing applications.
In addition, row and column access control helps prevent the use of SQL to bypass
views or the SQL injection attacks on a DB2 subsystem.

You can implement row access control through row permissions and column access
control through column masks.

Row permission
A row permission is a database object that describes a specific row access
control rule for a table. In the form of an SQL search condition, the rule
specifies the conditions under which a user, group, or role can access the
rows of data in the table.

Column mask
A column mask is a database object that describes a specific column access
control rule for a column. In the form of an SQL CASE expression, the rule
specifies the conditions under which a user, group, or role can receive the
masked values returned for a column.

Audit policy

An audit policy is a set of criteria that determines the categories to be audited. It
helps you configure and control the audit requirements of your security policies
and to monitor data access by applications and individual users (authorization IDs
or roles), including administrative authorities. You can create different audit
policies to address the different security needs of your business. For example, you

Chapter 1. Getting started with DB2 security 3

|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

can create and activate an audit policy to audit how a DB2 administrative
authority is used.

DB2 data access control

Access to data can originate from users through interactive terminal sessions, local
or remote stored procedures, utilities, or IMS or CICS transactions. It can also
originate from application programs that run in batch mode, remote applications
that use DDF or CLI and JDBC drivers, or web-based applications supported by
WebSphere® Application Servers.

Given the variety of access originators, the term process is used to represent all
access to data. For example, within a DB2 subsystem, a process can be a primary
authorization ID, one or more secondary IDs, a role, or an SQL ID.

A process can gain access to DB2 data through several routines. As shown in the
following diagram, DB2 provides different ways for you to control access from all
but the data set protection route.

One of the ways that DB2 controls access to data is by using authorization IDs or
roles. DB2 relies on IDs or roles to determine whether to allow or prohibit certain
processes. DB2 assigns privileges and authorities to IDs or roles so that the owning
users can take actions on objects. In this sense, it is an ID or a role, not a user, that
owns an object. In other words, DB2 does not base access control on a specific user
or person who need access. For example, if you allow other users to use your IDs,
DB2 recognizes only the IDs, not the people or programs that use them.
Related concepts

“DB2 subsystem access control” on page 6

ID-based access control within DB2
DB2 provides a wide range of granularity when you grant privileges to an ID
within DB2. You can grant privileges and authorities to groups, secondary IDs, or
to roles.

Figure 1. DB2 data access control

4 Managing Security

|
|

|
|
|
|
|

For example, you could, separately and specifically, grant to an ID the privilege to
retrieve data from the table, to insert rows, to delete rows, or to update specific
columns. By granting or not granting privileges on views of the table, you can
specify exactly what an ID can do to the table, down to the granularity of specific
fields. You can also grant to an ID specific privileges on databases, plans, packages,
and the entire DB2 subsystem. If you grant or revoke privileges on a procedure or
procedure package, all versions of that procedure or procedure package have those
privileges.

DB2 also defines sets of related privileges, called administrative authorities. When
you grant one of the administrative authorities to a person's ID, that person has all
of the privileges that are associated with that administrative authority. You can
efficiently grant many privileges by granting one administrative authority.

You can also efficiently grant multiple privileges by granting the privilege to
execute an application plan or a package. When an ID executes a plan or package,
the ID implicitly uses all of the privileges that the owner needed when binding the
plan or package. Therefore, granting to an ID the privilege to execute a plan or
package can provide a finely detailed set of privileges and can eliminate the need
to grant other privileges separately.

Example: Assume that an application plan issues the INSERT and SELECT
statements on several tables. You need to grant INSERT and SELECT privileges
only to the plan owner. However, any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements by executing the plan. You do not need to explicitly grant the INSERT
and SELECT privileges to the ID.

Recommendation: Instead of granting privileges to many primary authorization
IDs, consider associating each of those primary IDs with the same secondary ID or
a role if running in a trusted context. Then grant the privileges to the secondary ID
or role. You can associate a primary ID with one or more secondary IDs or roles
when the primary ID gains access to the DB2 subsystem. DB2 makes the
association within an exit routine. The assignment of privileges to the secondary ID
or role is controlled entirely within DB2.
Related concepts

“Role-based access control within DB2”
“Ownership-based access control within DB2” on page 6

Role-based access control within DB2
A privilege enables the user of an ID to execute certain SQL statements or to access
the objects of another user. A role groups the privileges together so that they can be
simultaneously granted to and revoked from multiple users.

A role is a database object that is created in DB2. It is defined through the SQL
CREATE ROLE statement and a trusted connection. A role cannot be used outside
of a trusted context unless the user in a role grants privileges to an ID.

Chapter 1. Getting started with DB2 security 5

Related concepts

“ID-based access control within DB2” on page 4
“Ownership-based access control within DB2”

Ownership-based access control within DB2
Object ownership carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

If you want to prevent users from obtaining implicit privileges from object
ownership, you can make a DB2 role the owner of the object. To do this, you need
to create the object in a trusted context that is defined with the ROLE AS OBJECT
OWNER AND QUALIFIER clause.
Related concepts

“ID-based access control within DB2” on page 4
“Role-based access control within DB2” on page 5
Related tasks

“Changing object ownership” on page 79

Access control through multilevel security
Multilevel security, also known as label-based access control, allows you to classify
objects and users with security labels. The security labels are based on hierarchical
security levels and non-hierarchical security categories.

DB2 multilevel security solution utilizes the multilevel security feature in the z/OS
operating system. It prevents unauthorized users from accessing information at a
higher classification than their authorization. It also prevents users from
declassifying information.

Using multilevel security with row-level granularity, you can define strong security
for DB2 objects and perform security checks, including row-level security checks.
Row-level security checks allow you to control which users have authorization to
view, modify, or perform other actions on specific rows of data.
Related reference

“Implementing multilevel security with DB2” on page 107

Access control external to DB2
You can control access to DB2 by using a DB2-supplied exit routine or an exit
routine that you write.

If your installation uses one of the access control authorization exit routines, you
can use it to control authorization and authentication checking, instead of using
other techniques and methods.
Related concepts

“Access control authorization exit routine” on page 241

DB2 subsystem access control
You can control whether a process can gain access to a specific DB2 subsystem
from outside of DB2. A common approach is to grant access through RACF or a
similar security system.

6 Managing Security

|
|
|
|

A RACF system provides several advantages. For example, you can use RACF for
the following objectives:
v Identify and verify the identifier that is associated with a process
v Connect those identifiers to RACF group names
v Log and report unauthorized attempts to access protected resources

Profiles for access to DB2 from various environments and DB2 address spaces are
defined as resources to RACF. Each request to access DB2 is associated with an ID.
RACF determines whether the ID is authorized for DB2 resources. If the ID is
authorized, RACF permits access to DB2.

You can also consider using the security capabilities of IMS or CICS to manage
access to DB2:
v IMS terminal security lets you limit the entry of a transaction code to a particular

logical terminal (LTERM) or group of LTERMs in the system. To protect a
particular program, you can authorize a transaction code that is to be entered
only from any terminal on a list of LTERMs. Alternatively, you can associate
each LTERM with a list of the transaction codes that a user can enter from that
LTERM. IMS then passes the validated LTERM name to DB2 as the initial
primary authorization ID

v CICS transaction code security works with RACF to control the transactions and
programs that can access DB2. Within DB2, you can use the ENABLE and
DISABLE options of the bind operation to limit access to specific CICS
subsystems.

Related concepts

“DB2 data access control” on page 4

Managing access requests from local applications
If you request access to a local DB2 subsystem, your request is often subject to
several checks before you are granted access.

If you run DB2 under TSO and use the TSO logon ID as the DB2 primary
authorization ID, TSO verifies your ID when you log on. When you gain access to
DB2, you can use a self-written or IBM-supplied DSN3@ATH exit routine that is
connected to DB2 to perform the following actions:
v Check the authorization ID again
v Change the authorization ID
v Associate the authorization ID with secondary IDs

After these actions are performed, the authorization ID can use the services of an
external security system again.

Managing access requests from remote applications
You can require remote users to pass several access checks before they reach DB2.
You can use RACF or a similar security subsystem to control access from a remote
location.

While controlling access from a remote locations, RACF can do the following:
v Verify an ID that is associated with a remote attachment request and check the

ID with a password
v Generate PassTickets on the sending side. PassTickets can be used instead of

passwords. A PassTicket lets a user gain access to a host system without sending
the RACF password across the network.

Chapter 1. Getting started with DB2 security 7

v Verify a Kerberos ticket if your distributed environment uses Kerberos to
manage user access and perform user authentication

You can also control access authentication by using the DB2 communications database
(CDB). The CDB is a set of tables in the DB2 catalog that are used to establish
conversations with remote database management systems. The CDB can translate
IDs before it sends them to the remote system.

You can use the RACF DSNR general resource class for DB2 for access
authentication. With RACF DSNR, you can control access to the DB2 server by the
IDs that are defined to the ssnm.DIST profile with READ. In addition, you can use
the port of entry (POE) checking by RACF and the z/OS communications server to
protect against unauthorized remote connections to DB2.

Data set protection
The data in a DB2 subsystem is contained in data sets. The data sets can be
accessed without going through DB2. To protect your data, you need to control all
access routes by using different access control methods and mechanisms. For
example, you can determine who can use offline utilities by assigning appropriate
access.

RACF for data protection
If you use RACF, or an equivalent security system, to control access to DB2,
consider controlling access to your data sets.

If you want to use RACF for data set protection outside of the DB2 subsystem,
define RACF profiles for data sets and permit access to the data sets for certain
DB2 IDs.

Data encryption
If your data is very sensitive, consider encrypting the data. Encryption protects
against unauthorized access to data sets and to backup copies outside of the DB2
subsystem.

You have the following encryption options for protecting sensitive data:
v IBM System Storage® DS8000® support for data encryption with the IBM Full

Disk Encryption drives
v IBM System Storage TS1130 encryption solution
v Secure Socket Layer (SSL) protocol through the z/OS Communications Server IP

Application Transparent Transport Layer (AT-TLS) service
v IBM Encryption Facility for z/OS
v Advanced Encryption Standard (AES) for encrypting userids and passwords

over network connections
v DB2 edit procedures or field procedures, which can use the Integrated

Cryptographic Service Facility (ICSF)
v IBM Data Encryption for IMS and DB2 Databases tool
v Encryption tools and facilities that used outside of DB2

You can consider compressing your data sets before encrypting the data. Data
compression is not a substitute for encryption. In some cases, the compression
method does not actually shorten the data. In those cases, the data is left
uncompressed and readable. If you encrypt and compress your data, compress it

8 Managing Security

first. After you obtain the maximum compression, encrypt the result. When you
retrieve your data, first decrypt the data. After the data is decrypted, decompress
the result.

Scenario: Securing data access at Spiffy Computer
This scenario describes a simple approach to securing local and remote access to
the sensitive data of employees, payroll operations, and payroll management at
Spiffy Computer Company. It shows how to enforce a security plan by using
authorization IDs, roles, privileges, authorities, and the audit trace.

You should base your security plan, techniques, and procedures on your actual
security objectives; do not view this sample security plan as an exact model for
your security needs. Instead, use it to understand various possibilities and address
problem areas that you might encounter when you implement your security plan.

Determining security objectives
An important step in defining and implementing an effective security plan is to
determine your security objectives.

Suppose that the Spiffy Computer Company management team determines the
following security objectives:
v Managers can see, but not update, all of the employee data for members of their

own departments.
v Managers of managers can see all of the data for employees of departments that

report to them.
v The employee table resides at a central location. Managers at remote locations

can query the data in the table.
v The payroll operations department makes changes to the employee table.

Members of the payroll operations department can update any column of the
employee table except for the salary, bonus, and commission columns.

v Members of payroll operations can update any row except for rows that are for
members of their own department. Because changes to the table are made only
from a central location, distributed access does not affect payroll operations.

v Changes to the salary, bonus, and commission columns are made through a
process that involves the payroll update table. When an employee's
compensation changes, a member of the payroll operations department can
insert rows in the payroll update table. For example, a member of the payroll
operations department might insert a row in the compensation table that lists an
employee ID and an updated salary. Next, the payroll management group can
verify inserted rows and transfer the changes to the employee table.

v No one else can see the employee data. The security plan cannot fully achieve
this objective because some ID must occasionally exercise SYSADM authority.
While exercising SYSADM authority, an ID can retrieve any data in the system.
The security plan uses the trace facility to monitor the use of that power.

Securing manager access to employee data
As a security measurement, the Spiffy Computer Company sets clear restrictions
on how its managers can access employee data.

Specifically, it imposes the following security restrictions on managers:
v Managers can retrieve, but not change, all information in the employee table for

members of their own departments.

Chapter 1. Getting started with DB2 security 9

v Managers of managers have the same privileges for their own departments and
for the departments that directly report to them.

Creating views of employee data
The Spiffy security planners decide to use views for implementing the restrictions
on managers' access to employee data.

To create a view of employee data for every employee that reports to a manager,
the Spiffy security planners perform the following steps:
1. Add a column that contains manager IDs to DSN8910.DEPT, as shown in the

following statement:
ALTER TABLE DSN81010.DEPT

ADD MGRID CHAR(8) FOR SBCS DATA NOT NULL WITH DEFAULT;

2. Create a view that selects employee information about employees that work for
a given manager, as shown in the following statement:
CREATE VIEW DEPTMGR AS

SELECT * FROM DSN81010.EMP, DSN81010.DEPT
WHERE WORKDEPT = DEPTNO
AND MGRID = USER;

3. Ensure that every manager has the SELECT privilege on the view.

Granting managers the SELECT privilege
The security planners for Spiffy Computer Company can take an "individual"
approach or a "functional" approach when they grant the SELECT privilege on a
view to managers.

With an individual approach, they can grant privileges to individual IDs and
revoke them if the user of the ID leaves the company or transfers to another
position. With a functional approach, they can create RACF groups, and grant
privileges to the group IDs, with the intention of never revoking them. When an
individual ID needs those privileges, connect that ID to the group; disconnect the
ID when its user leaves or transfers.

The Spiffy security planners know that the functional approach is usually more
convenient in the following situations:
v Each function, such as the manager function, requires many different privileges.

When functional privileges are revoked from one user, they must be granted to
another user.

v Several users need the same set of privileges.
v The privileges are given with the grant option, or the privileges let users create

objects that must persist after their original owners leave or transfer. In both
cases, revoking the privileges might not be appropriate. The revokes cascade to
other users. To change ownership, you might need to drop objects and re-create
them.

Some of the Spiffy requirements for securing manager access suggest the functional
approach. However, in this case, the function needs only one privilege. The
privilege does not carry the grant option, and the privilege does not allow new
objects to be created.

Therefore, the Spiffy security planners choose the individual approach, and plan to
re-examine their decision later. Spiffy security planners grant all managers the
SELECT privilege on the views for their departments.

10 Managing Security

Example: To grant the SELECT privilege on the DEPTMGR view to the manager
with ID EMP0060, the planners use the following GRANT statement:
GRANT SELECT ON DEPTMGR TO EMP0060;

Managing distributed access
Some Spiffy managers must use views to query data in the central employee table
from remote locations. The security plan must ensure that this type of distributed
access is secure. Therefore, security administrators must implement a sound plan
for distributed access.

Planning for distributed access:

The Spiffy security planners need to determine how the managers can securely
access employee data in a distributed environment.

To secure distributed access to employee data, the Spiffy security planners must
address the following questions:
v Which IDs should hold privileges on which views?
v How do the central location and the remote locations divide security

responsibilities for IDs?

The Spiffy security planners answer those questions with the following decisions:
v IDs that are managed at the central location hold privileges on views for

departments that are at remote locations. For example, the ID MGRD11 has the
SELECT privilege on the view DEPTD11.

v If the manager of Department D11 uses a remote system, the ID at that system
must be translated to MGRD11. Then a request is sent to the central system. All
other IDs are translated to CLERK before they are sent to the central system.

v The communications database (CDB) manages the translated IDs, like MGRD11.
v An ID from a remote system must be authenticated on any request to the central

system.

Implementing distributed access at the central server:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the central server location.

The following actions must occur at the central server location:
v The central DB2 subsystem must authenticate every incoming ID with RACF.
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES in the CDB; the entry in the LUNAME column identifies the
LU name of every remote location. The entry must specify that connections must
be verified.
Example: The following table shows an entry in SYSIBM.LUNAMES for
LUREMOTE.

Table 1. The SYSIBM.LUNAMES table at the central location

LUNAME USERNAMES SECURITY_IN ENCRYPTPSWDS

LUREMOTE blank V N

The value of V for SECURITY_IN indicates that incoming remote connections
must include verification. The value of N for ENCRYPTPSWDS indicates that
passwords are not in internal RACF encrypted format.

Chapter 1. Getting started with DB2 security 11

The security plan treats all remote locations alike, so it does not require
encrypted passwords. The option to require encrypted passwords is available
only between two DB2 subsystems that use SNA connections.

v For TCP/IP connections, the Spiffy security planners must set the TCP/IP
ALREADY VERIFIED field of installation panel DSNTIP5 to NO. This setting
ensures that the incoming requests that use TCP/IP are not accepted without
authentication.

v The Spiffy security planners must grant all privileges and authorities that are
required by the manager of Department D11 to the ID, MGRD11. The security
planners must grant similar privileges to IDs that correspond to the remaining
managers.

Implementing distributed access at remote locations:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the remote locations.

The following actions must occur at the remote locations to enable distributed
access for the Spiffy security plan:
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES for the LU name of the central location. The entry must
specify an outbound ID translation for attachment requests to that location.
Example: The following table shows an entry in SYSIBM.LUNAMES for
LUCENTRAL.

Table 2. The SYSIBM.LUNAMES table at the remote location

LUNAME USERNAMES SECURITY_OUT

LUCENTRAL O P

The value of O for USERNAMES indicates that translation checking is
performed on outbound IDs, but not on inbound IDs. The value of P for
SECURITY_OUT indicates that outbound connection requests contain a user
password and a RACF PassTicket.

v For TCP/IP connections, the Spiffy security planners must include an entry in
table SYSIBM.IPNAMES for the LU name that is used by the central location.
The content of the LUNAME column is used to generate RACF PassTickets. The
entry must specify outbound ID translation for requests to that location.
Example: The following table shows an entry in SYSIBM.IPNAMES for
LUCENTRAL.

Table 3. The SYSIBM.IPNAMES table at the remote location

LINKNAME USERNAMES SECURITY_OUT IPADDR

LUCENTRAL R central.vnet.ibm.com

v The Spiffy security planners must include entries in table SYSIBM.USERNAMES
to translate outbound IDs.
Example: The following table shows two entries in SYSIBM.USERNAMES.

Table 4. The SYSIBM.USERNAMES table at the remote location

TYPE AUTHID LINKNAME NEWAUTHID

O MEL1234 LUCENTRAL MGRD11

O blank LUCENTRAL CLERK

MEL1234 is translated to MGRD11 before it is sent to the LU that is specified in

12 Managing Security

the LINKNAME column. All other IDs are translated to CLERK before they are
sent to that LU.

Exception: For a product other than DB2 for z/OS, the actions at the remote
location might be different. If you use a different product, check the documentation
for that product. The remote product must satisfy the requirements that are
imposed by the central subsystem.

Auditing manager access
The Spiffy payroll data is extremely sensitive. The security plan requires the audit
trace to be automatically started for all classes whenever DB2 is started.

To ensure that an audit record exists for every access to the employee table, the
Spiffy security planners create an audit policy for the employee table. Every week,
the security planners scan the records and determine the number of accesses by
each manager.

The report highlights any number of accesses outside an expected range. The
Spiffy system operator makes a summary of the reports every two months, and
scans it for unusual patterns of access. A large number of accesses or an unusual
pattern might reveal use of a manager's logon ID by an unauthorized employee.
Related concepts

Chapter 9, “Auditing access to DB2,” on page 281
“DB2 audit policy” on page 288

Securing access to payroll operations and management
As a security measurement, the Spiffy security plan sets clear restrictions on how
members of the payroll operations department access and handle sensitive payroll
information.

The plan imposes the following restrictions on members of the payroll operations
department:
v Members of the payroll operations department can update any column of the

employee table except for SALARY, BONUS, and COMM.
v Members of payroll operations can update any row except for rows that are for

members of their own department.

Because changes to the table are made only from the central location, distributed
access does not affect payroll operations.

Creating views of payroll operations
The Spiffy security planners decide to use views for implementing the security
objectives for members of the payroll operations department.

The PAYDEPT view shows all the columns of the employee table except for job,
salary, bonus, and commission. The view does not show the rows for members of
the payroll operations department.

Example: The WORKDEPT value for the payroll operations department is P013.
The owner of the employee table uses the following statement to create the
PAYDEPT view:

Chapter 1. Getting started with DB2 security 13

|

|

CREATE VIEW PAYDEPT AS
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,

PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE
FROM DSN81010.EMP
WHERE WORKDEPT<>’P013’

WITH CHECK OPTION;

The CHECK OPTION ensures that every row that is inserted or updated through
the view conforms to the definition of the view.

A second view, the PAYMGR view, gives Spiffy payroll managers access to any
record, including records for the members of the payroll operations department.

Example: The owner of the employee table uses the following statement to create
the PAYMGR view:
CREATE VIEW PAYMGR AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE

FROM DSN81010.EMP
WITH CHECK OPTION;

Neither PAYDEPT nor PAYMGR provides access to compensation amounts. When
a row is inserted for a new employee, the compensation amounts remain null. An
update process can change these values at a later time. The owner of the employee
table creates, owns, and grants privileges on both views.

Securing compensation accounts with update tables
The Spiffy security plan does not allow members of payroll operations to update
compensation amounts directly. Instead, a separate payroll update table contains
the employee ID, job, salary, bonus, and commission.

Members of payroll operations make all job, salary, and bonus changes to the
payroll update table, except those for their own department. After they verify the
prospective changes, the managers of payroll operations run an application
program. The program reads the payroll update table and makes the
corresponding changes to the employee table. Only the payroll update program
has the privilege of updating job, salary, and bonus in the employee table.

The Spiffy Computer Company calculates commission amounts separately by using
a complicated formula. The formula considers the employee's job, department,
years of service with the company, and responsibilities for various projects. The
formula is embedded in the commission program, which is run regularly to insert
new commission amounts in the payroll update table. The plan owner must have
the SELECT privilege on the employee table and other tables to run the
commission program.

Securing compensation updates with other measures
By separating potential salary changes into the payroll update table, the Spiffy
security planners allow payroll management to verify changes before they go into
effect.

At Spiffy Computer Company, managers check the changes against a written
change request that is signed by a required level of management. The Spiffy
security planners consider that check to be the most important control on salary
updates, but the plan also includes the following controls:

14 Managing Security

v The employee ID in the payroll update table is a foreign key column that refers
to the employee ID in the employee table. Enforcing the referential constraint
prevents an employee ID from being changed to an invalid value.

v The employee ID in the payroll update table is also a primary key for that table.
Therefore, the values in the employee ID column must be unique. Because of
enforced uniqueness, every change that is made for any one employee during a
given operating period must appear in the same row of the table. No two rows
can carry conflicting changes.

The Spiffy security plan documents an allowable range of salaries, bonuses, and
commissions for each job level. To keep the values within the allowable ranges, the
Spiffy security planners use table check constraints for the salaries, bonuses, and
commissions. The planners use this approach because it is both simple and easy to
control.

In a similar situation, you might also consider the following ways to ensure that
updates and inserts stay within certain ranges:
v Keep the ranges in a separate DB2 table. To verify changes, query the payroll

update table and the table of ranges. Retrieve any rows for which the planned
update is outside the allowed range.

v Build the ranges into a validation routine. Apply the validation routine to the
payroll update table to automatically reject any insert or update that is outside
the allowed range.

v Embody the ranges in a view of the payroll table, using WITH CHECK
OPTION, and make all updates to the view. The ID that owns the employee
table also owns the view.

v Create a trigger to prevent salaries, bonuses, and commissions from increasing
by more than the percent that is allowed for each job level.

Granting privileges to payroll operations and management
The Spiffy security plan strongly suggests the functional approach for the payroll
operations department.

The functional approach meets the security needs of the payroll operations for the
following reasons:
v Payroll operations members require several privileges, including the SELECT,

INSERT, UPDATE, and DELETE privileges on the PAYDEPT view.
v Several members of the department require the same set of privileges.
v If members of the department leave, others are hired or transferred to replace

the departing members.

Therefore, the security plan calls for the creation of two RACF groups, with one for
the payroll operations and another for the payroll management.

Creating a RACF group for payroll operations:

The Spiffy security plan calls for the creation of a RACF group for the payroll
operations department. DB2USER can define the group and retain its ownership,
or it can assign the ownership to an ID that is used by payroll management.

The owner of the employee table can grant the privileges that the group requires.
The owner grants all required privileges to the group ID, with the intent not to
revoke them. The primary IDs of new members of the department are connected to

Chapter 1. Getting started with DB2 security 15

the group ID, which becomes a secondary ID for each of them. The primary IDs of
members who leave the department are disconnected from the group ID.

Example: The following statement grants the SELECT, INSERT, UPDATE, and
DELETE privileges on the PAYDEPT view to the payroll operations group ID
PAYOPS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYDEPT TO PAYOPS;

This statement grants the privileges without the GRANT OPTION to keep
members of payroll operations from granting privileges to other users.

Creating a RACF group for payroll management:

The Spiffy payroll managers require different privileges and a different RACF
group ID. The security planners add a RACF group for payroll managers and
name it PAYMGRS.

The security planners associate the payroll managers' primary IDs with the
PAYMGRS secondary ID. Next, privileges on the PAYMGR view, the compensation
application, and the payroll update application are granted to PAYMGRS. The
payroll update application must have the appropriate privileges on the update
table.

Example: The following statement grants the SELECT, INSERT, UPDATE, and
DELETE privileges on the PAYMGR view to the payroll managers' group ID
PAYMGRS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYMGR TO PAYMGRS;

Example: The following statement grants the EXECUTE privilege on the
compensation application:
GRANT EXECUTE ON PLAN COMPENS TO PAYMGRS;

Auditing payroll operations and management
You can create an audit policy for the payroll update table to audit payroll
operation and management activities.

The audit trace records the number of accesses by the payroll operations and
payroll management groups. The Spiffy security planners scan the reports of
payroll access for large numbers or unusual patterns of access.
Related concepts

Chapter 9, “Auditing access to DB2,” on page 281
“DB2 audit policy” on page 288

Managing access privileges of other authorities
In addition to the privileges for the managers and the payroll operation and
management personnel, the security plan considers the privileges for other roles.

Managing access by the DBADM authority
An ID with the DBADM authority on a database has many privileges on that
database and its tables. These privileges include the SELECT, INSERT, DELETE,
UPDATE, and ALTER statements on any table in the database. They also include
the CREATE and DROP statements on indexes for those tables.

16 Managing Security

|
|

|

For security reasons, the Spiffy security planners prefer not to grant all of the
privileges that come with DBADM authority on DSN8D10A. DSN8D10A is the
database that holds the employee table and the payroll update table.

The Spiffy security planners prefer to grant DBCTRL authority on the database
because granting DBCTRL authority does not expose as many security risks as
granting DBADM authority. DBCTRL authority allows an ID to support the
database without allowing the ID to retrieve or change the data in the tables.
However, database DSN8D10A contains several additional tables. These additional
tables require some of the privileges that are included in DBADM authority but
not included in DBCTRL authority.

The Spiffy security planners decide to compromise between the greater security of
granting DBCTRL authority and the greater flexibility of granting DBADM
authority. To balance the benefits of each authority, the Spiffy security planners
create an administrative ID with some, but not all of the DBADM privileges. The
security plan calls for a RACF group ID with the following authorities and
privileges:
v DBCTRL authority over DSN8D81A
v The INDEX privilege on all tables in the database except the employee table and

the payroll update table
v The SELECT, INSERT, UPDATE, and DELETE privileges on certain tables,

excluding the employee table and the payroll update table

An ID with SYSADM authority grants the privileges to the group ID.

In a similar situation, you also might consider putting the employee table and the
payroll update table in a separate database. Then you can grant DBADM authority
on DSN8D10A, and grant DBCTRL authority on the database that contains the
employee table and the payroll update table.
Related reference

“System DBADM” on page 40
“DBADM” on page 38

Managing access by the SYSADM authority
An ID with SYSADM authority can access data from any table in the entire DB2
subsystem, including the employee table and the payroll update table. The Spiffy
security planners want to minimize the security risk by granting the SYSADM
authority to as few users as possible.

The planners know that the subsystem might require SYSADM authority only for
certain tasks and only for relatively short periods. They also know that the
privileges that are associated with the SYSADM authority give an ID control over
all of the data in a subsystem.

To limit the number of users with SYSADM authority, the Spiffy security plan
grants the authority to DB2OWNER, the ID that is responsible for DB2 security.
That does not mean that only IDs that are connected to DB2OWNER can exercise
privileges that are associated with SYSADM authority. Instead, DB2OWNER can
grant privileges to a group, connect other IDs to the group as needed, and later
disconnect them.

The Spiffy security planners prefer to have multiple IDs with SYSCTRL authority
instead of multiple IDs with SYSADM authority. IDs with SYSCTRL authority can
exercise most of the SYSADM privileges and can assume much of the day-to-day

Chapter 1. Getting started with DB2 security 17

|

work. IDs with SYSCTRL authority cannot access data directly or run plans unless
the privileges for those actions are explicitly granted to them. However, they can
run utilities, examine the output data sets, and grant privileges that allow other
IDs to access data. Therefore, IDs with SYSCTRL authority can access some
sensitive data, but they cannot easily access the data. As part of the Spiffy security
plan, DB2OWNER grants SYSCTRL authority to selected IDs.

The Spiffy security planners also use ROLEs, RACF group IDs, and secondary IDs
to relieve the need to have SYSADM authority continuously available. SYSADM
grants the necessary privileges to a ROLE, RACF group ID, or secondary ID. IDs
that have this ROLE, RACF group ID, or secondary ID can then bind plans and
packages it owns.

Managing access by object owners
The Spiffy security plan must consider the ID that owns and grants privileges on
the tables, views, and programs. The ID that owns these objects has many implicit
privileges on the objects. The owner of the objects can also grant privileges on the
objects to other users.

The Spiffy security planners want to limit the number of IDs that have privileges
on the employee table and the payroll update table to the smallest convenient
value. To meet that objective, they decide that the owner of the employee table
should issue all of the CREATE VIEW and GRANT statements. They also decide to
have the owner of the employee table own the plans and packages that are
associated with employee data. The employee table owner implicitly has the
following privileges, which the plans and packages require:
v The owner of the payroll update program must have the SELECT privilege on

the payroll update table and the UPDATE privilege on the employee table.
v The owner of the commission program must have the UPDATE privilege on the

payroll update table and the SELECT privilege on the employee table.
v The owners of several other payroll programs must have the proper privileges to

do payroll processing, such as printing payroll checks, writing summary reports,
and so on.

To bind these plans and packages, an ID must have the BIND or BINDADD
privileges. The list of privileges that are required by the owner of the employee
table suggests the functional approach. The Spiffy security planners create a RACF
group for the owner of the employee table.

Managing access by other users
Users must be authorized to access the employee table or the payroll table.
Exceptions occur when any unauthorized user tries to access the tables.

The following users are authorized to access the employee and payroll tables:
v Department managers
v Members of the payroll operations department
v Payroll managers
v The payroll update program

The audit report lists each exception in full. Auditors check each exception to
determine whether it was a planned operation by the users with SYSADM or
DBADM authority, or the employee table owner.

18 Managing Security

The audit report also lists denials of access to the tables. Those denials represent
attempts by unauthorized IDs to use the tables. Some are possibly accidental;
others can be attempts to violate the security system.

After running the periodic reports, the security planners archive the audit records.
The archives provide a complete audit trail of access to the employee data through
DB2.

Chapter 1. Getting started with DB2 security 19

20 Managing Security

Chapter 2. Managing access through authorization IDs and
roles

DB2 controls access to its objects and data through authorization identifiers (IDs)
and roles and the privileges that are assigned to them. Each privilege and its
associated authorities enable you to take specific actions on an object. Therefore,
you can manage access to DB2 objects through authorization IDs and roles.

As the following diagram shows, you can grant privileges and authorities to IDs or
roles and control access to data and processes in several primary ways:

1. Managing access to DB2 through RACF and subsystem access authorization.
2. Managing access to DB2 subsystem through connection and sign-on routines or

trusted contexts.

Privilege:
Controlled by explicit

granting and revoking or
external access control

Tables controlled by
security labels

Multilevel security

Data and processes

Ownership:
Controlled by

privileges needed
to create objects

Plan and package
execution:
Controlled by

privileges to execute

ID and role

Tables controlled by row
permissions and column masks

Row and column
access control

Subsystem access control
Controlled by RACF checking for

DSNR class and administrative authorities

DB2 subsystem
Controlled by connection and signon

exit routines and trusted contexts

Figure 2. Access to objects and data within DB2

© Copyright IBM Corp. 1982, 2011 21

|

|
|
|
|

3. Granting and revoking explicit privileges through authorization IDs and roles
or through external access control.
DB2 has primary authorization IDs, secondary authorization IDs, roles, and
SQL IDs. Some privileges can be exercised by only one type of ID or a role;
other privileges can be exercised by multiple IDs or roles. The DB2 catalog
records the privileges that IDs are granted and the objects that IDs own.

4. Managing implicit privileges through ownership of objects other than plans
and packages.

5. Managing implicit privileges through ownership of plans and packages.
6. Controlling access through security labels on tables.
7. Activating and deactivating row and column access control on tables.

Certain privileges and authorities are assigned when you install DB2. You can
reassign these authorities by changing the DSNZPARM subsystem parameter.

As a security planner, you must be aware of these ways to manage privileges and
authorities through authorization IDs and roles before you write a security plan.
After you decide how to authorize access to data, you can implement it through
your security plan.

Authorization IDs and roles
You can control access to DB2 objects by assigning privileges and authorities to an
authorization ID or a role.

Authorization IDs
Every process that connects to or signs on to DB2 is represented by one or more
DB2 short identifiers (IDs), which are called authorization IDs. Authorization IDs are
assigned to a process by default procedures or by user-written exit routines.

When authorization IDs are assigned, every process receives exactly one ID that is
called the primary authorization ID. All other IDs are secondary authorization IDs.
Furthermore, one ID (either primary or secondary) is designated as the current
SQL ID. You can change the value of the SQL ID during your session. More details
about these IDs are as follows:

Role A role is available within a trusted context. You can define a role and
assign it to authorization IDs in a trusted context. When associated with a
role and using the trusted connection, an authorization ID inherits all the
privileges granted to that role.

Primary authorization ID
Generally, the primary authorization ID identifies a process. For example,
statistics and performance trace records use a primary authorization ID to
identify a process.

Secondary authorization ID
A secondary authorization ID, which is optional, can hold additional
privileges that are available to the process. For example, a secondary
authorization ID can be a Resource Access Control Facility (RACF) group
ID.

SQL ID
An SQL ID holds the privileges that are exercised when certain dynamic
SQL statements are issued. The SQL ID can be set equal to the primary ID
or any of the secondary IDs. If an authorization ID of a process has the

22 Managing Security

|
|

|

|

SYSADM authority and if the SEPARATE SECURITY system parameter on
panel DSNTIPP1 is set to NO during installation, the process can set its
SQL ID to any authorization ID. If the SEPARATE SECURITY parameter is
set to YES, the SYSADM authority can set it to one of the secondary IDs
only. This rule applies even when SET CURRENT SQLID is a static
statement. CURRENT SQLID cannot be set to a role.

RACF ID
The RACF ID is generally the source of the primary and secondary
authorization IDs (RACF groups). When you use the RACF Access Control
Module or multilevel security, the RACF ID is used directly.

Roles in a trusted context
A role is a database entity that groups one or more privileges together in a trusted
context. System administrators can use roles to control access to enterprise objects
in a way that parallels the structure of the enterprise.

A role is available only in a trusted context. A trusted context is an independent
database entity that you can define based on a system authorization ID and
connection trust attributes. The trust attributes specify a set of characteristics about
a specific connection. These attributes include the IP address, domain name, or
SERVAUTH security zone name of a remote client and the job or task name of a
local client.

DB2 for z/OS extends the trusted context concept to allow for the assignment of a
role to a trusted context. An authorization ID that uses the trusted context can
inherit the privileges that are assigned to this role, in addition to the privileges that
are granted to the ID. An authorization ID can have only one role in a trusted
context at any given time.

Using roles provides the flexibility for managing context-specific privileges and
simplifies the processing of authorization. Specific roles can be assigned to the
authorization IDs that use the trusted connection. When your authorization ID is
associated with an assigned role in the trusted context, you inherit all privileges
that are granted by that role, instead of those by the default role, because the
role-based privileges override the privileges that are associated with the default
role.
Related concepts

“Trusted contexts” on page 205
“Trusted connections” on page 206
Related tasks

“Defining trusted contexts” on page 206
“Creating local trusted connections” on page 207
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 208
“Establishing remote trusted connections to DB2 for z/OS servers” on page 209

Privileges and authorities
You can control access within DB2 by granting or revoking privileges and related
authorities that you assign to authorization IDs or roles. A privilege enables its
holder to perform a specific operation, sometimes on a specific object.

Chapter 2. Managing access through authorization IDs and roles 23

|
|
|
|
|
|

|
|

Privileges can be explicit or implicit. An explicit privilege is a specific type of
privilege. Each explicit privilege has a name and is the result of a GRANT
statement or a REVOKE statement.

An implicit privilege comes from the ownership of objects, including plans and
packages. For example, users are granted implicit privileges on objects that are
referenced by a plan or package when they are authorized to execute the plan or
package.

An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted. For example, when an ID is granted the
SYSOPR administrative authority, the ID is implicitly granted the ability to
terminate any utility job.

Explicit privileges
You can explicitly grant privileges on objects to authorization IDs or roles.

You can explicitly grant privileges on the following objects:
v Collections
v Databases
v Distinct types or JAR
v Functions or procedures
v Packages
v Plans
v Routines
v Schemas
v Sequences
v Systems
v Tables and views
v Usage
v Use
Related concepts

“Privileges by authorization ID and authority” on page 45
Related reference

“Implicit privileges through object ownership” on page 30
“Administrative authorities” on page 31
“Utility authorities for DB2 catalog and directory” on page 44

Explicit collection privileges
You can explicitly grant privileges on collections.

DB2 supports the following collection privileges:

Table 5. Explicit collection privileges

Collection
privilege

Operations allowed for a named package collection

CREATE IN The BIND PACKAGE subcommand, to name the collection

24 Managing Security

Explicit database privileges
You can explicitly grant privileges on databases.

DB2 supports the following database privileges:

Table 6. Explicit database privileges

Database privilege Operations allowed on a named database

CREATETAB The CREATE TABLE statement, to create tables in the database.

CREATETS The CREATE TABLESPACE statement, to create table spaces in the
database

DISPLAYDB The DISPLAY DATABASE command, to display the database status

DROP The DROP and ALTER DATABASE statements, to drop or alter the
database

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare for, make,
and merge copies of table spaces in the database; the MODIFY
RECOVERY utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to recover
objects in the database and report their recovery status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD and
DIAGNOSE WAIT) to generate diagnostic information about, and
repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS, CHECK, LOAD, REBUILD INDEX, REORG INDEX,
and REORG TABLESPACE, and MODIFY STATISTICS utilities, to
gather statistics, check indexes and referential constraints for objects in
the database, and delete unwanted statistics history records from the
corresponding catalog tables

STOPDB The STOP DATABASE command, to stop the database

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can
select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.

Explicit package privileges
You can explicitly grant privileges on packages.

DB2 supports the following package privileges:

Chapter 2. Managing access through authorization IDs and roles 25

Table 7. Explicit package privileges

Package privilege Operations allowed for a named package

BIND The BIND, REBIND, and FREE PACKAGE subcommands, and the
DROP PACKAGE statement, to bind or free the package, and,
depending on the installation option BIND NEW PACKAGE, to bind a
new version of a package

COPY The COPY option of BIND PACKAGE, to copy a package

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL All package privileges

Explicit plan privileges
You can explicitly grant privileges on plans.

DB2 supports the following plan privileges:

Table 8. Explicit plan privileges

Plan privilege Subcommands allowed for a named application plan

BIND BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE RUN, to use the plan when running the application

Explicit routine privileges
You can explicitly grant privileges on routines.

DB2 supports the following routine privileges:

Table 9. Explicit routine privileges

Routine privileges Objects available for usage

EXECUTE ON
FUNCTION

A user-defined function

EXECUTE ON
PROCEDURE

A stored procedure

Explicit schema privileges
You can explicitly grant privileges on schemas.

DB2 supports the following schema privileges:

26 Managing Security

Table 10. Explicit schema privileges

Schema privileges Operations available for usage

CREATEIN Create distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

ALTERIN Alter user-defined functions or stored procedures, or specify a
comment for distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

DROPIN Drop distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

Explicit system privileges
You can explicitly grant privileges on systems.

DB2 supports the following system privileges:

Table 11. Explicit system privileges

System privilege Operations allowed on the system

ARCHIVE The ARCHIVE LOG command, to archive the current active log, the
DISPLAY ARCHIVE command, to give information about input
archive logs, the SET LOG command, to modify the checkpoint
frequency specified during installation, and the SET ARCHIVE
command, to control allocation and deallocation of tape units for
archive processing.

BINDADD The BIND subcommand with the ADD option, to create new plans
and packages

BINDAGENT The BIND, REBIND, and FREE subcommands, and the DROP
PACKAGE statement, to bind, rebind, or free a plan or package, or
copy a package, on behalf of the grantor. The BINDAGENT privilege
is intended for separation of function, not for added security. A bind
agent with the EXECUTE privilege might be able to gain all the
authority of the grantor of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap data set

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table or view
name

CREATEDBA The CREATE DATABASE statement, to create a database and have
DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database and have
DBCTRL authority over it

CREATESG The CREATE STOGROUP statement, to create a storage group

CREATE_SECURE_
OBJECT

The CREATE and ALTER statements, to create secure objects, such as
a secure trigger or a user-defined function. If a trigger is defined for
tables that are enforced with row or column access control, it must
be secure. If a user-defined function is referenced in the definition of
a row permission or column mask, it must be secure. In addition, if a
user-defined function is invoked in a query and its arguments
reference columns with column masks, the user-defined function
must be secure.

Chapter 2. Managing access through authorization IDs and roles 27

|
|
|
|
|
|
|
|
|
|

Table 11. Explicit system privileges (continued)

System privilege Operations allowed on the system

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to define a
created temporary table

DEBUGSESSION The DEBUGINFO connection attribute, to control debug session
activity for SQL stored procedures, non-inline SQL functions, and
Java stored procedures

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY LOG, DISPLAY
THREAD, and DISPLAY TRACE commands, to display system
information

EXPLAIN v The SQL EXPLAIN PLAN and EXPLAIN ALL statements, to issue
the statements without requiring additional privileges

v The SQL PREPARE and DESCRIBE TABLE statements, to prepare
and describe the statements without requiring additional privileges
on the object

v The BIND command, to allow users to specify the
EXPLAIN(ONLY) and SQLERROR(CHECK) options without
creating a plan or package

v Dynamic SQL statements that have the special register CURRENT
EXPLAIN MODE set to EXPLAIN, to allow the capture of
information about the statements, without executing them

An authorization ID or role with any of the following authority or
privilege can grant the EXPLAIN privilege:

v The SECADM authority

v The ACCESSCTRL authority

v The SYSADM authority if the SEPARATE SECURITY system
parameter is set to NO at the installation

v The EXPLAIN privilege with the WITH GRANT OPTION.

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE commands,
to control tracing

Explicit table and view privileges
You can explicitly grant privileges on tables and views.

DB2 supports the following table and view privileges:

28 Managing Security

||
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|

|

Table 12. Explicit table and view privileges

Table or view
privilege SQL statements allowed for a named table or view

ALTER ALTER TABLE, to change the table definition

DELETE DELETE, to delete rows

INDEX CREATE INDEX, to create an index on the table

INSERT INSERT, to insert rows

REFERENCES ALTER or CREATE TABLE, to add or remove a referential constraint
that refers to the named table or to a list of columns in the table

SELECT SELECT, to retrieve data

TRIGGER CREATE TRIGGER, to define a trigger on a table

UPDATE UPDATE, to update all columns or a specific list of columns

GRANT ALL SQL statements of all privileges

Explicit usage privileges
You can explicitly grant privileges on usage.

DB2 supports the following usage privileges:

Table 13. Explicit usage privileges

Usage privileges Objects available for usage

USAGE ON DISTINCT TYPE A distinct type

USAGE ON JAR (Java class for a
routine)

A Java class

USAGE ON SEQUENCE A sequence

Explicit use privileges
You can explicitly grant privileges on use.

DB2 supports the following use privileges:

Table 14. Explicit use privileges

Use privileges Objects available for use

USE OF
BUFFERPOOL

A buffer pool

USE OF STOGROUP A storage group

USE OF
TABLESPACE

A table space

Chapter 2. Managing access through authorization IDs and roles 29

Implicit privileges through object ownership
When you create a DB2 object by issuing an SQL statement, you establish its name
and its ownership. By default, the owner implicitly holds certain privileges on the
object.

However, this general rule does not apply to a plan or package that is not
created with SQL CREATE statements. In other words, when you own an object
other than a plan or package, you have implicit privileges over the object. The
following table describes the implicit privileges of ownership for each type of
object:

Table 15. Implicit privileges of ownership by object type

Object type Implicit privileges of ownership

Alias To drop the alias

Database DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) that is used to create it.
DBCTRL authority does not include the privilege to access data in
tables in the database.

Distinct type To use or drop a distinct type

Index To alter, comment on, or drop the index

JAR (Java class for
a routine)

To replace, use, or drop the JAR

Package To bind, rebind, free, copy, execute, drop, or comment on the package

Plan To bind, rebind, free, execute, or comment on the plan

Role To create, alter, commit, drop, or comment on the role

Sequence To alter, comment on, use, or drop the sequence

Storage group To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Stored procedure To execute, alter, drop, start, stop, or display a stored procedure

Synonym To use or drop the synonym

Table v To alter or drop the table or any indexes on it
v To lock the table, comment on it, or label it
v To create an index or view for the table
v To select or update any column (if there is no row permission or

column mask defined or if the row permission and the column mask
definition allows the access)

v To insert, delete, select, or update any row (if there is no row
permission defined or if the row permission definition allows the
access)

v To use the LOAD utility for the table
v To define referential constraints on any table or set of columns
v To create a trigger on the table
v To comment on the table

Table space To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

Trusted context To create, alter, commit, revoke, or comment on the trusted context

User-defined
functions

To execute, alter, drop, start, stop, or display a user-defined function

30 Managing Security

|
|
|
|
|
|

Table 15. Implicit privileges of ownership by object type (continued)

Object type Implicit privileges of ownership

View v To drop, comment on, or label the view, or to select any row or
column

v To execute UPDATE, INSERT, or DELETE on the view if the view is
defined with the INSTEAD OF TRIGGER clause

Related concepts

“Explicit privileges” on page 24
“Privileges by authorization ID and authority” on page 45
Related reference

“Administrative authorities”
“Utility authorities for DB2 catalog and directory” on page 44

Administrative authorities
Within DB2, privileges are grouped into administrative authorities, and each
administrative authority is vested with a specific set of privileges.

The following table lists all of the DB2 for z/OS administrative authorities and the
grantable privileges that each of them has.

Table 16. Administrative authorities and grantable privileges

Authority Included authorities Additional grantable privileges

ACCESSCTRL None Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Privileges on security:

GRANT REVOKE

Chapter 2. Managing access through authorization IDs and roles 31

|
|

|
|

||

|||

|||

|

|
|

|

|

|

Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

DATAACCESS None System privileges:

DEBUGSESSION

Privileges on all user tables, views, and MQTs:

DELETE INSERT SELECT UPDATE

Privileges on all plans, packages, and routines:

EXECUTE

Privileges on all user databases:

LOAD RECOVERDB REORG REPAIR

Privileges on all JARs:

USAGE

Privileges on all sequences:

USAGE

Privileges on all distinct types:

USAGE

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

DBADM DBCTRL, DBMAINT Privileges on tables in a database:

ALTER DELETE INDEX INSERT
REFERENCES SELECT TRIGGER UPDATE

DBCTRL DBMAINT Privileges on a database:

DROP LOAD RECOVERDB REORG
REPAIR

DBMAINT None Privileges on a database:

CREATETAB CREATETS DISPLAYDB
IMAGCOPY STATS STARTDB STOPDB

Installation
SYSADM

SYSADM, SYSCTRL,
DBADM, Installation
SYSOPR, SYSOPR,
PACKADM, DBCTRL,
DBMAINT, SECADM,
System DBADM,
SQLADM,
ACCESSCTRL,
DATAACCESS

Privileges on security:

GRANT REVOKE

Installation
SYSOPR

SYSOPR Privileges:

ARCHIVE STARTDB(cannot alter access mode)

32 Managing Security

|

|||

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|||

|
|

|||

|
|

|||

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
||

|

Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

PACKADM None Privileges on a collection:

CREATEIN

Privileges on all packages in a collection:

BIND COPY EXECUTE

SECADM ACCESSCTRL Privileges on all catalog tables:

SELECT

Privileges on all updatable catalog tables:

DELETE INSERT UPDATE

Privileges on security:

GRANT REVOKE

Privileges on security-related objects:

ALTER CREATE DROP

SQLADM None System privileges:

EXPLAIN MONITOR1 MONITOR2

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

SYSADM SYSCTRL, DBADM,
Installation SYSOPR,
SYSOPR, PACKADM,
DBCTRL, DBMAINT,
SECADM, System
DBADM, SQLADM,
ACCESSCTRL,
DATAACCESS

Privileges on all plans:

EXECUTE

Privileges on all routines:

EXECUTE

Privileges on all packages:

All privileges

Privileges on distinct types:

USAGE

Privileges on sequences:

USAGE

System privileges:

DEBUGSESSION

EXPLAIN privilege

Chapter 2. Managing access through authorization IDs and roles 33

|

|||

|||

|

|

|

|||

|

|

|

|

|

|

|

|||

|

|

|

|
|

|

||
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

SYSCTRL Installation SYSOPR,
SYSOPR, DBCTRL,
DBMAINT,
ACCESSCTRL (except
the ability to grant
certain authorities, such
as DBADM, SYSADM,
PACKADM, and certain
privileges, such as
DELETE, INSERT,
SELECT, and UPDATE
on user tables or views,
EXECUTE on plans,
packages, functions, or
stored procedures,
PACKADM on
collections, and USAGE
on distinct types, JARs,
and sequences)

System privileges:

BINDADD BINDAGENT DBDS
CREATEALIAS CREATEDBA CREATEDBC
CREATESG CREATETMTAB MONITOR1
MONITOR2 STOSPACE

Privileges on all tables:

ALTER INDEX REFERENCES TRIGGER

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Privileges on all plans:

BIND

Privileges on all packages:

BIND COPY

Privileges on all collections:

CREATEIN

Privileges on all schemas:

ALTERIN CREATEIN DROPIN

Privileges on use:

BUFFERPOOLS STOGROUP TABLESPACE

SYSOPR None Privileges:

DISPLAY RECOVER STOPALL TRACE

Privileges on routines:

DISPLAY START STOP

34 Managing Security

|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

System
DBADM

SQLADM System privileges:

BINDADD BINDAGENT CREATEALIAS
CREATEDBA CREATEDBC CREATETMTAB
DISPLAY EXPLAIN MONITOR1
MONITOR2 SQLADM STOPALL
TRACE

Privileges on all collections:

CREATEIN

Privileges on all user databases:

CREATETAB CREATETS DISPLAYDB
DROP IMAGCOPY RECOVERDB
STARTDB STOPDB

Privileges on all user tables (except for those
defined with row permissions or column masks):

ALTER INDEX REFERENCES TRIGGER

Privileges on all packages:

BIND COPY

Privileges on all plans:

BIND

Privileges on all schemas:

ALTERIN CREATEIN DROPIN

Privileges on all sequences:

ALTER

Privileges on all distinct types:

USAGE

Privileges on use:

TABLESPACE

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Chapter 2. Managing access through authorization IDs and roles 35

|

|||

|
|
||

|
|
|
|
|

|

|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

Related concepts

“Explicit privileges” on page 24
“Privileges by authorization ID and authority” on page 45
Related reference

“Implicit privileges through object ownership” on page 30
“Utility authorities for DB2 catalog and directory” on page 44

Installation SYSADM
Installation SYSADM authority is assigned to one or two IDs when DB2 is
installed; it cannot be assigned to a role. These IDs have all the privileges of the
SYSADM authority.

No other IDs can revoke the installation SYSADM authority; you can
remove the authority only by changing the module that contains the subsystem
initialization parameters (typically DSNZPARM).

In addition, DB2 does not record the installation SYSADM authority in the catalog.
Therefore, the catalog does not need to be available to check installation SYSADM
authority. The authority outside of the catalog is crucial. For example, if the
directory table space DBD01 is stopped, DB2 might not be able to check the
authority to start it again. In this case, only an installation SYSADM can start it.

IDs with the installation SYSADM authority can also perform the following
actions:
v Run the CATMAINT utility
v Access DB2 when the subsystem is started with ACCESS(MAINT)
v Start databases DSNDB01 and DSNDB06 when they are stopped or in restricted

status
v Run the DIAGNOSE utility with the WAIT statement
v Start and stop the database that contains the application registration table (ART)

and the object registration table (ORT).
v Grant, revoke, and manage security-related objects regardless of the setting of

the SEPARATE_SECURITY system parameter.

SYSADM
The SYSADM authority includes all the privileges, including system privileges, for
creating objects and accessing all data. Depending on the setting of the
SEPARATE_SECURITY system parameter, the SYSADM authority can also create
security objects and grant and revoke privileges.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or
role with the SYSADM authority can perform the following actions. If
SEPARATE_SECURITY is set to NO, it can also grant other IDs the required
privileges to perform the same actions.
v Use all the privileges of DBADM over any database
v Use EXECUTE privileges on all packages
v Use EXECUTE privileges on all routines
v Use USAGE privilege on distinct types, JARs, and sequences
v Use BIND on any plan and COPY on any package
v Use privileges over views that are owned by others

36 Managing Security

|

|

|
|
|

|
|
|
|

v Create and drop synonyms and views for other IDs on any table
v Drop database DSNDB07

An authorization ID or role with the SYSADM authority can also perform the
following actions but cannot grant other IDs the privileges to perform them:
v Drop or alter any DB2 object, except system databases
v Issue a COMMENT ON statement for any table, view, index, column, package,

plan
v Issue a LABEL ON statement for any table or view
v Terminate any utility job
v Create roles and trusted contexts (if SEPARATE_SECURITY is set to NO)
v Set the current SQL ID to any valid value (if SEPARATE_SECURITY is set to

NO)
v Use any valid value for OWNER in BIND or REBIND (if SEPARATE_SECURITY

is set to NO)

Although an authorization ID or role with the SYSADM authority cannot grant the
preceding privileges explicitly, it can accomplish this goal by granting to other IDs
the SYSADM authority.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or role with
the SYSADM authority can revoke any privileges that were granted by itself. When
SEPARATE_SECURITY is set to NO, the same ID or role can also revoke privileges
that were granted by others. However, when SEPARATE_SECURITY is set to YES,

the same ID or role cannot revoke privileges that were granted by others.

SYSCTRL
The SYSCTRL authority is designed for administering a system that contains
sensitive data. With the SYSCTRL authority, you have nearly complete control of
the DB2 subsystem. However, you cannot access user data directly unless you are
explicitly granted the privileges to do so.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or
role with the SYSCTRL authority can perform the following actions:
v Act as installation SYSOPR (when the catalog is available) or DBCTRL over any

database
v Run any allowable utility on any database
v Issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any table
v Create a view on any catalog table for itself or for other IDs
v Create tables and aliases for itself or for others IDs
v Bind a new plan or package and name any ID as the owner of the plan or

package
v Create roles (only if SEPARATE_SECURITY is set to NO)
v Use any valid value for OWNER in BIND or REBIND (only if

SEPARATE_SECURITY is set to NO)
v Has implicit ACCESSCTRL authority to grant most privileges (only if

SEPARATE_SECURITY is set to NO)

However, you cannot perform the following actions without the required
additional privileges:
v Execute SQL statements that change data in any user tables or views
v Run plans or packages

Chapter 2. Managing access through authorization IDs and roles 37

|
|
|
|
|

|
|
|
|

|

|
|

|

|
|

|
|

v Set the current SQL ID to a value that is not one of its primary or secondary IDs
v Start or stop the database that contains the application registration table (ART)

and the object registration table (ORT)
v Act fully as SYSADM or as DBADM over any database
v Access DB2 when the subsystem is started with ACCESS(MAINT)

The SYSCTRL authority is intended to separate system control functions from
administrative functions. However, SYSCTRL is not a complete solution for a
high-security system. If any plans have their EXECUTE privilege granted to
PUBLIC, an ID or role with the SYSCTRL authority can grant itself the SYSADM
authority. The only control over such actions is to audit the activity of IDs with

high levels of authority.

Installation SYSOPR
Installation SYSOPR authority is assigned to one or two IDs when DB2 is installed;
it cannot be assigned to a role. These IDs have all the privileges of the SYSOPR
authority.

No IDs can revoke the installation SYSOPR authority; you can remove it
only by changing the module that contains the subsystem initialization parameters
(typically DSNZPARM).

In addition, the installation SYSOPR authority is not recorded in the DB2 catalog.
Therefore, the catalog does not need to be available to check the installation
SYSOPR authority.

IDs with the installation SYSOPR authority can perform the following actions:
v Access DB2 when the subsystem is started with ACCESS(MAINT).
v Run all allowable utilities on the directory and catalog databases (DSNDB01 and

DSNDB06).
v Run the REPAIR utility with the DBD statement.
v Start and stop the database that contains the application registration table (ART)

and the object registration table (ORT).
v Issue dynamic SQL statements that are not controlled by the DB2 governor.
v Issue a START DATABASE command to recover objects that have LPL entries or

group buffer pool RECOVERY-pending status. These IDs cannot change the

access mode.

SYSOPR
A user with the SYSOPR authority can issue all DB2 commands except ARCHIVE
LOG, START DATABASE, STOP DATABASE, and RECOVER BSDS.

In addition, that user can run the DSN1SDMP utility and terminate any
utility job. With the GRANT option, that user can grant these privileges to others.

DBADM
The DBADM authority includes the DBCTRL privileges over a specific database. A
user with the DBADM authority can access any tables in a specific database by
using SQL statements.

38 Managing Security

With the DBADM authority, you can also perform the following actions:
v Drop or alter any table space, table, or index in the database
v Issue a COMMENT, LABEL, or LOCK TABLE statement for any table in the

database
v Issue a COMMENT statement for any index in the database

If the value of the DBADM CREATE AUTH field on the DSNTIPP installation
panel is set to YES during the DB2 installation, an ID with the DBADM authority
can create the following objects:
v A view for another ID. The view must be based on at least one table, and that

table must be in the database under DBADM authority.
v An alias for another ID on any table in the database.

An ID with DBADM authority on one database can create a view on tables and
views in that database and other databases only if the ID has all the privileges that
are required to create the view. For example, an ID with DBADM authority cannot
create a view on a view that is owned by another ID.

If a user has the DBADM authority with the GRANT option, that user can grant

these privileges to others.

DBCTRL
The DBCTRL authority includes the DBMAINT privileges on a specific database. A
user with the DBCTRL authority can run utilities that can change the data.

If the value of the DBADM CREATE AUTH field on the DSNTIPP
installation panel is set to YES during the DB2 installation, an ID with DBCTRL
authority can create an alias for another user ID on any table in the database.

If a user has the DBCTRL authority with the GRANT option, that user can grant

those privileges to others.

DBMAINT
A user with the DBMAINT authority can grant the privileges on a specific
database to an ID.

With the DBMAINT authority, that user can perform the following actions
within that database:
v Create objects
v Run utilities that don't change data
v Issue commands
v Terminate all utilities on the database except DIAGNOSE, REPORT, and

STOSPACE

If a user has the DBMAINT authority with the GRANT option, that user can grant

those privileges to others.

PACKADM
The PACKADM authority has the package privileges on all packages in specific
collections and the CREATE IN privilege on these collections.

Chapter 2. Managing access through authorization IDs and roles 39

If the BIND NEW PACKAGE installation option is set to BIND, the
PACKADM authority also has the privilege to add new packages or new versions
of existing packages.

If a user has the PACKADM authority with the GRANT option, that user can grant

those privileges to others.

System DBADM
The system DBADM authority allows an administrator, an authorization ID or a
role, to manage databases across a DB2 subsystem, while having no access to the
data in the databases. In other words, the system DBADM authority enables you to
create, alter, and drop DB2 objects and issue commands for a DB2 subsystem, but
does not give you the authority to access the data or the ability to grant or revoke
privileges.

With the system DBADM authority, you can issue SQL statements to
perform the following tasks:
v Create and drop aliases, auxiliary tables, and distinct types
v Create, alter, and drop databases, tables, global temporary tables, table spaces,

and sequences
v Create triggers, functions, indexes, procedures, and views with additional

required privileges
v Comment on all but security-related objects (i.e., roles, trusted contexts)
v Issue other SQL statements, such as the EXPLAIN, LABEL, PREPARE, and

RENAME statements

You can also issue DB2 commands to perform the following tasks:
v Display status, configuration, and resource information
v Start and stop procedures and profiles
v Start, stop, and access databases
v Start, stop, and modify traces
v Bind, rebind, and free packages and plans
v Set the OWNER in BIND or REBIND to any ID (if SEPARATE_SECURITY is set

to NO)
v Alter and terminate the execution of DB2 utility job steps
v Recover threads that are left in an indoubt state or complete backout processing

for units of recovery that are left incomplete during an earlier restart

With the system DBADM authority, you can also run certain DB2 utilities. The
utilities include CHECK INDEX, CHECK LOB, COPY, COPYTOCOPY, DIAGNOSE,
MODIFY RECOVERY, MODIFY STATISTICS, QUIESCE, REBUILD INDEX,
RECOVER, REPORT, and RUNSTATS. In addition, you have implicit SELECT
access on all catalog tables and implicit INSERT, DELETE, and UPDATE privileges
on updatable catalog tables (except SYSIBM.SYSAUDITPOLICIES).

The system DBADM authority allows you to execute system-defined routines
(recorded in the SYSIBM.SYSROUTINES catalog table), including stored procedures
or functions, and any packages executed within the routines. It also allows you to
drop non-security objects without requiring the ownership or other privileges to
drop.

40 Managing Security

|
|
|
|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

Only an authorization ID or a role with the SECADM authority can grant or
revoke the system DBADM authority. By default, the system DBADM has all the
privileges of the DATAACCESS and ACCESSCTRL authorities. If you do not want
a user (an authorization ID or role) with the system DBADM authority to grant
any explicit privileges, you can specify the WITHOUT ACCESSCTRL clause in the
GRANT statement when you grant the authority. If you do not want a user with
the system DBADM authority to access any user data in the databases, you can
specify the WITHOUT DATAACCESS clause in the GRANT statement when you
grant the authority. If necessary, you can still grant explicit privileges (i.e., SELECT)

to the system DBADM user to access data or perform grants.

SECADM
The SECADM authority enables you to manage security-related objects in DB2 and
control access to all database resources. It does not have any inherent privilege to
access data stored in the objects, such as tables.

With the SECADM authority, you can perform the following tasks:
v Create, alter, drop, and comment on row permissions
v Create, alter, drop, and comment on column masks
v Activate and deactivate row access control
v Activate and deactivate column access control
v Create, drop, and comment on roles
v Create, alter, drop, and comment on trusted contexts
v Create and comment on secure triggers and user-defined functions
v Alter the SECURED or NOT SECURED clause on triggers and user-defined

functions
v Create audit policies by inserting rows into the SYSIBM.SYSAUDITPOLICIES

catalog table
v Access and update the SYSIBM.SYSAUDITPOLICIES catalog table which records

audit policy definitions
v Has implicit SELECT access on all catalog tables and implicit INSERT, DELETE,

and UPDATE privileges on updatable catalog tables
v Grant and revoke all grantable privileges and authorities
v Issue the TRACE command to start, stop, and display a trace

If the SEPARATE_SECURITY system parameter is set to YES, no other authority
can grant the ACCESSCTRL, System DBADM, and DATAACCESS authorities or
the CREATE_SECURE_OBJECT privilege, not even SYSADM. For example, only
SECADM, not SYSADM or DBADM, can activate or deactivate row or column

access control for a table.
Related reference

Protection panel 2: DSNTIPP1 (DB2 Installation and Migration)

ACCESSCTRL
The ACCESSCTRL authority allows you to grant explicit privileges to authorization
IDs or roles by issuing SQL GRANT statements. It enables you to grant privileges
on all objects and resources, except the CREATE_SECURE_OBJECT privilege and
the system DBADM, DATAACCESS, and ACCESSCTRL authorities.

Chapter 2. Managing access through authorization IDs and roles 41

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|
|

|

|

|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.inst/src/tpc/db2z_dsntipp1.htm#db2z_dsntipp1

With the ACCESSCTRL authority, you can use the BY clause to revoke
explicitly granted privileges from authorization IDs or roles, except the
CREATE_SECURE_OBJECT privilege and the system DBADM, DATAACCESS, and
ACCESSCTRL authorities. In addition, you have implicit SELECT access on all
catalog tables and implicit INSERT, DELETE, and UPDATE privileges on updatable
catalog tables (except SYSIBM.SYSAUDITPOLICIES).

Only an authorization ID or a role with the SECADM authority can grant or
revoke the ACCESSCTRL authority. Revoking the ACCESSCTRL authority does not

revoke the privileges that it has already granted.

DATAACCESS
The DATAACCESS authority allows you to access and update data in user tables,
views, and materialized query tables in a DB2 subsystem. It also allows you to
execute plans, packages, functions, and procedures.

Only an authorization ID or a role with the SECADM authority can grant or
revoke the DATAACCESS authority. With the DATAACCESS authority, you have
implicit SELECT access on all catalog tables and implicit INSERT, DELETE, and
UPDATE privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES).

SQLADM
The SQLADM authority allows you to issue the SQL EXPLAIN statements, execute
the PROFILE commands, run the RUNSTATS and MODIFY STATISTICS utilities on
all user databases, and execute system-defined routines, such as stored procedures
or functions, and any packages that are executed within the routines.

Only an authorization ID or a role with the SECADM or ACCESSCTRL authority
can grant or revoke the SQLADM authority. With the SQLADM authority, you
have implicit SELECT access on all the catalog tables and implicit INSERT,
DELETE, and UPDATE privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES).

Common DB2 administrative authorities
Several DB2 administrative authorities provide the same functionality in DB2 for
z/OS and DB2 for Linux, UNIX, and Windows. With these authorities,
administrators who manage DB2 on multiple operating systems can manage their
database environments in a consistent approach.

The following authorities provide the same administrative functionality in
DB2 for z/OS and DB2 for Linux, UNIX, and Windows:

Table 17. Common DB2 administrative authorities

Administrative
authority Capabilities

System DBADM v Manages resources in all databases

v Does not have access to data or the ability to grant and revoke
privileges

v Executes system-defined routines (i.e., stored procedures or
functions) and any package within the routines

v Has implicit SELECT access on all catalog tables

42 Managing Security

|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

||

|
||

||

|
|

|
|

|

Table 17. Common DB2 administrative authorities (continued)

Administrative
authority Capabilities

SECADM v Controls access to all database resources

v Manages security-related objects (i.e., roles, trusted contexts, row
permissions, and column masks)

v Grants and revokes explicit privileges that are granted by itself
and others

v Has implicit SELECT access on all catalog tables

ACCESSCTRL v Grants privileges on all but security-related objects and resources

v Revokes privileges on all but security-related objects and
resources that are granted by itself or others

v Does not grant the system DBADM, DATAACCESS, or
ACCESSCTRL authority

v Has implicit SELECT access on all catalog tables

DATAACCESS v Has the ability to access data in all user tables, views, and
materialized query tables

v Has the ability to execute all plans, packages, functions, and
procedures

v Has implicit SELECT access on all catalog tables

SQLADM v Issues EXPLAIN SQL statements and PROFILE commands

v Executes RUNSTATS and MODIFY STATISTICS utilities on all
user databases

v Performs tasks that require EXPLAIN and MONITOR2 privileges

v Executes system defined routines (i.e., stored procedures or
functions) and any package executed within the routines

v Has implicit SELECT access on all the catalog tables

DB2 for z/OS provides both the system DBADM authority and the DBADM
authority, with each having a set of privileges. The system DBADM authority
allows you to manage objects in all databases across a DB2 subsystem, but doesn't
give you access to the data in the databases. In addition, with the system DBADM
authority, you can perform administrative tasks and issue commands for a DB2
subsystem, but you don't have the authority to execute objects or the ability to
grant or revoke privileges.

Unlike the system DBADM authority, the DBADM authority allows you to manage
objects in a specific database and gives you access to the data in that database. You
also get the privileges of the DBCTRL and DBMAINT authorities over the same

database.

Chapter 2. Managing access through authorization IDs and roles 43

|

|
||

||

|
|

|
|

|

||

|
|

|
|

|

||
|

|
|

|

||

|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

Related reference

“System DBADM” on page 40
“SECADM” on page 41
“ACCESSCTRL” on page 41
“DATAACCESS” on page 42
“SQLADM” on page 42

Utility authorities for DB2 catalog and directory
The DB2 catalog is in the DSNDB06 database. Authorities that are granted on
DSNDB06 also cover database DSNDB01, which contains the DB2 directory.

An ID with the ACCESSCTRL or SECADM authority can control access to the
catalog in the following ways:
v By granting privileges or authorities on that database or on its tables or views
v By binding plans or packages that access the catalog

An ID with the ACCESSCTRL or SECADM authority can control access to the
directory by granting privileges to run utilities on DSNDB06, but that ID cannot
grant privileges on DSNDB01 directly.

The following table shows the utilities IDs with different authorities that can run
on the DSNDB01 and DSNDB06 databases. Do not run REPAIR DBD against
DSNDB01 and DSNDB06 because they are system databases; you will receive a
system restriction violation message if you do. Also, you can use the LOAD utility
to add lines to SYSIBM.SYSSTRINGS, but you cannot run it on other DSNDB01 or
DSNDB06 tables.

Table 18. Utility privileges on the DB2 catalog and directory

Utilities

Installation
SYSOPR,
SYSCTRL,
SYSADM,
Installation
SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

System
DBADM DATAACCESS SQLADM

LOAD No No No No No No

REPAIR DBD No No No No No No

CHECK DATA Yes No No No Yes No

CHECK LOB Yes No No Yes No No

REORG
TABLESPACE

Yes No No No Yes No

STOSPACE Yes No No No No No

REBUILD
INDEX

Yes Yes No Yes Yes No

RECOVER Yes Yes No Yes Yes No

REORG INDEX Yes Yes No No Yes No

REPAIR Yes Yes No No Yes No

REPORT Yes Yes No Yes Yes No

CHECK
INDEX

Yes Yes Yes Yes No No

COPY Yes Yes Yes Yes No No

44 Managing Security

|

|

|

|

|

|

|

|

||

|

|
|
|
|
|
|

|
|
|
|
|
|
|||

|||||||

|||||||

|||||||

|||||||

|
|||||||

|||||||

|
|||||||

|||||||

|||||||

|||||||

|||||||

|
|||||||

|||||||

Table 18. Utility privileges on the DB2 catalog and directory (continued)

Utilities

Installation
SYSOPR,
SYSCTRL,
SYSADM,
Installation
SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

System
DBADM DATAACCESS SQLADM

MERGECOPY Yes Yes Yes Yes No No

MODIFY Yes Yes Yes Yes No No

QUIESCE Yes Yes Yes Yes No No

RUNSTATS Yes Yes Yes Yes No Yes

Related concepts

“Explicit privileges” on page 24
“Privileges by authorization ID and authority”
Related reference

“Implicit privileges through object ownership” on page 30
“Administrative authorities” on page 31

Privileges by authorization ID and authority
When a process gains access to DB2, it has a primary authorization ID, one or
more secondary authorization IDs, an SQL ID, and perhaps a specific role if it runs
in a trusted context. To be able to perform certain actions, an authorization ID or
role must hold the required privileges. To perform other actions, a set of IDs or
roles must hold the required privileges.

For better performance, consider limiting the number of secondary IDs in your
catalog table. A process can have up to 1012 secondary IDs. The more secondary
IDs that must be checked, the longer the check takes. Also, make sure that the role
and the current SQL ID have the necessary privileges for dynamic SQL statements.
Because the role and the current SQL ID are checked first, the operation is fastest if
they have all the necessary privileges.
Related concepts

“Explicit privileges” on page 24
Related reference

“Implicit privileges through object ownership” on page 30
“Administrative authorities” on page 31
“Utility authorities for DB2 catalog and directory” on page 44

Privileges required for common job roles and tasks
The labels of the administrative authorities often suggest the job roles and
responsibilities of the users who are empowered with the authorities.

For example, you might expect a system administrator to have the
SYSADM authority. However, some organizations do not divide job responsibilities
in the same way. The following table lists some of common job roles, the tasks that
usually accompany them, and the DB2 authorities or privileges that are needed to
perform those tasks.

Chapter 2. Managing access through authorization IDs and roles 45

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|||

|||||||

|||||||

|||||||

|||||||
|

Table 19. Required privileges for common jobs and tasks

Job title Tasks Required privileges

System operator Issues commands to:
v Start and stop DB2
v Control traces
v Display databases and threads
v Recover indoubt threads
v Start, stop, and display routines

SYSOPR authority

System administrator Performs emergency backup, with
access to all data.

SYSADM authority

Security
administrator

Authorizes other users, for some or all
levels below.

v SYSCTRL authority (if SEPARATE_SECURITY is
set to NO)

v SECADM authority

v ACCESSCTRL authority

Database
administrator

Designs, creates, loads, reorganizes,
and monitors databases, tables, and
other objects in the database.

v DBADM authority on a database. The DBADM
authority on DSNDB04 allows you access to objects
in all implicitly created databases.

v Use of storage groups and buffer pools

Database
administrator

v Designs and creates databases,
tables, and other objects

v Administers all databases in the
subsystem

System DBADM authority

Database
administrator

Manages data and executes plans and
packages in a DB2 subsystem

DATAACCESS authority

Database
administrator

Manages access to data in a DB2
subsystem

ACCESSCTRL authority

System programmer v Installs a DB2 subsystem.
v Recovers the DB2 catalog.
v Repairs data.

Installation SYSADM, which is assigned when DB2 is
installed. (Consider securing the password for an ID
with this authority so that the authority is available
only when needed.)

Application
programmer

v Develops and tests DB2 application
programs.

v Creates tables of test data.

v BIND on existing plans or packages, or BINDADD

v CREATE IN on some collections

v Privileges on some objects

v CREATETAB on some database, with a default
table space provided

v CREATETAB on DSNDB04. It enables you to create
tables in DSNDB04 and all implicitly created
databases

v Privileges on some objects with the SQLADM
authority

Production binder Binds, rebinds, and frees application
packages and plans

A ROLE, secondary ID, or RACF group of which the
binder has BINDADD, CREATE IN on collections
privileges required by application packages and plans

Package
administrator

Manages collections and the packages
in them, and delegates the
responsibilities.

PACKADM authority

User analyst Defines the data requirements for an
application program, by examining the
DB2 catalog.

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

v CREATETMTAB system privilege to create
temporary tables

Program end user Executes an application program. EXECUTE for the application plan

46 Managing Security

|
|

|

|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

Table 19. Required privileges for common jobs and tasks (continued)

Job title Tasks Required privileges

Information center
consultant

v Defines the data requirements for a
query user.

v Provides the data by creating tables
and views, loading tables, and
granting access.

v DBADM authority over some databases

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

Query user v Issues SQL statements to retrieve,
add, or change data.

v Saves results as tables or in global
temporary tables.

v EXPLAIN privilege on some tables and views

v SELECT, INSERT, UPDATE, DELETE on some
tables and views

v CREATETAB, to create tables in other than the
default database

v CREATETAB, to create tables in the implicitly
created database

v CREATETMTAB system privilege to create
temporary tables

v SELECT on SYSTABLES, SYSCOLUMNS, or views
thereof. QMF™ provides the views.

Checking access authorization for data definition statements
DB2 checks for the necessary authorization privileges and authorities when you
use data definition statements on certain DB2 objects.

At both bind and run time, DB2 determines whether the authorization ID that you
are using has the necessary privileges to access the following objects:
v Alias
v Table
v Explicitly created auxiliary table
v Explicitly created table space
v Explicitly created index
v Storage group
v Database

At run time, DB2 determines whether the authorization ID that you are using has
the necessary privileges to access the following objects:
v Buffer pool that is involved with an implicitly created table space
v Buffer pool and storage group that are involved with an implicitly created

auxiliary index and LOB table space
v Buffer pool and storage group that are involved with implicitly created XML

indexes and XML table space
v Trigger
v Function
v Procedure
v Sequence
v View
v Trusted context

Chapter 2. Managing access through authorization IDs and roles 47

|

v JAR
v Role
v Distinct type
v Table, buffer pool, and storage group for an implicitly created unique key index,

primary key index, or ROWID index.

Privileges required for handling plans and packages
An ID, or a role that runs in a trusted context, needs specific privileges to perform
actions on plans and packages.

The following table lists the IDs and describes the privileges that they need
for performing each type of plan or package operation. A user-defined function,
stored procedure, or trigger package does not need to be included in a package
list. A trigger package cannot be deleted by FREE PACKAGE or DROP PACKAGE.
The DROP TRIGGER statement must be used to delete the trigger package.

Table 20. Required privileges for basic operations on plans and packages

Operation ID or role Required privileges

Execute a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v EXECUTE privilege for the plan
v DATAACCESS authority
v SYSADM authority

Bind embedded
SQL statements,
for any bind
operation

Package owner Any of the following privileges:
v Applicable privileges required by the

statements
v Authorities that include the privileges
v Ownership that implicitly includes the

privileges

Object names include the value of
QUALIFIER, where it applies.

BIND EXPLAIN
without generating
a package

Plan or package owner Any of the following privileges:
v Ownership of the plan or package
v BIND
v BINDAGENT
v EXPLAIN privilege
v PACKADM
v SQLADM
v System DBADM authority
v SYSCTRL
v SYSADM

Include package in
PKLIST1

Plan owner Any of the following privileges:
v Ownership of the package
v EXECUTE privilege for the package
v PACKADM authority over the package

collection
v SYSADM authority

BIND a new plan
using the default
owner or primary
authorization ID

Primary ID or role Any of the following privileges:
v BINDADD privilege
v System DBADM authority
v SYSCTRL authority
v SYSADM authority

48 Managing Security

|

|

|
|
|

||
|
|
|
|
|
|
|
|
|

|

Table 20. Required privileges for basic operations on plans and packages (continued)

Operation ID or role Required privileges

BIND a new
package using the
default owner or
primary
authorization ID

Primary ID or role If the value of the field BIND NEW PACKAGE
on installation panel DSNTIPP is BIND, any of
the following privileges:
v BIND privilege and CREATE IN privilege

for the collection
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following privileges:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

BIND REPLACE
or REBIND for a
plan or package
using the default
owner or primary
authorization ID

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan or package
v BIND privilege for the plan or package
v BINDAGENT from the plan or package

owner
v PACKADM authority for the collection (for

a package only)
v System DBADM authority
v SYSADM or SYSCTRL authority.

BIND a new
version of a
package, with
default owner

Primary ID or role If BIND NEW PACKAGE is BIND, any of the
following privileges:
v BIND privilege on the package or collection
v BINDADD privilege and CREATE IN

privilege for the collection
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

FREE or DROP a
package2

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

COPY a package Primary ID, any
secondary ID, or role

Any of the following:
v Ownership of the package
v COPY privilege for the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

Chapter 2. Managing access through authorization IDs and roles 49

|

|

|

|

|

|

|

Table 20. Required privileges for basic operations on plans and packages (continued)

Operation ID or role Required privileges

FREE a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v BIND privilege for the plan
v BINDAGENT from the plan owner
v System DBADM authority
v SYSADM or SYSCTRL authority

Name a new
OWNER other
than the primary
authorization ID
for any bind
operation

Primary ID, any
secondary ID, or role

Any of the following privileges:
v New owner is the primary or any secondary

ID
v BINDAGENT from the new owner
v System DBADM authority (if

SEPARATE_SECURITY is set to NO)
v SYSADM or SYSCTRL authority (if

SEPARATE_SECURITY is set to NO)

Privileges required for using dynamic SQL statements
An ID needs specific privileges to issue dynamic SQL statements.

The following table lists the IDs and describes the privileges that they need
for issuing each type of SQL statement:

Table 21. Required privileges for basic operations on dynamic SQL statements

Operation ID or role Required privileges

GRANT Current SQL ID or role Any of the following privileges:
v The applicable privilege with the grant

option
v An authority that includes the privilege,

with the grant option (not needed for
SYSADM or SYSCTRL)

v Ownership that implicitly includes the
privilege

REVOKE Current SQL ID or role Must either have granted the privilege that is
being revoked, or hold SYSCTRL or SYSADM
authority.

CREATE, for
unqualified object
name

Current SQL ID or role Applicable table, database, or schema privilege

Qualify name of
object created

ID or role named as
owner

Applicable table or database privilege. The
qualifier can be any ID at all and does not
need to have any privilege if the current SQL
ID or the role (if in a trusted context with the
ROLE AS OBJECT OWNER AND QUALIFIER
clause specified) has the SYSADM. system
DBADM, or SYSCTRL authority (wherever
applicable) or the DBADM or DBCTRL
authority for the database (wherever
applicable).

50 Managing Security

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Table 21. Required privileges for basic operations on dynamic SQL statements (continued)

Operation ID or role Required privileges

Other dynamic
SQL if
DYNAMICRULES
uses run behavior

All primary IDs, role,
secondary IDs, and the
current SQL ID
together

As required by the statement. Unqualified
object names are qualified by the value of the
special register CURRENT SQLID.

Other dynamic
SQL if
DYNAMICRULES
uses bind behavior

Plan or package owner As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses define
behavior

Function or procedure
owner

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses invoke
behavior

ID of the SQL
statement that invoked
the function or
procedure or role

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Managing administrative authorities
DB2 provides a range of auditable administrative authorities that help you control
access to sensitive business data. The granularity and flexibility in DB2
administrative authority help you achieve adequate separation of duties and
responsibilities and prevent a single user from possessing unlimited privileges.

Depending on the setting of the SEPARATE_SECURITY system parameter, you can
separate DB2 security administration from system administration. You can set the
parameter by using the SEPARATE SECURITY field on panel DSNTIPP1 during
installation or migration.

If you set SEPARATE_SECURITY to YES, the SYSADM authority can no longer
manage security-related objects (i.e., roles, trusted contexts, row permissions, and
column masks) or have the ability to grant or revoke privileges that are granted by
others. The SYSCTRL authority can no longer manage roles or grant or revoke
privileges that are granted by others, either. Instead, the SECADM authority will
manage all security-related objects. The SECADM and ACCESSCTRL authorities
control access to all databases even though they cannot access any user data in the
databases.

In addition, the SYSADM authority can only set CURRENT SQLID to its primary
or one of its secondary authorization IDs. The SYSADM, SYSCTRL, and system
DBADM authorities can only set BIND OWNER to the primary or one of the
secondary authorization IDs of the binder. Finally, the SYSADM authority will not
have implicit insert, update, delete access to the SYSIBM.SYSAUDITPOLICIES
table.

If you set SEPARATE_SECURITY to NO (which is the default), the SYSADM
authority retains all the existing privileges and responsibilities and gets implicit
privileges of the SECADM authority. In other words, the SYSADM authority

Chapter 2. Managing access through authorization IDs and roles 51

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

continues to be the security administrator and manage all security-related objects,
perform grants, and revoke privileges that are granted by others. In addition, it
gets implicit insert, update, delete access on the SYSIBM. SYSAUDITPOLICIES
table and is able to set CURRENT SQLID and BIND OWNER to any value.

Setting SEPARATE_SECURITY to NO also allows the SYSCTRL authority to get
most of the implicit privileges of the ACCESSCTRL authority. SYSCTRL can
manage roles, perform certain grants, revoke privileges that are granted by others,
and set BIND OWNER to any value.

The installation SYSADM authority is not affected by the setting of the
SEPARATE_SECURITY parameter. Installation SYSADM can manage
security-related objects, grant and revoke authorities or privileges, and set
CURRENT SQLID and BIND OWNER to any value regardless of the setting of the
SEPARATE_SECURITY parameter.

Separating the SYSADM authority
Granularity and flexibility in DB2 administrative authority allows you to separate
security administration, database administration, and data access control from
system administration. Separating the SYSADM authority (a combination of
security and system administration) can help you simplify your system
administration and strengthen the security administration of your business data.

Choose the system and security administration model that best meets the
security needs of your business:
v Maintain the existing system administration model in which the SYSADM

authority continues to be able to perform security administration
You must first set the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 to NO (which is the default) during installation or migration. As
shown below, this setting allows the system administrator to continue to be the
security administrator and the SYSADM authority to get implicit privileges of
the SECADM authority. A system administrator can therefore manage all
security-related objects, perform grants, and revoke privileges that are granted
by others.

Security Administration

System Administration

Database Administration

Data Access

SYSADM

System Administrator

SYSADM

Installation SYSOPR

System DBADM

SECADM

DATAACCESS

Setting SEPARATE_SECURITY to NO also allows the SYSCTRL authority to get
implicit privileges of the ACCESSCTRL authority. SYSCTRL can manage roles,
perform grants, and revoke privileges that are granted by others.

52 Managing Security

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

v Separate security administration from system administration (SYSADM)
You must first set the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 to YES during installation or migration. As shown below, this setting
separates the security administration from the SYSADM authority. A system
administrator can no longer manage access control, audit policies, or
security-related objects, including roles and trusted contexts. The SYSCTRL
authority can no longer manage roles. Neither the SYSADM authority nor the
SYSCTRL authority can grant or revoke privileges that are granted by others.

System Administration

Database Administration

Data Access

Access Control

SECADMSYSADM

System Administrator Security Administrator

In addition to setting the SEPARATE_SECURITY system parameter, you also
need to set one of the system SECADM parameters to an authorization ID or a
role during installation that will perform security administration. To ensure
complete separation of system and security administration, do not set the
SECADM system parameter to a SYSADM ID. Instead, set SECADM to a
SECADM ID and installation SYSADM to an installation SYSADM ID.

v Separate system database administration with the data access authority and the
access control authority from system and security administration.
DB2 provides both the system DBADM authority and the DBADM authority,
with each having a different set of privileges. The system DBADM authority
allows you to manage objects in all databases across a DB2 subsystem, but
doesn't give you access to the data in the databases. In addition, with the system
DBADM authority, you can perform administrative tasks and issue commands
for a DB2 subsystem, but you don't have the authority to execute objects or the
ability to grant or revoke privileges.
Unlike the system DBADM authority, the DBADM authority allows you to
manage objects in a specific database and gives you access to the data in that
database. You also get the privileges of the DBCTRL and DBMAINT authorities
over the same database.
If you want the system database administrators to have access to data and the
ability to grant and revoke privileges, you can grant them the system DBADM,
DATAACCESS, and ACCESSCTRL authorities, as shown below. By default, the
DATAACCESS and ACCESSCTRL authorities are granted when the system
DBADM authority is granted.

Chapter 2. Managing access through authorization IDs and roles 53

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

SECADMSystem DBADM

Database Administrator Security Administrator

Data Access
DATAACCESS

Access Control
ACCESSCTRL

System Administration

If you want the system database administrators to have access to data, but not
the ability to grant or revoke privileges, you can grant them the system DBADM
and DATAACCESS authorities, but not the ACCESSCTRL authority, as shown
below. You can also grant system database administrators the SYSOPR authority
and the privileges to perform ARCHIVE, BSDS, CREATESG, STOSPACE, or
other system-related tasks.

Data Access
DATAACCESS

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

SECADMSystem DBADM

Database Administrator Security Administrator

System Administration

v Separate system database administration from the data access authority, the
access control authority, security administration, and system administration.

54 Managing Security

|

|

|
|
|
|
|
|
|

|

|
|

System DBADM
Database Administrator

DATAACCESS
Data Access

System Administration

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

ACCESSCTRL
Access Control

SECADM

Security Administrator

If you want the system database administrators to manage database objects, but
have no access to data or the ability to grant and revoke privileges, you can
grant them the system DBADM authority, but not the SYSADM, DATAACCESS,

or ACCESSCTRL authority.
Related reference

“System DBADM” on page 40
“SECADM” on page 41
“ACCESSCTRL” on page 41
“DATAACCESS” on page 42
“SQLADM” on page 42

Migrating the SYSADM authority
To take advantage of the granularity of DB2 administrative authority and simplify
your system database administration, you can separate the privileges of the
SYSADM authority and migrate them to other administrative authorities based on
the security needs of your business. This will allow you to eliminate or minimize
the need for granting the SYSADM authority.

If you decide to separate the SYSADM authority into the SECADM and other
administrative authorities, consider setting the SEPARATE_SECURITY system
parameter on panel DSNTIPP1 to YES during installation or migration. This setting
enables you to achieve complete separation of administrative duties.

To migrate the SYSADM authority that is currently assigned to authorization IDs
or roles:
1. In your security policies, identify the administration model that you will use

for separating the SYSADM authority and define the criteria for assigning
specific administrative authorities to specific authorization IDs or roles.
Suppose that you choose the following model to separate the current SYSADM
authority into the system DBADM, SECADM, DATAACCESS, ACCESSCTRL,
and SQLADM authorities:

Chapter 2. Managing access through authorization IDs and roles 55

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

System Administration

DATAACCESS
Access data in all user tables

System DBADM
Manage objects

SECADM
Perform security - related tasks

SQLADM
EXPLAIN, monitor queries

ACCESSCTRL
Control data access except

for security objects

SYSADM

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

You can define the following set of criteria for granting administrative
authorities:
v The system DBADM authority can be granted to database administrators

who need to manage objects
v The DATAACCESS authority can be granted to database administrators who

need to access data
v The ACCESSCTRL authority can be granted to database administrators who

need to control access to DB2 subsystems
v The SECADM authority can be assigned (during installation) to security

administrators who perform security administration and manage access
control

v The SQLADM authority can be assigned to performance analysts who are
responsible for analyzing the performance of DB2 subsystems

v The EXPLAIN privilege can be granted to application architects who need to
explain SQL statements or collect metadata information about the statements

v The SYSOPR authority and the ARCHIVE, BSDS, CREATESG, and
STOSPACE privileges can be granted to system administrators for
performing system administrative tasks.

2. Perform a query to list all the users and roles that are currently granted the
SYSADM authority.
The SYSADM authority can be granted to authorization IDs or roles. You can
query the catalog and find out the users and roles who are currently granted
the SYSADM authority.
Suppose that your query returns a list of the following six users, user groups,
or roles that are assigned the SYSADM authority:
v John (Security administrator)
v Sally (Application Architect)
v Bob (Performance Analyst)
v ApplProgrammer_role (Application Programmer role)
v SysAdmin_Role (System administrator role)
v DBAdmGrp (database administrator group).

3. Divide the responsibilities of the SYSADM authority and grant to different IDs
or roles based on your security policies, as shown below:
v John is granted the SECADM authority to perform security-related

administration tasks and control access to DB2.

56 Managing Security

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|
|

|
|

v Sally is granted the DATAACCESS authority because she requires DML
privileges on tables during application development, but she does not need
access control or database administration.

v Bob is granted the SQLADM authority who analyzes the performance of DB2
subsystems, but does not need access to data.

v ApplProg_role is granted the EXPLAIN privilege because all application
programmers need to explain SQL statements and collect metadata
information in trusted context definitions.

v DBAdmGrp is granted the system DBADM authority for managing and
maintaining objects. Since database administrators belong to the DBAdmGrp
RACF group, they should not be able to access data or grant and revoke
privileges.

v SysAdmin_role is granted the SYSOPR authority and the ARCHIVE, BSDS,
CREATESG, and STOSPACE privileges to perform system administrative
tasks.

4. Revoke the SYSADM authority from all current IDs or roles.
Once the authorities are granted, you can revoke the SYSADM authority from
John, Sally, Bob, ApplProgrammer_ role and DBAdmGrp. Revoking the
SYSADM authority causes the revoking of dependent privileges, by default. If
you want to leave the grants that they had made, you can issue the REVOKE
statement with the NOT INCLUDING DEPENDENT PRIVILEGES clause,
assuming the REVOKE_DEP_PRIVILEGES system parameter is set to
SQLSTMT.

5. Once the SYSADM authority is revoked, set the SEPARATE_SECURITY system
parameter to YES on panel DSNTIPP1. With the installation SYSADM authority,
you can perform an online change of the SEPARATE_SECURITY system
parameter and set it to YES. This further ensures that SYSADM is separated
into SECADM and other authorities.

Related reference

“System DBADM” on page 40
“SECADM” on page 41
“ACCESSCTRL” on page 41
“DATAACCESS” on page 42
“SQLADM” on page 42

Creating roles or trusted contexts with the SECADM authority
If you separate security administration from system and database administration,
you need to have the SECADM authority to manage security-related objects in DB2
and control access to all database objects and resources in a subsystem.

To separate security administration from system administration, you must set the
SEPARATE_SECURITY system parameter on panel DSNTIPP1 to YES during
installation or migration.

With the separation of security administration from system administration, the
SYSADM authority can no longer define roles or trusted contexts or manage any
other security-related objects; the SECADM authority is, instead, responsible for
performing security administrative tasks, including creating roles and trusted
contexts, activating row and column access control, and granting security-related
authorities and privileges on objects.

To create roles or trusted contexts with the SECADM authority:

Chapter 2. Managing access through authorization IDs and roles 57

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

|

v Issue the following CREATE ROLE statement to create CTXROLE by using an
authorization ID or role that is given the SECADM authority.
If SEPARATE_SECURITY is set to YES, the SECADM authority is required to

create roles and trusted contexts.
CREATE ROLE CTXROLE;

DB2 checks to make sure that you have the required privilege to create roles
and, upon successful verification, allows the creation of role CTXROLE.

v Issue the following CREATE TRUSTED CONTEXT statement to create CTX1 and
associate CTXROLE with CTX1:

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
DEFAULT ROLE CTXROLE
ATTRIBUTES (ADDRESS ’9.67.40.219’)
WITH USE FOR USER2, USER3
ENABLE;

DB2 checks to make sure that you have the required privilege to create trusted
contexts and, upon successful verification, allows the creation of trusted context
CTX1.

Related reference

“SECADM” on page 41

Altering tables with the system DBADM authority
The system DBADM authority separates object management from data access and
access control. It allows object management without requiring the ownership of the
object in a DB2 subsystem.

Suppose that you are a database administrator DB2ADMIN1 and need to alter
TABLE1, but do not have any table privileges on the table. You must first be
granted the system DBADM authority before you can alter the table.

To alter tables with the system DBADM authority:
1. Obtain the system DBADM authority from a security administrator

An authorization ID or role with the SECADM authority can grant you the

system DBADM authority by issuing the following statement:
GRANT DBADM WITHOUT DATAACCESS WITHOUT ACCESSCTRL ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the column
SDBADMAUTH set to 'Y', where column GRANTEE is set to DB2ADMIN1.

2. With the system DBADM authority, issue the ALTER TABLE statement to alter
table TABLE1.
DB2 checks to make sure that you have the required privilege set, including the
ALTER TABLE privilege that is allowed by the system DBADM authority. The
table is altered successfully.

58 Managing Security

|
|

|

|

|

|

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|

|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|
|

|
|
|

Related reference

“System DBADM” on page 40

Accessing data with the DATAACCESS authority
A database administrator must have the DATAACCESS authority to access data in
all user tables, views, and materialized query tables in a DB2 subsystem.

Suppose that you are a database administrator DB2ADMIN1 and need access to
data in TABLE1. You must first be granted the DATAACCESS authority.

To access data with the DATAACCESS authority:
1. Obtain the DATAACCESS authority from a security administrator. The

SECADM (an authorization ID or role) can grant you the DATAACCESS
authority by issuing the following statement:

GRANT DATAACCESS ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the new column
DATAACCESSAUTH set to 'Y', where column GRANTEE is set DB2ADMIN1.

2. After obtaining the DATAACCESS authority, issue an SQL SELECT statement
to select from table TABLE1. DB2 checks to make sure that you have the
required privilege set, including the SELECT privilege that is granted by the
DATAACCESS authority. The SELECT statement completes successfully.

Related reference

“DATAACCESS” on page 42

Granting and revoking privileges with the ACCESSCTRL
authority

If you separate database administration from system and security administration, a
database administrator must have the ACCESSCTRL or SECADM authority to
grant or revoke user privileges in a DB2 subsystem.

The ACCESSCTRL authority allows you to grant and revoke (BY clause)
privileges on all resources in a DB2 subsystem. However, it cannot grant the
CREATE_SECURE_OBJECT privilege or the system DBADM, DATAACCESS, and
ACCESSCTRL authorities.

If you are a database administrator DB2ADMIN1 and need to grant application
developer APPDEV1 load privileges on DBTEMP1, you must first have the
ACCESSCTRL authority for yourself.

To grant or revoke privileges with the ACCESSCTRL authority:
1. Obtain the ACCESSCTRL authority from a security administrator. The

SECADM (an authorization ID or role) can grant you the ACCESSCTRL
authority by issuing the following statement:
GRANT ACCESSCTRL ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the new column
ACCESSCTRLAUTH set to 'Y', where column GRANTEE is set to
DB2ADMIN.1.

Chapter 2. Managing access through authorization IDs and roles 59

|

|

|

|
|

|
|

|

|
|
|

|

|

|

|
|

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|
|
|

You can specify WITH GRANT OPTION when you issue the GRANT
statement, but the option is ignored when the authority is ACCESSCTRL,
DBADM, or DATAACCESS.

2. After obtaining the ACCESSCTRL authority, grant APPDEV1 load privileges on
DBTEMP1 by issuing the following GRANT statement:
GRANT LOAD ON DATABASE DBTEMP1 TO APPDEV1;

DB2 checks to make sure that you have the required privilege set, including the
GRANT privilege that is allowed by the ACCESSCTRL authority. The GRANT

statement completes successfully.
Related reference

“ACCESSCTRL” on page 41

Managing explicit privileges
You can use the SQL GRANT and REVOKE statements to grant and remove
privileges if you enable authorization checking during DB2 installation. You can
grant to or revoke privileges from authorization IDs or roles if they run in a
trusted context. You can revoke only privileges that are explicitly granted.

You can grant privileges in the following ways:
v Grant a specific privilege on one object in a single statement
v Grant a list of privileges
v Grant privileges on a list of objects
v Grant ALL, for all the privileges of accessing a single table, or for all privileges

that are associated with a specific package

If you grant privileges on a procedure or a package, all versions of that procedure
or package have those privileges. DB2 ignores duplicate grants and keeps only one
record of a grant in the catalog. The suppression of duplicate records applies not
only to explicit grants, but also to the implicit grants of privileges that are made
when a package is created.

For example, suppose that Susan grants the SELECT privilege on the EMP table to
Ray. Then suppose that Susan grants the same privilege to Ray again, without
revoking the first grant. When Susan issues the second grant, DB2 ignores it and
maintains the record of the first grant in the catalog.

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can
select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.
Related tasks

“Managing implicit privileges” on page 77

Granting privileges to a role
You can grant privileges to a role by using the GRANT statement. You can
associate primary authorization IDs with a role in the definition of the trusted
context and then use the GRANT statement with the ROLE option to grant
privileges to the role.

60 Managing Security

|
|
|

|
|

|

|
|

|

|

|

You can improve access control by granting privileges to roles. When you grant
certain privileges to a role, you make those privileges available to all users that are
associated with the role in the specific trusted context.

You can also simplify the administration of granting privileges by using roles
rather than individual authorization IDs. To make a role a grantor, you need to
specify the ROLE AS OBJECT OWNER clause when you define the trusted context.
For a static GRANT statement, the grantor is the role that owns the plan or
package. For a dynamic GRANT statement, the role for the primary authorization
ID that executes the GRANT statement becomes the grantor.

Granting privileges to the PUBLIC ID
You can grant to the PUBLIC ID privileges or authorities other than
CREATE_SECURE_OBJECT, system DBADM, DATAACCESS, or ACCESSCTRL.

When you grant privileges to PUBLIC, the privileges become available to all IDs at
the local DB2® site, including the owner IDs of packages that are bound from a
remote location. Public access is generally not a good practice when it comes to the
protection of sensitive business data and critical system resources. Many
compliance requirements prohibit public access to any system components. For
example, the Payment Card Industry (PCI) Data Security Standard Requirements
and Security Assessment Procedures restrict the use of PUBLIC.

When you grant any privilege to PUBLIC, DB2 catalog tables record the grantee of
the privilege as PUBLIC. DB2 also grants the following implicit table privileges to
PUBLIC for declared temporary tables:
v All table privileges on the tables and the authority to drop the tables
v The CREATETAB privilege to define temporary tables in the work file database
v The USE privilege to use the table spaces in the work file database

You do not need any additional privileges to access the work file database and the
temporary tables that are in it. You cannot grant or revoke table privileges for
temporary tables. The DB2 catalog does not record these implicit privileges for
declared temporary tables.

Because PUBLIC is a special identifier that is used by DB2 internally, you should
not use PUBLIC as a primary ID or secondary ID. When a privilege is revoked
from PUBLIC, authorization IDs to which the privilege was specifically granted
retain the privilege.

However, when an ID uses PUBLIC privileges to perform actions, the actions and
the resulting objects depend on the privileges that are currently in effect for
PUBLIC. If PUBLIC loses a privilege, objects that are created with that privilege
can be dropped or invalidated. The following examples demonstrate how certain
objects depend on PUBLIC not losing its privileges.

Example: Suppose that Juan has the ID USER1 and that Meg has the ID USER2.
Juan creates a table TAB1 and grants ALL PRIVILEGES on it to PUBLIC. Juan does
not explicitly grant any privileges on the table to Meg's ID, USER2. Using the
PUBLIC privileges, Meg creates a view on TAB1. Because the ID USER2 requires
the SELECT privilege on TAB1 to create the view, the view is dropped if PUBLIC
loses the privilege.

Chapter 2. Managing access through authorization IDs and roles 61

|
|

|
|
|
|
|
|
|

Related tasks

“Granting privileges to remote users”

Granting privileges to remote users
A query that arrives at your local DB2 subsystem through the distributed data
facility (DDF) is accompanied by an authorization ID. After connection processing,
the ID can be translated to another value and be associated with secondary
authorization IDs.

DB2 also uses the ID to determine if the connection is associated with a trusted
context. As the end result of these processes, the remote query is associated with a
set of IDs that is known to your local DB2 subsystem. You assign privileges to
these IDs in the same way that you assign privileges to IDs that are associated
with local queries.

Related tasks

“Granting privileges to the PUBLIC ID” on page 61

Granting privileges through views
You can grant most table privileges (except ALTER, REFERENCES, TRIGGER, and
INDEX) on a view. By creating a view and granting privileges through it, you can
give an ID access to only a specific combination of data.

The ability to grant privileges through views is sometimes called field-level access
control or field-level sensitivity.

Suppose that you want the ID MATH110 to be able to extract the following column
data from the sample employee table for statistical investigation: HIREDATE, JOB,
EDLEVEL, SEX, SALARY, BONUS, and COMM for DSN8910.EMP. However, you
want to impose the following restrictions:
v No access to employee names or identification numbers
v No access to data for employees hired before 1996
v No access to data for employees with an education level less than 13
v No access to data for employees whose job is MANAGER or PRES

You can create and name a view that shows exactly that combination of data.

To grant privileges to the view that you create:
1. Issue the following CREATE statement to create the desired view:

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM

FROM DSN81010.EMP
WHERE HIREDATE > ’1995-12-31’ AND

EDLEVEL >= 13 AND
JOB <> ’MANAGER’ AND
JOB <> ’PRES’;

2. Issue the following statement to grant the SELECT privilege on the SALARIES
view to MATH110:

62 Managing Security

GRANT SELECT ON SALARIES TO MATH110;

After you grant the privilege, MATH110 can execute SELECT statements on the
restricted set of data only. Alternatively, you can give an ID access to only a
specific combination of data by using multilevel security with row-level
granularity.
Related tasks

“Granting privileges with the GRANT statement”
“Revoking privileges with the REVOKE statement” on page 68

Granting privileges with the GRANT statement
You can assign privileges to an ID or a role by issuing the GRANT statement.

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards. For example, the
database might hold notices of upcoming holidays and bowling scores.

To create and maintain the tables and programs that are needed for this
application, the Spiffy Computer Company develops the security plan shown in
the following diagram.

The Spiffy Computer Company's system of privileges and authorities associates
each role with an authorization ID. For example, the System Administrator role has
the ADMIN authorization ID.

The system administrator uses the ADMIN authorization ID, which has the
SYSADM authority, to create a storage group (SG1) and to issue the following
statements:
1. GRANT PACKADM ON COLLECTION BOWLS TO PKA01 WITH GRANT OPTION;

System administrator
ID: ADMIN

Package administrator
ID: PKA01

Database administrator
ID: PKA01

Application programmers
IDs: PGMR01, PGMR02

PGMR03

Production binder
ID: BINDER

Database controllers
IDs: DBUTIL1, DBUTIL2

Figure 3. Security plan for the Spiffy Computer Company

Privileges: Ownership of SG1
Authority: SYSADM

User ID: ADMIN

Chapter 2. Managing access through authorization IDs and roles 63

This statement grants to PKA01 the CREATE IN privilege on the collection
BOWLS and BIND, EXECUTE, and COPY privileges on all packages in the
collection. Because ADMIN used the WITH GRANT OPTION clause, PKA01
can grant those privileges to others.

2. GRANT CREATEDBA TO DBA01;

This statement grants to DBA01 the privilege to create a database and to have
DBADM authority over that database.

3. GRANT USE OF STOGROUP SG1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use storage group SG1 and to grant that
privilege to others.

4. GRANT USE OF BUFFERPOOL BP0, BP1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use buffer pools BP0 and BP1 and to grant that
privilege to others.

5. GRANT CREATE IN COLLECTION DSN8CC91 TO ROLE ROLE1;

This statement grants to ROLE1 the privilege to create new packages in

collections DSN8CC91.

The package administrator, PKA01, controls the binding of packages into
collections. PKA01 can use the CREATE IN privilege on the collection BOWLS and
the BIND, EXECUTE, and COPY privileges on all packages in the collection.
PKA01 also has the authority to grant these privileges to others.

The database administrator, DBA01, using the CREATEDBA privilege, creates the
database DB1. When DBA01 creates DB1, DBA01 automatically has DBADM
authority over the database.

The database administrator at Spiffy Computer Company wants help with running
the COPY and RECOVER utilities. Therefore DBA01 grants DBCTRL authority over
database DB1 to DBUTIL1 and DBUTIL2.

To grant DBCTRL authority, the database administrator issues the
following statement:
GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

Authority: PACKADM over the collection BOWLS
User ID: PKA01

Privi leges: CREATEDBA
Use of SG1 with GRANT

Ownership of DB1
Use of BP0 and BP1 with GRANT

Authority: DBADM over DB1
User ID: DBA01

Authority: DBCTRL over DB1
User ID: DBUTIL1, DBUTIL2

64 Managing Security

Related tasks

“Granting privileges through views” on page 62

Granting privileges to secondary IDs
The Spiffy Computer Company uses RACF to manage external access to DB2.
Therefore, Spiffy can use secondary authorization IDs to define user groups and
associate primary authorization IDs with those user groups.

The primary authorization IDs are the RACF user IDs. The secondary
authorization IDs are the names of the groups with which the primary IDs are
associated.

Spiffy can grant DB2 privileges to primary IDs indirectly, by granting privileges to
secondary IDs that are associated with the primary IDs. This approach associates
privileges with a functional ID rather than an individual ID. Functional IDs, also
called group IDs, are granted privileges based on the function that certain job roles
serve in the system. Multiple primary IDs can be associated with a functional ID
and receive the privileges that are granted to that functional ID. In contrast,
individual IDs are connected to specific people. Their privileges need to be
updated as people join the company, leave the company, or serve different roles
within the company. Functional IDs have the following advantages:
v Functional IDs reduce system maintenance because they are more permanent

than individual IDs. Individual IDs require frequent updates, but each functional
ID can remain in place until Spiffy redesigns its procedures.
Example: Suppose that Joe retires from the Spiffy Computer Company. Joe is
replaced by Mary. If Joe's privileges are associated with functional ID DEPT4,
those privileges are maintained in the system even after Joe's individual ID is
removed from the system. When Mary enters the system, she will have all of
Joe's privileges after her ID is associated with the functional ID DEPT4.

v Functional IDs reduce the number of grants that are needed because functional
IDs often represent groups of individuals.

v Functional IDs reduce the need to revoke privileges and re-create objects when
they change ownership.
Example: Suppose that Bob changes jobs within the Spiffy Computer Company.
Bob's individual ID has privileges on many objects in the system and owns three
databases. When Bob's job changes, he no longer needs privileges over these
objects or ownership of these databases. Because Bob's privileges are associated
with his individual ID, a system administrator needs to revoke all of Bob's
privileges on objects and drop and re-create Bob's databases with a new owner.
If Bob received privileges by association with a functional ID, the system
administrator would only need to remove Bob's association with the functional
ID.

Granting privileges to user groups
You can simplify the assignment and management of privileges by creating user
groups and by granting privileges to the groups. In this way, you can efficiently
assign the same set of privileges to all the users of a given group at the same time.

Suppose that the database administrator at Spiffy wants several employees in the
Software Support department to create tables in the DB1 database. The database
administrator creates DEVGROUP as a RACF group ID for this purpose. To
simplify the process, the database administrator decides that each CREATE TABLE
statement should implicitly create a unique table space for the table. Hence,

Chapter 2. Managing access through authorization IDs and roles 65

DEVGROUP needs the CREATETAB privilege, the CREATETS privilege, the
privilege to use the SG1 storage group and, the privilege to use one of the buffer
pools, BP0, for the implicitly created table spaces. The following diagram shows
this group and their privileges:

The database administrator, DBA01, owns database DB1 and has the
privileges to use storage group SG1 and buffer pool BP0. The database
administrator holds both of these privileges with the GRANT option. The database
administrator issues the following statements:
1. GRANT CREATETAB, CREATETS ON DATABASE DB1 TO DEVGROUP;
2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;

3. GRANT USE OF BUFFERPOOL BP0 TO DEVGROUP;

Because the system and database administrators at Spiffy still need to control the
use of those resources, the preceding statements are issued without the GRANT
option.

Three programmers in the Software Support department write and test a new
program, PROGRAM1. Their IDs are PGMR01, PGMR02, and PGMR03. Each
programmer needs to create test tables, use the SG1 storage group, and use one of
the buffer pools. All of those resources are controlled by DEVGROUP, which is a
RACF group ID.

Therefore, granting privileges over those resources specifically to PGMR01,
PGMR02, and PGMR03 is unnecessary. Each ID should be associated with the
RACF group DEVGROUP and receive the privileges that are associated with that
functional ID. The following diagram shows the DEVGROUP and its members:

The security administrator connects as many members as desired to the group
DEVGROUP. Each member can exercise all the privileges that are granted to the
group ID.

Granting privileges for binding plans
Binding requires additional privileges. You must have the required privileges to
bind a plan.

Suppose that three programmers can share the tasks that are done by the
DEVGROUP ID. Someone creates a test table, DEVGROUP.T1, in database DB1 and
loads it with test data. Someone writes a program, PROGRAM1, to display
bowling scores that are contained in T1. Someone must bind the plan and packages
that accompany the program.

Use of BP0
Use of SG1
CREATETS on DB1
CREATETAB on DB1

Privileges: (All without GRANT)
RACF Group ID: DEVGROUP

RACF group ID: DEVGROUP
Group members: PGMR01, PGMR02, PGMR03

66 Managing Security

Binding requires an additional privilege. ADMIN, who has the SYSADM authority,
grants the required privilege by issuing the following statement:
GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages that are to be owned by DEVGROUP. Any member of the group can
rebind a plan or package that is owned by DEVGROUP. The following diagram
shows the BINDADD privilege granted to the group:

The Software Support department proceeds to create and test the program.

Granting privileges for rebinding plans and packages
Spiffy has a different set of tables, which contain actual data that is owned by the
ROLE PRODCTN. PROGRAM1 is written with unqualified table names.

For example, table T1 was referred to as simply T1, not DEVGROUP.T1. The new
packages and plan must refer to table PRODCTN.T1. To move the completed
program into production, someone must perform the following steps:
v Rebind the application plan with the owner PRODCTN.
v Rebind the packages into the collection BOWLS, again with the owner

PRODCTN.

Spiffy gives that job to a production binder with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or
package with OWNER (PRODCTN), and to add a package to the collection
BOWLS. BINDER acquires these abilities through its RACF DEVGROUP group and
ROLE PRODCTN. ROLE PRODCTN needs to have all the necessary privileges.

Suppose that ID BINDER has ROLE PRODCTN when binding in a trusted context
and that ROLE PRODCTN has the following privileges:

BINDER can bind plans and packages for owner ROLE PRODCTN because it
performs binds in a trusted context with ROLE PRODCTN.

PACKADM, the package administrator for BOWLS, can grant the CREATE
privilege with the following statement:

GRANT CREATE ON COLLECTION BOWLS TO ROLE PRODCTN;

Privilege: BINDADD
RACF group ID: DEVGROUP

DB2 Role: PRODCTN
Privileges: BINDADD

CREATE IN collection BOWLS
Privileges on SQL objects referenced in application

Chapter 2. Managing access through authorization IDs and roles 67

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAM1 plan available to all employees by issuing the following statement:

GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

More than one ID has the authority or privileges that are necessary to issue this
statement. For example, ADMIN has SYSADM authority and can grant the
EXECUTE privilege. Also, any ID in a trusted context with ROLE PRODCTN that
owns PROGRAM1 can issue the statement. When EXECUTE is granted to PUBLIC,
other IDs do not need any explicit authority on T1.

Finally, the plan to display bowling scores at Spiffy Computer Company is
complete. The production plan, PROGRAM1, is created, and all IDs have the
authority to execute the plan.

Granting privileges for accessing distributed data
Some time after the system and database administrators at Spiffy Computer
Company implement their security plan, the company president tells them that
other applications on other systems must connect to the local DB2 subsystem. She
wants people at every location to be able to access bowling scores through
PROGRAM1 on the local subsystem.

The administrators perform the following steps to enable access from all
Spiffy locations:
1. Add a CONNECT statement to the program, naming the location at which

table PRODCTN.T1 resides. In this case, the table and the package reside at
only the central location.

2. Issue the following statement so that PKA01, who has PACKADM authority,
can grant the required privileges to DEVGROUP:
GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP;

3. Bind the SQL statements in PROGRAM1 as a package.
4. Bind the SQL statements in PROGRAM1 as a package by the package owner:

GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Any system that is connected to the original DB2 location can run PROGRAM1
and execute the package by using DRDA® access. However, if the remote system is
another DB2, a plan must be bound there that includes the package in its package

list.

Revoking privileges with the REVOKE statement
You can use the REVOKE statement to remove the privileges that you explicitly
grant to an ID or a role.

For example, you can revoke the privilege that you grant to an ID by
issuing the following statement:
REVOKE authorization-specification FROM auth-id

68 Managing Security

Generally, you can revoke only the privileges that you grant. If you revoke
privileges on a procedure or package, the privileges are revoked from all versions
of that procedure or package.

However, an ID with the SECADM or ACCESSCTRL authority can revoke a
privilege that has been granted by another ID with the following statement:
REVOKE authorization-specification FROM auth-id BY auth-id

If the SEPARATE SECURITY system parameter on panel DSNTIPP1 is set to NO
(the default) during installation, an ID with the SYSADM or SYSCTRL authority
can revoke a privilege that has been granted by another ID. In this case, the
SYSADM authority implicitly has the privileges of the SECADM authority, and the
SYSCTRL authority implicitly has the privileges of the ACCESSCTRL authority.

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single
REVOKE statement does not remove the privilege. To remove it, each grant of the
privilege must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass
the granted privilege to others. If the privilege is removed from the ID, its
revocation can cascade to others depending on the setting of the REVOKE DEP
PRIV system parameter. For example, when a privilege is removed from
authorization ID X, it is also removed from any ID to which X granted it, unless
that ID also has the privilege from some other source.

Example: Suppose that DBA01 grants DBCTRL authority with the GRANT option
on database DB1 to DBUTIL1. Then DBUTIL1 grants the CREATETAB privilege on
DB1 to PGMR01. If DBA01 revokes DBCTRL from DBUTIL1, PGMR01 loses the
CREATETAB privilege. If PGMR01 also granted the CREATETAB privilege to
OPER1 and OPER2, they also lose the privilege.

Example: Suppose that PGMR01 from the preceding example created table T1
while holding the CREATETAB privilege. If PGMR01 loses the CREATETAB
privilege, table T1 is not dropped, and the privileges that PGMR01 has as owner of
the table are not deleted. Furthermore, the privileges that PGMR01 grants on T1
are not deleted. For example, PGMR01 can grant SELECT on T1 to OPER1 as long
as PGMR01 owns of the table. Even when the privilege to create the table is
revoked, the table remains, the privilege remains, and OPER1 can still access T1.

Example: Consider the following REVOKE scenario:
1. Grant #1: SYSADM, SA01, grants SELECT on TABLE1 to USER01 with the

GRANT option.
2. Grant #2: USER01 grants SELECT on TABLE1 to USER02 with the GRANT

option.
3. Grant #3: USER02 grants SELECT on TABLE1 back to SA01.
4. USER02 then revokes SELECT on TABLE1 from SA01.

The cascade REVOKE process of Grant #3 determines if SA01 granted SELECT to
anyone else. It locates Grant #1. Because SA01 did not have SELECT from any
other source, this grant is revoked. The cascade REVOKE process then locates
Grant #2 and revokes it for the same reason. In this scenario, the single REVOKE

1. DB2 does not cascade a revoke of the SYSADM authority from the installation SYSADM authorization IDs.

Chapter 2. Managing access through authorization IDs and roles 69

|
|

|
|
|
|
|

|
|
|
|

action by USER02 triggers and results in the cascade removal of all the grants even
though SA01 has the SYSADM authority. The SYSADM authority is not

considered.
Related tasks

“Granting privileges with the GRANT statement” on page 63
“Revoking dependent privileges”

Revoking dependent privileges
Revoking a privilege or authority, such as the SYSADM authority, from one user
(an authorization ID or role) can result in the automatic removal of that privilege
from other users and the privileges that it has granted. To prevent this, you can
assign the REVOKE DEP PRIV parameter different values to control whether or
not dependent privileges or authorities should be removed.

To specify the REVOKE DEP PRIV parameter, use one of the following approaches:
v Set REVOKE DEP PRIV to SQLSTMT (the default) if you want to use the

dependent privileges clause on the REVOKE statement to control the revocation
of dependent privileges.
– Specify the NOT INCLUDING DEPENDENT PRIVILEGES clause on the

REVOKE statement when you need to revoke a privilege or authority from a
user but retain all the grants that are already made by that user. However, if
the same privilege is later granted to that user again and subsequently
revoked with the INCLUDING DEPENDENT PRIVILEGES clause specified,
all dependent privileges including the grants made by the user earlier are
removed.

– Specify the INCLUDING DEPENDENT PRIVILEGES clause (the default)
when you need to revoke a privilege or authority (other than ACCESSCTRL,
DATAACCESS, and system DBADM) from a user and remove all the
privileges or authorities that are already granted by that privilege or
authority.

v Set REVOKE DEP PRIV to YES if you want to remove all dependent privileges
or authorities whenever you revoke a privilege or authority other than
ACCESSCTRL, DATAACCESS, and system DBADM.
You will receive an error if you specify the NOT INCLUDING DEPENDENT
PRIVILEGES clause on the REVOKE statement when you revoke a privilege or
authority other than ACCESSCTRL, DATAACCESS, and system DBADM.

v Set REVOKE DEP PRIV to NO if you want to retain all dependent privileges or
authorities whenever you revoke a privilege or authority.
You will receive an error if you specify the INCLUDING DEPENDENT
PRIVILEGES clause on the REVOKE statement.

If REVOKE DEP PRIV is set to NO or SQLSTMT or if the NOT INCLUDING
DEPENDENT PRIVILEGES clause is specified on the REVOKE statement,
dependent privileges or authorities are not revoked when a privilege or authority
is revoked from a user. However, any packages, views, or MQTs that are owned by
that user are invalidated, inoperative, or dropped.

Revoking dependent privileges does not occur in any of the following conditions:
v If the ACCESSCTRL authority is revoked from a user, grants made by the user

are not revoked. However, if the user has already revoked its own grants prior
to the removal of the ACCESSCTRL authority, that revocation of dependent
privileges continues to take effect unless otherwise instructed through the
REVOKE_DEP_PRIV parameter or the REVOKE statement.

70 Managing Security

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

v If the SECADM authority is removed from a user, grants made by the user are
not revoked. However, if the user has already revoked its own grants prior to
the removal of the SECADM authority, that revocation of dependent privileges
continues to take effect unless otherwise instructed through the
REVOKE_DEP_PRIV parameter or the REVOKE statement.

Revoking privileges granted by multiple IDs
A user can be granted the same privilege by multiple IDs at different times, but
that privilege and any dependent privileges can be simultaneously revoked.

Suppose that DBUTIL1 grants the CREATETAB privilege to PGMR01 and
that DBUTIL2 also grants the CREATETAB privilege to PGMR01. The second grant
is recorded in the catalog, with its date and time, but it has no other effect until the
grant from DBUTIL1 to PGMR01 is revoked. After the first grant is revoked, DB2
must determine the authority that PGMR01 used to grant CREATETAB to OPER1.
The following diagram illustrates the situation; the arrows represent the granting
of the CREATETAB privilege.

Suppose that DBUTIL1 issues the GRANT statement at Time 1 and that DBUTIL2
issues the GRANT statement at Time 2. DBUTIL1 and DBUTIL2 both use the
following statement to issue the grant:
GRANT CREATETAB ON DATABASE DB1 TO PGMR01 WITH GRANT OPTION;

At Time 3, PGMR01 grants the privilege to OPER1 by using the following
statement:
GRANT CREATETAB ON DATABASE DB1 TO OPER1;

After Time 3, DBUTIL1's authority is revoked, along with all of the privileges and
authorities that DBUTIL1 granted. However, PGMR01 also has the CREATETAB
privilege from DBUTIL2, so PGMR01 does not lose the privilege. The following
criteria determine whether OPER1 loses the CREATETAB privilege when
DBUTIL1's authority is revoked:
v If Time 3 comes after Time 2, OPER1 does not lose the privilege. The recorded

dates and times show that, at Time 3, PGMR01 could have granted the privilege
entirely on the basis of the privilege that was granted by DBUTIL2. That
privilege was not revoked.

v If Time 3 precedes Time 2, OPER1 does lose the privilege. The recorded dates and
times show that, at Time 3, PGMR01 could have granted the privilege only on
the basis of the privilege that was granted by DBUTIL1. That privilege was

revoked, so the privileges that are dependent on it are also revoked.

Revoking privileges granted by all IDs
An ID with the SYSADM or SYSCTRL authority can revoke privileges that are
granted by other IDs.

DBUTIL2

Time 2

Time 3Time 1
DBUTIL1 PGMR01 OPER1

Figure 4. Authorization granted by two or more IDs

Chapter 2. Managing access through authorization IDs and roles 71

|
|
|
|
|

To revoke the CREATETAB privileges that are granted to PGMR01 on
database DB1 by all IDs, use the following statement:
REVOKE CREATETAB ON DATABASE DB1 FROM PGMR01 BY ALL;

However, you might want to revoke only privileges that are granted by a specific
ID. To revoke privileges that are granted by DBUTIL1 and to leave intact the same
privileges if they were granted by any other ID, use the following statement:
REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMR01 BY DBUTIL1;

Revoking privileges granted by a role
You can use the REVOKE statement to revoke privileges that are granted by a role
in a trusted context.

To revoke privileges that are granted by a role, you can issue the REVOKE
statement in the trusted context that was defined with the ROLE AS OBJECT
OWNER clause. Also, make sure the role that revokes a privilege matches the one
that grants the privilege. For a static REVOKE statement, the revoker is the role
that owns the plan or package. For a dynamic REVOKE statement, the role for the
primary authorization ID that executes the REVOKE statement becomes the
revoker.

An authorization ID or role that has the SYSADM or SYSCTRL authority can use
the BY (ROLE role-name) clause of the REVOKE statement to revoke privileges that
are granted by a role.

Revoking all privileges from a role
You can revoke all privileges that are assigned to a role by dropping the role itself
or by using the REVOKE statement.

When you attempt to drop a role, make sure that the role does not own
any objects. If the role owns objects, the DROP statement is terminated. If the role
does not own any objects, the role is dropped. As a result, all privileges that are

held by this role are revoked, and the revocation is cascaded.

Revoking privileges for views
If a table privilege is revoked from the owner of a view on the table, the
corresponding privilege on the view is revoked. The same privilege is also revoked
from other IDs if it was granted by the view owner.

If the SELECT privilege on the base table is revoked from the owner of the
view, the view is dropped. However, if another grantor granted the SELECT
privilege to the view owner before the view was created, the view is not dropped.

Example: Suppose that OPER2 has the SELECT and INSERT privileges on table T1
and creates a view of the table. If the INSERT privilege on T1 is revoked from
OPER2, all insert privileges on the view are revoked. If the SELECT privilege on
T1 is revoked from OPER2, and if OPER2 did not have the SELECT privilege from
another grantor before the view was created, the view is dropped.

72 Managing Security

If a view uses a user-defined function, the view owner must have the EXECUTE
privilege on the function. If the EXECUTE privilege is revoked, the revoke fails
because the view is using the privilege and the RESTRICT clause prevents the
revoke.

An authorization ID with the SYSADM authority can create a view for another
authorization ID. In this case, the view could have both a creator and an owner.
The owner is automatically given the SELECT privilege on the view. However, the
privilege on the base table determines whether the view is dropped.

Example: Suppose that IDADM, with SYSADM authority, creates a view on TABLX
with OPER as the owner of the view. OPER now has the SELECT privilege on the
view, but not necessarily any privileges on the base table. If SYSADM is revoked
from IDADM, the SELECT privilege on TABLX is gone and the view is dropped.

If one ID creates a view for another ID, the catalog table SYSIBM.SYSTABAUTH
needs either one or two rows to record the associated privileges. The number of
rows that DB2 uses to record the privilege is determined by the following criteria:
v If IDADM creates a view for OPER when OPER has enough privileges to create

the view by itself, only one row is inserted in SYSTABAUTH. The row shows
only that OPER granted the required privileges.

v If IDADM creates a view for OPER when OPER does not have enough
privileges to create the view by itself, two rows are inserted in SYSTABAUTH.
One row shows IDADM as GRANTOR and OPER as GRANTEE of the SELECT
privilege. The other row shows any other privileges that OPER might have on

the view because of privileges that are held on the base table.

Revoking privileges for materialized query tables
If the SELECT privilege on a source table is revoked from the owner of a
materialized query table, the corresponding privilege on the materialized query
table is revoked. The same privilege is also revoked from other IDs if it was
granted by the table owner.

If the SELECT privilege on the source table is revoked from the owner of a
materialized query table, the materialized query table is dropped. However, if
another grantor granted the SELECT privilege to the materialized query table
owner before the materialized query table was created, the materialized query
table is not dropped.

Example: Suppose that OPER7 has the SELECT privilege on table T1 and creates a
materialized query table T2 by selecting from T1. If the SELECT privilege on T1 is
revoked from OPER7, and if OPER7 did not have the SELECT privilege from
another grantor before T2 was created, T2 is dropped.

If a materialized query table uses a user-defined function, the owner of the
materialized query table must have the EXECUTE privilege on the function. If the
EXECUTE privilege is revoked, the revoke fails because the materialized query

table is using the privilege and the RESTRICT clause prevents the revoke.

Revoking privileges for plans or packages
If the owner of an application plan or package loses a required privilege and does
not have that privilege from another source, DB2 invalidates the package.

Chapter 2. Managing access through authorization IDs and roles 73

Example: Suppose that OPER2 has the SELECT and INSERT privileges on
table T1 and creates a package that uses SELECT, but not INSERT. When privileges
are revoked from OPER2, the plan is affected in the following ways:
v If the INSERT privilege is revoked, the plan is unaffected.
v If the revoked privilege was EXECUTE on a user-defined function, DB2 marks

the package inoperative instead of invalid.

If authorization data is cached for a package and an ID loses EXECUTE authority
on the package, that ID is removed from the cache. Similarly, if authorization data
is cached for routines, a revoke or cascaded revoke of EXECUTE authority on a
routine, or on all routines in a schema (schema.*), from any ID causes the ID to be
removed from the cache.

If authorization data is cached for plans, a revoke of EXECUTE authority on the
plan from any ID causes the authorization cache to be invalidated.

If an application is caching dynamic SQL statements, and a privilege is revoked
that was needed when the statement was originally prepared and cached, that
statement is removed from the cache. Subsequent PREPARE requests for that
statement do not find it in the cache and therefore execute a full PREPARE. If the
plan or package is bound with KEEPDYNAMIC(YES), which means that the
application does not need to explicitly re-prepare the statement after a commit
operation, you might get an error on an OPEN, DESCRIBE, or EXECUTE of that
statement following the next commit operation. The error can occur because a
prepare operation is performed implicitly by DB2. If you no longer have sufficient

authority for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking the SYSADM authority from users
You can revoke the SYSADM authority from users (IDs or roles) without revoking
dependent privileges.

Revoking the SYSADM authority causes the revoking of dependent privileges, by
default. If you want to leave the grants that they had made, you can issue the
REVOKE statement with the NOT INCLUDING DEPENDENT PRIVILEGES clause,
assuming the REVOKE_DEP_PRIVILEGES system parameter is set to SQLSTMT.

Restrictions on privilege revocation
You can specify the RESTRICT clause of the REVOKE statement to impose
limitations on privilege revocation.

Whether specified or not, the RESTRICT clause of the REVOKE statement
always applies to the following objects:
v User-defined functions
v JARs (Java classes for a routine)
v Stored procedures
v Distinct types
v Sequences

When an attempt is made to revoke a privilege on one of these objects, DB2
determines whether the revokee owns an object that is dependent on the privilege.
If such a dependency exists, the REVOKE statement proceeds only if the revokee
also holds this privilege from another grantor or holds this privilege indirectly
(such as if PUBLIC has this privilege, or if the revokee has SYSADM authority).

74 Managing Security

|
|
|

|
|
|
|

Example: Consider the following scenario:
1. UserA creates a user-defined function named UserA.UDFA.
2. UserA grants EXECUTE on UserA.UDFA to UserB.
3. User B then creates a user-defined function UserB.UDFB that is sourced on

UserA.UDFA.

At this point, UserA attempts to revoke the EXECUTE privilege on UserA.UDFA
from UserB. The revoke succeeds or fails based on the following criteria:
v If UserB has the EXECUTE privilege on UserA.UDFA only from UserA, the

revoke fails with an accompanying message that indicates that a dependency on
this privilege.

v If UserB has the EXECUTE privilege on UserA.UDFA from another source,
directly or indirectly, the EXECUTE privilege that was granted by UserA is
revoked successfully.

For distinct types, the following objects that are owned by the revokee can have
dependencies:
v A table that has a column that is defined as a distinct type
v A user-defined function that has a parameter that is defined as a distinct type
v A stored procedure that has a parameter that is defined as a distinct type
v A sequence that has a parameter that is defined as a distinct type

For user-defined functions, the following objects that are owned by the revokee can
have dependencies:
v Another user-defined function that is sourced on the user-defined function
v A view that uses the user-defined function
v A table that uses the user-defined function in a check constraint or user-defined

default clause
v A trigger package that uses the user-defined function

For JARs (Java classes for a routine), the following objects that are owned by the
revokee can have dependencies:
v A Java user-defined function that uses a JAR
v A Java stored procedure that uses a JAR

For stored procedures, a trigger package that refers to the stored procedure in a
CALL statement can have dependencies.

For sequences, the following objects that are owned by the revokee can have
dependencies:
v Triggers that contain NEXT VALUE or PREVIOUS VALUE expressions that

specify a sequence
v Inline SQL routines that contain NEXT VALUE or PREVIOUS VALUE

expressions that specify a sequence

One way to ensure that the REVOKE statement succeeds is to drop the object that
has a dependency on the privilege. To determine which objects are dependent on
which privileges before attempting the revoke, use the following SELECT
statements.

For a distinct type:
v List all tables that are owned by the revokee USRT002 that contain columns that

use the distinct type USRT001.UDT1:

Chapter 2. Managing access through authorization IDs and roles 75

SELECT * FROM SYSIBM.SYSCOLUMNS WHERE
TBCREATOR = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
COLTYPE = ’DISTINCT’;

v List the user-defined functions that are owned by the revokee USRT002 that
contain a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
ROUTINETYPE = ’F’;

v List the stored procedures that are owned by the revokee USRT002 that contain
a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
ROUTINETYPE = ’P’;

v List the sequences that are owned by the revokee USRT002 that contain a
parameter that is defined as distinct type USRT001.UDT1:
SELECT SYSIBM.SYSSEQUENCES.SCHEMA, SYSIBM.SYSSEQUENCES.NAME

FROM SYSIBM.SYSSEQUENCES, SYSIBM.SYSDATATYPES WHERE
SYSIBM.SYSSEQUENCES.DATATYPEID = SYSIBM.SYSDATATYPES.DATATYPEID AND
SYSIBM.SYSDATATYPES.SCHEMA =’USRT001’ AND
SYSIBM.SYSDATATYPES.NAME =’UDT1’;

For a user-defined function:
v List the user-defined functions that are owned by the revokee USRT002 that are

sourced on user-defined function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = ’USRTOO2’ AND
SOURCESCHEMA = ’USRTOO1’ AND
SOURCESPECIFIC = ’SPECUDF1’ AND
ROUTINETYPE = ’F’;

v List the views that are owned by the revokee USRT002 that use user-defined
function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSVIEWDEP WHERE

DCREATOR = ’USRTOO2’ AND
BSCHEMA = ’USRT001’ AND
BNAME = ’SPECUDF1’ AND
BTYPE = ’F’;

v List the tables that are owned by the revokee USRT002 that use user-defined
function USRT001.A_INTEGER in a check constraint or user-defined default
clause:
SELECT * FROM SYSIBM.SYSCONSTDEP WHERE

DTBCREATOR = ’USRT002’ AND
BSCHEMA = ’USRT001’ AND
BNAME = ’A_INTEGER’ AND
BTYPE = ’F’;

v List the trigger packages that are owned by the revokee USRT002 that use
user-defined function USRT001.UDF4:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = ’USRT002’ AND
BQUALIFIER = ’USRT001’ AND
BNAME = ’UDF4’ AND
BTYPE = ’F’;

76 Managing Security

For a JAR (Java class for a routine), list the routines that are owned by the revokee
USRT002 and that use a JAR named USRT001.SPJAR:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = ’USRT002’ AND
JARCHEMA = ’USRT001’ AND
JAR_ID = ’SPJAR’;

For a stored procedure that is used in a trigger package, list the trigger packages
that refer to the stored procedure USRT001.WLMLOCN2 that is owned by the
revokee USRT002:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = ’USRT002’ AND
BQUALIFIER = ’USRT001’ AND
BNAME = ’WLMLOCN2’ AND
BTYPE = ’O’;

For a sequence:
v List the sequences that are owned by the revokee USRT002 and that use a

trigger named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

BNAME = ’SEQ1’
BQUALIFIER = ’USRT001’
BTYPE = ’Q’
DOWNER = ’USRT002’
DTYPE = ’T’;

v List the sequences that are owned by the revokee USRT002 and that use a inline
SQL routine named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSSEQUENCESDEP WHERE

DCREATOR = ’USRT002’
DTYPE = ’F’
BNAME = ’SEQ1’
BSCHEMA = ’USRT001’;

Managing implicit privileges
You acquire privileges implicitly through ownership of objects, including
ownership of plans and packages. You can control access to data by managing
those privileges through object ownership and stored procedures, which are also
known as routines.
Related tasks

“Managing explicit privileges” on page 60

Managing implicit privileges through object ownership
Ownership of an object carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

In general, when you create an object, the owner of the object can be your primary
authorization ID, one of your secondary authorization IDs, or the role that you are
associated with in a trusted context.

Ownership of objects with unqualified names
If an object name is unqualified, the object type and the way it is created
determine its ownership.

Chapter 2. Managing access through authorization IDs and roles 77

If the name of a table, view, index, alias, or synonym is unqualified, you
can establish the object's ownership in the following ways:
v If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF, or

some similar program, the owner of the created object is your current SQL ID.
That ID must have the privileges that are needed to create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the ownership of the created object depends on the option that is
used for the bind operation. You can bind the plan or package with either the
QUALIFIER option, the OWNER option, or both.
– If the plan or package is bound with the QUALIFIER option only, the

authorization ID in the QUALIFIER option is the owner of the object. The
QUALIFIER option allows the binder to name a qualifier to use for all
unqualified names of tables, views, indexes, aliases, or synonyms that appear
in the plan or package.

– If the plan or package is bound with the OWNER option only, the
authorization ID in the OWNER option is the owner of the object.

– If the plan or package is bound with both the QUALIFIER option and the
OWNER option, the authorization ID in the QUALIFIER option is the owner
of the object.

– If neither option is specified, the authorization ID of the binder of the plan or
package is implicitly the object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, you can establish the ownership of one of these objects in
these ways:
v If you issue the CREATE statement dynamically, the owner of the created object

is your current SQL ID. That ID must have the privileges that are needed to
create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use
the OWNER bind option, the binder of the package or plan is implicitly the
object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, the implicit qualifier is determined based on the schema
name in dynamic statements and the PATH bind option in static statements. The
owner of a JAR (Java class for a routine) that is used by a stored procedure or a
user-defined function is the current SQL ID of the process that performs the

INSTALL_JAR function.

Ownership of objects with qualified names
If an object name is qualified, the type of object indicates its ownership.

If you create a table, view, index, or alias with a qualified name, the owner
of the object is the schema name. The schema name identifies the schema to which
the object belongs. You can consider all of the objects that are qualified by the
same schema name as a group of related objects.

If you create a distinct type, user-defined function, stored procedure, sequence, or
trigger with a qualified name, the owner of the object is the authorization ID of the
process. The owner of a JAR (Java class for a routine) that is used by a stored

78 Managing Security

procedure or a user-defined function is the current SQL ID of the process that

performs the INSTALL_JAR function.

Ownership of objects within a trusted context
You can simplify the administration of authorization by having roles as object
owners. In addition, object ownership carries with it a set of related privileges on
the object; you can prevent users from obtaining implicit privileges from object
ownership by making roles object owners.

If the owner of an object is an authorization ID and you need to transfer
the ownership to another ID, you need to drop the object first and re-create it with
the new authorization ID as the owner. You don't need to take these steps if the
owner is a role because all users that are associated with that role have the owner
privilege.

The definition of a trusted context determines the ownership of objects that are
created in the trusted context. Assume that you issue the CREATE statement
dynamically and that the trusted context is defined with the ROLE AS OBJECT
OWNER clause. In this case, the associated role is the owner of the objects,
regardless of whether the objects are explicitly qualified.

In contrast, assume that you issue the CREATE statement statically and that the
plan or package is bound in the trusted context with the ROLE AS OBJECT
OWNER clause. In this case, the role that owns the plan or package also owns the
objects that are created, regardless of whether the objects are explicitly qualified.

Related concepts

“Trusted contexts” on page 205
Related reference

“Establishing plan and package ownership in a trusted context” on page 81

Changing object ownership
You can make a DB2 role, a primary authorization ID, or a secondary authorization
ID the owner of an object.

Object ownership carries with it a set of related privileges on the object. The
privileges that are implicit in ownership cannot be revoked; you cannot replace or
change the owner of an object while the object exists.

If you a DB2 role the owner of an object, you don't need to change or replace the
ownership. All users that are associated with that role have the same owner
privileges. To make a role the owner of an object, you need to create the object in a
trusted context that is defined with the ROLE AS OBJECT OWNER AND
QUALIFIER clause.

You can change the owner of an object from an authorization ID to a role by using
the CATMAINT UPDATE utility with the OWNER option. To do so, you must also
have the installation SYSADM authority, define a trusted context with the ROLE
AS OBJECT OWNER AND QUALIFIER clause, and run the process in the new
function mode.

Alternately, you can make the object owning ID a secondary ID with which several
primary IDs are associated. You can change the list of primary IDs that are
associated with the secondary ID without dropping and re-creating the object.

Chapter 2. Managing access through authorization IDs and roles 79

|
|
|

If the owner of the object is a primary authorization ID and if you need to transfer
the ownership to another ID, you must drop the object and then recreate it with a
new authorization ID as the owner.

Granting implicit privileges of object ownership
Certain implicit privileges of ownership correspond to the privileges that can be
granted by a GRANT statement. For the privileges that do correspond, the owner
of the object can grant them to other users.

Example: The owner of a table can grant the SELECT privilege on the table
to any other user. To grant the SELECT privilege on TABLE3 to USER4, the owner
of the table can issue the following statement:
GRANT SELECT ON TABLE3 TO USER4

Managing implicit privileges through plan or package
ownership

If you are the owner of a plan or package, you must hold privileges to perform
actions on the plan or package. You can grant privileges to execute the plan or
package to any ID.

When the EXECUTE privilege on a plan or package is granted to an ID,
the ID can execute a plan or package without holding the privileges for every
action that the plan or package performs. However, the ID is restricted by the SQL
statements in the original program.

Example: The program might contain the following statement:
EXEC SQL

SELECT * INTO :EMPREC FROM DSN81010.EMP
WHERE EMPNO=’000010’;

The statement puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN81010.EMP, but the ID does not have
unlimited access to DSN8910.EMP. Instead, the ID that has EXECUTE privilege for
this plan can access rows in the DSN81010.EMP table only when EMPNO =
'000010'.

If any of the privileges that are required by the package are revoked from the
owner, the package is invalidated. The package must be rebound, and the new

owner must have the required privileges.

Establishing or changing plan or package ownership
You can use the BIND and REBIND subcommands to create or change an
application plan or a package.

On either subcommand, you can use the OWNER option to name the owner of the
resulting plan or package. Consider the following factors when naming an owner:
v Any user can name the primary ID or any secondary ID.
v An ID with the BINDAGENT privilege can name the grantor of that privilege.
v An ID with SYSCTRL or SYSADM authority can name any authorization ID on

a BIND command, but not on a REBIND command.

80 Managing Security

If you omit the OWNER option, your primary ID becomes the owner on BIND,
and the previous owner retains ownership on REBIND.

Some systems that can bind a package at a DB2 system do not support the
OWNER option. When the OWNER option is not supported, the primary
authorization ID is always the owner of the package because a secondary ID
cannot be named as the owner.
Related reference

“Establishing plan and package ownership in a trusted context”

Establishing plan and package ownership in a trusted context
You can issue the BIND and REBIND commands in a trusted context with the
ROLE AS OBJECT OWNER clause to specify the ownership of a plan or package.
In this trusted context, you can specify only a role, not an authorization ID, as the
OWNER of a plan or package.

If you specify the OWNER option, the specified role becomes the owner of
the plan or package. If you don't specify the OWNER option, the role that is
associated with the binder becomes the owner. If the ROLE AS OBJECT OWNER
clause is omitted for the trusted context, the current rules for plan and package
ownership apply.

Considerations: If you want a role to own the package at the remote DB2, you
need to define the role ownership in the trusted context at the remote server. Make
sure to establish the connection to the remote DB2 as trusted when binding or
re-binding the package at the remote server.

If you specify the OWNER option in a trusted connection during the remote BIND
processing, the outbound authorization ID translation is not performed for the
OWNER.

If the plan owner is a role and the application uses a package bound at a remote
DB2 for z/OS server, the privilege of the plan owner to execute the package is not
considered at the remote DB2 server. The privilege set of the authorization ID
(either the package owner or the process runner determined by the
DYNAMICRULES behavior) at the DB2 for z/OS server must have the EXECUTE

privilege on the package at the DB2 server.
Related concepts

“Trusted contexts” on page 205
Related tasks

“Establishing or changing plan or package ownership” on page 80
Related reference

“Ownership of objects within a trusted context” on page 79

How DB2 resolves unqualified names
A plan or package can contain SQL statements that use unqualified table and view
names.

For static SQL, the default qualifier for those names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND
command to specify a different qualifier. For static statements, the PATH bind
option determines the path that DB2 searches to resolve unqualified distinct types,
user-defined functions, stored procedures, sequences, and trigger names.

Chapter 2. Managing access through authorization IDs and roles 81

When you perform bind operations on packages or plans that contain static SQL,
you should use group and ROLE authority rather than individual ID authority
whenever possible. The combinations of OWNER, QUALIFIER, SCHEMA, and
ROLE ownership provide you more flexibility.

For plans or packages that contain dynamic SQL, DYNAMICRULES behavior
determines how DB2 qualifies unqualified object names. For unqualified distinct
types, user-defined functions, stored procedures, sequences, and trigger names in
dynamic SQL statements, DB2 uses the schema name as the qualifier. DB2 finds the
schema name in the CURRENT PATH special register. For unqualified tables,
views, aliases, and indexes, DB2 uses the CURRENT SCHEMA special register as
the qualifier.

Exception: ALTER, CREATE, DROP, COMMENT ON, GRANT, and REVOKE
statements follow different conventions for assigning qualifiers. For static SQL, you
must specify the qualifier for these statements in the QUALIFIER bind option. For
dynamic SQL, the qualifier for these statements is the value in the CURRENT

SCHEMA special register.

Validating authorization for executing plans or packages
The owner of a plan or package must have authorization to execute all static SQL
statements that are embedded in the plan or package. A bind operation always
checks whether a local object exists and whether the owner has the required
privileges on it.

However, you do not need to have the authorization when the plan or
package is bound. The objects to which the plan or package refers do not even
need to exist at bind time. If the initial checking fails, an error message is returned.
You can choose whether the failure prevents the bind operation from completion
by using the VALIDATE option on the BIND PLAN and BIND PACKAGE
commands.

The following values for the VALIDATE option determine how DB2 is to handle
existence and authorization errors:

RUN If you choose RUN for the VALIDATE option, the bind succeeds even
when existence or authorization errors exist. DB2 checks existence and
authorization at run time.

BIND If you choose BIND for the VALIDATE option, which is recommended, the
bind fails when existence or authorization errors exist. Exception: If you
use the SQLERROR(CONTINUE) option on the BIND PACKAGE
command, the bind succeeds, but the package's SQL statements that have
errors cannot execute.

The corresponding existence and authorization checks for remote objects are
always made at run time. Authorization to execute dynamic SQL statements is also
checked at run time. Applications that use the Resource Recovery Services

attachment facility (RRSAF) to connect to DB2 do not require a plan.

Checking authorization at a DB2 database server:

A remote requester, either a DB2 for z/OS server or other requesting system, runs
a package at the DB2 intermediate server. DB2 checks for the privileges that are
required for service requests.

82 Managing Security

As shown in the following diagram, a statement in the package uses an
alias or a three-part name to request services from a DB2 database server.

The ID that is checked for the required privileges to run at the DB2 database server
can be:
v The owner of the plan, if not a role, that is running at the requester site (if the

requester is DB2 for z/OS)
If the owner of the plan is a role and the application uses a package bound at a
remote DB2 for z/OS server, the authorization ID at the DB2 for z/OS server
must have the EXECUTE privilege on the package at the DB2 server. The
authorization ID can be the package owner or the process runner that is
determined by the DYNAMICRULES behavior.

v The owner of the package that is running at the DB2 server

In addition, if a remote alias is used in the SQL statement, the alias must be
defined at the requester site. The ID that is used depends on the following factors:
v Whether the requester is a DB2 for z/OS server or a different system
v The value of the DYNAMICRULES bind option
v Whether the SQL statement that is executed at the DB2 database server is static

or dynamic

Checking authorization for executing an RRSAF application without a plan:

RRSAF provides the capability for an application to connect to DB2 and run
without a DB2 plan.

If an RRSAF application does not have a plan, the following authorization rules are
true:
v For the following types of packages, the primary or secondary authorization ID

and role of the process are used for checking authorization to execute the
package:
– A local package
– A remote package that is on a DB2 for z/OS system and is accessed using

DRDA
v At a DB2 for z/OS system, the authorization to execute the DESCRIBE TABLE

statement includes checking the primary and secondary authorization IDs.
v For a double hop situation, the authorization ID that must hold the required

privileges to execute SQL statements at the second server is determined as if the
requester is not a DB2 for z/OS system.

Requester

DB2 intermediate server
(Process runner)

DB2 database server

Runs a package

Figure 5. Execution at a second DB2 server

Chapter 2. Managing access through authorization IDs and roles 83

Caching authorization IDs for better performance
You can specify that DB2 is to cache authorization IDs for plans, packages, or
routines (user-defined functions and stored procedures). Caching IDs can help
improve performance, especially when IDs are frequently reused.

One cache exists for each plan, one global cache exists for packages, and a global
cache exists for routines. The global cache for packages and routines are allocated
at the DB2 startup. For a data sharing group, each member does its own
authorization caching.

Caching authorization IDs for plans:

Authorization checking is fastest when the plan is reused by an ID or role that
already appears in the cache and when the EXECUTE privilege is granted to
PUBLIC.

You can set the size of the plan authorization cache by using the BIND PLAN
subcommand. The default cache size is specified by an installation option, with an
initial default setting of 3072 bytes.

Caching authorization IDs for packages:

DB2 authorization can cache roles or primary authorization IDs for handling
packages. DB2 checks and caches a role if it is in effect and authorized. If a role is
not in effect or authorized, DB2 checks and caches the primary authorization ID.

Caching roles or authorization IDs for packages can provide benefits for handling
the following objects at run time:
v Stored procedures
v Remotely bound packages
v Local packages in a package list in which the plan owner does not have execute

authority on the package at bind time, but does at run time
v Local packages that are not explicitly listed in a package list, but are implicitly

listed by collection-id.*, *.*, or *.package-id

You can set the size of the package authorization cache by using the PACKAGE
AUTH CACHE field on the DSNTIPP installation panel. The default value, 5 MB,
is enough storage to support about 690 collection-id.package-id entries or
collection-id.* entries.

You can cache more package authorization information by using any of the
following strategies:
v Granting package execute authority to collection.*
v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context
v Granting package execute authority to PUBLIC for some packages or collections

PSPI The QTPACAUT field in the package accounting trace indicates how often

DB2 succeeds at reading package authorization information from the cache. PSPI

Related reference

“Caching of EXECUTE on plans, packages, and routines” on page 247

Caching authorization IDs for routines:

84 Managing Security

|
|
|

|
|

|

DB2 authorization can cache roles or primary authorization IDs for handling
routines. DB2 checks and caches a role if it is in effect and authorized. If a role is
not in effect or authorized, DB2 checks and caches the primary authorization ID.

The routine authorization cache stores roles or authorization IDs with the
EXECUTE privilege on a specific routine. A routine is identified as
schema.routine-name.type, where the routine name is one of the following names:
v The specific function name for user-defined functions
v The procedure name for stored procedures
v '*' for all routines in the schema

You can set the size of the routine authorization cache by using the ROUTINE
AUTH CACHE field on the DSNTIPP installation panel. The initial default size of
5 MB is enough storage to support about 690schema.routine.type or
schema.*.typeentries.

You can cache more authorization information about routines by using the
following strategies:
v Granting EXECUTE on schema.*

v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context
v Granting routine execute authority to PUBLIC for some or all routines in the

schema.
Related reference

“Caching of EXECUTE on plans, packages, and routines” on page 247

Authorizing plan or package access through applications
Because an ID executes a package or plan by running an application program,
implementing control measures in an application program can be useful.

Example: Consider the following SQL statement:

EXEC SQL
SELECT * INTO :EMPREC FROM DSN81010.EMP

WHERE EMPNO=’000010’;

The statement permits access to the row of the employee table WHERE
EMPNO='000010'. If you replace the value 000010 with a host variable, the
program could supply the value of the variable and permit access to various
employee numbers. Routines in the program could limit that access to certain IDs,
certain times of the day, certain days of the week, or other special circumstances.

Stored procedures provide an alternative to controls in the application. By
encapsulating several SQL statements into a single message to the DB2 server, a
stored procedure can protect sensitive portions of the application program. Also,
stored procedures can include access to non-DB2 resources, as well as DB2.

Recommendation: Do not use programs to extend security. Whenever possible, use
other techniques, such as stored procedures or views, as a security mechanism.
Using programs to extend security has the following drawbacks:

Chapter 2. Managing access through authorization IDs and roles 85

|
|
|

|
|
|

|

v Program controls are separate from other access controls, can be difficult to
implement properly, are difficult to audit, and are relatively simple to bypass.

v Almost any debugging facility can be used to bypass security checks in a
program.

v Other programs might use the plan without doing the needed checking.
v Errors in the program checks might allow unauthorized access.
v Because the routines that check security might be quite separate from the SQL

statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

v A BIND REPLACE operation for an existing plan does not necessarily revoke the
existing EXECUTE privileges on the plan. (Revoking those privileges is the
default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted
only to a carefully planned list of IDs.

Restricting access of plans or packages to particular systems:

If you use controls in an application program, you can limit the access of a plan or
package to the particular systems for which the application program is designed.

DB2 does not ensure that only specific programs are used with a plan, but
program-to-plan control can be enforced in IMS and CICS. DB2 provides a
consistency check to avoid accidental mismatches between program and plan, but
the consistency check is not a security check.

You can use the the ENABLE and DISABLE options on the BIND and REBIND
subcommands to restrict access of plans and packages to a particular system.

Example: The ENABLE IMS option allows the plan or package to run from any
IMS connection. Unless other systems are also named, ENABLE IMS does not
allow the plan or package to run from any other type of connection.

Example: DISABLE BATCH prevents a plan or package from running through a
batch job, but it allows the plan or package to run from all other types of
connection.

You can exercise even finer control with the ENABLE and DISABLE options. You
can enable or disable particular IMS connection names, CICS application IDs,

requesting locations, and so forth.

Authorization checking for executing packages remotely:

The privileges that are required for a remote bind (BIND PACKAGE
location.collection) must be granted at the server location.

The ID that owns the package must have all of the privileges that are
required to run the package at the server, and BINDADD2 and CREATE IN
privileges at the server.

2. Or BIND, depending on the installation option BIND NEW PACKAGE.

86 Managing Security

Exceptions:

v For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2 site or subsystem, where the package that is being copied resides.

v If the creator of the package is not the owner, the creator must have SYSCTRL
authority or higher, or must have been granted the BINDAGENT privilege by
the owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,
and bind privileges must be held there. Authorization to execute a package at a
remote location is checked at execution time, as follows:
v If the server is a DB2 for z/OS subsystem:

– If the subsystem parameter PRIVATE_PROTOCOL is set to NO, the
authorization ID of the process (primary ID or any secondary ID) must have
the EXECUTE privilege for the package at the DB2 server.

– If subsystem parameter PRIVATE_PROTOCOL is set to AUTH, the owner of
the plan at the DB2 requester must have the EXECUTE privilege on the
package at the DB2 server.

v If the server is not DB2 for z/OS, the primary authorization ID must have

whatever privileges are needed. Check that product's documentation.

Managing implicit privileges through routines
You can control authorization checking by using a DB2-supplied exit routine or an
exit routine that you write. You can use the access control authorization routine to
control authorization checking.

Privileges required for executing routines
A number of steps are involved in implementing, defining, and invoking
user-defined functions and stored procedures, which are also called routines.

The following table summarizes the common tasks and the privileges that
are required for executing routines.

Table 22. Common tasks and required privileges for routines

Role Tasks Required privileges

Implementer If SQL is in the routine: codes, precompiles,
compiles, and link-edits the program to use as the
routine. Binds the program as the routine
package.

If no SQL is in the routine: codes, compiles, and
link-edits the program.

If binding a package, BINDADD system
privilege and CREATE IN on the collection.

Definer Issues a CREATE FUNCTION statement to define
a user-defined function or CREATE PROCEDURE
statement to define a stored procedure.

CREATEIN privilege on the schema. EXECUTE
authority on the routine package when
invoked.

Invoker Invokes a routine from an SQL application. EXECUTE authority on the routine.

The routine implementer typically codes the routine in a program and precompiles
the program. If the program contains SQL statements, the implementer binds the
DBRM. In general, the authorization ID that binds the DBRM into a package is the
package owner. The implementer is the routine package owner. As package owner,

Chapter 2. Managing access through authorization IDs and roles 87

the implementer implicitly has EXECUTE authority on the package and has the
authority to grant EXECUTE privileges to other users to execute the code within
the package.

The implementer grants EXECUTE authority on the routine package to the definer.
EXECUTE authority is necessary only if the package contains SQL. For
user-defined functions, the definer requires EXECUTE authority on the package.
For stored procedures, the EXECUTE privilege on the package is checked for the
definer and other IDs.

The routine definer owns the routine. The definer issues a CREATE FUNCTION
statement to define a user-defined function or a CREATE PROCEDURE statement
to define a stored procedure. The definer of a routine is determined as follows:
v If the SQL statement is embedded in an application program, the definer is the

authorization ID of the owner of the plan or package.
v If the SQL statement is dynamically prepared, the definer is the SQL

authorization ID that is contained in the CURRENT SQLID special register. If the
SQL statement is executed in a trusted context that is specified with the ROLE
AS OBJECT OWNER clause, the definer is the role in effect.

The definer grants EXECUTE authority on the routine to the invoker, that is, any
user that needs to invoke the routine.

The routine invoker invokes the routine from an SQL statement in the invoking
plan or package. The invoker for a routine is determined as follows:
v For a static statement, the invoker is the plan or package owner.
v For a dynamic statement, the invoker depends on DYNAMICRULES behavior.

Granting privileges through routines
You can grant users the required privileges for implementing, defining, and using
a user-defined function through exit routines.

Implementing a user-defined function:

You can code an application program to implement a user-defined function.

To implement a user-defined function:
1. The implementer codes a program that implements the user-defined function.

Assume that the implementer codes the following external user-defined
function in C and names the function C_SALARY:
/**
* This routine accepts an employee serial number and a percent raise. *
* If the employee is a manager, the raise is not applied. Otherwise, *
* the new salary is computed, truncated if it exceeds the employee’s *
* manager’s salary, and then applied to the database. *
**/
void C_SALARY /* main routine */
(char *employeeSerial /* in: employee serial no. */

decimal *percentRaise /* in: percentage raise */
decimal *newSalary, /* out: employee’s new salary */
short int *niEmployeeSerial /* in: indic var, empl ser */
short int *niPercentRaise /* in: indic var, % raise */
short int *niNewSalary, /* out: indic var, new salary */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/

88 Managing Security

char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */

)
{

EXEC SQL BEGIN DECLARE SECTION;
char hvEMPNO-7-; /* host var for empl serial */
decimal hvSALARY; /* host var for empl salary */
char hvWORKDEPT-3-; /* host var for empl dept no. */
decimal hvManagerSalary; /* host var,emp’s mgr’s salary*/
EXEC SQL END DECLARE SECTION;

sqlstate = 0;
memset(message,0,70);
/***
* Copy the employee’s serial into a host variable *
***/
strcpy(hvEMPNO,employeeSerial);
/***
* Get the employee’s work department and current salary *
***/
EXEC SQL SELECT WORKDEPT, SALARY

INTO :hvWORKDEPT, :hvSALARY
FROM EMP
WHERE EMPNO = :hvEMPNO;

/***
* See if the employee is a manager *
***/
EXEC SQL SELECT DEPTNO

INTO :hvWORKDEPT
FROM DEPT
WHERE MGRNO = :hvEMPNO;

/***
* If the employee is a manager, do not apply the raise *
***/
if(SQLCODE == 0)

{
newSalary = hvSALARY;

}
/***
* Otherwise, compute and apply the raise such that it does not *
* exceed the employee’s manager’s salary *
***/
else

{
/***
* Get the employee’s manager’s salary *
***/
EXEC SQL SELECT SALARY

INTO :hvManagerSalary
FROM EMP

WHERE EMPNO = (SELECT MGRNO
FROM DSN8610.DEPT

WHERE DEPTNO = :hvWORKDEPT);
/***
* Compute proposed raise for the employee *
***/
newSalary = hvSALARY * (1 + percentRaise/100);
/***
* Don’t let the proposed raise exceed the manager’s salary *
***/
if(newSalary > hvManagerSalary

newSalary = hvManagerSalary;
/***
* Apply the raise *
***/
hvSALARY = newSalary;
EXEC SQL UPDATE EMP

Chapter 2. Managing access through authorization IDs and roles 89

SET SALARY = :hvSALARY
WHERE EMPNO = :hvEMPNO;

}

return;
} /* end C_SALARY */

The implementer requires the UPDATE privilege on table EMP. Users with the
EXECUTE privilege on function C_SALARY do not need the UPDATE privilege
on the table.

2. Because this program contains SQL, the implementer performs the following
steps:
a. Precompile the program that implements the user-defined function.
b. Link-edit the user-defined function with DSNRLI (RRS attachment facility),

and name the program's load module C_SALARY.
c. Bind the DBRM into package MYCOLLID.C_SALARY.
After performing these steps, the implementer is the function package owner.

3. The implementer then grants EXECUTE privilege on the user-defined function
package to the definer.
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY
TO definer

As package owner, the implementer can grant execute privileges to other users,
which allows those users to execute code within the package. For example:
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY

TO other_user

Defining a user-defined function:

You can define a user-defined function to perform specific operations by issuing
the CREATE FUNCTION statement.

To define a user-defined function:
1. Issue the CREATE FUNCTION statement. For example, the following CREATE

FUNCTION statement defines the user-defined function SALARY_CHANGE to
DB2:
CREATE FUNCTION

SALARY_CHANGE(
VARCHAR(6)
DECIMAL(5,2))

RETURNS
DECIMAL(9,2)

SPECIFIC schema.SALCHANGE
LANGUAGE C
DETERMINISTIC
MODIFIES SQL DATA
EXTERNAL NAME C_SALARY
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 1
STAY RESIDENT NO

90 Managing Security

PROGRAM TYPE SUB
WLM ENVIRONMENT WLMENV
SECURITY DB2
NO DBINFO;

After issuing the CREATE FUNCTION statement, the person who defined the
function owns the user-defined function. This person (the definer) can execute
the user-defined function package. In this case, the owner of the user-defined
function package (the implementer) granted to the definer the EXECUTE
privilege on the package that contains the user-defined function.

2. The definer grants the EXECUTE privilege on SALARY_CHANGE to all
function invokers.
GRANT EXECUTE ON FUNCTION SALARY_CHANGE

TO invoker1, invoker2, invoker3, invoker4

Using a user-defined function:

The invoker of a user-defined function need to perform a sequence of tasks to use
the user-defined function.

1. The invoker codes an application program, named SALARY_ADJ. The
application program contains a static SQL statement that invokes the
user-defined function SALARY_CHANGE. SALARY_CHANGE gives an
employee a 10% raise if the employee is not a manager. The static SQL
statement follows:
EXEC SQL SELECT FIRSTNME,

LASTNAME
SALARY_CHANGE(:hvEMPNO, 10.0)

INTO :hvFIRSTNME,
:hvLASTNAME,
:hvSALARY

FROM EMP
WHERE EMPNO = :hvEMPNO;

2. The invoker then precompiles, compiles, link-edits, and binds the invoking
application's DBRM into the invoking package. An invoking package or invoking
plan is the package or plan that contains the SQL that invokes the user-defined
function. After performing these steps, the invoker is the owner of the invoking
plan or package.
Restriction: The invoker must hold the SELECT privilege on the table EMP and

the EXECUTE privilege on the function SALARY_CHANGE.

Authorization ID validation:

DB2 uses the rules for static SQL to determine the authorization ID (invoker) that
executes the user-defined function package. For a static statement, the invoker is
the authorization ID of the plan or package owner.

The invoking package SALARY_ADJ contains a static SQL SELECT
statement that invokes the user-defined function SALARY_CHANGE.
v While execution occurs in invoking package SALARY_ADJ, DB2 uses the

authorization ID of the invoker (the package owner).
The invoker requires the EXECUTE privilege on the user-defined function
SALARY_CHANGE, which the package SALARY_ADJ invokes. Because the

Chapter 2. Managing access through authorization IDs and roles 91

|
|

user-defined function definer has the EXECUTE privilege on the user-defined
function package C_SALARY, the invoker does not require the explicit EXECUTE
privilege.

v When execution changes to the user-defined function package C_SALARY, DB2
uses the authorization ID of the implementer (the package owner). The package
owner is the authorization ID with authority to execute all static SQL in the

user-defined function package C_SALARY.

Authorization behaviors for dynamic SQL statements
The two key factors that influence authorization behaviors are the
DYNAMICRULES value and the runtime environment of a package. The
combination of the DYNAMICRULES value and the runtime environment
determine the values for the dynamic SQL attributes. Those attribute values are
called the authorization behaviors.

The DYNAMICRULES option on the BIND or REBIND command
determines the values that apply at run time for the following dynamic SQL
attributes:
v The authorization ID or role that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

The DYNAMICRULES option also determines whether dynamic SQL statements
can include GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the DYNAMICRULES value, the runtime environment of a package
controls how dynamic SQL statements behave at run time. The two possible
runtime environments are:
v The package runs as part of a stand-alone program.
v The package runs as a stored procedure or user-defined function package, or

runs under a stored procedure or user-defined function.
A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:
– The program is called by a stored procedure or user-defined function.
– The program is in a series of nested calls that start with a stored procedure or

user-defined function.

Run behavior:

DB2 processes dynamic SQL statements by using their standard attribute. These
attributes are collectively called the run behavior.

The run behavior consists of the following attributes:

v DB2 uses the authorization IDs (primary, secondary and the current SQL
ID) of the application process to check for authorization of dynamic SQL
statements. It also checks the role in effect if running in a trusted context.

v Dynamic SQL statements use the values of application programming options
that were specified during installation. The installation option USE FOR
DYNAMICRULES has no effect.

92 Managing Security

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements can

be executed dynamically.
Related concepts

“Bind behavior”
“Define behavior”
“Invoke behavior” on page 94
Related reference

“Common attribute values for bind, define, and invoke behaviors” on page 94

Bind behavior:

DB2 uses the bind behavior to process dynamic SQL statements.

The bind behavior consists of the following attributes:
v DB2 uses the authorization ID or role of the plan or package for authorization

checking of dynamic SQL statements.
v Unqualified table, view, index, and alias names in dynamic SQL statements are

implicitly qualified by the default schema, which is the value of the bind option
QUALIFIER. If you do not specify the QUALIFIER bind option, DB2 uses the
plan or package owner as the qualifier.
The values of the authorization ID or role and the qualifier for unqualified
objects are the same as those that are used for embedded or static SQL
statements.

v The bind behavior consists of the common attribute values for bind, define, and

invoke behaviors.
Related concepts

“Run behavior” on page 92
“Define behavior”
“Invoke behavior” on page 94
Related reference

“Common attribute values for bind, define, and invoke behaviors” on page 94

Define behavior:

When the package is run as or under a stored procedure or a user-defined function
package, DB2 processes dynamic SQL statements by using the define behavior.

The define behavior consists of the following attribute values:
v DB2 uses the authorization ID or role of the user-defined function or the stored

procedure owner for authorization checking of dynamic SQL statements in the
application package.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure owner.

v Define behavior consists of the common attribute values for bind, define, and
invoke behaviors.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES value specified.

Chapter 2. Managing access through authorization IDs and roles 93

Related concepts

“Run behavior” on page 92
“Bind behavior” on page 93
“Invoke behavior”
Related reference

“Common attribute values for bind, define, and invoke behaviors”

Invoke behavior:

When the package is run as, or runs under, a stored procedure or a user-defined
function package, DB2 processes dynamic SQL statements by using the invoke
behavior.

The invoke behavior consists of the following attribute values:
v DB2 uses the authorization ID of the user-defined function or the stored

procedure invoker to check the authorization for dynamic SQL statements in the
application package. It uses the following rules:
– The current SQL ID of the invoker is checked for the required authorization.
– Secondary authorization IDs and roles that are associated with the primary

authorization ID are also checked if they are needed for the required
authorization.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure invoker.

v Invoke behavior consists of the common attribute values for bind, define, and
invoke behaviors.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES specified value.
Related concepts

“Run behavior” on page 92
“Bind behavior” on page 93
“Define behavior” on page 93
Related reference

“Common attribute values for bind, define, and invoke behaviors”

Common attribute values for bind, define, and invoke behaviors:

Certain attribute values apply to dynamic SQL statements in plans or packages
that specify the bind, define, or invoke behavior.

The following attribute values apply:

v You can execute the statement SET CURRENT SQLID in a package or
plan that is bound with any DYNAMICRULES value. However, DB2 does not
use the current SQL ID as the authorization ID for dynamic SQL statements.
DB2 always uses the current SQL ID as the qualifier for the EXPLAIN output
PLAN_TABLE.

v If the value of installation option USE FOR DYNAMICRULES is YES, DB2 uses
the application programming default values that were specified during
installation to parse and semantically verify dynamic SQL statements. If the

94 Managing Security

value of USE for DYNAMICRULES is NO, DB2 uses the precompiler options to
parse and semantically verify dynamic SQL statements.

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements
cannot be executed dynamically.

The following table shows the DYNAMICRULES values and runtime
environments, and the dynamic SQL behaviors that they yield.

Table 23. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior

DYNAMICRULES value
Dynamic SQL statements in a
stand-alone program environment

Dynamic SQL statements in a
user-defined function or stored
procedure environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 24. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Authorization IDs of
the process and role,
if applicable

User-defined
function or stored
procedure owner

Authorization ID of
invoker 1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

Current Schema
register determines
the qualifier

User-defined
function or stored
procedure owner

Authorization ID of
invoker or role

CURRENT SQLID 2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
dsnhdecp3 parameter
DYNRULS 4

Install panel
DSNTIPF

Determined by
dsnhdecp3 parameter
DYNRULS 4

Determined by
dsnhdecp3 parameter
DYNRULS 4

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

1. If the invoker is the primary authorization ID of the process or the current SQL
ID, the following rules apply:
v The ID or role of the invoker is checked for the required authorization.
v Secondary authorization IDs are also checked if they are needed for the

required authorization.
2. DB2 uses the current SQL ID as the authorization ID for dynamic SQL

statements only for plans and packages that have DYNAMICRULES run
behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID
that is associated with each dynamic SQL behavior, as shown in this table.
The initial current SQL ID is independent of the dynamic SQL behavior. For
stand-alone programs, the current SQL ID is initialized to the primary
authorization ID.You can execute the SET CURRENT SQLID statement to

Chapter 2. Managing access through authorization IDs and roles 95

change the current SQL ID for packages with any dynamic SQL behavior, but
DB2 uses the current SQL ID only for plans and packages with run behavior.

3. dsnhdecp is the application default load module. The default name is
DSNHDECP.

4. The value of dsnhdecp parameter DYNRULS, which you specify in field USE
FOR DYNAMICRULES in installation panel DSNTIPF, determines whether DB2
uses the precompiler options or the application programming defaults for

dynamic SQL statements.
Related concepts

“Run behavior” on page 92
“Bind behavior” on page 93
“Define behavior” on page 93
“Invoke behavior” on page 94

Determining authorization IDs for dynamic SQL statements in routines:

You can determine the authorization IDs under which dynamic SQL statements in
routines run based on various factors. These factors include the ownership of the
stored procedure or the stored procedure package.

Suppose that A is a stored procedure and C is a program that is neither a
user-defined function nor a stored procedure. Also suppose that subroutine B is
called by both stored procedure A and program C. Subroutine B, which is invoked
by a language call, is neither a user-defined function nor a stored procedure. AP is
the package that is associated with stored procedure A, and BP is the package that
is associated with subroutine B. A, B, and C execute as shown in the following
diagram.

96 Managing Security

Stored procedure A was defined by IDASP and is therefore owned by IDASP. The
stored procedure package AP was bound by IDA and is therefore owned by IDA.
Package BP was bound by IDB and is therefore owned by IDB. The authorization
ID under which EXEC SQL CALL A runs is IDD, the owner of plan DP.

The authorization ID under which dynamic SQL statements in package AP run is
determined in the following way:
v If package AP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package AP is IDA, the owner of package AP.
v If package AP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package AP is the value of CURRENT SQLID when
the statements execute.

v If package AP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package AP is IDASP, the definer (owner) of stored
procedure A.

v If package AP uses DYNAMICRULES invoke behavior, the authorization ID for
dynamic SQL statements in package AP is IDD, the invoker of stored procedure
A.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.

Program C

Program D

Package AP

Plan DP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Subroutine B

Call B(...) Call B(...)

Figure 6. Authorization for dynamic SQL statements in programs and routines

Chapter 2. Managing access through authorization IDs and roles 97

v If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDASP, the definer of stored
procedure A.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option DEFINERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option DEFINEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

v If package BP uses DYNAMICRULES invoke behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDD, the authorization ID under
which EXEC SQL CALL A executed.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option INVOKERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option INVOKEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

Now suppose that B is a user-defined function, as shown in the following diagram.

98 Managing Security

User-defined function B was defined by IDBUDF and is therefore owned by ID
IDBUDF. Stored procedure A invokes user-defined function B under authorization
ID IDA. Program C invokes user-defined function B under authorization ID IDC.
In both cases, the invoking SQL statement (EXEC SQL SELECT B) is static.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.
v If package BP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package BP is IDBUDF, the definer of user-defined
function B.

v If package BP uses DYNAMICRULES invoke behavior:
– When user-defined function B is invoked by stored procedure A, the

authorization ID for dynamic SQL statements in package BP is IDA, the
authorization ID under which B is invoked in stored procedure A.

– When user-defined function B is invoked by program C, the authorization ID
for dynamic SQL statements in package BP is IDC, the owner of package CP,

and is the authorization ID under which B is invoked in program C.

Program C

Program D

Package AP

Plan DP

Package CP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored Procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Package
owner: IDC

User-defined
function B

UDF owner: IDBUDF

(Authorization ID IDA)

EXEC SQL
SELECT B(...)...

(Authorization ID IDC)

EXEC SQL
SELECT B(...)...

Figure 7. Authorization for dynamic SQL statements in programs and nested routines

Chapter 2. Managing access through authorization IDs and roles 99

Related tasks

“Simplifying access authorization for routines”
“Using composite privileges”
“Performing multiple actions in one statement”

Simplifying access authorization for routines:

You can simplify authorization for routines in several ways without violating any
of the authorization standards at your installation.

Consider the following strategies to simplify authorization:
v Have the implementer bind the user-defined function package using

DYNAMICRULES define behavior. With this behavior in effect, DB2 only needs
to check the definer's ID to execute dynamic SQL statements in the routine.
Otherwise, DB2 needs to check the many different IDs that invoke the
user-defined function.

v If you have many different routines, group those routines into schemas. Then
grant EXECUTE on the routines in the schema to the appropriate users. Users
have execute authority on any functions that you add to that schema.
Example: To grant the EXECUTE privilege on a schema to PUBLIC, issue the
following statement:
GRANT EXECUTE ON FUNCTION schemaname.* TO PUBLIC;

Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
96

Using composite privileges:

An SQL statement can name more than one object. A SELECT operation, for
example, can join two or more tables, or an INSERT statement can use a subquery.

These operations require privileges on all of the tables that are included in
the statement. However, you might be able to issue such a statement dynamically
even though one of your IDs alone does not have all the required privileges.

If the DYNAMICRULES run behavior is in effect when the dynamic statement is
prepared and your primary ID, any associated role, or any of your secondary IDs
has all the needed privileges, the statement is validated. However, if you embed
the same statement in a host program and try to bind it into a plan or package, the
validation fails. The validation also fails for the dynamic statement if
DYNAMICRULES bind, define, or invoke behavior is in effect when you issue the
dynamic statement. In each case, all the required privileges must be held by the

single authorization ID, determined by DYNAMICRULES behavior.
Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
96

Performing multiple actions in one statement:

100 Managing Security

A REBIND or FREE subcommand can name more than one plan or package. If no
owner is named, the set of privileges that is associated with the primary ID, the
associated role, and the secondary IDs must include the BIND privilege for each
object.

Example: Suppose that a user with a secondary ID of HQFINANCE has
the BIND privilege on plan P1 and that another user with a secondary ID of
HQHR has the BIND privilege on plan P2. Assume that someone with
HQFINANCE and HQHR as secondary authorization IDs issues the following
command:
REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither the HQFINANCE nor

HQHR has the BIND privilege for both plans.
Related reference

“Determining authorization IDs for dynamic SQL statements in routines” on page
96

Retrieving privilege records in the DB2 catalog
You can query the DB2 catalog tables by using the SQL SELECT statement.
Executing the SQL statement requires appropriate privileges and authorities. You
can control access to the catalog by granting and revoking these privileges and
authorities.

Catalog tables with privilege records
An authorization ID can hold different privileges. DB2 records information about
the privileges of an ID in catalog tables.

The following catalog tables contain information about the privileges that
IDs can hold:

Table 25. Privileges information in DB2 catalog tables

Table name Records privileges held for or authorization related to

SYSIBM.SYSCOLAUTH Updating columns

SYSIBM.SYSDBAUTH Databases

SYSIBM.SYSPLANAUTH Plans

SYSIBM.SYSPACKAUTH Packages

SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections, table spaces,
JARs, and distinct types

SYSIBM.SYSROUTINEAUTH User-defined functions and stored procedures

SYSIBM.SYSSCHEMAAUTH Schemas

SYSIBM.SYSTABAUTH Tables and views

SYSIBM.SYSUSERAUTH System authorities

SYSIBM.SYSSEQUENCEAUTH Sequences

SYSIBM.SYSCONTEXT Associating a role with a trusted context

SYSIBM.SYSCTXTTRUSTATTRS Associating trust attributes with a trusted context

SYSIBM.SYSCONTEXTAUTHIDS Associating users with a trusted context

Chapter 2. Managing access through authorization IDs and roles 101

Retrieving all authorization IDs or roles with granted
privileges

Catalog tables that contain authorization information include GRANTEE and
GRANTEETYPE columns. Depending on the settings of these columns, you can
modify the WHERE clause of the SELECT statement to retrieve all IDs or roles
with the same privileges.

No single catalog table contains information about all privileges. If
GRANTEETYPE is blank, the value of GRANTEE is the primary or secondary
authorization ID that has been granted a privilege. If GRANTEETYPE is "L", the
value of GRANTEE is a role.

To retrieve all IDs or roles with privileges, you can issue the SQL code as shown in
the following example:
SELECT GRANTEE, ’PACKAGE ’ FROM SYSIBM.SYSPACKAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’TABLE ’ FROM SYSIBM.SYSTABAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’COLUMN ’ FROM SYSIBM.SYSCOLAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’ROUTINE ’ FROM SYSIBM.SYSROUTINEAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’PLAN ’ FROM SYSIBM.SYSPLANAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SYSTEM ’ FROM SYSIBM.SYSUSERAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’DATABASE’ FROM SYSIBM.SYSDBAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SCHEMA ’ FROM SYSIBM.SYSSCHEMAAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’USER ’ FROM SYSIBM.SYSRESAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SEQUENCE ’ FROM SYSIBM.SYSSEQUENCEAUTH
WHERE GRANTEETYPE IN (’ ’,’L’);

Periodically, you should compare the list of IDs or roles that is retrieved by this
SQL code with the following lists:
v Lists of users from subsystems that connect to DB2 (such as IMS, CICS, and

TSO)
v Lists of RACF users and groups
v Lists of users from other DBMSs that access your DB2 subsystem
v Lists of remote connections.

If DB2 lists IDs or roles that do not exist elsewhere, you should revoke their

privileges.

102 Managing Security

Retrieving multiple grants of the same privilege
You can query the catalog to find information about duplicate grants of the same
privilege on objects. If multiple grant records clutter your catalog, consider
revoking unnecessary grants, which removes duplicate grant data from the catalog.

To retrieve duplicate grants on plans:

Issue the following SQL statement:

SELECT GRANTEE, NAME, COUNT(*)
FROM SYSIBM.SYSPLANAUTH
GROUP BY GRANTEE, NAME
HAVING COUNT(*) > 2
ORDER BY 3 DESC;

This statement orders the duplicate grants by frequency, so that you can easily
identify the most duplicated grants. Similar statements for other catalog tables can
retrieve information about multiple grants on other types of objects.
If several grantors grant the same privilege to the same grantee, the DB2 catalog
can become cluttered with similar data. This similar data is often unnecessary, and
it might cause poor performance.

Example 1: Suppose that Judy, Kate, and Patti all grant the SELECT privilege on
TABLE1 to Chris. If you care that Chris's ID has the privilege but not who granted
the privilege, you might consider two of the SELECT grants to be redundant and
unnecessary performance liabilities.

However, you might want to maintain information about authorities that are
granted from several different IDs, especially when privileges are revoked.

Example 2: Suppose that the SELECT privilege from the previous example is
revoked from Judy. If Chris has the SELECT privilege from only Judy, Chris loses
the SELECT privilege. However, Chris retains the SELECT privilege because Kate
and Patti also granted the SELECT privilege to Chris. In this case, the similar
grants prove not to be redundant.

Retrieving all authorization IDs or roles with the DBADM and
system DBADM authorities

You can retrieve all authorization IDs or roles that have the DBADM and system
DBADM authorities.

Issue the following statement to retrieve all authorization IDs or roles that have the
DBADM authority:

SELECT DISTINCT GRANTEE
FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <>’ ’ AND GRANTEETYPE IN (’ ’,’L’);

Issue the following statement to retrieve all authorization IDs or roles that have the
system DBADM authority on specific databases in the DB2 system:

Chapter 2. Managing access through authorization IDs and roles 103

|

|

|
|

|
|

SELECT DISTINCT GRANTEE
FROM SYSIBM.SYSUSERAUTH
WHERE SDBADMAUTH <>’ ’ AND GRANTEETYPE IN (’ ’,’L’);

Retrieving all IDs or roles with access to the same table
You can retrieve all IDs or roles (GRANTEETYPE="L") that are explicitly
authorized to access the same object.

For example, to retrieve all IDs or roles (GRANTEETYPE="L") that are
explicitly authorized to access the sample employee table (DSN81010.EMP in
database DSN8D10A), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’);

To retrieve all IDs or roles (GRANTEETYPE="L") that can change the sample
employee table (IDs with administrative authorities and IDs to which authority is
explicitly granted), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND
TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
(ALTERAUTH <> ’ ’ OR
DELETEAUTH <> ’ ’ OR
INSERTAUTH <> ’ ’ OR
UPDATEAUTH <> ’ ’)

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ’ ’
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ’ ’ AND NAME=’DSN8D91A’;

To retrieve the columns of DSN81010.EMP for which update privileges have been
granted on a specific set of columns, issue the following statement:
SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH

WHERE CREATOR=’DSN81010’ AND TNAME=’EMP’
ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to a primary or secondary authorization ID (blank), a role (L), or are
used by an application plan or package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN81010.EMP, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND
TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
UPDATEAUTH <> ’ ’;

The query returns only the IDs or roles (GRANTEETYPE="L") to which update
privileges have been specifically granted. It does not return IDs or roles that have
the privilege because of SYSADM or DBADM authority. You could include them
by forming a union with additional queries, as shown in the following example:

104 Managing Security

|
|
|

SELECT DISTINCT GRANTEE GRANTEETYPE FROM SYSIBM.SYSTABAUTH
WHERE TTNAME=’EMP’ AND

TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
UPDATEAUTH <> ’ ’

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ’ ’
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ’ ’ AND NAME=’DSN8D91A’;

Retrieving all IDs or roles with access to the same routine
You can retrieve the IDs or roles (GRANTEETYPE="L") that are authorized to
access the same routines.

For example, to retrieve the IDs or roles (GRANTEETYPE="L") that are
authorized to access stored procedure PROCA in schema SCHEMA1, issue the
following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME=’PROCA’ AND
SCHEMA=’SCHEMA1’ AND
GRANTEETYPE IN (’ ’,’L’) AND
ROUTINETYPE=’P’;

You can write a similar statement to retrieve the IDs or roles (GRANTEETYPE="L")
that are authorized to access a user-defined function. To retrieve the IDs or roles
that are authorized to access user-defined function UDFA in schema SCHEMA1,
issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME=’UDFA’ AND
SCHEMA=’SCHEMA1’ AND
GRANTEETYPE IN (’ ’,’L’) AND
ROUTINETYPE=’F’;

Retrieving plans or packages with access to the same table
You can retrieve all the plans or packages that are granted access to the same table.

For example, to retrieve the names of application plans and packages that
refer to table DSN81010.EMP directly, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ’P’ AND
TCREATOR = ’DSN81010’ AND
TTNAME = ’EMP’;

The preceding query does not distinguish between plans and packages. To identify
a package, use the COLLID column of table SYSTABAUTH, which names the
collection in which a package resides and is blank for a plan.

A plan or package can refer to the table indirectly, through a view.

To find all views that refer to the table:

Chapter 2. Managing access through authorization IDs and roles 105

1. Issue the following query:
SELECT DISTINCT DNAME FROM SYSIBM.SYSVIEWDEP

WHERE BTYPE = ’T’ AND
BCREATOR = ’DSN81010’ AND
BNAME = ’EMP’;

2. Write down the names of the views that satisfy the query. These values are
instances of DNAME_list.

3. Find all plans and packages that refer to those views by issuing a series of SQL
statements. For each instance of DNAME_list, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ’P’ AND
TCREATOR = ’DSN81010’ AND
TTNAME = DNAME_list;

Retrieving privilege information through views
An ID with the SQLADM, system DBADM, DATAACCESS, ACCESSCTRL,
SECADM, SYSADM, or SYSCTRL authority automatically has the privilege of
retrieving data from catalog tables. If you do not want to grant the SELECT
privilege on all catalog tables to PUBLIC, consider using views to let each ID
retrieve information about its own privileges.

For example, the following view includes the owner and the name of every
table on which a user's primary authorization ID has the SELECT privilege:
CREATE VIEW MYSELECTS AS

SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH
WHERE SELECTAUTH <> ’ ’ AND

GRANTEETYPE = ’ ’ AND
GRANTEE IN (USER, ’PUBLIC’, CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue the following GRANT statement:
GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This view shows privileges over columns:
CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)

AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL
FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH

WHERE TCREATOR = TBCREATOR AND
TTNAME = TBNAME AND
GRANTEETYPE = ’ ’ AND
GRANTEE IN (USER,’PUBLIC’,CURRENT SQLID);

106 Managing Security

|
|
|

Implementing multilevel security with DB2
Multilevel security allows you to classify objects and users with security labels that
are based on hierarchical security levels and non-hierarchical security categories.
Multilevel security prevents unauthorized users from accessing information at a
higher classification than their authorization. It also prevents users from
declassifying information.

Using multilevel security with row-level granularity, you can define security for
DB2 objects and perform security checks, including row-level security checks.
Row-level security checks allow you to control which users have authorization to
view, modify, or perform other actions on specific rows of data.

You can implement multilevel security with the following combinations:

DB2 authorization with multilevel security with row-level granularity
In this combination, DB2 grants are used for authorization at the DB2
object level (database, table, and so forth). Multilevel security is
implemented only at the row level within DB2.

External access control and multilevel security with row-level granularity
In this combination, external access control (such as the RACF access
control module) is used for authorization at the DB2 object level. External
access control also uses security labels to perform mandatory access
checking on DB2 objects as part of multilevel security. Multilevel security is
also implemented on the row level within DB2.

Important: The following information about multilevel security is specific to DB2.
It does not describe all aspects of multilevel security. However, this specific
information assumes that you have general knowledge of multilevel security.
Related concepts

“Multilevel security”
“Access control through multilevel security” on page 6

Multilevel security
Multilevel security is a security policy that allows you to classify objects and users
based on a system of hierarchical security levels and a system of non-hierarchical
security categories.

Multilevel security provides the capability to prevent unauthorized users from
accessing information at a higher classification than their authorization, and
prevents users from declassifying information.

Multilevel security offers the following advantages:
v Multilevel security enforcement is mandatory and automatic.
v Multilevel security can use methods that are difficult to express through

traditional SQL views or queries.
v Multilevel security does not rely on special views or database variables to

provide row-level security control.
v Multilevel security controls are consistent and integrated across the system, so

that you can avoid defining users and authorizations more than once.
v Multilevel security does not allow users to declassify information.

Chapter 2. Managing access through authorization IDs and roles 107

Using multilevel security, you can define security for DB2 objects and perform
other checks, including row-level security checks. Row-level security checks allow
you to control which users have authorization to view, modify, or perform other
actions on specific rows of data.

Multilevel security and row access control are mutually exclusive. While you can
activate column access control on a table that has a security label column and
enforce it on a security label column, you cannot do the same with row access
control. If a table has a security label column, you cannot enable it with row access
control. Vice versa is true; if a table is activated with row access control, you
cannot alter it to include a security label column.
Related reference

“Implementing multilevel security with DB2” on page 107

Security labels
Multilevel security restricts access to an object or a row based on the security label
of the object or row and the security label of the user.

For local connections, the security label of the user is the security label that the
user specified during sign-on. This security label is associated with the DB2
primary authorization ID and accessed from the RACF ACEE control block. If no
security label is specified during sign-on, the security label is the user's default
security label.

For normal TCP/IP connections, the security label of the user can be defined by
the security zone. IP addresses are grouped into security zones on the DB2 server.
For trusted TCP/IP connections, the security label of the user is the security label
established under the trusted context.

For SNA connections, the default security label for the user is used instead of the
security label that the user signed on with.

Security labels can be assigned to a user by establishing a trusted connection
within a trusted context. The trusted context definition specifies the security label
that is associated with a user on the trusted connection. You can define trusted
contexts if you have the SYSADM authority.

Security labels are based on security levels and security categories. You can use the
Common Criteria (COMCRIT) environment's subsystem parameter to require that
all tables in the subsystem are defined with security labels.

When defining security labels, do not include national characters, such as @, #, and
$. Use of these characters in security labels may cause CCSID conversion errors.
Related concepts

“Security levels” on page 109
“Security categories” on page 109

Determining the security label of a user
DB2 provides several built-in session variables that contain information about the
server and application process. You can obtain the value of a built-in session
variable by invoking the GETVARIABLE command with the name of the built-in
session variable.

108 Managing Security

|
|
|
|
|
|

|
|

One of the built-in session variables is the user's security label. You can issue the
GETVARIABLE('SYSIBM.SECLABEL') command to obtain the security label of a
user.

Security levels
Along with security categories, hierarchical security levels are used as a basis for
mandatory access-checking decisions.

When you define the security level of an object, you define the degree of
sensitivity of that object. Security levels ensure that an object of a certain security
level is protected from access by a user of a lower security level.
Related concepts

“Security labels” on page 108
“Security categories”

Security categories
Security categories are the non-hierarchical basis for mandatory access-checking
decisions.

When making security decisions, mandatory access control checks whether one set
of security categories includes the security categories that are defined in a second
set of security categories.
Related concepts

“Security labels” on page 108
“Security levels”

Users and objects in multilevel security
In multilevel security, a user is any entity that requires access to system resources;
the entity can be a human user, a stored procedure, or a batch job. An object is any
system resource to which access must be controlled; the resource can be a data set,
a table, a table row, or a command.
Related concepts

“Global temporary tables with multilevel security”
“Materialized query tables with multilevel security” on page 110
“Constraints in a multilevel-secure environment” on page 110
“Field, edit, and validation procedures in a multilevel-secure environment” on
page 110
“Triggers in a multilevel-secure environment” on page 111

Global temporary tables with multilevel security
For a declared temporary table with a column definition, no syntax exists to
specify a security label on a DECLARE GLOBAL TEMPORARY TABLE statement.
An attempt to specify a security label results in an error.

If a DECLARE GLOBAL TEMPORARY TABLE statement uses a fullselect or a
LIKE predicate or a CREATE GLOBAL TEMPORARY TABLE statement uses a
LIKE predicate, the resulting temporary table can inherit the security label column
from the referenced table or view. However, the temporary table does not inherit
any security attributes on that column. That means that the inherited column in
the temporary table is not defined AS SECURITY LABEL. The column in the
temporary table is defined as NOT NULL, with no default. Therefore, any
statements that insert data in the temporary table must provide a value for the
inherited column.

Chapter 2. Managing access through authorization IDs and roles 109

Related concepts

“Users and objects in multilevel security” on page 109
“Materialized query tables with multilevel security”
“Constraints in a multilevel-secure environment”
“Field, edit, and validation procedures in a multilevel-secure environment”
“Triggers in a multilevel-secure environment” on page 111

Materialized query tables with multilevel security
Materialized query tables are tables that contain information that is derived and
summarized from other tables.

If one or more of the source tables for a materialized query table has multilevel
security with row-level granularity enabled, some additional rules apply to
working with the materialized query table and the source tables.
Related concepts

“Users and objects in multilevel security” on page 109
“Global temporary tables with multilevel security” on page 109
“Constraints in a multilevel-secure environment”
“Field, edit, and validation procedures in a multilevel-secure environment”
“Triggers in a multilevel-secure environment” on page 111

Constraints in a multilevel-secure environment
Although a referential constraint is not allowed for the security label column, DB2
enforces referential constraints for other columns in the table that are not defined
with a security label.

Constraints operate in an multilevel-secure environment in the following ways:
v A unique constraint is allowed on a security label column.
v A referential constraint is not allowed on a security label column.
v A check constraint is not allowed on a security label column.

Multilevel security with row-level checking is not enforced when DB2 checks a
referential constraint.
Related concepts

“Users and objects in multilevel security” on page 109
“Global temporary tables with multilevel security” on page 109
“Materialized query tables with multilevel security”
“Field, edit, and validation procedures in a multilevel-secure environment”
“Triggers in a multilevel-secure environment” on page 111

Field, edit, and validation procedures in a multilevel-secure
environment
In a multilevel-secure environment, field procedures, edit procedures, and
validation procedures operate in certain ways.
v Field procedures are not allowed on a security label column. Edit procedures

that are defined as WITH ROW ATTRIBUTES are not allowed on a table with a
security label column.

v Validation procedures are allowed on a table that is defined with a security label
column. When an authorized user with write-down privilege makes an INSERT
or UPDATE request for a row, the validation procedure passes the new row with

110 Managing Security

the security label of the user. If the authorized user does not have write-down
privilege, the security label of the row remains the same.

Related concepts

“Users and objects in multilevel security” on page 109
“Global temporary tables with multilevel security” on page 109
“Materialized query tables with multilevel security” on page 110
“Constraints in a multilevel-secure environment” on page 110
“Triggers in a multilevel-secure environment”

Triggers in a multilevel-secure environment
When a transition table is generated as the result of a trigger, the security label of
the table or row from the original table is not inherited by the transition table.
Therefore, multilevel security with row-level checking is not enforced for transition
tables and transition values.

If an ALTER TABLE statement is used to add a security label column to a table
with a trigger on it, the same rules apply to the new security label column that
would apply to any column that is added to the table with the trigger on it.

When a BEFORE trigger is activated, the value of the NEW transition variable that
corresponds to the security label column is set to the security label of the user if
either of the following criteria are met:
v Write-down control is in effect and the user does not have the write-down

privilege
v The value of the security label column is not specified
Related concepts

“Users and objects in multilevel security” on page 109
“Global temporary tables with multilevel security” on page 109
“Materialized query tables with multilevel security” on page 110
“Constraints in a multilevel-secure environment” on page 110
“Field, edit, and validation procedures in a multilevel-secure environment” on
page 110

Mandatory access checking
Mandatory access checking evaluates dominance relationships between user
security labels and object security labels and determines whether to allow certain
actions based on certain rules.
v If the security label of the user dominates the security label of the object, the

user can read from the object.
v If the security label of a user and the security label of the object are equivalent,

the user can read from and write to the object.
v If the security label of the user dominates the security label of the object, the

user cannot write to the object unless the user has the write-down RACF
privilege.

v If the security label of the user is disjoint with the security label of the object,
the user cannot read or write to that object.

Exception: IDs with the installation SYSADM authority bypass mandatory access
checking at the DB2 object level because actions by Install SYSADM do not invoke
the external access control exit routine (DSNX@XAC). However, multilevel security
with row-level granularity is enforced for IDs with Install SYSADM authority.

Chapter 2. Managing access through authorization IDs and roles 111

After the user passes the mandatory access check, a discretionary check follows.
The discretionary access check restricts access to objects based on the identity of a
user, the user's role (if one exists), and the groups to which the user belongs. The
discretionary access check ensures that the user is identified as having a “need to
know” for the requested resource. The check is discretionary because a user with a
certain access permission is capable of passing that permission to any other user.

Dominance relationships between security labels
Mandatory access checking is based on the dominance relationships between user
security labels and object security labels. One security label dominates another
security label in certain conditions.
v The security level that defines the first security label is greater than or equal to

the security level that defines the second security label.
v The set of security categories that defines one security label includes the set of

security categories that defines the other security label.

Comparisons between user security labels and object security labels can result in
four types of relationships:

Dominant
One security label dominates another security label when both of the
following conditions are true:
v The security level that defines the first security label is greater than or

equal to the security level that defines the second security label.
v The set of security categories that defines the first security label includes

the set of security categories that defines the other security label.

Reading data requires that the user security label dominates the data
security label.

Reverse dominant
One security label reverse dominates another security label when both of
the following conditions are true:
v The security level that defines the first security label is less than or equal

to the security level that defines the second security label.
v The set of security categories that defines the first security label is a

subset of the security categories that defines the other security label.

Equivalent
One security label is equivalent to another security label when they are the
same or have the same level and set of categories. If both dominance and
reverse dominance are true for two security labels, they are equivalent. The
user security label must be equivalent to the data security label to be able
to read and write data without being able to write down.

Disjoint
A security label is disjoint or incompatible with another security label if
incompatible security categories cause neither security label to dominate
the other security label. Two security labels are disjoint when each of them
has at least one category that the other does not have. Disjoint access is not
allowed, even when a user is allowed to write down. If a user security
label that is disjoint to the data security label issues an INSERT, UPDATE,
or LOAD command, DB2 issues an error.

Example: Suppose that the security level "secret" for the security label HIGH is
greater than the security level "sensitive" for the security label MEDIUM. Also,
suppose that the security label HIGH includes the security categories Project_A,

112 Managing Security

Project_B, and Project_C, and that the security label MEDIUM includes the security
categories Project_A and Project_B. The security label HIGH dominates the security
label MEDIUM because both conditions for dominance are true.

Example: Suppose that the security label HIGH includes the security categories
Project_A, Project_B, and Project_C, and that the security label MEDIUM includes
the security categories Project_A and Project_Z. In this case, the security label
HIGH does not dominate the security label MEDIUM because the set of security
categories that define the security label HIGH does not contain the security
category Project_Z.

Write-down control
Mandatory access checking prevents a user from declassifying information. It
prevents a user from writing to an object unless the security label of the user is
equivalent to or dominated by that of the object.

DB2 requires either the equivalence of the security labels or the write-down privilege
of the user to write to DB2 objects.

Example: Suppose that user1 has a security label of HIGH and that row_x has a
security label of MEDIUM. Because the security label of the user and the security
label of the row are not equivalent, user1 cannot write to row_x. Therefore,
write-down control prevents user1 from declassifying the information that is in
row_x.

Example: Suppose that user2 has a security label of MEDIUM and that row_x has
a security label of MEDIUM. Because the security label of the user and the security
label of the row are equivalent, user2 can read from and write to row_x. However,
user2 cannot change the security label for row_x unless user2 has write-down
privilege. Therefore write-down control prevents user2 from declassifying the
information that is in row_x.

Granting write-down privileges
To grant the write-down privilege, you need to define a profile and then allow
users to access the profile.

To grant write-down privilege to users:
1. Issue the following RACF command to define an IRR.WRITEDOWN.BYUSER

profile.
RDEFINE FACILITY IRR.WRITEDOWN.BYUSER UACC(NONE)

2. Issue the following RACF command to allow users to access the
IRR.WRITEDOWN.BYUSER profile that you just created.
PERMIT IRR.WRITEDOWN.BYUSER ID(USRT051 USRT052 USRT054 USRT056 -

USRT058 USRT060 USRT062 USRT064 USRT066 USRT068 USRT041) -
ACCESS(UPDATE) CLASS(FACILITY)

Implementing multilevel security at the object level
You can implement multilevel security with DB2 at the object level.

To implement multilevel security with DB2 at the object level:
1. Define security labels in RACF for all DB2 objects that require mandatory

access checking by using the RDEFINE command.
Define security labels for the following RACF resource classes:
v DSNADM (administrative authorities)
v DSNR (access to DB2 subsystems)

Chapter 2. Managing access through authorization IDs and roles 113

v MDSNBP and GSNBP (buffer pools)
v MDSNCL and GDSNCL (collections)
v MDSNJR and MDSNJR (JAR)
v MDSNPN and GDSNPN (plans)
v MDSNSC and GDSNSC (schema)
v MDSNSG and GDSNSG (storage groups)
v MDSNSM and GDSNSM (system privileges)
v MDSNSP and GDSNSP (stored procedures)
v MDSNSQ and GDSNSQ (sequences)
v MDSNTB and GDSNTB (tables, views, indexes)
v MDSNTS and GDSNTS (table spaces)
v MDSNUF and GDSNUF (user-defined functions)
Recommendation: Define the security label SYSMULTI for DB2 subsystems that
are accessed by users with different security labels and tables that require
row-level granularity.

2. Specify a proper hierarchy of security labels.
In general, the security label of an object that is higher in the object hierarchy
should dominate the security labels of objects that are lower in the hierarchy.
RACF and DB2 do not enforce the hierarchy; they merely enforce the
dominance rules that you establish.
You can use RACF to define security labels for the DB2 objects in the following
object hierarchy:
v Subsystem or data sharing group

– Database
- Table space

v Table
– Column
– Row

– View
– Storage group
– Buffer pool
– Plan
– Collection

- Package
– Schema

- Stored procedure or user-defined function
- Java Archive (JAR)
- Distinct type
- Sequence

The following examples suggest dominance relationships among objects in the
DB2 object hierarchy.
Example: A collection should dominate a package.
Example: A subsystem should dominate a database. That database should
dominate a table space. That table space should dominate a table. That table
should dominate a column.
Example: If a view is based on a single table, the table should dominate the
view. However, if a view is based on multiple tables, the view should dominate
the tables.

3. Define security labels and associate users with the security labels in RACF. If
you are using a TCP/IP connection, you need to define security labels in RACF
for the security zones into which IP addresses are grouped. These IP addressed
represent remote users. Give users with SYSADM, SYSCTRL, and SYSOPR
authority the security label of SYSHIGH.

114 Managing Security

4. Activate the SECLABEL class in RACF. If you want to enforce write-down
control, turn on write-down control in RACF.

5. Install the external security access control authorization exit routine
(DSNX@XAC), such as the RACF access control module.

Related tasks

“Implementing multilevel security with row-level granularity”
“Restricting access to the security label column” on page 117

Implementing multilevel security with row-level granularity
Many applications need row-level security within the relational database so that
access can be restricted to a specific set of rows. This security control often needs
to be mandatory so that users are unable to bypass the row-level security
mechanism. Using mandatory controls with z/OS and RACF provides consistency
across the system.

Requirement: You must have z/OS Version 1 Release 5 or later to use DB2
authorization with multilevel security with row-level granularity.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level. If you implement multilevel
security on the object level, you must define security labels in RACF for all DB2
objects and install the external security access control authorization exit routine. If
you do not use the access control authorization exit routine or RACF access
control, you can use DB2 native authorization control.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level.

Recommendation: Use multilevel security at the object level with multilevel
security with row-level granularity. Using RACF with multilevel security provides
an independent check at run time and always checks the authorization of a user to
the data.

DB2 performs multilevel security with row-level granularity by comparing the
security label of the user to the security label of the row that is accessed. Because
security labels can be equivalent without being identical, DB2 uses the RACROUTE
REQUEST=DIRAUTH macro to make this comparison when the two security
labels are not the same. For read operations, such as SELECT, DB2 uses
ACCESS=READ. For update operations, DB2 uses ACCESS=READWRITE.

The write-down privilege for multilevel security with row-level granularity has the
following properties:
v A user with the write-down privilege can update the security label of a row to

any valid value. The user can make this update independent of the user's
dominance relationship with the row.

v DB2 requires that a user have the write-down privilege to perform certain
utilities.

v If write-down control is not enabled, all users with valid security labels are
equivalent to users with the write-down privilege.

Chapter 2. Managing access through authorization IDs and roles 115

Related tasks

“Implementing multilevel security at the object level” on page 113
“Restricting access to the security label column” on page 117

Creating tables with multilevel security
You can use multilevel security with row-level checking to control table access. You
can do so by creating or altering a table that has a column with the AS SECURITY
LABEL attribute.

Tables with multilevel security in effect can be dropped by using the DROP
TABLE statement. Users must have a valid security label to execute CREATE
TABLE, ALTER TABLE, and DROP TABLE statements on tables with multilevel
security enabled.

The performance of tables that you create and alter can suffer if the security label
is not included in indexes. The security label column is used whenever a table
with multilevel security enabled is accessed. Therefore, the security label column
should be included in indexes on the table. If you do not index the security label
column, you cannot maintain index-only access.

When a user with a valid security label creates a table, the user can implement
row-level security by including a security label column. The security label column
can have any name, but it must be defined as CHAR(8) and NOT NULL WITH
DEFAULT. It also must be defined with the AS SECURITY LABEL clause.

Example: To create a table that is named TABLEMLS1 and that has row-level
security enabled, issue the following statement:
CREATE TABLE TABLEMLS1

(EMPNO CHAR(6) NOT NULL,
EMPNAME VARCHAR(20) NOT NULL,
DEPTNO VARCHAR(5)
SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL,
PRIMARY KEY (EMPNO))

IN DSN8D71A.DSN8S71D;

After the user specifies the AS SECURITY LABEL clause on a column, users can
indicate the security label for each row by entering values in that column. When a
user creates a table and includes a security label column, SYSIBM.SYSTABLES
indicates that the table has row-level security enabled. Once a user creates a table
with a security label column, the security on the table cannot be disabled. The

table must be dropped and recreated to remove this protection.

Adding multilevel security to existing tables
If you have a valid security label, you can implement row-level security on an
existing table by adding a security label column to the table.

The security label column can have any name, but it must be defined as CHAR(8)
and NOT NULL WITH DEFAULT. It also must be defined with the AS SECURITY
LABEL clause.

Example: Suppose that the table EMP does not have row-level security enabled. To
alter EMP so that it has row-level security enabled, issue the following statement:

116 Managing Security

ALTER TABLE EMP
ADD SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL;

After a user specifies the AS SECURITY LABEL clause on a column, row-level
security is enabled on the table and cannot be disabled. The security label for
existing rows in the table at the time of the alter is the same as the security label of
the user that issued the ALTER TABLE statement.

Important: Packages and dynamic statements are invalidated when a table is
altered to add a security label column.

Removing tables with multilevel security
With valid privileges, you can drop a table that has row-level security in effect.

It is the required privilege that you have on the table, not the row-level security of
the table, that determines whether or not a DROP statement succeeds. When you
drop a table that has row-level security, DB2 generates an audit record.

Caching security labels
DB2 caches security labels to improve performance when multilevel security with
row-level granularity is used.

DB2 caches all security labels that are checked (successfully and unsuccessfully)
during processing. At commit or rollback, the security labels are removed from the
cache. If a security policy that employs multilevel security with row-level
granularity requires an immediate change and long-running applications have not
committed or rolled back, you might need to cancel the application.

Restricting access to the security label column
If you do not want users to see a security label column, you can create views that
do not include the column.

Example: Suppose that the ORDER table has the following columns:
ORDERNO, PRODNO, CUSTNO, SECURITY. Suppose that SECURITY is the
security label column, and that you do not want users to see the SECURITY
column. Use the following statement to create a view that hides the security label
column from users:
CREATE VIEW V1 AS

SELECT ORDERNO, PRODNO, CUSTNO FROM ORDER;

Alternatively, you can create views that give each user access only to the rows that
include that user's security label column. To do that, retrieve the value of the
SYSIBM.SECLABEL session variable, and create a view that includes only the rows
that match the session variable value.

Example: To allow access only to the rows that match the user's security label, use
the following CREATE statement:
CREATE VIEW V2 AS SELECT * FROM ORDER

WHERE SECURITY=GETVARIABLE(’SYSIBM.SECLABEL’);

Chapter 2. Managing access through authorization IDs and roles 117

Related tasks

“Implementing multilevel security at the object level” on page 113
“Implementing multilevel security with row-level granularity” on page 115

Managing data in a multilevel-secure environment
Multilevel security with row-level checking affects the results of the SELECT,
INSERT, UPDATE, MERGE, DELETE, and TRUNCATE statements.

For example, row-level checking ensures that DB2 does not return rows that have a
HIGH security label to a user that has a LOW security label. Users must have a
valid security label to execute the SELECT, INSERT, UPDATE, MERGE, DELETE,
and TRUNCATE statements.

This effect also applies to the results of the LOAD, UNLOAD, and REORG
TABLESPACE utilities on tables that are enabled with multilevel security.

Using the SELECT statement with multilevel security
When a user with a valid security label selects data from one or more tables with
row-level security enabled, DB2 compares the security label of the user to the
security label of each row.

Results from the checking are returned according to the following rules:
v If the security label of the user dominates the security label of the row, DB2

returns the row.
v If the security label of the user does not dominate the security label of the row,

DB2 does not return the data from that row, and DB2 does not generate an error
report.

Example: Suppose that Alan has a security label of HIGH, Beth has a security label
of MEDIUM, and Carlos has a security label of LOW. Suppose that DSN8910.EMP
contains the data that is shown in the following table and that the SECURITY
column has been declared with the AS SECURITY LABEL clause.

Table 26. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000010 HAAS A00 LOW

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

000330 LEE E21 MEDIUM

Now, suppose that Alan, Beth, and Carlos each submit the following SELECT
statement:
SELECT LASTNAME

FROM EMP
ORDER BY LASTNAME;

Because Alan has the security label HIGH, he receives the following result:

118 Managing Security

BROWN
HAAS
JONES
LEE
LUTZ

Because Beth has the security label MEDIUM, she receives the following result:
HAAS
JONES
LEE
LUTZ

Beth does not see BROWN in her result set because the row with that information
has a security label of HIGH.

Because Carlos has the security label LOW, he receives the following result:
HAAS
LUTZ

Carlos does not see BROWN, JONES, or LEE in his result set because the rows
with that information have security labels that dominate Carlos's security label.
Although Beth and Carlos do not receive the full result set for the query, DB2 does

not return an error code to Beth or Carlos.

Using the INSERT statement with multilevel security
When a user with a valid security label inserts data into a table with row-level
security, the security label of the row is determined according to a specific set of
rules.

v If the user has write-down privilege or write-down control is not
enabled, the user can set the security label for the row to any valid security
label. If the user does not specify a value for the security label, the security label
of the row becomes the same as the security label of the user.

v If the user does not have write-down privilege and write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Now, suppose that Alan, Beth, and Carlos each submit the following INSERT
statement:
INSERT INTO DSN8910.EMP(EMPNO, LASTNAME, WORKDEPT, SECURITY)

VALUES(’099990’, ’SMITH’, ’C01’, ’MEDIUM’);

Because Alan does not have write-down privilege, Alan cannot choose the security
label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
HIGH because Alan's security label is HIGH.

Because Beth has write-down privilege on the table, she can specify the security
label of the new row. In this case, the security label of the new row is MEDIUM. If
Beth submits a similar INSERT statement that specifies a value of LOW for the
security column, the security label for the row becomes LOW.

Chapter 2. Managing access through authorization IDs and roles 119

Because Carlos does not have write-down privilege, Carlos cannot choose the
security label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
LOW because Carlos' security label is LOW.

Considerations for INSERT from a fullselect: For statements that insert the result
of a fullselect, DB2 does not return an error code if the fullselect contains a table
with a security label column. DB2 allows it if the target table does not contain a
security label column while the source table contains one.

Considerations for SELECT...FROM...INSERT statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that insert
rows and select the inserted rows, the INSERT statement succeeds. However, the
inserted row is not returned.

Considerations for INSERT with subselect: If you insert data into a table that does
not have a security label column, but a subselect in the INSERT statement does
include a table with a security label column, row-level checking is performed for
the subselect. However, the inserted rows will not be stored with a security label

column.

Using the UPDATE statement with multilevel security
When a user with a valid security label updates a table with row-level security
enabled, DB2 compares the security label of the user to the security label of the
row.

The update proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is updated and the value of the security label is determined by whether
the user has write-down privilege:
– If the user has write-down privilege or write-down control is not enabled, the

user can set the security label of the row to any valid security label.
– If the user does not have write-down privilege and write-down control is

enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE statement is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or write-down control is not enabled, the

row is updated and the user can set the security label of the row to any valid
security label.

– If the user does not have write-down privilege and write-down control is
enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

120 Managing Security

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Table 27. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following UPDATE
statement:
UPDATE DSN8910.EMP

SET DEPTNO=’X55’, SECURITY=’MEDIUM’
WHERE DEPTNO=’D11’;

Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
updated. Alan does not have write-down privilege, so the update fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the update on that row succeeds. However, the
security label for that row remains HIGH because Alan does not have the
write-down privilege that is required to set the security label to any value. The
results of Alan's update are shown in the following table:

Table 28. Sample data from DSN8910.EMP after Alan's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN X55 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is updated. Beth has
write-down privilege, so the update succeeds for this row and the security label for
the row becomes MEDIUM. Because Beth has a security label that is equivalent to
the security label of the row with MEDIUM security, the update succeeds for that
row. Because the row with the security label of HIGH dominates Beth's security
label, the update fails for that row. The results of Beth's update are shown in the
following table:

Table 29. Sample data from DSN8910.EMP after Beth's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES X55 MEDIUM

000210 LUTZ X55 MEDIUM

Because Carlos's security label is LOW, the update fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the update on that
row succeeds. However, the security label for that row remains LOW because

Chapter 2. Managing access through authorization IDs and roles 121

Carlos does not have the write-down privilege, which is required to set the
security label to any value. The results of Carlos's update are shown in the
following table:

Table 30. Sample data from DSN8910.EMP after Carlos's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ X55 LOW

Recommendation: To avoid failed updates, qualify the rows that you want to
update with the following predicate, for the security label column SECLABEL:
WHERE SECLABEL=GETVARIABLE(’SYSIBM.SECLABEL’)

Using this predicate avoids failed updates because it ensures that the user's
security label is equivalent to the security label of the rows that DB2 attempts to
update.

Considerations for SELECT...FROM...UPDATE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
update rows and select the updated rows, the UPDATE statement succeeds.

However, the updated row is not returned.

Using the MERGE statement with multilevel security
MERGE is an SQL statement that combines the conditional INSERT and UPDATE
operations on a target table. Data that is not already present in the target table is
inserted with the INSERT part of the MERGE statement. Data that is already
present in the target table is updated with the UPDATE part of the MERGE
statement.

Because the MERGE statement consists of the INSERT and UPDATE
operations, the multilevel security rules for the INSERT operation apply to the
INSERT part of the MERGE statement and the multilevel security rules for the
UPDATE operation apply to the UPDATE part of the MERGE statement.

For the INSERT part of the MERGE statement, when a user with a valid security
label inserts data into a table with row-level security enabled, the security label of
the row is determined according to the following rules:
v If the user has write-down privilege or if the write-down control is not enabled,

the user can set the security label for the row to any valid security label. If the
user does not specify a value for the security label, the security label of the row
becomes the same as the security label of the user.

v If the user does not have write-down privilege and if the write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

For the UPDATE part of the MERGE statement, when a user with a valid security
label updates a table with row-level security enabled, DB2 compares the security
label of the user to the security label of the row. The update proceeds according to
the following rules:

122 Managing Security

v If the security label of the user and the security label of the row are equivalent,
the row is updated and the value of the security label is determined by whether
the user has write-down privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the user can set the security label of the row to any valid security
label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE operation is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the row is updated and the user can set the security label of the row
to any valid security label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Considerations for SELECT...FROM...MERGE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
merge rows and select the merged rows, the MERGE statement succeeds. However,

the merged row is not returned.

Using the DELETE statement with multilevel security
When a user with a valid security label deletes data from a table with row-level
security, DB2 compares the security label of the user to that of the row.

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user's

write-down privilege determines the result of the DELETE statement:
– If the user has write-down privilege or write-down control is not enabled, the

row is deleted.
– If the user does not have write-down privilege and write-down control is

enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user, the row

is not deleted.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Chapter 2. Managing access through authorization IDs and roles 123

Table 31. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following DELETE
statement:
DELETE FROM DSN8910.EMP

WHERE DEPTNO=’D11’;

Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
deleted. Alan does not have write-down privilege, so the delete fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the delete on that row succeeds. The results of Alan's
delete are shown in the following table:

Table 32. Sample data from DSN8910.EMP after Alan's delete

EMPNO EMPNAME DEPTNO SECURITY

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is deleted. Beth has
write-down privilege, so the delete succeeds for this row. Because Beth has a
security label that is equivalent to the security label of the row with MEDIUM
security, the delete succeeds for that row. Because the row with the security label
of HIGH dominates Beth's security label, the delete fails for that row. The results of
Beth's delete are shown in the following table:

Table 33. Sample data from DSN8910.EMP after Beth's delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

Because Carlos's security label is LOW, the delete fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the delete on that
row succeeds. The results of Carlos's delete are shown in the following table:

Table 34. Sample data from DSN8910.EMP after Carlos's delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

Important: Do not omit the WHERE clause from DELETE statements. If you omit
the WHERE clause from the DELETE statement, checking occurs for rows that
have security labels. This checking behavior might have a negative impact on
performance.

124 Managing Security

Considerations for SELECT...FROM...DELETE statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that delete
rows and select the deleted rows, the DELETE statement succeeds. However, the

deleted row is not returned.

Using the TRUNCATE statement with multilevel security
When a user with a valid security label uses a TRUNCATE statement to delete all
data from a table with row-level security enabled, DB2 compares the security label
of the user to the security label of each row.

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user's

write-down privilege determines the result of the DELETE statement:
– If the user has write-down privilege or write-down control is not enabled, the

row is deleted.
– If the user does not have write-down privilege and write-down control is

enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user, the row

is not deleted.
v If the row cannot be deleted as a result of the security label verification, the

TRUNCATE statement fails.

Using utilities with multilevel security
You need a valid security label and additional authorizations to run certain LOAD,
UNLOAD, and REORG TABLESPACE jobs on tables that have multilevel security
enabled. All other utilities check only for authorization to operate on the table
space; they do not check for row-level authorization.

LOAD: You must have the write-down privilege to run LOAD REPLACE on a
table space that contains a table with multilevel security enabled. In this case, you
can specify the values for the security label column.

When you run LOAD RESUME, you must have the write-down privilege to
specify values for the security label column. If you run a LOAD RESUME job and
do not have the write-down privilege, DB2 assigns your security label as the value
for each row in the security label column.

UNLOAD: Additional restrictions apply to UNLOAD jobs on tables that have
multilevel security enabled. Each row is unloaded only if the security label of the
user dominates the security label of the row. If security label of the user does not
dominate the security label of the row, the row is not unloaded and DB2 does not
issue an error message.

REORG TABLESPACE: REORG TABLESPACE jobs on tables that have multilevel
security enabled have the following restrictions:
v For jobs with the UNLOAD EXTERNAL option, each row is unloaded only if

the security label of the user dominates the security label of the row. If the
security label of the user does not dominate the security label of the row, the
row is not unloaded and DB2 does not issue an error message.

Chapter 2. Managing access through authorization IDs and roles 125

v For jobs with the DISCARD option, a qualifying row is discarded only if the
user has the write-down privilege and the security label of the user dominates
the security label of the row.

Implementing multilevel security in a distributed environment
SQL statements that originate from remote requesters can participate in a
multilevel secure environment if all information on the requester has the same
security label and all users of the requester are permitted to that security label.

Management of multilevel security in a distributed environment requires physical
control of the participating systems and careful management of the network.
Managed systems must be prevented from communicating with other systems that
do not have equivalent security labels.

Configuring TCP/IP with multilevel security
A communications server IP stack that runs in a multilevel secure environment can
be configured as either a restricted stack or an unrestricted stack.

Recommendation: Use an unrestricted stack for DB2. An unrestricted stack is
configured with an ID that is defined with a security label of SYSMULTI. A single
z/OS system can concurrently run a mix of restricted and unrestricted stacks.
Unrestricted stacks allow DB2 to use any security label to open sockets.

All users on a TCP/IP connection have the security label that is associated with
the IP address that is defined on the server. If a user requires a different security
label, the user must enter through an IP address that has that security label
associated with it. If you require multiple IP addresses on a remote z/OS server, a
workstation, or a gateway, you can configure multiple virtual IP addresses. This
strategy can increase the number of security labels that are available on a client.

Remote users that access DB2 by using a TCP/IP network connection use the
security label that is associated with the RACF SERVAUTH class profile when the
remote user is authenticated. Security labels are assigned to the database access
thread when the DB2 server authenticates the remote server by using the
RACROUTE REQUEST = VERIFY service.

If you use a trusted context for your TCP/IP connection, you can define a default
security label for all users or specific security labels for individual users who use
the trusted context. The security label that is defined in the trusted context
overrides the one for the TCP/IP connection in RACF.

Configuring SNA with multilevel security
Security labels are assigned to the database access thread when the DB2 server
authenticates the remote server by using the RACROUTE REQUEST = VERIFY
service. The service establishes a security label for the authorization ID that is
associated with the database access thread.

For SNA connections, this security label is the default security label that is defined
for the remote user.

126 Managing Security

Chapter 3. Managing access through RACF

You can control whether a local or remote application can gain access to a specific
DB2 subsystem from different environments. You can set different levels of security
depending on whether the requesting application uses SNA or Transmission
Control Protocol/Internet Protocol (TCP/IP) protocols to access DB2.

After the local system authenticates the incoming ID, it treats the ID like a local
connection request or a local sign-on request. You can process the ID with your
connection or sign-on exit routine and associate secondary authorization IDs with
the ID. If you are sending a request to a remote DB2 subsystem, that subsystem
can subject your request to various security checks.

You can use an external security system, such as RACF, IMS, or CICS, to authorize
and authenticate a remote request before it reaches your DB2 subsystem. The
discussion in the following topics assumes that you use RACF, or an equivalent
system, for external access control.

Establishing RACF protection for DB2
You can install and use RACF to protect your DB2 resources.

To establish RACF protection for DB2, complete the following steps in any order:
v Define DB2 resources to RACF for protection.
v Grant RACF access to the protected DB2 resources.

Defining DB2 resources to RACF
To establish RACF protection for your DB2 subsystem, you must define your DB2
resources to RACF and authorize RACF for authentication checking.

To define your DB2 resources to RACF:
v Define the names of protected access profiles.
v Enable RACF checking for the DSNR and SERVER classes.

You can also perform the following tasks:
v Control whether two DBMSs that use VTAM® LU 6.2 can establish sessions with

each other.
v Authorize IDs that are associated with stored procedures address spaces to run

the appropriate attachment facility.
v Authorize the ID that is associated with the DDF address space to use z/OS

UNIX System Services if you use TCP/IP.

© Copyright IBM Corp. 1982, 2011 127

Related tasks

“Permitting RACF access” on page 129
“Managing authorization for stored procedures” on page 137
“Protecting connection requests that use the TCP/IP protocol” on page 146
“Establishing Kerberos authentication through RACF” on page 147

Naming protected access profiles
The RACF resource class for DB2 is DSNR that is contained in the RACF class
descriptor table. The profiles in that class help you control access to a DB2
subsystem from another environment. The environment can be IMS, CICS, the
distributed data facility (DDF), TSO, CAF, or batch.

Each profile has a name of the form subsystem.environment, where:
v subsystem is the name of a DB2 subsystem, of one to four characters; for

example, DSN or DB2T.
v environment denotes the environment, by one of the following terms:

– MASS for IMS (including MPP, BMP, Fast Path, and DL/I batch).
– SASS for CICS.
– DIST for DDF.
– RRSAF for Resource Recovery Services attachment facility. Stored procedures

use RRSAF in WLM-established address spaces.
– BATCH for all others, including TSO, CAF, batch, all utility jobs, and requests

that come through the call attachment facility.

To control access, you need to define a profile, as a member of class DSNR, for
every combination of subsystem and environment you want to use. For example,
suppose that you want to access:
v Subsystem DSN from TSO and DDF
v Subsystem DB2P from TSO, DDF, IMS, and RRSAF
v Subsystem DB2T from TSO, DDF, CICS, and RRSAF

Then define the profiles with the following names:
DSN.BATCH DSN.DIST
DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF
DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF

You can do that with a single RACF command, which also names an owner for the
resources:
RDEFINE DSNR (DSN.BATCH DSN.DIST DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF) OWNER(DB2OWNER)

In order to access a subsystem in a particular environment, a user must be on the
access list of the corresponding profile. You add users to the access list by using
the RACF PERMIT command. If you do not want to limit access to particular users
or groups, you can give universal access to a profile with a command like this:
RDEFINE DSNR (DSN.BATCH) OWNER(DB2OWNER) UACC(READ)

Enabling RACF checking for the DSNR and SERVER classes
You can allow RACF to check for the DSNR and SERVER classes.

You can issue the following command to enable RACF access control to check for
resources in the DSNR resource class:
SETROPTS CLASSACT(DSNR)

128 Managing Security

If you are using stored procedures in a WLM-established address space, you might
also need to enable RACF checking for the SERVER class.

Enabling partner LU verification
With RACF and VTAM, you can control whether two logical units (LU) that use
LU 6.2 can connect to each other.

Each member of a connecting pair must establish a profile for the other member.
For example, if LUAAA and LUBBB are to connect and know each other by those
LUNAMES, issue RACF commands similar to these:

At LUAAA: RDEFINE APPCLU netid.LUAAA.LUBBB UACC(NONE) ...
At LUBBB: RDEFINE APPCLU netid.LUBBB.LUAAA UACC(NONE) ...

Here, netid is the network ID, given by the VTAM start option NETID.

When you create those profiles with RACF, use the SESSION operand to supply:
v The VTAM password as a session key (SESSKEY suboperand)
v The maximum number of days between changes of the session key (INTERVAL

suboperand)
v An indication of whether the LU pair is locked (LOCK suboperand)

Finally, to enable RACF checking for the new APPCLU resources, issue this RACF
command at both LUAAA and LUBBB:
SETROPTS CLASSACT(APPCLU)

Permitting RACF access
You must perform certain tasks in a required order to enable a process to use
protected RACF resources.

To enable a process to use protected RACF resources:
1. Define RACF user IDs for DB2-started tasks
2. Add RACF groups
3. Grant users and groups access
Related tasks

“Defining DB2 resources to RACF” on page 127
“Managing authorization for stored procedures” on page 137
“Protecting connection requests that use the TCP/IP protocol” on page 146
“Establishing Kerberos authentication through RACF” on page 147

Defining RACF user IDs for DB2-started tasks
A DB2 subsystem provides started-task address spaces.

The following are DB2 started-task address spaces:
v ssnmDBM1 for database services
v ssnmMSTR for system services
v ssnmDIST for the distributed data facility
v Names for your WLM-established address spaces for stored procedures

You must associate each of these address spaces with a RACF user ID. You can
also assign each of them to a RACF group name. The RACF user IDs and group
names that are associated with DB2 address spaces are listed in the following table:

Chapter 3. Managing access through RACF 129

Table 35. DB2 address spaces and associated RACF user IDs and group names

Address Space RACF User ID RACF Group Name

DSNMSTR SYSDSP DB2SYS

DSNDBM1 SYSDSP DB2SYS

DSNDIST SYSDSP DB2SYS

DSNWLM SYSDSP DB2SYS

DB2TMSTR SYSDSPT DB2TEST

DB2TDBM1 SYSDSPT DB2TEST

DB2TDIST SYSDSPT DB2TEST

DB2TSPAS SYSDSPT DB2TEST

DB2PMSTR SYSDSPD DB2PROD

DB2PDBM1 SYSDSPD DB2PROD

DB2PDIST SYSDSPD DB2PROD

CICSSYS CICS CICSGRP

IMSCNTL IMS IMSGRP

You can use one of the two ways that RACF provides to associate user IDs and
groups with started tasks: the STARTED class and the started procedures table
(ICHRIN03). If you use the STARTED class, the changes take effect without a
subsequent IPL. If you use ICHRIN03, you must perform another IPL for the
changes to take effect. You cannot start the DB2 address spaces with batch jobs.

If you have IMS or CICS applications issuing DB2 SQL requests, you must
associate RACF user IDs, and can associate group names, with:
v The IMS control region
v The CICS address space
v The four DB2 address spaces

If the IMS and CICS address spaces are started as batch jobs, provide their RACF
IDs and group names with the USER and GROUP parameters on the JOB
statement. If they are started as started-tasks, assign the IDs and group names as
you do for the DB2 address spaces, by changing the RACF STARTED class or the
RACF started procedures table.

The RACF user ID and group name do not need to match those that are used for
the DB2 address spaces, but they must be authorized to run the Resource Recovery
Services attachment facility (for WLM-established stored procedures address
spaces). Note that the WLM-established stored procedures started tasks IDs require
an OMVS segment.

If your installation has implemented the RACF STARTED class, you can use it to
associate RACF user IDs and group names with the DB2 started procedures
address spaces. If you have not previously set up the STARTED class, you first
need to enable generic profile checking for the class:
SETROPTS GENERIC(STARTED)

Then, you need to define the RACF identities for the DB2 started tasks:

130 Managing Security

RDEFINE STARTED DSNMSTR.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDBM1.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDIST.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DB2TMSTR.** STDATA(USER(SYSDSPT) GROUP(DB2TEST) TRUSTED(NO))
...

Then, you need to activate the RACLIST processing to read the profiles into a data
space:
SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)

Lastly, you need to refresh the in-storage profiles:
SETROPTS RACLIST(STARTED) REFRESH

If you use the RACF-started procedures table (ICHRIN03) to associate RACF user
IDs and group names with the DB2 started procedures address spaces, you need to
change, reassemble, and link edit the resulting object code to z/OS. The following
example shows a sample job that reassembles and link edits the RACF
started-procedures table (ICHRIN03):
//*
//* REASSEMBLE AND LINKEDIT THE RACF STARTED-PROCEDURES
//* TABLE ICHRIN03 TO INCLUDE USERIDS AND GROUP NAMES
//* FOR EACH DB2 CATALOGED PROCEDURE. OPTIONALLY, ENTRIES
//* FOR AN IMS OR CICS SYSTEM MIGHT BE INCLUDED.
//*
//* AN IPL WITH A CLPA (OR AN MLPA SPECIFYING THE LOAD
//* MODULE) IS REQUIRED FOR THESE CHANGES TO TAKE EFFECT.
//*

ENTCOUNT DC AL2(((ENDTABLE-BEGTABLE)/ENTLNGTH)+32768)
* NUMBER OF ENTRIES AND INDICATE RACF FORMAT
*
* PROVIDE FOUR ENTRIES FOR EACH DB2 SUBSYSTEM NAME.
*
BEGTABLE DS 0H
* ENTRIES FOR SUBSYSTEM NAME "DSN"

DC CL8’DSNMSTR’ SYSTEM SERVICES PROCEDURE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

ENTLNGTH EQU *-BEGTABLE CALCULATE LENGTH OF EACH ENTRY
DC CL8’DSNDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DSNDIST’ DDF PROCEDURE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DSNWLM’ WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2T"
DC CL8’DB2TMSTR’ SYSTEM SERVICES PROCEDURE

Chapter 3. Managing access through RACF 131

DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2TDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2TDIST’ DDF PROCEDURE
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2P"
DC CL8’DB2PMSTR’ SYSTEM SERVICES PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2PDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2PDIST’ DDF PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* OPTIONAL ENTRIES FOR CICS AND IMS CONTROL REGION
DC CL8’CICSSYS’ CICS PROCEDURE NAME
DC CL8’CICS’ USERID
DC CL8’CICSGRP’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’IMSCNTL’ IMS CONTROL REGION PROCEDURE
DC CL8’IMS’ USERID
DC CL8’IMSGRP’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

ENDTABLE DS 0D
END

The example shows the sample entries for three DB2 subsystems (DSN, DB2T, and
DB2P), optional entries for CICS and IMS, and DB2 started tasks for the DB2
subsystems, CICS, the IMS control region.
Related tasks

“Adding RACF groups”
“Granting users and groups access” on page 133

Adding RACF groups
You can issue the ADDGROUP command to add a new RACF group.

You need first to issue the following ADDUSER command to add user DB2OWNER
and give it class authorization for DSNR and USER.

132 Managing Security

ADDUSER DB2OWNER CLAUTH(DSNR USER) UACC(NONE)

DB2OWNER can now add users to RACF and issue the RDEFINE command to
define resources in class DSNR. It also has control over and responsibility for the
entire DB2 security plan in RACF.

To add group DB2 to the existing SYS1 group and make DB2OWNER the owner of
the new group, issue the following RACF command:
ADDGROUP DB2 SUPGROUP(SYS1) OWNER(DB2OWNER)

To connect DB2OWNER to group DB2 with the authority to create new subgroups,
add users, and manipulate profiles, issue the following RACF command:
CONNECT DB2OWNER GROUP(DB2) AUTHORITY(JOIN) UACC(NONE)

To make DB2 the default group for commands issued by DB2OWNER, issue the
following RACF command:
ALTUSER DB2OWNER DFLTGRP(DB2)

To create the group DB2USER and add five users to it, issue the following RACF
commands:
ADDGROUP DB2USER SUPGROUP(DB2)
ADDUSER (USER1 USER2 USER3 USER4 USER5) DFLTGRP(DB2USER)

To define a user to RACF, use the RACF ADDUSER command. That invalidates the
current password. You can then log on as a TSO user to change the password.

DB2 considerations when using RACF groups:

v When a user is newly connected to, or disconnected from, a RACF group, the
change is not effective until the next logon. Therefore, before using a new group
name as a secondary authorization ID, a TSO user must log off and log on, or a
CICS or IMS user must sign on again.

v A user with the SPECIAL, JOIN, or GROUP-SPECIAL RACF attribute can define
new groups with any name that RACF accepts and can connect any user to
them. Because the group name can become a secondary authorization ID, you
should control the use of those RACF attributes.

v Existing RACF group names can duplicate existing DB2 authorization IDs. That
duplication is unlikely for the following reasons:
– A group name cannot be the same as a user name.
– Authorization IDs that are known to DB2 are usually known to RACF.
However, you can create a table with an owner name that is the same as a
RACF group name and use the IBM-supplied sample connection exit routine.
Then any TSO user with the group name as a secondary ID has ownership
privileges on the table. You can prevent that situation by designing the
connection exit routine to stop unwanted group names from being passed to
DB2.

Related tasks

“Defining RACF user IDs for DB2-started tasks” on page 129
“Granting users and groups access”

Granting users and groups access
You can use the PERMIT command to grant users or groups access to resources in
class DSNR.

Chapter 3. Managing access through RACF 133

Suppose that the DB2OWNER group in the following example is authorized for
class DSNR, owns the profiles, and has the right to change them. You can issue the
following commands to authorize the DB2USER members, the system
administrators, and operators to be TSO users.

These users can run batch jobs and DB2 utilities on the three systems: DSN, DB2P,
and DB2T. The ACCESS(READ) operand allows use of DB2 without the ability to
manipulate profiles.
PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2P.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2T.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

Defining profiles for IMS and CICS: You want the IDs for attaching systems to use
the appropriate access profile. For example, to let the IMS user ID use the access
profile for IMS on system DB2P, issue the following RACF command:
PERMIT DB2P.MASS CLASS(DSNR) ID(IMS) ACCESS(READ)

To let the CICS group ID use the access profile for CICS on system DB2T, issue the
following RACF command:
PERMIT DB2T.SASS CLASS(DSNR) ID(CICSGRP) ACCESS(READ)

Providing installation authorities to default IDs: When DB2 is installed, IDs are
named to have special authorities—one or two IDs for SYSADM and one or two
IDs for SYSOPR. Those IDs can be connected to the group DB2USER; if they are
not, you need to give them access. The next command permits the default IDs for
the SYSADM and SYSOPR authorities to use subsystem DSN through TSO:
PERMIT DSN.BATCH CLASS(DSNR) ID(SYSADM,SYSOPR) ACCESS(READ)

Using secondary IDs: You can use secondary authorization IDs to define a RACF
group. After you define the RACF group, you can assign privileges to it that are
shared by multiple primary IDs. For example, suppose that DB2OWNER wants to
create a group GROUP1 and to give the ID USER1 administrative authority over
the group. USER1 should be able to connect other existing users to the group. To
create the group, DB2OWNER issues this RACF command:
ADDGROUP GROUP1 OWNER(USER1) DATA(’GROUP FOR DEPT. G1’)

To let the group connect to the DSN system through TSO, DB2OWNER issues this
RACF command:
PERMIT DSN.BATCH CLASS(DSNR) ID(GROUP1) ACCESS(READ)

USER1 can now connect other existing IDs to the group GROUP1 by using the
RACF CONNECT command:
CONNECT (USER2 EPSILON1 EPSILON2) GROUP(GROUP1)

If you add or update secondary IDs for CICS transactions, you must start and stop
the CICS attachment facility to ensure that all threads sign on and get the correct
security information.

Allowing users to create data sets: You can use RACF to protect the data sets that
store DB2 data. If you use the approach and when you create a new group of DB2
users, you might want to connect it to a group that can create data sets. To allow
USER1 to create and control data sets, DB2OWNER creates a generic profile and
permits complete control to USER1 and to the four administrators. The SYSDSP
parameter also gives control to DB2.

134 Managing Security

ADDSD ’DSNC100.DSNDBC.ST*’ UACC(NONE)

PERMIT ’DSNC100.DSNDBC.ST*’
ID(USER1 SYSDSP SYSAD1 SYSAD2 SYSOP1 SYSOP2) ACCESS(ALTER)

Related tasks

“Defining RACF user IDs for DB2-started tasks” on page 129
“Adding RACF groups” on page 132

Granting authorization on DB2 commands
IDs must be authorized to issue DB2 commands. If you authorize IDs by issuing
DB2 GRANT statements, the GRANT statements must be made to a primary
authorization ID, a secondary authorization ID, a role, or PUBLIC.

When RACF is used for access control, an ID must have appropriate RACF
authorization on DB2 commands or must be granted authorization for DB2
commands to issue commands from a logged-on MVS console or from TSO SDSF.

You can ensure that an ID can issue DB2 commands from logged-on MVS consoles
or TSO SDSF by using one of the following methods:
v Grant authorization for DB2 commands to the primary, secondary authorization

ID, or role.
v Define RACF classes and permits for DB2 commands.
v Grant SYSOPR authority to appropriate IDs.

Permitting access from remote requesters
You can use the DSNR RACF class to access the distributed data address space and
to control access from remote requesters.

The following RACF commands let the users in the group DB2USER access DDF
on the DSN subsystem. These DDF requests can originate from any partner in the
network.

Example: To permit READ access on profile DSN.DIST in the DSNR class to
DB2USER, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(DB2USER) ACCESS(READ)

If you want to ensure that a specific user can access only when the request
originates from a specific LU name, you can use WHEN(APPCPORT) on the
PERMIT command.

Example: To permit access to DB2 distributed processing on subsystem DSN when
the request comes from USER5 at LUNAME equal to NEWYORK, issue the
following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(NEWYORK))

For connections that come through TCP/IP, use the RACF APPCPORT class or the
RACF SERVAUTH class with TCP/IP Network Access Control to protect
unauthorized access to DB2.

Example: To use the RACF APPCPORT class, perform the following steps:
1. Activate the ACCPORT class by issuing the following RACF command:

SETROPTS CLASSACT(APPCPORT) REFRESH

Chapter 3. Managing access through RACF 135

2. Define the general resource profile and name it TCPIP. Specify NONE for
universal access and APPCPORT for class. Issue the following RACF command:
RDEFINE APPCPORT (TCPIP) UACC(NONE)

3. Permit READ access on profile TCPIP in the APPCPORT class. To permit READ
access to USER5, issue the following RACF command:
PERMIT TCPIP ACCESS(READ) CLASS(APPCPORT) ID(USER5)

4. Permit READ access on profile DSN.DIST in the DSNR class. To permit READ
access to USER5, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(TCPIP))

5. Refresh the APPCPORT class by issuing the following RACF command:
SETROPTS CLASSACT(APPCPORT) REFRESH RACLIST(APPCPORT)

If the RACF APPCPORT class is active on your system, and a resource profile for
the requesting LU name already exists, you must permit READ access to the
APPCPORT resource profile for the user IDs that DB2 uses. You must permit
READ access even when you are using the DSNR resource class. Similarly, if you
are using the RACF APPL class and that class restricts access to the local DB2 LU
name or generic LU name, you must permit READ access to the APPL resource for
the user IDs that DB2 uses.

Recommendation: Use z/OS Communications Server IP Network Access Control
and z/OS Security Server RACF SERVAUTH class if you want to use the port of
entry (POE) for remote TCP/IP connections.

Requirement: To use the RACF SERVAUTH class and TCP/IP Network Access
Control, you must have z/OS V1.5 (or later) installed.

Example: To use the RACF SERVAUTH class and TCP/IP Network Access Control,
perform the following steps:
1. Set up and configure TCP/IP Network Access Control by using the

NETACCESS statement that is in your TCP/IP profile.
For example, suppose that you need to allow z/OS system access only to IP
addresses from 9.0.0.0 to 9.255.255.255. You want to define these IP addresses as
a security zone, and you want to name the security zone IBM. Suppose also
that you need to deny access to all IP addressed outside of the IBM security
zone, and that you want to define these IP addresses as a separate security
zone. You want to name this second security zone WORLD. To establish these
security zones, use the following NETACCESS clause:
NETACCESS INBOUND OUTBOUND
; NETWORK/MASK SAF

9.0.0.0/8 IBM
DEFAULT WORLD

ENDNETACCESS

Now, suppose that USER5 has an IP address of 9.1.2.3. TCP/IP Network Access
Control would determine that USER5 has an IP address that belongs to the IBM
security zone. USER5 would be granted access to the system. Alternatively,
suppose that USER6 has an IP address of 1.1.1.1. TCP/IP Network Access
Control would determine that USER6 has an IP address that belongs to the
WORLD security zone. USER6 would not be granted access to the system.

2. Activate the SERVAUTH class by issuing the following TSO command:
SETROPTS CLASSACT(SERVAUTH)

3. Activate RACLIST processing for the SERVAUTH class by issuing the following
TSO command:

136 Managing Security

SETROPTS RACLIST(SERVAUTH)

4. Define the IBM and WORLD general resource profiles in RACF to protect the
IBM and WORLD security zones by issuing the following commands:
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.IBM) UACC(NONE)
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD) UACC(NONE)

5. Permit USER5 and SYSDSP read access to the IBM profile by using the
following commands.
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(USER5)
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(SYSDSP)

6. Permit SYSDSP read access to the WORLD profile by using the following
command:
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD ACCESS READ CLASS(SERVAUTH) ID(USER5)

7. For these permissions to take effect, refresh the RACF database by using the
following command:
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

Enabling IMS transactions to use RACF authorization control of
DB2 objects
You can enable IMS transactions to use RACF authorization control of DB2 objects
and other resources.

To enable IMS transactions to exploit RACF authorization of DB2 objects and
resources:
1. Configure IMS to use APPC/OTMA security FULLor create an IMS Build

Security Environment exit routine (DFSBSEX0). Code DFSBSEX0 to return RC4
in register 15, which will instruct IMS to create the ACEE in the dependent
region.

2. Install the default DB2 exit routine DSNX@XAC.
3. Define a RACF profile for each DB2 object and resource to be accessed by IMS

transactions.
4. Issue the RACF PERMIT command to authorize IMS transaction authorization

IDs that are allowed to access these DB2 objects and resources.
Related concepts

The default DB2 exit routine (RACF Access Control Module Guide)
Related information

IMS build security environment exit routine
Administering APPC/IMS

Managing authorization for stored procedures
DB2 for z/OS provides a variety of methods to help you ensure that users are
properly authorized to create and execute stored procedures. DB2 also provides
ways for you to keep stored procedures secure.
v “Authorizing IDs for using RRSAF” on page 138
v “Specifying WLM-established server address spaces for stored procedures” on

page 138
v “Managing authorizations for creation of stored procedures in WLM

environments” on page 139
v “Authorizing users to refresh WLM environments” on page 140
v “Controlling stored procedure access to non-DB2 resources by using RACF” on

page 140

Chapter 3. Managing access through RACF 137

|
|
|
|

|
|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

|

|
|

|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.racf/src/tpc/db2z_defaultexitroutine.htm#db2z_defaultexitroutine
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.err/ims_dfsbsex0.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.ccg/ims_appcad_estab.htm

v “Granting the CREATEIN privilege on schemas for stored procedures” on page
141

v “Granting privileges for using distinct types” on page 142
v “Granting privileges for using JAR files” on page 143
v “Granting privileges for executing stored procedures and stored procedure

packages” on page 143
v “Controlling remote execution of stored procedures by using trusted contexts”

on page 144

Authorizing IDs for using RRSAF
When started, WLM-established address spaces use the Resource Recovery Services
attachment facility (RRSAF) to attach to DB2. You must authorize the IDs that are
associated with WLM-established stored procedures address spaces so that they
can use RRSAF.

To authorize user IDs that are associated with WLM-established stored procedures
address spaces to use RRSAF:
1. Create a ssnm.RRSAF profile in RACF. For example, you can define

ssnm.RRSAF in the DSNR resource class with a universal access authority of
NONE by issuing the following command:
RDEFINE DSNR (DB2P.RRSAF DB2T.RRSAF) UACC(NONE)

2. Refresh the in-storage profiles with the profile that you just defined. For
example, you can issue the following command:
SETROPTS RACLIST(DSNR) REFRESH

3. Add user IDs that are associated with WLM-established stored procedures
address spaces to the RACF-started procedures table. For example, you can
issue the following command:
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))

4. Refresh the in-storage profiles. For example, you can issue the following
command:
SETROPTS RACLIST(STARTED) REFRESH

5. Grant read access to ssnm.RRSAF to the IDs that are associated with the stored
procedures address spaces. For example, you can issue the following command:
PERMIT DB2P.RRSAF CLASS(DSNR) ID(SYSDSP) ACCESS(READ)

Related information

Summary of RACF commands (CICS Transaction Server for z/OS)

Specifying WLM-established server address spaces for stored
procedures
You can manage access to WLM through the server resource class and specify
address spaces as WLM-established server address spaces for running stored
procedures.

To specify address spaces as WLM-established server address spaces that can run
stored procedures:
1. Define a new SERVER class by using the server resource class.

If you do not define a SERVER class, any address space that connects to WLM
as a server address space can run stored procedures.

2. Authorize a RACF profile to associate with the SERVER class. For example:
RDEFINE SERVER (DB2.ssnm.applenv)

138 Managing Security

|
|

|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|

|
|

|

|
|
|

|

|
|

|

|
|

|

|

|

|
|
|
|
|

|
|

|

|
|

|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm

In this command, applenv is the name of the application environment that is
associated with the stored procedure. For example, assume that you want to
define the following profile names:
v DB2.DB2T.TESTPROC
v DB2.DB2P.PAYROLL
v DB2.DB2P.QUERY

To define these profile names, use the following RACF command:
RDEFINE SERVER (DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY)

3. Activate the resource class. For example, you can issue the following command:
SETROPTS RACLIST(SERVER) REFRESH

4. Grant read access to the user IDs that are associated with the stored procedures
address space. For example, you can issue the following commands:
PERMIT DB2.DB2T.TESTPROC CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.PAYROLL CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.QUERY CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

Related information

Summary of RACF commands (CICS Transaction Server for z/OS)

Managing authorizations for creation of stored procedures in
WLM environments
You can group and isolate applications into different WLM environments based on
their security requirements. You can then authorize or prevent users from creating
stored procedures in a security-sensitive environment.

DB2 invokes RACF to determine if users are allowed to create or run stored
procedures in a WLM environment. The WLM ENVIRONMENT keyword on the
CREATE PROCEDURE statement identifies the WLM environments that are used
for running stored procedures. Attempts fail when unauthorized users try to create
or run stored procedures.

To manage authorizations of users for creating stored procedures in a specific
WLM environment:

Use RACF commands to manage authorizations for individual users or groups in
the creation of stored procedures in a specific WLM environment:
v To authorize individual users or groups of users to create stored procedures in a

specific WLM environment, issue the RACF PERMIT command. For example,
you can authorize the user whose ID is DB2USER1 to create stored procedures
on the DB2 subsystem DB2A (non-data sharing) in a WLM environment named
PAYROLL:
PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

When user ID DB2USER1 attempts to create a stored procedure in the PAYROLL
WLM environment, DB2 performs a resource authorization check by using the
DSNR RACF class and grants permission.

v To prevent users on a particular DB2 subsystem from creating stored procedures,
issue the RACF DEFINE command. You can also use this command to revoke the
default universal access of a WLM environment and set it to NONE,
For example, you can issue the following command to prevent all users on DB2
subsystem DB2A (non-data sharing) from creating stored procedures or
user-defined functions in the WLM environment named PAYROLL:
RDEFINE DSNR (DB2A.WLMENV.PAYROLL) UACC(NONE)

Chapter 3. Managing access through RACF 139

|
|
|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm

Related information

Summary of RACF commands (CICS Transaction Server for z/OS)

Authorizing users to refresh WLM environments
When you prepare a new version of a stored procedure in a WLM application
environment, you need to activate the updated stored procedure by refreshing the
application environment.

You can refresh the WLM environment by issuing a VARY REFRESH command at
a z/OS command line. Alternatively, you can execute the WLM_REFRESH stored
procedure, which is supplied by DB2 and executes the VARY REFRESH command.
This stored procedure is useful when users need to refresh the WLM environment
but are not authorized to issue operator commands.

To authorize users to use the WLM_REFRESH stored procedure:
1. Grant access to the RACF resource profile for each application environment.

For example, assume that you want to authorize RACF group DEVL7083 to
access the WLM_REFRESH RACF resource profile for application environment
DB9AWLM on subsystem DB9A. To authorize the RACF group in this way, you
can issue this command:
RDEFINE DSNR (DB9A.WLM_REFRESH.DB9AWLM)
PE DB9A.WLM_REFRESH.DB9AWLM +
CLASS(DSNR) ID(DEVL7083) ACCESS(READ)
END

2. Grant the EXECUTE privilege on the stored procedure to users or groups who
need to refresh the environment. For example, you can issue the following
GRANT statement to authorize the RACF group DEVL7083 to execute the
WLM_REFRESH stored procedure on application environment DB9AWLM:

GRANT EXECUTE ON PROCEDURE SYSPROC.WLM_REFRESH TO DEVL7083;

You need to grant the EXECUTE privilege only once because you supply the
application environment name as a variable when you execute the stored
procedure.

Related reference

WLM_REFRESH stored procedure (DB2 Application programming and SQL)

GRANT (function or procedure privileges) (DB2 SQL)
Related information

Summary of RACF commands (CICS Transaction Server for z/OS)

Controlling stored procedure access to non-DB2 resources by
using RACF
You can control DB2 stored procedure access to non-DB2 resources (such as VSAM
files) by using RACF (or another external security product).

To control access to non-DB2 resources for an existing stored procedure
that does not require RACF (or another external security product):
1. Issue the ALTER PROCEDURE statement with the SECURITY USER clause.

140 Managing Security

|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|

|

|

|

|
|
|
|

|
|

|

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.apsg/src/tpc/db2z_sp_wlmrefresh.htm#db2z_sp_wlmrefresh
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm

2. Ensure that the user ID that calls the stored procedure has RACF authority to
the resources.

3. Enable RACF checking for the caller's ID.
4. For improved performance, specify the following keywords in the COFVLFxx

member of library SYS1.PARMLIB to cache the RACF profiles in the virtual
look-aside facility (VLF) of z/OS. For example:
CLASS NAME(IRRACEE)
EMAJ(ACEE)

Related reference

CREATE PROCEDURE (SQL - external) (DB2 SQL)

CREATE PROCEDURE (external) (DB2 SQL)

ALTER PROCEDURE (SQL - external) (DB2 SQL)

ALTER PROCEDURE (external) (DB2 SQL)
Related information

COFVLFxx (virtual lookaside facility parameters) (MVS Initialization and
Tuning Reference)

Granting the CREATEIN privilege on schemas for stored
procedures
When a stored procedure is created, it is explicitly or implicitly qualified by a
schema. Users must have the required CREATEIN privilege on the schema before
they can create stored procedures.

Many users create stored procedures in the same schema at an application
level. These users need the CREATEIN privilege on the schema. You can grant this
privilege to a secondary ID or role that is associated with individual users. Those
users can then issue a SET CURRENT SQLID statement to the secondary ID or role
prior to creating stored procedures in the schema.

To grant the CREATEIN privilege on schemas for stored procedures:

Issue a GRANT statement with the appropriate options, depending on whether
you are granting the privilege to a secondary ID or to a role.
v For a secondary ID, issue a GRANT statement with the CREATEIN ON

SCHEMA clause. Specify the schema name and secondary ID. For example,
assume that you want a user with the secondary ID of PAOLORW to be able to
create stored procedures in a schema named DEVL7083. To give this user the
necessary privilege, you can issue this statement:
GRANT CREATEIN ON SCHEMA DEVL7083 TO PAOLORW;

If the ID PAOLORW issues a CREATE PROCEDURE statement without having
the required CREATEIN privilege on the schema, an error occurs, and the
procedure is not created.

v For a role, issue a GRANT statement with the CREATEIN ON SCHEMA clause.
Specify the schema name and the role that will be in effect when the stored
procedure is created. (For users to be associated with a role, the trusted context
that links them to the role needs to be defined with the ROLE AS OBJECT
OWNER AND QUALIFIER clause.) For example, assume that you want to grant

Chapter 3. Managing access through RACF 141

|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlexternal.htm#db2z_sql_alterproceduresqlexternal
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2e2a0/20.0
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2e2a0/20.0

the CREATEIN privilege to a role named ADMINISTRATOR so that users who
are associated with the ADMINISTRATOR role can create stored procedures in a
schema named DEVL7083. To grant this privilege, you can issue this statement:
GRANT CREATEIN ON SCHEMA DEVL7083 TO ROLE ADMINISTRATOR;

If a user who is associated with the role named ADMINISTRATOR issues a
CREATE PROCEDURE statement without having the required CREATEIN
privilege on the schema, an error occurs, and the procedure is not created.

After a secondary ID or role is granted the CREATEIN privilege for a stored
procedure and then creates a stored procedure, that ID or role is the owner of that

stored procedure.
Related reference

GRANT (schema privileges) (DB2 SQL)

Granting privileges for using distinct types
Stored procedures can pass parameters that have a distinct type as a data type.
When a distinct type is used as a stored procedure parameter, users who create the
stored procedure need the USAGE privilege on the distinct type.

When you create a distinct type, you, as the owner of that type, implicitly have the
USAGE privilege on the type. You also have the EXECUTE privilege on the
associated cast functions. If other users want to create stored procedures that pass
a parameter with that distinct type, you need to explicitly grant the USAGE
privilege to them.

To grant privileges for using distinct types:

Issue the GRANT statement with the USAGE ON TYPE clause, and specify the
name of the distinct type.
v You can grant privileges for using distinct types to an authorization ID. For

example, assume that you want the user whose authorization ID is PAOLORW
to be able to use the US_DOLLARS distinct type, which you created. Specifically,
this user needs to create a stored procedure that passes a parameter with this
data type. To grant this privilege, you can issue this statement:

GRANT USAGE ON TYPE US_DOLLARS TO PAOLORW;

v You can grant privileges for using distinct types to a role. For example, if you
want the role named ADMINISTRATOR to be able to use the US_DOLLARS
distinct type, you can issue this statement:

GRANT USAGE ON TYPE US_DOLLARS TO ROLE ADMINISTRATOR;

142 Managing Security

|
|
|

|

|
|
|

|
|

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|

|

|
|
|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantschemaprivileges.htm#db2z_sql_grantschemaprivileges

Related reference

GRANT (type or JAR file privileges) (DB2 SQL)

Granting privileges for using JAR files
To use Java archive (JAR) files, you need to have the USAGE privilege on the JAR.

If you have the USAGE privilege on the JAR, you can specify a JAR file in the
EXTERNAL NAME clause of a stored procedure with a language type of Java.

To grant privileges for using JAR files:

Issue the GRANT statement, specifying the USAGE clause. For example, assume
that you want the user whose AUTHID is PAOLORW to create a Java stored
procedure, EMPDTL1J. Assume that the external name of the stored procedure is
to be DEVL7083.EmpJar:EmpDtl1J.GetEmpDtls, where:

DEVL7083.EmpJar
Is the JAR file name.

EmpDtl1J
Is the class name.

GetEmpDtls
Is the method name.

AUTHID PAOLORW needs the USAGE privilege (from the JAR file owner ID or
schema that was used for executing the INSTALL_JAR stored procedure). The
following statement grants this privilege:

GRANT USAGE ON JAR DEVL7083.EmpJar TO PAOLORW;

In addition, if specified, the contents of the JAR file must already be installed in
the DB2 catalog at the time the stored procedure is created.
Related reference

GRANT (type or JAR file privileges) (DB2 SQL)

Granting privileges for executing stored procedures and stored
procedure packages
After you create a stored procedure, you need to grant EXECUTE privilege to
users who plan to run the stored procedure and the stored procedure package. You
can use the GRANT statement to grant the required privileges.

Invoking a stored procedure requires the EXECUTE privilege on the stored
procedure. For external stored procedures (including external SQL procedures),
additional authority is needed for the stored procedure package and for most
packages that run in the stored procedure.

To grant privileges for executing stored procedures and stored procedure packages:
1. Issue the SQL GRANT statement with the EXECUTE ON PROCEDURE clause

to the appropriate authorization ID or role.
v To grant the EXECUTE privilege to an authorization ID, use the GRANT

statement with the EXECUTE ON PROCEDURE clause. For example, to

Chapter 3. Managing access through RACF 143

|

|

|
|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|

|
|
|

|

|

|
|
|
|
|

|
|
|
|

|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_granttypeorjarprivileges.htm#db2z_sql_granttypeorjarprivileges
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_granttypeorjarprivileges.htm#db2z_sql_granttypeorjarprivileges

grant EXECUTE privilege for a stored procedure named SPNAME to a user
whose authorization ID is PAOLORW, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO PAOLORW;

v To grant the EXECUTE privilege to a role, use the GRANT statement with
the EXECUTE ON PROCEDURE clause and the ROLE clause. For example,
to grant EXECUTE privilege for a stored procedure named SPNAME to a
role named ADMINISTRATOR, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO ROLE ADMINISTRATOR;

The DYNAMICRULES behavior for the plan or package that contains the CALL
statement determines which authorization ID or role holds the privilege. For
more information about the authorization requirements, see CALL (DB2 SQL).

2. Issue the SQL GRANT EXECUTE ON PACKAGE statement with the
appropriate options, depending on whether you are granting the privilege to an
authorization ID or a role:
v To grant the EXECUTE privilege on the package to an authorization ID, issue

the GRANT statement with the EXECUTE ON PACKAGE clause. For
example, to grant the privilege to execute a package named PKGNAME to a
user whose authorization ID is PAOLORW, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO PAOLORW;

v To grant the EXECUTE privilege on the package to a role, issue the GRANT
statement with the EXECUTE ON PACKAGE clause and the ROLE clause.
For example, to grant this privilege to execute a package named PKGNAME
to a role named ADMINISTRATOR, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO ROLE ADMINISTRATOR;

The complete syntax of the GRANT statement that you should use depends on
the type of package. For more information about the options for the GRANT
statement, see GRANT (function or procedure privileges) (DB2 SQL) and

GRANT (package privileges) (DB2 SQL).
Related reference

CALL (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

GRANT (package privileges) (DB2 SQL)

Controlling remote execution of stored procedures by using
trusted contexts
You can use trusted contexts and roles to control how a stored procedure can be
executed. A trusted context is an independent database entity that is based on a
system authorization ID (SYSTEM AUTHID) and connection trust attributes.

For a remote stored procedure CALL, the SYSTEM AUTHID is derived
from the system user ID that is provided by an external entity, such as a
middleware server. This ID is derived when the connection is initiated. The
connection trust attributes are as follows, specified in the CREATE TRUSTED
CONTEXT statement:

ADDRESS
IP address or domain name. (The protocol is restricted to TCP/IP only.)

SERVAUTH
A resource in the RACF SERVAUTH class.

144 Managing Security

|
|

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantpackageprivileges.htm#db2z_sql_grantpackageprivileges
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantpackageprivileges.htm#db2z_sql_grantpackageprivileges

ENCRYPTION
Minimum level of encryption for the connection:

NONE
No encryption. This is the default value.

LOW DRDA data stream encryption.

HIGH Secure Sockets Layer (SSL) encryption.

To call a stored procedure in trusted contexts:
1. Define a role by issuing the CREATE ROLE statement. A role is a database

entity that groups together one or more privileges and that can be assigned to
users by using a trusted context. A role can be used in conjunction with a
trusted context and stored procedures to identify one or more authorization IDs
that can execute a stored procedure. For example, assume that you want to call
stored procedure DEVL7083.EMPDTL1C, which resides on DB2 subsystem
DB9A by using authorization ID PAOLORW. Assume also that you want to
define a role called SP_CALLER for use by PAOLORW. You can issue the
following SQL statement:
CREATE ROLE SP_CALLER;

2. Grant the EXECUTE privilege on a stored procedure to that role. For example,
to grant the EXECUTE privilege to the role called SP_CALLER for the stored
procedure named EMPDTL1C, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE DEVL7083.EMPDTL1C TO ROLE SP_CALLER;

3. Have an authorized user bind the stored procedure package. The user either
needs SYSADM authority or must have explicitly bind authority for that stored
procedure. For example, assume that an authorized user wants to bind stored
procedure DEVL7083.EMPDTL1C into stored procedure package
DEVL7083.EMPDTL1CPKG. You can issue the following statement:
BIND PACKAGE(DEVL7083) MEMBER(EMPDTL1CPKG)

4. Grant the EXECUTE privilege on the stored procedure package to the
authorization ID or role that needs to run it. For example, to grant the
EXECUTE privilege on stored procedure package DEVL7083.EMPDTL1CPKG
to the role named SP_CALLER, you can issue this statement:
GRANT EXECUTE ON PACKAGE DEVL7083.EMPDTL1CPKG TO ROLE SP_CALLER;

5. Define the trusted context. For example, assume that you want to define a
trusted context named TRUSTED_EMPDTL1C that uses:
v System authorization ID PAOLORW
v Default role SP_CALLER
v IP address 9.30.28.113

To define this trusted context, you can issue the following statement:
CREATE TRUSTED CONTEXT TRUSTED_EMPDTL1C
BASED UPON CONNECTION USING SYSTEM AUTHID PAOLORW
ATTRIBUTES (ADDRESS ’9.30.28.113’)
DEFAULT ROLE SP_CALLER
ENABLE;

6. Optional: Verify that the authorization ID can execute the stored procedure by
running the application program that invokes the stored procedure and looking
at the system output. For example, assume that an application named
CALLEMPD uses a CALL :host-variable statement to invoke the stored

Chapter 3. Managing access through RACF 145

|
|

|
|

||

||

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|

|

|

|

|

|
|
|
|
|

|

|
|
|
|

procedure named DEVL7083.EMPDTL1C. Assume also that the application
program generates trace output. You might see the following system output:
DEVL7083.CALLEMPD - Run started.
Data returned in result sets is limited to the first 50 rows.
Data returned in result set columns is limited to the first 100

bytes or characters.
DEVL7083.CALLEMPD - Calling the stored procedure.
DEVL7083.CALLEMPD - Run completed.

Related reference

CREATE TRUSTED CONTEXT (DB2 SQL)

CREATE ROLE (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

Protecting connection requests that use the TCP/IP protocol
You can set your DB2 subsystem to send or receive connection requests that use
the TCP/IP network protocol. You need to authorize the started task user ID
(SYSDSP) that is associated with the DB2 distributed address space (ssnmDIST) to
use the z/OS UNIX System Services.

To secure connection requests over TCP/IP:
1. Create an OMVS segment in the RACF user profile for the started task user ID

(SYSDSP)
2. Specify a z/OS UNIX user identifier of 0 and the maximum number of files of

that the user is allowed to have concurrently active to 131702 in the following
command:
ADDUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

If the ddfuid ID already exists, use:
ALTUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

The started task user ID of the DB2 distributed address space only needs a
z/OS UNIX user identifier of 0 (UID(0)). A UID 0 is considered a superuser. If
you don't want to grant the superuser authority to the started task user ID that
is associated with the ssnmDIST address space during the DB2 installation, you
can specify a value other than 0 for the UID parameter. Make sure that the
value is a valid z/OS UNIX user identifier.

3. If you want to assign a z/OS group name to the address space, assign an
OMVS segment to the z/OS group name by using one of the following RACF
commands:
ADDGROUP ddfgnm OMVS(GID(nnn))...

ALTGROUP ddfgnm OMVS(GID(nnn))...

where ddfgnm is the z/OS group name and nnn is any valid, unique identifier.
The standard way to assign a z/OS userid and a z/OS group name to a started
address space is to use the z/OS Security Server (RACF) STARTED resource
class. This method enables you to dynamically assign a z/OS user ID by using
commands instead of requiring an IPL to have the assignment take effect. The
alternative method to assign a z/OS user ID and a z/OS group name to a
started address space is to change the RACF started procedures table,
ICHRIN03.

You can also manage TCP/IP requests in a trusted context. A trusted context
allows you to use a trusted connection without needing additional authentication
and to acquire additional privileges through the definition of roles.

146 Managing Security

|
|

|
|
|
|
|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createtrustedcontext.htm#db2z_sql_createtrustedcontext
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createrole.htm#db2z_sql_createrole
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges

The TCP/IP Already Verified (DSN6FAC TCPALVER) controls whether DB2
accepts TCP/IP connection requests that contain only a user ID. However, in the
case of a trusted context, it is the definition of the trusted context, not the
TCPALVER setting, handles the requirement for switching users of a trusted
connection.

Do not set DSN6FAC TCPALVER to YES if you use a trusted context. If you set
TCPALVER to YES in the definition of the trusted context, you need to define the
authorization ID that establishes the trusted connection in the USER clause to
enforce the authentication requirement.
Related tasks

“Defining DB2 resources to RACF” on page 127
“Permitting RACF access” on page 129
“Managing authorization for stored procedures” on page 137
“Establishing Kerberos authentication through RACF”

Establishing Kerberos authentication through RACF
Kerberos security is a network security technology that was developed at the
Massachusetts Institute of Technology. The Kerberos security technology does not
require passwords to flow in readable text because it uses encrypted tickets that
contain authentication information for the users.

DB2 can use Kerberos security services to authenticate remote users. With Kerberos
security services, remote users need to issue their Kerberos name and password to
access DB2. They can use the same name and password for access throughout the
network, which makes a separate password to access DB2 unnecessary.

A remote user who is authenticated to DB2 by means of Kerberos authentication
must be registered in RACF profiles. An organization that runs a Kerberos server
establishes its own realm. The name of the realm in which a client is registered is
part of the client's name and can be used by the application server to accept or
reject a request.

To authenticate and register a remote user in RACF profiles:
1. Define the Kerberos realm to RACF by issuing the following command:

RDEFINE REALM KERBDFLT KERB(KERBNAME(localrealm) PASSWORD(mykerpw)

You must specify the name of the local realm in the definition. You must also
specify a Kerberos password for RACF to grant Kerberos tickets.

2. Define local principals to RACF by issuing the following command:
AU RONTOMS KERB(KERBNAME(rontoms))
ALU RONTOMS PASSWORD(new1pw) NOEXPIRE

Make sure to change RACF passwords before the principals become active
Kerberos users.

3. Map foreign Kerberos principals by defining KERBLINK profiles to RACF with
a command similar to the following:
RDEFINE KERBLINK /.../KERB390.ENDICOTT.IBM.COM/RWH APPLDATA(’RONTOMS’)

You must also define a principal name for the user ID that is used in the
ssnmDIST started task address space, as shown in the following example:
ALU SYSDSP PASSWORD(pw) NOEXPIRE KERB(KERBNAME(SYSDSP))

Chapter 3. Managing access through RACF 147

The ssnmDIST address space must have the RACF authority to use its SAF
ticket parsing service. The user ID that is used for the ssnmDIST started task
address space is SYSDSP.

4. Define foreign Kerberos authentication servers to the local Kerberos
authentication server by issuing the following command:
RDEFINE REALM /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/KER2000.ENDICOTT.IBM.COM +
KERB(PASSWORD(realm0pw))

You must supply a password for the key to be generated. REALM profiles
define the trust relationship between the local realm and the foreign Kerberos
authentication servers. PASSWORD is a required keyword, so all REALM
profiles have a KERB segment.

Data sharing environment: Data sharing Sysplex environments that use Kerberos
security must have a Kerberos Security Server instance running on each system in
the Sysplex. The instances must either be in the same realm and share the same
RACF database, or have different RACF databases and be in different realms.
Related tasks

“Defining DB2 resources to RACF” on page 127
“Permitting RACF access” on page 129
“Managing authorization for stored procedures” on page 137
“Protecting connection requests that use the TCP/IP protocol” on page 146

Implementing DB2 support for enterprise identity mapping
Enterprise identity mapping (EIM) enables the mapping of user identities across
servers that are integrated but that do not share user registries. DB2 supports the
EIM capability by implementing the SAF user mapping plug-in callable service,
which is part of the z/OS Security Server (RACF).

You can exploit the EIM support by using the IBM Websphere Application Server
6.0.1, the IBM DB2 Driver for JDBC and SQLJ, and the IBM DB2 Driver for ODBC
and CLI.

You must install z/OS V1.8 or higher to use the SAF user mapping plug-in service
and implement the DB2 support for the EIM.

To implement the DB2 support for EIM:
1. Configure the z/OS LDAP server with a TDBM backend
2. Set up RACF for the LDAP server
3. Configure the z/OS EIM domain controller
4. Add the SAF user mapping data set to LNKLIST

If you enable DB2 support for EIM, DB2 can retrieve the mapped user ID from the
SAF user mapping plug-in and specify the information in the ICTX structure.
During the ENVIR=CREATE processing, DB2 passes the information to RACF
through the RACROUTE REQUEST=VERIFY macro service. When RACF
successfully authenticates the user, the ICTX structure is anchored in the
ACEEICTX field.

Note: The SAF user identity mapping plug-in service will not be supported in the
future release of DB2 for z/OS.

148 Managing Security

|
|

Related reference

z/OS Security Server RACF Command Language Reference

z/OS Integrated Security Services LDAP Server Administration and Use

z/OS Integrated Security Services Enterprise Identity Mapping (EIM) Guide
and Reference

Configuring the z/OS LDAP server
When DB2 receives an authenticated user registry name, it invokes the SAF user
mapping plug-in service. This service uses the EIM domain, which is an LDAP
server, to retrieve the z/OS user ID that is used as the primary authorization ID.

You can use the LDAP configuration (ldapcnf) utility to configure and set up a
z/OS LDAP server. The LDAP configuration utility requires the ldap.profile
input file that is shipped in the /usr/lpp/ldap/etc directory. The ldap.profile file
contains the settings that you need to set up the LDAP server.

To configure a z/OS LDAP server:
1. Copy and modify the ldap.profile file based on your own environment.
2. Issue the following command to run the LDAP configuration utility with the

ldap.profile file that you modified:
ldapcnf –i ldap.profile

The LDAP configuration utility generates the following output files:
v SLAPDCNF member as the LDAP server configuration file
v SLAPDENV member as the LDAP server environment variable file
v PROG member for APF authorization
v GLDSRV procedure for starting the LDAP server
v DSNAOINI configuration file for DB2 CLI
v TDBSPUFI DB2 SQL DDL statements for creating the TDBM environment
v DBCLI DB2 SQL BIND statements for binding the CLI/ODBC packages and

plan
v RACF member for creating the RACF profiles that protect the LDAP server

service task and grant permissions for the user ID to run the LDAP server
These output files are stored in the OUTPUT_DATASET_NAME that you
specified in the ldap.profile file.

3. Submit the following output JCL files after DB2 is started:
v DBCLI member file
v RACF member file

4. Submit the TDBSPUFI member file by using the DB2 SPUFI interactive tool.
5. Start the LDAP server from SDSF or the operator's console.

The name of the LDAP server procedure file is the same as the user ID that is
specified on the LDAPUSRID statement. The pre-assigned value is GLDSRV.
To start the LDAP server from SDSF, enter:
/s GLDSRV

To start the LDAP server from the operator's console, enter:
s GLDSRV

6. Copy the schema.user.ldif file from the /usr/lpp/ldap/etc directory to a local
directory

Chapter 3. Managing access through RACF 149

|

|

|

|
|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ichza4a1/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/glda2a40/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/EIMA1160/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/EIMA1160/CCONTENTS

7. Use the following ldapmodify utility to modify the schema entry for the TDBM
backend
ldapmodify -h ldaphost -p ldapport -D binddn -w passwd -f file

The following example shows how to use the ldapmodify utility:
ldapmodify –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f schema.user.ldif

At the top of the schema.user.ldif file, find the following line, and supply the
appropriate TDBM suffix in that line
dn: cn=schema, <suffix>

The suffix is the same value that is used in the TDBM_SUFFIX statement in the
ldap.profile file, as in the following example:
dn: cn=schema, o=IBM, c=US

8. Use the ldapadd utility to load the suffix entry and to create a user ID that is
used by the SAF user mapping plug-in for binding with the LDAP server. You
can use the following ldapadd utility statement:
ldapadd –h ldaphost –p ldapport –D binddn –w passwd –f file

The following is an example of using the ldapadd utility:
ldapadd –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f setup.ldap.ldif

Setting up RACF for the z/OS LDAP server
After you configure the z/OS LDAP server, you need to set up RACF to activate
identity mapping. You also need to grant DB2 authority to use the SAF user
mapping plug-in service.

To set up RACF for the z/OS LDAP server:
1. Enable identity mapping by activating the FACILITY class.

The FACILITY class must be active to enable identity mapping. Use the
following SETROPTS command if it is not already active at your installation:
SETROPTS CLASSACT(FACILITY)

2. Define a KEYMSTR profile to store an encryption key.
Make sure to choose a key that is known only to the security administrator,
and store it in the KEYMSTR profile that you defined, as shown in the
following example:
RDEF KEYSMSTR LDAP.BINDPW.KEY SSIGNON(KEYMASKED(0123456789ABCDEF))

The LDAP BIND passwords are encrypted with the key that is stored in the
LDAP.BINDPW.KEY profile. The value of the key in this example is
0123456789ABCDEF.

3. Authorize DB2 to request lookup services by defining and granting READ
access to the SYSDSP user in the following RACF profiles:
RDEF FACILITY IRR.RGETINFO.EIM UACC(NONE)
PE IRR.RGETINFO.EIM ACCESS(READ) ID(SYSDSP) CL(FACILITY)

RDEF FACILITY IRR.RDCEKEY UACC(NONE)
PE IRR.RDCEKEY ACCESS(READ) ID(SYSDSP) CL(FACILITY)

4. Define the IRR.PROXY.DEFAULTS profile in the FACILITY class, as follows:
RDEF FACILITY IRR.PROXY.DEFAULTS
PROXY(LDAPHOST('ldap://v25ec099.svl.ibm.com:3389’)
BINDDN('cn=eim user,o=IBM,c=US’) BINDPW('secret’))

150 Managing Security

EIM(DOMAINDN('ibm-eimDomainName=My Domain,o=IBM,c=US’)
LOCALREG('My Target Registry’))

SETROPTS RACLIST(FACILITY) REFRESH

5. Grant DB2 the authority to use the SAF user mapping plug-in service by
issuing the following commands:
RDEF PROGRAM IRRSPIM ADDMEM (’USER.PRIVATE.DLLLIB’//NOPADCHK)
PE IRRSPIM ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

RDEF PROGRAM IRRSPIME ADDMEM ('USER.PRIVATE.DLLLIB’//NOPADCHK)
PE IRRSPIME ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

SETROPTS WHEN(PROGRAM) REFRESH

Setting up the EIM domain controller
After you set up the LDAP server and RACF, you need to use the RACF eimadmin
utility to create and configure an EIM domain controller.

To create an EIM domain controller in this situation:
1. Create an EIM domain by issuing the following command:

eimadmin –aD -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b “cn=LDAP Administrator” -w secret

The example shows that the new domain name is "My Domain." It also shows
that the TDBM_SUFFIX statement in the ldap.profile file is defined as
o=IBM,c=US.

2. Grant the EIM user access to the EIM domain for performing lookup services
by issuing the following command:
eimadmin -aC -c MAPPING -q "cn=eim user, o=IBM, c=US" -f DN
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

3. Create the source registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Source Registry" -y KERBEROS
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

4. Create the target registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Target Registry" -y RACF
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

5. Add the enterprise identifier “Cat” to the EIM domain by issuing the following
command:
eimadmin -aI -i "Cat" -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

You can add multiple enterprise identifiers to the same EIM domain at any
time.

6. Associate registry user IDs with the identifiers in the EIM domain by issuing
the following commands:
eimadmin -aA -u "Kitty" -r "My Source Registry" -t SOURCE
-i "Cat" -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389

Chapter 3. Managing access through RACF 151

-b ’cn=LDAP Administrator’ -w secret

eimadmin -aA -u "Buffy" -r "My Target Registry" -t TARGET
-o "db2/stlec1/va1adist" -i "Cat"
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

Specify the "-o" flag with the "db2/location-name/subsystem-name"+ "dist" value
when you define a user ID for DB2 to use as the primary authorization ID in
your target registry. As the examples show, when DB2 calls the SAF user
mapping plug-in service to retrieve the primary authorization ID, DB2 specifies
the additional db2/location-name/subsystem-name"+ "dist" information for the
plug-in service to look up.
If a target identity is found with the same information, the target identity
"Buffy" is returned. If the target identity does not contain any additional
information, user ID "Buffy" is also returned to DB2. However, if the target
registry contains multiple user identities and if none of them contains the
recommended additional information, no user identity is returned to DB2.

Adding the SAF user mapping plug-in data set to LNKLIST
The SAF user mapping plug-in IRRSPIME resides in a z/OS data set. This data set
must be included in the LNKLST. If the data set is not included, you need to add
it to the LNKLST.

To add the z/OS data set that contains the SAF user mapping plug-in to the
LNKLST:
1. Define a new LNKLST by issuing the following command from the operator

console:
SETPROG LNKLST,DEFINE,NAME=MYLNKLST,COPYFROM=CURRENT

2. Add the USER.PRIVATE.DLLLIB data set on the USER01 volume to the new
MYLNKLST by issuing the following command:
SETPROG LNKLST,ADD,NAME=MYLNKLST,DSNAME=USER.PRIVATE.DLLLIB,
VOLUME=USER01

3. Activate the new MYLNKLST by issuing the following command:
SETPROG LNKLST,ACTIVATE,NAME=MYLNKLST

4. Use the MYLNKLST to update the current tasks in the system by issuing the
following command:
SETPROG LNKLST,UPDATE,JOB=*

Implementing DB2 support for distributed identity filters
A distributed identity filter is a RACF mapping association between a RACF user ID
and one or more distributed user identities. You can use the RACF RACMAP
command to associate a distributed user identity with a RACF user ID.

RACF distributed identity filters are implemented through z/OS identify
propagation. You must install and run z/OS Version 1 Release 11 to use distributed
identity filters.

DB2 provides support for z/OS identify propagation and distributed identity
filters. You need to create distributed identity filters to take advantage of this
support.

To create a distributed identity filter:

152 Managing Security

|

|
|
|

|
|
|

|
|
|

|

1. Activate the RACF general resource IDIDMAP class and enable it for RACLIST
processing by issuing the following command:
SETROPTS CLASSACT(IDIDMAP) RACLIST(IDIDMAP)

2. Define a distributed identity filter and associate the distributed user name with
a RACF user ID by issuing the RACF RACMAP command. To define a filter for a
non-LDAP user name, specify the user name as a simple character string to be
defined in a non-LDAP registry. Suppose that the distributed user name is
'MARY' which is defined in user registry 'Registry01'. If you want to map this
user name to RACF user ID 'DB2USER1', you can issue the RACMAP command,
as follows
RACMAP ID(DB2USER1) MAP

USERIDFILTER(NAME(’MARY’))
REGISTRY(NAME(’Registry01’))
WITHLABEL(’Filter for MARY from Registry01’)

3. Refresh the IDIDMAP class profile by issuing the following command:
SETROPTS RACLIST(IDIDMAP) REFRESH

4. If necessary, review the distributed identity filter by issuing the following
RACMAP LISTMAP command:
RACMAP ID(DB2USER1) LISTMAP

If the new filter is successfully created, the following ouput is returned:
Mapping information for user DB2USER1:

Label: Filter for MARY from Registry01
Distributed Identity User Name Filter:

>MARY<
Registry name:

>Registry01<

The new filter assigns RACF user ID DB2USER1 when the distributed identity is
user MARY from Registry01. When user MARY authenticates her identity at her
distributed application server and performs tasks that access a remote DB2 server
system, DB2 passes distributed user name MARY and registry name Registry01 as
character strings to RACF.

During DB2 remote connection processing, DB2 calls the RACF RACROUTE
REQUEST=VERIFY ENVIR=CREATE macro service. RACF uses these data values
to search the IDIDMAP profiles for a matching filter. RACF finds the matching
filter labeled 'Filter for MARY from Registry01 and assigns it the DB2USER1 user
ID. The remote connection then executes its transactions with the authority of the
DB2USER1 user ID. If in place, audit records for this transaction contains both
RACF user ID DB2USER1, distributed user MARY, and registry name Registry01
that DB2 passes to RACF.
Related reference

z/OS Security Server RACF Security Administrator's Guide

Managing connection requests from local applications
Different local processes enter the access control procedure at different points,
depending on the environment in which they originate.

The following processes go through connection processing only:
v Requests originating in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs

Chapter 3. Managing access through RACF 153

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ichza7a0/CCONTENTS

v Requests through started task control address spaces (from the z/OS START
command)

The following processes go through connection processing and can later go
through the sign-on processing:
v The IMS control region.
v The CICS recovery coordination task.
v DL/I batch.
v Applications that connect using the Resource Recovery Services attachment

facility (RRSAF).

The following processes go through sign-on processing:
v Requests from IMS dependent regions (including MPP, BMP, and Fast Path)
v CICS transaction subtasks

IMS, CICS, RRSAF, and DDF-to-DDF connections can send a sign-on request,
typically to execute an application plan. That request must provide a primary ID,
and can also provide secondary IDs. After a plan is allocated, it need not be
deallocated until a new plan is required. A different transaction can use the same
plan by issuing a new sign-on request with a new primary ID.

Processing of connection requests
A connection request makes a new connection to DB2; it does not reuse an
application plan that is already allocated. Therefore, an essential step in processing
the request is to check that the ID is authorized to use DB2 resources.

DB2 completes the following steps to process a connection request:
1. DB2 obtains the initial primary authorization ID. As shown in the following

table, the source of the ID depends on the type of address space from which
the connection was made.

Table 36. Sources of initial primary authorization IDs

Source Initial primary authorization ID

TSO TSO logon ID.

BATCH USER parameter on JOB statement.

IMS control region or CICS USER parameter on JOB statement.

IMS or CICS started task Entries in the started task control table.

Remote access requests Depends on the security mechanism used.

2. RACF is called through the z/OS system authorization facility (SAF) to check
whether the ID that is associated with the address space is authorized to use
the following resources:
v The DB2 resource class (CLASS=DSNR)
v The DB2 subsystem (SUBSYS=ssnm)
v The requested connection type
The SAF return code (RC) from the invocation determines the next step, as
follows:
v If RC > 4, RACF determined that the RACF user ID is not valid or does not

have the necessary authorization to access the resource name. DB2 rejects the
request for a connection.

v If RC = 4, the RACF return code is checked.

154 Managing Security

– If RACF return code value is equal to 4, the resource name is not defined
to RACF and DB2 rejects the request with reason code X'00F30013'.

– If RACF return code value is not equal to 4, RACF is not active. DB2
continues with the next step, but the connection request and the user are
not verified.

v If RC = 0, RACF is active and has verified the RACF user ID; DB2 continues
with the next step.

3. If RACF is active and has verified the RACF user ID, DB2 runs the connection
exit routine. To use DB2 secondary IDs, you must replace the exit routine.
If you do not want to use secondary IDs, do nothing. The IBM-supplied default
connection exit routine continues the connection processing. The process has
the following effects:
v The DB2 primary authorization ID is set based on the following rules:

– If a value for the initial primary authorization ID exists, the value
becomes the DB2 primary ID.

– If no value exists (the value is blank), the primary ID is set by default, as
shown in the following table.

Table 37. Sources of default authorization identifiers

Source Default primary authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job with
no USER parameter

Default authorization ID set when DB2 was installed
(UNKNOWN AUTHID on installation panel DSNTIPP)

Remote request None. The user ID is required and is provided by the DRDA
requester.

v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

4. DB2 determines if TSO and BATCH connections that use DSN, RRSAF, and
Utilities are trusted.
For a TSO and BATCH connection that uses DSN, RRSAF, and Utilities, DB2
checks to see if a matching trusted context is defined for the primary
authorization ID and the job name. If a matching trusted context is found, the
connection is established as trusted.

Related concepts

“Connection routines and sign-on routines” on page 229
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
159
“Specifying connection and sign-on routines” on page 229
“Debugging connection and sign-on routines” on page 238
Related reference

“Processing of sign-on requests” on page 157

Using secondary IDs for connection requests
If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary
IDs, the easiest method is to use the IBM-supplied sample routine.

Chapter 3. Managing access through RACF 155

The following table lists the difference between the default and sample connection
exit routines.

Table 38. Differences between the default and sample connection exit routines

Default connection exit routine Sample connection exit routine

Supplied as object code. Supplied as source code. You can change the
code.

Installed as part of the normal DB2
installation procedure.

Must be compiled and placed in the DB2
library.

Provides values for primary IDs and SQL
IDs, but does not provide values for
secondary IDs.

Provides values for primary IDs, secondary
IDs, and SQL IDs.

The sample connection exit routine has the following effects:
v The sample connection exit routine sets the DB2 primary ID in the same way

that the default routine sets the DB2 primary ID, and according to the following
rules:
– If the initial primary ID is not blank, the initial ID becomes the DB2 primary

ID.
– If the initial primary ID is blank, the sample routine provides the same

default value as does the default routine.
– If the sample routine cannot find a nonblank primary ID, DB2 uses the

default ID (UNKNOWN AUTHID) from the DSNTIPP installation panel. In
this case, no secondary IDs are supplied.

v The sample connection exit routine sets the SQL ID based on the following
criteria:
– The routine sets the SQL ID to the TSO data set name prefix in the TSO user

profile table if the following conditions are true:
- The connection request is from a TSO-managed address space, including

the call attachment facility, the TSO foreground, and the TSO background.
- The TSO data set name prefix is equal to the primary ID or one of the

secondary IDs.
– In all other cases, the routine sets the SQL ID equal to the primary ID.

v The secondary authorization IDs depend on RACF options:
– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists (the default connected group name) if the attachment facility
supplied the default connected group name.

– If RACF is active and the “list of groups” option is active, the routine sets the
list of DB2 secondary IDs to the list of group names to which the RACF user
ID is connected. Those RACF user IDs that are in REVOKE status do not
become DB2 secondary IDs. The maximum number of groups is 1012. The list
of group names is obtained from RACF and includes the default connected
group name.

If the default connection exit routine and the sample connection exit routine do not
provide the flexibility and features that your subsystem requires, you can write
your own exit routine.

156 Managing Security

Processing of sign-on requests
Requests can come from IMS-dependent regions, CICS transaction subtasks, or RRS
connections. For each of these types of requests, the initial primary ID is obtained
immediately before a plan for the transaction is allocated. A new sign-on request
can run the same plan without de-allocating and reallocating the plan.

Unlike the connection processing, the sign-on processing does not check the RACF
for the user ID of the address space. DB2 completes the following steps to process
sign-on requests:
1. DB2 determines the initial primary ID as follows:

For IMS sign-ons from message-driven regions, if the user has signed on, the
initial primary authorization ID is the user's sign-on ID. IMS passes to DB2 the
IMS sign-on ID and the associated RACF connected group name, if one exists.
If the user has not signed on, the primary ID is the LTERM name, or if that is
not available, the PSB name. For a batch-oriented region, the primary ID is the
value of the USER parameter on the job statement, if that is available. If that is
not available, the primary ID is the program's PSB name.
For remote requests, the source of the initial primary ID is determined by
entries in the SYSIBM.USERNAMES table. For connections using Resource
Recovery Services attachment facility, the processing depends on the type of
signon request:
v SIGNON
v AUTH SIGNON
v CONTEXT SIGNON
For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if an
ACEE is associated with the TCB (TCBSENV). This is the normal case.
However, if an ACEE is not associated with the TCB, SIGNON uses the
primary authorization ID that is associated with the address space, that is, from
the ASXB. If the new primary authorization ID was retrieved from the ACEE
that is associated with the TCB and ACEEGRPN is not null, DB2 uses
ACEEGRPN to establish secondary authorization IDs.
With AUTH SIGNON, an APF-authorized program can pass a primary
authorization ID for the connection. If a primary authorization ID is passed,
AUTH SIGNON also uses the value that is passed in the secondary
authorization ID parameter to establish secondary authorization IDs. If the
primary authorization ID is not passed, but a valid ACEE is passed, AUTH
SIGNON uses the value in ACEEUSRI for the primary authorization ID if
ACEEUSRL is not 0. If ACEEUSRI is used for the primary authorization ID,
AUTH SIGNON uses the value in ACEEGRPN as the secondary authorization
ID if ACEEGRPL is not 0.
For CONTEXT SIGNON, the primary authorization ID is retrieved from data
that is associated with the current RRS context using the context_key, which is
supplied as input. CONTEXT SIGNON uses the CTXSDTA and CTXRDTA
functions of RRS context services. An authorized function must use CTXSDTA
to store a primary authorization ID prior to invoking CONTEXT SIGNON.
Optionally, CTXSDTA can be used to store the address of an ACEE in the
context data that has a context_key that was supplied as input to CONTEXT
SIGNON. DB2 uses CTXRDTA to retrieve context data. If an ACEE address is
passed, CONTEXT SIGNON uses the value in ACEEGRPN as the secondary
authorization ID if ACEEGRPL is not 0.

2. DB2 runs the sign-on exit routine. User action: To use DB2 secondary IDs, you
must replace the exit routine.

Chapter 3. Managing access through RACF 157

If you do not want to use secondary IDs, do nothing. Sign-on processing is
then continued by the IBM-supplied default sign-on exit routine, which has the
following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.
You can replace the exit routine with one of your own, even if it has nothing to
do with secondary IDs. If you do, remember that IMS and CICS recovery
coordinators, their dependent regions, and RRSAF take the exit routine only if
they have provided a user ID in the sign-on parameter list.

3. DB2 determines if the user of a trusted RRSAF SIGNON connection is allowed
to switch.
For a RRSAF SIGNON connection that is trusted, DB2 checks to see if the
primary authorization ID is allowed to switch in the trusted connection. If the
primary authorization ID is not allowed to switch, the connection is returned to
the unconnected state.

Related concepts

“Connection routines and sign-on routines” on page 229
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
159
“Specifying connection and sign-on routines” on page 229
“Debugging connection and sign-on routines” on page 238
Related reference

“Processing of sign-on requests” on page 157

Using secondary IDs for sign-on requests
If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine.

The procedure is similar to that for connection processing. If you want to use
RACF group names as DB2 secondary IDs, the easiest method is to use the
IBM-supplied sample routine. An installation job can automatically replace the
default routine with the sample routine.

Distinguish carefully between the two routines. The default sign-on routine
provides no secondary IDs and has the following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

Like the sample connection routine, the sample sign-on routine supports DB2
secondary IDs and has the following effects:
v The initial primary authorization ID is left unchanged as the DB2 primary ID.
v The SQL ID is made equal to the DB2 primary ID.
v The secondary authorization IDs depend on RACF options:

– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists; it is the name passed by CICS or by IMS.
– If RACF is active and you have selected the option for a list of groups, the

routine sets the list of DB2 secondary IDs to the list of group names to which

158 Managing Security

the RACF user ID is connected, up to a limit of 1012 groups. The list of group
names includes the default connected groupname.

Using sample connection and sign-on exit routines for CICS
transactions

For a CICS transaction to use the sample connection or sign-on exit routines, the
external security system, such as RACF, must be defined to CICS.

Define an external security system, such as RACF, to CICS with the following
specifications:
v The CICS system initialization table must specify external security.

– For CICS Version 4 or later, specify SEC=YES.
– For earlier releases of CICS, specify EXTSEC=YES.

If you are using the CICS multiple region option (MRO), you must specify
SEC=YES or EXTSEC=YES for every CICS system that is connected by
interregion communication (IRC).

v If your version of CICS uses a sign-on table (SNT), the CICS sign-on table must
specify EXTSEC=YES for each signed on user that uses the sign-on exit.

v When the user signs on to a CICS terminal-owning region, the terminal-owning
region must propagate the authorization ID to the CICS application-owning
region.

You must change the sample sign-on exit routine (DSN3SSGN) before using it if
the following conditions are all true:
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF.
Related concepts

“Connection routines and sign-on routines” on page 229
Related reference

“Processing of connection requests” on page 154
“Processing of sign-on requests” on page 157
“Sample connection and sign-on routines” on page 230
“Exit parameter list for connection and sign-on routines” on page 231

Managing connection requests from remote applications
If you control requests from remote applications, your DB2 subsystem might be
accepting requests from applications that use SNA network protocols, TCP/IP
network protocols, or both.

Security mechanisms for DRDA and SNA
SNA and DRDA have different security mechanisms. DRDA allows a user to be
authenticated by using SNA security mechanisms or DRDA mechanisms, which are
independent of the underlying network protocol.

For an SNA network connection, a DRDA requester can send security tokens by
using a SNA attach or a DRDA command. DB2 for z/OS as a requester uses SNA
security mechanisms if it uses a SNA network connection (except for Kerberos) and
DRDA security mechanisms for TCP/IP network connections (or when Kerberos
authentication is chosen, regardless of the network type).

Chapter 3. Managing access through RACF 159

Security mechanisms for DB2 for z/OS as a requester
As a requester, DB2 for z/OS chooses SNA or DRDA security mechanisms based
on the network protocol and the authentication mechanisms that you use.

If you use SNA protocols, DB2 supports the following SNA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicket

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, DB2 supports the following DRDA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicke

If you use TCP/IP protocols with the z/OS Integrated Cryptographic Service
Facility, DB2 also supports the following DRDA authentication mechanisms:
v Encrypted user ID and encrypted password
v Encrypted user ID and encrypted security-sensitive data

Authentication is performed based on DRDA protocols, which means that the
authentication tokens are sent in DRDA security flows.

Security mechanisms for DB2 for z/OS as a server
As a server, DB2 for z/OS can accept either SNA or DRDA authentication
mechanisms. It can authenticate remote users from the security tokens that are
obtained from the SNA ATTACH (FMH-5) or from the DRDA security commands
that described by each of the protocols.

DB2 for z/OS accepts connection requests from remote clients that use AES or DES
encryption algorithm to protect user IDs and passwords over a TCP/IP network.
Specifically, it supports the following authentication methods:
v User ID only (already verified at the requester)
v User ID and password
v User ID and PassTicket
v Kerberos tickets
v Unencrypted user ID and encrypted password
v Encrypted user ID and encrypted password
v User ID, password, and new password

DB2 for z/OS as a server also supports the following authentication mechanisms if
the z/OS Integrated Cryptographic Service Facility is installed and active:
v Encrypted user ID and encrypted security-sensitive data
v Encrypted user ID, encrypted password, and encrypted security-sensitive data
v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data
v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data

160 Managing Security

|
|

Communications database for the server
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of how requests leave a DB2 subsystem and how requests come in.
Columns in the SYSIBM.LUNAMES and SYSIBM.USERNAMES tables pertain to
security on the inbound side (the server).

SYSIBM.LUNAMES columns
The SYSIBM.LUNAMES table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_IN CHAR(1)
The acceptance option for a remote request from the corresponding
LUNAME:

V The option is “verify.” An incoming request must include one of
the following authentication entities:
v User ID and password
v User ID and RACF PassTicket
v User ID and RACF encrypted password (not recommended)
v Kerberos security tickets
v User ID and DRDA encrypted password
v User ID, password, and new password
v User ID and encrypted password, or encrypted user ID and

encrypted password

A The option is “already verified.” This is the default. With A, a
request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:
v User ID only
v All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains I or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

ENCRYPTPSWDS CHAR(1)
This column only applies to DB2 for z/OS or DB2 for z/OS partners when
passwords are used as authentication tokens. It indicates whether
passwords received from and sent to the corresponding LUNAME are
encrypted:

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as if it is encrypted.

N No, passwords are not encrypted. This is the default; any character
other than Y is treated as N. Specify N for CONNECT statements
that contain a USER parameter.

Chapter 3. Managing access through RACF 161

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R') instead of using passwords.

USERNAMES CHAR(1)
This column indicates whether an ID accompanying a remote request, sent
from or to the corresponding LUNAME, is subject to translation and “come
from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

SYSIBM.USERNAMES columns
The SYSIBM.USERNAMES table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the system authorization ID for
establishing a trusted connection.

I The row applies to inbound IDs (not applicable for TCP/IP
connections).

O The row applies to outbound IDs.

The field should contain only I or O. Any other character, including blank,
causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME; all
authorization IDs are translated in the same way. Outbound translation is
not performed on CONNECT statements that contain an authorization ID
for the value of the USER parameter.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

162 Managing Security

Enabling change of user passwords
You can specify YES in the EXTENDED SECURITY field of the DSNTIPR
installation panel so that DB2 can return information about errors and expired
passwords to the DRDA requester.

When the DRDA requester is notified that the RACF password has expired, and
the requester has implemented function to allow passwords to be changed, the
requester can prompt the end user for the old password and a new password. The
requester sends the old and new passwords to the DB2 server. This function is
supported through DB2 Connect™.

With the extended security option, DB2 passes the old and new passwords to
RACF. If the old password is correct, and the new password meets the
installation's password requirements, the end user's password is changed and the
DRDA connection request is honored.

When a user changes a password, the user ID, the old password, and the new
password are sent to DB2 by the client system. The client system can optionally
encrypt these three tokens before they are sent.

Authorization failure code
If the EXTENDED SECURITY field is set to YES on the DSNTIPR installation
panel, DB2 returns detailed reason codes to a DRDA client when a DDF connection
request fails.

When using SNA protocols, the requester must have included support for
extended security sense codes. One such product is DB2 Connect.

If the proper requester support is present, the requester generates SQLCODE
-30082 (SQLSTATE '08001') with a specific indication for the failure. Otherwise, a
generic security failure code is returned.

Managing inbound SNA-based connection requests
Requests from a remote LU are subject to security checks before they come into
contact with DB2. Those checks control what LUs can attach to the network and
verify the identity of a partner LU.

In addition, DB2 itself imposes several checks before accepting an attachment
request.

Processing of remote attachment requests
The DB2 server completes a specific sequence of authentication process before
accepting a remote attachment request that uses the SNA protocol.
1. As the following diagram shows, if the remote request has no authentication

token, DB2 checks the security acceptance option in the SECURITY_IN column
of table SYSIBM.LUNAMES. No password is sent or checked for the plan or
package owner that is sent from a DB2 subsystem.

Chapter 3. Managing access through RACF 163

2. If the acceptance option is “verify” (SECURITY_IN = V), a security token is
required to authenticate the user. DB2 rejects the request if the token missing.

3. If the USERNAMES column of SYSIBM.LUNAMES contains I or B, the
authorization ID, and the plan or package owner that is sent by a DB2
subsystem, are subject to translation under control of the
SYSIBM.USERNAMES table. If the request is allowed, it eventually goes
through sign-on processing. If USERNAMES does not contain I or B, the
authorization ID is not translated.

4. DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to check
the ID. DB2 uses the PASSCHK=NO option if no password is specified and
ENCRYPT=YES if the ENCRYPTPSWDS column of SYSIBM.LUNAMES
contains Y. If the ID, password, or PassTicket cannot be verified, DB2 rejects
the request.

Activity at the DB2 server

Remote attach request using SNA protocols

ID and authentication check

Step 1: Is an
authentication
token present?

Step 2: Test
the value of
SECURITY_IN.

No =V
Token
required;
reject
request.

Yes =A

Step 3: Is
USERNAMES
I or B?

Check SYSIBM.LUNAMES

Yes

No

Check ID for sign-ons

Step 7: Is a
password
present?

No

Yes Step 8: Verify
ID by RACF.

Not authorized;
reject request.

Check USERNAMES table

Step 9: Seek a
translation row
in USERNAMES.

Not found;
reject request.

Found

Step 10: Obtain
the primary ID.

Connection processing

Not authorized;
reject request.

Step 5: Verify by
RACF that the ID
can access DB2.

Request accepted: continue
Request accepted: continue

Sign-on processing

Step 11: Is RACF access control
authorization (DSNX@XAC) exit or
IBM-supplied RACF general resource
class, SECLABEL, active?

Step 6: Run the
connection exit
routine (DSN3@ATH).

Not authorized;
reject request.

Step 4: Verify
ID by RACF.

Check ID for connections

Yes

Not authorized;
reject request.No

Step 13: Run the sign-on
exit routine (DSN3@SGN).

Step 10: Obtain
the primary ID.

Step 14: Local privilege
check at the server.

Step 12: Verify ID
by RACF.

Figure 8. DB2 processing of remote attachment requests

164 Managing Security

In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has been given

access to the DB2 APPL. The APPL resource that is checked is the LU name
that the requester used when the attachment request was issued. This is
either the local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the Port of Entry (POE). The POE that
RACF uses in the verify call is the requesting LU name.

5. The remote request is now treated like a local connection request with a DIST
environment for the DSNR resource class. DB2 calls RACF by the RACROUTE
macro with REQUEST=AUTH, to check whether the authorization ID is
allowed to use DB2 resources that are defined to RACF.
The RACROUTE macro call also verifies that the user is authorized to use
DB2 resources from the requesting system, known as the port of entry (POE).

6. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where a remote request originated.

7. If no password exists, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

8. If a password exists, DB2 calls RACF through the RACROUTE macro with
REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If DB2 cannot verify the ID or password, the
request is rejected.

9. DB2 searches SYSIBM.USERNAMES for a row that indicates how to translate
the ID. The need for a row that applies to a particular ID and sending location
imposes a “come-from” check on the ID: If no such row exists, DB2 rejects the
request.

10. If an appropriate row is found, DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID exists in the row, that value becomes

the primary authorization ID.
v If NEWAUTHID is blank, the primary authorization ID remains unchanged.

11. The remote request is now treated like a local sign-on request. DB2 invokes
the sign-on exit routine. The parameter list that is passed to the routine
describes where a remote request originated.

12. The remote request now has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. A request from a remote DB2 is also known by
a plan or package owner. Privileges and authorities that are granted to those
IDs at the DB2 server govern the actions that the request can take.

Controlling LU attachments to the network
VTAM checks to prevent an unauthorized logical unit (LU) from attaching to the
network and presenting itself to other LUs as an acceptable partner in
communication. It requires each LU that attaches to the network to identify itself
by a password.

If that requirement is in effect for your network, your DB2 subsystem, like every
other LU on the network, must:
1. Choose a VTAM password.
2. Code the password with the PRTCT parameter of the VTAM APPL statement,

when you define your DB2 to VTAM.

Chapter 3. Managing access through RACF 165

Verifying partner LUs
RACF and VTAM check the identity of a logical unit (LU) that sends a request to
your DB2 subsystem.

Perform the following steps to specify partner-LU verification:
1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define

your DB2 to VTAM.
2. Establish a RACF profile for each LU from which you permit a request.

Accepting remote attachment requests
When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2
subsystem.

Make sure that you do not confuse the remote request with a local attachment
request that comes through one of the DB2 attachment facilities—IMS, CICS, TSO,
and so on. A remote attachment request is defined by Systems Network
Architecture and LU 6.2 protocols; specifically, it is an SNA Function Management
Header 5.

In order to accept remote attachment requests, you must first define your DB2 to
VTAM with the conversation-level security set to “already verified”. That is, you
need to code SECACPT=ALREADYV on the VTAM APPL statement. The
SECACPT=ALREADYV setting provides more options than does
SECACPT=CONV or “conversation”, which is not recommended.

The primary tools for controlling remote attachment requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attachment
requests, a dummy row that allows any system to send attachment requests, or
both. You might need rows in SYSIBM.USERNAMES to permit requests from
specific IDs or specific LUNAMES, or to provide translations for permitted IDs.

Managing inbound IDs through DB2
If you manage incoming IDs through DB2, you can avoid calls to RACF. You can
accept many IDs by specifying them in a single row in the SYSIBM.USERNAMES
table.

To manage incoming IDs through DB2, put an I in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. If an O is already specified because you
are also sending requests to that LU, change O to B. Attachment requests from that
LU now go through the sign-on processing, and its IDs are subject to translation.

Managing inbound IDs through RACF
If you manage incoming IDs through RACF, you must register every acceptable ID
with RACF, and DB2 must call RACF to process every request.

You can use RACF or Kerberos can authenticate the user. Kerberos cannot be used
if you do not have RACF on the system.

To manage incoming IDs through RACF, leave USERNAMES blank for that LU, or
leave the O unchanged, if already specified. Requests from that LU now go
through the connection processing, and its IDs are not subject to translation.

166 Managing Security

Authenticating partner LUs
If RACF has already validated the identity of an LU and if you trust incoming IDs
from the LU, you do not need to validate them by an authentication token.

Put an A in the SECURITY_IN column of the row in SYSIBM.LUNAMES that
corresponds to the other LU; your acceptance level for requests from that LU is
now “already verified”. Requests from that LU are accepted without an
authentication token. (In order to use this option, you must have defined DB2 to
VTAM with SECACPT=ALREADYV.

If an authentication token does accompany a request, DB2 calls RACF to check the
authorization ID against it. To require an authentication token from a particular
LU, put a V in the SECURITY_IN column in SYSIBM.LUNAMES; your acceptance
level for requests from that LU is now “verify”. You must also register every
acceptable incoming ID and its password with RACF.

Performance considerations: Each request to RACF to validate authentication
tokens results in an I/O operation, which has a high performance cost.

Recommendation: To eliminate the I/O, allow RACF to cache security information
in VLF. To activate this option, add the IRRACEE class to the end of z/OS VLF
member COFVLFxx in SYS1.PARMLIB, as follows:
CLASS NAME(IRRACEE)
EMAJ (ACEE)

Encrypting passwords
You can encrypt passwords to secure network connection requests.

You can encrypt passwords by using one of the following methods:
v RACF using PassTickets.
v DRDA password encryption support. DB2 for z/OS as a server supports DRDA

encrypted passwords and encrypted user IDs with encrypted passwords.
v The SET ENCRYPTION PASSWORD statement. This encryption method should

not be used for distributed access because the unencrypted passwords in the
SET ENCRYPTION PASSWORD statement flow from the client to the server.

Authenticating users through Kerberos
If your distributed environment uses Kerberos to manage users and perform user
authentication, DB2 for z/OS can use Kerberos security services to authenticate
remote users.

Translating inbound IDs
Duplication of authorization IDs on different logical units (LUs) is a serious
security exposure. For tighter security, make sure that each of the authorization IDs
has the same meaning throughout your entire network.

Example: Suppose that the ID DBADM1 is known to the local DB2 and has
DBADM authority over certain databases there; suppose also that the same ID
exists in some remote LU. If an attachment request comes in from DBADM1, and if
nothing is done to alter the ID, the wrong user can exercise privileges of DBADM1
in the local DB2. The way to protect against that exposure is to translate the
remote ID into a different ID before the attachment request is accepted.

Chapter 3. Managing access through RACF 167

You must be prepared to translate the IDs of plan owners, package owners, and
the primary IDs of processes that make remote requests. Do not plan to translate
all IDs in the connection exit routine—the routine does not receive plan and
package owner IDs.

If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities
only to the translated value. The “translation” is not affected by anything you do
in your connection or sign-on exit routine. The output of the translation becomes
the input to your sign-on exit routine.

Recommendation: Do not translate inbound IDs in an exit routine; translate them
only through the SYSIBM.USERNAMES table.

The examples in the following table shows the possibilities for translation and how
to control translation by SYSIBM.USERNAMES. You can use entries to allow
requests only from particular LUs or particular IDs, or from combinations of an ID
and an LU. You can also translate any incoming ID to another value.

Table 39. Your SYSIBM.USERNAMES table. (Row numbers are added for reference.)

Row TYPE AUTHID LINKNAME NEWAUTHID

1 I blank LUSNFRAN blank

2 I BETTY LUSNFRAN ELIZA

3 I CHARLES blank CHUCK

4 I ALBERT LUDALLAS blank

5 I BETTY blank blank

The following table shows the search order of the SYSIBM.USERNAMES table.

Table 40. Precedence search order for SYSIBM.USERNAMES table

AUTHID LINKNAME Result

Name Name If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for the specified LINKNAME.

Name Blank If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for all LINKNAMEs.

Blank Name If NEWAUTHID is specified, it is substituted for
AUTHID for the specified LINKNAME.

Blank Blank Unavailable resource message (SQLCODE -904) is
returned.

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
requests that are listed in the following table.

Table 41. How DB2 translates inbound authorization ids

Request How DB2 translates request

ALBERT requests
from LUDALLAS

DB2 searches for an entry for AUTHID=ALBERT and
LINKNAME=LUDALLAS. DB2 finds one in row 4, so the request is
accepted. The value of NEWAUTHID in that row is blank, so ALBERT is
left unchanged.

168 Managing Security

Table 41. How DB2 translates inbound authorization ids (continued)

Request How DB2 translates request

BETTY requests
from LUDALLAS

DB2 searches for an entry for AUTHID=BETTY and
LINKNAME=LUDALLAS; none exists. DB2 then searches for
AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5,
so the request is accepted. The value of NEWAUTHID in that row is
blank, so BETTY is left unchanged.

CHARLES
requests from
LUDALLAS

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS;
no such entry exists. DB2 then searches for AUTHID=CHARLES and
LINKNAME=blank. The search ends at row 3; the request is accepted.
The value of NEWAUTHID in that row is CHUCK, so CHARLES is
translated to CHUCK.

ALBERT requests
from LUSNFRAN

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; no
such entry exists. DB2 then searches for AUTHID=ALBERT and
LINKNAME=blank; again no entry exists. Finally, DB2 searches for
AUTHID=blank and LINKNAME=LUSNFRAN, finds that entry in row
1, and the request is accepted. The value of NEWAUTHID in that row is
blank, so ALBERT is left unchanged.

BETTY requests
from LUSNFRAN

DB2 finds row 2, and BETTY is translated to ELIZA.

CHARLES
requests from
LUSNFRAN

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

WILBUR requests
from LUSNFRAN

No provision is made for WILBUR, but row 1 of the
SYSIBM.USERNAMES table allows any ID to make a request from
LUSNFRAN and to pass without translation. The acceptance level for
LUSNFRAN is “already verified”, so WILBUR can pass without a
password check by RACF. After accessing DB2, WILBUR can use only
the privileges that are granted to WILBUR and to PUBLIC (for DRDA
access).

WILBUR requests
from LUDALLAS

Because the acceptance level for LUDALLAS is “verify” as recorded in
the SYSIBM.LUNAMES table, WILBUR must be known to the local
RACF. DB2 searches in succession for one of the combinations
WILBUR/LUDALLAS, WILBUR/blank, or blank/LUDALLAS. None of
those is in the table, so the request is rejected. The absence of a row
permitting WILBUR to request from LUDALLAS imposes a
“come-from” check: WILBUR can attach from some locations
(LUSNFRAN), and some IDs (ALBERT, BETTY, and CHARLES) can
attach from LUDALLAS, but WILBUR cannot attach if coming from
LUDALLAS.

In the process of accepting remote attachment requests, any step that calls RACF is
likely to have a relatively high performance cost. To trade some of that cost for a
somewhat greater security exposure, have RACF check the identity of the other LU
just once. Then trust the partner LU, translating the inbound IDs and not requiring
or using passwords. In this case, no calls are made to RACF from within DB2; the
penalty is only that you make the partner LU responsible for verifying IDs.

If you update tables in the CDB while the distributed data facility is running, the
changes might not take effect immediately. If incoming authorization IDs are
managed through DB2 and if the ICSF is installed and properly configured, you
can use the DSNLEUSR stored procedure to encrypt translated authorization IDs

Chapter 3. Managing access through RACF 169

and store them in the NEWAUTHID column of the SYSIBM.USERNAMES table.
DB2 decrypts the translated authorization IDs during connection processing.

Associating inbound IDs with secondary IDs
Your decisions on password encryption and ID translation determine the value that
you use for the primary authorization ID on an attachment request.

They also determine whether those requests are next treated as connection requests
or as sign-on requests. That means that the remote request next goes through the
same processing as a local request, and that you have the opportunity to associate
the primary ID with a list of secondary IDs in the same way you do for local
requests.

Managing inbound TCP/IP-based connection requests
DRDA connections that use TCP/IP have fewer security controls than do
connections that use SNA protocols. When planning to control inbound TCP/IP
connection requests, you must decide whether you want the requests to have
authentication information, such as RACF passwords, RACF PassTickets, and
Kerberos tickets, passed along with authorization IDs.

If you require authentication, specify NO on the TCP/IP ALREADY VERIFIED
field of installation panel DSNTIP5, which is the default option, to indicate that
you require this authentication information. Also, ensure that the security
subsystem at your server is properly configured to handle the authentication
information that is passed to it. If you do not specify NO, all incoming TCP/IP
requests can connect to DB2 without any authentication.
v For requests that use RACF passwords or PassTickets, enter the following RACF

command to indicate which user IDs that use TCP/IP are authorized to access
DDF (the distributed data facility address space):
PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)

WHEN(APPCPORT(TCPIP))

Consider the following questions:
Do you permit access by TCP/IP? If the serving DB2 for z/OS subsystem has a
DRDA port and resynchronization port specified in the BSDS, DB2 is enabled for
TCP/IP connections.
Do you manage inbound IDs through DB2 or RACF? All IDs must be passed to
RACF or Kerberos for processing. No option exists to handle incoming IDs
through DB2.
Do you trust the partner? TCP/IP does not verify partner LUs as SNA does. If
your requesters support mutual authentication, use Kerberos to handle this on
the requester side.
If you use passwords, are they encrypted? Passwords can be encrypted through:
– RACF using PassTickets
– DRDA password encryption support. DB2 for z/OS as a server supports

DRDA encrypted passwords and encrypted user IDs with encrypted
passwords.

If you use Kerberos, are users authenticated? If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for z/OS
can use Kerberos security services to authenticate remote users.
Do you translate inbound IDs? Inbound IDs are not translated when you use
TCP/IP.

170 Managing Security

How do you associate inbound IDs with secondary IDs? To associate an
inbound ID with secondary IDs, modify the default connection exit routine
(DSN3@ATH). TCP/IP requests do not use the sign-on exit routine.

v To receive requests from a DB2 for z/OS requester over TCP/IP connections that
use RACF-protected user IDs and RACF PassTickets (as passwords), you must
take the following additional actions in RACF:
1. Create a RACF PTKTDATA resource profile at the server system or sysplex

by issuing one of the following commands:
RDEFINE PTKTDATA IRRPTAUTH.applname.userid

RDEFINE PTKTDATA IRRPTAUTH.applname.*

where
– applname is either the generic LU name, IPNAME assigned to each

member of a serving data sharing group, or LUNAME or IPNAME
assigned to the serving non-data sharing subsystem

– userid is either an asterisk ("*") or a RACF-protected user ID that you want
to allow into the serving subsystem or a member of a data sharing group.

2. Refresh and load the PTKTDATA resource profile by issuing the following
command:
SETROPTS RACLIST(PTKTDATA) REFRESH

3. Permit the user ID that is assigned in STDATA of the STARTED profile in the
ssidDIST address space to read the new profile by issuing one of the
following commands:

PERMIT IRRPTAUTH.applanme.userid CLASS(PTKTDATA) -
ID(dist_userid) ACCESS(READ)

PERMIT IRRPTAUTH.applname.* CLASS(PTKTDATA) -
ID(dist_userid) ACCESS(READ)

where userid and dist_userid are not the same

You do not need to take these additional actions in RACF if RACF-protected
user IDs are not used in connection requests from a DB2 for z/OS requester to a
DB2 for z/OS server.

Processing of TCP/IP-based connection requests
The DB2 server completes a sequence of authentication tasks when handling a
remote connection request that uses the TCP/IP protocol.
1. As the following diagram shows, DB2 checks to see if an authentication token

(RACF encrypted password, RACF PassTicket, DRDA encrypted password, or
Kerberos ticket) accompanies the remote request.

Chapter 3. Managing access through RACF 171

2. If no authentication token is supplied, DB2 checks the TCPALVER subsystem
parameter to see if DB2 accepts IDs without authentication information.
v If TCPALVER=NO | SERVER, DB2 requires the minimum of a userid and a

password.
v If TCPALVER=SERVER_ENCRYPT, DB2 requires a userid and a password. In

addition, it requires that the security credentials be AES-encrypted or that the
connection is accepted on a port that ensures AT-TLS policy protection, such
as a DB2 Security Port (SECPORT). Kerberos tickets are accepted. RACF
PassTickets, or non-encrypted security credentials, are accepted only when
the connection is secured by the TCP/IP network.

v If TCPALVER=YES | CLIENT, DB2 accepts TCP/IP connection requests that
contain only a userid.

3. The identity is a RACF ID that is authenticated by RACF if a password or
PassTicket is provided, or the identity is a Kerberos principal that is validated
by Kerberos Security Server, if a Kerberos ticket is provided. Ensure that the ID
is defined to RACF in all cases. When Kerberos tickets are used, the RACF ID

Activity at the DB2 server

TCP/IP request from remote user

Verify remote connections

Step 1:
Is authentication
information present?

Yes

No
Step 2:
Does the serving
subsystem accept
remote requests
without verification?

TCPALVER=YES

TCPALVER=NO Reject
request.

Check ID for connections

Step 3:
Verify identity by RACF or Kerberos.

Not authorized;
reject request.

Connection processing

Step 4:
Verify by RACF that the ID can access DB2.

Not authorized;
reject request.

Step 5:
Run the connection exit routine (DSN3@ATH).

Step 6:
Check local privilege at the server.

Figure 9. DB2 processing of TCP/IP-based connection requests

172 Managing Security

|
|

|
|

|
|
|
|
|
|

|
|

is derived from the Kerberos principal identity. To use Kerberos tickets, ensure
that you map Kerberos principal names with RACF IDs.
In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has access to the

DB2 APPL. The APPL resource that is checked is the LU name that the
requester used when the attachment request was issued. This is either the
local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the port of entry (POE). The POE that RACF
uses in the RACROUTE VERIFY call depends on whether all the following
conditions are true:
– The current operating system is z/OS V1.5 or later
– The TCP/IP Network Access Control is configured
– The RACF SERVAUTH class is active

If all these conditions are true, RACF uses the remote client's POE security
zone name that is defined in the TCP/IP Network Access Control file. If one
or more of these conditions is not true, RACF uses the literal string 'TCPIP'.
If this is a request to change a password, the password is changed.

4. The remote request is now treated like a local connection request (using the
DIST environment for the DSNR resource class). DB2 calls RACF to check the
ID's authorization against the ssnm.DIST resource.

5. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where the remote request originated.

6. The remote request has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The plan or
package owner ID also accompanies the request. Privileges and authorities that
are granted to those IDs at the DB2 server govern the actions that the request
can take.

Related reference

“Processing of outbound connection requests” on page 180

Managing denial-of-service attacks
With DB2, you can manage denial-of-service attacks in the network connections to
a DB2 server.

The most common type of denial-of-service attack occurs when an attacker "floods"
a network with connection requests to a DB2 server. If this occurs, the attacker
quickly exhausts the threshold for the maximum number of remote connections
that are defined to the DB2 server system. As a result, no additional remote
connections can be accepted by the DB2 server, including those from legitimate
client systems.

To prevent the typical denial-of-service attacks, DB2 monitors the traffic of inbound
connections and terminates those that don't contain data for establishing a valid
connection.

Preventing SQL injection attacks
SQL injection attacks might occur when dynamic SQL statements are constructed
from user input and the input is inadequately checked. You can use several
techniques to prevent or reduce SQL injection attacks.

Chapter 3. Managing access through RACF 173

|

|
|
|

To eliminate or reduce the risk of SQL injection attacks:
v Avoid dynamic SQL, whenever possible.
v Use pureQuery or SQLJ rather than JDBC for Java.
v Use system security techniques, such as views and access control mechanisms,

whenever possible.
Understand the limitations of security within an application. System security can
use security and integrity mechanisms that are not available to application
programs. The level of assurance that can be provided in system security can be
much higher. If the applications are run on the client or have fewer protection
layers and firewalls than the database, make sure to address those limitations.

v Use row permissions and column masks to protect data even if the statement is
compromised by SQL injection attacks.

v Put input data into host variables with just the value or use a parameter marker
in dynamic SQL.

v Make sure to check all input:
– Check that the input is the intended data type and format. This is generally

required for all programs to ensure that they work properly but especially
crucial for data intended as part of an SQL statement.

– Accept numbers for a numeric comparison only.
– Do not allow special characters if they do not apply.

Managing outbound connection requests
If you plan to send requests to another DB2 subsystem, you need to consider the
subsystem's security measures for network connections. You need to know what
those measures are and make entries in your CDB to correspond to them.

If you are planning to send remote requests to a DBMS that is not DB2 for z/OS,
you need to satisfy the requirements of that system.

DB2 chooses how to send authentication tokens based on the network protocols
that are used (SNA or TCP/IP). If the request is sent using SNA, the authentication
tokens are sent in the SNA attachment request (FMH5), unless you are using
Kerberos. If you use Kerberos, authentication tokens are sent with DRDA security
commands. If the request uses TCP/IP, the authentication tokens are always sent
using DRDA security commands.

At least one authorization ID is always sent to the server to be used for
authentication. That ID is one of the following values:
v The primary authorization ID of the process.
v If you connect to the server using a CONNECT statement with the USER

keyword, the ID that you specify as the USER ID. The CONNECT statement
allows non-RACF user IDs on the USER keyword. If connecting to a remote
location, the user ID is not authenticated by RACF.

However, other IDs can accompany some requests. You need to understand what
other IDs are sent because they are subject to translation. You must include these
other IDs in table SYSIBM.USERNAMES to avoid an error when you use outbound
translation. The following table shows the IDs that you send in the different
situations:

174 Managing Security

|

|

|

|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|

|

Table 42. IDs that accompany the primary ID on a remote request

In this situation: You send this ID also:

An SQL query, using DB2 DRDA-protocol
access

The plan owner

A remote BIND, COPY, or REBIND
PACKAGE command

The package owner

If the connection is to a remote non-DB2 for z/OS server using DRDA protocol
and if the outbound translation is specified, a row for the plan owner in the
USERNAMES table is optional.

Communications database for the requester
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of remote requests. Columns in the SYSIBM.LUNAMES,
SYSIBM.IPNAMES, SYSIBM.USERNAMES, and SYSIBM.LOCATIONS tables
pertain to security that related to the requesting system.

SYSIBM.LUNAMES columns:

The SYSIBM.LUNAMES table is used only for outbound requests that use SNA
protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_OUT (CHAR 1)
Indicates the security option that is used when local DB2 SQL applications
connect to any remote server that is associated with the corresponding
LUNAME.

A The letter A signifies the security option of already verified, and it
is the default. With A, outbound connection requests contain an
authorization ID and no authentication token. The value that is
used for an outbound request is either the DB2 user's authorization
ID or a translated ID, depending on the value in the USERNAMES
column.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. The LUNAME column is used as the RACF PassTicket
application name.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from RACF if ENCRYPTPSWDS=Y, or
from SYSIBM.USERNAMES if ENCRYPTPSWDS=N. If you get the
password from SYSIBM.USERNAMES, the USERNAMES column

Chapter 3. Managing access through RACF 175

of SYSIBM.LUNAMES must contain B or O. The value that is used
for an outbound request is the translated ID.

ENCRYPTPSWDS CHAR(1)
Indicates whether passwords received from and sent to the corresponding
LUNAME are encrypted. This column only applies to DB2 for z/OS and
DB2 for z/OS partners when passwords are used as authentication tokens.

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as encrypted.

N No, passwords are not encrypted. This is the default; any character
but Y is treated as N.

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R') instead of encrypting passwords.

USERNAMES CHAR(1)
Indicates whether an ID accompanying a remote attachment request, which
is received from or sent to the corresponding LUNAME, is subject to
translation and “come from” checking. When you specify I, O, or B, use
the SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

SYSIBM.IPNAMES columns:

The SYSIBM.IPNAMES table is used only for outbound requests that use TCP/IP
protocols.

LINKNAME CHAR(8)
The name used in the LINKNAME column of SYSIBM.LOCATIONS to
identify the remote system.

IPADDR
Specifies an IP address or domain name of a remote TCP/IP host.

SECURITY_OUT
Indicates the DRDA security option that is used when local DB2 SQL
applications connect to any remote server that is associated with this
TCP/IP host.

A The letter A signifies the security option of already verified, and it
is the default. Outbound connection requests contain an
authorization ID and no password. The value that is used for an
outbound request is either the DB2 user's authorization ID or a
translated ID, depending on the value in the USERNAMES
column.

176 Managing Security

The authorization ID is not encrypted when it is sent to the
partner. For encryption, see option D.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. When a RACF PassTicket is generated, the LINKNAME
column value is used as the RACF PassTicket application name
and must match the following at the target server
v LUNAME - if the remote site is a DB2 subsystem that is defined

with only an LUNAME value and no GENERIC LU name value
or IPNAME value

v GENERIC - if the remote site is a DB2 subsystem that is defined
with a GENERIC LU name value in addition to an LUNAME
value but no IPNAME value

v IPNAME - if the remote site is a DB2 subsystem that is defined
with an IPNAME value that triggers the remote DB2 subsystem's
DDF to activate only its TCP/IP communications support.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

The authorization ID is not encrypted when it is sent to the
partner.

D The letter D signifies the security option of user ID and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and no password. The authorization
ID that is used for an outbound request is either the DB2 user's
authorization ID or a translated ID, depending on the
USERNAMES column.

This option indicates that the user ID and the security-sensitive
data are to be encrypted. If you do not require encryption, see
option A.

E The letter E signifies the security option of user ID, password, and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and a password. The password is
obtained from the SYSIBM.USERNAMES table. The USERNAMES
column must specify "O".

This option indicates that the user ID, password, and
security-sensitive data are to be encrypted. If you do not require
security-sensitive data encryption, see option P.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from the SYSIBM.USERNAMES table. If
you specify P, the USERNAMES column must specify "O".

If you specify P and the server supports encryption, the user ID
and the password are encrypted. If the server does not support
encryption, the user ID and the password are sent to the partner in
clear text. If you also need to encrypt security-sensitive data, see
option E.

Chapter 3. Managing access through RACF 177

USERNAMES CHAR(1)
This column indicates whether an outbound request translates the
authorization ID. When you specify O, use the SYSIBM.USERNAMES table
to perform the translation.

O The letter O signifies an outbound ID that is subject to translation.
Rows in the SYSIBM.USERNAMES table are used to perform ID
translation. If a connection to any remote server is to be established
as trusted, a row in the SYSIBM.USERNAMES table is used to
obtain the system authorization ID.

S The letter S signifies the system authorization ID, within a trusted
context, obtained from the SYSIBM.USERNAMES table. If the
system authorization ID that is specified in the AUTHID column is
different from the primary authorization ID, DB2 sends the user
switch request on behalf of the primary authorization ID after
successfully establishing the trusted connection.

blank No translation is done.

SYSIBM.USERNAMES columns:

The SYSIBM.USERNAMES table is used by outbound connection requests that use
SNA and TCP/IP protocols.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the outbound system authorization ID
for establishing a trusted connection.

I The row applies to inbound IDs.

O The row applies to outbound IDs.

The field should contain only I, O, or S. Any other character, including
blank, causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME, and all
authorization IDs are translated in the same way.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

178 Managing Security

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

PASSWORD VARCHAR(255)
A password or password phrase that is sent with an outbound request if
passwords or phrases are not encrypted by RACF. The column is not used
if passwords or phrases are encrypted or if the row is for inbound
requests. A password or password phrase can be stored as encrypted data
by calling the DSNLEUSR stored procedure. To send the encrypted value
of the PASSWORD column through a network, you must specify one of the
encryption options in the SYSIBM.IPNAMES table.

SYSIBM.LOCATIONS columns:

The SYSIBM.LOCATIONS table contains a row for every accessible remote server.
Each row associates a LOCATION name with the TCP/IP or SNA network
attributes for the remote server. Requesters are not defined in the
SYSIBM.LOCATIONS table.

LOCATION CHAR(16)
Indicates the unique location name by which the the remote server is
known to local DB2 SQL applications.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

PORT CHAR(32)
Indicates that TCP/IP is used for outbound connections when the
following statement is true:
v A row exists in SYSIBM.IPNAMES, where the LINKNAME column

matches the value that is specified in the SYSIBM.LOCATIONS
LINKNAME column.

If the previously mentioned row is found, and the SECURE column has a
value of 'N', the value of the PORT column is interpreted as follows:
v If PORT is blank, the default DRDA port (446) is used.
v If PORT is nonblank, the value that is specified for PORT can take one

of two forms:
– If the value in PORT is left-justified with one to five numeric

characters, the value is assumed to be the TCP/IP port number of the
remote database server.

Chapter 3. Managing access through RACF 179

|
|
|
|
|
|
|
|

– Any other value is assumed to be a TCP/IP service name, which you
can convert to a TCP/IP port number by using the TCP/IP
getservbyname socket call. TCP/IP service names are not
case-sensitive.

If the previously mentioned row is found, and the SECURE column has a
value of 'Y', the value of the PORT column is interpreted as follows:
v If PORT is blank, the default secure DRDA port (448) is used.
v If PORT is nonblank, the value that is specified for PORT takes the value

of the configured secure DRDA port at the remote server.

TPN VARCHAR(64)
Used only when the local DB2 begins an SNA conversation with another
server. When used, TPN indicates the SNA LU 6.2 transaction program
name (TPN) that will allocate the conversation. A length of zero for the
column indicates the default TPN. For DRDA conversations, this is the
DRDA default, which is X'07F6C4C2'.

DBALIAS(128)
Used to access a remote database server. If DBALIAS is blank, the location
name is used to access the remote database server. This column does not
change the name of any database objects sent to the remote site that
contains the location qualifier.

TRUSTED
Indicates whether the connection to the remote server can be trusted. This
is restricted to TCP/IP only. This column is ignored for connections that
use SNA.

Y The location is trusted. Access to the remote location requires a
trusted context that is defined at the remote location.

N The location is not trusted.

SECURE
Indicates the use of the Secure Socket Layer (SSL) protocol for outbound
connections when local DB2 applications connect to the remote database
server by using TCP/IP.

Y A secure SSL connection is required for the outbound connection.

N A secure connection is not required for the outbound connection.

Processing of outbound connection requests
A DB2 subsystem completes a sequence of tasks when sending out a connection
request.

180 Managing Security

1. The DB2 subsystem that sends the request checks whether the primary
authorization ID has the privilege to execute the plan or package.
DB2 determines which value in the LINKNAME column of the
SYSIBM.LOCATIONS table matches either the LUNAME column in the
SYSIBM.LUNAMES table or the LINKNAME column in the SYSIBM.IPNAMES
table. This check determines whether SNA or TCP/IP protocols are used to
carry the DRDA request.

2. When a plan is executed, the authorization ID of the plan owner is sent with
the primary authorization ID. When a package is bound, the authorization ID
of the package owner is sent with the primary authorization ID. If the
USERNAMES column of the SYSIBM.LUNAMES table contains O or B, or if the
USERNAMES column of the SYSIBM.IPNAMES table contains O, both IDs are
subject to translation under control of the SYSIBM.USERNAMES table. Ensure
that these IDs are included in SYSIBM.USERNAMES, or SQLCODE -904 is
issued. DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID is in the row, that value becomes the

new ID.
v If NEWAUTHID is blank, the ID is not changed.
If the SYSIBM.USERNAMES table does not contain a new authorization ID to
which the primary authorization ID is translated, the request is rejected with
SQLCODE -904.
If the USERNAMES column does not contain O or B, the IDs are not translated.

Step 1:
Check local privilege

Step 2:
Is outbound translation specified?

Translate remote primary ID using
NEWAUT HID column of
SYSIBM.USERNAMES.

Remote primary ID is the same
as the local primary ID.

Step 3:
Check SECURITY_OUT column of
SYSIBM.LUNAMES or SYSIBM.USERNAMES.

NoYes

Step 4:
Send request.

Figure 10. Steps in sending a request from a DB2 subsystem

Chapter 3. Managing access through RACF 181

3. SECURITY_OUT is checked for outbound security options as shown in the
following diagram.

A Already verified. No password is sent with the authorization ID. This
option is valid only if the server accepts already verified requests.
v For SNA, the server must have specified A in the SECURITY_IN

column of SYSIBM.LUNAMES.
v For TCP/IP, the server must have specified YES in the TCP/IP

ALREADY VERIFIED field of installation panel DSNTIP5.

R RACF PassTicket. If the primary authorization ID was translated, that
translated ID is sent with the PassTicket.

P Password. The outbound request must be accompanied by a password:
v If the requester is DB2 for z/OS and uses SNA protocols, passwords

can be encrypted if you specify Y in the ENCRYPTPSWDS column of
SYSIBM.LUNAMES. If passwords are encrypted, the password is
obtained from RACF. If passwords are not encrypted, the password
is obtained from the PASSWORD column of SYSIBM.USERNAMES.

P:
SNA or TCP/IP protocol?

Encrypt?

Get password
from RACF.

Encrypt?

Get password from
SYSIBM.USERNAMES.

Error
- 904 or
- 30082

D:
ICSF enabled and
server supports encryption?

No password sent.
Get authorization ID
and encrypt with ICSF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No YesNoYes

TCP/IPSNA

No Yes

Step 2

Error
- 904 or
- 30082

E:
ICSF enabled and
server supports encryption?

A:
No password
is sent.

R:
Get PassTicket
from RACF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No Yes

Step 4:
Send request.

Figure 11. Details of Step 3

182 Managing Security

v If the requester uses TCP/IP protocols, the password is obtained
from the PASSWORD column of SYSIBM.USERNAMES. If the
Integrated Cryptographic Service Facility is enabled and properly
configured and the server supports encryption, the password is
encrypted.
Recommendation: Use RACF PassTickets to avoid sending
unencrypted passwords over the network.

D User ID and security-sensitive data encryption. No password is sent
with the authorization ID. If the Integrated Cryptographic Service
Facility (ICSF) is enabled and properly configured and the server
supports encryption, the authorization ID is encrypted before it is sent.
If the ICSF is not enabled or properly configured, SQL return code –904
is returned. If the server does not support encryption, SQL return code
–30082 is returned.

E User ID, password, and security-sensitive data encryption. If the ICSF
is enabled and properly configured and the server supports encryption,
the password is encrypted before it is sent. If the ICSF is not enabled or
properly configured, SQL return code –904 is returned. If the server
does not support encryption, SQL return code –30082 is returned.

4. Send the request.
Related reference

“Processing of TCP/IP-based connection requests” on page 171

Translating outbound IDs
If an ID on your system is duplicated on a remote system, you can translate
outbound IDs to avoid confusion. You can also translate IDs to ensure that they are
accepted by the remote system.

To indicate that you want to translate outbound user IDs, perform the following
steps:
1. Specify an O in the USERNAMES column of table SYSIBM.IPNAMES or

SYSIBM.LUNAMES.
2. Use the NEWAUTHID column of SYSIBM.USERNAMES to specify the ID to

which the outbound ID is translated.

Example 1: Suppose that the remote system accepts from you only the IDs
XXGALE, GROUP1, and HOMER.
1. Specify that outbound translation is in effect for the remote system LUXXX by

specifying in SYSIBM.LUNAMES the values that are shown in the following
table.

Table 43. SYSIBM.LUNAMES to specify that outbound translation is in effect for the remote
system LUXXX

LUNAME USERNAMES

LUXXX O

If your row for LUXXX already has I for the USERNAMES column (because
you translate inbound IDs that come from LUXXX), change I to B for both
inbound and outbound translation.

2. Translate the ID GALE to XXGALE on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Chapter 3. Managing access through RACF 183

Table 44. Values in SYSIBM. USERNAMES to translate GALE to XXGALE on outbound
requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O GALE LUXXX XXGALE GALEPASS

3. Translate EVAN and FRED to GROUP1 on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Table 45. Values in SYSIBM. USERNAMES to translate EVAN and FRED to GROUP1 on
outbound requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O EVAN LUXXX GROUP1 GRP1PASS

O FRED LUXXX GROUP1 GRP1PASS

4. Do not translate the ID HOMER on outbound requests to LUXXX. (HOMER is
assumed to be an ID on your DB2, and on LUXXX.) Specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Table 46. Values in SYSIBM. USERNAMES to not translate HOMER on outbound requests
to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER LUXXX (blank) HOMERSPW

5. Reject any requests from BASIL to LUXXX before they are sent. To do that,
leave SYSIBM.USERNAMES empty. If no row indicates what to do with the ID
BASIL on an outbound request to LUXXX, the request is rejected.

Example 2: If you send requests to another LU, such as LUYYY, you generally need
another set of rows to indicate how your IDs are to be translated on outbound
requests to LUYYY.

However, you can use a single row to specify a translation that is to be in effect on
requests to all other LUs. For example, if HOMER is to be sent untranslated
everywhere, and DOROTHY is to be translated to GROUP1 everywhere, specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Table 47. Values in SYSIBM. USERNAMES to not translate HOMER and to translate
DOROTHY to GROUP1

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER (blank) (blank) HOMERSPW

O DOROTHY (blank) GROUP1 GRP1PASS

You can also use a single row to specify that all IDs that accompany requests to a
single remote system must be translated. For example, if every one of your IDs is
to be translated to THEIRS on requests to LUYYY, specify in SYSIBM.USERNAMES
the values that are shown in the following table.

Table 48. Values in SYSIBM. USERNAMES to translate every ID to THEIRS

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O (blank) LUYYY THEIR THEPASS

184 Managing Security

If the ICSF is installed and properly configured, you can use the DSNLEUSR
stored procedure to encrypt the translated outbound IDs that are specified in the
NEWAUTHID column of SYSIBM.USERNAMES. DB2 decrypts the translated
outbound IDs during connection processing.

Sending passwords or password phrases
DB2 provides several security mechanisms to send password or password phrase
information.

Specifically, DB2 supports the following security mechanisms:
v RACF encrypted passwords
v RACF PassTickets
v Kerberos tickets
v DRDA-encrypted passwords or password phrases or DRDA-encrypted user IDs

with encrypted passwords or password phrases.

If you have to send passwords or password phrases through the network, you can
put the password or password phrase for a user ID in the PASSWORD column of
the SYSIBM.USERNAMES table.

Recommendation: Use the DSNLEUSR stored procedure to encrypt passwords or
password phrases in SYSIBM.USERNAMES. If the ICSF is installed and properly
configured, you can use the DSNLEUSR stored procedure to encrypt passwords or
password phrases in the SYSIBM.USERNAMES table. DB2 decrypts the password
or password phrase during connection processing.

DB2 for z/OS allows the use of RACF encrypted passwords or RACF PassTickets.
However, workstations, such as Windows workstations, do not support these
security mechanisms. RACF encrypted passwords are not a secure mechanism
because they can be replayed. RACF PassTickets are not compatible with
SECURITY_ENCRYPT; they are allowed only when the connections are secured by
the TCP/IP network.

Recommendation: Do not use RACF encrypted passwords unless you are
connecting to a previous release of DB2 for z/OS.

Sending RACF-encrypted passwords
For DB2 subsystems that use SNA protocols to communicate with each other, you
can specify password encryption in the SYSIBM.LUNAMES table.

Table 49. Specifying password encryption in SYSIBM.LUNAMES

LUNAME USERNAMES ENCRYPTPSWDS

LUXXX O Y

The partner DB2 must also specify password encryption in its SYSIBM.LUNAMES
table. Both partners must register each ID and its password with RACF. Then, for
every request to LUXXX, your DB2 calls RACF to supply an encrypted password
to accompany the ID. With password encryption, you do not use the PASSWORD
column of SYSIBM.USERNAMES, so the security of that table becomes less critical.

Chapter 3. Managing access through RACF 185

|

|

|
|

|
|

|
|
|
|
|

|
|
|

Sending RACF PassTickets
To send RACF PassTickets with your remote requests to a particular remote
system, you can specify 'R' in the SECURITY_OUT column of the
SYSIBM.IPNAMES or SYSIBM.LUNAMES table for that system.

To set up RACF to generate PassTickets:
1. Activate the RACF PTKTDATA class by issuing the following RACF

commands:
SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)

2. Define a RACF profiles for each remote system by entering the system name as
it appears in the LINKNAME column in the SYSIBM.LOCATIONS table.
For example, issue the following command defines a profile for a remote
system, DB2A, in the RACF PTKTDATA class:
RDEFINE PTKTDATA DB2A SSIGNON(KEYMASKED(E001193519561977))

3. Refresh the RACF PTKTDATA definition with the new profiles by issuing the
following command:
SETROPTS RACLIST(PTKTDATA) REFRESH

Sending encrypted passwords or password phrases from DB2
for z/OS clients
As a requester, a DB2 for z/OS client can send connection requests that use 256-bit
Advanced Encryption Standard (AES) or 56-bit Data Encryption Standards (DES)
encryption security through a TCP/IP network to remote servers.

If the DB2 for z/OS client supports DRDA Security Manager (SECMGR) 9 (or
higher) and if z/OS ICSF is configured and started, it can send AES requests to a
server. After the first successful connection, it can determine whether or not a
remote server supports AES encryption security. If the remote server also supports
DRDA SECMGR 9 (or higher), it accepts AES requests and encrypts the user IDs
and passwords or password phrases that the client sends in AES.

As a client, DB2 for z/OS only supports IPNAMES.SECURITY_OUT option 'P'
("password") for AES encryption and decryption. It does not support
IPNAMES.SECURITY_OUT option 'D' ("user ID and security-sensitive data
encryption") or 'E' ("user ID, password, and security-sensitive data encryption").
These outbound security options remain encrypted in DES.
Related concepts

Encrypted password, user ID, or user ID and password security under the IBM
Data Server Driver for JDBC and SQLJ (Application Programming for Java)

Sending encrypted passwords from workstation clients

As a server, DB2 for z/OS can accept requests from remote workstation clients that
use 256-bit Advanced Encryption Standard (AES) or 56-bit Data Encryption
Standards (DES) encryption security over a TCP/IP network connection.

Depending on the DRDA level, a remote client can use AES or DES encryption
algorithm for sending passwords, user IDs and passwords, or other
security-sensitive data to a DB2 for z/OS server. If both the DB2 for z/OS server
and the remote client support DRDA Security Manager (SECMGR) 9 or higher and
even if the client does not explicitly request for AES, AES becomes the default
encryption algorithm for user IDs and passwords, and DES remains the default
encryption algorithm for security-sensitive data. In other words, if the client

186 Managing Security

|

|

|

|
|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen

explicitly requests for AES encryption, only user IDs, passwords, or both are
encrypted in AES, and any data in the request is still encrypted in DES. Any
persistent attempt to encrypt the data in AES will cause the client itself to reject the
connection request.

To enable the DB2 for z/OS AES server support, you must install and configure
z/OS Integrated Cryptographic Services Facility (ICSF). During DB2 startup,
DSNXINIT invokes the MVS LOAD macro service to load various ICSF services,
including the ICSF CSNESYE and CSNESYD modules that DB2 calls for processing
AES encryption and decryption requests. If ICSF is not installed or if ICSF services
are not available, DB2 will not be able to provide AES support. Instead, it will use
DES for processing remote requests if the client does not explicitly request for AES
encryption.

To use the DES encryption, you can enable DB2 Connect to send encrypted
passwords by setting database connection services (DCS) authentication to
DCS_ENCRYPT in the DCS directory entry. When a client application issues an
SQL CONNECT, the client negotiates this support with the database server. If
supported, a shared private key is generated by the client and server using the
Diffie-Hellman public key technology and the password is encrypted using 56-bit
DES with the shared private key. The encrypted password is non-replayable, and
the shared private key is generated on every connection. If the server does not
support password encryption, the application receives SQLCODE -30073 (DRDA
security manager level 6 is not supported).
Related concepts

Encrypted password, user ID, or user ID and password security under the IBM
Data Server Driver for JDBC and SQLJ (Application Programming for Java)

Chapter 3. Managing access through RACF 187

|
|
|
|

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen

188 Managing Security

Chapter 4. Managing access through row permissions and
column masks

Row and column access control enables you to manage access to a table at the level of
a row, a column, or both. You can implement row access control through row
permissions and column access control through column masks.

Row and column access control
Row and column access control is a DB2 security solution that uses SQL to control
access to a table at the level of a row, a column, or both.

Traditionally, access control at the row and column level is implemented through
views. Using views as an access control method works well only when access
rules, restrictions, and conditions are monolithic and simple. It however becomes
ineffective when view definitions become too complex because of the complexity
and granularity of privacy and security policies. It also becomes costly when a
large number of views must be manually updated and maintained. In addition, the
ability to update views proves to be challenging. As privacy and security policies
evolve, required updates to views may negatively affect the security logic
particularly when database applications reference the views directly by name. DB2
row and column access control helps resolve all these problems.

Implemented through SQL and managed by the DB2 security administrator, row
and column access control allows you to manage access to a table with filtering
and data masking. Unlike multilevel security, row and column access control is
integrated into a database system, and all applications and tools that use SQL to
access the database are automatically subject to the same control. This effectively
eliminates the need to filter security-sensitive data at the application level and
ensures that the data is protected when the applications and tools use SQL to
access it.

Row and column access control is based on a security policy that specifies the rules
and conditions under which a user, group, or role can access rows, columns, or
both of a base table. The access control is not needed at the view level because the
view automatically receives row and column access control that is activated on the
underlining base table. The row and column access control rules do not affect how
a read-only view is determined. All users access the same base table (as opposed to
alternative views of a table), but access restrictions are based on individual user
permissions and masks that are specified by a policy associated with the table.

An authorization ID or role with the SECADM authority can manage row and
column access control. The SECADM authority can activate or deactivate row and
column access control for a table, grant or revoke the CREATE_SECURE_OBJECT
system privilege, and create, alter, or drop row permissions and column masks.
The SYSADM authority can perform the same tasks if the SEPARATE SECURITY
system parameter on panel DSNTIPP1 is set to NO during installation.

Row and column access control can be activated for a table before or after row
permissions or column masks are created for the table. If row permissions or
column masks already exist, activating row and column access control simply
makes the permissions or masks become effective. If row permissions or column

© Copyright IBM Corp. 1982, 2011 189

|

|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

masks do not yet exist, activating row access control for a table means that DB2
will generate a default row permission that prevents any access to the table by
SQL, and activating column access control means to wait for the column masks to
be created.

When a table is activated for row or column access control, all users, including the
table owner and the SECADM, SYSDM, or DBADM authorities, are subject to the
same security rules and restrictions. This ensures that access to security-sensitive
data is truly on a need basis and prevents system and database administrators
from unnecessarily accessing it. Since security policies or rules are expressed and
enforced through SQL, row and column access control is inherently flexible.

Row access control and multilevel security are mutually exclusive. If a table is
activated for row access control, it cannot be altered to include a security label
column; if a table has a security label column, it cannot be activated for row access
control. Column access control, on the other hand, is not affected by multilevel
security. If a table is activated for column level access control, it can be altered to
include a security label column, and vice versa.
Related concepts

“Row permission”
“Column mask” on page 191
Related reference

“Explicit system privileges” on page 27
“SECADM” on page 41

Row permission
A row permission is a database object that describes a specific row access control
rule for a table. In the form of an SQL search condition, the rule specifies the
conditions under which a user, group, or role can access the rows of data in the
table.

Stored in the system catalog, row permissions can be created on all base tables
except materialized query tables, and they are maintained on an individual basis.
The definition of each row permission may reference the user, group, or role in the
search condition.

If multiple row permissions are defined for a table and when row access control is
activated, the search condition in each row permission is connected by the logical
OR operator to form the row access control search condition. This row access
control search condition is applied whenever the table is accessed. It acts as a filter
to the table before any other user-specified operations, such as predicates and
ordering, are processed. It also acts like the WITH CHECK OPTION clause of a
view to ensure that a row to be inserted or updated conforms to the definitions of
the row permissions in an INSERT, UPDATE, or MERGE statement.

Only an authorization ID or role with the SECADM or SYSADM authority can
manage row permissions. If the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 is set to YES during installation or migration, you must have the
SECADM authority to create, alter, or drop row permissions. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

190 Managing Security

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Related concepts

“Column mask”
Related tasks

“Creating row permissions” on page 196
“Creating column masks” on page 198
Related reference

“Rules of row and column access control” on page 192
“Explicit system privileges” on page 27
“SECADM” on page 41

Column mask
A column mask is a database object that describes a specific column access control
rule for a column. In the form of an SQL CASE expression, the rule specifies the
condition under which a user, group, or role can receive the masked values that
are returned for a column.

Stored in the system catalog, column masks can be created on all base tables except
materialized query tables and maintained on an individual basis. The definition of
each column mask may reference the user, group, or role in the search conditions
in the CASE WHEN clause.

While multiple columns in a table may have column masks, only one column mask
can be created for a single column. When column access control is activated for the
table, the CASE expression in the column mask definition is applied to an output
column to determine the masked values that are returned to an application. The
application of column masks affects the final output only; it does not impact the
operations, such as predicates and ordering, in an SQL statement. In addition, the
application of column masks must not change the values in a row that is being
inserted or updated in an INSERT, UPDATE, or MERGE statement.

Only an authorization ID or role with the SECADM or SYSADM authority can
manage column masks. If the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 is set to YES during installation or migration, you must have the
SECADM authority to create, alter, or drop column masks. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

Chapter 4. Managing access through row permissions and column masks 191

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Related concepts

“Row permission” on page 190
Related tasks

“Creating row permissions” on page 196
“Creating column masks” on page 198
Related reference

“Rules of row and column access control”
“Explicit system privileges” on page 27
“SECADM” on page 41

Rules of row and column access control
The rules of row and column access control apply to both read and write
operations on a table. The conditions that are specified in row permissions and
column masks apply to both data retrieval operations and data change operations.

The following table shows an example of how row and column access control rules
are applied depending on the types of data operations. Assume that tables T1 and
T2 are activated for row and column access control and that both tables include
columns C1 and C2.

Table 50. Rules and access types for row and column access control

SQL statement Row permission
Column mask (defined for column
C1)

SELECT
SUBSTR(C1,8,4)
FROM T1;

v If user-defined row
permissions exist for the table,
only the rows that satisfy the
permissions are returned.

v If no user-defined row
permissions exist for the table,
the default row permission is
applied and no row is
returned.

v The column mask is applied to
column C1 that is referenced in the
select list of the outermost SELECT
clause. It does not interfere with the
operations of other clauses within
the statement, such as the WHERE,
GROUP BY, HAVING, SELECT
DISTINCT, or ORDER BY clauses.
Some column mask restrictions may
apply to the other clauses within
the statement.

v The masked value that is
determined by the evaluation of the
CASE expression in the column
mask is returned in place of the
column value in the output row. If
column C1 is embedded in an
expression, the column mask is
applied to the input column before
the evaluation of the expression
takes place.

192 Managing Security

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|
|
|
|

||

||
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

INSERT INTO
T1(C1, C2)
VALUES('A', 'B');

For each row to be inserted:

v If a user-defined row
permission exists, the row can
be inserted only when that
row can be subsequently
retrieved by the authorization
ID of the INSERT statement.
If the row cannot be inserted,
the INSERT statement returns
an error.

v If no user-defined row
permissions exist for the table
only the default row
permission is applied and no
row is inserted. The INSERT
statement returns an error.

The ENFORCED FOR ALL
ACCESS clause ensures that
users cannot insert data that
they cannot read.

Chapter 4. Managing access through row permissions and column masks 193

|

||
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

INSERT INTO
T1(C1) SELECT
SUBSTR(T2.C1,
8, 4) FROM T2
WHERE T2.C2 >
10;

v When the columns are used to
derive the new values for an
INSERT statement, the original
column values, not the masked
values, are used. If the columns
have column masks, those column
masks are applied to ensure the
evaluation of the access control
rules at run time masks the column
to itself, not to a constant or an
expression. This ensures that the
masked values are the same as the
original column values. If a column
mask does not mask the column to
itself, the new row is not inserted
and an error is returned at run
time.

For example, column T2.C1 is used
to derive the value of a new row
for INSERT. The column value of
T2.C1, not the masked value, is
used to derive the new value.
Because column T2.C1 has a
column mask, the column mask is
applied to ensure the evaluation of
the access control rule in the
column mask masks column T2.C1
to itself, not to a constant or an
expression. This ensures the masked
value is the same as the original
column value. If the column mask
of T2.C1 does not mask column
T2.C1 to itself, the new value
cannot be used and an error is
returned at run time.

v The column mask rules that apply
to the new value for INSERT are
the same as those for SELECT.

194 Managing Security

|

||
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

UPDATE T1 SET
C2 = (SELECT
SUBSTR(T2.C1,
8, 4) FROM T2
WHERE T2.C2 >
10);

The following rules are applied in the order as shown:

1. Identify candidate rows for updates:

If a user-defined row permission exists, only the rows of the table
that satisfy the row permission can be the candidate rows for
UPDATE.

If no user-defined row permissions exist for the table, only the
default row permission is applied and no rows are updated.

2. If there are rows to be updated, for each row to be updated:

v When the columns are used to derive the new values for an
UPDATE statement, the original column values, not the masked
values, are used. If the columns have column masks, those column
masks are applied to ensure that the evaluation of the access
control rules at run time masks the column to itself, not to a
constant or an expression. This ensures the masked values are the
same as the original column values. If a column mask does not
mask the column to itself, the new rvalue cannot be used for the
update and an error is returned at run time.

For example, column T2.C1 is used to derive the new value for the
update. The column value of T2.C1, not the masked value, is used
to derive the new value. Because column T2.C1 has a column
mask, the column mask is applied to ensure that the evaluation of
the access control rule in the column mask masks column T2.C1 to
itself, not to a constant or an expression. This ensures that the
masked value is the same as the original column value. If the
column mask of T2.C1 does not mask column T2.C1 to itself, the
new value cannot be used for the update and an error is returned
at run time

v The column mask rules that apply to the new value for UPDATE
are the same as those for SELECT.

3. If there are rows to be updated, for each row to be updated:

v If a user-defined row permission exists, the row can be updated
only when that row can be subsequently retrieved by the
authorization ID of the UPDATE statement. If the row cannot be
updated, the UPDATE statement returns an error. The ENFORCED
FOR ALL ACCESS clause ensures that users cannot update data
that they cannot read.

v The column mask is not applicable in this retrieval.

MERGE The row and column access control rules for the UPDATE and INSERT
operations in the MERGE statement are the same as those for the
UPDATE and INSERT statements.

DELETE v If a user-defined row
permission exists for the table,
only the rows that satisfy the
permission are the candidate
rows for an DELETE
statement.

v If no user-defined row
permissions exist for the table,
the default row permission is
applied and no row can be
deleted.

Chapter 4. Managing access through row permissions and column masks 195

|

||
|
|

|
|
|
|
|
|

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

||
|
|

||
|
|
|
|
|

|
|
|
|
|

|

|

Related concepts

“Row permission” on page 190
“Column mask” on page 191
Related tasks

“Creating row permissions”
“Creating column masks” on page 198
“Using INSERT on tables with row access control” on page 202
“Creating triggers for tables with row and column access control” on page 203
“Modifying column masks to reference UDFs” on page 200

Creating row permissions
A row permission specifies the conditions under which users can access a row. With
the SECADM authority, you can use the CREATE PERMISSION statement to create
a row permission.

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set to YES
during installation or migration, you must have the SECADM authority to create a
row permission. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

Suppose that you are a data security administrator (SECADM) for a national health
organization (NetHMO) and responsible for safeguarding sensitive patient
information. You want to create a data privacy and security policy and implement
it through row permissions on tables that are enabled with row access control. The
permission definitions prescribe the conditions under which patients, physicians,
pharmacists, or account administrators can only receive certain rows based on their
roles or account authentication IDs.

To create a row permission:
1. Issue the CREATE TABLE statement to create table HOSPITAL.PATIENT.

The HOSPITAL.PATIENT table contains columns for recording a patient's social
security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMACY), account balance

(ACCT_BALANCE), and doctor (PCP_ID), as shown below:
CREATE TABLE HOSPITAL.PATIENT (

SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(5000),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18));

2. Issue the CREATE ROLE statements to create the following roles and determine
the rules for each role to access the HOSPITAL.PATIENT table
The row access control rules specify the specific types of information that users
in a specific role can access and the conditions under which the role can access

the information.

196 Managing Security

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|

|

CREATE ROLE PCP;
CREATE ROLE DRUG_RESEARCH;
CREATE ROLE ACCOUNTING;
CREATE ROLE MEMBERSHIP;
CREATE ROLE PATIENT;

3. Issue the CREATE PERMISSION statement to create row permissions that allow
each role to access data in specific rows.
You can use the built-in function VERIFY_
TRUSTED_CONTEXT_ROLE_FOR_USER to determine whether the user
identified in special register SESSION_USER is associated with a particular
ROLE that is specified as the input argument to the function.
In the following example, Role PATIENT is allowed to access his or her own
row. Role PCP is allowed to access his or her patients' rows. Roles
MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are allowed to access

all rows.
CREATE PERMISSION NETHMO.ROW_ACCESS ON HOSPITAL.PATIENT

FOR ROWS WHERE (VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’PATIENT’) = 1 AND
HOSPITAL.PATIENT.USERID = SESSION_USER) OR

(VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’PCP’) = 1 AND
HOSPITAL.PATIENT.PCP_ID = SESSION_USER) OR

(VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’MEMBERSHIP’) = 1 OR

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’ACCOUNTING’) = 1 OR

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’DRUG_RESEARCH’) = 1)

ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

The definitions of the new row permissions are stored in the new catalog table
SYSIBM.SYSCONTROLS.

4. Issue the ALTER TABLE statement with the ACTIVATE ROW ACCESS
CONTROL clause to activate row access control for table HOSPITAL.PATIENT.

ALTER TABLE HOSPITAL.PATIENT ACTIVATE ROW ACCESS CONTROL;

COMMIT;

The ALTER TABLE serialization process takes place and invalidates all
packages and dynamic cached statements that reference table
HOSPITAL.PATIENT. The value 'R' in the new column SYSTABLES.CONTROL
indicates that the table is activated for row access control.
DB2 also implicitly creates a default row permission which restricts all access
from HOSPITAL.PATIENT. The default row permission definition is stored in
the new catalog table SYSIBM.SYSCONTROLS.
Whenever table HOSPITAL.PATIENT is referenced in a data manipulation
statement, all row permissions that have been created for it, including the

Chapter 4. Managing access through row permissions and column masks 197

|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|

default row permission, are implicitly applied by DB2 to control the rows in the
table that are accessible. A row access control search condition is derived from
the logical OR operators that connect the search condition in each row
permission. This search condition acts as a filter to HOSPITAL.PATIENT before
any user-specified operations, such as predicates, grouping, ordering. are
processed.
If necessary, SECADM can deactivate row access control from table
HOSPITAL.PATIENT by simply issuing the following ALTER TABLE statement:

ALTER TABLE HOSPITAL.PATIENT DEACTIVATE ROW ACCESS CONTROL;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
HOSPITAL.PATIENT. DB2 reflects the removal of row access control by setting
SYSTABLES.CONTROL to blank. This also means that table
HOSPITAL.PATIENT does not have any access control and that users can
retrieve data from all its rows.

Related concepts

“Row permission” on page 190
“Column mask” on page 191
Related tasks

“Creating column masks”
“Using INSERT on tables with row access control” on page 202
“Creating triggers for tables with row and column access control” on page 203
“Modifying column masks to reference UDFs” on page 200
Related reference

“Rules of row and column access control” on page 192
“Explicit system privileges” on page 27
“SECADM” on page 41

Creating column masks
A column mask specifies the rules for users to receive the masked values that are
returned for the column. With the SECADM authority, you can use the CREATE
MASK statement to create a column mask.

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set
to YES during installation or migration, you must have the SECADM authority to
create a column mask. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

Suppose that you are a data security administrator (SECADM) for a national health
organization (NetHMO) and responsible for safeguarding sensitive patient
information. You want to create a data privacy and security policy and implement
it through column masks on tables that are enabled with column access control.
The mask definitions prescribe the conditions under which patients, physicians,
pharmacists, or account administrators can only receive certain masked values
from the column based on their roles or account authentication IDs.

198 Managing Security

|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

To create a column mask:
1. Issue the CREATE TABLE statement to create table HOSPITAL.PATIENT

The HOSPITAL.PATIENT table contains columns for recording a patient's social
security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMACY), account balance
(ACCT_BALANCE), and doctor (PCP_ID), as shown below:
CREATE TABLE HOSPITAL.PATIENT (

SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(5000),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18));

2. Issue the CREATE ROLE statements to create the following roles that access the
HOSPITAL.PATIENT table.
CREATE ROLE PCP;
CREATE ROLE DRUG_RESEARCH;
CREATE ROLE ACCOUNTING;
CREATE ROLE MEMBERSHIP;
CREATE ROLE PATIENT;

3. Issue the CREATE MASK statement to create column masks that allow each
role to receive certain masked values from specific columns.
You can use the built-in function VERIFY_
TRUSTED_CONTEXT_ROLE_FOR_USER to determine whether the user
identified in special register SESSION_USER is associated with a particular
ROLE that is specified as the input argument to the function.
The following example shows how column mask SSN_MASK is created. Roles
PATIENT and ACCOUNTING are allowed to receive column values from
column SSN. Other roles that access the column will receive masked values.
CREATE MASK NETHMO.SSN_MASK ON HOSPITAL.PATIENT FOR

COLUMN SSN RETURN
CASE WHEN VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,

’PATIENT’) = 1 OR
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,

’ACCOUNTING’) = 1
THEN SSN
ELSE CHAR(’XXX-XX-’) || SUBSTR(SSN,8,4)
END

ENABLE;

COMMIT;

You can issue the CREATE MASK statements to create column masks
USERID_MASK, NAME_MASK, and ADDRESS_MASK. The definitions of all
these column masks are stored in the new catalog table
SYSIBM.SYSCONTROLS.

4. Use the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS
CONTROL clause to activate column access control for table
HOSPITAL.PATIENT
ALTER TABLE HOSPITAL.PATIENT ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

The ALTER TABLE serialization process takes place and invalidates all
packages and dynamic cached statements that reference table
HOSPITAL.PATIENT. The value 'C' in the new column SYSTABLES.CONTROL
indicates that the table is activated for column access control.

Chapter 4. Managing access through row permissions and column masks 199

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

Whenever column SSN of table HOSPITAL.PATIENT is referenced in the
outermost SELECT clause of a data manipulation statement, column mask
SSN_MASK is implicitly applied by DB2 to control the masked values that are
returned for it.
If necessary, SECADM can deactivate column access control from table
HOSPITAL.PATIENT by simply issuing the following ALTER TABLE statement:
ALTER TABLE HOSPITAL.PATIENT DEACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
HOSPITAL.PATIENT. DB2 reflects the removal of column access control by

setting SYSTABLES.CONTROL to blank.
Related concepts

“Row permission” on page 190
“Column mask” on page 191
Related tasks

“Creating row permissions” on page 196
“Using INSERT on tables with row access control” on page 202
“Creating triggers for tables with row and column access control” on page 203
“Modifying column masks to reference UDFs”
Related reference

“Rules of row and column access control” on page 192
“Explicit system privileges” on page 27
“SECADM” on page 41

Modifying column masks to reference UDFs
With the SECADM authority, you can modify column masks on tables that are
activated for column access control.

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set
to YES during installation or migration, you must have the SECADM authority to
modify a column mask. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

Suppose that table HOSPITAL.PATIENT contains columns to record a patient's
social security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMCY), account balance (ACCT_BALANCE),
and doctor (PCD_ID). The table is activated for column access control.

Also, suppose that database developer Paul has created a new powerful accounting
application NetHMLAccountingUDF (an external scalar user-defined function). You
want to modify column mask ACCT_BALANCE_MASK for column
HOSPITAL.PATIENT.ACCT_BALANCE to include NetHMLAccountingUDF.

To modify column mask ACCT_BALANCE_MASK to include
NetHMLAccountingUDF:
1. Make sure that all the operations in the new UDF are secure.

Only secure UDFs can be invoked in a column mask. The SECURED attribute
is required if the user-defined function is referenced in the definition of a row
permission or column mask. This is because the user-defined function may

200 Managing Security

|
|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

access sensitive data. The SECURED attribute is also required for a user-defined
function that is invoked in an SQL statement when the function arguments
reference columns that are activated with column access control.
Make sure that all the operations inside the new application
NetHMLAccountingUDF are actually secure. Then, you can issue the following
GRANT CREATE_SECURE_OBJECT statement to allow userid PAUL the
privilege for creating a secure UDF:
GRANT CREATE_SECURE_OBJECT TO PAUL;

COMMIT;

DB2 records the grant in SYSUSERAUTH: GRANTOR = GRANTORID,
GRANTEE = PAUL, AUTHHOWGOT = E, and CREATESECUREAUTH = Y.
This means that authid GRANTORID has used the SECADM authority
(AUTHHOWGOT = E) to grant userid PAUL the CREATE_SECURE_OBJECT
privilege.
With the CREATE_SECURE_OBJECT privilege, Paul issues the following
ALTER FUNCTION statement to secure NetHMLAccountingUDF:
ALTER FUNCTION NETHMOACCOUNTINGUDF(ACCT_BALANCE) SECURED;

COMMIT;

DB2 sets the new column in catalog SYSROUTINES.SECURE to Y and
invalidates all packages and dynamic cached statements that reference
NetHMOAccountingUDF(ACCT_BALANCE).

2. After the UDF has been altered to be secure, revoke the
CREATE_SECURE_OBJECT privilege from userid PAUL by issuing the
following REVOKE CREATE_SECURE_OBJECT statement:
REVOKE CREATE_SECURE_OBJECT FROM PAUL;

COMMIT;

DB2 completes the privilege removal by deleting the row from SYSUSERAUTH
with GRANTOR = GRANTORID, GRANTEE = PAUL, AUTHHOWGOT = E,
and CREATESECUREAUTH = Y.

3. Drop the existing column mask ACCT_BALANCE_MASK for column
ACCT_BALANCE
You can issue the DROP MASK statement to remove the existing column mask,
but do not follow it with the COMMIT statement. This will prevent any
ongoing transactions from accessing table HOSPITAL.PATIENT before you can
put a new column mask in place.
DROP MASK ACCT_BALANCE_MASK;

DB2 invalidates all packages and dynamic cached statements that reference
table HOSPITAL.PATIENT. It also deletes the row for ACCT_BALANCE_MASK
in the catalog table SYSIBM.SYSCONTROLS. Since there isn't a COMMIT
statement immediately after the DROP MASK statement, DB2 keeps possessing
the lock on HOSPITAL.PATIENT and doesn't commit the work it has done for
the DROP MASK statement. Any transactions that try to access
HOSPITAL.PATIENT may be timed out.

4. Create a new column mask ACCT_BALANCE_MASK for column
ACCT_BALANCE
You can issue the CREATE MASK statement to create a new column mask and
follow it immediately with the COMMIT statement. This will enable DB2 to
commit all the work it has done so far for HOSPITAL.PATIENT and allow
other transactions to access HOSPITAL.PATIENT.

Chapter 4. Managing access through row permissions and column masks 201

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

CREATE MASK NETHMO.ACCT_BALANCE_MASK ON HOSPITAL.PATIENT FOR
COLUMN ACCT_BALANCE RETURN

CASE WHEN VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER
(SESSION_USER,’ACCOUNTING’) = 1

THEN NETHMOACCOUNTINGUDF(ACCT_BALANCE)
ELSE 0.00

END
ENABLE;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
table HOSPITAL.PATIENT and inserts the new ACCT_BALANCE_MASK
definition into the catalog table SYSIBM.SYSCONTROLS. It also records the
dependency on NetHMOAccountingUDF in SYSIBM.SYSDEPENDENCIES for
ACCT_BALANCE_MASK.
The COMMIT statement immediately after the CREATE MASK statement
ensures that DB2 commits all the work it has done so far on
HOSPITAL.PATIENT and releases the lock from the table. This allows other

transactions to access the same table without being timed out.

Using INSERT on tables with row access control
You can use the INSERT statement on tables that are activated for row access
control.

Suppose that you are responsible for managing patient memberships and you are
associated with role MEMBERSHIP that is already created for table
HOSPITAL.PATIENT. Table HOSPITAL.PATIENT is also activated for row access
control, and Role MEMBERSHIP is allowed to access, create, and retrieve rows in
the table.

Supposed that table HOSPITAL.PATIENT contains columns to record a patient's
social security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMCY), account balance (ACCT_BALANCE),
and doctor (PCD_ID). You want to add a new row for a new patient Bob.

To add a row to a table that is enforced with row access control:
1. Ensure that role MEMBERSHIP is allowed to access, insert, and update rows

when row permission rules are set for table HOSPITAL.PATIENT by the
SECADM authority.
CREATE PERMISSION NETHMO.ROW_ACCESS ON HOSPITAL.PATIENT

FOR ROWS WHERE (VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’MEMBERSHIP’) = 1)

ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

2. Issue the INSERT statement to insert a new row for patient Bob:
INSERT INTO HOSPITAL.PATIENT(SSN, USERID, NAME, ADDRESS)

VALUES(’123-45-6789’,’BobXYZ100’,'Bob’,'123 Some St.’);

COMMIT;

3. Verify that Bob was successfully added by issuing the following SELECT
statement:

202 Managing Security

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

SELECT * FROM HOSPITAL.PATIENT WHERE SSN = '123-45-6789’;

COMMIT;

The following result is returned and shows that a new row for Bob was
successfully added to the table.
SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID
----------- --------- ---- ------------ -------- ------------ ------
123-45-6789 BobXYZ100 Bob 123 Some St. ? 0.00 ?

DSNT400I SQLCODE = 000, SUCCESSFUL EXECUTION
SUCCESSFUL RETRIEVAL OF 1 ROW(S)

Creating triggers for tables with row and column access control
With the required authority and privileges, you can create triggers for tables that
are activated for row and access control.

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set to YES
during installation or migration, you must have the SECADM authority to create
triggers for tables that are activated with row and column access control. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

Suppose that table HOSPITAL.PATIENT is activated for row and column access
control. The table contains columns to record a patient's social security number
(SSN), account authorization ID (USERID), name (NAME), address (ADDRESS),
pharmacy (PHARMCY), account balance (ACCT_BALANCE), and doctor
(PCD_ID). Paul, a database developer, needs to create a new AFTER UPDATE
trigger for HOSPITAL.PATIENT to monitor the history of the ACCT_BALANCE
column.

To create a trigger for a table that is enforced with row and access control:
1. Make sure that all operations on the transition variables and transition tables

inside the new trigger body are secure.
Only secure triggers can be defined on tables that are already enforced with
row and column access control. The SECURED attribute is required for a
trigger when the associated table is row or column access control enforced or
the associated view whose underlying table is enforced with row or column
access control. If a trigger exists but is not secure, row or column access control
cannot be activated for the associated table.
Make sure that all operations on the transition variables and transition tables
inside the new trigger body are actually secure. Then, you can issue the
following GRANT CREATE_SECURE_OBJECT statement to allow userid PAUL

the privilege for creating secure triggers for table HOSPITAL.PATIENT:
GRANT CREATE_SECURE_OBJECT TO PAUL;

COMMIT;

DB2 records the grant in SYSUSERAUTH: GRANTOR = GRANTORID,
GRANTEE = PAUL, AUTHHOWGOT = E, and CREATESECUREAUTH = Y.

Chapter 4. Managing access through row permissions and column masks 203

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|

|
|

This means that authid GRANTORID has used the SECADM authority
(AUTHHOWGOT = E) to grant userid PAUL the CREATE_SECURE_OBJECT
privilege.

2. Create a new trigger for table HOSPITAL.PATIENT
With the CREATE_SECURE_OBJECT privilege, Paul can create a secure
NETHMO_ACCT_BALANCE_TRIGGER by issuing the following CREATE

TRIGGER statement:
CREATE TRIGGER NETHMO_ACCT_BALANCE_TRIGGER NO CASCADE

AFTER UPDATE OF ACCT_BALANCE ON HOSPITAL.PATIENT SECURED
REFERENCING OLD AS O NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO ACCT_HISTORY
(SSN, BEFORE_BALANCE, AFTER_BALANCE, WHEN, BY_WHO)
VALUES(O.SSN, O.ACCT_BALANCE, N.ACCT_BALANCE,

CURRENT TIMESTAMP, SESSION_USER);
END!

COMMIT!

DB2 inserts a new row into SYSIBM.SYSTRIGGERS with
SYSTRIGGERS.SECURE = 'Y'. DB2 completes other catalog table updates for
the trigger creation.

3. After trigger NETHMO_ACCT_BALANCE_TRIGGER is created, revoke the
CREATE_SECURE_OBJECT privilege from userid PAUL by issuing the
following REVOKE CREATE_SECURE_OBJECT statement:

REVOKE CREATE_SECURE_OBJECT FROM PAUL;

COMMIT;

DB2 completes the privilege removal by deleting the row with GRANTOR =
GRANTORID, GRANTEE = PAUL, AUTHHOWGOT = E, and
CREATESECUREAUTH = Y from SYSUSERAUTH. This means that authid
GRANTORID has used the SECADM authority (AUTHHOWGOT = E) to
revoke the CREATE_SECURE_OBJECT privilege from userid PAUL.

204 Managing Security

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

Chapter 5. Managing access through trusted contexts

You can use trusted contexts to manage access to your DB2 subsystems, which
helps you improve data security.

You can use trusted connections within a trusted context. When you do this, you
can reuse the authorization and switch users of the connection without the
database server needing to authenticate the IDs.

Trusted contexts
A trusted context is an independent database entity that you can define based on a
system authorization ID and connection trust attributes.

The trust attributes specify a set of characteristics about a specific connection.
These attributes include the IP address, domain name, or SERVAUTH security zone
name of a remote client and the job or task name of a local client.

A trusted context allows for the definition of a unique set of interactions between
DB2 and the external entity, including the following abilities:
v The ability for the external entity to use an established database connection with

a different user without the need to authenticate that user at the DB2 server.
This ability eliminates the need to manage end-user passwords by the external
entity. Also, a database administrator can assume the identity of other users and
perform actions on their behalf.

v The ability for a DB2 authorization ID to acquire one or more privileges within a
trusted context that are not available to it outside of that trusted context. This is
accomplished by associating a role with the trusted context.

The following client applications provide support for the trusted context:
v The DB2 Universal Java Driver introduces new APIs for establishing trusted

connections and switching users of a trusted connection.
v The DB2 CLI/ODBC Driver introduces new keywords for connecting APIs to

establish trusted connections and switch users of a trusted connection.
v The Websphere Application Server 6.0 exploits the trusted context support

through its "propagate client identity" property.

© Copyright IBM Corp. 1982, 2011 205

Related concepts

“Trusted connections”
“Roles in a trusted context” on page 23
Related tasks

“Defining trusted contexts”
“Creating local trusted connections” on page 207
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 208
“Establishing remote trusted connections to DB2 for z/OS servers” on page 209
Related reference

“Establishing plan and package ownership in a trusted context” on page 81
“Ownership of objects within a trusted context” on page 79

Trusted connections
A trusted connection is a database connection that is established when the
connection attributes match those of a trusted context that is defined at the server.
A trusted connection can be established locally or at a remote location.

A trusted context allows you to establish a trusted relationship between DB2 and
an external entity, such as a middleware server. DB2 evaluates a series of trust
attributes to determine if a specific context is to be trusted. Currently, the only
attribute that DB2 considers is the database connection. The relationship between a
connection and a trusted context is established when the connection to the server is
first created, and that relationship remains as long as that connection exists.
Related concepts

“Trusted contexts” on page 205
“Roles in a trusted context” on page 23
Related tasks

“Defining trusted contexts”
“Creating local trusted connections” on page 207
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 208
“Establishing remote trusted connections to DB2 for z/OS servers” on page 209

Defining trusted contexts
Before you can create a trusted connection, you must define a trusted context by
using a system authorization ID and connection trust attributes.

A system authorization ID is the DB2 primary authorization ID that is used to
establish the trusted connection. For local connections, the system authorization ID
is derived as shown in the following table.

Table 51. System authorization ID for local connections

Source System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF USER

TSO TSO logon ID

BATCH USER parameter on JOB statement

206 Managing Security

For remote connections, the system authorization ID is derived from the system
user ID that is provided by an external entity, such as a middleware server.

The connection trust attributes identify a set of characteristics about the specific
connection. The connection trust attributes are required for the connection to be
considered a trusted connection. For a local connection, the connection trust
attribute is the job or started task name. For a remote connection, the connection
trust attribute is the client's IP address, domain name, or SERVAUTH security zone
name. The connection trust attributes are as follows:

ADDRESS
Specifies the client's IP address or domain name, used by the connection to
communicate with DB2. The protocol must be TCP/IP.

SERVAUTH
Specifies the name of a resource in the RACF SERVAUTH class. This
resource is the network access security zone name that contains the IP
address of the connection to communicate with DB2.

ENCRYPTION
Specifies the minimum level of encryption of the data stream (network
encryption) for the connection. Supported values are as follows:
v NONE - No encryption. This is the default.
v LOW - DRDA data stream encryption.
v HIGH - Secure Socket Layer (SSL) encryption.

JOBNAME
Specifies the local z/OS started task or job name. The value of JOBNAME
depends on the source of the address space, as shown in the following
table.

Table 52. JOBNAME for local connections

Source JOBNAME

Started task (RRSAF) Job or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

The JOBNAME attribute cannot be specified with the ADDRESS,
SERVAUTH, or ENCRYPTION attributes.

Related concepts

“Trusted contexts” on page 205
“Trusted connections” on page 206
“Roles in a trusted context” on page 23
Related tasks

“Creating local trusted connections”
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 208
“Establishing remote trusted connections to DB2 for z/OS servers” on page 209

Creating local trusted connections
You can establish a trusted connection to a local DB2 subsystem by using RRSAF
or the DSN command processor under TSO and DB2I.

When you attempt to create a local trusted connection, DB2 searches for a trusted
context that matches the primary authorization ID and the job or started task name

Chapter 5. Managing access through trusted contexts 207

that you supply. If DB2 finds a matching trusted context, DB2 checks if the
DEFAULT SECURITY LABEL attribute is defined in the trusted context.

If the DEFAULT SECURITY LABEL attribute is defined with a security label, DB2
verifies the security label with RACF. This security label is used for multilevel
security verification for the system authorization ID. If verification is successful,
the connection is established as trusted. If the verification is not successful, the
connection is established as a normal connection without any additional privileges.

In addition, the DB2 online utilities can run in a trusted connection if a matching
trusted context is defined, if the primary authorization ID matches the SYSTEM
AUTHID value of the trusted context, and if the job name matches the JOBNAME
attribute defined for the trusted context.
Related concepts

“Trusted contexts” on page 205
“Trusted connections” on page 206
“Roles in a trusted context” on page 23
Related tasks

“Defining trusted contexts” on page 206
“Establishing remote trusted connections by DB2 for z/OS requesters”
“Establishing remote trusted connections to DB2 for z/OS servers” on page 209

Establishing remote trusted connections by DB2 for z/OS requesters
A DB2 for z/OS requester can establish a trusted connection to a remote location
by setting up the new TRUSTED column in the SYSIBM.LOCATIONS table.

How DB2 obtains the system authorization ID to establish the trusted connection
depends on the value of the SECURITY_OUT option in the SYSIBM.IPNAMES
table. The SECURITY_OUT option in the SYSIBM.IPNAMES table must be 'E', 'P',
or 'R'.

When the z/OS requester receives an SQL CONNECT with or without the USER
and USING clauses to a remote location or if an application references a remote
table or procedure, DB2 looks at the SYSIBM.LOCATIONS table to find a matching
row. If DB2 finds a matching row, it checks the TRUSTED column. If the value of
TRUSTED column is set to 'Y', DB2 looks at the SYSIBM.IPNAMES table. The
values in the SECURITY_OUT column and USERNAMES column are used to
determine the system authorization ID as follows:

SECURITY_OUT = 'P' or 'E' and USERNAMES = 'S'
The system authorization ID credentials that are used to establish the
trusted connection are obtained from the row in the SYSIBM.USERNAMES
table with TYPE 'S'.

DB2 sends the user switch request on behalf of the primary authorization
ID without authentication under two conditions. First, the system
authorization ID value in the AUTHID column is different from the
primary authorization ID. Second, a trusted connection is successfully
established.

SECURITY_OUT='P' or 'E' and USERNAMES = 'O'
If a row with TYPE 'S' is defined in the SYSIBM.USERNAMES table, the
system authorization ID credentials that are used to establish the trusted
connection are obtained from the row.

208 Managing Security

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID information for the primary authorization ID
from the row in the SYSIBM.USERNAMES table with TYPE 'O'. DB2 sends
the user switch request on behalf of the primary authorization ID with
authentication.

If a row with TYPE 'S' is not defined in the SYSIBM.USERNAMES table,
DB2 obtains the system authorization ID information that is used to
establish the trusted connection from the row in the SYSIBM.USERNAMES
table with TYPE 'O'.

SECURITY_OUT = 'R' and USERNAMES = ' '
The primary authorization ID is used as the system authorization ID to
establish the trusted connection.

SECURITY_OUT = 'R' and USERNAMES = 'S'
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with TYPE='S'.

After establishing the trusted connection successfully, DB2 sends the user
switch request on behalf of the primary authorization ID without
authentication.

SECURITY_OUT = 'R' and USERNAMES = 'O'
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with TYPE 'S'.

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID for the primary authorization ID from the row
in the SYSIBM.USERNAMES table with TYPE 'O'. DB2 sends the user
switch request on behalf of the primary authorization ID with RACF
passticket authentication.

If the SECURITY_OUT option is not correctly set up, DB2 returns an error.
Related concepts

“Trusted contexts” on page 205
“Trusted connections” on page 206
“Roles in a trusted context” on page 23
Related tasks

“Defining trusted contexts” on page 206
“Creating local trusted connections” on page 207
“Establishing remote trusted connections to DB2 for z/OS servers”

Establishing remote trusted connections to DB2 for z/OS servers
When the DB2 for z/OS server receives a remote request to establish a trusted
connection, DB2 checks to see if an authentication token accompanies the request.

The authentication token can be a password, a RACF passticket, or a Kerberos
ticket. The requester goes through the standard authorization processing at the
server. If the authorization is successful, DB2 invokes the connection exit routine,
which associates the primary authorization ID, possibly one or more secondary
authorization IDs, and an SQL ID with the remote request. DB2 searches for a
matching trusted context. If DB2 finds a matching trusted context, it validates the
following attributes:

Chapter 5. Managing access through trusted contexts 209

v If the SERVAUTH attribute is defined for the identified trusted context and
TCP/IP provides a RACF SERVAUTH profile name to DB2 during the
establishment of the connection, DB2 matches the SERVAUTH profile name with
the SERVAUTH attribute value.

v If the SERVAUTH attribute is not defined or the SERVAUTH name does not
match the SERVAUTH that is defined for the identified trusted context, DB2
matches the remote client's TCP/IP address with the ADDRESS attribute that is
defined for the identified trusted context.

v If the ENCRYPTION attribute is defined, DB2 validates whether the connection
is using the proper encryption as specified in the value of the ENCRYPTION
attribute.

v If the DEFAULT SECURITY LABEL attribute is defined for the system
authorization ID, DB2 verifies the security label with RACF. This security label is
used for verifying multilevel security for the system authorization ID. However,
if the system authorization ID is also in the ALLOW USER clause with
SECURITY LABEL, then that one is used.

If the validation is successful, DB2 establishes the connection as trusted. If the
validation is not successful, the connection is established as a normal connection
without any additional privileges, DB2 returns a warning, and SQLWARN8 is set.
Related concepts

“Trusted contexts” on page 205
“Trusted connections” on page 206
“Roles in a trusted context” on page 23
Related tasks

“Defining trusted contexts” on page 206
“Creating local trusted connections” on page 207
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 208

Switching users of a trusted connection
When a trusted connection is established, DB2 enables the trusted connection to be
reused by a different user on a transaction boundary.

You can reuse a trusted connection at a local DB2 subsystem by using RRSAF, the
DSN command processor under TSO, DB2I, and the SQL CONNECT statement
with the USER and USING clauses. To reuse the trusted connection, you must add
the specific user to the trusted context. If you specify 'PUBLIC' as the user, DB2
allows the trusted connection to be used by any authorization ID; the trusted
connection can be used by a different user with or without authentication.
However, you can require authentication by specifying the WITH
AUTHENTICATION clause.

You can use RRSAF, the DSN command processor under TSO, and DB2I to switch
to a new user on a trusted connection without authentication. If authentication is
required, you can use the SQL CONNECT statement with the USER and USING
clauses. The SQL CONNECT semantics prevent the use of CONNECT TO with the
USER and USING clauses to switch authorization IDs on a remote connection.

210 Managing Security

Related tasks

“Enabling users to perform actions on behalf of others” on page 213
“Performing tasks on objects for other users” on page 214

Reusing a local trusted connection through the DSN
command processor and DB2I

You can use the DSN command processor and DB2I to switch the user on a trusted
connection if the DSN ASUSER option is specified.

DB2 establishes a trusted connection if the primary authorization ID and job name
match a trusted context that is defined in DB2. The user ID that is specified for the
ASUSER option goes through the standard authorization processing. If the user ID
is authorized, DB2 runs the connection exit routine to associate the primary and
secondary IDs.

DB2 then searches to see if the primary authorization ID is allowed to use the
trusted connection without authentication. If the primary authorization ID is
allowed to use the trusted connection without authentication, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either
explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the verification of the security
label is successful, the trusted connection is established and used by the user ID
that is specified for the ASUSER option. DB2 uses the security label for multilevel
security verification for the user.

If the primary authorization ID that is associated with the user ID that is specified
for the ASUSER option is not allowed or requires authentication information, the
connection request fails. If the security label verification is not successful, the
connection request fails.

Reusing a remote trusted connection by DB2 for z/OS
requesters

After establishing a trusted connection with a system authorization ID, the DB2 for
z/OS requester automatically switches the user on the connection to the primary
authorization ID on the remote trusted connection.

The DB2 for z/OS requester reuses a remote trusted connection in the following
scenarios:
v The system authorization ID is different from the primary authorization ID that

is associated with the application user.
v The system authorization ID is different from the authorization ID that is

specified in the SQL CONNECT statement with the USER and USING clauses.
v Outbound translation is required for the primary authorization ID.

Reusing a remote trusted connection through DB2 for z/OS
servers

The DB2 for z/OS server performs a sequence of tasks when it receives a request
to switch users on a trusted connection.
1. DB2, on successful authorization, invokes the connection exit routine. The

invocation associates the primary authorization ID, possibly one or more
secondary authorization IDs, and an SQL ID with the remote request. This new
set of IDs replaces the previous set of IDs that was associated with the request.

Chapter 5. Managing access through trusted contexts 211

2. DB2 determines if the primary authorization ID is allowed to use the trusted
connection. If the WITH AUTHENTICATION clause is specified for the user,
DB2 requires an authentication token for the user. The authentication token can
be a password, a RACF passticket, or a Kerberos ticket.

3. Assuming that the primary authorization ID is allowed, DB2 determines the
trusted context for any SECURITY LABEL definition. If a specific SECURITY
LABEL is defined for this user, it becomes the SECURITY LABEL for this user.
If no specific SECURITY LABEL is defined for this user but a DEFAULT
SECURITY LABEL is defined for the trusted context, DB2 verifies the validity
of this SECURITY LABEL for this user through RACF by issuing the
RACROUTE VERIFY request.
If the primary authorization ID is allowed, DB2 performs a connection
initialization. This results in an application environment that truly mimics the
environment that is initialized if the new user establishes the connection in the
normal DB2 manner. For example, any open cursor is closed, and temporary
table information is dropped.

4. If the primary authorization ID is not allowed to use the trusted connection or
if SECURITY LABEL verification fails, the connection is returned to an
unconnected state. The only operation that is allowed is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, if any SQL statement is issued, an error
(SQLCODE -900) is returned.

Reusing a local trusted connection through RRSAF
If you use Resource Recovery Services Attachment Facility (RRSAF) to switch to a
new user on a trusted connection, DB2 obtains the primary authorization ID and
runs the sign-on exit routine.

DB2 then searches to determine if the primary authorization ID is allowed to use
the trusted connection without authentication. If the primary authorization ID is
allowed, DB2 determines if SECURITY LABEL is explicitly or implicitly defined in
the trusted context for the user. If SECURITY LABEL is defined, DB2 verifies the
SECURITY LABEL with RACF by using the RACROUTE VERIFY request. If the
SECURITY LABEL verification is successful, the trusted connection is used by the
new user.

If the primary authorization ID is not allowed to use the trusted connection
without authentication, DB2 returns the connection to an unconnected state. The
only action that you can take is to try running the sign-on exit routine again. Until
a valid authorization is established, any SQL statement that you issue causes DB2
to return an error.

Reusing a local trusted connection through the SQL
CONNECT statement

You can switch users on a trusted connection by using the SQL CONNECT
statement with the USER and USING clauses.

DB2, on successful authorization, invokes the connection exit routine if it is
defined. The connection then has a primary authorization ID, zero or more
secondary IDs, and an SQL ID.

DB2 searches to determine if the primary authorization ID is allowed to use the
trusted connection. If the primary authorization ID is allowed, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either

212 Managing Security

explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the security label verification is
successful, DB2 switches the user on the trusted connection. DB2 uses the security
label for multilevel security verification for the user.

If the primary authorization ID is not allowed to use the trusted connection or if
the security label verification is not successful, DB2 returns the connection to an
unconnected state. The only action you can take is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, any SQL statement that you issue causes DB2 to
return an error.

Defining external security profiles
You can control the users who can be switched in a trusted connection by defining
an external security profile in RACF and authorizing users to use the profile.

To define an external security profile in RACF:
1. Create a general resource profile in RACF for the DSNR class by issuing the

following command:
RDEFINE DSNR (TRUSTEDCTX.PROFILE1) UACC(NONE)

2. Add users to the TRUSTEDCTX.PROFILE1 profile and define their level of
access authority by issuing the following command:
PERMIT TRUSTEDCTX.PROFILE1 CLASS(DSNR) ID(USER1 USER2) ACCESS(READ)

3. Associate the profile with the trusted context definition by using the
EXTERNAL SECURITY PROFILE keyword in the trusted context user clause
definition.

You can remove users who can be switched in a trusted connection individually
from the TRUSTEDCTX.PROFILE1 profile in RACF. You can also remove all users
by simply dissociating the profile from the trusted context definition.

Enabling users to perform actions on behalf of others
Within a trusted context, you can allow users to perform actions on objects on
behalf of others.

You can specify the DSN ASUSER option with the authorization ID of the object
owner. During the connection processing, the authorization ID is used to determine
if a trusted context exists for this authorization ID. If a trusted context exists, a
trusted connection is established. The primary authorization ID that is associated
with the user ID and specified in the ASUSER option is used to determine if the
user can be switched on the trusted connection.

If the user ID that is specified in the ASUSER option is allowed to use the trusted
connection, the user runs under the authorization ID of the object owner and can
perform actions on behalf of the object owner. The authorization ID of the original
user is traced for audit purposes.

Chapter 5. Managing access through trusted contexts 213

Related concepts

“Switching users of a trusted connection” on page 210

Performing tasks on objects for other users
If you have DBADM authority, you can assume the identity of other users within a
trusted context and perform tasks on their behalf.

After you successfully assume the identity of a view owner, you inherit all the
privileges from the ID that owns the view and can therefore perform the CREATE,
DROP, and GRANT actions on the view.

To perform tasks on behalf of another user:
1. Define a trusted context. Make sure that the SYSTEM AUTH ID is the primary

authorization ID that you use in SPUFI.
2. Specify the primary authorization ID as the JOBNAME for the trusted

connection
3. Specify the primary authorization ID of the user whose identity you want to

assume
4. Log onto TSO with your primary authorization ID
5. Set the ASUSER option on the DB2I DEFAULTS panel to the primary

authorization ID of the user whose identity you want to assume
6. Perform the desired actions by using privileges of the specified user.

Assume that you have DBADM authority, your primary authorization ID is BOB,
and you want to drop a view that is owned by user SALLY. You can issue the
following statement to create and enable a trusted context called CTXLOCAL in
which BOB can drop the selected view on SALLY's behalf:
CREATE TRUSTED CONTEXT CTXLOCAL
BASED UPON CONNECTION USING SYSTEM AUTHID BOB
ATTRIBUTES (JOBNAME ’BOB’)
ENABLE
ALLOW USE FOR SALLY;

After logging onto TSO, you can set the ASUSER option to SALLY in the DB2I
DEFAULTS panel and invoke SPUFI to process SQL statements. DB2 obtains the
primary authorization ID BOB and JOBNAME BOB from the TSO log-on session,
authenticates BOB, searches for the matching trusted context (CTXLOCAL), and
establishes a trusted connection. DB2 then authenticates the primary authorization
ID SALLY and validates all privileges that are assigned to SALLY. After successful
authentication and validation, you, BOB, can drop the view that is owned by
SALLY.
Related concepts

“Switching users of a trusted connection” on page 210

214 Managing Security

Chapter 6. Managing access through data definition control

Data definition control is a DB2 security measure that provides additional constraints
to existing authorization checks. You can use data definition control to manage
access to your DB2 data.

Data definition statements
Data definition control support can control data definition statements.

The following data definition statements are controlled through the DB2 data
definition control support.

Table 53. Data definition Statements

Object CREATE statement ALTER statement DROP statement

Alias CREATE ALIAS DROP ALIAS

Database CREATE DATABASE ALTER DATABASE DROP DATABASE

Index CREATE INDEX ALTER INDEX DROP INDEX

Storage group CREATE STOGROUP ALTER STOGROUP DROP STOGROUP

Synonym CREATE SYNONYM DROP SYNONYM

Table CREATE TABLE ALTER TABLE DROP TABLE

Table space CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE

View CREATE VIEW DROP VIEW

The data definition control support also controls the COMMENT and LABEL
statements.
Related concepts

“Registration tables” on page 216
Related reference

“Data definition control support”

Data definition control support
If you want to use data definition statements for your plans and packages, you
must install data definition control support on the DB2 DSNTIPZ installation panel.

As shown in the following example, you can specify appropriate values for several
installation options to install the data definition control support and to control data
definition behaviors.

© Copyright IBM Corp. 1982, 2011 215

Related concepts

“Registration tables”
Related reference

“Data definition statements” on page 215
“Data definition control support” on page 215

Registration tables
If you use data definition control support, you must create and maintain an
application registration table (ART) and an object registration table (ORT). You can
register plans and package collections in the ART and objects that are associated
with the plans and collections in the ORT.

DB2 consults these two registration tables before accepting a data definition
statement from a process. It denies a request to create, alter, or drop a particular
object if the registration tables indicate that the process is not allowed to do so.

Both ART and ORT contain the CREATOR and CHANGER columns. The
CREATOR and CHANGER columns are CHAR(26) and large enough for a
three-part authorization ID. You need to separate each 8-byte part of the ID with a
period in byte 9 and in byte 18. If you enter only the primary authorization ID,
consider entering it right-justified in the field (that is, preceded by 18 blanks).

In addition to the CREATOR and CHANGER columns, an ART also contains the
following columns, some of which are optional and reserved for administrator use;
DB2 does not use these columns.

Table 54. Columns of the ART

Column name Description

APPLIDENT Indicates the collection-ID of the package that executes the data
definition language. If no package exists, it indicates the name
of the plan that executes the data definition language.

APPLIDENTTYPE Indicates the type of application identifier.

DSNTIPZ INSTALL DB2 - DATA DEFINITION CONTROL SUPPORT
===>

Enter data below:

1 INSTALL DD CONTROL SUPT. ===> NO YES - activate the support
NO - omit DD control support

2 CONTROL ALL APPLICATIONS ===> NO YES or NO
3 REQUIRE FULL NAMES ===> YES YES or NO
4 UNREGISTERED DDL DEFAULT ===> ACCEPT Action for unregistered DDL:

ACCEPT - allow it
REJECT - prohibit it
APPL - consult ART

5 ART/ORT ESCAPE CHARACTER ===> Used in ART/ORT Searches
6 REGISTRATION OWNER ===> DSNRGCOL Qualifier for ART and ORT
7 REGISTRATION DATABASE ===> DSNRGFDB Database name
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL Table name
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT Table name

Note: ART = Application Registration Table
ORT = Object Registration Table

PRESS: ENTER to continue RETURN to exit HELP for more information

Figure 12. DSNTIPZ installation panel with default values

216 Managing Security

Table 54. Columns of the ART (continued)

Column name Description

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

DEFAULTAPPL Indicates whether all data definition language should be
accepted from this application.

QUALIFIEROK Indicates whether the application can supply a missing name
part for objects that are named in the ORT. Applies only if
REQUIRE FULL NAMES = NO.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

An ORT also contains the following columns, some of which are optional and
reserved for administrator use; DB2 does not use these columns.

Table 55. Columns of the ORT

Column name Description

QUALIFIER Indicates the object name qualifier.

NAME Indicates the unqualified object name.

TYPE Indicates the type of object.

APPLMATCHREQ Indicates whether an application that names this object must
match the one that is named in the APPLIDENT column.

APPLIDENT Collection-ID of the plan or package that executes the data
definition language.

APPLIDENTTYPE Indicates the type of application identifier.

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

Chapter 6. Managing access through data definition control 217

Related reference

“Data definition statements” on page 215
“Data definition control support” on page 215

Installing data definition control support
You can install data definition control support that is available through the DB2
DSNTIPZ installation panel.

To install data definition control support:
1. Enter YES for option 1 on the DSNTIPZ installation panel, as shown in the

following example.
1 INSTALL DD CONTROL SUPT. ===> YES

2. Enter the names and owners of the registration tables in your DB2 subsystem
and the databases in which these tables reside for options 6, 7, 8, and 9 on the
DSNTIPZ installation panel.
The default values for these options are as follows:
6 REGISTRATION OWNER ===> DSNRGCOL
7 REGISTRATION DATABASE ===> DSNRGFDB
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT

You can accept the default names or assign names of your own. If you specify
your own table names, each name can have a maximum of 17 characters.

3. Enter an escape character for option 5 on the DSNTIPZ installation panel if you
want to use the percent character (%) or the underscore character (_) as a
regular character in the ART or ORT.
You can use any special character other than underscore or percent as the
escape character. For example, you can use the pound sign (#) as an escape
character. If you do, the value for option looks like this:
5 ART/ORT ESCAPE CHARACTER ===> #

After you specify the pound sign as an escape character, the pound sign can be
used in names in the same way that an escape character is used in an SQL
LIKE predicate.

4. Register plans, packages, and objects in the ART and ORT.
Choose the plans, packages, and objects to register based on whether you want
to control data definition by application name or object name.

5. Enter the values for the three other options on the DSNTIPZ installation panel
as follows:
2 CONTROL ALL APPLICATIONS ===>
3 REQUIRE FULL NAMES ===>
4 UNREGISTERED DDL DEFAULT ===>

Related reference

“Data definition control support” on page 215

Enabling data definition control
You can use data definition control after you install the DB2 data definition control
support and create the application registration table (ART) and the object
registration table (ORT).

You can use data definition control in the following four ways:
v Controlling data definition by application name

218 Managing Security

v Controlling data definition by application name with exceptions
v Controlling data definition by object name
v Controlling data definition by object name with exceptions
Related tasks

“Disabling data definition control” on page 225

Controlling data definition by application name
The simplest way to implement data definition control is to give one or more
applications total control over the use of data definition statements in the
subsystem.

To control data definition by application name, perform the following steps:
1. Enter YES for the first option on the DSNTIPZ installation panel, as shown:

2 CONTROL ALL APPLICATIONS ===> YES

When you specify YES, only package collections or plans that are registered in
the ART are allowed to use data definition statements.

2. In the ART, register all package collections and plans that you will allow to
issue DDL statements, and enter the value Y in the DEFAULTAPPL column for
these package collections. You must supply values for the APPLIDENT,
APPLIDENTTYPE, and DEFAULTAPPL columns of the ART. You can enter
information in other columns for your own use.

Example: Suppose that you want all data definition language in your subsystem to
be issued only through certain applications. The applications are identified by the
following application plan names, collection-IDs, and patterns:

PLANA
The name of an application plan

PACKB
The collection-ID of a package

TRULY%
A pattern name for any plan name beginning with TRULY

TR% A pattern name for any plan name beginning with TR

The following table shows the entries that you need in your ART.

Table 56. Table DSN_REGISTER_APPL for total subsystem control

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

PACKB C Y

TRULY% P Y

TR% P Y

If the row with TR% for APPLIDENT contains the value Y for DEFAULTAPPL, any
plan with a name beginning with TR can execute data definition language. If
DEFAULTAPPL is later changed to N to disallow that use, the changed row does
not prevent plans beginning with TR from using data definition language; the row
merely fails to allow that specific use. In this case, the plan TRXYZ is not allowed
to use data definition language. However, the plan TRULYXYZ is allowed to use
data definition language, by the row with TRULY% specified for APPLIDENT.

Chapter 6. Managing access through data definition control 219

Controlling data definition by application name with
exceptions

You can register an application name with exceptions in the application registration
table (ART) as a way to control data definition.

To control data definition by application name with exceptions:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, specify the following for option 4:
4 UNREGISTERED DDL DEFAULT ===> APPL

When you specify APPL, you restrict the use of data definition statements for
objects that are not registered in the ORT. If an object is registered in the ORT,
any applications that are not registered in the ART can use data definition
language on the object. However, if an object is not registered in the ORT, only
applications that are registered in the ART can use data definition language on
the object.

3. In the ART, register package collections and plans that you will allow to issue
data definition statements on any object. Enter the value Y in the
DEFAULTAPPL column for these package collections. Applications that are
registered in the ART retain almost total control over data definition. Objects
that are registered in the ORT are the only exceptions.

4. In the ORT, register all objects that are exceptions to the subsystem data
definition control that you defined in the ART. You must supply values for the
QUALIFIER, NAME, TYPE, APPLMATCHREQ, APPLIDENT, and
APPLIDENTTYPE columns of the ORT. You can enter information in other
columns of the ORT for your own use.

Example: Suppose that you want almost all of the data definition language in your
subsystem to be issued only through an application plan (PLANA) and a package
collection (PACKB).

The following table shows the entries that you need in your ART.

Table 57. Table DSN_REGISTER_APPL for total subsystem control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

PACKB C Y

However, suppose that you also want the following specific exceptions:
v Object KIM.VIEW1 can be created, altered, or dropped by the application plan

PLANC.
v Object BOB.ALIAS can be created, altered, or dropped only by the package

collection PACKD.
v Object FENG.TABLE2 can be created, altered, or dropped by any plan or

package collection.

220 Managing Security

v Objects with names that begin with SPIFFY.MSTR and exactly one following
character can be created, altered, or dropped by any plan that matches the name
pattern TRULY%. For example, the plan TRULYJKL can create, alter, or drop the
object SPIFFY.MSTRA.

The following table shows the entries that are needed to register these exceptions
in the ORT.

Table 58. Table DSN_REGISTER_OBJT for subsystem control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM VIEW1 C Y PLANC P

BOB ALIAS C Y PACKD C

FENG TABLE2 C N

SPIFFY MSTR_ C Y TRULY% P

You can register objects in the ORT individually, or you can register sets of objects.

Controlling data definition by object name
You can register object names in the object registration table (ORT) as a way to
control data definition. You need to control data definition by object names if you
want all objects in the subsystem to be registered and if you want some
applications to control specific sets of objects.

When you control data definition by object name, all objects are registered
regardless of whether they are controlled by specific applications.

To control data definition by object name:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, fill in option 4 as follows:
4 UNREGISTERED DDL DEFAULT ===> REJECT

When you specify REJECT for option 4, you totally restrict the use of data
definition statements for objects that are not registered in the ORT. Therefore,
no application can use data definition statements for any unregistered object.

3. In the ORT, register all of the objects in the subsystem, and enter Y in the
APPLMATCHREQ column. You must supply values for the QUALIFIER,
NAME, TYPE, APPLMATCHREQ, APPLIDENT, and APPLIDENTTYPE
columns of the ORT. You can enter information in other columns of the ORT for
your own use.

4. In the ART, register any plan or package collection that can use a set of objects
that you register in the ORT with an incomplete name. Enter the value Y in the
QUALIFIEROK column. These plans or package collections can use data
definition language on sets of objects regardless of whether a set of objects has
a value of Y in the APPLMATCHREQ column.

Example: The following table shows entries in the ORT for a DB2 subsystem that
contains the following objects that are controlled by object name:

Chapter 6. Managing access through data definition control 221

v Two storage groups (STOG1 and STOG2) and a database (DATB1) that are not
controlled by a specific application. These objects can be created, altered, or
dropped by a user with the appropriate authority by using any application, such
as SPUFI or QMF.

v Two table spaces (TBSP1 and TBSP2) that are not controlled by a specific
application. Their names are qualified by the name of the database in which
they reside (DATB1).

v Three objects (OBJ1, OBJ2, and OBJ3) whose names are qualified by the
authorization IDs of their owners. Those objects might be tables, views, indexes,
synonyms, or aliases. Data definition statements for OBJ1 and OBJ2 can be
issued only through the application plan named PLANX. Data definition
statements for OBJ3 can be issued only through the package collection named
PACKX.

v Objects that match the qualifier pattern E%D and the name OBJ4 can be created,
altered, or deleted by application plan SPUFI. For example, the objects
EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, can be created, altered, or deleted
by application plan SPUFI. Entry E%D in the QUALIFIER column represents all
three objects.

v Objects with names that begin with TRULY.MY_, where the underscore character
is actually part of the name. Assuming that you specify # as the escape character,
all of the objects with this name pattern can be created, altered, or dropped only
by plans with names that begin with TRULY.

Table 59. Table DSN_REGISTER_OBJT for total control by object

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N

STOG2 S N

DATB1 D N

DATB1 TBSP1 T N

DATB1 TBSP2 T N

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

QUENTIN OBJ3 C Y PACKX C

E%D OBJ4 C Y SPUFI P

TRULY MY#_% C Y TRULY% P

Assume the following installation option:
3 REQUIRE FULL NAMES ===> YES

The entries do not specify incomplete names. Hence, objects that are not
represented in the table cannot be created in the subsystem, except by an ID with
installation SYSADM authority.

Controlling data definition by object name with exceptions
You can register an object name with exceptions in the object registration table
(ORT) as a way to control data definition.

You can allow some applications to control specific sets of registered objects while
allowing other applications to use data definition statements for unregistered
objects.

222 Managing Security

To control data definition by object name with exceptions:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, fill in option 4 as follows:
4 UNREGISTERED DDL DEFAULT ===> ACCEPT

This option does not restrict the use of data definition statements for objects
that are not registered in the ORT. Therefore, any application can use data
definition language for any unregistered object.

3. Register all controlled objects in the ORT. Use a name and qualifier to identify
a single object. Use only one part of a two-part name to identify a set of objects
that share just that part of the name. For each controlled object, use
APPLMATCHREQ = Y. Enter the name of the plan or package collection that
controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the
ORT), register the controlling application in the ART. You must supply values
for the APPLIDENT, APPLIDENTTYPE, and QUALIFIEROK columns of the
ART.

Example: The following two tables assume that the installation option REQUIRE
FULL NAMES is set to NO. The following table shows entries in the ORT for the
following controlled objects:

Table 60. Table DSN_REGISTER_OBJT for object control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

QUENTIN OBJ3 C Y PACKX C

EDWARD OBJ4 C Y PACKX C

TABA C Y PLANA P

TABB C Y PACKB C

v The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all of
which are controlled by PLANX or PACKX. DB2 cannot interpret the object
names as incomplete names because the objects that control them, PLANX and
PACKX, are registered, with QUALIFIEROK=N, in the corresponding ART as
shown in the following table:

Table 61. Table DSN_REGISTER_APPL for object control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANX P N N

PACKX C N N

PLANA P N Y

PACKB C N Y

In this situation, with the combination of installation options shown previously,
any application can use data definition language for objects that are not covered

Chapter 6. Managing access through data definition control 223

by entries in the ORT. For example, if HOWARD has the CREATETAB privilege,
HOWARD can create the table HOWARD.TABLE10 through any application.

v Two sets of objects, *.TABA and *.TABB, are controlled by PLANA and PACKB,
respectively.

Registering object sets
Registering object sets enables you to save time and to simplify object registration.

Registering object sets is not a data definition control method; you must install of
the data definition control methods before you can register any object sets.

Because complete two-part names are not required for every object that is
registered in the ORT, you can use incomplete names to register sets of objects. To
use incomplete names and register sets of objects, fill in option 3 on the DSNTIPZ
installation panel as follows:
3 REQUIRE FULL NAMES ===> NO

The default value YES requires you to use both parts of the name for each
registered object. If you specify the value NO, an incomplete name in the ORT
represents a set of objects that all share the same value for one part of a two-part
name. Objects that are represented by incomplete names in the ORT require an
authorizing entry in the ART.

Example: If you specify NO for option 3, you can include entries with incomplete
names in the ORT. The following table shows entries in the ORT for the following
objects:

Table 62. Table DSN_REGISTER_OBJT for objects with incomplete names

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P

TABB C Y PACKY C

SYSADM C N

DBSYSADM T N

USER1 TABLEX C N

v Two sets of objects, *.TABA and *.TABB, which are controlled by PLANX and
PACKY, respectively. Only PLANX can create, alter, or drop any object whose
name is *.TABA. Only PACKY can create, alter, or drop any object whose name
is *.TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in the following table: That setting allows the
applications to use sets of objects that are registered in the ORT with an
incomplete name.

Table 63. Table DSN_REGISTER_APPL for plans that use sets of objects

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANA P N Y

PACKB C N Y

v Tables, views, indexes, or aliases with names like SYSADM.*.
v Table spaces with names like DBSYSADM.*; that is, table spaces in database

DBSYSADM.
v Tables with names like USER1.* and tables with names like *.TABLEX.

224 Managing Security

ART entries for objects with incomplete names in the ORT: APPLMATCHREQ=N
and objects SYSADM.*, DBSYSADM.*, USER1.*, and *.TABLEX can be created,
altered, or dropped by any package collection or application plan. However, the
collection or plan that creates, alters, or drops such an object must be registered in
the ART with QUALIFIEROK=Y to allow it to use incomplete object names.

Disabling data definition control
When data definition control is active, only IDs with the installation SYSADM or
installation SYSOPR authority can stop a database, a table space, or an index space
that contains a registration table or index.

When the object is stopped, only an ID with one of those authorities can start it
again.

An ID with the installation SYSADM authority can execute data definition
statements regardless of whether data definition control is active and whether the
ART or ORT is available. To bypass data definition control, an ID with the
installation SYSADM authority can use the following methods:
v If the ID is the owner of the plan or package that contains the statement, the ID

can bypass data definition control by using a static SQL statement.
v If the ID is the current SQL ID, the ID can bypass data definition control

through a dynamic CREATE statement.
v If the ID is the current SQL ID, the primary ID, or any secondary ID of the

executing process, the ID can bypass data definition control through a dynamic
ALTER or DROP statement.

Related tasks

“Enabling data definition control” on page 218

Managing registration tables and indexes
You can create, update, and drop registration tables and indexes. You can also
create table spaces for or add columns to registration tables.

Creating registration tables and indexes
When you install data definition control support, you create the application
registration table (ART), the object registration table (ORT), and the unique indexes
that are required on the tables. You can re-create these objects if you drop any of
them.

You can use the following CREATE statements to recreate ART, the ORT, or the
required unique indexes:

CREATE statements for the ART and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
DEFAULTAPPL CHAR(1) NOT NULL WITH DEFAULT,
QUALIFIEROK CHAR(1) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,

Chapter 6. Managing access through data definition control 225

CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI
ON DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)
CLUSTER;

CREATE statements for the ORT and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER CHAR(8) NOT NULL WITH DEFAULT,
NAME CHAR(18) NOT NULL WITH DEFAULT,
TYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLMATCHREQ CHAR(1) NOT NULL WITH DEFAULT,
APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI
ON DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER, NAME, TYPE) CLUSTER;

You can alter these CREATE statements in the following ways:
v Add columns to the ends of the tables
v Assign an auditing status
v Choose buffer pool or storage options for indexes
v Declare table check constraints to limit the types of entries that are allowed

Naming registration tables and indexes
Every member of a data sharing group must have the same names for the
application registration table (ART) and object registration tables (ORT) table.
Avoid changing the names of the ART and ORT tables.

If you change the names, owners, or residing database of your ART and ORT, you
must reinstall DB2 in update mode and make the corresponding changes on the
DSNTIPZ installation panel.

Name the required index by adding the letter I to the corresponding table name.
For example, suppose that you are naming a required index for the ART named
ABC. You should name the required index ABCI.

Dropping registration tables and indexes
If you drop any of the registration tables or their indexes, most data definition
statements are rejected until the dropped objects are re-created.

226 Managing Security

The only data definition statements that are allowed under such circumstances are
those that create the following objects:
v Registration tables that are defined during installation
v Indexes of the registration tables that are defined during installation
v Table spaces that contain the registration tables that are defined during

installation
v The database that contains the registration tables that are defined during

installation

Creating table spaces for registration tables
The DSNTIJSG installation job creates a segmented table space that holds the
application registration table (ART) and the object registration table (ORT):

You can issue the following statement to create the table space:
CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify the DSNTIJSG job before installing DB2. Alternatively, you can drop
the table space and re-create it, the ART and ORT tables, and their indexes.

Adding columns to registration tables
You can use the ALTER TABLE statement to add columns to the ART or ORT for
your own use. If you add columns, the additional columns must come at the end
of the table, after existing columns.

Use a special character, such as the plus sign (+), in your column names to avoid
possible conflict. If IBM adds columns to the ART or the ORT in future releases,
the column names will contain only letters and numbers.

Updating registration tables
You can use the LOAD utility or the INSERT, UPDATE, or DELETE statements to
update the application registration table (ART) and the object registration table
(ORT).

Because security provisions are important, allow only a restricted set of
authorization IDs, or perhaps only those with the SYSADM authority, to update
the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column.

A registration table cannot be updated until all jobs whose data definition
statements are controlled by the table have completed.

Chapter 6. Managing access through data definition control 227

228 Managing Security

Chapter 7. Managing access through exit routines

You can control access to DB2 by using a DB2-supplied exit routine or an exit
routine that you write. DB2 provides installation-wide exit points to the
connection, sign-on, and access control authorization routines.
Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)
Related information

Exit routines (DB2 Administration Guide)

Connection routines and sign-on routines
Your DB2 subsystem has two exit points for authorization routines, one in
connection processing and one in sign-on processing. Both exit points perform
crucial steps in the assignment of values to primary IDs, secondary IDs, and SQL
IDs.

PSPI You must have a routine for each exit. Default routines are provided for
both. DSN3@ATH is the default exit routine for connections, and DSN3@SGN is
the default exit routine for sign-ons.

If your installation has a connection exit routine and you plan to use CONNECT
with the USER/USING clause, you should examine your exit routine. DB2 does
not update the following information to reflect the user ID and password that are
specified in the USER/USING clause of the CONNECT statement:
v The security-related control blocks that are normally associated with the thread
v The address space that your exit routine can access

If you want to use secondary authorization IDs, you must replace the default

routines with the sample routines, or with routines of your own. PSPI

Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
159
“Specifying connection and sign-on routines”
“Debugging connection and sign-on routines” on page 238
Related reference

“Processing of connection requests” on page 154
“Processing of sign-on requests” on page 157
“Sample connection and sign-on routines” on page 230
“Exit parameter list for connection and sign-on routines” on page 231

Specifying connection and sign-on routines
Your connection routine must have a CSECT name and entry point of DSN3@ATH.
The name of the load module for the connection routine can be the same name, or

© Copyright IBM Corp. 1982, 2011 229

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_writingexitroutine.htm#db2z_writingexitroutine
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration

it can be a different name. Your sign-on routine must have a CSECT name and
entry point of DSN3@SGN. The name of the load module for the sign-on routine
can be the same, or it can be a different name.

PSPI You can use an ALIAS statement of the linkage editor to provide the
entry-point name.

Default routines exist in library prefix.SDSNLOAD. To use your routines instead,
place your routines in library prefix.SDSNEXIT. You can use the install job
DSNTIJEX to assemble and link-edit the routines and place them in the new
library. If you use any other library, you might need to change the STEPLIB or
JOBLIB concatenations in the DB2 start-up procedures.

You can combine both routines into one CSECT and load module if you wish, but
the module must include both entry points, DSN3@ATH and DSN3@SGN. Use
standard assembler and linkage editor control statements to define the entry
points. DB2 loads the module twice at startup, by issuing the z/OS LOAD macro
first for entry point DSN3@ATH and then for entry point DSN3@SGN. However,
because the routines are reentrant, only one copy of each remains in virtual

storage. PSPI

Related concepts

“Connection routines and sign-on routines” on page 229
Related reference

“Processing of connection requests” on page 154
“Processing of sign-on requests” on page 157
“Sample connection and sign-on routines”
“Exit parameter list for connection and sign-on routines” on page 231

Sample connection and sign-on routines
The sample DB2 exit routines are provided in the source code as members of
prefix.SDSNSAMP.

PSPI To examine the sample connection routine, list or assemble member
DSN3SATH. To examine the sample sign-on routine, list or assemble member
DSN3SSGN. You must use the High Level Assembler to assemble them.

Change required for some CICS users: You must change the sample sign-on exit
routine (DSN3SSGN) before assembling and using it, if the following conditions
are true:
v You attach to DB2 with an AUTH parameter other than AUTH=GROUP.
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF

To change the sample sign-on exit routine (DSN3SSGN), perform the following
steps:
1. Locate the following statement in DSN3SSGN as a reference point:

SSGN035 DS OH BLANK BACKSCAN LOOP REENTRY

2. Locate the following statement, which comes after the reference point:
B SSGN037 ENTIRE NAME IS BLANK, LEAVE

230 Managing Security

|
|
|

3. Replace the statement with the following statement:
B SSGN090 NO GROUP NAME... BYPASS RACF CHECK

By changing the statement, you avoid an abend with SQLCODE -922. The routine
with the new statement provides no secondary IDs unless you use AUTH=GROUP.

PSPI

Related concepts

“Connection routines and sign-on routines” on page 229
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
159
“Specifying connection and sign-on routines” on page 229
“Debugging connection and sign-on routines” on page 238
Related reference

“Processing of sign-on requests” on page 157

When connection and sign-on routines are taken
Different local processes enter the access control procedure at different points,
depending on the environment from which they originate. Different criteria apply
to remote requests.

PSPI The following processes go through connection processing only:
v Requests that originate in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs
v Requests through started task control address spaces (from the MVS START

command)

The following processes go through connection processing, and can later go
through the sign-on exit:
v The IMS control region
v The CICS recovery coordination task
v DL/I batch
v Requests through the Resource Recovery Services attachment facility (RRSAF)

The following processes go through sign-on processing:
v Requests from IMS-dependent regions (including MPP, BMP, and Fast Path)
v CICS transaction subtasks
v Scheduled tasks that are executed by the DB2 administrative task scheduler

PSPI

Exit parameter list for connection and sign-on routines
The parameter list of connection and sign-on routines contains pointers to other
information, such as the authorization ID list.

PSPI The following diagram shows how the parameter list points to other
information.

Chapter 7. Managing access through exit routines 231

Connection routines and sign-on routines use 28 more bytes of the exit parameter
list EXPL than other routines. The following table shows the entire list of
connection routines and sign-on routines. The exit parameter list is described by
macro DSNDEXPL.

Table 64. Exit parameter list for connection routines and sign-on routines

Name
Hex
offset Data type Description

EXPLWA 0 Address Address of a 8192-byte work area to be used
by the routine.

EXPLWL 4 Signed 4-byte
integer

Length of the work area, in bytes; value is
8192.

EXPLRSV1 8 Signed 2-byte
integer

Reserved.

EXPLRC1 A Signed 2-byte
integer

Not used.

EXPLRC2 C Signed 4-byte
integer

Not used.

Register 1
Address of EXPL

Address of
authorization ID list

Authorization ID list

Primary ID

Control block information

SQL ID

Maximum number of secondary
ID entries

Reserved

ACEE address of zero

Space for secondary ID list
(= maximum * 8 bytes)

Address of work area

Length of work area

Access return code

DB2 subsystem name

Connection name

Connection type

Location name

LU name

Network name

Work area
(8192 bytes)

Maximum number of entries
in session variable array

Actual number of entries
in session variable array

Pointer to session
variable array

Pointer to session
variable structure

EXPL

Session variable structure

DB2 version ID

Extended location
name address Extended

location name

Figure 13. How a connection or sign-on parameter list points to other information

232 Managing Security

Table 64. Exit parameter list for connection routines and sign-on routines (continued)

Name
Hex
offset Data type Description

EXPLARC 10 Signed 4-byte
integer

Access return code. Values can be:
0 Access allowed; DB2 continues

processing.
12 Access denied; DB2 terminates

processing with an error.

EXPLSSNM 14 Character, 8
bytes

DB2 subsystem name, left justified; for
example, 'DSN '.

EXPLCONN 1C Character, 8
bytes

Connection name for requesting location.

EXPLTYPE 24 Character, 8
bytes

Connection type for requesting location. For
DDF threads, the connection type is
'DIST '.

EXPLSITE 2C Character, 16
bytes

For SNA protocols, this is the location name
of the requesting location or <luname>. For
TCP/IP protocols, this is the dotted decimal
IP address of the requester. If the value of
EXPLSITE_OFF is not 0, EXPLSITE is not
used.

EXPLLUNM 3C Character, 8
bytes

For SNA protocols, this is the locally known
LU name of the requesting location. For
TCP/IP protocols, this is the character string
'TCPIP'.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location. For
TCP/IP protocols, this field is reserved.

EXPLVIDS 55 Character, 1 byte DB2 version identifier

EXPLSITE_OFF 56 Signed 2-byte
integer

Offset from the beginning of the work area
to the extended location name of the DB2
site that originated the work request. Use
this value if the location name is greater
than 16 bytes. The extended location name
has the following format:

v Signed, 2-byte integer: Length of the
extended location name

v Character, 128 bytes: Extended location
name

PSPI

Chapter 7. Managing access through exit routines 233

Related concepts

“Connection routines and sign-on routines” on page 229
Related tasks

“Using sample connection and sign-on exit routines for CICS transactions” on page
159
“Specifying connection and sign-on routines” on page 229
“Debugging connection and sign-on routines” on page 238
Related reference

“Processing of sign-on requests” on page 157

Authorization ID parameter list for connection and sign-on
routines

An authorization ID list contains information that is specific to connection routines
and sign-on routines.

The following table includes the authorization ID list for a connection or sign-on
exit routine.

PSPI

Table 65. Authorization ID list for a connection or sign-on exit routine

Name Hex offset Data type Description

AIDLPRIM 0 Character, 8
bytes

Primary authorization ID for input and
output; see descriptions in the text.

AIDLCODE 8 Character, 2
bytes

Control block identifier.

AIDLTLEN A Signed 2-byte
integer

Total length of control block.

AIDLEYE C Character, 4
bytes

Eyecatcher for block, “AIDL”.

AIDLSQL 10 Character, 8
bytes

On output, the current SQL ID.

AIDLSCNT 18 Signed 4-byte
integer

Number of entries allocated to secondary
authorization ID list. Always equal to 1012.

AIDLSAPM 1C Address For a sign-on routine only, the address of
an 8-character additional authorization ID.
If RACF is active, the ID is the user ID's
connected group name. If the address was
not provided, the field contains zero.

AIDLCKEY 20 Character, 1 byte Storage key of the ID pointed to by
AIDLSAPM. To move that ID, use the
“move with key” (MVCK) instruction,
specifying this key.

AIDLRSV1 21 Character, 3
bytes

Reserved

AIDLRSV2 24 Signed 4-byte
integer

Reserved

AIDLACEE 28 Signed 4-byte
integer

The address of the ACEE structure, if
known; otherwise, zero

234 Managing Security

Table 65. Authorization ID list for a connection or sign-on exit routine (continued)

Name Hex offset Data type Description

AIDLRACL 2C Signed 4-byte
integer

Length of data area returned by RACF, plus
4 bytes

AIDLRACR 30 26 bytes Reserved

AIDLSEC 4A Character,
maximum x 8
bytes

List of the secondary authorization IDs, 8
bytes each

PSPI

Input values for connection routines
A connection routine can have different input values.

The input values for a connection routine include the following:

v
PSPI The initial primary authorization ID for a local request can be obtained

from the z/OS address space extension block (ASXB).
The ASXB contains at most only a seven-character value. That is always
sufficient for a TSO user ID or a user ID from an z/OS JOB statement, and the
ASXB is always used for those cases.
For CICS, IMS, or other started tasks, z/OS can also pass an eight-character ID.
If an eight-character ID is available, and if its first seven characters agree with
the ASXB value, then DB2 uses the eight-character ID. Otherwise it uses the
ASXB value.
If RACF is active, the field used contains a verified RACF user ID; otherwise, it
contains blanks.

v The primary ID for a remote request is the ID passed in the conversation attach
request header (SNA FMH5) or in the DRDA SECCHK command.

v The SQL ID contains blanks.

v The list of secondary IDs contains blanks. PSPI

Input values for sign-on routines
A sign-on routine can have different input values.

The input values for a sign-on routine are as follows:

v
PSPI The initial primary ID depends on the sign-on method.

v The SQL ID and all secondary IDs contain blanks.
v Field AIDLSAPM in the authorization ID list can contain the address of an

8-character additional authorization ID, obtained by the CICS attachment facility
using the RACROUTE REQUEST=EXTRACT service with the requester's user
ID. If RACF is active, this ID is the RACF-connected group name from the ACEE
corresponding to the requester's user ID. Otherwise, this field contains blanks.
IMS does not pass this parameter.

v Field AIDLCKEY contains the storage key of the identifier pointed to by
AIDLSAPM. To move that ID, use the “move with key” (MVCK) instruction,
specifying this key.

Chapter 7. Managing access through exit routines 235

v Field AIDLACEE contains the ACEE address only for a sign-on through the
CICS attachment facility and only when the CICS RCT uses AUTH=GROUP.

PSPI

Expected output for connection and sign-on routines
DB2 uses the output values of the primary ID, the SQL ID, and the secondary IDs.
Your routines can set these IDs to any value that is an SQL short identifier.

PSPI If your identifier does not meet the 8-character criteria, the request fails.
Therefore, when necessary, add blanks to the end of short identifiers to ensure that
they meet the criteria.

If the values that are returned are not blank, DB2 interprets them in the following
ways:
v The primary ID becomes the primary authorization ID.
v The list of secondary IDs, down to the first blank entry or to a maximum of 1012

entries, becomes the list of secondary authorization IDs. The space allocated for
the secondary ID list is only large enough to contain the maximum number of
authorization IDs. This number is in field AIDLSCNT.

Important: If you allow more than 1012 secondary authorization IDs, abends
and storage overlays can occur.

v The SQL ID is checked to see if it is the same as the primary or one of the
secondary IDs. If it is not, the connection or sign-on process fails. Otherwise, the
validated ID becomes the current SQL ID.

If the returned value of the primary ID is blank, DB2 takes the following steps:
v In connection processing, the default ID that is defined when DB2 is installed

(UNKNOWN AUTHID on panel DSNTIPP) is substituted as the primary
authorization ID and the current SQL ID. The list of secondary IDs is set to
blanks.

v Sign-on processing abends. No default value exists for the primary ID.

If the returned value of the SQL ID is blank, DB2 makes it equal to the value of the
primary ID. If the list of secondary IDs is blank, it remains blank. No default
secondary IDs exist.

Your routine must also set a return code in word 5 of the exit parameter list to
allow or deny access (field EXPLARC). By those means you can deny the
connection altogether. The code must have one of the values that are shown in
Table 66.

Table 66. Required return code in EXPLARC

Value Meaning

0 Access allowed; continue processing.

12 Access denied; terminate.

Any other value will cause an abend. PSPI

Processing in sample connection and sign-on routines
The sample routines that are provided by IBM can serve as models for the
processing that is required in connection routines and sign-on routines.

236 Managing Security

PSPI Recommendation: Consider using the sample routines as a starting point
when you write your own routines.

Both the sample connection routine (DSN3SATH) and the sample sign-on routine
have similar sections for setup, constants, and storage areas. Both routines set
values of the primary ID, the SQL ID, and the secondary IDs in three numbered
sections.

In the sample connection routine (DSN3SATH): The three sections of the sample
connection routine perform the following functions:

Section 1
Section 1 provides the same function as in the default connection routine.
It determines whether the first character of the input primary ID has a
value that is greater than blank (hex 40), and performs the following
operations:
v If the first character is greater than hex 40, the value is not changed.
v If the first character is not greater than hex 40, the value is set according

to the following rules:
– If the request is from a TSO foreground address space, the primary ID

is set to the logon ID.
– If the request is not from a TSO foreground address space, the

primary ID is set to the job user ID from the JES job control table.
– If no primary ID is located, Section 2 is bypassed.

Section 2
At the beginning of Section 2, you can restore one commented-out
instruction, which then truncates the primary authorization ID to 7
characters. (The instruction is identified by comments in the code.)

Section 2 next tests RACF options and makes the following changes in the
list of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is not active, but an ACEE exists, the

connected group name is copied as the only secondary ID. The source of
the ACEE is one of the following:
– An ACEE that is passed by the caller
– The address-space-level ACEE
– The task-level ACEE if the connection is for batch utilities.

v If the list of groups option is active, the list of group names from the
ICHPCGRP block is copied into AIDLSEC in the authorization ID list.

Section 3
Section 3 performs the following steps:
1. The SQL ID is set equal to the primary ID.
2. If the TSO data set name prefix is a valid primary or secondary ID, the

SQL ID is replaced with the TSO data set name prefix. Otherwise, the
SQL ID remains set to the primary ID.

In the sample sign-on routine (DSN3SSGN): The three sections of the sample
sign-on routine perform the following functions:

Section 1
Section 1 does not change the primary ID.

Chapter 7. Managing access through exit routines 237

|
|
|

|

|

|

Section 2
Section 2 sets the SQL ID to the value of the primary ID.

Section 3
Section 3 tests RACF options and makes the following changes in the list
of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is active, section 3 attempts to find an

existing ACEE from which to copy the authorization ID list.
– If AIDLACEE contains a valid ACEE, it is used.

Otherwise, look for a valid ACEE chained from the TCB or from the
ASXB or, if no usable ACEE exists, issue RACROUTE to have RACF
build an ACEE structure for the primary ID.
Copy the list of group names from the ACEE structure into the
secondary authorization list.

– If the exit issued RACROUTE to build an ACEE, another RACROUTE
macro is issued and the structure is deleted.

v If a list of secondary authorization IDs has not been built, and
AIDLSAPM is not zero, the data that is pointed to by AIDLSAPM is

copied into AIDLSEC. PSPI

Performance considerations for connection and sign-on
routines

Your sign-on exit routine is part of the critical path for transaction processing in
IMS and CICS. Therefore, try to execute as quickly as possible.

PSPI Avoid writing SVC calls like GETMAIN, FREEMAIN, and ATTACH. Also
avoid I/O operations to any data set or database. To improve performance, you
might be able to delete the list of groups that process in Section 3 of the sample
sign-on exit routine.

The sample sign-on exit routine can issue the RACF RACROUTE macro with the
default option SMC=YES. If another product issues RACROUTE with SMC=NO, a
deadlock might occur.

Your routine can also enhance the performance of later authorization checking.
Authorization for dynamic SQL statements is checked first for the CURRENT
SQLID, then for the primary authorization ID, and then for the secondary
authorization IDs. If you know that a user's privilege most often comes from a
secondary authorization ID, then set the CURRENT SQLID to this secondary ID

within your exit routine. PSPI

Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)

Debugging connection and sign-on routines
The diagnostic aids can assist you in debugging connection exit routines and
sign-on exit routines.

238 Managing Security

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration

PSPI Subsystem support identify recovery: The identify ESTAE recovery routine,
DSN3IDES, generates the following VRADATA entries. The last entry, key
VRAIMO, is generated only if the abend occurred within the connection exit
routine.

Table 67. VRADATA entries that are generated by DSN3IDES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant 'IDESTRAK'

VRAFP 23 24 v 32-bit recovery tracking flags

v 32-bit integer AGNT block unique identifier

v AGNT block address

v AIDL block address

v Initial primary authorization ID as copied from
ASXBUSER

VRAIMO 7C 10 v Connection exit load module load point address

v Connection exit entry point address

v Offset of failing address in the PSW from the
connection exit entry point address

Subsystem support sign-on recovery: The sign-on ESTAE recovery routine
DSN3SIES generates the following VRADATA entries. The last entry, key VRAIMO,
is generated only if the abend occurred within the sign-on exit routine.

Table 68. VRADATA entries that are generated by DSN3SIES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant 'SIESTRAK'

VRAFP 23 20 v Primary authorization ID (CCBUSER)
v AGNT block address
v Identify-level CCB block address
v Sign-on-level CCB block address

VRAIMO 7C 10 v Sign-on exit load module load point address

v Sign-on exit entry point address

v Offset of failing address in the PSW from the
sign-on exit entry point address

Diagnostics for connection exit routines and sign-on exit routines: The connection
(identify) recovery routine and the sign-on recovery routine provide diagnostics for
the corresponding exit routines. The diagnostics are produced only when the
abend occurs in the exit routine. The following diagnostics are available:

Dump title
The component failing module name is “DSN3@ATH” for a connection exit
or “DSN3@SGN” for a sign-on exit.

z/OS and RETAIN® symptom data
SDWA symptom data fields SDWACSCT (CSECT/) and SDWAMODN
(MOD/) are set to “DSN3@ATH” or “DSN3@SGN”, as appropriate.

Summary dump additions
The AIDL, if addressable, and the SADL, if present, are included in the

Chapter 7. Managing access through exit routines 239

summary dump for the failing allied agent. If the failure occurred in
connection or sign-on processing, the exit parameter list (EXPL) is also
included. If the failure occurred in the system services address space, the

entire SADL storage pool is included in the summary dump. PSPI

Related concepts

“Connection routines and sign-on routines” on page 229
Related reference

“Processing of connection requests” on page 154
“Processing of sign-on requests” on page 157
“Sample connection and sign-on routines” on page 230
“Exit parameter list for connection and sign-on routines” on page 231

Session variables in connection and sign-on routines
DB2 supplies default session variables. In addition, the connection exit routine and
the sign-on exit routine support up to 10 more session variables. You can define
these additional session variables and use them to provide information to
applications by using the GETVARIABLE function.

PSPI The session variable structure: The connection exit routine and the sign-on
exit routine point to the session variable structure (DSNDSVS). DSNDSVS specifies
the maximum number of entries in the session array, the actual number of entries
in the session array, and a pointer to the session variable array. The default value
for the actual number of session variables is zero.

Defining session variables: To define session variables, use the session variable
array (DSNDSVA) to list up to 10 session variables as name and value pairs. The
session variables that you establish in the connection exit routine and the sign-on
exit routine are defined in the SESSION schema. The values that the exit routine
supplies in the session variable array replace the previous values.

Example: The following session variable array lists six session variables.

Table 69. Sample session variable array

Name Value

default_database DATAXM

default_driver PZN4Y7

location Kyoto

member_of GROUP_42

filename report.txt

account_number A1-X142783

The unqualified names are defined as VARCHAR(128), and the values are defined
as VARCHAR(255). The exit routines must provide these values in Unicode CCSID

1208. PSPI

240 Managing Security

Access control authorization exit routine
You can provide your own access control authorization exit routine by using an
exit point that DB2 provides. Alternatively, after you carefully consider several
important factors, you might choose to let RACF perform DB2 authorization
checking for you.

PSPI

Is the access control authorization exit routine right for you?

Using the RACF (Security Server for z/OS) to perform access control is not the
best choice for every customer. Consider the following points before choosing
RACF to perform access control:
v If you want the database administrators to manage security, integration with

DB2 is very important. Using RACF access control provides less integration with
DB2. In most of these cases, DB2 authorization provides advantages.

v If you want security administrators to manage security, integration with the
security server is more important. In most of these cases, using RACF for access
control provides advantages. Furthermore, if you want a security group to
define authorization and a centralized security control point, RACF access
control is an excellent match.

If you change from DB2 authorization to RACF access control, you must change to
RACF methods for some authorization techniques, and you must understand how
DB2 and RACF work together. Expect to make the following changes when you
implement RACF access control:
v Plan to use RACF facilities (such as groups and patterns) more.
v Plan to use patterns instead of individual item access profiles and permissions.
v Plan to use DB2 roles, RACF groups, or both, instead of secondary authorization

IDs, which are not implemented in RACF. OWNER generally must be a valid
group or a DB2 role.

v Plan to use DB2 roles for BINDAGENT processing. BINDAGENT based on
secondary authorizations IDs is not implemented in RACF.

v Understand how SET CURRENT SQLID works with RACF. SET CURRENT
SQLID can set a qualifier, but does not change authorization.

v Know that authorizations are not dropped when objects are dropped or
renamed.

v Be aware of the relationship between objects and revoked privileges. Packages
are not invalidated when authorizations are revoked. Views are not dropped
when authorizations are revoked.

How the access control authorization routine works

Your routine specifies whether the authorization checking should all be done by
RACF only, or by both RACF and DB2. (Also, the routine can be called and still let
all checking be performed by DB2.)

When DB2 invokes the routine, it passes three possible functions to the routine:
v Initialization (DB2 startup)
v Authorization check
v Termination (DB2 shutdown)

Chapter 7. Managing access through exit routines 241

|
|
|

|
|

The bulk of the work in the routine is for authorization checking. When DB2 must
determine the authorization for a privilege, it invokes your routine. The routine
determines the authorization for the privilege and then indicates to DB2 whether
the privilege is authorized or not authorized, or whether DB2 should do its own
authorization check, instead.

When you write an access control authorization routine, use the general guidelines
for writing exit routines, with the following exceptions to the environment
description:
v The routine executes in non-cross-memory mode during initialization and

termination (XAPLFUNC of 1 or 3).
v During authorization checking, the routine can execute under a TCB or SRB in

cross-memory or non-cross-memory mode.

Bypass of the access control authorization routine

In the following situations, the access control authorization routine is not called to
check authorization:
v The authorization ID that DB2 uses to determine access has installation

SYSADM or installation SYSOPR authority (where installation SYSOPR authority
is sufficient to authorize the request). This authorization check is made strictly
within DB2. For example, if the execute privilege is being checked on a package,
DB2 performs the check on the plan owner that this package is in. If the plan
owner has installation SYSADM, the routine is not called.

v DB2 security has been disabled. (You can disable DB2 security by specifying NO
on the USE PROTECTION field of installation panel DSNTIPP).

v Authorization has been cached from a prior check.
v In a prior invocation of the exit routine, the routine indicated that it should not

be called again.
v GRANT statements.

The routine executes in the ssnmDBM1 address space of DB2.

PSPI

Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)
“Access control external to DB2” on page 6

Overview (RACF Access Control Module Guide)
Related reference

“Parameter list for access control authorization routines” on page 249

Specifying the access control authorization routine
Your access control authorization routine must have a CSECT name and an entry
point of DSNX@XAC. The load module name or alias name must also be
DSNX@XAC. A default routine with this name and entry point exists in library
prefix.SDSNLOAD.

PSPI To use your routine instead, place it in the prefix.SDSNEXIT library. Use
installation job DSNTIJEX to assemble and link-edit the routine and to place it in
the prefix.SDSNEXIT library. If you use any other library, you might need to change
the STEPLIB or JOBLIB concatenations in the DB2 start-up procedures.

242 Managing Security

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview

The source code for the default routine is in prefix.SDSNSAMP as DSNXSXAC. You
can use it to write your own exit routine. To assemble it, you must use the High
Level Assembler.

RACF provides a sample exit routine DSNXRXAC, which is shipped with DB2. It

can be found in prefix.SDSNSAMP. PSPI

The default access control authorization routine
The default exit routine returns a code to the DB2 authorization module. The code
indicates that a user-defined access control authorization exit routine is not
available. DB2 then performs normal authorization checking and does not attempt
to invoke this exit routine again.

When access control authorization routine is taken
DB2 can take the access control authorization routine when it starts up, shuts
down, or performs an authorization check on a privilege.

PSPI The access control authorization routine is taken in the following three
instances:

At DB2 startup
This exit routine is taken when DB2 starts to allow the external
authorization checking application to perform any required setup prior to
authorization checking. For example, loading authorization profiles into
storage is a required setup task. DB2 uses the reason code that the exit
routine sets during startup to determine how to handle exception
situations.

When an authorization check is to be performed on a privilege
This exit routine is taken when DB2 accesses security tables in the catalog
to check authorization on a privilege. The exit routine is taken only if none
of the prior invocations have indicated that the exit routine must not be
called again.

At DB2 shutdown
This exit routine is taken when DB2 is stopping, to let the external
authorization checking application perform its cleanup before DB2 stops.

PSPI

Considerations for the access control authorization routine
You need to take additional factors into consideration when you use the access
control authorization exit routine.

When DB2 cannot provide an ACEE
Sometimes DB2 cannot provide an ACEE. This happens, for example, when you do
not use external security in CICS and CICS does not pass an ACEE to the CICS
attachment facility.

PSPI When DB2 does not have an ACEE, it passes zeros in the XAPLACEE field.
If this happens, your routine can return a 4 in the EXPLRC1 field, and let DB2
handle the authorization check.

Chapter 7. Managing access through exit routines 243

|
|
|

DB2 does not pass the ACEE address for IMS transactions. The ACEE address is
passed for CICS transactions, if available.

DB2 does pass the ACEE address when it is available for DB2 commands that are
issued from a logged on z/OS console. DB2 does not pass the ACEE address for
DB2 commands that are issued from a console that is not logged on, or for the
START DB2 command, or commands issued automatically during DB2 startup.

An ACEE is available to DB2 for an IMS transaction if IMS is configured to use
either APPC/OTMA security full or the IMS Build Security Environment exit
(DFSBSEX0). You need to code DFSBSEX0 to return RC4 in register 15, which will

instruct IMS to create the ACEE in the dependent region. PSPI

Authorization IDs and ACEEs
XAPL has two authorization ID fields, XAPLUPRM (the primary authorization ID)
and XAPLUCHK (the authorization ID that DB2 uses to perform the
authorization). These two fields might have different values.

PSPI The ACEE passed in XAPLACEE is that of the primary authorization ID,
XAPLUPRM.

The implications of the XAPLUPRM and XAPLUCHK relationship need to be
clearly understood. XAPLUCHK, the authorization ID that DB2 uses to perform
authorization may be the primary authorization ID (XAPLUPRM), a secondary
authorization ID, or another authorization ID such as a package owner.

If the RACF access control module is used, the following rules apply:
v RACF uses the ACEE of the primary authorization ID (XAPLUPRM) to perform

authorization.
v Secondary authorization IDs are not implemented in RACF. DB2 roles or RACF

groups should be used instead.

Examples: The following examples show how the rules apply:
v A package may be bound successfully by using the privileges of the binder

(XAPLUPRM). Then only the EXECUTE privilege on the package is needed to
execute it. If at some point this package is marked invalid (for instance, if a table
it depends upon is dropped and recreated), the next execution of it will cause an
AUTOBIND, which will usually fail. In this case, AUTOBIND checks the runner
for the necessary authorization, but the runner does not have the required
privileges for a successful rebind. However, if the owner of the package is a DB2
role, and the role has the necessary authorization, AUTOBIND will succeed.

v If the OWNER on the BIND command is based on secondary authorization IDs,
which are not supported by RACF. RACF groups should be used instead.

v SET CURRENT SQLID can set a qualifier, but it cannot change authorization.
v The DYNAMICRULES settings have a limited effect on which authorization ID

is checked. Only the primary authorization ID and secondary IDs that are valid
RACF groups for this user are considered. For dynamic statements with the
DYNAMICRULES(BIND) option to work, for example, the package owner must
be the primary authorization ID or one of the RACF groups of the user who
executes the statements.
However, the DYNAMICRULES settings will have the desired effect on which
authorization is checked if the authorization is based on a DB2 role. For

244 Managing Security

|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|

example, the dynamic statements with the DYNAMICRULES(BIND) option will
work if a DB2 role is the owner of a plan or package or the definer of a stored
procedure.

v User-defined function and stored procedure authorizations involve several
authorization IDs, such as implementer, definer, invoker, and so forth. Only the
primary authorization ID and secondary IDs that are DB2 roles or RACF groups

are considered. PSPI

Invalid and inoperative packages
In DB2, when a privilege that is required by a package is revoked, the package is
invalidated. DB2 can automatically rebind an invalidated package if proper
privileges are granted.

PSPI However, if you use an authorization access control routine, it cannot tell
DB2 that a privilege is revoked. Therefore, DB2 cannot know to invalidate the
package.

If the revoked privilege is the EXECUTE privilege on a user-defined function, DB2
marks the package inoperative, instead of invalid; you will need to manually
rebind the inoperative package.

If a privilege that the package depends on is revoked, and if you want to
invalidate the package or make it inoperative, you must use the SQL GRANT
statement to grant the revoked privilege and then use the SQL REVOKE statement

to revoke it. PSPI

Automatic rebind with DB2 roles
If you execute a package that is marked invalid, DB2 will attempt to rebind it.

PSPI If the package contains static SQL statements, DB2 will check the owner for
the required authorization for a successful rebind. If RACF access control is used
and if the owner of the plan or package is a DB2 role, DB2 will be able to complete

the rebind. PSPI

DB2 roles for the DYNAMICRULES(BIND) Option
The DYNAMICRULES(BIND) option provides the flexibility for you to specify the
owner of a plan or a package that DB2 checks for the required authorization for
dynamic SQL statements. Because RACF does not support secondary IDs, you can
use DB2 roles to exploit this flexibility.

PSPI To use DB2 roles with the DYNAMICRULES(BIND) option, the owner of
the plan or package must be a DB2 role. Similarly, for the define and invoke
behavior of the DYNAMICRULES BIND options, the definer or invoker must be a
DB2 role. In order to make the owner of the plan, package, or stored procedure a
DB2 role, you need to create the plan, package, or stored procedure in a trusted
context that is defined with the ROLE AS OBJECT OWNER AND QUALIFIER

clause. PSPI

Using DB2 roles for BINDAGENT
You can bind plans and packages on the behalf of the owner by using the RACF
BINDAGENT privilege through a DB2 role.

Chapter 7. Managing access through exit routines 245

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

PSPI RACF provides support for BINDAGENT through DB2 roles. To use
BINDAGENT, you must specify a role, instead of a secondary ID, as the owner of
a plan or package and perform the BIND task within a trusted context. Suppose
you want role ROLEOWNER to own package COLLECTION01.PACKAGE01, but
will have role ROLEBINDAGENT perform the BIND on behalf of role
ROLEOWNER.

To have ROLEBINDAGENT perform the BIND on behalf of ROLEOWNER:
1. Create role ROLEOWNER and role ROLEBINDAGENT. Make sure that the

ROLEOWNER role is the owner of the package and that the binder is
associated with the ROLEBINDAGENT role and will bind the package.

2. Create trusted context CTX1 with the WITH ROLE AS OBJECT OWNER AND
QUALIFIER clause. Specify ROLEBINDAGENT as the default role and set
JOB=BINDPKG (which is the bind job name) and SYSTEM AUTHID=UBINDER
(which is the binder's userid).

3. Create a RACF profile V91A.ROLEOWNER.BINDAGENT to control
BINDAGENT access

4. Permit role ROLEBINDAGENT access to profile
V91A.ROLEOWNER.BINDAGENT by issuing a RACF PERMIT command:
PERMIT V91A.ROLEOWNER.BINDAGENT ID(*) +

WHEN(CRITERIA(SQLROLE(’ROLEBINDAGENT’))) CL(MDSNSM)

5. Set up appropriate RACF profiles and give role ROLEOWNER the BINDADD
and CREATE IN privileges on the package collection:
PERMIT V91A.BINDADD ID(*) CL(MDSNTB) +

WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

PERMIT V91A.COLLECTION01.CREATEIN ID(*) CL(MDSNTB) +
WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

6. Permit role ROLEOWNER all the required privileges for executing SQL
statements in the application as shown in the following example:
PERMIT V91A.USRT007.TABL01.SELECT ID(*) CL(MDSNTB) +

WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

7. Have UBINDER submit bind job BINDPKG that will run in trusted context
CTX1 with role ROLEBINDAGENT and perform the BIND on behalf of role
ROLEOWNER:
BIND PACKAGE(COLLECTION01) MEMBER(PACKAGE01) ACTION(REP) OWNER(ROLEOWNER)

RACF performs the BINDAGENT check on binder UBINDER, its role
ROLEBINDAGENT, and its RACF groups. It then perform all the remaining
checks on role ROLEOWNER and allows the BIND command to complete.

PSPI

View authorization
DB2 passes specific base table information to an access control authorization exit
(ACAE) routine. This information helps the routine to effectively control data
access through views.

PSPI For the DELETE and INSERT privileges, DB2 passes the schema and name
of the base table in the XAPLBSCM and XAPLBSNAM fields, along with the
information about the view itself. For the UPDATE privilege, DB2 additionally
passes the name of the base table column in the XAPLBCOL field that is being
updated.

246 Managing Security

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

For any view in a nested stack, DB2 passes the base table information in addition
to that of the view itself. All the intermediate views between the base table and the
view that is being processed are ignored.

In the cases when the view is not updatable, the view information will be repeated
in the XAPLBSCM, XAPLBSNAM, and XAPLBCOL fields. For example, if the view
is specified with the Instead of Trigger, the base table of the view is not being
updated using the view because all processing is based on the content of the
trigger package. The view information is repeated in the base table fields to
facilitate any view authorization check.

When a view is created, DB2 checks whether the owner of the view has the
INSERT, UPDATE and DELETE privileges on the underlying base table. DB2
performs this check to determine what privileges should be granted to the view
owner. This processing occurs whether or not an ACAE routine, like the RACF
access control module, is in effect. If an ACAE routine is in effect, the result of the
DB2 authorization check does not impact the creation of the view or the privileges
that the view owner gets on the view. In the case when the view is created based
on another view, the base view information will be repeated in the XAPLBSCM,

XAPLBSNAM, and XAPLBCOL fields. PSPI

Behavior of EXPLAIN STMTCACHE with the access control
authorization routine
The behavior of EXPLAIN STMTCACHE changes because in some instances the
primary authorization ID replaces the statement authorization ID.

PSPI Dynamic statements are cached by using the primary authorization ID that
runs the plan or package regardless of the DYNAMICRULES value. Therefore, if
the access control authorization routine is used for security, the EXPLAIN
STMTCACHE statement must be issued with the same primary authorization ID as

that for inserting the dynamic statements into the cache. PSPI

Dropping views
A view is dropped when the privilege that is required to create it is revoked.

PSPI Revoking the privilege on a view is not communicated to DB2 by the
authorization checking routine. If you want DB2 to drop the view when the

privilege is revoked, you must issue the SQL REVOKE statement. PSPI

Caching of EXECUTE on plans, packages, and routines
The results of authorization checks on the EXECUTE privilege for plans are not
cached when those checks are performed by the authorization access control exit
routine. The results of authorization checks on the EXECUTE privilege for
packages and routines are cached if package and routine authorization caching is
enabled on your system.

PSPI If authorization checks on the EXECUTE privilege for packages and
routines are performed by the authorization access control exit routine, the role in
effect or the primary authorization ID is cached. DB2 authorization can cache roles
or primary authorization IDs for handling packages and routines. DB2 checks and
caches a role if it is in effect and authorized. If a role is not in effect or authorized,
DB2 checks and caches the primary authorization ID.

Chapter 7. Managing access through exit routines 247

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

If this privilege is revoked in the exit routine, the cached information is not
updated to reflect the revoke. You must use the GRANT statement and the

REVOKE statement to update the cached information. PSPI

Caching of dynamic SQL statements
Dynamic statements can be cached when they have passed the authorization
checks if the dynamic statement caching is enabled on your system.

PSPI If authorization checks for dynamic statements are performed by the
authorization access control exit routine, the role in effect or the primary
authorization ID is cached. DB2 authorization can cache roles or primary
authorization IDs for handling dynamic statements. DB2 checks and caches a role
if it is in effect and authorized. If a role is not in effect or authorized, DB2 checks
and caches the primary authorization ID.

If the privileges that this statement requires are revoked from the authorization ID
that is cached with the statement, this cached statement must be invalidated. If the
privilege is revoked in the exit routine this does not happen, and you must use the

SQL statements GRANT and REVOKE to refresh the cache. PSPI

Resolution of user-defined functions
The create timestamp for a user-defined function must be older than the bind
timestamp for the package or plan in which the user-defined function is invoked.
If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that invokes a user-defined function, any user-defined
functions that are created after the original BIND or REBIND of the invoking plan
or package are not candidates for execution.

PSPI If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. If a user-defined
function is invoked during an automatic rebind, and that user-defined function is
invoked from a trigger body and receives a transition table, the form of the
invoked function that DB2 uses for function selection includes only the columns of
the transition table that existed at the time of the original BIND or REBIND of the

package or plan for the invoking program. PSPI

Creating materialized query tables
When a materialized query table is created, a CRTVUAUTT authorization check is
performed. The CRTVUAUTT check is used to determine whether the creator of a
materialized query table can provide the required SELECT privileges on base
tables to the owner of the materialized query table.

PSPI If the owner of the materialized query table has the required privileges, the
CRTVUAUTT authorization check proves redundant. However, the check is
performed before the owner of the materialized query table's privileges are
determined. Therefore, if the materialized query table owner holds the necessary
privileges and the creator of the materialized query table does not, the
CRTVUAUTT check can produce unwanted error messages.

For an ACA exit routine to suppress unwanted error messages during the creation

of materialized query tables, XAPLFSUP is turned on. PSPI

248 Managing Security

|
|
|
|
|
|

Parameter list for access control authorization routines
The parameter list of access control authorization routines contains pointers to
other information, such as the work area and the authorization ID list.

PSPI The following diagram shows how the parameter list points to other
information.

The work area (4096 bytes) is obtained once during the startup of DB2 and only
released when DB2 is shut down. The work area is shared by all invocations to the
exit routine.

At invocation, registers are set, and the authorization checking routine uses the
standard exit parameter list (EXPL). The following is a list of the exit-specific
parameters, described by macro DSNDXAPL. Field names indicated by an asterisk
(*) apply to initialization, termination, and authorization checking. Other fields
apply to authorization checking only.

Table 70. Parameter list for access control authorization routines

Name
Hex
offset Data type

Input or
output Description

XAPLCBID* 0 Character,
2-bytes

Input Control block identifier; value X'216A'.

XAPLLEN * 2 Signed,
2-byte
integer

Input Length of XAPL; value X'100' (decimal 256).

XAPLEYE * 4 Character, 4
bytes

Input Control block eye catcher; value “XAPL”.

XAPLLVL * 8 Character, 8
bytes

Input DB2 version and level; for example, “VxRxMx ”.

XAPLSTCK * 10 Character, 8
bytes

Input The store clock value when the exit is invoked. Use this to
correlate information to this specific invocation.

Register 1
Address of EXPL

Address of XAPL
authorization
checking list

EXPL

Address of work area

Length of work area

Return code--EXPLRC1

Reason code--EXPLRC2

Work area
(4096 bytes)

Parameter list for DSNX@XAC routine

Control block information

DB2 level information

Store clock value at exit invocation

STOKEN of ACEE address space

Primary authorization ID

ACEE address of primary authorization ID

.

..

Figure 14. How an authorization routine's parameter list points to other information

Chapter 7. Managing access through exit routines 249

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLSTKN * 18 Character, 8
bytes

Input STOKEN of the address space in which XAPLACEE resides.
Binary zeroes indicate that XAPLACEE is in the home address
space.

XAPLACEE * 20 Address, 4
bytes

Input ACEE address:

v Of the DB2 address space (ssnmDBM1) when XAPLFUNC is
1 or 3.

v Of the primary authorization ID associated with this agent
when XAPLFUNC is 2.

There may be cases were an ACEE address is not available
for an agent. In such cases this field contains binary zeroes.

XAPLUPRM * 24 Character, 8
bytes

Input One of the following IDs:

v When XAPLFUNC is 1 or 3, it contains the User ID of the
DB2 address space (ssnmDBM1)

v When XAPLFUNC is 2, it contains the primary authorization
ID associated with the agent

XAPLFUNC * 2C Signed,
2-byte
integer

Input Function to be performed by exit routine:

1 Initialization

2 Authorization Check

3 Termination

XAPLGPAT * 2E Character, 4
bytes

Input DB2 group attachment name for data sharing. The DB2
subsystem name if not data sharing.

XAPLUCKT 32 Character, 1
byte

Input Type of the authorization ID on which DB2 performs the check:

' ' An authorization ID

L A role

XAPLONRT 33 Character, 1
byte

Input Type of the authorization ID that owns the object in
XAPLOWNR:

' ' An authorization ID

L A role

XAPLSDEF 34 Character, 1
byte

Input System-defined object:

S A system-defined routine or package

' ' Not a system-defined object

XAPLRSV1 35 Character, 3
bytes

Reserved

XAPLPRIV 38 Signed,
2-byte
integer

Input DB2 privilege being checked. Security administrator (SECADM)
authority and secure object creation
(CREATE_SECURE_OBJECT) privilege required for row and
column access control

250 Managing Security

|||
|
||

||

||

||

|
|
|
|

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLTYPE 3A Character, 1 Input DB2 object type:

B Buffer pool

C Collection

D Database

E Distinct typeDistinct type

F User-defined functionUser-defined function

J JAR

K Package

L Role

M Schema

N Trusted context

O Stored procedure

P Application plan

Q Sequence

R Table space

S Storage group

T Table

U System privilege

V View

Chapter 7. Managing access through exit routines 251

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLFLG1 3B Character, 1 Input The highest-order bit, bit 8, (XAPLCHKS) is on if the secondary
IDs associated with this authorization ID (XAPLUCHK) are
included in DB2's authorization check. If it is off, only this
authorization ID is checked.

Bit 7 (XAPLUTB) is on if this is a table or view privilege
(SELECT, INSERT, and so on) and if SYSCTRL, SQLADM,
System DBADM, ACCESSCTRL, DATAACCESS, or SECADM is
not sufficient authority to perform the specified operation on a
table or view. SYSCTRL, SQLADM, System DBADM,
ACCESSCTRL, DATAACCESS, or SECADM does not have the
privilege of accessing user data unless the privilege is
specifically granted to it.

Bit 6 (XAPLAUTO) is on if this is an AUTOBIND.

Bit 5 (XAPLCRVW) is on if the installation parameter DBADM
CREATE AUTH is set to YES.

Bit 4 (XAPLRDWR) is on if the privilege is a write privilege. If
the privilege is a read-only privilege, bit 4 is off.

Bit 3 (XAPLFSUP) is on to suppress error messages from the
CRTVUAUTT authorization check during the creation of a
materialized query table. These error messages are caused by
intermediate checks that do not affect the final result.

Bit 2 (XAPLRAOO) is on if this operation is in a trusted context
that is defined with the ROLE AS OBJECT OWNER clause.

Bit 1 (XAPLIMPD) is on if authorization checking involves an
implicitly created database.

XAPLUCHK 3C Address, 4
bytes

Input Address to the authorization ID on which DB2 performs the
check. It could be the primary, secondary, or some other ID.
This is a VARCHAR(128) field.

252 Managing Security

|
|

|
|

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLOBJN 40 Address, 4
bytes

Input Address to the unqualified name of the object with which the
privilege is associated. This is a VARCHAR(128) field.It is one
of the following names:

Name Length

Application plan
8

Buffer pool
8

Collection
VARCHAR(128)

Database
8

Distinct type
VARCHAR(128)

JAR VARCHAR(128)

Package
VARCHAR(128)

Role VARCHAR(128)

Schema
VARCHAR(128)

Sequence
VARCHAR(128)

Storage group
VARCHAR(128)

Table VARCHAR(128)

Table space
8

Trusted context
VARCHAR(128)

User-defined function
VARCHAR(128)

View VARCHAR(128)

For special system privileges (SYSADM, SYSCTRL, and so on)
this field might contain binary zeroes.

XAPLOWNQ 44 Address, 4
bytes

Input Address of the object owner (creator) or object qualifier. The
contents of this parameter depends on either the privilege
being checked or the object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLREL1 48 Address, 4
bytes

Input Address of other related information 1. The contents of this
parameter depend on either the privilege being checked or the
object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

Chapter 7. Managing access through exit routines 253

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLREL2 4C Address, 4
bytes

Input Address of other related information 2. The contents of this
parameter depends on the privilege being checked. This is a
VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLDBSP 50 Address, 4
bytes

Input Address of database information. This information is passed for
CREATE VIEW and CREATE ALIAS.

If this field is not applicable, it contains binary zeros.

XAPLOWNR 54 Address, 4
bytes

Input Address of the object owner. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLROLE 58 Address, 4
bytes

Input Address of the user's role when operating in a trusted context.
If this field is not applicable, it contains binary zeros.

XAPLOONM 5C Address, 4
byte

Input Address of other object name

XAPLOOON 60 Address, 4
byte

Input Address of other object owner

XAPLBSCM 64 Address, 4
byte

Input Address of base table qualifier of a view or repeated view
qualifier

XAPLBNAM 68 Address, 4
byte

Input Address of base table name of a view or repeated view name

XAPLBCOL 6C Address, 4
byte

Input Address of base table column name of a view or repeated view
column name

XAPLRSV2 70 Character, 49
bytes

Reserved.

XAPLOOTP A1 Character, 1
byte

Input Other object type or the owner of the base table of a view

XAPLOOOT A2 Character, 1
byte

Input Other object owner type or the owner type of the base table of
a view

XAPLRSV3 A3 Character, 1
byte

Reserved

XAPLXBTS A4 Timestamp,
10 bytes

Input The function resolution timestamp. Authorizations received
prior to this timestamp are valid.

Applicable to functions and procedures.

XAPLONWT AE Character, 1
byte

Output Information required by DB2 from the exit routine for the
UPDATE and REFERENCES table privileges:

Value Explanation

' ' Requester has privilege on the entire table

* Requester has privilege on just this column

254 Managing Security

|||
|
||
|

|||
|
||

|||
|
||
|

|||
|
||

|||
|
||

Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLFLG2 AF Character, 1
byte

Input Bit 8 (the highest-order bit) is on if an object is associated with
the row and column access control (XAPLSOBJ)

Bit 7 is on if the SEPARATE SECURITY system parameter is set
to YES (XAPLSPSC)

Bit 6 is on when a catalog table (XAPLSCTB) can be accessed
only by the SECADM authority.

Bit 5 (XAPLACAC) is on when authorization checking is done
for statements that involve the package authorization, routine
authorization, or dynamic statement cache.

The remaining 4 bits are reserved

XAPLDIAG B0 Character, 80
bytes

Output Information returned by the exit routine to help diagnose
problems.

The following table includes database information for determining authorization
for creating a view. The address to this parameter list is in XAPLREL2.

Table 71. Parameter list for access control authorization routines—database information

Name Hex offset Data type
Input or
output Description

XAPLDBNP 0 Address Input Address of information for the next
database. X'00000000' indicates no next
database exists.

XAPLDBNM 4 Character, 8 bytes Input Database name.

Chapter 7. Managing access through exit routines 255

|
|

|
|

|
|

|
|
|

|

Table 71. Parameter list for access control authorization routines—database information (continued)

Name Hex offset Data type
Input or
output Description

XAPLDBDA C Character, 1 byte Output
Required by DB2 from the exit routine for
CREATE VIEW.

A value of Y and EXPLRC1=0 indicate that
the user ID in field XAPLUCHK has
database administrator authority on the
database in field XAPLDBNM.

When the exit checks if XAPLUCHK can
create a view for another authorization ID, it
first checks for SYSADM or SYSCTRL
authority. If the check is successful, no more
checking is necessary because SYSCTRL
authority (for non-user tables) or SYSADM
authority satisfies the requirement that the
view owner has the SELECT privilege for all
tables and views that the view might be
based on. This is indicated by a blank value
and EXPLRC1=0.

If the authorization ID does not have
SYSADM or SYSCTRL authority, the exit
checks if the view creator has DBADM on
each database of the tables that the view is
based on because the DBADM authority on
the database of the base table satisfies the
requirement that the view owner has the
SELECT privilege for all base tables in that
database.

XAPLDBIM D Character, 1 bytes Input A value of 'Y' indicates that the database is
implicitly created.

XAPLRSV5 E Character, 2 bytes none Reserved.

XAPLOWNQ, XAPLREL1 and XAPLREL2 might further qualify the object or may
provide additional information that can be used in determining authorization for
certain privileges. The following is a list of the privileges and the contents of
XAPLOWNQ, XAPLREL1 and XAPLREL2.

Table 72. Related information for certain privileges

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0263 (USAGE) E Address of
schema name

Address of
distinct type
owner

Contains
binary zeroes

Address of
distinct type
owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

F Address of
schema name

Address of
user-defined
function owner

Contains
binary zeroes

Address of
user-defined
function owner

0263 (USAGE) J Address of
schema name

Address of JAR
owner

Contains
binary zeroes

Address of JAR
owner

0064 (EXECUTE) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

256 Managing Security

|||||
|

|||||

Table 72. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0065 (BIND) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0073 (DROP) K Address of
collection ID

Contains binary
zeroes

Address of
version ID

Contains binary
zeroes

0097 (COMMENT) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0225 (COPY ON PKG) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0228 (ALLPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0229 (SUBPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0252 (ALTERIN)
0097 (COMMENT)
0252 (DROPIN)

M Address of
schema name

Address of
object owner

Contains
binary zeroes

Address of object
owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

O Address of
schema name

Address of
procedure
owner

Contains
binary zeroes

Address of
procedure owner

0065 (BIND) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0097 (COMMENT) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0061 (ALTER)
0263 (USAGE)

Q Address of
schema name

Address of
sequence name

Contains
binary zeroes

Contains binary
zeroes

0061 (ALTER) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0073 (DROP) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0087 (USE) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0053 (UPDATE)
0054 (REFERENCES)

T Address of table
schema

Address of
column name, if
applicable

Address of
database name

Address of table
owner

Chapter 7. Managing access through exit routines 257

|
|

Table 72. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0022 (CATMAINT
CONVERT)

0050 (SELECT)
0051 (INSERT)
0052 (DELETE)
0055 (TRIGGER)
0056 (CREATE INDEX)
0061 (ALTER)
0073 (DROP)
0075 (LOAD)
0076 (CHANGE NAME

QUALIFIER)
0097 (COMMENT)
0098 (LOCK)
0233 (ANY TABLE

PRIVILEGE)
0251 (RENAME)
0275 (REFRESH)

T Address of table
schema

Contains binary
zeroes

Address of
database name

Address of table
owner

0020 (DROP ALIAS)
0104 (DROP SYNONYM)

T Address of table
schema

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0103 (ALTER INDEX)
0105 (DROP INDEX)
0274 (COMMENT ON

INDEX)
0283 (RENAME INDEX)

T Address of table
schema

Contains binary
zeroes

Address of
database name

Address of index
owner

0227 (BIND AGENT) U Address of
package owner

Contains binary
zeroes

Contains
binary zeroes

Address of
package owner

0015 (CREATE ALIAS) U Contains binary
zeroes

Contains binary
zeroes

Address of
database name,
if the alias is
on a table

Contains binary
zeroes

0053 (UPDATE) V Address of view
schema

Address of
column name, if
applicable

Address of the
database name
of the view's
base table, if
applicable

Address of view
owner

0051 (INSERT)
0052 (DELETE)

V Address of view
schema

Contains binary
zeroes

Address of the
database name
of the view's
base table, if
applicable

Address of view
owner

0050 (SELECT)
0073 (DROP)
0097 (COMMENT)
0233 (ANY TABLE

PRIVILEGE)

V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0055 (TRIGGER) V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0061 (ALTER) V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

The following is a list of data types and field lengths.

258 Managing Security

|
|

|
|

|
|

|||
|
|
|
|

|
|
|
|
|

|
|

|
|
||
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

Table 73. Data types and field lengths

Resource name or other Type Length

Database name Character 8

Table name qualifier Character VARCHAR(128)

Object name qualifier Character VARCHAR(128)

Column name Character VARCHAR(128)

Collection ID Character VARCHAR(128)

Plan owner Character VARCHAR(128)

Package owner Character VARCHAR(128)

Package version ID Character VARCHAR(64)

Schema name Character VARCHAR(128)

Distinct typeowner Character VARCHAR(128)

JAR owner Character VARCHAR(128)

User-defined function owner Character VARCHAR(128)

Procedure owner Character VARCHAR(128)

View name qualifier Character VARCHAR(128)

Sequence owner Character VARCHAR(128)

Sequence name Character VARCHAR(128)

PSPI

Expected output for access control authorization routines
Your authorization exit routine is expected to return certain fields when it is called.
If an unexpected value is returned in any of these fields, an abend occurs.

PSPI

The following is a list of output fields for the access control authorization routine.
Register 3 points to the field in error, and abend code 00E70009 is issued.

Table 74. Output fields for the access control authorization routine

Field Required or optional

EXPLRC1 Required

EXPLRC2 Optional

XAPLONWT Required only for UPDATE and
REFERENCES table privileges

XAPLDIAG Optional

PSPI

Handling return codes
You need to place the return codes from the access control authorization routine in
the EXPL field named EXPLRC1. The EXPLRC1 value affects DB2 processing.

PSPI EXPLRC1 must have one of the following values during initialization.

Chapter 7. Managing access through exit routines 259

Table 75. Required values in EXPLRC1 during initialization

Value Meaning

0 Initialization successful.

12 Unable to service request; don't call exit again.

DB2 does not check EXPLRC1 on return from the exit routine during termination.
Make sure that EXPLRC1 has one of the following values during the authorization
check.

Table 76. Required values in EXPLRC1 during authorization check

Value Meaning

0 Access permitted.

4 Unable to determine; perform DB2 authorization checking.

8 Access denied.

12 Unable to service request; don't call exit routine again.

On authorization failures, the return code is included in the IFCID 0140 trace
record.

PSPI

Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)
Related reference

“Exception processing” on page 261

Handling reason codes
After initialization, the access control authorization routine returns reason code
EXPLRC2. EXPLRC2 determines how DB2 processes return code EXPLRC1 that is
returned during authorization checking.

PSPI The following is a list of reason codes during initialization.

Table 77. Reason codes during initialization

Value Meaning

-1 Identifies the default exit routine shipped with DB2. If you replace or
modify the default exit, you should not use this value.

16 Indicates to DB2 that it should terminate if the exit routine returns
EXPLRC1=12, an invalid EXPLRC1 or abnormally terminates during
initialization or authorization checking. When the exit routine sets the
reason code to 16, DB2 does an immediate shutdown, without waiting
for tasks to end. For long-running tasks, an immediate shutdown can
mean that recovery times are long.

Other Ignored by DB2.

Field EXPLRC2 enables you to put in any code for authorization check. You can
use EXPLRC2 to determine why the authorization check in the exit routine failed.
On authorization failures, the reason code is included in the IFCID 0140 trace

record. PSPI

260 Managing Security

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration

Related concepts

General guidelines for writing exit routines (DB2 Administration Guide)
Related reference

“Exception processing”

Exception processing
During initialization or authorization checking, DB2 issues diagnostic message
DSNX210I to the operator's console when an error condition occur.

PSPI DB2 issues diagnostic message DSNX210I if one of the following conditions
occur:
v The authorization exit returns a return code of 12 or an invalid return code.
v The authorization exit abnormally terminates.

Additional actions that DB2 performs depend on the reason code that the exit
returns during initialization. The following is a list of these actions.

Table 78. How an error condition affects DB2 actions during initialization and authorization
checking

Exit result
Reason code of 16 returned by
exit routine during initialization

Reason code other than 16 or -1
returned by exit routine during
initialization1

Return code 12 v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Invalid return code v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Abnormal termination
during initialization

DB2 terminates DB2 switches to DB2
authorization checking

Abnormal termination
during authorization
checking

You can use the subsystem
parameter AEXITLIM3 to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
stops and DB2 terminates.

You can use the subsystem
parameter AEXITLIM to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
routine stops and DB2 switches
to DB2 authorization checking.

Note:

1. During initialization, DB2 sets a value of -1 to identify the default exit. The user exit
routine should not set the reason code to -1.

2. During initialization, the task is DB2 startup. During authorization checking, the task is
the application.

3. AEXITLIM (authorization exit limit) can be updated online.

Chapter 7. Managing access through exit routines 261

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration

PSPI

Debugging access control authorization routines
You can use IFCID 0314 to provide a trace record of the parameter list on return
from the exit routine. You can activate the trace record by turning on trace class 22.

Determining whether the access control authorization routine
is active

You can determine whether the exit routine or DB2 is performing authorization
checks.

PSPI To determine whether the exit routine or DB2 is performing authorization
checks:
1. Start audit trace class 1.
2. Choose a DB2 table on which to issue a SELECT statement and an

authorization ID to perform the SELECT. The authorization ID must not have
the DB2 SELECT privilege or the external security system SELECT privilege on
the table.

3. Use the authorization ID to issue a SELECT statement on the table. The
SELECT statement should fail.

4. Format the trace data and examine the return code (QW0140RC) in the IFCID
0140 trace record.
v QW0140RC = –1 indicates that DB2 performed the authorization check and

denied access.
v QW0140RC = 8 indicates that the external security system performed the

authorization check and denied access. PSPI

RACF access control module
The RACF access control module allows you to use RACF as an alternative to DB2
authorization checking for DB2 objects, authorities, and utilities.

PSPI You can activate the RACF access control module at the DB2 access control
authorization exit point (DSNX@XAC), where you can replace the default routine.
The RACF access control module is provided as an assembler source module in the
DSNXRXAC member of DB2.SDSNSAMP.

The RACF access control module (DSNXRXAC) does not provide full support of

role on z/OS 1.7. PSPI

Related concepts

Overview (RACF Access Control Module Guide)

262 Managing Security

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z10.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview

Chapter 8. Protecting data through encryption and RACF

You can use the DB2 Secure Socket Layer (SSL) support or built-in data encryption
functions to protect your sensitive data. You can also use the security features of
RACF, or an equivalent system, to protect your data sets.

Encrypting your data with Secure Socket Layer support
DB2 supports Secure Socket Layer (SSL) protocol by using the z/OS
Communications Server IP Application Transparent Transport Layer Security
(AT-TLS).

The z/OS Communications Server for TCP/IP (beginning in V1R7 of z/OS)
supports the AT-TLS function in the TCP/IP stack for applications that require
secure TCP/IP connections. AT-TLS performs TLS on behalf of the application,
such as DB2, by invoking the z/OS system SSL in the TCP layer of the TCP/IP
stack. The z/OS system SSL supports TLS V1.0, SSL V3.0, and SSL V2.0 protocols.

AT-TLS also uses policies that provide system SSL configurations for connections
that use AT-TLS. An application continues to send and receive clear text data over
the socket while the transmission is protected by the system SSL.

AT-TLS support is policy-driven and can be deployed transparently underneath
many existing sockets applications.
Related concepts

“Encrypting your data through DB2 built-in functions” on page 272
“Protecting data sets through RACF” on page 269

AT-TLS configuration
You need to complete a set of configurations that are required for DB2 to take
advantage of AT-TLS support.

You must complete the following configurations of your DB2 to utilize the AT-TLS
support:
v PROFILE.TCPIP configuration

You can specify the TTLS or NOTTLS parameter on the TCPCONFIG statement
in PROFILE.TCPIP to control whether you want to use the AT-TLS support.

v TCP/IP stack access control configuration
To protect TCP/IP connections, you can configure the RACF
EZB.INITSTACK.sysname.tcpname resource in the SERVAUTH class to block all
stack access except for the user IDs that are permitted to use the resource.

v Policy configuration
The policy agent provides AT-TLS policy rules to the TCP/IP stack. Each rule
defines a set of security conditions that the policy agent compares to the
conditions at the connection that it is checking. When the policy agent finds a
match, it assigns the connection to the actions that are associated with the rule.

© Copyright IBM Corp. 1982, 2011 263

SSL authentication level
The Secure Socket Layer (SSL) protocol supports server and client authentication
during the handshake phase.

The SSL provides server authentication as the minimum level of security. It uses
the Server Authentication mechanism to secure communications between a server
and its client and allows the client to validate the authenticity of the server.

The SSL provides client authentication as an additional level of authentication and
access control. It enables a server to validates the certificates of a client at the
server and thus prevents the client from obtaining a secure connection without an
installation-approved certificate.

Client authentication is optional and, if used, can provide the following three
levels of authentication:
v Level 1 authentication is performed by system SSL. A client passes a digital

certificate to a server as part of the SSL handshake. To successfully pass the
required authentication, the Certificate Authority (CA) that signs the client
certificate must be trusted by the server. That is, the certificate for the CA must
be in the key ring that the server uses and designates as trusted.

v Level 2 (addition to level 1) authentication requires that a client certificate be
registered with RACF (or other SAF-compliant security products) and mapped
to a valid user ID. When AT-TLS receives the client certificate during the SSL
handshake, it queries RACF to verify that the certificate maps to a valid user ID
before allowing a secure connection to be established. This level of client
authentication provides additional access control at the server and ensures that
the client is known to have a valid user ID on the server host.

v Level 3 (addition to levels 1 and 2) authentication provides the capability to
restrict access to a server based on the user ID associated with a client certificate.
A client can access a server only if the client itself is valid to the server, its
certificate is valid, and a user ID associated with the certificate is valid. This
level of authentication uses the RACF SERVAUTH general resource class to
restrict access to the server based on the user ID of the client. If the SERVAUTH
general resource class is not active or the SERVAUTH profile for the server is not
defined, AT-TLS assumes that this level of authentication is not requested.
However, if the SERVAUTH general resource class is active and the server's
SERVAUTH profile is defined, a remote secure connection is be established only
if the user ID that is associated with the client certificate is permitted to the
server's SERVAUTH profile. Otherwise, the secure connection is not established
and the connection itself is dropped.

Configuring SSL authentication levels
The Secure Socket Layer (SSL) protocol supports server and client authentication
during the handshake phase. You can specify to use either server authentication,
client authentication, or both depending on your security need.

To specify whether to use server authentication, client authentication, or both, use
the following approaches:
v If you need only a minimum level of security to authenticate the

communications between a server and its clients, consider using server
authentication. To use server authentication, specify the HandshakeRole Server
parameter for the TTLSEnvironmentAction statement in the AT-TLS policy, as
shown in the following example:

264 Managing Security

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

TTLSEnvironmentAction DB2ServerSecureEnvAct
{

TTLSKeyRingParms
{

Keyring DB2ServerKeyring
}
HandshakeRole Server

}

With this configuration, AT-TLS sends the server certificate to the client during
the handshake phase of a connection request. The client then validates the server
by examining the server certificate that it receives.

v If you need additional security, consider using client authentication. To use client
authentication:
1. Specify the HandshakeRole ServerWithClientAuth parameter for the

TTLSEnvironmentAction statement in the AT-TLS policy, as shown in the
following example:
TTLSEnvironmentAction DB2ServerSecureEnvAct
{

TTLSKeyRingParms
{

Keyring DB2SERVERKEYRING
}
HandshakeRole ServerWithClientAuth
TTLSEnvironmentAdvancedParms
{

ClientAuthType SAFCheck
}

}

2. Determining the level of client authentication by specifying the
ClientAuthType parameter for the TTLSEnvironmentAdvancedParms
statement in the AT-TLS policy.

Table 79. Client authentication levels

Client
Authentication
Level ClientAuthType

Client
Certificate

SERVAUTH Class
Active and Server
SERVAUTH Profile
Defined Certificate Validation

None PassThru Optional N/A None

None Full Optional N/A Certificate is validated against key
ring, if provided

Level 1 Required
(default)

Required N/A Certificate is validated against key
ring

Level 2 SAFCheck Required Optional Certificate is validated against key
ring and must be associated with
a user ID in the security product

Level 3 SAFCheck Required Required Certificate is validated against key
ring and must be associated to a
user ID in the security product
and must be permitted to access
server's SERVAUTH profile

Depending on the authentication type (ClientAuthType) you specify, AT-TLS
may not require the client to present its certificate during the SSL handshake
phase.

3. Register the client Certificate Authority (CA) certificate to RACF as trusted
by issuing the RACDCERT ADD command, as shown in the following
example:

Chapter 8. Protecting data through encryption and RACF 265

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

||

|
|
||
|
|

|
|
|
||

|||||

|||||
|

||
|
|||
|

|||||
|
|

|||||
|
|
|
|
|
|
|
|

|
|
|

RACDCERT ID(USRT001) ADD(’USRT001.CLIENT.CRT’) TRUST

This registers the client CA certificate in dataset 'USRT001.CLIENT.CRT' to
the RACF database. The certificate is owned by RACF-defined user USRT001.
The client CA certificate is also marked as trusted so that RACF can use it to
verify the client certificate when it is presented to the system.

4. Add the client CA certificate to a key ring and map it to a user ID by issuing
the RACDCERT CONNECT command, as shown in the following example:
RACDCERT ID(SYSDSP) CONNECT(ID(USRT001) LABEL(’LABEL00000001’)
RING(DB2SERVERKEYRING) USAGE(PERSONAL))

This adds the client CA certificate to server key ring DB2SERVERKEYRING.
The certificate is owned by user USRT001.

DB2 is now ready to accept secure connections from remote clients that use SSL
client and server authentication.

Creating and activating client certificate name filters
A certificate name filter enables you to associate many client certificates with one
user ID based on the unique user information in the certificate, such as the user's
affiliation. You can create one or more certificate name filters to map a large
number of client certificates to a limited number of user IDs, which helps you
reduce administrative costs.

To create and activate a certificate name filter:
1. Create a certificate name filter by issuing the RACDCERT MAP command, as shown

in the following example:
RACDCERT MAP ID(USRT001) -

SDNFILTER(’O=IBM.L=San Jose.SP=CA.C=US’)
WITHLABEL(’IBMers’) TRUST

This creates a new certificate name filter based on the subject's distinguished
name in the certificate. The filter associates user ID USRT001 to any user
presenting a certificate with subject name 'O=IBM, L=San Jose, ST=CA, C=US'.

2. Activate the SETROPTS RACLIST processing for the DIGTNMAP class.
Using the RACDCERT MAP command to create a certificate name filter
automatically generates a mapping profile in the DIGTNMAP class that
represents the new filter. Both the DIGTNMAP class and the SETROPTS
RACLIST processing for the DIGTNMAP class must be active before you can
complete the creation of the new certificate name filter. Issue the following
command to activate the SETROPTS RACLIST processing for the DIGTNMAP
class:
SETROPTS CLASSACT(DIGTNMAP) RACLIST(DIGTNMAP)

3. Refresh the DIGTNMAP class.
Once SETROPTS RACLIST processing for the DIGTNMAP class is active, you
must refresh the DIGTNMAP class for the certificate name filter to take effect.
Issue the following command to refresh the DIGTNMAP class:
SETROPTS RACLIST(DIGTNMAP) REFRESH

4. Register a client CA certificate to use with the certificate name filter.
During the SSL handshake phase of establishing a secure connection, AT-TLS
retrieves certificate information from RACF if client authentication is specified.
In order for AT-TLS to retrieve the client CA certificate and private keys from
RACF, the client CA certificate must be connected to the server key ring. You
can use the new certificate name filter to register the client CA certificate to

266 Managing Security

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|

|
|
|
|
|

RACF, connect to the server key ring, and map to the user ID CERTAUTH as
trusted by issuing the following command:
RACDCERT CERTAUTH ADD(’USRT001.CLIENT.CRT’) TRUST
RACDCERT ID(SYSDSP) CONNECT(CERTAUTH LABEL(’LABEL00000001’)
RING(DB2SERVERKEYRING) USAGE(CERTAUTH))

This registers the client CA certificate to RACF and maps it to the ID
CERTAUTH as TRUST. It the adds the certificate to key ring
DB2ASERVERKEYRING (owned by ID SYSDSP) and and indicates it is used
for certificate authority purposes. As a result, when a remote client establishes a
secure connection with DB2, AT-TLS is able to authenticate the client from the
client CA certificate in RACF. Because the certificate name filter is active, user
ID USRT001 is returned by AT-TLS to DB2.

Configuring the DB2 server for SSL
To implement SSL support for a DB2 server, you need to make sure that the
TCP/IP SQL Listener service task of DDF is capable of listening to a secondary
secure port for inbound SSL connections.

The TCP/IP Listener accepts regular (non-SSL) connections on the DRDA port,
whereas the secure port accepts only SSL connections to provide secure
communications with a partner. Clients are assured of getting the SSL protocol
connections that they require.

The secure port is used only for accepting secure connections that use the SSL
protocol. When the TCP/IP Listener accepts an inbound connection on the secure
port, DDF invokes the SIOCTTLSCTL IOCTL service with TTLSi_Req_Type set to
TTLS_QUERY_ONLY. It also retrieves the following AT-TLS policy information:
v Status of the connection. The status of a connection is either SECURE or NOT

SECURE.
v Policy status of the connection. The IOCTL returns one of the following policy

status:
– If the IOCTL returns a policy status of TTLS_POL_NO_POLICY, a matching

policy rule is not found for the connection and subsequently the connection
status is not secure.

– If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a
matching policy rule is found for the connection but the policy is not
configured to allow a secure connection for that client.

– If the IOCTL returns a policy status of TTLS_POL_ENABLED, a matching
policy rule is found, and SSL is enabled for the connection.

v Security type for the connection. The security type is either server or server with
client authentication (with ClientAuthType = SAFCheck)

v RACF-defined user ID that is associated with a client certificate. If a client
certificate is provided by the client and validated by AT-TLS and if a user ID is
mapped to the certificate, the user ID is returned. Otherwise, the user ID is not
returned.

If a secure port is not properly configured, DDF rejects the inbound connection
request on the secure port. You must change the client system to either use the
non-secure port, or you can configure the secure port to access DB2 remotely.

To specify a secure port to DB2, use one of the following approaches:
v Specify the TCP/IP port number in the DRDA SECURE PORT field of the

Distributed Data Facility Panel 2 (DSNTIP5) during DB2 installation.

Chapter 8. Protecting data through encryption and RACF 267

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

The DRDA SECURE PORT field specifies the port number that is to be used for
accepting TCP/IP connection requests from remote DRDA clients that want to
establish a secure connection using the SSL protocol. The value of the port
number is a decimal number between 1 and 65534, and it cannot have the same
value as the values of the DRDA PORT and RESYNC PORT fields. Any non-zero
port numbers are verified to ensure that they are all unique port numbers. If an
error is detected, installation is not allowed to proceed until you resolve the
error condition. If the DRDA SECURE PORT field is blank, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.

v Update the SECPORT parameter of the DDF statement in the BSDS with the
change log inventory (DSNJU003) stand-alone utility.
The SECPORT parameter specifies the port number for the DB2 TCP/IP SQL
Listener to accept inbound SSL connections. The value of the port number is a
decimal number between 0 to 65535, and it cannot have the same value as the
values of the PORT and RESPORT parameters. If the value of SECPORT secure
port is the same as the value of PORT or RESPORT, DB2 issues an error
message. If you specify a value of 0 for the SECPORT parameter, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.
If the value of SECPORT is disabled, the client can still use the DRDA PORT and
use SSL on it, but DB2 does not validate whether the connection uses SSL
protocol.

Data sharing considerations: For a data sharing environment, each DB2 member
with SSL support must specify a secure port. The secure port for each DB2 member
of the group should be the same, just as the DRDA PORT for each member should
also be the same. If each DB2 member specifies a unique secure port, unpredictable
behaviors might occur. For example, Sysplex member workload balancing might
not work correctly.

Similarly, for DB2 members that are defined as a subset of the data sharing group,
each DB2 member that belongs to the subset needs to configure the secure port.
You do not need to define a separate unique secure port for the location alias.

Configuring the DB2 requester for SSL
A DB2 requester must be able to insist on an SSL-protected connection to certain
servers. To ensure SSL-protected connections, you can make communications
database (CDB) changes that indicate that SSL-protected connections are required
to certain remote locations.

If a secure connection is required, DDF must determine whether an AT-TLS policy
rule is defined and whether AT-TLS is enabled for the connection. To obtain this
AT-TLS information, DDF invokes SIOCTTLSCTL IOCTLwith TTLSi_Req_Type =
TTLS_QUERY_ONLY. If the IOCTL returns a policy status of
TTLS_POL_NO_POLICY, a matching policy rule is not found for the connection.

If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a policy rule
is defined for the connection, but AT-TLS is not enabled, and a secure connection is
not established with the remote server. DDF issues a message, and the connection
is closed.

If the IOCTL returns a policy status of TTLS_POL_ENABLED, a matching policy
rule is found, and SSL is enabled for the connection.

268 Managing Security

To specify a secure connection to DB2, use one of the following approaches:
v Specify 'Y' for the SECURE column in the SYSIBM.LOCATIONS table.
v Specify a desired value for the PORT column in the SYSIBM.LOCATIONS table

for SSL connections.
For SSL support, the PORT column must contain the value of the configured
secure DRDA port at the remote server. However, if the value of the PORT
column is blank and the value of the SECURE column is 'Y', DB2 uses the
reserved secure DRDA port (448) as the default.

Some DB2 applications might require SSL protection and accept the performance
cost for this level of security. However, some applications might be satisfied with
unprotected connections. This flexibility can be accomplished by the use of the
LOCATION ALIAS name feature.

Consider a DB2 server that is configured to support both non-secure and secure
connections. At the DB2 requester, you can define two rows in the
SYSIBM.LOCATIONS table: one row that specifies the location name and the
non-secure DRDA port of the server and another row that specifies a different
location name and the secure DRDA port of the server and SECURE='Y'. At the
DB2 server, you can define a LOCATION ALIAS name to provide alternative
names for any DB2 requesters that need to access the server by using the SSL
protocol.

Protecting data sets through RACF
To fully protect the data in DB2, you must take steps to ensure that no other
process has access to the data sets in which DB2 data resides.

Use RACF, or a similar external security system, to control access to the data sets
just as RACF controls access to the DB2 subsystem. This section explains how to
create RACF profiles for data sets and allow their use through DB2.

Assume that the RACF groups DB2 and DB2USER, and the RACF user ID
DB2OWNER, have been set up for DB2 IDs. Given that setting, the examples that
follow show you how to:
v Add RACF groups to control data sets that use the default DB2 qualifiers.
v Create generic profiles for different types of DB2 data sets and permit their use

by DB2 started tasks.
v Permit use of the profiles by specific IDs.
v Allow certain IDs to create data sets.
Related concepts

“Encrypting your data through DB2 built-in functions” on page 272
“Encrypting your data with Secure Socket Layer support” on page 263

Adding groups to control DB2 data sets
The default high-level qualifier for data sets that contain DB2 databases and
recovery logs is DSNC100. The default high-level qualifier for distribution, target,
SMP, and other installation data sets is DSNA10.

The DB2OWNER user ID can create groups that control those data sets by issuing
the following commands:
ADDGROUP DSNC100 SUPGROUP(DB2) OWNER(DB2OWNER)
ADDGROUP DSNA10 SUPGROUP(DB2) OWNER(DB2OWNER)

Chapter 8. Protecting data through encryption and RACF 269

Creating generic profiles for data sets
DB2 uses specific names to identify data sets for special purposes.

Suppose that SYSDSP is the RACF user ID for DB2 started tasks in the following
examples. DB2OWNER can issue the following commands to create generic
profiles for the data sets and give complete control over the data sets to DB2
started tasks:
v For active logs, issue the following commands:

ADDSD ’DSNC100.LOGCOPY*’ UACC(NONE)
PERMIT ’DSNC100.LOGCOPY*’ ID(SYSDSP) ACCESS(ALTER)

v For archive logs, issue the following commands:
ADDSD ’DSNC100.ARCHLOG*’ UACC(NONE)
PERMIT ’DSNC100.ARCHLOG*’ ID(SYSDSP) ACCESS(ALTER)

v For bootstrap data sets, issue the following commands:
ADDSD ’DSNC100.BSDS*’ UACC(NONE)
PERMIT ’DSNC100.BSDS*’ ID(SYSDSP) ACCESS(ALTER)

v For table spaces and index spaces, issue the following commands:
ADDSD ’DSNC100.DSNDBC.*’ UACC(NONE)
PERMIT ’DSNC100.DSNDBC.*’ ID(SYSDSP) ACCESS(ALTER)

v For installation libraries, issue the following command:
ADDSD ’DSNA10.*’ UACC(READ)

Started tasks do not need control.
v For other general data sets, issue the following commands:

ADDSD ’DSNC100.*’ UACC(NONE)
PERMIT ’DSNC100.*’ ID(SYSDSP) ACCESS(ALTER)

Although all of those commands are not absolutely necessary, the sample shows
how you can create generic profiles for different types of data sets. Some
parameters, such as universal access, could vary among the types. In the example,
installation data sets (DSNA10.*) are universally available for read access.

If you use generic profiles, specify NO on installation panel DSNTIPP for
ARCHIVE LOG RACF, or you might get a z/OS error when DB2 tries to create the
archive log data set. If you specify YES, DB2 asks RACF to create a separate profile
for each archive log that is created, which means that you cannot use generic
profiles for these data sets.

To protect VSAM data sets, use the cluster name. You do not need to protect the
data component names, because the cluster name is used for RACF checking.

The VSAM resource that is used to store the administrative scheduler task list
must be protected in RACF against unauthorized access. Only the administrative
scheduler started task user has the UPDATE authority on VSAM resources.

Access by stand-alone DB2 utilities: The following DB2 utilities access objects that
are outside of DB2 control:
v DSN1COPY and DSN1PRNT: table space and index space data sets
v DSN1LOGP: active logs, archive logs, and bootstrap data sets
v DSN1CHKR: DB2 directory and catalog table spaces
v Change Log Inventory (DSNJU003) and Print Log Map (DSNJU004): bootstrap

data sets

270 Managing Security

The Change Log Inventory and Print Log Map utilities run as batch jobs that are
protected by the USER and PASSWORD options on the JOB statement. To provide
a value for the USER option, for example SVCAID, issue the following commands:
v For DSN1COPY:

PERMIT ’DSNC100.*’ ID(SVCAID) ACCESS(CONTROL)

v For DSN1PRNT:
PERMIT ’DSNC100.*’ ID(SVCAID) ACCESS(READ)

v For DSN1LOGP:
PERMIT ’DSNC100.LOGCOPY*’ ID(SVCAID) ACCESS(READ)
PERMIT ’DSNC100.ARCHLOG*’ ID(SVCAID) ACCESS(READ)
PERMIT ’DSNC100.BSDS*’ ID(SVCAID) ACCESS(READ)

v For DSN1CHKR:
PERMIT ’DSNC100.DSNDBDC.*’ ID(SVCAID) ACCESS(READ)

v For Change Log Inventory:
PERMIT ’DSNC100.BSDS*’ ID(SVCAID) ACCESS(CONTROL)

v For Print Log Map:
PERMIT ’DSNC100.BSDS*’ ID(SVCAID) ACCESS(READ)

The level of access depends on the intended use, not on the type of data set
(VSAM KSDS, VSAM linear, or sequential). For update operations,
ACCESS(CONTROL) is required; for read-only operations, ACCESS(READ) is
sufficient.

You can use RACF to permit programs, rather than user IDs, to access objects.
When you use RACF in this manner, IDs that are not authorized to access the log
data sets might be able to do so by running the DSN1LOGP utility. Permit access
to database data sets through DSN1PRNT or DSN1COPY.

Authorizing DB2 IDs to use data set profiles
Authorization IDs with the installation SYSADM or installation SYSOPR authority
need access to most DB2 data sets.

The following command adds the two default IDs that have the SYSADM and
SYSOPR authorities if no other IDs are named when DB2 is installed:
ADDUSER (SYSADM SYSOPR)

The next two commands connect those IDs to the groups that control data sets,
with the authority to create new RACF database profiles. The ID that has the
installation SYSOPR authority (SYSOPR) does not need that authority for the
installation data sets.
CONNECT (SYSADM SYSOPR) GROUP(DSNC100) AUTHORITY(CREATE) UACC(NONE)
CONNECT (SYSADM) GROUP(DSNA10) AUTHORITY(CREATE) UACC(NONE)

The following set of commands gives the IDs complete control over DSNC100 data
sets. The system administrator IDs also have complete control over the installation
libraries. Additionally, you can give the system programmer IDs the same control.
PERMIT ’DSNC100.LOGCOPY*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC100.ARCHLOG*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC100.BSDS*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC100.DSNDBC.*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC100.*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNA10.*’ ID(SYSADM) ACCESS(ALTER)

Chapter 8. Protecting data through encryption and RACF 271

Enabling DB2 IDs to create data sets
You can enable DB2 IDs to create data sets by connecting them to the DSNC100
group that has the CREATE authority.

You can issue the following command to connect several IDs to the DSNC100
group:
CONNECT (USER1 USER2 USER3 USER4 USER5)

GROUP(DSNC100) AUTHORITY(CREATE) UACC(NONE)

Those IDs can now explicitly create data sets whose names have DSNC100 as the
high-level qualifier. Any such data sets that are created by DB2 or by these RACF
user IDs are protected by RACF. Other RACF user IDs are prevented by RACF
from creating such data sets.

If no option is supplied for PASSWORD on the ADDUSER command that adds
those IDs, the first password for the new IDs is the name of the default group,
DB2USER. The first time that the IDs sign on, they all use that password, but they
must change the password during their first session.

Encrypting your data through DB2 built-in functions
DB2 provides built-in data encryption and decryption functions that you can use to
encrypt sensitive data, such as credit card numbers and medical record numbers.

You can encrypt data at the column or value level. You must install the Integrated
Cryptographic Service Facility to use the built-in functions for data encryption.

When you use data encryption, DB2 requires the correct password to retrieve the
data in a decrypted format. If an incorrect password is provided, DB2 does not
decrypt the data.

The ENCRYPT keyword encrypts data. The DECRYPT_BIT, DECRYPT_CHAR, and
DECRYPT_DB keywords decrypt data. These functions work like other built-in
functions. To use these functions on data, the column that holds the data must be
properly defined.

Built-in encryption functions work for data that is stored within DB2 subsystem
and is retrieved from within that same DB2 subsystem. The encryption functions
do not work for data that is passed into and out of a DB2 subsystem. This task is
handled by DRDA data encryption, and it is separate from built-in data encryption
functions.

Attention: DB2 cannot decrypt data without the encryption password, and DB2
does not store encryption passwords in an accessible format. If you forget the
encryption password, you cannot decrypt the data, and the data might become
unusable.
Related concepts

“Encrypting your data with Secure Socket Layer support” on page 263
“Protecting data sets through RACF” on page 269

Defining columns for encrypted data
When data is encrypted, it is stored as a binary data string. Therefore, encrypted
data should be stored in columns that are defined as VARCHAR FOR BIT DATA.

272 Managing Security

Columns that hold encrypted data also require additional bytes to hold a header
and to reach a multiple of 8 bytes.

Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(6). Use the following calculation to determine the column definition for
storing the data in encrypted format:
Maximum length of non-encrypted data 6 bytes
Number of bytes to the next multiple of 8 2 bytes
24 bytes for encryption key 24 bytes

Encrypted data column length 32 bytes

Therefore, define the column for encrypted data as VARCHAR(32) FOR BIT DATA.

If you use a password hint, DB2 requires an additional 32 bytes to store the hint.
Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(10). Use the following calculation to determine the column definition
for storing the data in encrypted format with a password hint:
Maximum length of non-encrypted data 10 bytes
Number of bytes to the next multiple of 8 6 bytes
24 bytes for encryption key 24 bytes
32 bytes for password hint 32 bytes

Encrypted data column length 72 bytes

Therefore, define the column for encrypted data as VARCHAR(72) FOR BIT DATA.
Related tasks

“Defining column-level encryption”
“Defining value-level encryption” on page 275
“Optimizing performance of encrypted data” on page 277

Defining column-level encryption
For column-level encryption, all encrypted values in a column are encrypted with
the same password.

To define column-level encryption:
1. Create the EMP table with the EMPNO column. The EMPNO column must be

defined with the VARCHAR data type, must be defined FOR BIT DATA, and
must be long enough to hold the encrypted data. The following statement
creates the EMP table:

CREATE TABLE EMP (EMPNO VARCHAR(32) FOR BIT DATA);

2. Set the encryption password. The following statement sets the encryption
password to the host variable :hv_pass:

SET ENCRYPTION PASSWORD = :hv_pass;

3. Use the ENCRYPT keyword to insert encrypted data into the EMP table by
issuing the following statements:

Chapter 8. Protecting data through encryption and RACF 273

INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’47138’));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’99514’));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’67391’));

4. Select the employee ID numbers in decrypted format:

SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

If you provide the correct password, DB2 returns the employee ID numbers in
decrypted format.

Related tasks

“Defining columns for encrypted data” on page 272
“Defining value-level encryption” on page 275
“Optimizing performance of encrypted data” on page 277

Creating views with column-level encryption
You can create a view that uses column-level encryption and selects decrypted data
from a table.

You can define the view with a decryption function in the defining fullselect. If the
correct password is provided when the view is queried, DB2 will return decrypted
data. Suppose that you want to create a view that contains decrypted employee ID
numbers from the EMP table.

To create a view that uses column-level encryption and selects decrypted data:
1. Create a view on the EMP table by using the following statement:

CREATE VIEW CLR_EMP (EMPNO) AS SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

2. Set the encryption password so that the fullselect in the view definition can
retrieve decrypted data.

Use the following statement:
SET ENCRYPTION PASSWORD = :hv_pass;

3. Select the desired data from the view by using the following statement:

SELECT EMPNO FROM CLR_EMP;

274 Managing Security

Using password hints with column-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

For column-level encryption, the password hint is set with the SET ENCRYPTION
PASSWORD statement. The GETHINT function returns the password hint.

Example: Use the following statement to set the password hint to the host variable
hv_hint:

SET ENCRYPTION PASSWORD = :hv_pass WITH HINT = :hv_hint;

Example: Suppose that the EMPNO column in the EMP table contains encrypted
data and that you submitted a password hint when you inserted the data. Suppose
that you cannot remember the encryption password for the data. Use the following
statement to return the password hint:

SELECT GETHINT (EMPNO) FROM EMP;

Defining value-level encryption
When you use value-level encryption, each value in a given column can be
encrypted with a different password. You set the password for each value by using
the ENCRYPT keyword with the password.

The following keywords are used with value-level encryption:

ENCRYPT
Indicates which data requires encryption. Also, encryption passwords, and
optionally password hints, are indicated as part of the ENCRYPT keyword
for value-level encryption.

Recommendation: Use host variables instead of literal values for all
passwords and password hints. If statements contain literal values for
passwords and password hints, the security of the encrypted data can be
compromised in the DB2 catalog and in a trace report.

DECRYPT_BIT, DECRYPT_CHAR, DECRYPT_DB
Checks for the correct password and decrypts data when the data is
selected.

Example: Suppose that a web application collects user information about a
customer. This information includes the customer name, which is stored in host
variable custname; the credit card number, which is stored in a host variable
cardnum; and the password for the card number value, which is stored in a host
variable userpswd. The application uses the following statement to insert the
customer information:

Chapter 8. Protecting data through encryption and RACF 275

INSERT INTO CUSTOMER (CCN, NAME)
VALUES(ENCRYPT(:cardnum, :userpswd), :custname);

Before the application displays the credit card number for a customer, the customer
must enter the password. The application retrieves the credit card number by
using the following statement:

SELECT DECRYPT_CHAR(CCN, :userpswd) FROM CUSTOMER WHERE NAME = :custname;

Related tasks

“Defining columns for encrypted data” on page 272
“Defining column-level encryption” on page 273
“Optimizing performance of encrypted data” on page 277

Using password hints with value-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

For value-level encryption, the password hint is set with the ENCRYPT keyword.
The GETHINT function returns the password hint.

Recommendation: Use host variables instead of literal values for all passwords
and password hints. If the statements contain literal values for passwords and
password hints, the security of the encrypted data can be compromised in the DB2
catalog and in a trace report.

Example: Suppose that you want the application from the previous example to use
a hint to help customers remember their passwords. The application stores the hint
in the host variable pswdhint. For this example, assume the values 'Tahoe' for
userpswd and 'Ski Holiday' for pswdhint. The application uses the following
statement to insert the customer information:

INSERT INTO CUSTOMER (CCN, NAME)
VALUES(ENCRYPT(:cardnum, :userpswd, :pswdhint), :custname);

If the customer requests a hint about the password, the following query is used:

SELECT GETHINT(CCN) INTO :pswdhint FROM CUSTOMER WHERE NAME = :custname;

The value for pswdhint is set to 'Ski Holiday' and returned to the customer.
Hopefully the customer can remember the password 'Tahoe' from this hint.

276 Managing Security

Encrypting non-character values
DB2 supports encryption for numeric and datetime data types indirectly through
casting. If non-character data is cast as VARCHAR or CHAR, the data can be
encrypted.

Example: Suppose that you need to encrypt timestamp data and retrieve it in
decrypted format. Perform the following steps:
1. Create a table to store the encrypted values and set the column-level encryption

password by using the following statements:
CREATE TABLE ETEMP (C1 VARCHAR(124) FOR BIT DATA);
SET ENCRYPTION PASSWORD :hv_pass;

2. Cast, encrypt, and insert the timestamp data by using the following statement:
INSERT INTO ETEMP VALUES ENCRYPT(CHAR(CURRENT TIMESTAMP));

3. Recast, decrypt, and select the timestamp data by using the following
statement:
SELECT TIMESTAMP(DECRYPT_CHAR(C1)) FROM ETEMP;

Using predicates for encrypted data
When data is encrypted, only = and <> predicates provide accurate results.
Predicates such as >, <, and LIKE return inaccurate results for encrypted data.

Example: Suppose that the value 1234 is encrypted as H71G. Also suppose that the
value 5678 is encrypted as BF62. If you use a <> predicate to compare these two
values in encrypted format, you receive the same result as you will if you compare
these two values in decrypted format:
Decrypted: 1234 <> 5678 True
Encrypted: H71G <> BF62 True

In both case, they are not equal. However, if you use a < predicate to compare
these values in encrypted format, you receive a different result than you will if you
compare these two values in decrypted format:
Decrypted: 1234 < 5678 True
Encrypted: H71G < BF62 False

To ensure that predicates such as >, <, and LIKE return accurate results, you must
first decrypt the data.

Optimizing performance of encrypted data
Encryption typically degrades the performance of most SQL statements. Decryption
requires extra processing, and encrypted data requires more space in DB2.

If a predicate requires decryption, the predicate is a stage 2 predicate, which can
degrade performance. Encrypted data can also impact your database design, which
can indirectly impact performance. To minimize performance degradation, use
encryption only in cases that require encryption.

Recommendation: Encrypt only a few highly sensitive data elements, such credit
card numbers and medical record numbers.

Some data values are poor candidates for encryption. For example, boolean values
and other small value sets, such as the integers 1 through 10, are poor candidates
for encryption. Because few values are possible, these types of data can be easy to
guess even when they are encrypted. In most cases, encryption is not a good
security option for this type of data.

Chapter 8. Protecting data through encryption and RACF 277

Data encryption and indexes: Creating indexes on encrypted data can improve
performance in some cases. Exact matches and joins of encrypted data (if both
tables use the same encryption key to encrypt the same data) can use the indexes
that you create. Because encrypted data is binary data, range checking of
encrypted data requires table space scans. Range checking requires all the row
values for a column to be decrypted. Therefore, range checking should be avoided,
or at least tuned appropriately.

Encryption performance scenario: The following scenario contains a series of
examples that demonstrate how to improve performance while working with
encrypted data.

Example: Suppose that you must store EMPNO in encrypted form in the EMP
table and in the EMPPROJ table. To define tables and indexes for the encrypted
data, use the following statements:

CREATE TABLE EMP (EMPNO VARCHAR(48) FOR BIT DATA, NAME VARCHAR(48));
CREATE TABLE EMPPROJ(EMPNO VARCHAR(48) FOR BIT DATA, PROJECTNAME VARCHAR(48));
CREATE INDEX IXEMPPRJ ON EMPPROJ(EMPNO);

Example: Next, suppose that one employee can work on multiple projects, and that
you want to insert employee and project data into the table. To set the encryption
password and insert data into the tables, use the following statements:

SET ENCRYPTION PASSWORD = :hv_pass;
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT(’A7513’),’Super Prog’));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’UDDI Project’);
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’DB2 10’);
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT(’4NF18’),’Novice Prog’));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’UDDI Project’);

You can improve the performance of INSERT statements by avoiding unnecessary
repetition of encryption processing. Note how the host variable hv_enc_val is
defined in the SELECT INTO statement and then used in subsequent INSERT
statements. If you need to insert a large number of rows that contain the same
encrypted value, you might find that the repetitive encryption processing degrades
performance. However, you can dramatically improve performance by encrypting
the data, storing the encrypted data in a host variable, and inserting the host
variable.

Example: Next, suppose that you want to find the programmers who are working
on the UDDI Project. Consider the following pair of SELECT statements:
v Poor performance: The following query shows how not to write the query for

good performance:

278 Managing Security

SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJECT B
WHERE DECRYPT_CHAR(A.EMPNO) = DECRYPT_CHAR(B.EMPNO) AND

B.PROJECT =’UDDI Project’;

Although the preceding query returns the correct results, it decrypts
every EMPNO value in the EMP table and every EMPNO value in the
EMPPROJ table where PROJECT = 'UDDI Project' to perform the join. For large
tables, this unnecessary decryption is a significant performance problem.

v Good performance: The following query produces the same result as the
preceding query, but with significantly better performance. To find the
programmers who are working on the UDDI Project, use the following
statement:

SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJ B
WHERE A.EMPNO = B.EMPNO AND B.PROJECT =’UDDI Project’;

Example: Next, suppose that you want to find the projects that the programmer
with employee ID A7513 is working on. Consider the following pair of SELECT
statements:
v Poor performance: The following query requires DB2 to decrypt every EMPNO

value in the EMPPROJ table to perform the join:

SELECT PROJECTNAME FROM EMPPROJ WHERE DECRYPT_CHAR(EMPNO) = ’A7513’;

v Good performance: The following query encrypts the literal value in the
predicate so that DB2 can compare it to encrypted values that are stored in the
EMPNO column without decrypting the whole column. To find the projects that
the programmer with employee ID A7513 is working on, use the following
statement :

SELECT PROJECTNAME FROM EMPPROJ WHERE EMPNO = ENCRYPT(’A7513’);

Related tasks

“Defining columns for encrypted data” on page 272
“Defining column-level encryption” on page 273
“Defining value-level encryption” on page 275

Chapter 8. Protecting data through encryption and RACF 279

280 Managing Security

Chapter 9. Auditing access to DB2

Security auditing allows you to inspect and examine the adequacy and effectiveness
of the policies and procedures that you put in place to secure your data.

DB2 provides the ability for you to monitor if your security plan is adequately
designed based on your security objectives and determine if your implementation
techniques and procedures are effectively carried out to protect your data access
and consistency. It enables you to address the following fundamental questions
about your data security.
v What sensitive data requires authorized access?
v Who is privileged to access the data?
v Who has actually accessed the data?
v What attempts are made to gain unauthorized access?

The DB2 catalog contains critical authorization and authentication information.
This information provides the primary audit trail for the DB2 subsystem. You can
retrieve the information from the catalog tables by issuing SQL queries.

Most of the catalog tables describe the DB2 objects, such as tables, views, table
spaces, packages, and plans. Other tables, particularly those with the “AUTH”
character string in their names, hold records of every granted privilege and
authority. Each catalog record of a grant contains the following information:
v Name of the object
v Type of privilege
v IDs that receive the privilege
v IDs that grant the privilege
v Time of the grant

The DB2 audit trace can help you monitor and track all the accesses to your
protected data. The audit trace records provide another important trail for the DB2
subsystem. You can use the the audit trace to record the following access
information:
v Changes in authorization IDs
v Changes to the structure of data, such as dropping a table
v Changes to data values, such as updating or inserting records
v Access attempts by unauthorized IDs
v Results of GRANT statements and REVOKE statements
v Mapping of Kerberos security tickets to IDs
v Other activities that are of interest to auditors
Related tasks

“Auditing manager access” on page 13
“Auditing payroll operations and management” on page 16

Determining active security measures
If you are a security auditor, you must know the security measures that are
enabled on the DB2 subsystem.

You can determine whether DB2 authorization checking, the audit trace, and data
definition control are enabled in the following ways:

© Copyright IBM Corp. 1982, 2011 281

Audit trace
To see whether the trace is running, display the status of the trace by the
command DISPLAY TRACE(AUDIT).

DB2 authorization checking
Without changing anything, look at panel DSNTIPP. If the value of the
USE PROTECTION field is YES, DB2 checks privileges and authorities
before permitting any activity.

Data definition control
Data definition control is a security measure that provides additional
constraints to existing authorization checks. With it, you control how
specific plans or collections of packages can use data definition statements.
To determine whether data definition control is active, look at option 1 on
the DSNTIPZ installation panel.

DB2 audit trace
The DB2 trace facility lets you collect monitoring, auditing, and performance
information about your data and environment.

The audit trace enables you to trace different events or categories of events by
authorization IDs, object ownerships, and so on. When started, the audit trace
records certain types of actions and sends the report to a named destination. The
trace reports can indicate who has accessed data.

As with other types of DB2 traces, you can choose the following options for the
audit trace:
v Categories of events
v Particular authorization IDs or plan IDs
v Methods to start and stop the audit trace
v Destinations for audit records

You can choose whether to audit the activity on a table by specifying an option of
the CREATE and ALTER statements.
Related concepts

“Audit trace records” on page 285
“Audit trace reports” on page 284
Related tasks

“Starting the audit trace” on page 286
“Stopping the audit trace” on page 286

Authorization IDs traced by auditing
An audit traces generally identifies a process by its primary authorization ID. It
records the primary ID before and after the invocation of an authorization exit
routine. Therefore, you can identify the primary ID that is associated with a data
change.

Exception: If a primary ID has been translated many times, you might not be able
to identify the primary ID that is associated with a change. Suppose that the server
does not recognize the translated ID from the requesting site. In this case, you
cannot use the primary ID to gather all audit records for a user that accesses
remote data.

282 Managing Security

The AUTHCHG record shows the values of all secondary authorization IDs that
are established by an exit routine.

With the audit trace, you can also determine which primary ID is responsible for
the action of a secondary ID or a current SQL ID. Suppose that the user with
primary ID SMITHJ sets the current SQL ID to TESTGRP to grant privileges over
the table TESTGRP.TABLE01 to another user. The DB2 catalog records the grantor
of the privileges as TESTGRP. However, the audit trace shows that SMITHJ issued
the grant statement.

Recommendation: Consider carefully the consequences of altering that ID by using
an exit routine because the trace identifies a process by its primary ID. If the
primary ID identifies a unique user, individual accountability is possible. However,
if several users share the same primary ID, you cannot tell which user issues a
particular GRANT statement or runs a particular application plan.

Audit classes
When you start the trace, you choose the events to audit by specifying one or more
audit classes.

PSPI

The trace records are limited to 5000 bytes; the descriptions that contain long SQL
statements might be truncated. The following table describes the available classes
and the events that they include.

Table 80. Audit classes and the events that they trace

Audit class Events that are traced

1 Access attempts that DB2 denies because of inadequate authorization. This
class is the default.

2 Explicit GRANT and REVOKE statements and their results. This class does
not trace implicit grants and revokes.

3 Traces CREATE, DROP, and ALTER operations against an audited table or
a table that is enabled with multilevel security with row-level granularity.
For example, it traces the updates to a table created with the AUDIT
CHANGES or AUDIT ALL clause. It also traces the deletion of a table as
the result of a DROP TABLESPACE or DROP DATABASE statement.

4 Changes to audited tables. Only the first attempt to change a table, within
a unit of recovery, is recorded. (If the agent or the transaction issues more
than one COMMIT statement, the number of audit records increases
accordingly.) The changed data is not recorded; only the attempt to make a
change is recorded. If the change is not successful and is rolled back, the
audit record remains; it is not deleted. This class includes access by the
LOAD utility. Accesses to a dependent table that are caused by attempted
deletions from a parent table are also audited. The audit record is written
even if the delete rule is RESTRICT, which prevents the deletion from the
parent table. The audit record is also written when the rule is CASCADE or
SET NULL, which can result in deletions that cascade to the dependent
table.

5 All read accesses to tables that are identified with the AUDIT ALL clause.
As in class 4, only the first access within a DB2 unit of recovery is
recorded. References to a parent table are also audited.

Chapter 9. Auditing access to DB2 283

|
|
|
|
|

Table 80. Audit classes and the events that they trace (continued)

Audit class Events that are traced

6 The bind of static and dynamic SQL statements of the following types:

v INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE
statements for audited tables. Except for the values of host variables, the
audit record contains the entire SQL statement.

v SELECT statements on tables that are identified with the AUDIT ALL
clause. Except for the values of host variables, the audit record contains
the entire SQL statement.

7 Assignment or change of an authorization ID because of the following
reasons:

v Changes through an exit routine (default or user-written)

v Changes through a SET CURRENT SQLID statement

v An outbound or inbound authorization ID translation

v An ID that is being mapped to a RACF ID from a Kerberos security
ticket

8 The start of a utility job, and the end of each phase of the utility

9 Various types of records that are written to IFCID 0146 by the IFI WRITE
function

10 CREATE and ALTER TRUSTED CONTEXT statements, establish trusted
connection information and switch user information

11 Audit the use of any administrative authority and the successful execution
of any authorization ID

PSPI

Audit trace reports
If you regularly start the audit trace for all classes, you can generate audit reports
based on the data that you accumulate.

Consider producing audit trace reports that focus on the following important
security events:

Use of sensitive data
You should define tables that contain sensitive data, such as employee
salary records, with the AUDIT ALL option. You can report use by table
and by authorization ID to look for access by unusual IDs, at unusual
times, or of unexpected types. You should also record any ALTER or DROP
operations that affect the data. Use audit classes 3, 4, and 5.

Grants of critical privileges
Carefully monitor IDs with special authorities, such as SYSADM and
DBADM. Also carefully monitor IDs with privileges over sensitive data,
such as an update privilege on records of accounts payable. You can query
the DB2 catalog to determine which IDs hold privileges and authorities at
a particular time. To determine which IDs received privileges and then had
them revoked, use audit class 2 and consult the audit records.

Unsuccessful access attempts
Investigate all unsuccessful access attempts. Although some access failures
are only user errors, others can be attempts to violate security. If you have
sensitive data, always use trace audit class 1. You can report by table or by
authorization ID.

284 Managing Security

||
|

Related concepts

“DB2 audit trace” on page 282
“Audit trace records”

Audit trace records
An audit trace record contains the information about the authorization ID that
initiated the activity that is traced.

In addition, it contains the following information:
v The LOCATION of the ID that initiated the activity (if the access was initiated

from a remote location)
v The type of activity and the time that the activity occurred
v The DB2 objects that were affected
v Whether access was denied
v The owner of a particular plan and package
v The database alias (DBALIAS) that was used to access a remote location or a

location alias that was accepted from a remote application.
Related concepts

“DB2 audit trace” on page 282
“Audit trace reports” on page 284
Related tasks

“Collecting audit trace records” on page 287
“Formatting audit trace records” on page 287

Limitations of the audit trace
The audit trace has certain limitations, including that it does not automatically
record everything.

The audit trace has the following additional limitations:
v The audit trace must be turned on; it is not on by default.
v The trace does not record old data after it is changed.
v If an agent or transaction accesses a table more than once in a single unit of

recovery, the audit trace records only the first access.
v The audit trace does not record accesses if you do not start the audit trace for

the appropriate class of events.
v Except class 8, the audit trace does not audit certain utilities. For example, the

trace audits the first access of a table with the LOAD utility, but it does not
audit access by the COPY, RECOVER, and REPAIR utilities. The audit trace does
not audit access by stand-alone utilities, such as DSN1CHKR and DSN1PRNT.

v The trace audits only the tables that you specifically choose to audit.
v You cannot audit access to auxiliary tables.
v You cannot audit the catalog tables because you cannot create or alter catalog

tables.

This auditing coverage is consistent with the goal of providing a moderate volume
of audit data with a low impact on performance. However, when you choose
classes of events to audit, consider that you might ask for more data than you are
willing to process.

Chapter 9. Auditing access to DB2 285

Starting the audit trace
You can automatically start an audit trace whenever DB2 is started.

You can do so by setting the AUDIT TRACE field on the DSNTIPN installation
panel to one of the following options:
v * (an asterisk) to provide a complete audit trace.
v NO, the default, if you do not want an audit trace to start automatically.
v YES to start a trace automatically for the default class (class 1: access denials)

and the default destination (the SMF data set).
v A list of audit trace classes (for example, 1,3,5) to start a trace automatically for

those classes. This option uses the default destination.

As with other types of DB2 traces, you can start an audit trace at any time by
issuing the START TRACE command. You can choose the audit classes to trace and
the destination for trace records. You can also include an identifying comment.

Example: The following command starts an audit trace for classes 4 and 6 with
distributed activity:

-START TRACE (AUDIT) CLASS (4,6) DEST (GTF) LOCATION (*)
COMMENT (’Trace data changes; include text of dynamic DML statements.’)

Related concepts

“DB2 audit trace” on page 282
Related tasks

“Stopping the audit trace”

Stopping the audit trace
You can have multiple traces that run at the same time, including more than one
audit trace. You can stop a particular trace by issuing the STOP TRACE command
with the same options that you use for START TRACE.

You must include enough options to uniquely identify a particular trace when you
issue the command.

Example: The following command stops the trace that you started:
-STOP TRACE (AUDIT) CLASS (4,6) DEST (GTF)

If you did not save the START command, you can determine the trace number and
stop the trace by its number. Use DISPLAY TRACE to find the number.

Example: DISPLAY TRACE (AUDIT) might return a message like the following
output:
TNO TYPE CLASS DEST QUAL
01 AUDIT 01 SMF NO
02 AUDIT 04,06 GTF YES

286 Managing Security

The message indicates that two audit traces are active. Trace 1 traces events in class
1 and sends records to the SMF data set. Trace 1 can be a trace that starts
automatically whenever DB2 starts. Trace 2 traces events in classes 4 and 6 and
sends records to GTF.

You can stop either trace by using its identifying number (TNO).

Example: To stop trace 1, use the following command:
-STOP TRACE AUDIT TNO(1)

Related concepts

“DB2 audit trace” on page 282
Related tasks

“Starting the audit trace” on page 286

Collecting audit trace records
You can prepare the System Management Facility (SMF) or Generalized Trace
Facility (GTF) to accept audit trace records the same way as you prepare
performance trace records. The records are of SMF type 102, as are performance
trace records.

If you send trace records to SMF (the default), data might be lost in the following
circumstances:
v SMF fails while DB2 continues to run.
v An unexpected abend (such as a TSO interrupt) occurs while DB2 is transferring

records to SMF.

In those circumstances, SMF records the number of records that are lost. z/OS
provides an option to stop the system rather than to lose SMF data.
Related concepts

“Audit trace records” on page 285
Related tasks

“Formatting audit trace records”

Formatting audit trace records
You can extract, format, and print DB2 trace records.

You can use any of the following methods to extract, format, and print the trace
records:
v DB2 Audit Management Expert for z/OS
v IBM Tivoli zSecure Audit
v IBM Tivoli OMEGAMON XE on z/OS
v Your own application program to access the SMF data
v The instrumentation facility interface (IFI) as an online resource to retrieve audit

records.

Chapter 9. Auditing access to DB2 287

|

|

|

|

|
|

Related concepts

“Audit trace records” on page 285
Related tasks

“Collecting audit trace records” on page 287

Auditing in a distributed data environment
The DB2 audit trace records any access to your data, whether the request is from a
remote location or from your local DB2 subsystem.

The trace record for a remote request reports the authorization ID as the final
result of one of the following conditions:
v An outbound translation
v An inbound translation
v Activity of an authorization exit routine

Essentially, the ID on a trace record for a remote request is the same as the ID to
which you grant access privileges for your data. Requests from your location to a
remote DB2 are audited only if an audit trace is active at the remote location. The
output from the trace appears only in the records at that location.

DB2 audit policy
An audit policy is a set of criteria that determines the categories to be audited. It
helps you configure and control the audit requirements of your security policies
and to monitor data access by applications and individual users (authorization IDs
or roles), including administrative authorities.

You can create an audit policy by inserting a row in the
SYSIBM.SYSAUDITPOLICIES table. The SECADM, ACCESSCTRL, DATAACCESS,
system DBADM, SQLADM, SYSCRTL, and SYSADM authorities all have the
implicit SELECT privilege on the SYSIBM.SYSAUDITPOLICIES table. The
SECADM authority also has implicit INSERT, UPDATE, and DELETE privileges on
the SYSIBM.SYSAUDITPOLICIES table.

If you have the required privileges to issue the START TRACE, STOP TRACE, and
DISPLAY TRACE commands, you can activate, deactivate, and display an audit policy
by issuing those commands with the AUDTPLCY option. The SECADM authority
has the implicit privileges to issue the START TRACE, STOP TRACE, and DISPLAY TRACE

commands.

Audit category
DB2 audit policies are created and stored in the SYSIBM.SYSAUDITPOLICIES
table. Each policy is specified with specific audit categories.

PSPI DB2 supports the following audit categories:

Table 81. DB2 audit policy categories

Category Description

CHECKING Generates IFCID 140 trace records for denied access attempts due to
inadequate DB2 authorization and IFCID 83 trace records for RACF
authentication failures

288 Managing Security

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|

|

||

||

||
|
|

Table 81. DB2 audit policy categories (continued)

Category Description

VALIDATE Generates IFCID 55, 83, 87, 169, and 319 trace records for new or
changed assignments of authorization IDs and IFCID 269 trace records
for the establishment of trusted connections or the switch of users in
existing trusted connections

OBJMAINT Generates IFCID 142 trace records when tables are altered or dropped.
When an audit policy is defined, it specifies the tables to be audited.
The same audit policy can be used to audit different tables in a schema
by specifying the table names with the SQL LIKE predicate.

Only tables that are defined in the following types of table spaces can
be audited:

v Universal table space (UTS), including UTS that contains implicitly
created tables, such as XML tables

v Traditional partitioned table space

v Segmented table space.

In addition to tables, an audit policy can also be used to audit clone
tables and tables that are implicitly created for XML columns.

The type of the object to be audited can be specified by using the
OBJECTTYPE column. The default OBJECTTYPE column value of blank
indicates that all of the supported object types are audited.

EXECUTE Generates IFCID 143 and 144 trace records for SQL statement and
generates IFCID 145 records to trace bind time information about SQL
statements that involve audited objects.

When an audit policy is defined, it specifies the tables to be audited.
The same audit policy can be used to audit different tables in a schema
by specifying the table names with the SQL LIKE predicate.

Only tables that are defined in the following types of table spaces can
be audited:

v Universal table space (UTS), including UTS that contains implicitly
created tables, such as XML tables

v Traditional partitioned table space

v Segmented table space.

In addition to tables, an audit policy can also be used to audit clone
tables and tables that are implicitly created for XML columns.

The type of the object to be audited can be specified by using the
OBJECTTYPE column. The default OBJECTTYPE column value of blank
indicates that all of the supported object types are audited.

These trace records are written when the table that is identified by the
OBJECTSCHEMA, OBJECTNAME and OBJECTTYPE is accessed
during the first operation by each unit of work. If the audit policy is
started after the SQL query is started, access to the table will not be
audited.

CONTEXT Generates IFCID 23, 24, and 25 records.

SECMAINT Generates IFCID 141 trace records for granting and revoking privileges
or administrative authorities, IFCID 270 trace records for creating and
altering trusted contexts, and IFCID 271 trace records for creating,
altering, and dropping row permissions or column masks.

Chapter 9. Auditing access to DB2 289

|

||

||
|
|
|

||
|
|
|

|
|

|
|

|

|

|
|

|
|
|

||
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|
|
|

||

||
|
|
|

Table 81. DB2 audit policy categories (continued)

Category Description

SYSADMIN Generates IFCID 361 trace records when an administrative authority, in
the order of installation SYSADM, installation SYSOPR, SYSOPR,
SYSCTRL, or SYSADM, satisfies the required privilege for performing
an operation

If the Access Control Authorization Exit (ACAE) is active, only the
operations that are performed by the installation SYSADM and
installation SYSOPR authorities are audited.

DBADMIN Generates IFCID 361 trace records when an administrative authority, in
the order of DBMAINT, DBCTRL, DBADM, PACKADM, SQLADM,
system DBADM, DATAACCESS, ACCESSCTRL, or SECADM, satisfies
the required privilege for performing an operation

The database name can be specified for auditing the DBADM, DBCTRL
and DBMAINT authorities. If the database name is not specified, all the
databases, including implicit databases, are audited.

The collection ID can be specified for auditing the PACKADM
authority. If the collection ID is specified, all packages in that collection
are audited. If the collection ID is not specified, the packages in all
collections are audited.

If the Access Control Authorization Exit (ACAE) is active, only the
operations that are performed by the SECADM authority are audited.

For the SYSADMIN and DBADMIN categories, DB2 checks a set of rules for each
operation to determine the required authorization. In general, the rules are checked
in the order of installation SYSADM, installation SYSOPR (if applicable), specific
privileges required for the operation (i.e., SELECT, UPDATE), database authorities
(i.e., DBMAINT, DBCTRL, DBADM), system database authorities (i.e., SQLADM,
system DBADM, DATAACCESS, and ACCESSCTRL), and system authorities (i.e.,
SYSCTRL, SYSADM, and SECADM).

For example, to determine whether a user can alter a table, DB2 checks the
required privilege in the following order:
1. Installation SYSADM
2. ALTER table privilege
3. DBADM authority on the database that the table is in
4. System DBADM
5. SYSCTRL
6. SYSADM

If the user has only the ALTER privilege on the table and if the audit policy is
activated to audit the SYSADM authority, DB2 does not generate an IFCID 361
audit record on the ALTER operation. If the user also has the SYSADM authority,
DB2 still does not generate an IFCID 361 record because the lowest (ALTER)
privilege permits the operation.

In general, DB2 always checks the installation SYSADM and installation SYSOPR
authorities prior to the lowest (ALTER) privilege. If the user has the installation
SYSADM authority and the audit policy is activated to audit the installation

SYSADM authority, DB2 generates an IFCID 361 record. PSPI

290 Managing Security

|

||

||
|
|
|

|
|
|

||
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|

Creating and activating audit policies
With the SECADM authority, you can create, display, activate, or inactivate DB2
audit policies.

To create and activate an audit policy:
1. Obtain the SECADM authority if you don't have it. Alternately, you can have

the SECADM authority grant you the required privileges to create an audit
policy. A user with the SYSOPR authority can activate the policy.

2. Create a new audit policy by issuing the INSERT statement.
You need to specify a name for the new audit policy. An audit policy name is
an identifier that is 1 to 128 letters or digits in length, begins with a letter.
You also need to specify proper audit categories in the new audit policy. If you
specify the OBJMAINT or EXECUTE category, you must also specify the
OBJECTSCHEMA, OBJECTNAME, and OBJECTTYPE columns in the
SYSIBM.SYSAUDITPOLICIES table that identify the table to be audited.
For example, if you want to create a new AUDITADMIN1 policy to audit the

SYSADM authority, you can specify SYSADMIN as the category:
INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, SYSADMIN)

VALUES(’AUDITADMIN1’,’S’);

You can also use the SQL LIKE predicate to audit tables of the same
characteristics. For example, you can audit all tables that start with EMP in

schema TSCHEMA by issuing the following INSERT statement:
INSERT INTO SYSIBM.SYSAUDITPOLICIES

(AUDITPOLICYNAME, OBJECTSCHEMA, OBJECTNAME, OBJECTTYPE, EXECUTE)
VALUES(’TEST2’,’TSCHEMA’,’’’E_P%’’’,’T’,’C’);

3. Activate the audit policy by issuing the START TRACE command with the
AUDTPLCY option.
You need to specify the AUDTPLCY option on the command to enable a

specific audit policy:
-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMIN1)

This command starts IFCID 361 trace record to audit the use of the SYSADM
authority. DB2 also starts an IFCID 362 trace record to trace the audit policy
information as defined in the catalog. If multiple audit policies are specified to
start at the same time, the IFCID 362 record is cut for every audit policy
specified and contains the information about whether the policies successfully
started or failed.
Depending on the categories in the audit policy, DB2 starts the associated audit
trace records, one for each IFCID that is related to the specified audit category.
DB2 runs against the audit policies that are already defined in the
SYSIBM.SYSAUDITPOLICIES table when you issue the START TRACE command;
it ignores any change you make to a specific audit policy after you start the
START TRACE command. If you want DB2 to run against the updated audit

Chapter 9. Auditing access to DB2 291

|

|
|

|

|
|
|

|

|
|

|
|
|
|

|

|

|
|

|

|
|

|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|
|

|
|

|
|
|
|

policy, you need to stop and then start the audit policy trace. In addition, you
cannot specify the CLASS or IFCID option when you specify the AUDTPLCY
option on the START TRACE command.
If you prefer the audit policy to be automatically started, you need to set the
DB2START column to Y or S in the SYSIBM.SYSAUDITPOLICIES table. The
audit policy will be started during DB2 startup. When you specify
DB2START='S', only users (authorization IDs or roles) with the SECADM
authority can stop the policy. If you set DB2START='S' to an audit policy that is
already started, you must stop and restart the policy for the new setting to take
effect.
You can automatically start up to 8 audit policies during DB2 startup. If you
specify to automatically start multiple audit policies with different DB2START
column settings, DB2 will start two traces, one for policies with DB2START =
'Y' and the other for policies with DB2START = 'S'. If you need to stop any
audit policy that is automatically started, you must simultaneously stop all the
policies that are assigned the same trace number.

4. If necessary, display the audit policy by issuing the DISPLAY TRACE command.
You need to specify the AUDTPLCY option on the command to show the name

and other details about the AUDITADMIN1 audit policy:
-DISPLAY TRACE (AUDIT) DETAIL(2) DEST (GTF) AUDTPLCY(AUDITADMIN1)

The command returns an output like the following:
15.49.46 -DIS TRACE(AUDIT) DETAIL(2)
15.49.47 STC00125 DSNW143I - CURRENT TRACE QUALIFICATIONS ARE -
15.49.47 STC00125 DSNW152I - BEGIN TNO 04 QUALIFICATIONS:
NO QUALIFICATIONS
END TNO 04 QUALIFICATIONS
15.49.47 STC00125 DSNW185I - BEGIN TNO 04 AUDIT POLICIES:
ACTIVE AUDIT POLICY: AUDITADMIN1
ACTIVE AUDIT POLICY: AUDITTABLE1
END TNO 04 AUDIT POLICIES
15.49.47 STC00125 DSNW148I - ******END OF DISPLAY TRACE QUALIFICATION

DATA******
15.49.47 STC00125 DSN9022I - DSNWVCM1 ’-DIS TRACE’ NORMAL COMPLETION

5. If necessary, disable the audit policy by issuing the STOP TRACE command.
You need to specify the AUDTPLCY option on the command to stop all the

trace activities that are started by a specific audit policy:
-STO TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMIN1)

Only the STOP TRACE command can stop all the trace activities that are started
by a specific audit policy; deleting the active policy row from the
SYSIBM.SYSAUDITPOLICIES table does not stop the tracing.

Auditing the use of an administrative authority
You can create and activate an audit policy to audit how a DB2 administrative
authority is used.

292 Managing Security

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|
|
|

|

|
|

Suppose that you have the SECADM authority and are responsible for making
sure that all security policies, including audit policies, work as designed. You want
to audit the use of the SYSADM authority by user SYSADMIN1.

To audit the use of the SYSADM authority by SYSADMIN1:
1. Create audit policy AUDITADMN1 by issuing the following INSERT statement:

INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, SYSADMIN)
VALUES(’AUDITADMN1’,’S’);

DB2 checks to make sure that you have the required privilege to issue the
INSERT statement. Upon successful verification, it inserts a row in
SYSIBM.SYSAUDITPOLICIES to include the new policy.

2. Activate the audit policy by issuing the START TRACE command:

-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMN1)

PSPI DB2 checks to make sure that you have the required privilege to run
the START TRACE command. Upon successful verification, it starts an IFCID 361
trace record.
For example, if SYSADM1 issues the ALTER BUFFERPOOL command to alter
the attributes for active buffer pools, DB2 records the ALTER activity in the

IFCID 361 trace record. PSPI

Auditing tables without specifying the AUDIT clause
With the SECADM authority, you can set up audit policies and dynamically enable
auditing of tables that do not have the AUDIT clause specified.

To audit the activities on table EMPLOYEE.SALARY without having to specify the
AUDIT clause:
1. Obtain the SECADM authority if you do not have it. Alternately, you can have

the SECADM authority grant you the required privileges to create an audit
policy. A user with the SYSOPR authority can activate the policy.

2. Create audit policy TABADT1 by issuing the following INSERT statement:

INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, OBJECTSCHEMA,
OBJECTNAME, OBJECTTYPE, EXECUTE)

VALUES(’TABADT1’,’EMPLOYEE’,’SALARY’,’T’,’A’);

DB2 checks to make sure that you have the required privilege to issue the
INSERT statement. Upon successful verification, it inserts a row in
SYSIBM.SYSAUDITPOLICIES to include the new policy.

3. Activate the audit policy by issuing the START TRACE command:

-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(TABADT1);

Chapter 9. Auditing access to DB2 293

|
|
|

|

|

|

|
|

|

|
|
|

|

|

|

|

|
|
|

|
|

|

|

|
|

|
|

|
|
|

|

|

|
|
|

|

|
|
|

|

|

|

PSPI DB2 checks to make sure that you have the required privilege to run
the START TRACE command. Upon successful verification, it starts the IFCID 143,
144, and 145 trace records.
For example, if a user issues the SELECT statement to select from the
EMPLOYEE.SALARY table, DB2 records the query activity in the IFCID 144

trace record. PSPI

Additional sources of audit information
In addition to the audit trace, DB2 offers other sources of audit information for you
to use.

Additional DB2 traces
DB2 accounting, statistics, and performance traces are also available. You
can also use DB2 Performance Expert to print reports of these traces.

Recovery log
Although the recovery log is not an all-purpose log, it can be useful for
auditing. You can print information from the log by using the DSN1LOGP
utility. For example, the summary report can show which table spaces have
been updated within the range of the log that you scan. The REPORT
utility can indicate what log information is available and where it is
located.

Image copies of table spaces
Typical recovery procedures generate image copies of table spaces. You can
inspect these copies, or use them with the RECOVER utility to recover a
table space to a particular point in time. If you recover to a point in time,
you narrow the time period during which a particular change could have
been made.

z/OS console log
The z/OS console log contains messages about exceptional conditions that
are encountered during DB2 operation. Inspect this log for symptoms of
problems.

Determining ID privileges and authorities
As an auditor, you must be aware of the privileges and authorities that are
associated with the IDs or roles in the DB2 subsystem.

You can use the following methods to determine the privileges and authorities that
a specific ID or role holds:
v Query the DB2 catalog to determine which IDs or roles hold particular

privileges.
v Check on individual IDs that are associated with group IDs or roles. Some

authorization IDs that you encounter are probably group IDs, to which many
individual IDs can be connected. To see which IDs are connected to a group,
obtain a report from RACF or from whatever external security system you are
using. These reports can tell you which IDs have the required privileges to use
DB2 data sets and other resources.

294 Managing Security

|

|
|
|

|
|

|

Auditing specific IDs or roles
As with other types of DB2 traces, you can start an audit trace for a particular plan
name, a primary authorization ID, a role, or all of the above.

You might consider having audit traces on at all times for IDs with the SYSADM
authority because they have complete access to every table. If you have a network
of DB2 subsystems, you might need to trace multiple authorization IDs if the
primary authorization IDs are translated several times. For embedded SQL, the
audited ID is the primary authorization ID of the plan or package owner. For
dynamic SQL, the audited ID is the primary authorization ID.

You can also start an audit trace for a particular role in a trusted context by using
the ROLE and XROLE filters. For example, you can issue the following command
to write accounting records for threads with a ROLE = abc:

-start trace(acctg) dest(smf) role(abc)

You can also issue the following command to write accounting records for threads
with a ROLE= abc:

-start trace(acctg) dest(smf) xrole(abc)

In addition, you can use the asterisk (*) wildcard character (as in "abc*") or the
underscore (_) wildcard character (as in "a_c") for more flexibility in audit tracing.
Related tasks

“Auditing specific tables”

Auditing specific tables
You can issue the CREATE TABLE or ALTER TABLE statement to audit a specific
table.

Example: DB2 audits the department table whenever the audit trace is on
if you create the table with the following statement:
CREATE TABLE DSN81010.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO))

IN DSN8D10A.DSN8S10D
AUDIT CHANGES;

Because this statement includes the AUDIT CHANGES option, DB2 audits the
table for each access that inserts, updates, or deletes data (trace class 4).

Chapter 9. Auditing access to DB2 295

|
|

Example: To also audit the table for read accesses (class 5), issue the following
statement:
ALTER TABLE DSN81010.DEPT

AUDIT ALL;

The statement is effective regardless of whether the table was previously chosen
for auditing.

Example: To prevent all auditing of the table, issue the following statement:
ALTER TABLE DSN81010.DEPT

AUDIT NONE;

For the CREATE TABLE statement, the default audit option is NONE. For the
ALTER TABLE statement, no default option exists. If you do not use the AUDIT
clause in an ALTER TABLE statement, the audit option for the table is unchanged.

When CREATE TABLE statements or ALTER TABLE statements affect the audit of
a table, you can audit those statements. However, the results of those audits are in
audit class 3, not in class 4 or class 5. Use audit class 3 to determine whether
auditing was turned off for a table for an interval of time.

If an ALTER TABLE statement turns auditing on or off for a specific table, any
packages that use the table are invalidated and must be rebound. If you change the
auditing status, the change does not affect packages, or dynamic SQL statements
that are currently running. The change is effective only for packages or dynamic
SQL statements that begin running after the ALTER TABLE statement has
completed.

.
Related tasks

“Auditing specific IDs or roles” on page 295

Ensuring data accuracy and integrity
DB2 provides many controls that you can apply to data entry and update.

Some of the controls are automatic; some are optional. All of the controls prohibit
certain operations and provide error or warning messages if those operations are
attempted. You can use these controls as a set auditing techniques to ensure data
accuracy and integrity.

The set of techniques is not intended to be exhaustive. Other combinations of
techniques are possible. For example, you can use table check constraints or a view
with the check option to ensure that data values are members of a certain set. Or
you can set up a master table and define referential constraints. You can also
enforce the controls through application programs, and restrict the INSERT and
UPDATE privileges only to those programs.
Related tasks

“Ensuring data consistency” on page 298

Ensuring data presence and uniqueness
You can define columns with the NOT NULL clause to ensure that the required
data is present. You can also control the type of data by assigning data types and
lengths to column data.

296 Managing Security

For example, you can specify that alphabetic data cannot be entered into a column
with one of the numeric data types. You can also specify that the data for a DATE
or TIME column must use a specific format.

You must ensure that the data in a column or a set of columns is unique. You can
do so by creating a unique index on a column or set of columns.

Protecting data integrity
Triggers and table check constraints enhance the ability to control data integrity.
Triggers are very useful for defining and enforcing rules that involve different
states of DB2 data.

For example, a rule can prevent a salary column from more than a ten percent
increase. A trigger can enforce this rule and provide the value of the salary before
and after the increase for comparison.

Table check constraints designate the values that specific columns of a base table
can contain. A check constraint can express simple constraints, such as a required
pattern or a specific range, and rules that refer to other columns of the same table.

As an auditor, you can verify that the table definitions express the required
constraints on column values as table check constraints. You can also create a view
with the check option and insert or update values only through that view.

Example: Suppose that, in table T, data in column C1 must be a number
between 10 and 20. Suppose also that data in column C2 is an alphanumeric code
that must begin with A or B. Create view V1 with the following statement:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A%’ OR C2 LIKE ’B%’)

WITH CHECK OPTION;

Because of the CHECK OPTION, view V1 allows only data that satisfies the

WHERE clause.

You cannot use the LOAD utility with a view, but that restriction does not apply to
user-written exit routines; you can consider using the following types of
user-written routines:

Validation routines
You can use validation routines to validate data values. Validation routines
access an entire row of data, check the current plan name, and return a
nonzero code to DB2 to indicate an invalid row.

Edit routines
Edit routines have the same access as validation routines, and can also
change the row that is to be inserted. Auditors typically use edit routines
to encrypt data and to substitute codes for lengthy fields. However, edit
routines can also validate data and return nonzero codes.

Field procedures
Field procedures access data that is intended for a single column; they
apply only to short-string columns. However, they accept input

Chapter 9. Auditing access to DB2 297

parameters, so generalized procedures are possible. A column that is
defined with a field procedure can be compared only to another column
that uses the same procedure.

Tracking data changes
Triggers offer an efficient means of maintaining an audit trail. You can define a
trigger to activate in response to certain DELETE, INSERT, or UPDATE statements
that change data.

You can qualify a trigger by providing a list of column names when you define the
trigger. The qualified trigger is activated only when one of the named columns is
changed. A trigger that performs validation for changes that are made in an
UPDATE operation must access column values both before and after the update.
Transition variables (available only to row triggers) contain the column values of
the row change that activated the trigger. The old column values and the column
values from after the triggering operation are both available.

Checking for lost and incomplete transactions
You can use the database balancing technique to alert you about lost and
incomplete transactions. For each set of data, database balancing determines
whether the opening balance and control totals equal the closing balance and
control totals of processed transactions.

DB2 has no automatic mechanism to calculate control totals and column balances
and compare them with transaction counts and field totals. Therefore, to use
database balancing, you must design these mechanisms into the application
program.

Example: Use your application program to maintain a control table. The control
table contains information to balance the control totals and field balances for
update transactions against a user's view. The control table might contain these
columns:
v View name
v Authorization ID
v Number of logical rows in the view (not the same as the number of physical

rows in the table)
v Number of insert transactions and update transactions
v Opening balances
v Totals of insert transaction amounts and update transaction amounts
v Relevant audit trail information such as date, time, workstation ID, and job

name

The program updates the transaction counts and amounts in the control table each
time it completes an insert or update to the view. To maintain coordination during
recovery, the program commits the work only after it updates the control table.
After the application processes all transactions, the application writes a report that
verifies the control total and balancing information.

Ensuring data consistency
When you control data entry, you perform only part of a complete security and
auditing policy. You must also verify the results when data is accessed and
changed. In addition, you need to make sure that your data is consistent.

298 Managing Security

Related concepts

“Ensuring data accuracy and integrity” on page 296

Using referential integrity for data consistency
Referential integrity ensures that data is consistent across tables. When you define
primary and foreign keys, DB2 automatically enforces referential integrity.

As a result, every value of a foreign key in a dependent table must be a value of a
primary key in the appropriate parent table. However, DB2 does not enforce
informational referential constraints across subsystems.

Recommendation: Use referential integrity to ensure that a column allows only
specific values. Set up a master table of allowable values, and define its primary
key. Define foreign keys in other tables that must have matching values in their
columns. In most cases, you should use the SET NULL delete rule.
Related tasks

“Using locks for data consistency”
“Checking data consistency” on page 300

Using locks for data consistency
Locks can ensure that data remains consistent even when multiple users try to
access the same data at the same time. You can use locks to ensure that only one
user is privileged to change data at a given time and that no user is privileged to
access uncommitted data.

If you use repeatable read (RR), read stability (RS), or cursor stability (CS) as your
isolation level, DB2 automatically controls access to data by using locks. However,
if you use uncommitted read (UR) as your isolation level, users can access
uncommitted data and introduce inconsistent data. As an auditor, you must know
the applications that use UR isolation and that can introduce inconsistent data or
create security risks.

For static SQL, you can determine the plans and packages that use UR
isolation by querying the catalog.

Example: For static SQL statements, use the following query to determine which
plans use UR isolation:
SELECT DISTINCT Y.PLNAME

FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y
WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = ’U’)

OR Y.ISOLATION = ’U’
ORDER BY Y.PLNAME;

Example: For static SQL statements, use the following query to determine which
packages use UR isolation:
SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION

FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y
WHERE (X.LOCATION = Y.LOCATION AND

X.LOCATION = ’ ’ AND
X.COLLID = Y.COLLID AND
X.NAME = Y.NAME AND
X.VERSION = Y.VERSION AND
X.ISOLATION = ’U’)

OR Y.ISOLATION = ’U’
ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

Chapter 9. Auditing access to DB2 299

For dynamic SQL statements, turn on performance trace class 3 to determine which

plans and packages use UR isolation.

Consistency between systems: When an application program writes data to both
DB2 and IMS, or to both DB2 and CICS, the subsystems prevent concurrent use of
data until the program declares a point of consistency.
Related tasks

“Using referential integrity for data consistency” on page 299
“Checking data consistency”

Checking data consistency
Whenever an operation changes the contents of a data page or an index page, DB2
verifies that the modifications do not produce inconsistent data.

You can run the DSN1CHKR utility to verify the integrity of the DB2 catalog and
the directory table spaces. You can also run this utility to scan the specified table
space for broken links, damaged hash chains, or orphan entries.

You can use a variety of other SQL queries, commands, and utilities to check data
consistency.
Related tasks

“Using referential integrity for data consistency” on page 299
“Using locks for data consistency” on page 299

Checking data consistency with SQL queries
If you suspect that a table contains inconsistent data, you can submit an SQL query
to search for a specific type of error.

Example: Consider the view that is created by the following statement as an
example:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A%’ OR C2 LIKE ’B%’)

WITH CHECK OPTION;

The view allows an insert or update to table T1 only if the value in column C1 is
between 10 and 20 and if the value in C2 begins with A or B. To check that the
control has not been bypassed, issue the following statement:
SELECT * FROM T1

WHERE NOT (C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A

If the control has not been bypassed, DB2 returns no rows and thereby confirms
that the contents of the view are valid. You can also use SQL statements to get
information from the DB2 catalog about referential constraints that exist.

Checking data consistency with the CHECK utilities
You can use the CHECK DATA, CHECK INDEX, and CHECK LOB online utilities
to ensure data consistency.

CHECK DATA
The CHECK DATA utility checks referential constraints (but not

300 Managing Security

|
|

informational referential constraints). It determines whether each foreign
key value in each row is a value of the primary key in the appropriate
parent table.

The CHECK DATA utility also checks table check constraints and checks
the consistency between a base table space and any associated LOB or
XML table spaces. It determines whether each value in a row is within the
range that was specified for that column when the table was created.

The CHECK DATA utility also performs consistency checks on XML table
spaces and related NodeID indexes. It verifies the consistency of XML
documents that are stored in an XML table space and validates the
documents against one or more XML schemas that are specified in the
XML type modifier.

CHECK INDEX
The CHECK INDEX utility checks the consistency of indexes with the data
to which the indexes point. It determines whether each index pointer
points to a data row with the same value as the index key. If an index key
points to a LOB, the CHECK INDEX utility determines whether the index
key points to the correct LOB. If an index key points to an XML, the
CHECK INDEX utility determines whether the index key points to the
correct XML.

CHECK LOB
The CHECK LOB utility checks the consistency of a LOB table space. It
determines whether any LOBs in the LOB table space are invalid.

Checking data consistency with the DISPLAY DATABASE
command
If you allow a table to be loaded without enforcing referential constraints on its
foreign key columns, the table might contain data that violates the constraints. In
this case, DB2 places the table space that contains the table in the CHECK-pending
status.

You can determine the table spaces with the CHECK-pending status by using the
DISPLAY DATABASE command with the RESTRICT option. You can also use the
DISPLAY DATABASE command to display table spaces with invalid LOBs.

Checking data consistency with the REPORT utility
You can use the REPORT utility with the TABLESPACESET keyword to retrieve
certain information about data consistency.
v Table spaces that contain a set of tables interconnected by referential constraints
v LOB or XML table spaces that are associated with base tables
v Base table column and partition numbers that are associated with each LOB or

XML table space.

Checking data consistency with the operation log
You can use the operation log to verify that DB2 is operated reliably and to reveal
unauthorized operations and overrides. The operation log consists of an automated
log of DB2 operator commands, such as those for starting and stopping the
subsystem, and DB2 abends.

The operation log records the following information:
v Command or condition type
v Date and time when the command was issued
v Authorization ID that issued the command

Chapter 9. Auditing access to DB2 301

|
|
|
|
|

v Database connection code

You can obtain this information from the system log (SYSLOG), the SMF data set,
or the automated job scheduling system. To obtain the information, use SMF
reporting, job-scheduler reporting, or a user-developed program. As a good
practice, review the log report daily and keep a history file for comparison.
Because abnormal DB2 termination can indicate integrity problems, implement an
immediate notification procedure to alert the appropriate personnel (DBA, systems
supervisor, and so on) of abnormal DB2 terminations.

Checking data consistency with internal integrity reports
You can generate internal integrity reports for application programs and utilities.

For application programs, you can record any DB2 return codes that indicate
possible data integrity problems, such as inconsistency between index and table
information, physical errors on database disk, and so on. All programs must check
the SQLCODE or the SQLSTATE for the return code that is issued after an SQL
statement is run. DB2 records, on SMF, the occurrence (but not the cause) of
physical disk errors and application program abends. The program can retrieve
and report this information; the system log (SYSLOG) and the DB2 job output also
have this information. However, in some cases, only the program can provide
enough detail to identify the exact nature of problem.

You can incorporate these integrity reports into application programs, or you can
use them separately as part of an interface. The integrity report records the
incident in a history file and writes a message to the operator's console, a database
administrator's TSO terminal, or a dedicated printer for certain codes. The recorded
information includes the following:
v Date
v Time
v Authorization ID
v Terminal ID or job name
v Application
v Affected view or affected table
v Error code
v Error description

When a DB2 utility reorganizes or reconstructs data in the database, it produces
statistics to verify record counts and to report errors. The LOAD and REORG
utilities produce data record counts and index counts to verify that no records
were lost. In addition to that, keep a history log of any DB2 utility that updates
data, particularly REPAIR. Regularly produce and review these reports, which you
can obtain through SMF customized reporting or a user-developed program.

302 Managing Security

Information resources for DB2 for z/OS and related products

Many information resources are available to help you use DB2 for z/OS and many
related products. A large amount of technical information about IBM products is
now available online in information centers or on library websites.

Disclaimer: Any web addresses that are included here are accurate at the time this
information is being published. However, web addresses sometimes change. If you
visit a web address that is listed here but that is no longer valid, you can try to
find the current web address for the product information that you are looking for
at either of the following sites:
v http://www.ibm.com/support/publications/us/library/index.shtml, which lists

the IBM information centers that are available for various IBM products
v http://www.ibm.com/shop/publications/order, which is the IBM Publications

Center, where you can download online PDF books or order printed books for
various IBM products

DB2 for z/OS product information

The primary place to find and use information about DB2 for z/OS is the
Information Management Software for z/OS Solutions Information Center
(http://publib.boulder.ibm.com/infocenter/imzic), which also contains information
about IMS, QMF, and many DB2 and IMS Tools products. This information center
is also available as an installable information center that can run on a local system
or on an intranet server. You can order the Information Management for z/OS
Solutions Information Center DVD (SK5T-7377) for a low cost from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

The majority of the DB2 for z/OS information in this information center is also
available in the books that are identified in the following table. You can access
these books at the DB2 for z/OS library website (http://www.ibm.com/software/
data/db2/zos/library.html) or at the IBM Publications Center
(http://www.ibm.com/shop/publications/order).

Table 82. DB2 10 for z/OS book titles

Title
Publication
number

Available in
information
center

Available in
PDF

Available in
printed format

DB2 10 for z/OS Administration Guide SC19-2968 X X

DB2 10 for z/OS Application Programming &
SQL Guide

SC19-2969 X X

DB2 10 for z/OS Application Programming
Guide and Reference for Java

SC19-2970 X X

DB2 10 for z/OS Codes GC19-2971 X X

DB2 10 for z/OS Command Reference SC19-2972 X X

DB2 10 for z/OS Data Sharing: Planning and
Administration

SC19-2973 X X

DB2 10 for z/OS Diagnosis Guide and Reference
1

LY37-3220 X X

© Copyright IBM Corp. 1982, 2011 303

http://www.ibm.com/support/publications/us/library/index.shtml
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/software/data/db2/zos/library.html
http://www.ibm.com/shop/publications/order

Table 82. DB2 10 for z/OS book titles (continued)

Title
Publication
number

Available in
information
center

Available in
PDF

Available in
printed format

DB2 10 for z/OS Installation and Migration
Guide

GC19-2974 X X

DB2 10 for z/OS Internationalization Guide SC19-2975 X X

DB2 10 for z/OS Introduction to DB2 SC19-2976 X X

DB2 10 for z/OS Licensed Program
Specifications

GC19-2977 X X

DB2 10 for z/OS Managing Performance SC19-2978 X X

DB2 10 for z/OS Messages GC19-2979 X X

DB2 10 for z/OS ODBC Guide and Reference SC19-2980 X X

DB2 10 for z/OS Program Directory GI10-8829 X X

DB2 10 for z/OS pureXML Guide SC19-2981 X X

DB2 10 for z/OS RACF Access Control Module
Guide

SC19-2982 X X

DB2 10 for z/OS SQL Reference SC19-2983 X X

DB2 10 for z/OS Utility Guide and Reference SC19-2984 X X

DB2 10 for z/OS What's New? GC19-2985 X X

IRLM Messages and Codes for IMS and DB2 for
z/OS

GC19-2666 X X

Note:

1. DB2 10 for z/OS Diagnosis Guide and Reference is available in PDF format on the DB2 10 for z/OS Licensed Library
Collection kit, LK5T-7390. You can order this Licensed Library Collection kit on the IBM Publications Center site
(http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss). This book is also available in online
format in DB2 data set DSNA10.SDSNIVPD(DSNDR).

Information resources for related products

In the following table, related product names are listed in alphabetic order, and the
associated web addresses of product information centers or library web pages are
indicated.

Table 83. Related product information resource locations

Related product Information resources

C/C++ for z/OS Library website: http://www.ibm.com/software/awdtools/czos/library/

This product is now called z/OS XL C/C++.

CICS Transaction Server for
z/OS

Information center: http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

COBOL Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

This product is now called Enterprise COBOL for z/OS.

DB2 Connect Information center: http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

This resource is for DB2 Connect 9.

DB2 Database for Linux,
UNIX, and Windows

Information center: http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

This resource is for DB2 9 for Linux, UNIX, and Windows.

304 Managing Security

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/awdtools/czos/library/
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Table 83. Related product information resource locations (continued)

Related product Information resources

DB2 Query Management
Facility™

Information center: http://publib.boulder.ibm.com/infocenter/imzic

DB2 Server for VSE & VM Product website: http://www.ibm.com/software/data/db2/vse-vm/

DB2 Tools One of the following locations:

v Information center: http://publib.boulder.ibm.com/infocenter/imzic

v Library website: http://www.ibm.com/software/data/db2imstools/library.html

These resources include information about the following products and others:

v DB2 Administration Tool

v DB2 Automation Tool

v DB2 Log Analysis Tool

v DB2 Object Restore Tool

v DB2 Query Management Facility

v DB2 SQL Performance Analyzer

DB2 Universal Database™

for iSeries®
Information center: http://www.ibm.com/systems/i/infocenter/

Debug Tool for z/OS Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Enterprise COBOL for
z/OS

Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Enterprise PL/I for z/OS Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

InfoSphere® Replication
Server for z/OS

Information center: http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.swg.im.iis.db.prod.repl.nav.doc/dochome/iiyrcnav_dochome.html

This product was also known as DB2 DataPropagator, DB2 Information Integrator
Replication Edition for z/OS, and WebSphere Replication Server for z/OS.

IMS Information center: http://publib.boulder.ibm.com/infocenter/imzic

IMS Tools One of the following locations:

v Information center: http://publib.boulder.ibm.com/infocenter/imzic

v Library website: http://www.ibm.com/software/data/db2imstools/library.html

These resources have information about the following products and others:

v IMS Batch Terminal Simulator for z/OS

v IMS Connect

v IMS HALDB Conversion and Maintenance Aid

v IMS High Performance Utility products

v IMS DataPropagator

v IMS Online Reorganization Facility

v IMS Performance Analyzer

Integrated Data
Management products

Information center: http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp

This information center has information about the following products and others:

v IBM Data Studio

v InfoSphere Data Architect

v InfoSphere Warehouse

v Optim™ Database Administrator

v Optim Development Studio

v Optim Query Tuner

Information resources for DB2 for z/OS and related products 305

http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2/vse-vm/
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2imstools/library.html
http://www.ibm.com/systems/i/infocenter/
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.iis.db.prod.repl.nav.doc/dochome/iiyrcnav_dochome.html
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.swg.im.iis.db.prod.repl.nav.doc/dochome/iiyrcnav_dochome.html
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://www.ibm.com/software/data/db2imstools/library.html
http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp

Table 83. Related product information resource locations (continued)

Related product Information resources

PL/I Information center: http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

This product is now called Enterprise PL/I for z/OS.

System z® http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

Tivoli OMEGAMON XE
for DB2 Performance
Expert on z/OS

Information center: http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/
com.ibm.omegamon.xe_db2.doc/ko2welcome_pe.htm

In earlier releases, this product was called DB2 Performance Expert for z/OS.

WebSphere Application
Server

Information center: http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

WebSphere Message Broker
with Rules and Formatter
Extension

Information center: http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/
index.jsp

The product is also known as WebSphere MQ Integrator Broker.

WebSphere MQ Information center: http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

The resource includes information about MQSeries®.

z/Architecture® Library Center site: http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

306 Managing Security

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.omegamon.xe_db2.doc/ko2welcome_pe.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.omegamon.xe_db2.doc/ko2welcome_pe.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Table 83. Related product information resource locations (continued)

Related product Information resources

z/OS Library Center site: http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

This resource includes information about the following z/OS elements and components:

v Character Data Representation Architecture

v Device Support Facilities

v DFSORT

v Fortran

v High Level Assembler

v NetView®

v SMP/E for z/OS

v SNA

v TCP/IP

v TotalStorage Enterprise Storage Server®

v VTAM

v z/OS C/C++

v z/OS Communications Server

v z/OS DCE

v z/OS DFSMS

v z/OS DFSMS Access Method Services

v z/OS DFSMSdss

v z/OS DFSMShsm

v z/OS DFSMSdfp

v z/OS ICSF

v z/OS ISPF

v z/OS JES3

v z/OS Language Environment®

v z/OS Managed System Infrastructure

v z/OS MVS

v z/OS MVS JCL

v z/OS Parallel Sysplex®

v z/OS RMF™

v z/OS Security Server

v z/OS UNIX System Services

z/OS XL C/C++ http://www.ibm.com/software/awdtools/czos/library/

The following information resources from IBM are not necessarily specific to a
single product:
v The DB2 for z/OS Information Roadmap; available at: http://www.ibm.com/

software/data/db2/zos/roadmap.html
v DB2 Redbooks® and Redbooks about related products; available at:

http://www.ibm.com/redbooks
v IBM Educational resources:

– Information about IBM educational offerings is available on the web at:
http://www.ibm.com/software/sw-training/

Information resources for DB2 for z/OS and related products 307

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/software/awdtools/czos/library/
http://www.ibm.com/software/data/db2/zos/roadmap.html
http://www.ibm.com/software/data/db2/zos/roadmap.html
http://www.ibm.com/redbooks
http://www.ibm.com/software/sw-training/

– A collection of glossaries of IBM terms in multiple languages is available on
the IBM Terminology website at: http://www.ibm.com/software/
globalization/terminology/index.jsp

v National Language Support information; available at the IBM Publications
Center at: http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi

v SQL Reference for Cross-Platform Development; available at the following
developerWorks® site: http://www.ibm.com/developerworks/db2/library/
techarticle/0206sqlref/0206sqlref.html

The following information resources are not published by IBM but can be useful to
users of DB2 for z/OS and related products:
v Database design topics:

– DB2 for z/OS and OS/390® Development for Performance Volume I, by Gabrielle
Wiorkowski, Gabrielle & Associates, ISBN 0-96684-605-2

– DB2 for z/OS and OS/390 Development for Performance Volume II, by Gabrielle
Wiorkowski, Gabrielle & Associates, ISBN 0-96684-606-0

– Handbook of Relational Database Design, by C. Fleming and B. Von Halle,
Addison Wesley, ISBN 0-20111-434-8

v Distributed Relational Database Architecture™ (DRDA) specifications;
http://www.opengroup.org

v Domain Name System: DNS and BIND, Third Edition, Paul Albitz and Cricket
Liu, O'Reilly, ISBN 0-59600-158-4

v Microsoft Open Database Connectivity (ODBC) information;
http://msdn.microsoft.com/library/

v Unicode information; http://www.unicode.org

308 Managing Security

http://www.ibm.com/software/globalization/terminology/index.jsp
http://www.ibm.com/software/globalization/terminology/index.jsp
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/developerworks/db2/library/techarticle/0206sqlref/0206sqlref.html
http://www.ibm.com/developerworks/db2/library/techarticle/0206sqlref/0206sqlref.html
http://www.opengroup.org
http://msdn.microsoft.com/library/
http://www.unicode.org

How to obtain DB2 information

You can access the official information about the DB2 product in a number of
ways.
v “DB2 on the web”
v “DB2 product information”
v “DB2 education” on page 310
v “How to order the DB2 library” on page 310

DB2 on the web

Stay current with the latest information about DB2 by visiting the DB2 home page
on the web:

http://www.ibm.com/software/db2zos

On the DB2 home page, you can find links to a wide variety of information
resources about DB2. You can read news items that keep you informed about the
latest enhancements to the product. Product announcements, press releases, fact
sheets, and technical articles help you plan and implement your database
management strategy.

DB2 product information

The official DB2 for z/OS information is available in various formats and delivery
methods. IBM provides mid-version updates to the information in the information
center and in softcopy updates that are available on the web and on CD-ROM.

Information Management Software for z/OS Solutions Information Center
DB2 product information is viewable in the information center, which is
the primary delivery vehicle for information about DB2 for z/OS, IMS,
QMF, and related tools. This information center enables you to search
across related product information in multiple languages for data
management solutions for the z/OS environment and print individual
topics or sets of related topics. You can also access, download, and print
PDFs of the publications that are associated with the information center
topics. Product technical information is provided in a format that offers
more options and tools for accessing, integrating, and customizing
information resources. The information center is based on Eclipse open
source technology.

The Information Management Software for z/OS Solutions Information
Center is viewable at the following website:

http://publib.boulder.ibm.com/infocenter/imzic

CD-ROMs and DVD
Books for DB2 are available on a CD-ROM that is included with your
product shipment:
v DB2 10 for z/OS Licensed Library Collection, LK5T-7390, in English

The CD-ROM contains the collection of books for DB2 10 for z/OS in PDF
format. Periodically, IBM refreshes the books on subsequent editions of this
CD-ROM.

© Copyright IBM Corp. 1982, 2011 309

http://www.ibm.com/software/db2zos
http://publib.boulder.ibm.com/infocenter/imzic

The books for DB2 for z/OS are also available on the following DVD
collection kit, which contains online books for many IBM products:
v IBM z/OS Software Products DVD Collection, SK3T–4271, in English

PDF format
Many of the DB2 books are available in PDF (Portable Document Format)
for viewing or printing from CD-ROM or the DB2 home page on the web
or from the information center. Download the PDF books to your intranet
for distribution throughout your enterprise.

DB2 education

IBM Education and Training offers a wide variety of classroom courses to help you
quickly and efficiently gain DB2 expertise. IBM schedules classes in cities all over
the world. You can find class information, by country, at the IBM Learning Services
website:

http://www.ibm.com/services/learning

IBM also offers classes at your location, at a time that suits your needs. IBM can
customize courses to meet your exact requirements. For more information,
including the current local schedule, contact your IBM representative.

How to order the DB2 library

To order books, visit the IBM Publication Center on the web:

http://www.ibm.com/shop/publications/order

From the IBM Publication Center, you can go to the Publication Notification
System (PNS). PNS users receive electronic notifications of updated publications in
their profiles. You have the option of ordering the updates by using the
publications direct ordering application or any other IBM publication ordering
channel. The PNS application does not send automatic shipments of publications.
You will receive updated publications and a bill for them if you respond to the
electronic notification.

You can also order DB2 publications and CD-ROMs from your IBM representative
or the IBM branch office that serves your locality. If your location is within the
United States or Canada, you can place your order by calling one of the toll-free
numbers:
v In the U.S., call 1-800-879-2755.
v In Canada, call 1-800-426-4968.

To order additional copies of licensed publications, specify the SOFTWARE option.
To order additional publications or CD-ROMs, specify the PUBLICATIONS option.
Be prepared to give your customer number, the product number, and either the
feature codes or order numbers that you want.

310 Managing Security

http://www.ibm.com/services/learning
http://www.ibm.com/shop/publications/order

How to use the DB2 library

Titles of books in the library begin with DB2 10 for z/OS. However, references
from one book in the library to another are shortened and do not include the
product name, version, and release. Instead, they point directly to the section that
holds the information. The primary place to find and use information about DB2
for z/OS is the Information Management Software for z/OS Solutions Information
Center (http://publib.boulder.ibm.com/infocenter/imzic).

If you are new to DB2 for z/OS, Introduction to DB2 for z/OS provides a
comprehensive introduction to DB2 10 for z/OS. Topics included in this book
explain the basic concepts that are associated with relational database management
systems in general, and with DB2 for z/OS in particular.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks that are associated with DB2 are grouped into the following major
categories.

Installation

If you are involved with installing DB2, you will need to use a variety of resources,
such as:
v DB2 Program Directory

v DB2 Installation and Migration Guide

v DB2 Administration Guide

v DB2 Application Programming Guide and Reference for Java

v DB2 Codes

v DB2 Internationalization Guide

v DB2 Messages

v DB2 Managing Performance

v DB2 RACF Access Control Module Guide

v DB2 Utility Guide and Reference

If you will be using data sharing capabilities you also need DB2 Data Sharing:
Planning and Administration, which describes installation considerations for data
sharing.

If you will be installing and configuring DB2 ODBC, you will need DB2 ODBC
Guide and Reference.

If you are installing IBM Spatial Support for DB2 for z/OS, you will need IBM
Spatial Support for DB2 for z/OS User's Guide and Reference.

If you are installing IBM OmniFind® Text Search Server for DB2 for z/OS, you will
need IBM OmniFind Text Search Server for DB2 for z/OS Installation, Administration,
and Reference.

© Copyright IBM Corp. 1982, 2011 311

http://publib.boulder.ibm.com/infocenter/imzic

End use

End users issue SQL statements to retrieve data. They can also insert, update, or
delete data, with SQL statements. They might need an introduction to SQL,
detailed instructions for using SPUFI, and an alphabetized reference to the types of
SQL statements. This information is found in DB2 Application Programming and SQL
Guide, and DB2 SQL Reference.

End users can also issue SQL statements through the DB2 Query Management
Facility (QMF) or some other program, and the library for that licensed program
might provide all the instruction or reference material they need.

Application programming

Some users access DB2 without knowing it, using programs that contain SQL
statements. DB2 application programmers write those programs. Because they
write SQL statements, they need the same resources that end users do.

Application programmers also need instructions for many other topics:
v How to transfer data between DB2 and a host program—written in Java, C, or

COBOL, for example
v How to prepare to compile a program that embeds SQL statements
v How to process data from two systems simultaneously, for example, DB2 and

IMS or DB2 and CICS
v How to write distributed applications across operating systems
v How to write applications that use Open Database Connectivity (ODBC) to

access DB2 servers
v How to write applications that use JDBC and SQLJ with the Java programming

language to access DB2 servers
v How to write applications to store XML data on DB2 servers and retrieve XML

data from DB2 servers.

The material needed for writing a host program containing SQL is in DB2
Application Programming and SQL Guide.

The material needed for writing applications that use JDBC and SQLJ to access
DB2 servers is in DB2 Application Programming Guide and Reference for Java. The
material needed for writing applications that use DB2 CLI or ODBC to access DB2
servers is in DB2 ODBC Guide and Reference. The material needed for working with
XML data in DB2 is in DB2 pureXML Guide. For handling errors, see DB2 Messages
and DB2 Codes.

Information about writing applications across operating systems can be found in
IBM DB2 SQL Reference for Cross-Platform Development.

System and database administration

Administration covers almost everything else. DB2 Administration Guide divides
some of those tasks among the following sections:
v Designing a database: Discusses the decisions that must be made when

designing a database and tells how to implement the design by creating and
altering DB2 objects, loading data, and adjusting to changes.

312 Managing Security

v Security and auditing: Describes ways of controlling access to the DB2 system
and to data within DB2, to audit aspects of DB2 usage, and to answer other
security and auditing concerns.

v Operation and recovery: Describes the steps in normal day-to-day operation and
discusses the steps one should take to prepare for recovery in the event of some
failure.

DB2 Managing Performance explains how to monitor the performance of the DB2
system and its parts. It also lists things that can be done to make some parts run
faster.

If you will be using the RACF access control module for DB2 authorization
checking, you will need DB2 RACF Access Control Module Guide.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need DB2 Administration Guide. If you also want to carry out your
own plans by creating DB2 objects, granting privileges, running utility jobs, and so
on, you also need:
v DB2 SQL Reference, which describes the SQL statements you use to create, alter,

and drop objects and grant and revoke privileges
v DB2 Utility Guide and Reference, which explains how to run utilities
v DB2 Command Reference, which explains how to run commands

If you will be using data sharing, you need DB2 Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
DB2 Messages and DB2 Codes, which list messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis

Diagnosticians detect and describe errors in the DB2 program. They might also
recommend or apply a remedy. The documentation for this task is in DB2 Diagnosis
Guide and Reference, DB2 Messages, and DB2 Codes.

How to use the DB2 library 313

314 Managing Security

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1982, 2011 315

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

316 Managing Security

Programming Interface Information
This information is intended to help you to plan for and administer DB2 10 for
z/OS. This information also documents General-use Programming Interface and
Associated Guidance Information and Product-sensitive Programming Interface
and Associated Guidance Information provided by DB2 10 for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 10 for z/OS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 317

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

318 Managing Security

Glossary

abend See abnormal end of task.

abend reason code
A 4-byte hexadecimal code that uniquely
identifies a problem with DB2.

abnormal end of task (abend)
Termination of a task, job, or subsystem
because of an error condition that
recovery facilities cannot resolve during
execution.

access method services
The facility that is used to define, alter,
delete, print, and reproduce VSAM
key-sequenced data sets.

access path
The path that is used to locate data that is
specified in SQL statements. An access
path can be indexed or sequential.

access path stability
A characteristic of an access path that
defines reliability for dynamic or static
queries. Access paths are not regenerated
unless there is a schema change or
manual intervention.

active log
The portion of the DB2 log to which log
records are written as they are generated.
The active log always contains the most
recent log records. See also archive log.

address space
A range of virtual storage pages that is
identified by a number (ASID) and a
collection of segment and page tables that
map the virtual pages to real pages of the
computer's memory.

address space connection
The result of connecting an allied address
space to DB2. See also allied address
space and task control block.

address space identifier (ASID)
A unique system-assigned identifier for
an address space.

AFTER trigger
A trigger that is specified to be activated
after a defined trigger event (an insert,
update, or delete operation on the table
that is specified in a trigger definition).

Contrast with BEFORE trigger and
INSTEAD OF trigger.

agent In DB2, the structure that associates all
processes that are involved in a DB2 unit
of work. See also allied agent and system
agent.

aggregate function
An operation that derives its result by
using values from one or more rows.
Contrast with scalar function.

alias An alternative name that can be used in
SQL statements to refer to a table or view
in the same or a remote DB2 subsystem.
An alias can be qualified with a schema
qualifier and can thereby be referenced by
other users. Contrast with synonym.

allied address space
An area of storage that is external to DB2
and that is connected to DB2. An allied
address space can request DB2 services.
See also address space.

allied agent
An agent that represents work requests
that originate in allied address spaces. See
also system agent.

allied thread
A thread that originates at the local DB2
subsystem and that can access data at a
remote DB2 subsystem.

allocated cursor
A cursor that is defined for a stored
procedure result set by using the SQL
ALLOCATE CURSOR statement.

ambiguous cursor
A database cursor for which DB2 cannot
determine whether it is used for update
or read-only purposes.

APAR See authorized program analysis report.

APF See authorized program facility.

API See application programming interface.

APPL A VTAM network definition statement
that is used to define DB2 to VTAM as an
application program that uses SNA LU
6.2 protocols.

© Copyright IBM Corp. 1982, 2011 319

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

application
A program or set of programs that
performs a task; for example, a payroll
application.

application period
A pair of columns with
application-maintained values that
indicates the period of time when a row
is valid. See also application-period
temporal table.

application-period temporal table
A table that includes an application
period. See also application period and
bitemporal table.

application plan
The control structure that is produced
during the bind process. DB2 uses the
application plan to process SQL
statements that it encounters during
statement execution.

application process
The unit to which resources and locks are
allocated. An application process involves
the execution of one or more programs.

application programming interface (API)
A functional interface that is supplied by
the operating system or by a separately
ordered licensed program that allows an
application program that is written in a
high-level language to use specific data or
functions of the operating system or
licensed program.

application requester
The component on a remote system that
generates DRDA requests for data on
behalf of an application.

application server
The target of a request from a remote
application. In the DB2 environment, the
application server function is provided by
the distributed data facility and is used to
access DB2 data from remote applications.

archive log
The portion of the DB2 log that contains
log records that have been copied from
the active log. See also active log.

ASCII An encoding scheme that is used to
represent strings in many environments,
typically on personal computers and
workstations. Contrast with EBCDIC and
Unicode.

ASID See address space identifier.

attachment facility
An interface between DB2 and TSO, IMS,
CICS, or batch address spaces. An
attachment facility allows application
programs to access DB2.

attribute
A characteristic of an entity. For example,
in database design, the phone number of
an employee is an attribute of that
employee.

authorization ID
A string that can be verified for
connection to DB2 and to which a set of
privileges is allowed. An authorization ID
can represent an individual or an
organizational group.

authorized program analysis report (APAR)
A report of a problem that is caused by a
suspected defect in a current release of an
IBM supplied program.

authorized program facility (APF)
A facility that allows an installation to
identify system or user programs that can
use sensitive system functions.

automatic bind
(More correctly automatic rebind.) A
process by which SQL statements are
bound automatically (without a user
issuing a BIND command) when an
application process begins execution and
the bound application plan or package it
requires is not valid.

automatic query rewrite
A process that examines an SQL statement
that refers to one or more base tables or
materialized query tables, and, if
appropriate, rewrites the query so that it
performs better.

auxiliary index
An index on an auxiliary table in which
each index entry refers to a LOB or XML
document.

auxiliary table
A table that contains columns outside the
actual table in which they are defined.
Auxiliary tables can contain either LOB or
XML data.

backout
The process of undoing uncommitted
changes that an application process made.

320 Managing Security

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

A backout is often performed in the event
of a failure on the part of an application
process, or as a result of a deadlock
situation.

backward log recovery
The final phase of restart processing
during which DB2 scans the log in a
backward direction to apply UNDO log
records for all aborted changes.

base table
A table that is created by the SQL
CREATE TABLE statement and that holds
persistent data. Contrast with clone table,
materialized query table, result table,
temporary table, and transition table.

base table space
A table space that contains base tables.

basic row format
A row format in which values for
columns are stored in the row in the
order in which the columns are defined
by the CREATE TABLE statement.
Contrast with reordered row format.

basic sequential access method (BSAM)
An access method for storing or retrieving
data blocks in a continuous sequence,
using either a sequential-access or a
direct-access device.

BEFORE trigger
A trigger that is specified to be activated
before a defined trigger event (an insert,
an update, or a delete operation on the
table that is specified in a trigger
definition). Contrast with AFTER trigger
and INSTEAD OF trigger.

begin column
In a system period or an application
period, the column that indicates the
beginning of the period. See also period.

binary large object (BLOB)
A binary string data type that contains a
sequence of bytes that can range in size
from 0 bytes to 2 GB, less 1 byte. This
string does not have an associated code
page and character set. BLOBs can
contain, for example, image, audio, or
video data. In general, BLOB values are
used whenever a binary string might
exceed the limits of the VARBINARY
type.

binary string
A sequence of bytes that is not associated
with a CCSID. Binary string data type can
be further classified as BINARY,
VARBINARY, or BLOB.

binary XML format
A representation of XML data that uses
binary values, an approach that facilitates
more efficient storage and exchange.

bind A process by which a usable control
structure with SQL statements is
generated; the structure is often called an
access plan, an application plan, or a
package. During this bind process, access
paths to the data are selected, and some
authorization checking is performed. See
also automatic bind.

bit data

v Data with character type CHAR or
VARCHAR that is defined with the
FOR BIT DATA clause. Note that using
BINARY or VARBINARY rather than
FOR BIT DATA is highly
recommended.

v Data with character type CHAR or
VARCHAR that is defined with the
FOR BIT DATA clause.

v A form of character data. Binary data is
generally more highly recommended
than character-for-bit data.

bitemporal table
A table that is both a system-period
temporal table and an application-period
temporal table. See also
application-period temporal table and
system-period temporal table.

BLOB See binary large object.

block fetch
A capability in which DB2 can retrieve, or
fetch, a large set of rows together. Using
block fetch can significantly reduce the
number of messages that are being sent
across the network. Block fetch applies
only to non-rowset cursors that do not
update data.

bootstrap data set (BSDS)
A VSAM data set that contains name and
status information for DB2 and RBA
range specifications for all active and
archive log data sets. The BSDS also
contains passwords for the DB2 directory

DB2 glossary 321

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

and catalog, and lists of conditional
restart and checkpoint records.

BSAM
See basic sequential access method.

BSDS See bootstrap data set.

buffer pool
An area of memory into which data pages
are read, modified, and held during
processing.

built-in data type
A data type that IBM supplies. Among
the built-in data types for DB2 for z/OS
are string, numeric, XML, ROWID, and
datetime. Contrast with distinct type.

built-in function
A function that is generated by DB2 and
that is in the SYSIBM schema. Contrast
with user-defined function. See also
function, cast function, external function,
sourced function, and SQL function.

business dimension
A category of data, such as products or
time periods, that an organization might
want to analyze.

cache structure
A coupling facility structure that stores
data that can be available to all members
of a Sysplex. A DB2 data sharing group
uses cache structures as group buffer
pools.

CAF See call attachment facility.

call attachment facility (CAF)
A DB2 attachment facility for application
programs that run in TSO or z/OS batch.
The CAF is an alternative to the DSN
command processor and provides greater
control over the execution environment.
Contrast with Resource Recovery Services
attachment facility.

call-level interface (CLI)
A callable application programming
interface (API) for database access, which
is an alternative to using embedded SQL.

cascade delete
A process by which DB2 enforces
referential constraints by deleting all
descendent rows of a deleted parent row.

CASE expression
An expression that is selected based on
the evaluation of one or more conditions.

cast function
A function that is used to convert
instances of a (source) data type into
instances of a different (target) data type.

castout
The DB2 process of writing changed
pages from a group buffer pool to disk.

castout owner
The DB2 member that is responsible for
casting out a particular page set or
partition.

catalog
In DB2, a collection of tables that contains
descriptions of objects such as tables,
views, and indexes.

catalog table
Any table in the DB2 catalog.

CCSID
See coded character set identifier.

CDB See communications database.

CDRA
See Character Data Representation
Architecture.

CEC See central processor complex.

central electronic complex (CEC)
See central processor complex.

central processor complex (CPC)
A physical collection of hardware that
consists of main storage, one or more
central processors, timers, and channels.

central processor (CP)
The part of the computer that contains the
sequencing and processing facilities for
instruction execution, initial program
load, and other machine operations.

CFRM See coupling facility resource
management.

CFRM policy
The allocation rules for a coupling facility
structure that are declared by a z/OS
administrator.

character conversion
The process of changing characters from
one encoding scheme to another.

Character Data Representation Architecture
(CDRA)

An architecture that is used to achieve

322 Managing Security

|
|
|

|
|
|
|

|
|
|
|
|

consistent representation, processing, and
interchange of string data.

character large object (CLOB)
A character string data type that contains
a sequence of bytes that represent
characters (single-byte, multibyte, or both)
that can range in size from 0 bytes to 2
GB, less 1 byte. In general, CLOB values
are used whenever a character string
might exceed the limits of the VARCHAR
type.

character set
A defined set of characters.

character string
A sequence of bytes that represent bit
data, single-byte characters, or a mixture
of single-byte and multibyte characters.
Character data can be further classified as
CHARACTER, VARCHAR, or CLOB.

check constraint
A user-defined constraint that specifies
the values that specific columns of a base
table can contain.

check integrity
The condition that exists when each row
in a table conforms to the check
constraints that are defined on that table.

check pending
A state of a table space or partition that
prevents its use by some utilities and by
some SQL statements because of rows
that violate referential constraints, check
constraints, or both.

checkpoint
A point at which DB2 records status
information on the DB2 log; the recovery
process uses this information if DB2
abnormally terminates.

child lock
For explicit hierarchical locking, a lock
that is held on either a table, page, row,
or a large object (LOB). Each child lock
has a parent lock. See also parent lock.

CI See control interval.

CICS Represents (in this information): CICS
Transaction Server for z/OS: Customer
Information Control System Transaction
Server for z/OS.

CICS attachment facility
A facility that provides a multithread

connection to DB2 to allow applications
that run in the CICS environment to
execute DB2 statements.

claim A notification to DB2 that an object is
being accessed. Claims prevent drains
from occurring until the claim is released,
which usually occurs at a commit point.
Contrast with drain.

claim class
A specific type of object access that can be
one of the following isolation levels:
v Cursor stability (CS)
v Repeatable read (RR)
v Write

class of service
A VTAM term for a list of routes through
a network, arranged in an order of
preference for their use.

clause In SQL, a distinct part of a statement,
such as a SELECT clause or a WHERE
clause.

CLI See call-level interface.

client See requester.

CLOB See character large object.

clone object
An object that is associated with a clone
table, including the clone table itself and
check constraints, indexes, and BEFORE
triggers on the clone table.

clone table
A table that is structurally identical to a
base table. The base and clone table each
have separate underlying VSAM data
sets, which are identified by their data set
instance numbers. Contrast with base
table.

closed application
An application that requires exclusive use
of certain statements on certain DB2
objects, so that the objects are managed
solely through the external interface of
that application.

clustering index
An index that determines how rows are
physically ordered (clustered) in a table
space. If a clustering index on a
partitioned table is not a partitioning
index, the rows are ordered in cluster
sequence within each data partition
instead of spanning partitions.

DB2 glossary 323

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

CM See conversion mode.

CM* See conversion mode*.

C++ member
A data object or function in a structure,
union, or class.

C++ member function
An operator or function that is declared
as a member of a class. A member
function has access to the private and
protected data members and to the
member functions of objects in its class.
Member functions are also called
methods.

C++ object
A region of storage. An object is created
when a variable is defined or a new
function is invoked.

An instance of a class.

coded character set
A set of unambiguous rules that establish
a character set and the one-to-one
relationships between the characters of
the set and their coded representations.

coded character set identifier (CCSID)
A 16-bit number that uniquely identifies a
coded representation of graphic
characters. It designates an encoding
scheme identifier and one or more pairs
that consist of a character set identifier
and an associated code page identifier.

code page
A set of assignments of characters to code
points. Within a code page, each code
point has only one specific meaning. In
EBCDIC, for example, the character A is
assigned code point X'C1', and character B
is assigned code point X'C2'.

code point
In CDRA, a unique bit pattern that
represents a character in a code page.

code unit
The fundamental binary width in a
computer architecture that is used for
representing character data, such as 7 bits,
8 bits, 16 bits, or 32 bits. Depending on
the character encoding form that is used,
each code point in a coded character set
can be represented by one or more code
units.

coexistence
During migration, the period of time in
which two releases exist in the same data
sharing group.

cold start
A process by which DB2 restarts without
processing any log records. Contrast with
warm start.

collection
A group of packages that have the same
qualifier.

column
The vertical component of a table. A
column has a name and a particular data
type (for example, character, decimal, or
integer).

column function
See aggregate function.

"come from" checking
An LU 6.2 security option that defines a
list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command
A DB2 operator command or a DSN
subcommand. A command is distinct
from an SQL statement.

command prefix
A 1- to 8-character command identifier.
The command prefix distinguishes the
command as belonging to an application
or subsystem rather than to z/OS.

command recognition character (CRC)
A character that permits a z/OS console
operator or an IMS subsystem user to
route DB2 commands to specific DB2
subsystems.

command scope
The scope of command operation in a
data sharing group.

commit
The operation that ends a unit of work by
releasing locks so that the database
changes that are made by that unit of
work can be perceived by other processes.
Contrast with rollback.

commit point
A point in time when data is considered
consistent.

common service area (CSA)
In z/OS, a part of the common area that

324 Managing Security

|

|

|

contains data areas that are addressable
by all address spaces. Most DB2 use is in
the extended CSA, which is above the
16-MB line.

communications database (CDB)
A set of tables in the DB2 catalog that are
used to establish conversations with
remote database management systems.

comparison operator
A token (such as =, >, or <) that is used
to specify a relationship between two
values.

compatibility mode
See conversion mode.

compatibility mode* (CM*)
See conversion mode*.

composite key
An ordered set of key columns or
expressions of the same table.

compression dictionary
The dictionary that controls the process of
compression and decompression. This
dictionary is created from the data in the
table space or table space partition.

concurrency
The shared use of resources by more than
one application process at the same time.

conditional restart
A DB2 restart that is directed by a
user-defined conditional restart control
record (CRCR).

connection
In SNA, the existence of a communication
path between two partner LUs that allows
information to be exchanged (for example,
two DB2 subsystems that are connected
and communicating by way of a
conversation).

connection context
In SQLJ, a Java object that represents a
connection to a data source.

connection declaration clause
In SQLJ, a statement that declares a
connection to a data source.

connection handle
The data object containing information
that is associated with a connection that
DB2 ODBC manages. This includes
general status information, transaction
status, and diagnostic information.

connection ID
An identifier that is supplied by the
attachment facility and that is associated
with a specific address space connection.

consistency token
A timestamp that is used to generate the
version identifier for an application. See
also version.

constant
A language element that specifies an
unchanging value. Constants are classified
as string constants or numeric constants.
Contrast with variable.

constraint
A rule that limits the values that can be
inserted, deleted, or updated in a table.
See referential constraint, check constraint,
and unique constraint.

context
An application's logical connection to the
data source and associated DB2 ODBC
connection information that allows the
application to direct its operations to a
data source. A DB2 ODBC context
represents a DB2 thread.

contracting conversion
A process that occurs when the length of
a converted string is smaller than that of
the source string. For example, this
process occurs when an EBCDIC
mixed-data string that contains DBCS
characters is converted to ASCII mixed
data; the converted string is shorter
because the shift codes are removed.

control interval (CI)

v A unit of information that VSAM
transfers between virtual and auxiliary
storage.

v In a key-sequenced data set or file, the
set of records that an entry in the
sequence-set index record points to.

conversation
Communication, which is based on LU
6.2 or Advanced Program-to-Program
Communication (APPC), between an
application and a remote transaction
program over an SNA logical
unit-to-logical unit (LU-LU) session that
allows communication while processing a
transaction.

DB2 glossary 325

|
|
|
|

|

|
|

conversion mode* (CM*)
A stage of the version-to-version
migration process that applies to a DB2
subsystem or data sharing group that was
in enabling-new-function mode (ENFM),
enabling-new-function mode* (ENFM*), or
new-function mode (NFM) at one time.
Fallback to a prior version is not
supported. When in conversion mode*, a
DB2 data sharing group cannot coexist
with members that are still at the prior
version level. Contrast with conversion
mode, enabling-new-function mode,
enabling-new-function mode*, and
new-function mode.

Previously known as compatibility mode*
(CM*).

conversion mode (CM)
The first stage of the version-to-version
migration process. In a DB2 data sharing
group, members in conversion mode can
coexist with members that are still at the
prior version level. Fallback to the prior
version is also supported. When in
conversion mode, the DB2 subsystem
cannot use most new functions of the new
version. Contrast with conversion mode*,
enabling-new-function mode,
enabling-new-function mode*, and
new-function mode.

Previously known as compatibility mode
(CM).

coordinator
The system component that coordinates
the commit or rollback of a unit of work
that includes work that is done on one or
more other systems.

coprocessor
See SQL statement coprocessor.

copy pool
A collection of names of storage groups
that are processed collectively for fast
replication operations.

copy target
A named set of SMS storage groups that
are to be used as containers for copy pool
volume copies. A copy target is an SMS
construct that lets you define which
storage groups are to be used as
containers for volumes that are copied by
using FlashCopy functions.

copy version
A point-in-time FlashCopy copy that is
managed by HSM. Each copy pool has a
version parameter that specifies the
number of copy versions to be maintained
on disk.

correlated columns
A relationship between the value of one
column and the value of another column.

correlated subquery
A subquery (part of a WHERE or
HAVING clause) that is applied to a row
or group of rows of a table or view that is
named in an outer subselect statement.

correlation ID
An identifier that is associated with a
specific thread. In TSO, it is either an
authorization ID or the job name.

correlation name
An identifier that is specified and used
within a single SQL statement as the
exposed name for objects such as a table,
view, table function reference, nested table
expression, or result of a data change
statement. Correlation names are useful in
an SQL statement to allow two distinct
references to the same base table and to
allow an alternative name to be used to
represent an object.

cost category
A category into which DB2 places cost
estimates for SQL statements at the time
the statement is bound. The cost category
is externalized in the COST_CATEGORY
column of the DSN_STATEMNT_TABLE
when a statement is explained.

coupling facility
A special PR/SM logical partition (LPAR)
that runs the coupling facility control
program and provides high-speed
caching, list processing, and locking
functions in a Parallel Sysplex.

coupling facility resource management (CFRM)
A component of z/OS that provides the
services to manage coupling facility
resources in a Parallel Sysplex. This
management includes the enforcement of
CFRM policies to ensure that the coupling
facility and structure requirements are
satisfied.

CP See central processor.

326 Managing Security

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

CPC See central processor complex.

CRC See command recognition character.

created temporary table
A persistent table that holds temporary
data and is defined with the SQL
statement CREATE GLOBAL
TEMPORARY TABLE. Information about
created temporary tables is stored in the
DB2 catalog and can be shared across
application processes. Contrast with
declared temporary table. See also
temporary table.

cross-system coupling facility (XCF)
A component of z/OS that provides
functions to support cooperation between
authorized programs that run within a
Sysplex.

cross-system extended services (XES)
A set of z/OS services that allow multiple
instances of an application or subsystem,
running on different systems in a Sysplex
environment, to implement
high-performance, high-availability data
sharing by using a coupling facility.

CS See cursor stability.

CSA See common service area.

CT See cursor table.

current data
Data within a host structure that is
current with (identical to) the data within
the base table.

current status rebuild
The second phase of restart processing
during which the status of the subsystem
is reconstructed from information on the
log.

cursor A control structure that an application
program uses to point to a single row or
multiple rows within some ordered set of
rows of a result table. A cursor can be
used to retrieve, update, or delete rows
from a result table.

cursor sensitivity
The degree to which database updates are
visible to the subsequent FETCH
statements in a cursor.

cursor stability (CS)
The isolation level that provides
maximum concurrency without the ability
to read uncommitted data. With cursor

stability, a unit of work holds locks only
on its uncommitted changes and on the
current row of each of its cursors. See also
read stability, repeatable read, and
uncommitted read.

cursor table (CT)
The internal representation of a cursor.

cycle A set of tables that can be ordered so that
each table is a descendent of the one
before it, and the first table is a
descendent of the last table. A
self-referencing table is a cycle with a
single member. See also referential cycle.

database
A collection of tables, or a collection of
table spaces and index spaces.

database access thread (DBAT)
A thread that accesses data at the local
subsystem on behalf of a remote
subsystem.

database administrator (DBA)
An individual who is responsible for
designing, developing, operating,
safeguarding, maintaining, and using a
database.

database alias
The name of the target server if it is
different from the location name. The
database alias is used to provide the
name of the database server as it is
known to the network.

database descriptor (DBD)
An internal representation of a DB2
database definition, which reflects the
data definition that is in the DB2 catalog.
The objects that are defined in a database
descriptor are table spaces, tables,
indexes, index spaces, relationships, check
constraints, and triggers. A DBD also
contains information about accessing
tables in the database.

database exception status
In a data sharing environment, an
indication that something is wrong with a
database.

database identifier (DBID)
An internal identifier of the database.

database management system (DBMS)
A software system that controls the

DB2 glossary 327

|

creation, organization, and modification of
a database and the access to the data that
is stored within it.

database request module (DBRM)
A data set member that is created by the
DB2 precompiler and that contains
information about SQL statements.
DBRMs are used in the bind process.

database server
The target of a request from a local
application or a remote intermediate
database server.

data currency
The state in which the data that is
retrieved into a host variable in a
program is a copy of the data in the base
table.

data-dependent pagination
The process used when applications need
to access part of a DB2 result set that is
based on a logical key value.

data dictionary
A repository of information about an
organization's application programs,
databases, logical data models, users, and
authorizations.

data partition
A VSAM data set that is contained within
a partitioned table space.

data-partitioned secondary index (DPSI)
A secondary index that is partitioned
according to the underlying data.
Contrast with nonpartitioned secondary
index.

data set instance number
A number that indicates the data set that
contains the data for an object.

data sharing
A function of DB2 for z/OS that enables
applications on different DB2 subsystems
to read from and write to the same data
concurrently.

data sharing group
A collection of one or more DB2
subsystems that directly access and
change the same data while maintaining
data integrity.

data sharing member
A DB2 subsystem that is assigned by XCF
services to a data sharing group.

data source
A local or remote relational or
non-relational data manager that is
capable of supporting data access via an
ODBC driver that supports the ODBC
APIs. In the case of DB2 for z/OS, the
data sources are always relational
database managers.

data type
An attribute of columns, constants,
variables, parameters, special registers,
and the results of functions and
expressions.

data warehouse
A system that provides critical business
information to an organization. The data
warehouse system cleanses the data for
accuracy and currency, and then presents
the data to decision makers so that they
can interpret and use it effectively and
efficiently.

DBA See database administrator.

DBAT See database access thread.

DB2 catalog
A collection of tables that are maintained
by DB2 and contain descriptions of DB2
objects, such as tables, views, and
indexes.

DBCLOB
See double-byte character large object.

DB2 command
An instruction to the DB2 subsystem that
a user enters to start or stop DB2, to
display information on current users, to
start or stop databases, to display
information on the status of databases,
and so on.

DBCS See double-byte character set.

DBD See database descriptor.

DB2I See DB2 Interactive.

DBID See database identifier.

DB2 Interactive (DB2I)
An interactive service within DB2 that
facilitates the execution of SQL
statements, DB2 (operator) commands,
and programmer commands, and the
invocation of utilities.

DBMS
See database management system.

328 Managing Security

|
|
|
|

|
|
|

DBRM
See database request module.

DB2 thread
The database manager structure that
describes an application's connection,
traces its progress, processes resource
functions, and delimits its accessibility to
the database manager resources and
services. Most DB2 for z/OS functions
execute under a thread structure.

DCLGEN
See declarations generator.

DDF See distributed data facility.

deadlock
Unresolved contention for the use of a
resource, such as a table or an index.

declarations generator (DCLGEN)
A subcomponent of DB2 that generates
SQL table declarations and COBOL, C, or
PL/I data structure declarations that
conform to the table. The declarations are
generated from DB2 system catalog
information.

declared temporary table
A non-persistent table that holds
temporary data and is defined with the
SQL statement DECLARE GLOBAL
TEMPORARY TABLE. Information about
declared temporary tables is not stored in
the DB2 catalog and can be used only by
the application process that issued the
DECLARE statement. Contrast with
created temporary table. See also
temporary table.

default value
A predetermined value, attribute, or
option that is assumed when no other
value is specified. A default value can be
defined for column data in DB2 tables by
specifying the DEFAULT keyword in an
SQL statement that changes data (such as
INSERT, UPDATE, and MERGE).

deferred embedded SQL
SQL statements that are neither fully
static nor fully dynamic. These statements
are embedded within an application and
are prepared during the execution of the
application.

deferred write
The process of asynchronously writing
changed data pages to disk.

degree of parallelism
The number of concurrently executed
operations that are initiated to process a
query.

delete hole
The location on which a cursor is
positioned when a row in a result table is
refetched and the row no longer exists on
the base table. See also update hole.

delete rule
The rule that tells DB2 what to do to a
dependent row when a parent row is
deleted. Delete rules include CASCADE,
RESTRICT, SET NULL, or NO ACTION.

delete trigger
A trigger that is defined with the
triggering delete SQL operation.

delimited identifier
A sequence of one or more characters
enclosed by escape characters, such as
quotation marks ("").

delimiter token
A string constant, a delimited identifier,
an operator symbol, or any of the special
characters that are shown in DB2 syntax
diagrams.

denormalization
The intentional duplication of columns in
multiple tables to increase data
redundancy. Denormalization is
sometimes necessary to minimize
performance problems. Contrast with
normalization.

dependent
An object (row, table, or table space) that
has at least one parent. The object is also
said to be a dependent (row, table, or
table space) of its parent. See also parent
row, parent table, and parent table space.

dependent row
A row that contains a foreign key that
matches the value of a primary key in the
parent row.

dependent table
A table that is a dependent in at least one
referential constraint.

descendent
An object that is a dependent of an object
or is the dependent of a descendent of an
object.

DB2 glossary 329

|
|
|
|
|
|
|

|
|
|
|
|
|
|

descendent row
A row that is dependent on another row,
or a row that is a descendent of a
dependent row.

descendent table
A table that is a dependent of another
table, or a table that is a descendent of a
dependent table.

deterministic function
A user-defined function whose result is
dependent on the values of the input
arguments. That is, successive invocations
with the same input values produce the
same answer. Sometimes referred to as a
not-variant function. Contrast with
nondeterministic function (sometimes
called a variant function).

dimension
A data category such as time, products, or
markets. The elements of a dimension are
referred to as members. See also
dimension table.

dimension table
The representation of a dimension in a
star schema. Each row in a dimension
table represents all of the attributes for a
particular member of the dimension. See
also dimension, star schema, and star join.

directory
The DB2 system database that contains
internal objects such as database
descriptors and skeleton cursor tables.

disk A direct-access storage device that records
data magnetically.

distinct type
A user-defined data type that is
represented as an existing type (its source
type), but is considered to be a separate
and incompatible type for semantic
purposes.

distributed data
Data that resides on a DBMS other than
the local system.

distributed data facility (DDF)
A set of DB2 components through which
DB2 communicates with another
relational database management system.

Distributed Relational Database Architecture
(DRDA)

A connection protocol for distributed
relational database processing that is used

by IBM relational database products.
DRDA includes protocols for
communication between an application
and a remote relational database
management system, and for
communication between relational
database management systems. See also
DRDA access.

DNS See domain name server.

DOCID
See document ID.

document ID
A value that uniquely identifies a row
that contains an XML column. This value
is stored with the row and never changes.

domain
The set of valid values for an attribute.

domain name
The name by which TCP/IP applications
refer to a TCP/IP host within a TCP/IP
network.

domain name server (DNS)
A special TCP/IP network server that
manages a distributed directory that is
used to map TCP/IP host names to IP
addresses.

double-byte character large object (DBCLOB)
A graphic string data type in which a
sequence of bytes represent double-byte
characters that range in size from 0 bytes
to 2 GB, less 1 byte. In general, DBCLOB
values are used whenever a double-byte
character string might exceed the limits of
the VARGRAPHIC type.

double-byte character set (DBCS)
A set of characters, which are used by
national languages such as Japanese and
Chinese, that have more symbols than can
be represented by a single byte. Each
character is 2 bytes in length. Contrast
with single-byte character set and
multibyte character set.

double-precision floating point number
A 64-bit approximate representation of a
real number.

DPSI See data-partitioned secondary index.

drain The act of acquiring a locked resource by
quiescing access to that object. Contrast
with claim.

330 Managing Security

|
|

|
|
|
|

|
|
|
|
|
|
|

drain lock
A lock on a claim class that prevents a
claim from occurring.

DRDA
See Distributed Relational Database
Architecture.

DRDA access
An open method of accessing distributed
data that you can use to connect to
another database server to execute
packages that were previously bound at
the server location.

DSN

v The default DB2 subsystem name.
v The name of the TSO command

processor of DB2.
v The first three characters of DB2

module and macro names.

dynamic cursor
A named control structure that an
application program uses to change the
size of the result table and the order of its
rows after the cursor is opened. Contrast
with static cursor.

dynamic dump
A dump that is issued during the
execution of a program, usually under the
control of that program.

dynamic SQL
SQL statements that are prepared and
executed at run time. In dynamic SQL,
the SQL statement is contained as a
character string in a host variable or as a
constant, and it is not precompiled.

EA-enabled table space
A table space or index space that is
enabled for extended addressability and
that contains individual partitions (or
pieces, for LOB table spaces) that are
greater than 4 GB.

EB See exabyte.

EBCDIC
Extended binary coded decimal
interchange code. An encoding scheme
that is used to represent character data in
the z/OS, VM, VSE, and iSeries
environments. Contrast with ASCII and
Unicode.

embedded SQL
SQL statements that are coded within an
application program. See static SQL.

enabling-new-function mode* (ENFM*)
A transitional stage of the
version-to-version migration process that
applies to a DB2 subsystem or data
sharing group that was in new-function
mode (NFM) at one time. When in
enabling-new-function mode*, a DB2
subsystem or data sharing group is
preparing to use the new functions of the
new version but cannot yet use them. A
data sharing group that is in
enabling-new-function mode* cannot
coexist with members that are still at the
prior version level. Fallback to a prior
version is not supported. Contrast with
conversion mode, conversion mode*,
enabling-new-function mode, and
new-function mode.

enabling-new-function mode (ENFM)
A transitional stage of the
version-to-version migration process
during which the DB2 subsystem or data
sharing group is preparing to use the new
functions of the new version. When in
enabling-new-function mode, a DB2 data
sharing group cannot coexist with
members that are still at the prior version
level. Fallback to a prior version is not
supported, and most new functions of the
new version are not available for use in
enabling-new-function mode. Contrast
with conversion mode, conversion mode*,
enabling-new-function mode*, and
new-function mode.

enclave
In Language Environment , an
independent collection of routines, one of
which is designated as the main routine.
An enclave is similar to a program or run
unit. See also WLM enclave.

encoding scheme
A set of rules to represent character data
(ASCII, EBCDIC, or Unicode).

end column
In a system period or an application
period, the column that indicates the end
of the period. See also period.

ENFM See enabling-new-function mode.

DB2 glossary 331

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

ENFM*
See enabling-new-function mode*.

entity A person, object, or concept about which
information is stored. In a relational
database, entities are represented as
tables. A database includes information
about the entities in an organization or
business, and their relationships to each
other.

enumerated list
A set of DB2 objects that are defined with
a LISTDEF utility control statement in
which pattern-matching characters (*, %;,
_, or ?) are not used.

environment
A collection of names of logical and
physical resources that are used to
support the performance of a function.

environment handle
A handle that identifies the global context
for database access. All data that is
pertinent to all objects in the environment
is associated with this handle.

equijoin
A join operation in which the
join-condition has the form expression =
expression. See also join, full outer join,
inner join, left outer join, outer join, and
right outer join.

error page range
A range of pages that are considered to be
physically damaged. DB2 does not allow
users to access any pages that fall within
this range.

escape character
The symbol, a double quotation (") for
example, that is used to enclose an SQL
delimited identifier.

exabyte
A unit of measure for processor, real and
virtual storage capacities, and channel
volume that has a value of 1 152 921 504
606 846 976 bytes or 260.

exception
An SQL operation that involves the
EXCEPT set operator, which combines
two result tables. The result of an
exception operation consists of all of the
rows that are in only one of the result
tables.

exception table
A table that holds rows that violate
referential constraints or check constraints
that the CHECK DATA utility finds.

exclusive lock
A lock that prevents concurrently
executing application processes from
reading or changing data. Contrast with
share lock.

executable statement
An SQL statement that can be embedded
in an application program, dynamically
prepared and executed, or issued
interactively.

execution context
In SQLJ, a Java object that can be used to
control the execution of SQL statements.

exit routine
A user-written (or IBM-provided default)
program that receives control from DB2 to
perform specific functions. Exit routines
run as extensions of DB2.

expanding conversion
A process that occurs when the length of
a converted string is greater than that of
the source string. For example, this
process occurs when an ASCII mixed-data
string that contains DBCS characters is
converted to an EBCDIC mixed-data
string; the converted string is longer
because shift codes are added.

explicit hierarchical locking
Locking that is used to make the
parent-child relationship between
resources known to IRLM. This kind of
locking avoids global locking overhead
when no inter-DB2 interest exists on a
resource.

explicit privilege
A privilege that has a name and is held as
the result of an SQL GRANT statement
and revoked as the result of an SQL
REVOKE statement. For example, the
SELECT privilege.

exposed name
A correlation name or a table or view
name for which a correlation name is not
specified.

expression
An operand or a collection of operators
and operands that yields a single value.

332 Managing Security

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Extended Recovery Facility (XRF)
A facility that minimizes the effect of
failures in z/OS, VTAM, the host
processor, or high-availability applications
during sessions between high-availability
applications and designated terminals.
This facility provides an alternative
subsystem to take over sessions from the
failing subsystem.

Extensible Markup Language (XML)
A standard metalanguage for defining
markup languages that is a subset of
Standardized General Markup Language
(SGML).

external function
A function that has its functional logic
implemented in a programming language
application that resides outside the
database, in the file system of the
database server. The association of the
function with the external code
application is specified by the EXTERNAL
clause in the CREATE FUNCTION
statement. External functions can be
classified as external scalar functions and
external table functions. Contrast with
sourced function, built-in function, and
SQL function.

external procedure
A procedure that has its procedural logic
implemented in an external programming
language application. The association of
the procedure with the external
application is specified by a CREATE
PROCEDURE statement with a
LANGUAGE clause that has a value other
than SQL and an EXTERNAL clause that
implicitly or explicitly specifies the name
of the external application. Contrast with
external SQL procedure and native SQL
procedure.

external routine
A user-defined function or stored
procedure that is based on code that is
written in an external programming
language.

external SQL procedure
An SQL procedure that is processed using
a generated C program that is a
representation of the procedure. When an
external SQL procedure is called, the C
program representation of the procedure
is executed in a stored procedures address

space. Contrast with external procedure
and native SQL procedure.

failed member state
A state of a member of a data sharing
group in which the member's task,
address space, or z/OS system terminates
before the state changes from active to
quiesced.

fallback
The process of returning to a previous
release of DB2 after attempting or
completing migration to a current release.
Fallback is supported only from a
subsystem that is in conversion mode.

false global lock contention
A contention indication from the coupling
facility that occurs when multiple lock
names are hashed to the same indicator
and when no real contention exists.

fan set
A direct physical access path to data,
which is provided by an index, hash, or
link; a fan set is the means by which DB2
supports the ordering of data.

federated database
The combination of a DB2 server (in
Linux, UNIX, and Windows
environments) and multiple data sources
to which the server sends queries. In a
federated database system, a client
application can use a single SQL
statement to join data that is distributed
across multiple database management
systems and can view the data as if it
were local.

fetch orientation
The specification of the desired placement
of the cursor as part of a FETCH
statement. The specification can be before
or after the rows of the result table (with
BEFORE or AFTER). The specification can
also have either a single-row fetch
orientation (for example, NEXT, LAST, or
ABSOLUTE n) or a rowset fetch
orientation (for example, NEXT ROWSET,
LAST ROWSET, or ROWSET STARTING
AT ABSOLUTE n).

field procedure
A user-written exit routine that is
designed to receive a single value and
transform (encode or decode) it in any
way the user can specify.

DB2 glossary 333

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

file reference variable
A host variable that is declared with one
of the derived data types (BLOB_FILE,
CLOB_FILE, DBCLOB_FILE); file
reference variables direct the reading of a
LOB from a file or the writing of a LOB
into a file.

filter factor
A number between zero and one that
estimates the proportion of rows in a
table for which a predicate is true.

fixed-length string
A character, graphic, or binary string
whose length is specified and cannot be
changed. Contrast with varying-length
string.

FlashCopy
A function on the IBM Enterprise Storage
Server that can, in conjunction with the
BACKUP SYSTEM utility, create a
point-in-time copy of data while an
application is running.

foreign key
A column or set of columns in a
dependent table of a constraint
relationship. The key must have the same
number of columns, with the same
descriptions, as the primary key of the
parent table. Each foreign key value must
either match a parent key value in the
related parent table or be null.

forest An ordered set of subtrees of XML nodes.

forward log recovery
The third phase of restart processing
during which DB2 processes the log in a
forward direction to apply all REDO log
records.

free space
The total amount of unused space in a
page; that is, the space that is not used to
store records or control information is free
space.

full outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves the
unmatched rows of both tables. See also
join, equijoin, inner join, left outer join,
outer join, and right outer join.

fullselect
A subselect, a fullselect in parentheses, or

a number of both that are combined by
set operators. Fullselect specifies a result
table. If a set operator is not used, the
result of the fullselect is the result of the
specified subselect or fullselect.

fully escaped mapping
A mapping from an SQL identifier to an
XML name when the SQL identifier is a
column name.

function
A mapping, which is embodied as a
program (the function body) that can be
invoked by means of zero or more input
values (arguments) to a single value (the
result). See also aggregate function and
scalar function.

Functions can be user-defined, built-in, or
generated by DB2. (See also built-in
function, cast function, external function,
sourced function, SQL function, and
user-defined function.)

function definer
The authorization ID of the owner of the
schema of the function that is specified in
the CREATE FUNCTION statement.

function package
A package that results from binding the
DBRM for a function program.

function package owner
The authorization ID of the user who
binds the function program's DBRM into
a function package.

function signature
The logical concatenation of a fully
qualified function name with the data
types of all of its parameters.

GB Gigabyte. A value of (1 073 741 824 bytes).

GBP See group buffer pool.

GBP-dependent
The status of a page set or page set
partition that is dependent on the group
buffer pool. Either read/write interest is
active among DB2 subsystems for this
page set, or the page set has changed
pages in the group buffer pool that have
not yet been cast out to disk.

generalized trace facility (GTF)
A z/OS service program that records
significant system events such as I/O

334 Managing Security

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

interrupts, SVC interrupts, program
interrupts, or external interrupts.

generated column
A column for which the database
manager assigns the value. An example of
a generated column is an identity column,
row change timestamp column, or
row-begin column. See also generated
expression column.

generated expression column
A generated column that is defined using
an expression. See also generated column.

generic resource name
A name that VTAM uses to represent
several application programs that provide
the same function in order to handle
session distribution and balancing in a
Sysplex environment.

getpage
An operation in which DB2 accesses a
data page.

global lock
A lock that provides concurrency control
within and among DB2 subsystems. The
scope of the lock is across all DB2
subsystems of a data sharing group.

global lock contention
Conflicts on locking requests between
different DB2 members of a data sharing
group when those members are trying to
serialize shared resources.

governor
See resource limit facility.

graphic string
A sequence of DBCS characters. Graphic
data can be further classified as
GRAPHIC, VARGRAPHIC, or DBCLOB.

GRECP
See group buffer pool recovery pending.

gross lock
The shared, update, or exclusive mode locks
on a table, partition, or table space.

group buffer pool duplexing
The ability to write data to two instances
of a group buffer pool structure: a
primary group buffer pool and a
secondary group buffer pool. z/OS
publications refer to these instances as the
“old” (for primary) and “new” (for
secondary) structures.

group buffer pool (GBP)
A coupling facility cache structure that is
used by a data sharing group to cache
data and to ensure that the data is
consistent for all members.

group buffer pool recovery pending (GRECP)
The state that exists after the buffer pool
for a data sharing group is lost. When a
page set is in this state, changes that are
recorded in the log must be applied to the
affected page set before the page set can
be used.

group level
The release level of a data sharing group,
which is established when the first
member migrates to a new release.

group name
The z/OS XCF identifier for a data
sharing group.

group restart
A restart of at least one member of a data
sharing group after the loss of either locks
or the shared communications area.

GTF See generalized trace facility.

handle
In DB2 ODBC, a variable that refers to a
data structure and associated resources.
See also statement handle, connection
handle, and environment handle.

hash access
Access to a table using the hash value of
a key that is defined by the
organization-clause of a CREATE TABLE
statement or ALTER TABLE statement.

hash overflow index
A DB2 index used to track data rows that
do not fit into the fixed hash space, and
therefore, reside in the hash overflow
space. DB2 accesses the hash overflow
index to fetch rows from the hash
overflow area.

help panel
A screen of information that presents
tutorial text to assist a user at the
workstation or terminal.

heuristic damage
The inconsistency in data between one or
more participants that results when a
heuristic decision to resolve an indoubt

DB2 glossary 335

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

LUW at one or more participants differs
from the decision that is recorded at the
coordinator.

heuristic decision
A decision that forces indoubt resolution
at a participant by means other than
automatic resynchronization between
coordinator and participant.

histogram statistics
A way of summarizing data distribution.
This technique divides up the range of
possible values in a data set into intervals,
such that each interval contains
approximately the same percentage of the
values. A set of statistics are collected for
each interval.

historical row
A row in a history table. See also history
table.

history table
A table that is used by the database
manager to store historical versions of the
rows from the associated system-period
temporal table. See also historical row and
system-period temporal table.

hole A row of the result table that cannot be
accessed because of a delete or an update
that has been performed on the row. See
also delete hole and update hole.

home address space
The area of storage that z/OS currently
recognizes as dispatched.

host The set of programs and resources that
are available on a given TCP/IP instance.

host expression
A Java variable or expression that is
referenced by SQL clauses in an SQLJ
application program.

host identifier
A name that is declared in the host
program.

host language
A programming language in which you
can embed SQL statements.

host program
An application program that is written in
a host language and that contains
embedded SQL statements.

host structure
In an application program, a structure
that is referenced by embedded SQL
statements.

host variable
In an application program written in a
host language, an application variable
that is referenced by embedded SQL
statements.

host variable array
An array of elements, each of which
corresponds to a value for a column. The
dimension of the array determines the
maximum number of rows for which the
array can be used.

IBM System z9 Integrated Processor (zIIP)
A specialized processor that can be used
for some DB2 functions.

IDCAMS
An IBM program that is used to process
access method services commands. It can
be invoked as a job or jobstep, from a
TSO terminal, or from within a user's
application program.

IDCAMS LISTCAT
A facility for obtaining information that is
contained in the access method services
catalog.

identity column
A generated column that is defined with
the AS IDENTITY clause. An identity
column provides a way for the database
manager to automatically generate a
numeric value for each row that is
inserted into a table. A table can have no
more than one identity column.

IFCID See instrumentation facility component
identifier.

IFI See instrumentation facility interface.

IFI call
An invocation of the instrumentation
facility interface (IFI) by means of one of
its defined functions.

image copy
An exact reproduction of all or part of a
table space. DB2 provides utility
programs to make full image copies (to
copy the entire table space) or incremental
image copies (to copy only those pages
that have been modified since the last
image copy).

336 Managing Security

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

IMS attachment facility
A DB2 subcomponent that uses z/OS
subsystem interface (SSI) protocols and
cross-memory linkage to process requests
from IMS to DB2 and to coordinate
resource commitment.

in-abort
A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled
back, but before the process is completed,
DB2 continues to back out the changes
during restart.

in-commit
A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit
processing, it "knows," when restarted,
that changes made to data are consistent.
Such units of recovery are termed
in-commit.

independent
An object (row, table, or table space) that
is neither a parent nor a dependent of
another object.

index A set of pointers that are logically ordered
by the values of a key. Indexes can
provide faster access to data and can
enforce uniqueness on the rows in a table.

index-controlled partitioning
A type of partitioning in which partition
boundaries for a partitioned table are
controlled by values that are specified on
the CREATE INDEX statement. Partition
limits are saved in the LIMITKEY column
of the SYSIBM.SYSINDEXPART catalog
table.

index key
The set of columns in a table that is used
to determine the order of index entries.

index partition
A VSAM data set that is contained within
a partitioning index space.

index space
A page set that is used to store the entries
of one index.

indicator column
A 4-byte value that is stored in a base
table in place of a LOB column.

indicator variable
A variable that is used to represent the
null value in an application program. If

the value for the selected column is null,
a negative value is placed in the indicator
variable.

indoubt
A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit
processing and before it has started phase
2, only the commit coordinator knows if
an individual unit of recovery is to be
committed or rolled back. At restart, if
DB2 lacks the information it needs to
make this decision, the status of the unit
of recovery is indoubt until DB2 obtains
this information from the coordinator.
More than one unit of recovery can be
indoubt at restart.

indoubt resolution
The process of resolving the status of an
indoubt logical unit of work to either the
committed or the rollback state.

inflight
A status of a unit of recovery. If DB2 fails
before its unit of recovery completes
phase 1 of the commit process, it merely
backs out the updates of its unit of
recovery at restart. These units of
recovery are termed inflight.

inheritance
The passing downstream of class
resources or attributes from a parent class
in the class hierarchy to a child class.

initialization file
For DB2 ODBC applications, a file
containing values that can be set to adjust
the performance of the database manager.

inline copy
A copy that is produced by the LOAD or
REORG utility. The data set that the inline
copy produces is logically equivalent to a
full image copy that is produced by
running the COPY utility with read-only
access (SHRLEVEL REFERENCE).

inline SQL PL
A subset of SQL procedural language that
can be used in SQL functions and
dynamic compound statements. See also
SQL procedural language.

inner join
The result of a join operation that
includes only the matched rows of both
tables that are being joined. See also join,

DB2 glossary 337

equijoin, full outer join, left outer join,
outer join, and right outer join.

inoperative package
In DB2 Version 9.1 for z/OS and earlier, a
package that cannot be used because one
or more user-defined functions or
procedures that the package depends on
were dropped. Such a package must be
explicitly rebound. Contrast with invalid
package.

insensitive cursor
A cursor that is not sensitive to inserts,
updates, or deletes that are made to the
underlying rows of a result table after the
result table has been materialized.

insert trigger
A trigger that is defined with the
triggering SQL operation, an insert.

install The process of preparing a DB2
subsystem to operate as a z/OS
subsystem.

INSTEAD OF trigger
A trigger that is associated with a single
view and is activated by an insert,
update, or delete operation on the view
and that can define how to propagate the
insert, update, or delete operation on the
view to the underlying tables of the view.
Contrast with BEFORE trigger and
AFTER trigger.

instrumentation facility component identifier
(IFCID)

A value that names and identifies a trace
record of an event that can be traced. As a
parameter on the START TRACE and
MODIFY TRACE commands, it specifies
that the corresponding event is to be
traced.

instrumentation facility interface (IFI)
A programming interface that enables
programs to obtain online trace data
about DB2, to submit DB2 commands,
and to pass data to DB2.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that provides
interactive dialog services in a z/OS
environment.

inter-DB2 R/W interest
A property of data in a table space, index,
or partition that has been opened by more
than one member of a data sharing group

and that has been opened for writing by
at least one of those members.

intermediate database server
The target of a request from a local
application or a remote application
requester that is forwarded to another
database server.

internal resource lock manager (IRLM)
A z/OS subsystem that DB2 uses to
control communication and database
locking.

intersection
An SQL operation that involves the
INTERSECT set operator, which combines
two result tables. The result of an
intersection operation consists of all of the
rows that are in both result tables.

invalid package
In DB2 Version 9.1 for z/OS and earlier, a
package that depends on an object (other
than a user-defined function) that is
dropped. Such a package is implicitly
rebound on invocation. Contrast with
inoperative package.

IP address
A value that uniquely identifies a TCP/IP
host.

IRLM See internal resource lock manager.

isolation level
The degree to which a unit of work is
isolated from the updating operations of
other units of work. See also cursor
stability, read stability, repeatable read,
and uncommitted read.

ISPF See Interactive System Productivity
Facility.

iterator
In SQLJ, an object that contains the result
set of a query. An iterator is equivalent to
a cursor in other host languages.

iterator declaration clause
In SQLJ, a statement that generates an
iterator declaration class. An iterator is an
object of an iterator declaration class.

JAR See Java Archive.

Java Archive (JAR)
A file format that is used for aggregating
many files into a single file.

JDBC A Sun Microsystems database application

338 Managing Security

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

programming interface (API) for Java that
allows programs to access database
management systems by using callable
SQL.

join A relational operation that allows retrieval
of data from two or more tables based on
matching column values. See also
equijoin, full outer join, inner join, left
outer join, outer join, and right outer join.

KB Kilobyte. A value of 1024 bytes.

Kerberos
A network authentication protocol that is
designed to provide strong authentication
for client/server applications by using
secret-key cryptography.

Kerberos ticket
A transparent application mechanism that
transmits the identity of an initiating
principal to its target. A simple ticket
contains the principal's identity, a session
key, a timestamp, and other information,
which is sealed using the target's secret
key.

key A column, an ordered collection of
columns, or an expression that is
identified in the description of a table,
index, or referential constraint. The same
column or expression can be part of more
than one key.

key-sequenced data set (KSDS)
A VSAM file or data set whose records
are loaded in key sequence and controlled
by an index.

KSDS See key-sequenced data set.

large object (LOB)
A sequence of bytes representing bit data,
single-byte characters, double-byte
characters, or a mixture of single- and
double-byte characters. A LOB can be up
to 2 GB minus 1 byte in length. See also
binary large object, character large object,
and double-byte character large object.

last agent optimization
An optimized commit flow for either
presumed-nothing or presumed-abort
protocols in which the last agent, or final
participant, becomes the commit
coordinator. This flow saves at least one
message.

latch A DB2 mechanism for controlling
concurrent events or the use of system
resources.

LCID See log control interval definition.

LDS See linear data set.

leaf page
An index page that contains pairs of keys
and RIDs and that points to actual data.
Contrast with nonleaf page.

left outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined, and that preserves
the unmatched rows of the first table. See
also join, equijoin, full outer join, inner
join, outer join, and right outer join.

limit key
The highest value of the index key for a
partition.

linear data set (LDS)
A VSAM data set that contains data but
no control information. A linear data set
can be accessed as a byte-addressable
string in virtual storage.

linkage editor
A computer program for creating load
modules from one or more object
modules or load modules by resolving
cross references among the modules and,
if necessary, adjusting addresses.

link-edit
The action of creating a loadable
computer program using a linkage editor.

list A type of object, which DB2 utilities can
process, that identifies multiple table
spaces, multiple index spaces, or both. A
list is defined with the LISTDEF utility
control statement.

list structure
A coupling facility structure that lets data
be shared and manipulated as elements of
a queue.

L-lock See logical lock.

load module
A program unit that is suitable for
loading into main storage for execution.
The output of a linkage editor.

LOB See large object.

DB2 glossary 339

|
|
|
|
|
|

LOB locator
A mechanism that allows an application
program to manipulate a large object
value in the database system. A LOB
locator is a fullword integer value that
represents a single LOB value. An
application program retrieves a LOB
locator into a host variable and can then
apply SQL operations to the associated
LOB value using the locator.

LOB lock
A lock on a LOB value.

LOB table space
A table space that contains all the data for
a particular LOB column in the related
base table.

local A way of referring to any object that the
local DB2 subsystem maintains. A local
table, for example, is a table that is
maintained by the local DB2 subsystem.
Contrast with remote.

locale The definition of a subset of a user's
environment that combines a CCSID and
characters that are defined for a specific
language and country.

local lock
A lock that provides intra-DB2
concurrency control, but not inter-DB2
concurrency control; that is, its scope is a
single DB2.

local subsystem
The unique relational DBMS to which the
user or application program is directly
connected (in the case of DB2, by one of
the DB2 attachment facilities).

location
The unique name of a database server. An
application uses the location name to
access a DB2 database server. A database
alias can be used to override the location
name when accessing a remote server.

location alias
Another name by which a database server
identifies itself in the network.
Applications can use this name to access a
DB2 database server.

lock A means of controlling concurrent events
or access to data. DB2 locking is
performed by the IRLM.

lock duration
The interval over which a DB2 lock is
held.

lock escalation
The promotion of a lock from a row, page,
or LOB lock to a table space lock because
the number of page locks that are
concurrently held on a given resource
exceeds a preset limit.

locking
The process by which the integrity of data
is ensured. Locking prevents concurrent
users from accessing inconsistent data.
See also claim, drain, and latch.

lock mode
A representation for the type of access
that concurrently running programs can
have to a resource that a DB2 lock is
holding.

lock object
The resource that is controlled by a DB2
lock.

lock promotion
The process of changing the size or mode
of a DB2 lock to a higher, more restrictive
level.

lock size
The amount of data that is controlled by a
DB2 lock on table data; the value can be a
row, a page, a LOB, a partition, a table, or
a table space.

lock structure
A coupling facility data structure that is
composed of a series of lock entries to
support shared and exclusive locking for
logical resources.

log A collection of records that describe the
events that occur during DB2 execution
and that indicate their sequence. The
information thus recorded is used for
recovery in the event of a failure during
DB2 execution.

log control interval definition
A suffix of the physical log record that
tells how record segments are placed in
the physical control interval.

logical claim
A claim on a logical partition of a
nonpartitioning index.

340 Managing Security

logical index partition
The set of all keys that reference the same
data partition.

logical lock (L-lock)
The lock type that transactions use to
control intra- and inter-DB2 data
concurrency between transactions.
Contrast with physical lock (P-lock).

logically complete
A state in which the concurrent copy
process is finished with the initialization
of the target objects that are being copied.
The target objects are available for
update.

logical page list (LPL)
A list of pages that are in error and that
cannot be referenced by applications until
the pages are recovered. The page is in
logical error because the actual media
(coupling facility or disk) might not
contain any errors. Usually a connection
to the media has been lost.

logical partition
A set of key or RID pairs in a
nonpartitioning index that are associated
with a particular partition.

logical recovery pending (LRECP)
The state in which the data and the index
keys that reference the data are
inconsistent.

logical unit (LU)
An access point through which an
application program accesses the SNA
network in order to communicate with
another application program. See also LU
name.

logical unit of work
The processing that a program performs
between synchronization points.

logical unit of work identifier (LUWID)
A name that uniquely identifies a thread
within a network. This name consists of a
fully-qualified LU network name, an
LUW instance number, and an LUW
sequence number.

log initialization
The first phase of restart processing
during which DB2 attempts to locate the
current end of the log.

log record header (LRH)
A prefix, in every log record, that contains
control information.

log record sequence number (LRSN)
An identifier for a log record that is
associated with a data sharing member.
DB2 uses the LRSN for recovery in the
data sharing environment.

log truncation
A process by which an explicit starting
RBA is established. This RBA is the point
at which the next byte of log data is to be
written.

LPL See logical page list.

LRECP
See logical recovery pending.

LRH See log record header.

LRSN See log record sequence number.

LU See logical unit.

LU name
Logical unit name, which is the name by
which VTAM refers to a node in a
network.

LUW See logical unit of work.

LUWID
See logical unit of work identifier.

mapping table
A table that the REORG utility uses to
map the associations of the RIDs of data
records in the original copy and in the
shadow copy. This table is created by the
user.

mass delete
The deletion of all rows of a table.

materialize

v The process of putting rows from a
view or nested table expression into a
work file for additional processing by a
query.

v The placement of a LOB value into
contiguous storage. Because LOB
values can be very large, DB2 avoids
materializing LOB data until doing so
becomes absolutely necessary.

materialized query table
A table that is used to contain information

DB2 glossary 341

that is derived and can be summarized
from one or more source tables. Contrast
with base table.

MB Megabyte (1 048 576 bytes).

MBCS See multibyte character set.

member name
The z/OS XCF identifier for a particular
DB2 subsystem in a data sharing group.

menu A displayed list of available functions for
selection by the operator. A menu is
sometimes called a menu panel.

metalanguage
A language that is used to create other
specialized languages.

migration
The process of converting a subsystem
with a previous release of DB2 to an
updated or current release. In this
process, you can acquire the functions of
the updated or current release without
losing the data that you created on the
previous release.

mixed data string
A character string that can contain both
single-byte and double-byte characters.

mode name
A VTAM name for the collection of
physical and logical characteristics and
attributes of a session.

modify locks
An L-lock or P-lock with a MODIFY
attribute. A list of these active locks is
kept at all times in the coupling facility
lock structure. If the requesting DB2
subsystem fails, that DB2 subsystem's
modify locks are converted to retained
locks.

multibyte character set (MBCS)
A character set that represents single
characters with more than a single byte.
UTF-8 is an example of an MBCS.
Characters in UTF-8 can range from 1 to 4
bytes in DB2. Contrast with single-byte
character set and double-byte character
set. See also Unicode.

multidimensional analysis
The process of assessing and evaluating
an enterprise on more than one level.

Multiple Virtual Storage (MVS)
An element of the z/OS operating system.

This element is also called the Base
Control Program (BCP).

multisite update
Distributed relational database processing
in which data is updated in more than
one location within a single unit of work.

multithreading
Multiple TCBs that are executing one
copy of DB2 ODBC code concurrently
(sharing a processor) or in parallel (on
separate central processors).

MVS See Multiple Virtual Storage.

native SQL procedure
An SQL procedure that is processed by
converting the procedural statements to a
native representation that is stored in the
database directory, as is done with other
SQL statements. When a native SQL
procedure is called, the native
representation is loaded from the
directory, and DB2 executes the
procedure. Contrast with external
procedure and external SQL procedure.

nested table expression
A fullselect in a FROM clause
(surrounded by parentheses).

network identifier (NID)
The network ID that is assigned by IMS
or CICS, or if the connection type is
RRSAF, the RRS unit of recovery ID
(URID).

new-function mode (NFM)
The normal mode of operation that exists
after successful completion of a
version-to-version migration. At this
stage, all new functions of the new
version are available for use. A DB2 data
sharing group cannot coexist with
members that are still at the prior version
level, and fallback to a prior version is
not supported. Contrast with conversion
mode, conversion mode*,
enabling-new-function mode, and
enabling-new-function mode*.

NFM See new-function mode.

NID See network identifier.

node ID index
See XML node ID index.

nondeterministic function
A user-defined function whose result is

342 Managing Security

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

not solely dependent on the values of the
input arguments. That is, successive
invocations with the same argument
values can produce a different answer.
This type of function is sometimes called
a variant function. Contrast with
deterministic function (sometimes called a
not-variant function).

nonleaf page
A page that contains keys and page
numbers of other pages in the index
(either leaf or nonleaf pages). Nonleaf
pages never point to actual data. Contrast
with leaf page.

nonpartitioned index
An index that is not physically
partitioned. Both partitioning indexes and
secondary indexes can be nonpartitioned.

nonpartitioned secondary index (NPSI)
An index on a partitioned table space that
is not the partitioning index and is not
partitioned. Contrast with
data-partitioned secondary index.

nonpartitioning index
See secondary index.

nonscrollable cursor
A cursor that can be moved only in a
forward direction. Nonscrollable cursors
are sometimes called forward-only cursors
or serial cursors.

normalization
A key step in the task of building a
logical relational database design.
Normalization helps you avoid
redundancies and inconsistencies in your
data. An entity is normalized if it meets a
set of constraints for a particular normal
form (first normal form, second normal
form, and so on). Contrast with
denormalization.

not-variant function
See deterministic function.

NPSI See nonpartitioned secondary index.

NUL The null character ('\0'), which is
represented by the value X'00'. In C, this
character denotes the end of a string.

null A special value that indicates the absence
of information.

null terminator
In C, the value that indicates the end of a

string. For EBCDIC, ASCII, and Unicode
UTF-8 strings, the null terminator is a
single-byte value (X'00'). For Unicode
UTF-16 or UCS-2 (wide) strings, the null
terminator is a double-byte value
(X'0000').

ODBC
See Open Database Connectivity.

ODBC driver
A dynamically-linked library (DLL) that
implements ODBC function calls and
interacts with a data source.

OLAP See online analytical processing.

online analytical processing (OLAP)
The process of collecting data from one or
many sources; transforming and
analyzing the consolidated data quickly
and interactively; and examining the
results across different dimensions of the
data by looking for patterns, trends, and
exceptions within complex relationships
of that data.

Open Database Connectivity (ODBC)
A Microsoft database application
programming interface (API) for C that
allows access to database management
systems by using callable SQL. ODBC
does not require the use of an SQL
preprocessor. In addition, ODBC provides
an architecture that lets users add
modules called database drivers, which link
the application to their choice of database
management systems at run time. This
means that applications no longer need to
be directly linked to the modules of all
the database management systems that
are supported.

ordinary identifier
An uppercase letter followed by zero or
more characters, each of which is an
uppercase letter, a digit, or the underscore
character. An ordinary identifier must not
be a reserved word.

ordinary token
A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

originating task
In a parallel group, the primary agent
that receives data from other execution
units (referred to as parallel tasks) that are
executing portions of the query in
parallel.

DB2 glossary 343

|

|
|
|
|
|
|

||

|
|
|
|
|
|
|
|
|

outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves some
or all of the unmatched rows of the tables
that are being joined. See also join,
equijoin, full outer join, inner join, left
outer join, and right outer join.

overloaded function
A function name for which multiple
function instances exist.

package
An object containing a set of SQL
statements that have been statically
bound and that is available for
processing. A package is sometimes also
called an application package.

package list
An ordered list of package names that
may be used to extend an application
plan.

package name
The name of an object that is used for an
application package or an SQL procedure
package. An application package is a
bound version of a database request
module (DBRM) that is created by a
BIND PACKAGE or REBIND PACKAGE
command. An SQL procedural language
package is created by a CREATE or
ALTER PROCEDURE statement for a
native SQL procedure. The name of a
package consists of a location name, a
collection ID, a package ID, and a version
ID.

page A unit of storage within a table space (4
KB, 8 KB, 16 KB, or 32 KB) or index space
(4 KB, 8 KB, 16 KB, or 32 KB). In a table
space, a page contains one or more rows
of a table. In a LOB or XML table space, a
LOB or XML value can span more than
one page, but no more than one LOB or
XML value is stored on a page.

page set
Another way to refer to a table space or
index space. Each page set consists of a
collection of VSAM data sets.

page set recovery pending (PSRCP)
A restrictive state of an index space. In
this case, the entire page set must be
recovered. Recovery of a logical part is
prohibited.

panel A predefined display image that defines
the locations and characteristics of display
fields on a display surface (for example, a
menu panel).

parallel complex
A cluster of machines that work together
to handle multiple transactions and
applications.

parallel group
A set of consecutive operations that
execute in parallel and that have the same
number of parallel tasks.

parallel I/O processing
A form of I/O processing in which DB2
initiates multiple concurrent requests for a
single user query and performs I/O
processing concurrently (in parallel) on
multiple data partitions.

parallelism assistant
In Sysplex query parallelism, a DB2
subsystem that helps to process parts of a
parallel query that originates on another
DB2 subsystem in the data sharing group.

parallelism coordinator
In Sysplex query parallelism, the DB2
subsystem from which the parallel query
originates.

Parallel Sysplex
A set of z/OS systems that communicate
and cooperate with each other through
certain multisystem hardware components
and software services to process customer
workloads.

parallel task
The execution unit that is dynamically
created to process a query in parallel. A
parallel task is implemented by a z/OS
service request block.

parameter marker
A question mark (?) that appears in a
statement string of a dynamic SQL
statement. The question mark can appear
where a variable could appear if the
statement string were a static SQL
statement.

parameter-name
An SQL identifier that designates a
parameter in a routine that is written by a
user. Parameter names are required for
SQL procedures and SQL functions, and
they are used in the body of the routine

344 Managing Security

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

to refer to the values of the parameters.
Parameter names are optional for external
routines.

parent key
A primary key or unique key in the
parent table of a referential constraint.
The values of a parent key determine the
valid values of the foreign key in the
referential constraint.

parent lock
For explicit hierarchical locking, a lock
that is held on a resource that might have
child locks that are lower in the hierarchy.
A parent lock is usually the table space
lock or the partition intent lock. See also
child lock.

parent row
A row whose primary key value is the
foreign key value of a dependent row.

parent table
A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space
A table space that contains a parent table.
A table space containing a dependent of
that table is a dependent table space.

participant
An entity other than the commit
coordinator that takes part in the commit
process. The term participant is
synonymous with agent in SNA.

partition
A portion of a page set. Each partition
corresponds to a single, independently
extendable data set. The maximum size of
a partition depends on the number of
partitions in the partitioned page set. All
partitions of a given page set have the
same maximum size.

partition-by-growth table space
A table space whose size can grow to
accommodate data growth. DB2 for z/OS
manages partition-by-growth table spaces
by automatically adding new data sets
when the database needs more space to
satisfy an insert operation. Contrast with
range-partitioned table space. See also
universal table space.

partitioned data set (PDS)
A data set in disk storage that is divided
into partitions, which are called members.

Each partition can contain a program,
part of a program, or data. A program
library is an example of a partitioned data
set.

partitioned index
An index that is physically partitioned.
Both partitioning indexes and secondary
indexes can be partitioned.

partitioned page set
A partitioned table space or an index
space. Header pages, space map pages,
data pages, and index pages reference
data only within the scope of the
partition.

partitioned table space
A table space that is based on a single
table and that is subdivided into
partitions, each of which can be processed
independently by utilities. Contrast with
segmented table space and universal table
space.

partitioning index
An index in which the leftmost columns
are the partitioning columns of the table.
The index can be partitioned or
nonpartitioned.

partner logical unit
An access point in the SNA network that
is connected to the local DB2 subsystem
by way of a VTAM conversation.

path See SQL path.

PDS See partitioned data set.

period In a table, an interval of time that is
defined by two datetime columns. A
period contains a begin column and an
end column. See also begin column and
end column.

physical consistency
The state of a page that is not in a
partially changed state.

physical lock (P-lock)
A type of lock that DB2 acquires to
provide consistency of data that is cached
in different DB2 subsystems. Physical
locks are used only in data sharing
environments. Contrast with logical lock
(L-lock).

DB2 glossary 345

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|
|

physically complete
The state in which the concurrent copy
process is completed and the output data
set has been created.

piece A data set of a nonpartitioned page set.

plan See application plan.

plan allocation
The process of allocating DB2 resources to
a plan in preparation for execution.

plan member
The bound copy of a DBRM that is
identified in the member clause.

plan name
The name of an application plan.

P-lock See physical lock.

point of consistency
A time when all recoverable data that an
application accesses is consistent with
other data. The term point of consistency
is synonymous with sync point or commit
point.

policy See CFRM policy.

postponed abort UR
A unit of recovery that was inflight or
in-abort, was interrupted by system
failure or cancellation, and did not
complete backout during restart.

precision
In SQL, the total number of digits in a
decimal number (called the size in the C
language). In the C language, the number
of digits to the right of the decimal point
(called the scale in SQL). The DB2
information uses the SQL terms.

precompilation
A processing of application programs
containing SQL statements that takes
place before compilation. SQL statements
are replaced with statements that are
recognized by the host language compiler.
Output from this precompilation includes
source code that can be submitted to the
compiler and the database request
module (DBRM) that is input to the bind
process.

predicate
An element of a search condition that
expresses or implies a comparison
operation.

prefix A code at the beginning of a message or
record.

preformat
The process of preparing a VSAM linear
data set for DB2 use, by writing specific
data patterns.

prepare
The first phase of a two-phase commit
process in which all participants are
requested to prepare for commit.

prepared SQL statement
A named object that is the executable
form of an SQL statement that has been
processed by the PREPARE statement.

primary authorization ID
The authorization ID that is used to
identify the application process to DB2.

primary group buffer pool
For a duplexed group buffer pool, the
structure that is used to maintain the
coherency of cached data. This structure
is used for page registration and
cross-invalidation. The z/OS equivalent is
old structure. Compare with secondary
group buffer pool.

primary index
An index that enforces the uniqueness of
a primary key.

primary key
In a relational database, a unique, nonnull
key that is part of the definition of a
table. A table cannot be defined as a
parent unless it has a unique key or
primary key.

principal
An entity that can communicate securely
with another entity. In Kerberos,
principals are represented as entries in the
Kerberos registry database and include
users, servers, computers, and others.

principal name
The name by which a principal is known
to the DCE security services.

privilege
The capability of performing a specific
function, sometimes on a specific object.
See also explicit privilege.

privilege set

v For the installation SYSADM ID, the set
of all possible privileges.

346 Managing Security

|
|
|

|
|

v For any other authorization ID,
including the PUBLIC authorization ID,
the set of all privileges that are
recorded for that ID in the DB2 catalog.

process
In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an
application process, a process involves the
execution of one or more programs. The
execution of an SQL statement is always
associated with some process. The means
of initiating and terminating a process are
dependent on the environment.

program
A single, compilable collection of
executable statements in a programming
language.

program temporary fix (PTF)
A solution or bypass of a problem that is
diagnosed as a result of a defect in a
current unaltered release of a licensed
program. An authorized program analysis
report (APAR) fix is corrective service for
an existing problem. A PTF is preventive
service for problems that might be
encountered by other users of the
product. A PTF is temporary, because a
permanent fix is usually not incorporated
into the product until its next release.

protected conversation
A VTAM conversation that supports
two-phase commit flows.

PSRCP
See page set recovery pending.

PTF See program temporary fix.

QSAM
See queued sequential access method.

query A component of certain SQL statements
that specifies a result table.

query block
The part of a query that is represented by
one of the FROM clauses. Each FROM
clause can have multiple query blocks,
depending on DB2 processing of the
query.

query CP parallelism
Parallel execution of a single query, which
is accomplished by using multiple tasks.
See also Sysplex query parallelism.

query I/O parallelism
Parallel access of data, which is
accomplished by triggering multiple I/O
requests within a single query.

queued sequential access method (QSAM)
An extended version of the basic
sequential access method (BSAM). When
this method is used, a queue of data
blocks is formed. Input data blocks await
processing, and output data blocks await
transfer to auxiliary storage or to an
output device.

quiesce point
A point at which data is consistent as a
result of running the DB2 QUIESCE
utility.

RACF Resource Access Control Facility. A
component of the z/OS Security Server.

range-partitioned table space
A type of universal table space that is
based on partitioning ranges and that
contains a single table. Contrast with
partition-by-growth table space. See also
universal table space.

RBA See relative byte address.

RCT See resource control table.

RDO See resource definition online.

read stability (RS)
An isolation level that is similar to
repeatable read but does not completely
isolate an application process from all
other concurrently executing application
processes. See also cursor
stabilityrepeatable read, and uncommitted
read.

rebind
The creation of a new application plan for
an application program that has been
bound previously. If, for example, you
have added an index for a table that your
application accesses, you must rebind the
application in order to take advantage of
that index.

rebuild
The process of reallocating a coupling
facility structure. For the shared
communications area (SCA) and lock
structure, the structure is repopulated; for
the group buffer pool, changed pages are
usually cast out to disk, and the new

DB2 glossary 347

|
|
|
|

|
|
|
|
|
|

||

structure is populated only with changed
pages that were not successfully cast out.

record The storage representation of a row or
other data.

record identifier (RID)
A unique identifier that DB2 uses to
identify a row of data in a table. Compare
with row identifier.

record identifier (RID) pool
An area of main storage that is used for
sorting record identifiers during
list-prefetch processing.

record length
The sum of the length of all the columns
in a table, which is the length of the data
as it is physically stored in the database.
Records can be fixed length or varying
length, depending on how the columns
are defined. If all columns are
fixed-length columns, the record is a
fixed-length record. If one or more
columns are varying-length columns, the
record is a varying-length record.

Resource Recovery Services attachment facility
(RRSAF)

A DB2 subcomponent that uses Resource
Recovery Services to coordinate resource
commitment between DB2 and all other
resource managers that also use RRS in a
z/OS system.

recovery
The process of rebuilding databases after
a system failure.

recovery log
A collection of records that describes the
events that occur during DB2 execution
and indicates their sequence. The
recorded information is used for recovery
in the event of a failure during DB2
execution.

recovery manager
A subcomponent that supplies
coordination services that control the
interaction of DB2 resource managers
during commit, abort, checkpoint, and
restart processes. The recovery manager
also supports the recovery mechanisms of
other subsystems (for example, IMS) by
acting as a participant in the other
subsystem's process for protecting data
that has reached a point of consistency.

A coordinator or a participant (or both),
in the execution of a two-phase commit,
that can access a recovery log that
maintains the state of the logical unit of
work and names the immediate upstream
coordinator and downstream participants.

recovery pending (RECP)
A condition that prevents SQL access to a
table space that needs to be recovered.

recovery token
An identifier for an element that is used
in recovery (for example, NID or URID).

RECP See recovery pending.

redo A state of a unit of recovery that indicates
that changes are to be reapplied to the
disk media to ensure data integrity.

reentrant code
Executable code that can reside in storage
as one shared copy for all threads.
Reentrant code is not self-modifying and
provides separate storage areas for each
thread. See also threadsafe.

referential constraint
The requirement that nonnull values of a
designated foreign key are valid only if
they equal values of the primary key of a
designated table.

referential cycle
A set of referential constraints such that
each base table in the set is a descendent
of itself. The tables that are involved in a
referential cycle are ordered so that each
table is a descendent of the one before it,
and the first table is a descendent of the
last table.

referential integrity
The state of a database in which all
values of all foreign keys are valid.
Maintaining referential integrity requires
the enforcement of referential constraints
on all operations that change the data in a
table on which the referential constraints
are defined.

referential structure
A set of tables and relationships that
includes at least one table and, for every
table in the set, all the relationships in
which that table participates and all the
tables to which it is related.

refresh age
The time duration between the current

348 Managing Security

|
|
|
|
|
|
|
|

time and the time during which a
materialized query table was last
refreshed.

registry
See registry database.

registry database
A database of security information about
principals, groups, organizations,
accounts, and security policies.

relational database
A database that can be perceived as a set
of tables and manipulated in accordance
with the relational model of data.

relational database management system
(RDBMS)

A collection of hardware and software
that organizes and provides access to a
relational database.

relational schema
See SQL schema.

relationship
A defined connection between the rows of
a table or the rows of two tables. A
relationship is the internal representation
of a referential constraint.

relative byte address (RBA)
The offset of a data record or control
interval from the beginning of the storage
space that is allocated to the data set or
file to which it belongs.

remigration
The process of returning to a current
release of DB2 following a fallback to a
previous release. This procedure
constitutes another migration process.

remote
Any object that is maintained by a remote
DB2 subsystem (that is, by a DB2
subsystem other than the local one). A
remote view, for example, is a view that is
maintained by a remote DB2 subsystem.
Contrast with local.

remote subsystem
Any relational DBMS, except the local
subsystem, with which the user or
application can communicate. The
subsystem need not be remote in any
physical sense, and might even operate
on the same processor under the same
z/OS system.

reoptimization
The DB2 process of reconsidering the
access path of an SQL statement at run
time; during reoptimization, DB2 uses the
values of host variables, parameter
markers, or special registers.

reordered row format
A row format that facilitates improved
performance in retrieval of rows that have
varying-length columns. DB2 rearranges
the column order, as defined in the
CREATE TABLE statement, so that the
fixed-length columns are stored at the
beginning of the row and the
varying-length columns are stored at the
end of the row. Contrast with basic row
format.

REORG pending (REORP)
A condition that restricts SQL access and
most utility access to an object that must
be reorganized.

REORP
See REORG pending.

repeatable read (RR)
The isolation level that provides
maximum protection from other executing
application programs. When an
application program executes with
repeatable read protection, rows that the
program references cannot be changed by
other programs until the program reaches
a commit point. See also cursor stability,
read stability, and uncommitted read.

repeating group
A situation in which an entity includes
multiple attributes that are inherently the
same. The presence of a repeating group
violates the requirement of first normal
form. In an entity that satisfies the
requirement of first normal form, each
attribute is independent and unique in its
meaning and its name. See also
normalization.

replay detection mechanism
A method that allows a principal to detect
whether a request is a valid request from
a source that can be trusted or whether an
untrustworthy entity has captured
information from a previous exchange
and is replaying the information exchange
to gain access to the principal.

DB2 glossary 349

|
|

|
|
|
|
|
|
|
|
|
|
|

request commit
The vote that is submitted to the prepare
phase if the participant has modified data
and is prepared to commit or roll back.

requester
The source of a request to access data at a
remote server. In the DB2 environment,
the requester function is provided by the
distributed data facility.

resource
The object of a lock or claim, which could
be a table space, an index space, a data
partition, an index partition, or a logical
partition.

resource allocation
The part of plan allocation that deals
specifically with the database resources.

resource control table
A construct of previous versions of the
CICS attachment facility that defines
authorization and access attributes for
transactions or transaction groups.
Beginning in CICS Transaction Server
Version 1.3, resources are defined by
using resource definition online instead of
the resource control table. See also
resource definition online.

resource definition online (RDO)
The recommended method of defining
resources to CICS by creating resource
definitions interactively, or by using a
utility, and then storing them in the CICS
definition data set. In earlier releases of
CICS, resources were defined by using the
resource control table (RCT), which is no
longer supported.

resource limit facility (RLF)
A portion of DB2 code that prevents
dynamic manipulative SQL statements
from exceeding specified time limits. The
resource limit facility is sometimes called
the governor.

resource limit specification table (RLST)
A site-defined table that specifies the
limits to be enforced by the resource limit
facility.

resource manager

v A function that is responsible for
managing a particular resource and that
guarantees the consistency of all
updates made to recoverable resources
within a logical unit of work. The

resource that is being managed can be
physical (for example, disk or main
storage) or logical (for example, a
particular type of system service).

v A participant, in the execution of a
two-phase commit, that has recoverable
resources that could have been
modified. The resource manager has
access to a recovery log so that it can
commit or roll back the effects of the
logical unit of work to the recoverable
resources.

restart pending (RESTP)
A restrictive state of a page set or
partition that indicates that restart
(backout) work needs to be performed on
the object.

RESTP
See restart pending.

result set
The set of rows that a stored procedure
returns to a client application.

result set locator
A 4-byte value that DB2 uses to uniquely
identify a query result set that a stored
procedure returns.

result table
The set of rows that are specified by a
SELECT statement.

retained lock
A MODIFY lock that a DB2 subsystem
was holding at the time of a subsystem
failure. The lock is retained in the
coupling facility lock structure across a
DB2 for z/OS failure.

RID See record identifier.

RID pool
See record identifier pool.

right outer join
The result of a join operation that
includes the matched rows of both tables
that are being joined and preserves the
unmatched rows of the second join
operand. See also join, equijoin, full outer
join, inner join, left outer join, and outer
join.

RLF See resource limit facility.

RLST See resource limit specification table.

role A database entity that groups together
one or more privileges and that can be

350 Managing Security

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|

assigned to a primary authorization ID or
to PUBLIC. The role is available only in a
trusted context.

rollback
The process of restoring data that was
changed by SQL statements to the state at
its last commit point. All locks are freed.
Contrast with commit.

root page
The index page that is at the highest level
(or the beginning point) in an index.

routine
A database object that encapsulates
procedural logic and SQL statements, is
stored on the database server, and can be
invoked from an SQL statement or by
using the CALL statement. The main
classes of routines are procedures and
functions.

row The horizontal component of a table. A
row consists of a sequence of values, one
for each column of the table.

row-begin column
A generated column that is defined with
the AS ROW BEGIN clause. The value is
assigned whenever a row is inserted into
the table or any column in the row is
updated. A row-begin column is intended
for use as the first column of a
SYSTEM_TIME period. See also generated
column, row-end column, and
transaction-start-ID column.

row change timestamp column
A generated column that is defined with
the AS ROW CHANGE TIMESTAMP
clause. A row change timestamp column
provides a way for the database manager
to automatically generate and maintain a
timestamp value for each row that is
inserted or updated in a table. A table can
have no more than one row change
timestamp column.

row-end column
A generated column that is defined with
the AS ROW END clause. The value is
assigned whenever a row is inserted into
the table or any column in the row is
updated. A row-end column is intended
for use as the second column of a
SYSTEM_TIME period. See also generated
column, row-begin column, and
transaction-start-ID column.

rowid A value that uniquely identifies a row in
a table and does not change.

row lock
A lock on a single row of data.

row-positioned fetch orientation
The specification of the desired placement
of the cursor as part of a FETCH
statement, with respect to a single row
(for example, NEXT, LAST, or ABSOLUTE
n). Contrast with rowset-positioned fetch
orientation.

rowset
A set of rows for which a cursor position
is established.

rowset cursor
A cursor that is defined so that one or
more rows can be returned as a rowset
for a single FETCH statement, and the
cursor is positioned on the set of rows
that is fetched.

rowset-positioned fetch orientation
The specification of the desired placement
of the cursor as part of a FETCH
statement, with respect to a rowset (for
example, NEXT ROWSET, LAST
ROWSET, or ROWSET STARTING AT
ABSOLUTE n). Contrast with
row-positioned fetch orientation.

row trigger
A trigger that is defined with the trigger
granularity FOR EACH ROW.

RRSAF
See Resource Recovery Services
attachment facility.

RS See read stability.

savepoint
A named entity that represents the state
of data and schemas at a particular point
in time within a unit of work.

SBCS See single-byte character set.

SCA See shared communications area.

scalar function
An SQL operation that produces a single
value from another value and is
expressed as a function name, followed
by a list of arguments that are enclosed in
parentheses.

scale In SQL, the number of digits to the right
of the decimal point (called the precision

DB2 glossary 351

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

||
|

|
|
|
|
|
|

|
|
|
|
|
|
|

in the C language). The DB2 information
uses the SQL definition.

schema
The organization or structure of a
database.

A collection of, and a way of qualifying,
database objects such as tables, views,
routines, indexes or triggers that define a
database. A database schema provides a
logical classification of database objects.

scrollability
The ability to use a cursor to fetch in
either a forward or backward direction.
The FETCH statement supports multiple
fetch orientations to indicate the new
position of the cursor. See also fetch
orientation.

scrollable cursor
A cursor that can be moved in both a
forward and a backward direction.

search condition
A criterion for selecting rows from a table.
A search condition consists of one or
more predicates.

secondary authorization ID
An authorization ID that has been
associated with a primary authorization
ID by an authorization exit routine.

secondary group buffer pool
For a duplexed group buffer pool, the
structure that is used to back up changed
pages that are written to the primary
group buffer pool. No page registration or
cross-invalidation occurs using the
secondary group buffer pool. The z/OS
equivalent is new structure.

secondary index
A nonpartitioning index that is useful for
enforcing a uniqueness constraint, for
clustering data, or for providing access
paths to data for queries. A secondary
index can be partitioned or
nonpartitioned. See also data-partitioned
secondary index (DPSI) and
nonpartitioned secondary index (NPSI).

section
The segment of a plan or package that
contains the executable structures for a
single SQL statement. For most SQL
statements, one section in the plan exists
for each SQL statement in the source

program. However, for cursor-related
statements, the DECLARE, OPEN,
FETCH, and CLOSE statements reference
the same section because they each refer
to the SELECT statement that is named in
the DECLARE CURSOR statement. SQL
statements such as COMMIT,
ROLLBACK, and some SET statements do
not use a section.

security label
A classification of users' access to objects
or data rows in a multilevel security
environment."

segment
A group of pages that holds rows of a
single table. See also segmented table
space.

segmented table space
A table space that is divided into
equal-sized groups of pages called
segments. Segments are assigned to tables
so that rows of different tables are never
stored in the same segment. Contrast with
partitioned table space and universal table
space.

self-referencing constraint
A referential constraint that defines a
relationship in which a table is a
dependent of itself.

self-referencing table
A table with a self-referencing constraint.

sensitive cursor
A cursor that is sensitive to changes that
are made to the database after the result
table has been materialized.

sequence
A user-defined object that generates a
sequence of numeric values according to
user specifications.

sequential data set
A non-DB2 data set whose records are
organized on the basis of their successive
physical positions, such as on magnetic
tape. Several of the DB2 database utilities
require sequential data sets.

sequential prefetch
A mechanism that triggers consecutive
asynchronous I/O operations. Pages are
fetched before they are required, and
several pages are read with a single I/O
operation.

352 Managing Security

|
|
|
|

serialized profile
A Java object that contains SQL
statements and descriptions of host
variables. The SQLJ translator produces a
serialized profile for each connection
context.

server The target of a request from a remote
requester. In the DB2 environment, the
server function is provided by the
distributed data facility, which is used to
access DB2 data from remote applications.

service class
An eight-character identifier that is used
by the z/OS Workload Manager to
associate user performance goals with a
particular DDF thread or stored
procedure. A service class is also used to
classify work on parallelism assistants.

service request block
A unit of work that is scheduled to
execute.

session
A link between two nodes in a VTAM
network.

session protocols
The available set of SNA communication
requests and responses.

set operator
The SQL operators UNION, EXCEPT, and
INTERSECT corresponding to the
relational operators union, difference, and
intersection. A set operator derives a
result table by combining two other result
tables.

shared communications area (SCA)
A coupling facility list structure that a
DB2 data sharing group uses for
inter-DB2 communication.

share lock
A lock that prevents concurrently
executing application processes from
changing data, but not from reading data.
Contrast with exclusive lock.

shift-in character
A special control character (X'0F') that is
used in EBCDIC systems to denote that
the subsequent bytes represent SBCS
characters. See also shift-out character.

shift-out character
A special control character (X'0E') that is
used in EBCDIC systems to denote that

the subsequent bytes, up to the next
shift-in control character, represent DBCS
characters. See also shift-in character.

sign-on
A request that is made on behalf of an
individual CICS or IMS application
process by an attachment facility to
enable DB2 to verify that it is authorized
to use DB2 resources.

simple page set
A nonpartitioned page set. A simple page
set initially consists of a single data set
(page set piece). If and when that data set
is extended to 2 GB, another data set is
created, and so on, up to a total of 32
data sets. DB2 considers the data sets to
be a single contiguous linear address
space containing a maximum of 64 GB.
Data is stored in the next available
location within this address space without
regard to any partitioning scheme.

simple table space
A table space that is neither partitioned
nor segmented. Creation of simple table
spaces is not supported in DB2 Version
9.1 for z/OS. Contrast with partitioned
table space, segmented table space, and
universal table space.

single-byte character set (SBCS)
A set of characters in which each
character is represented by a single byte.
Contrast with double-byte character set or
multibyte character set.

single-precision floating point number
A 32-bit approximate representation of a
real number.

SMP/E
See System Modification
Program/Extended.

SNA See Systems Network Architecture.

SNA network
The part of a network that conforms to
the formats and protocols of Systems
Network Architecture (SNA).

socket A callable TCP/IP programming interface
that TCP/IP network applications use to
communicate with remote TCP/IP
partners.

sourced function
A function that is implemented by
another built-in or user-defined function

DB2 glossary 353

|
|

|
|
|
|
|
|
|

|
|

that is already known to the database
manager. This function can be a scalar
function or an aggregate function; it
returns a single value from a set of values
(for example, MAX or AVG). Contrast
with built-in function, external function,
and SQL function.

source program
A set of host language statements and
SQL statements that is processed by an
SQL precompiler.

source table
A table that can be a base table, a view, a
table expression, or a user-defined table
function.

source type
An existing type that DB2 uses to
represent a distinct type.

space A sequence of one or more blank
characters.

special register
A storage area that DB2 defines for an
application process to use for storing
information that can be referenced in SQL
statements. Examples of special registers
are SESSION_USER and CURRENT
DATE.

specific function name
A particular user-defined function that is
known to the database manager by its
specific name. Many specific user-defined
functions can have the same function
name. When a user-defined function is
defined to the database, every function is
assigned a specific name that is unique
within its schema. Either the user can
provide this name, or a default name is
used.

SPUFI See SQL Processor Using File Input.

SQL See Structured Query Language.

SQL authorization ID (SQL ID)
The authorization ID that is used for
checking dynamic SQL statements in
some situations.

SQLCA
See SQL communication area.

SQL communication area (SQLCA)
A structure that is used to provide an
application program with information
about the execution of its SQL statements.

SQL connection
An association between an application
process and a local or remote application
server or database server.

SQLDA
See SQL descriptor area.

SQL descriptor area (SQLDA)
A structure that describes input variables,
output variables, or the columns of a
result table.

SQL escape character
The symbol that is used to enclose an
SQL delimited identifier. This symbol is
the double quotation mark ("). See also
escape character.

SQL function
A user-defined function in which the
CREATE FUNCTION statement contains
the source code. The source code is a
single SQL expression that evaluates to a
single value. The SQL user-defined
function can return the result of an
expression. See also built-in function,
external function, and sourced function.

SQL ID
See SQL authorization ID.

SQLJ Structured Query Language (SQL) that is
embedded in the Java programming
language.

SQL path
An ordered list of schema names that are
used in the resolution of unqualified
references to user-defined functions,
distinct types, and stored procedures. In
dynamic SQL, the SQL path is found in
the CURRENT PATH special register. In
static SQL, it is defined in the PATH bind
option.

SQL PL
See SQL procedural language.

SQL procedural language (SQL PL)
A language extension of SQL that consists
of statements and language elements that
can be used to implement procedural
logic in SQL statements. SQL PL provides
statements for declaring variables and
condition handlers, assigning values to
variables, and for implementing
procedural logic. See also inline SQL PL.

SQL procedure
A user-written program that can be

354 Managing Security

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

invoked with the SQL CALL statement.
An SQL procedure is written in the SQL
procedural language. Two types of SQL
procedures are supported: external SQL
procedures and native SQL procedures.
See also external procedure and native
SQL procedure.

SQL processing conversation
Any conversation that requires access of
DB2 data, either through an application or
by dynamic query requests.

SQL Processor Using File Input (SPUFI)
A facility of the TSO attachment
subcomponent that enables the DB2I user
to execute SQL statements without
embedding them in an application
program.

SQL return code
Either SQLCODE or SQLSTATE.

SQL routine
A user-defined function or stored
procedure that is based on code that is
written in SQL.

SQL schema
A collection of database objects such as
tables, views, indexes, functions, distinct
types, schemas, or triggers that defines a
database. An SQL schema provides a
logical classification of database objects.

SQL statement coprocessor
An alternative to the DB2 precompiler
that lets the user process SQL statements
at compile time. The user invokes an SQL
statement coprocessor by specifying a
compiler option.

SQL string delimiter
A symbol that is used to enclose an SQL
string constant. The SQL string delimiter
is the apostrophe ('), except in COBOL
applications, where the user assigns the
symbol, which is either an apostrophe or
a double quotation mark (").

SRB See service request block.

stand-alone
An attribute of a program that means that
it is capable of executing separately from
DB2, without using DB2 services.

star join
A method of joining a dimension column
of a fact table to the key column of the

corresponding dimension table. See also
join, dimension, and star schema.

star schema
The combination of a fact table (which
contains most of the data) and a number
of dimension tables. See also star join,
dimension, and dimension table.

statement handle
In DB2 ODBC, the data object that
contains information about an SQL
statement that is managed by DB2 ODBC.
This includes information such as
dynamic arguments, bindings for
dynamic arguments and columns, cursor
information, result values, and status
information. Each statement handle is
associated with the connection handle.

statement string
For a dynamic SQL statement, the
character string form of the statement.

statement trigger
A trigger that is defined with the trigger
granularity FOR EACH STATEMENT.

static cursor
A named control structure that does not
change the size of the result table or the
order of its rows after an application
opens the cursor. Contrast with dynamic
cursor.

static SQL
SQL statements, embedded within a
program, that are prepared during the
program preparation process (before the
program is executed). After being
prepared, the SQL statement does not
change (although values of variables that
are specified by the statement might
change).

storage group
A set of storage objects on which DB2 for
z/OS data can be stored. A storage object
can have an SMS data class, a
management class, a storage class, and a
list of volume serial numbers.

stored procedure
A user-written application program that
can be invoked through the use of the
SQL CALL statement. Stored procedures
are sometimes called procedures.

string See binary string, character string, or
graphic string.

DB2 glossary 355

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

strong typing
A process that guarantees that only
user-defined functions and operations that
are defined on a distinct type can be
applied to that type. For example, you
cannot directly compare two currency
types, such as Canadian dollars and U.S.
dollars. But you can provide a
user-defined function to convert one
currency to the other and then do the
comparison.

structure

v A name that refers collectively to
different types of DB2 objects, such as
tables, databases, views, indexes, and
table spaces.

v A construct that uses z/OS to map and
manage storage on a coupling facility.
See also cache structure, list structure,
or lock structure.

Structured Query Language (SQL)
A standardized language for defining and
manipulating data in a relational
database.

structure owner
In relation to group buffer pools, the DB2
member that is responsible for the
following activities:
v Coordinating rebuild, checkpoint, and

damage assessment processing
v Monitoring the group buffer pool

threshold and notifying castout owners
when the threshold has been reached

subcomponent
A group of closely related DB2 modules
that work together to provide a general
function.

subject table
The table for which a trigger is created.
When the defined triggering event occurs
on this table, the trigger is activated.

subquery
A SELECT statement within the WHERE
or HAVING clause of another SQL
statement; a nested SQL statement.

subselect
That form of a query that includes only a
SELECT clause, FROM clause, and
optionally a WHERE clause, GROUP BY
clause, HAVING clause, ORDER BY
clause, or FETCH FIRST clause.

substitution character
A unique character that is substituted
during character conversion for any
characters in the source program that do
not have a match in the target coding
representation.

subsystem
In z/OS, a service provider that performs
one or many functions, but does nothing
until a request is made. For example, each
WebSphere MQ for z/OS queue manager
or instance of a DB2 for z/OS database
management system is a z/OS subsystem.

surrogate pair
A coded representation for a single
character that consists of a sequence of
two 16-bit code units, in which the first
value of the pair is a high-surrogate code
unit in the range U+D800 through
U+DBFF, and the second value is a
low-surrogate code unit in the range
U+DC00 through U+DFFF. Surrogate
pairs provide an extension mechanism for
encoding 917 476 characters without
requiring the use of 32-bit characters.

SVC dump
A dump that is issued when a z/OS or a
DB2 functional recovery routine detects
an error.

sync point
See commit point.

syncpoint tree
The tree of recovery managers and
resource managers that are involved in a
logical unit of work, starting with the
recovery manager, that make the final
commit decision.

synonym
In SQL, an alternative name for a table or
view. Synonyms can be used to refer only
to objects at the subsystem in which the
synonym is defined. A synonym cannot
be qualified and can therefore not be used
by other users. Contrast with alias.

Sysplex
See Parallel Sysplex.

Sysplex query parallelism
Parallel execution of a single query that is
accomplished by using multiple tasks on
more than one DB2 subsystem. See also
query CP parallelism.

356 Managing Security

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

system administrator
The person at a computer installation
who designs, controls, and manages the
use of the computer system.

system agent
A work request that DB2 creates such as
prefetch processing, deferred writes, and
service tasks. See also allied agent.

system authorization ID
The primary DB2 authorization ID that is
used to establish a trusted connection. A
system authorization ID is derived from
the system user ID that is provided by an
external entity, such as a middleware
server.

system conversation
The conversation that two DB2
subsystems must establish to process
system messages before any distributed
processing can begin.

system-defined routine
In DB2 10 for z/OS and later, an object
(function or procedure) for which system
DBADM and SQLADM authorities have
implicit execute privilege on the routine
and any packages executed within the
routine.

System Modification Program/Extended (SMP/E)
A z/OS tool for making software changes
in programming systems (such as DB2)
and for controlling those changes.

system period
A pair of columns with
system-maintained values that indicates
the period of time when a row is valid.
See also system-period temporal table and
system-period data versioning.

system-period data versioning
Automatic maintenance of historical data
by the database manager by using a
system period. See also system period
and system-period temporal table.

system-period temporal table
A table that is defined with system-period
data versioning. See also bitemporal table,
system-period data versioning, and
history table.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information

through and controlling the configuration
and operation of networks.

table A named data object consisting of a
specific number of columns and some
number of unordered rows. See also base
table or temporary table. Contrast with
auxiliary table, clone table, materialized
query table, result table, and transition
table.

table-controlled partitioning
A type of partitioning in which partition
boundaries for a partitioned table are
controlled by values that are defined in
the CREATE TABLE statement.

table function
A function that receives a set of
arguments and returns a table to the SQL
statement that references the function. A
table function can be referenced only in
the FROM clause of a subselect.

table locator
A mechanism that allows access to trigger
tables in SQL or from within user-defined
functions. A table locator is a fullword
integer value that represents a transition
table.

table space
A page set that is used to store the
records in one or more tables. See also
partitioned table space, segmented table
space, and universal table space.

table space set
A set of table spaces and partitions that
should be recovered together for one of
the following reasons:
v Each of them contains a table that is a

parent or descendent of a table in one
of the others.

v The set contains a base table and
associated auxiliary tables.

A table space set can contain both types
of relationships.

task control block (TCB)
A z/OS control block that is used to
communicate information about tasks
within an address space that is connected
to a subsystem. See also address space
connection.

TB Terabyte. A value of 1 099 511 627 776
bytes.

DB2 glossary 357

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

TCB See task control block.

TCP/IP
A network communication protocol that
computer systems use to exchange
information across telecommunication
links.

TCP/IP port
A 2-byte value that identifies an end user
or a TCP/IP network application within a
TCP/IP host.

template
A DB2 utilities output data set descriptor
that is used for dynamic allocation. A
template is defined by the TEMPLATE
utility control statement.

temporal table
A table that records the period of time
when a row is valid.

temporary table
A table that holds temporary data.
Temporary tables are useful for holding
or sorting intermediate results from
queries that contain a large number of
rows. The two types of temporary table,
which are created by different SQL
statements, are the created temporary
table and the declared temporary table.
Contrast with result table. See also created
temporary table and declared temporary
table.

textual XML format
A representation of XML data that uses
character values, an approach that allows
for direct reading by people.

thread See DB2 thread.

threadsafe
A characteristic of code that allows
multithreading both by providing private
storage areas for each thread, and by
properly serializing shared (global)
storage areas.

three-part name
The full name of a table, view, or alias. It
consists of a location name, a schema
name, and an object name, separated by a
period.

time A three-part value that designates a time
of day in hours, minutes, and seconds.

timeout
Abnormal termination of either the DB2

subsystem or of an application because of
the unavailability of resources. Installation
specifications are set to determine both
the amount of time DB2 is to wait for
IRLM services after starting, and the
amount of time IRLM is to wait if a
resource that an application requests is
unavailable. If either of these time
specifications is exceeded, a timeout is
declared.

Time-Sharing Option (TSO)
An option in z/OS that provides
interactive time sharing from remote
terminals.

timestamp
A seven-part value that consists of a date
and time. The timestamp is expressed in
years, months, days, hours, minutes,
seconds, and microseconds.

timestamp with time zone
A two-part value that consists of a
timestamp and time zone. The timestamp
with time zone is expressed in years,
months, days, hours, minutes, seconds,
microseconds, time zone hours, and time
zone minutes.

trace A DB2 facility that provides the ability to
monitor and collect DB2 monitoring,
auditing, performance, accounting,
statistics, and serviceability (global) data.

transaction
An atomic series of SQL statements that
make up a logical unit of work. All of the
data modifications made during a
transaction are either committed together
as a unit or rolled back as a unit.

transaction lock
A lock that is used to control concurrent
execution of SQL statements.

transaction program name
In SNA LU 6.2 conversations, the name of
the program at the remote logical unit
that is to be the other half of the
conversation.

transaction-start-ID column
A generated column that is defined with
the AS TRANSACTION START ID clause.
The value is assigned whenever a row is
inserted into the table or any column in
the row is updated. A transaction-start-ID
column is intended for use in a

358 Managing Security

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

system-period temporal table. See also
generated column, row-begin column, and
row-end column.

transition table
A temporary table that contains all the
affected rows of the subject table in their
state before or after the triggering event
occurs. Triggered SQL statements in the
trigger definition can reference the table
of changed rows in the old state or the
new state. Contrast with auxiliary table,
base table, clone table, and materialized
query table.

transition variable
A variable that contains a column value
of the affected row of the subject table in
its state before or after the triggering
event occurs. Triggered SQL statements in
the trigger definition can reference the set
of old values or the set of new values.

tree structure
A data structure that represents entities in
nodes, with a most one parent node for
each node, and with only one root node.

trigger
A database object that is associated with a
single base table or view and that defines
a rule. The rule consists of a set of SQL
statements that run when an insert,
update, or delete database operation
occurs on the associated base table or
view.

trigger activation
The process that occurs when the trigger
event that is defined in a trigger
definition is executed. Trigger activation
consists of the evaluation of the triggered
action condition and conditional
execution of the triggered SQL statements.

trigger activation time
An indication in the trigger definition of
whether the trigger should be activated
before or after the triggered event.

trigger body
The set of SQL statements that is executed
when a trigger is activated and its
triggered action condition evaluates to
true. A trigger body is also called
triggered SQL statements.

trigger cascading
The process that occurs when the

triggered action of a trigger causes the
activation of another trigger.

triggered action
The SQL logic that is performed when a
trigger is activated. The triggered action
consists of an optional triggered action
condition and a set of triggered SQL
statements that are executed only if the
condition evaluates to true.

triggered action condition
An optional part of the triggered action.
This Boolean condition appears as a
WHEN clause and specifies a condition
that DB2 evaluates to determine if the
triggered SQL statements should be
executed.

triggered SQL statements
The set of SQL statements that is executed
when a trigger is activated and its
triggered action condition evaluates to
true. Triggered SQL statements are also
called the trigger body.

trigger granularity
In SQL, a characteristic of a trigger, which
determines whether the trigger is
activated:
v Only once for the triggering SQL

statement
v Once for each row that the SQL

statement modifies

triggering event
The specified operation in a trigger
definition that causes the activation of
that trigger. The triggering event is
comprised of a triggering operation
(insert, update, or delete) and a subject
table or view on which the operation is
performed.

triggering SQL operation
The SQL operation that causes a trigger to
be activated when performed on the
subject table or view.

trigger package
A package that is created when a
CREATE TRIGGER statement is executed.
The package is executed when the trigger
is activated.

trust attribute
An attribute on which to establish trust. A
trusted relationship is established based
on one or more trust attributes.

DB2 glossary 359

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

trusted connection
A database connection whose attributes
match the attributes of a unique trusted
context defined at the DB2 database
server.

trusted connection reuse
The ability to switch the current user ID
on a trusted connection to a different user
ID.

trusted context
A database security object that enables the
establishment of a trusted relationship
between a DB2 database management
system and an external entity.

trusted context default role
A role associated with a trusted context.
The privileges granted to the trusted
context default role can be acquired only
when a trusted connection based on the
trusted context is established or reused.

trusted context user
A user ID to which switching the current
user ID on a trusted connection is
permitted.

trusted context user-specific role
A role that is associated with a specific
trusted context user. It overrides the
trusted context default role if the current
user ID on the trusted connection matches
the ID of the specific trusted context user.

trusted relationship
A privileged relationship between two
entities such as a middleware server and
a database server. This relationship allows
for a unique set of interactions between
the two entities that would be impossible
otherwise.

TSO See Time-Sharing Option.

TSO attachment facility
A DB2 facility consisting of the DSN
command processor and DB2I.
Applications that are not written for the
CICS or IMS environments can run under
the TSO attachment facility.

typed parameter marker
A parameter marker that is specified
along with its target data type. It has the
general form:
CAST(? AS data-type)

type 2 indexes
Indexes that are created on a release of

DB2 after Version 7 or that are specified
as type 2 indexes in Version 4 or later.

UCS-2 Universal Character Set, coded in 2 octets,
which means that characters are
represented in 16-bits per character.

UDF See user-defined function.

UDT User-defined data type. In DB2 for z/OS,
the term distinct type is used instead of
user-defined data type. See distinct type.

uncommitted read (UR)
The isolation level that allows an
application to read uncommitted data. See
also cursor stability, read stability, and
repeatable read.

underlying view
The view on which another view is
directly or indirectly defined.

undo A state of a unit of recovery that indicates
that the changes that the unit of recovery
made to recoverable DB2 resources must
be backed out.

Unicode
A standard that parallels the ISO-10646
standard. Several implementations of the
Unicode standard exist, all of which have
the ability to represent a large percentage
of the characters that are contained in the
many scripts that are used throughout the
world.

union An SQL operation that involves the
UNION set operator, which combines the
results of two SELECT statements. Unions
are often used to merge lists of values
that are obtained from two tables.

unique constraint
An SQL rule that no two values in a
primary key, or in the key of a unique
index, can be the same.

unique index
An index that ensures that no identical
key values are stored in a column or a set
of columns in a table.

unit of recovery (UOR)
A recoverable sequence of operations
within a single resource manager, such as
an instance of DB2. Contrast with unit of
work.

unit of work (UOW)
A recoverable sequence of operations
within an application process. At any

360 Managing Security

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

time, an application process is a single
unit of work, but the life of an application
process can involve many units of work
as a result of commit or rollback
operations. In a multisite update
operation, a single unit of work can
include several units of recovery. Contrast
with unit of recovery.

universal table space
A table space that is both segmented and
partitioned. Contrast with partitioned
table space, segmented table space,
partition-by-growth table space, and
range-partitioned table space.

unlock
The act of releasing an object or system
resource that was previously locked and
returning it to general availability within
DB2.

untyped parameter marker
A parameter marker that is specified
without its target data type. It has the
form of a single question mark (?).

updatability
The ability of a cursor to perform
positioned updates and deletes. The
updatability of a cursor can be influenced
by the SELECT statement and the cursor
sensitivity option that is specified on the
DECLARE CURSOR statement.

update hole
The location on which a cursor is
positioned when a row in a result table is
fetched again and the new values no
longer satisfy the search condition. See
also delete hole.

update trigger
A trigger that is defined with the
triggering SQL operation update.

UR See uncommitted read.

user-defined data type (UDT)
See distinct type.

user-defined function (UDF)
A function that is defined to DB2 by
using the CREATE FUNCTION statement
and that can be referenced thereafter in
SQL statements. A user-defined function
can be an external function, a sourced
function, or an SQL function. Contrast
with built-in function.

user view
In logical data modeling, a model or
representation of critical information that
the business requires.

UTF-16
Unicode Transformation Format, 16-bit
encoding form, which is designed to
provide code values for over a million
characters and a superset of UCS-2. The
CCSID value for data in UTF-16 format is
1200. DB2 for z/OS supports UTF-16 in
graphic data fields.

UTF-8 Unicode Transformation Format, 8-bit
encoding form, which is designed for ease
of use with existing ASCII-based systems.
The CCSID value for data in UTF-8
format is 1208. DB2 for z/OS supports
UTF-8 in mixed data fields.

value The smallest unit of data that is
manipulated in SQL.

variable
A data element that specifies a value that
can be changed. A COBOL elementary
data item is an example of a host
variable. Contrast with constant.

variant function
See nondeterministic function.

varying-length string
A character, graphic, or binary string
whose length varies within set limits.
Contrast with fixed-length string.

version
A member of a set of similar programs,
DBRMs, packages, or LOBs.
v A version of a program is the source

code that is produced by precompiling
the program. The program version is
identified by the program name and a
timestamp (consistency token).

v A version of an SQL procedural
language routine is produced by
issuing the CREATE or ALTER
PROCEDURE statement for a native
SQL procedure.

v A version of a DBRM is the DBRM
that is produced by precompiling a
program. The DBRM version is
identified by the same program name
and timestamp as a corresponding
program version.

DB2 glossary 361

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

v A version of an application package is
the result of binding a DBRM within a
particular database system. The
application package version is
identified by the same program name
and consistency token as the DBRM.

v A version of a LOB is a copy of a LOB
value at a point in time. The version
number for a LOB is stored in the
auxiliary index entry for the LOB.

v A version of a record is a copy of the
record at a point in time.

view A logical table that consists of data that is
generated by a query. A view can be
based on one or more underlying base
tables or views, and the data in a view is
determined by a SELECT statement that is
run on the underlying base tables or
views.

Virtual Storage Access Method (VSAM)
An access method for direct or sequential
processing of fixed- and varying-length
records on disk devices.

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network (in z/OS).

volatile table
A table for which SQL operations choose
index access whenever possible.

VSAM
See Virtual Storage Access Method.

VTAM
See Virtual Telecommunications Access
Method.

warm start
The normal DB2 restart process, which
involves reading and processing log
records so that data that is under the
control of DB2 is consistent. Contrast with
cold start.

WLM application environment
A z/OS Workload Manager attribute that
is associated with one or more stored
procedures. The WLM application
environment determines the address
space in which a given DB2 stored
procedure runs.

WLM enclave
A construct that can span multiple

dispatchable units (service request blocks
and tasks) in multiple address spaces,
allowing them to be reported on and
managed by WLM as part of a single
work request.

write to operator (WTO)
An optional user-coded service that
allows a message to be written to the
system console operator informing the
operator of errors and unusual system
conditions that might need to be corrected
(in z/OS).

WTO See write to operator.

WTOR
Write to operator (WTO) with reply.

XCF See cross-system coupling facility.

XES See cross-system extended services.

XML See Extensible Markup Language.

XML attribute
A name-value pair within a tagged XML
element that modifies certain features of
the element.

XML column
A column of a table that stores XML
values and is defined using the data type
XML. The XML values that are stored in
XML columns are internal representations
of well-formed XML documents.

XML data type
A data type for XML values.

XML element
A logical structure in an XML document
that is delimited by a start and an end
tag. Anything between the start tag and
the end tag is the content of the element.

XML index
An index on an XML column that
provides efficient access to nodes within
an XML document by providing index
keys that are based on XML patterns.

XML lock
A column-level lock for XML data. The
operation of XML locks is similar to the
operation of LOB locks.

XML node
The smallest unit of valid, complete
structure in a document. For example, a
node can represent an element, an
attribute, or a text string.

362 Managing Security

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

XML node ID index
An implicitly created index, on an XML
table that provides efficient access to XML
documents and navigation among
multiple XML data rows in the same
document.

XML pattern
A slash-separated list of element names,
an optional attribute name (at the end), or
kind tests, that describe a path within an
XML document in an XML column. The
pattern is a restrictive form of path
expressions, and it selects nodes that
match the specifications. XML patterns are
specified to create indexes on XML
columns in a database.

XML publishing function
A function that returns an XML value
from SQL values. An XML publishing
function is also known as an XML
constructor.

XML schema
In XML, a mechanism for describing and
constraining the content of XML files by
indicating which elements are allowed
and in which combinations. XML schemas
are an alternative to document type
definitions (DTDs) and can be used to
extend functionality in the areas of data
typing, inheritance, and presentation.

XML schema repository (XSR)
A repository that allows the DB2 database
system to store XML schemas. When
registered with the XSR, these objects
have a unique identifier and can be used
to validate XML instance documents.

XML serialization function
A function that returns a serialized XML
string from an XML value.

XML table
An auxiliary table that is implicitly
created when an XML column is added to
a base table. This table stores the XML
data, and the column in the base table
points to it.

XML table space
A table space that is implicitly created
when an XML column is added to a base
table. The table space stores the XML
table. If the base table is partitioned, one
partitioned table space exists for each
XML column of data.

X/Open
An independent, worldwide open systems
organization that is supported by most of
the world's largest information systems
suppliers, user organizations, and
software companies. X/Open's goal is to
increase the portability of applications by
combining existing and emerging
standards.

XRF See Extended Recovery Facility.

XSR See XML schema repository.

zIIP See IBM System z9 Integrated Processor.

z/OS An operating system for the System z
product line that supports 64-bit real and
virtual storage.

z/OS Distributed Computing Environment (z/OS
DCE) A set of technologies that are provided by

the Open Software Foundation to
implement distributed computing.

DB2 glossary 363

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

||

||

364 Managing Security

Index

A
access checking

mandatory 111, 113
object security labels 111
user security labels 111

access control
applications 85
auditing 281
authorities 5, 16, 22
authorization IDs 21, 22
authorizing 85, 86
catalog tables 101
CICS 127
columns 189
data definition control

overview 215
DB2 subsystem

RACF 7
exit routines 6, 229
external 127

overview 127
external DB2 data sets 8
IMS 127
internal

overview 21
internal DB2 data 4
managing 85
multilevel security 6
object ownership 6
privileges 5, 16, 22
RACF 7, 127
restricting 86
roles 5, 21, 22
rows 189
subsystems

local 7, 153
remote 7, 159

trusted connections 205
trusted contexts

overview 205
access control authorization routine 243

ACEE 243, 244
active 262
authorization IDs 244
debugging 262
default 243
expected output 259
EXPLAIN STMTCACHE 247
invoking 243
overview 241
packages

inoperative 245
parameter list 249
processing exceptions 261
reason codes 260
return codes 259
specifying 242

access profile
defining 128
RACF 128

access requests
remote

permitting 135
ACCESSCTRL authority 31, 42, 52, 55

granting privileges 59
revoking privileges 59

accessibility
keyboard x
shortcut keys x

accessing
data 59

activating
client certificate name filters 266

adding
RACF groups 132
SAF user mapping plug-in 152

address spaces
started-task 129
WLM-established 138

altering
tables 58

application registration tables (ART)
ART columns 216

applications
authorization

validating 83
executing 83
RRSAF 83

AT-TLS
configuring 263
data protection 263

attachment requests
remote 166

audit classes 283
audit policies

audit categories 288
creating 291
displaying 291
overview 288

audit policy 1
audit trace records 285

collecting 287
formatting 287

audit trace reports 284
audit traces 282, 294

audit classes 283
limitations 285
starting 286
stopping 286

auditing
access

overview 281
administrative authorities 293
AUDIT ALL option 16
audit categories 288
audit policies 288
authorization IDs 282, 294, 295
distributed environment 288
security measures 294
tables 295

AUDIT clause 293

© Copyright IBM Corp. 1982, 2011 365

authentication level
configuring 264
Secure Socket Layer (SSL) 264

authorities
access control 5
ACCESSCTRL 1
ACCESSCTRL authority 31, 42, 59
administrative 24, 31, 36, 37, 38, 39, 40, 41, 42, 45, 51, 52,

55, 57, 58, 59
auditing 293

DATAACCESS 1
DATAACCESS authority 31, 42, 59
DB2 catalogs 44
DBADM authority 31, 39, 42, 103
DBCTRL authority 31, 39
DBMAINT authority 31, 39
directories 44
installation SYSADM authority 31, 36
installation SYSOPR authority 31, 38
managing 51
migrating 55
PACKADM authority 31, 40
REVOKE statement 74
revoking 74
SECADM 1
SECADM authority 31, 41, 42, 57
security 41
separating 1, 52
SQLADM 1
SQLADM authority 31, 42
SYSADM authority 31, 36, 42, 70, 74
SYSCTRL authority 31, 37
SYSOPR authority 31, 38
system DBADM 1
system DBADM authority 31, 40, 42, 58, 103
utilities 44

authorization
access control 47
failure code 163
views 246

authorization IDs 63, 68, 71, 72
access control 21
audit traces 282
auditing 282, 294, 295
caching 84, 85
determining 96
dynamic SQL 92, 96
managing access 21
packages 84
plans 84
primary 22, 45
RACF 22
routines 85
secondary 22, 45, 65

connection processing 156
sign-on processing 158

sign-on processing 157
SQL 22, 45
translating

inbound IDs 167
outbound IDs 183

validation 91
automatic rebind

roles 245

B
bind behavior 94

attributes 93
BINDAGENT

RACF 246
roles 246

C
caching

authorization IDs 84
plans 84
routines 85

EXECUTE privilege
packages 247
plans 247
routines 247

roles 84
security labels 117
SQL statements 248

catalog tables
privilege records 101

catalogs 44
CD-ROM, books on 309
CICS 7

connection routines
samples 159

sign-on routines
samples 159

client certificate 264
client certificate name filters

activating 266
creating 266

collecting
audit trace records 287

collection privileges
CREATE IN privilege 24

column access control 1, 202
activating 198, 200
column masks 189, 191, 198, 200
deactivating 198, 200

column masks 189, 191, 192
creating 198
modifying 200

column-level encryption
password hints 275
views 274

commands
DB2

DISPLAY DATABASE command 301
DISPLAY TRACE command 286
required authorization 135
START TRACE command 286
STOP TRACE command 286

DISPLAY DATABASE command 301
RACF

ADDGROUP command 132
WLM REFRESH command 140

communications databases (CDB)
requesters 175
servers 161

configuring
AT-TLS 263
enterprise identity mapping (EIM)

domain controller 151
IMS 137

366 Managing Security

configuring (continued)
LDAP

server 149
RACF

LDAP server 150
Secure Socket Layer (SSL) 263
SNA 126
SSL authentication level 264
TCP/IP 126

connection
requests

connection processing 153
local 153
managing 153

connection processing
attachment requests 163, 180
BATCH 154
CICS 154
IMS 154
RACF 154
secondary authorization IDs 156
TSO 154

connection requests
inbound 170, 171
managing 163, 170, 174
outbound 174
processing 154, 171
SNA-based 163
TCP/IP-based 170, 171

connection routines 238
debugging 239
expected output 236
input values 235
invoking 231
overview 229
parameter list 231, 234
processing 237
samples 230
session variables 240
specifying 230

connections
VTAM 129

creating
audit policies 291
client certificate name filters 266
materialized query tables 248
table spaces 227
trusted connections

local 207

D
data

access control 4
accessing 68
changes

tracking 298
consistency 296, 299, 300, 301, 302

SQL queries 300
verifying 299

distributed 68
integrity 296, 297
internal integrity reports 302
operation logs 301
transactions

database balancing 298
uniqueness 297

data consistency
locks 299
referential integrity 299

data definition control
access control 215
application registration tables (ART) 218
controlling

application name 219
application name with exceptions 220
object name with exceptions 222
object names 221

data definition statements 215
DB2 support

DSNTIPZ panel 215
installing 218

disabling 225
managing 215
object registration tables (ORT) 218
restarting 225
stopping 225

data definition statements 47
data definition control 215

data protection
DB2 built-in functions 272
encryption 8

overview 263
RACF 8

overview 263
Secure Socket Layer (SSL)

DB2 support 263
data sets

adding groups 269
creating 272
generic profiles

adding authorization IDs 271
creating 270

protecting 269
DATAACCESS authority 31, 42, 52, 55

accessing data 59
database balancing

incomplete transactions 298
lost transactions 298

database privileges
CREATETAB privilege 25
CREATETS privilege 25
DISPLAYDB privilege 25
DROP privilege 25
IMAGCOPY privilege 25
LOAD privilege 25
RECOVERDB privilege 25
REORG privilege 25
REPAIR privilege 25
STARTDB privilege 25
STATS privilege 25
STOPDB privilege 25

DB2 books online 309
DB2 directories 44
DB2 Information Center for z/OS solutions 309
DB2 support

enterprise identity mapping (EIM) 148
z/OS identity filter 152

DB2I 211
DBADM authority 31, 39, 42

managing access 17
DBCTRL authority 31, 39
DBMAINT authority 31, 39, 42

Index 367

decryption
DB2 built-in functions 272

define behavior 94
attributes 93

definer, description 87
defining

column-level encryption 273
DB2 resources

RACF 127
external security profiles 213
trusted contexts 206
user-defined functions (UDF) 90

DELETE statement 123, 192
denial-of-service attack

managing 173
dependent privileges 70
disability x
disabling

data definition control 225
DISPLAY TRACE command 286
displaying

audit policies 291
distinct types

stored procedures 142
distributed access

implementing 11, 12
planning 11
servers

central 11
remote 12

views 11
distributed environment

auditing 288
DRDA access

security mechanisms 159, 160
DROP statement 72
dropping

views 247
DSN command processor 211
DSNDB01 database 44
DSNDB06 database 44
dynamic SQL

authorization 92
DYNAMICRULES 92, 96
DYNAMICRULES(BIND)

roles 245

E
edit procedures 110
encrypted data

defining columns 273
performance optimization 277
predicates 277

encrypting
AES 186
DES 186
non-character values 277
passwords 185, 186

encryption
AT-TLS 263
column level

defining 273
column-level encryption 274, 275
data protection 263
DB2 built-in functions 272
encrypted data 273, 277

encryption (continued)
non-character values 277
options 8
password hints 275
performance optimization 277
predicates 277
Secure Socket Layer (SSL) 263, 267, 268
value-level encryption 275, 276

enterprise identity mapping (EIM)
configuring 151
DB2 support 148
domain controller 151
implementing 148

establishing
trusted connections

remote 208, 209
executing

stored procedure 144
exit routines

access control 6, 229
managing access 229

EXPLAIN STMTCACHE
SQL statements 247

explicit privileges 24
collection privileges 24
database privileges 24, 25
distinct type privileges 24
function privileges 24
granting 60, 61
JAR privileges 24
managing 60
package privileges 24, 25
plan privileges 24, 26
procedure privileges 24
routine privileges 24, 26
schema privileges 24, 26
sequence privileges 24
system privileges 24, 27
table privileges 24, 28
usage privileges 24, 29
use privileges 24, 29
view privileges 24, 28

explicit view privileges
ALTER privilege 28
DELETE privilege 28
GRANT ALL privilege 28
INDEX privilege 28
INSERT privilege 28
REFERENCES privilege 28
SELECT privilege 28
TRIGGER privilege 28
UPDATE privilege 28

F
field procedures 110
formatting

audit trace records 287

G
general-use programming information, described 317
global temporary tables 109
GRANT statement 62, 63, 65, 66, 67, 68

PUBLIC clause 60, 61, 62
ROLE AS OBJECT OWNER clause 61

368 Managing Security

granting
privileges 59
write-down privileges 113

GUPI symbols 317

I
image copies 294
implementing

column access control 189
enterprise identity mapping (EIM) 148
multilevel security 107
row access control 189
user-defined functions (UDF) 88
z/OS identity filter 152

implementor, description 87
implicit privileges 24

granting
object ownership 80

managing 80, 87
object ownership 77
stored procedures 77

object ownership 30, 78, 80
changing 79
trusted contexts 79

routines 87
inbound IDs

associating
secondary IDs 170

managing 166
translating 167

indexes
creating 225
dropping 227
managing 225
naming 226

INSERT statement 119, 192
column access control 202
row access control 202

installation SYSADM authority 31, 36
installation SYSOPR authority 31, 38
installing

DB2 support
data definition control 218

invoke behavior 94
attributes 94

invoker, description 87

J
JAR files 143

K
Kerberos

authenticating 167
authentication

RACF 147

L
LDAP

configuring 149
RACF 150

z/OS 149

library 309

M
managing

authorities 51
connection requests

outbound 174
SNA-based 163

data
multilevel-secure environment 118

denial-of-service attack 173
materialized query tables 110

dropping 73
MERGE statement 122, 192
migrating

ACCESSCTRL authority 55
authorities 55
DATAACCESS authority 55
SECADM authority 55
SYSADM authority 55
SYSCTRL authority 55
system DBADM authority 55

multilevel security
access control 6
advantages 107
constraints 110
discretionary access checking 111
distributed environment 126
edit procedures 110
field procedures 110
global temporary tables 109
implementing 113, 115
mandatory access checking 111
materialized query tables 110
objects 109, 113
rows 115
security categories 109
security labels 108
security levels 109
SNA

configuring 126
tables

adding 116
columns 116, 117
creating 116
removing 117

TCP/IP
configuring 126

triggers 111
users 109
validation procedures 110
views 117

O
object owners

managing access 18
object ownership

access control 6
aliases 30
changing 79
databases 30
distinct types 30
implicit privileges 77

granting 80

Index 369

object ownership (continued)
indexes 30
JAR 30
packages 30, 80, 81
plans 30, 80, 81
privileges

implicit 30
qualified names 78
roles 30
sequences 30
storage groups 30
stored procedures 30
synonyms 30
table spaces 30
tables 30
trusted contexts 30, 79
unqualified names 78
user-defined functions 30
views 30

object registration tables (ORT)
ORT columns 216

object sets
registering 224

objectives 9
objects

multilevel security 109
online 309
online books 309
outbound IDs

translating 183

P
PACKADM authority 31, 40
package ownership

changing 80, 81
creating 80, 81
trusted contexts 81

package privileges
BIND privilege 25
COPY privilege 25
EXECUTE privilege 25
GRANT ALL privilege 25

packages
access authorization 85
authorization

validating 82, 83
binding 67
executing 82, 83
inoperative 74
invalidating 74
rebinding 67
unqualified names 81

parameters
REVOKE DEP PRIV parameter 70, 74
SEPARATE SECURITY parameter 36, 37, 58, 59, 189, 202
SEPARATE_SECURITY parameter 1, 31, 51, 52, 55, 57,

190, 191, 196, 198, 200, 203
system 1, 31, 36, 37, 51, 52, 55, 57, 58, 59, 70, 74, 189, 190,

191, 196, 198, 200, 202, 203
PassTickets

configuring 186
RACF 167

passwords
changing 163
encrypting 167, 186
RACF-encrypted 185

passwords (continued)
sending 185

performance optimization
encrypted data 277

plan ownership
changing 80, 81
creating 80, 81
trusted contexts 81

plan privileges
BIND privilege 26
EXECUTE privilege 26

plans
access authorization 85, 86
authorization

validating 82
binding 66, 67
executing 82

remotely 86
rebinding 67
unqualified names 81

port of entry 165
RACF APPCPORT class 135
RACF SERVAUTH class 136

predicates
encrypted data 277

preventing
SQL injection attacks 174

primary authorization ID 22
privileges

access control 5
application programmers 45
authorization IDs 45, 102
catalog tables 103
composite

using 100
CREATE DATABASE statement 50
CREATE INDEX statement 50
CREATE STOGROUP statement 50
CREATE TABLE statement 50
CREATE TABLESPACE statement 50
CREATE VIEW statement 50
CREATEIN privilege

granting 141
data

distributed 68
data definition statements 47
database administrators 45
dependent 70
DROP statement 72
dynamic SQL 50
EXECUTE privilege

caching 247
executing

routines 87
EXPLAIN 1
explicit 24, 25, 26, 27, 28, 29, 60, 61
GRANT statement 50, 63, 65, 66, 67, 68
granted 102
granting 15, 61, 62, 63, 65, 66, 67, 68, 80, 88

distinct types 142
JAR files 143
stored procedure packages 143
stored procedures 143

implicit 24, 30, 77, 78, 79, 80, 81, 87, 214
information center consultants 45
multiple grants 103
object ownership 30

370 Managing Security

privileges (continued)
package administrators 45
packages 48, 67, 101
plans 48, 66, 67, 101
production binders 45
PUBLIC ID 61, 62
query users 45
restrictions 74
REVOKE statement 50, 68, 70, 71, 72, 73, 74
revoking 68, 70, 71, 72, 73, 74
roles 45, 102
routines 88
security administrators 45
static SQL 50
system administrators 45
system operators 45
system programmers 45
trusted contexts 214
user analysts 45
users

group 65
remote 62

views 62
product-sensitive programming information, described 317
programming interface information, described 317
PSPI symbols 317
PUBLIC clause

GRANT statement 60, 61, 62
PUBLIC ID 61, 62

R
RACF

access authorization
protected resources 129
SERVER resource class 138

access checking
DSNR class 128
SERVER class 128

access control 7, 127
non-DB2 resources 140

authorization 8, 137
authorizing

group access 134
BINDAGENT 246
data protection 8, 263, 269
DB2 resources

defining 127
defining

access profiles 128
DB2 resources 146
user IDs 129

encrypted passwords 185
groups

adding 132
Kerberos authentication 147
managing access 127

DB2 127
PassTickets 186
roles 246

RACF access control module 262
RACF groups

creating 15, 16
recovery logs 294
registering

object sets 224

registration tables
adding columns 227
application registration tables (ART) 216
creating 225
dropping 227
managing 225
naming 226
object registration tables (ORT) 216
updating 227

Resource Recovery Services attachment facility (RRSAF)
RACF profiles 138
stored procedures 138

retrieving
authorization IDs 102, 103, 104, 105
multiple grants 103
packages 105
plans 105
privilege records 106
roles 102, 103, 104, 105

reusing
trusted connections 210, 211, 212

REVOKE statement 68, 70, 71, 72, 73, 74
ROLE AS OBJECT OWNER clause 72

revoking
privileges 59

ROLE AS OBJECT OWNER clause
GRANT statement 61

roles 22, 45, 63, 68
access control 5, 21
automatic rebind 245
BINDAGENT 246
caching 84
dropping 72
DYNAMICRULES(BIND) 245
managing 21
packages 84
privileges 61
RACF 246
ROLE AS OBJECT OWNER clause 61
SECADM authority 57
trusted connection 23
trusted contexts 23, 57

routine privileges
EXECUTE ON FUNCTION privilege 26
EXECUTE ON PROCEDURE privilege 26

routines
access authorization

simplifying 100
access control authorization routine 241, 242, 243, 244,

245, 247, 249, 259, 260, 261, 262
authorization IDs 105
connection routines 229, 230, 231, 234, 235, 236, 237, 238,

239, 240
executing 87
implicit privileges 87
privileges 87

granting 88
roles 105
sign-on routines 229, 230, 231, 234, 235, 236, 237, 238, 239,

240
stored procedures 87
user-defined functions (UDF) 87

row access control 1, 202
activating 196
deactivating 196
row permissions 189, 190, 196

row and column access control 203

Index 371

row and column access control (continued)
access types 192
column masks 192
implementing 189
row permissions 192
rules 192

row permissions 189, 190, 192
creating 196

RRSAF 83, 212
run behavior

attributes 92

S
SAF

user mapping plug-in
adding 152

scenarios
security plans 9

schema privileges
ALTERIN privilege 26
CREATEIN privilege 26
DROPIN privilege 26

schemas
stored procedures 141

SECADM authority 31, 41, 42, 52, 55
roles 57
trusted contexts 57

secondary authorization ID
RACF ID 22
SQL ID 22

secondary IDs
privileges 65

Secure Socket Layer (SSL)
authentication level 264

configuring 264
configuring 263
data protection 263
DB2 requesters

configuring 268
DB2 servers

configuring 267
security

active security measures 281
column access control 189
DB2 1
DB2 10 for z/OS 1
DB2 solutions

overview 1
getting started 1
mechanisms 159, 160

DRDA access 159
multilevel 107, 108, 109, 110, 111, 113, 115, 116, 117, 118,

119, 120, 122, 123, 125, 126
implementing 107
managing 118

profiles
defining 213

row access control 189
security measures 294

security categories 109
security labels 108

caching 117
columns 116
determining 109
objects 111, 112
RACF resource classes 113

security labels (continued)
relationships

dominance 112
users 111, 112

security levels 109
security plans 9

access control 16, 18
access restrictions 9, 13
auditing access 13, 16
distributed access 11, 12
privileges

granting 15
RACF groups

creating 15, 16
scenarios 9
SELECT privilege 10
tables

keys 14
triggers 14
updating 14

views 10
creating 10, 13

SELECT statement 118, 192
separating

ACCESSCTRL authority 52
authorities 52
DATAACCESS authority 52
SECADM authority 52
SYSADM authority 52
SYSCTRL authority 52
SYSOPR authority 52
system DBADM authority 52

server certificate 264
shortcut keys

keyboard x
sign-on processing

requests 153
usage 153

sign-on requests
authorization IDs 157
secondary authorization IDs 158

sign-on routines 238
debugging 239
expected output 236
input values 235
invoking 231
overview 229
parameter list 231, 234
processing 237
samples 230
session variables 240
specifying 230

simplifying
access authorization

routines 100
SNA access

protocols 163
security mechanisms 159, 160

softcopy publications 309
SQL 174

attributes 94
CONNECT statement 212
CREATE statement 225
dynamic 50, 92, 93, 94, 96
static 50

SQL injection attacks
preventing 174

372 Managing Security

SQL statements
caching 248

SQLADM authority 31, 42
START TRACE command 286
starting

audit traces 286
STOP TRACE command 286
stopping

audit traces 286
data definition control 225

stored procedure packages 143
stored procedures 93, 94, 143

access control
non-DB2 resources 140

creating 139
distinct types 142
executing

remote 144
required authorization 139

managing 137
trusted contexts 144
WLM 138, 139, 140

subsystems
access control 7, 127
managing 127

syntax diagram
how to read xi

SYSADM authority 31, 36, 52, 55, 74
managing access 17

SYSCTRL authority 31, 37, 52, 55
SYSIBM.IPNAMES columns 176
SYSIBM.LOCATIONS columns 179
SYSIBM.LUNAMES columns 161, 175
SYSIBM.USERNAMES columns 162, 178
SYSOPR authority 31, 38, 52
system administrator

privileges 63
system DBADM authority 31, 40, 42, 52, 55

altering tables 58
System Management Facility (SMF) 282
system privileges

ARCHIVE privilege 27
BINDADD privilege 27
BINDAGENT privilege 27
BSDS privilege 27
CREATE_SECURE_OBJECT privilege 27
CREATEALIAS privilege 27
CREATEDBA privilege 27
CREATEDBC privilege 27
CREATESG privilege 27
CREATETMTAB privilege 27
DEBUGSESSION privilege 27
DISPLAY privilege 27
EXPLAIN privilege 27
MONITOR1 privilege 27
MONITOR2 privilege 27
RECOVER privilege 27
STOPALL privilege 27
STOSPACE privilege 27
TRACE privilege 27

system programmer 46

T
table privileges

ALTER privilege 28
DELETE privilege 28

table privileges (continued)
GRANT ALL privilege 28
INDEX privilege 28
INSERT privilege 28
REFERENCES privilege 28
SELECT privilege 28
TRIGGER privilege 28
UPDATE privilege 28

table spaces
registration tables 227

tables
auditing 295
authorization IDs 104
catalogs

access control 101
privileges 101

creating 248
packages 105
plans 105
roles 104
updating 14

tasks
DB2-started 129

TCP/IP
connection requests

protecting 146
protocols 170, 171

tracking
data changes 298

translating
inbound IDs 167
outbound IDs 183

triggers 111, 203
creating 203

TRUNCATE statement 125
trusted connections

local
creating 207
reusing 211, 212

remote
establishing 208, 209
reusing 211

reusing 210
roles 23
trusted contexts 206

trusted contexts 214
access control 205
ASUSER 213
BINDAGENT 246
defining 206
managing 205
object ownership 79
package ownership 81
plan ownership 81
RACF 246
roles 23, 57, 246
stored procedure 144
trusted connections 205, 206, 213

U
UPDATE statement 120, 192
updating

registration tables 227
usage privileges

USAGE ON DISTINCT TYPE privilege 29
USAGE ON JAR privilege 29

Index 373

usage privileges (continued)
USAGE ON SEQUENCE privilege 29

use privileges
USE OF BUFFERPOOL privilege 29
USE OF STOGROUP privilege 29
USE OF TABLESPACE privilege 29

user-defined functions (UDF) 93, 94, 200
defining 90
implementing 88
invoking 248
using 91

users
group 65
multilevel security 109

using
user-defined functions (UDF) 91

utilities 125
CHECK DATA utility 300
CHECK INDEX utility 300
CHECK LOB utility 300
REPORT utility 301

V
validation procedures 110
value-level encryption

defining 275
using passwords hints 276

verifying
VTAM partner LUs 166

views 62
authorization 246
creating 10, 13
dropping 72, 247
privileges records 106

VTAM
APPL statement 166
connection control 129, 165
conversation-level security 166
partner LU verification 166
passwords

choosing 165
VTAM partner LUs

authenticating 167
verifying 166

W
WLM

refreshing 140
stored procedures 138, 140

creating 139
write-down control

mandatory access checking 113
write-down privileges 113

write-down privileges
granting 113

Z
z/OS console logs 294
z/OS identity filter

DB2 support 152
implementing 152

374 Managing Security

����

Product Number: 5605-DB2
5697-P31

Printed in USA

SC19-3496-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

10
fo

rz
/O

S
M

an
ag

in
g

Se
cu

rit
y

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 10 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Getting started with DB2 security
	DB2 security solutions
	What's new in DB2 10 for z/OS security?
	DB2 data access control
	ID-based access control within DB2
	Role-based access control within DB2
	Ownership-based access control within DB2
	Access control through multilevel security
	Access control external to DB2

	DB2 subsystem access control
	Managing access requests from local applications
	Managing access requests from remote applications

	Data set protection
	RACF for data protection
	Data encryption

	Scenario: Securing data access at Spiffy Computer
	Determining security objectives
	Securing manager access to employee data
	Creating views of employee data
	Granting managers the SELECT privilege
	Managing distributed access
	Auditing manager access

	Securing access to payroll operations and management
	Creating views of payroll operations
	Securing compensation accounts with update tables
	Securing compensation updates with other measures
	Granting privileges to payroll operations and management
	Auditing payroll operations and management

	Managing access privileges of other authorities
	Managing access by the DBADM authority
	Managing access by the SYSADM authority
	Managing access by object owners
	Managing access by other users

	Chapter 2. Managing access through authorization IDs and roles
	Authorization IDs and roles
	Authorization IDs
	Roles in a trusted context

	Privileges and authorities
	Explicit privileges
	Explicit collection privileges
	Explicit database privileges
	Explicit package privileges
	Explicit plan privileges
	Explicit routine privileges
	Explicit schema privileges
	Explicit system privileges
	Explicit table and view privileges
	Explicit usage privileges
	Explicit use privileges

	Implicit privileges through object ownership
	Administrative authorities
	Installation SYSADM
	SYSADM
	SYSCTRL
	Installation SYSOPR
	SYSOPR
	DBADM
	DBCTRL
	DBMAINT
	PACKADM
	System DBADM
	SECADM
	ACCESSCTRL
	DATAACCESS
	SQLADM

	Common DB2 administrative authorities
	Utility authorities for DB2 catalog and directory
	Privileges by authorization ID and authority
	Privileges required for common job roles and tasks
	Checking access authorization for data definition statements
	Privileges required for handling plans and packages
	Privileges required for using dynamic SQL statements

	Managing administrative authorities
	Separating the SYSADM authority
	Migrating the SYSADM authority
	Creating roles or trusted contexts with the SECADM authority
	Altering tables with the system DBADM authority
	Accessing data with the DATAACCESS authority
	Granting and revoking privileges with the ACCESSCTRL authority

	Managing explicit privileges
	Granting privileges to a role
	Granting privileges to the PUBLIC ID
	Granting privileges to remote users
	Granting privileges through views
	Granting privileges with the GRANT statement
	Granting privileges to secondary IDs
	Granting privileges to user groups
	Granting privileges for binding plans
	Granting privileges for rebinding plans and packages
	Granting privileges for accessing distributed data

	Revoking privileges with the REVOKE statement
	Revoking dependent privileges
	Revoking privileges granted by multiple IDs
	Revoking privileges granted by all IDs
	Revoking privileges granted by a role
	Revoking all privileges from a role
	Revoking privileges for views
	Revoking privileges for materialized query tables
	Revoking privileges for plans or packages
	Revoking the SYSADM authority from users
	Restrictions on privilege revocation

	Managing implicit privileges
	Managing implicit privileges through object ownership
	Ownership of objects with unqualified names
	Ownership of objects with qualified names
	Ownership of objects within a trusted context
	Changing object ownership
	Granting implicit privileges of object ownership

	Managing implicit privileges through plan or package ownership
	Establishing or changing plan or package ownership
	Establishing plan and package ownership in a trusted context
	How DB2 resolves unqualified names
	Validating authorization for executing plans or packages
	Caching authorization IDs for better performance
	Authorizing plan or package access through applications

	Managing implicit privileges through routines
	Privileges required for executing routines
	Granting privileges through routines
	Authorization behaviors for dynamic SQL statements

	Retrieving privilege records in the DB2 catalog
	Catalog tables with privilege records
	Retrieving all authorization IDs or roles with granted privileges
	Retrieving multiple grants of the same privilege
	Retrieving all authorization IDs or roles with the DBADM and system DBADM authorities
	Retrieving all IDs or roles with access to the same table
	Retrieving all IDs or roles with access to the same routine
	Retrieving plans or packages with access to the same table
	Retrieving privilege information through views

	Implementing multilevel security with DB2
	Multilevel security
	Security labels
	Determining the security label of a user
	Security levels
	Security categories
	Users and objects in multilevel security
	Global temporary tables with multilevel security
	Materialized query tables with multilevel security
	Constraints in a multilevel-secure environment
	Field, edit, and validation procedures in a multilevel-secure environment
	Triggers in a multilevel-secure environment

	Mandatory access checking
	Dominance relationships between security labels
	Write-down control
	Granting write-down privileges

	Implementing multilevel security at the object level
	Implementing multilevel security with row-level granularity
	Creating tables with multilevel security
	Adding multilevel security to existing tables
	Removing tables with multilevel security
	Caching security labels

	Restricting access to the security label column
	Managing data in a multilevel-secure environment
	Using the SELECT statement with multilevel security
	Using the INSERT statement with multilevel security
	Using the UPDATE statement with multilevel security
	Using the MERGE statement with multilevel security
	Using the DELETE statement with multilevel security
	Using the TRUNCATE statement with multilevel security
	Using utilities with multilevel security

	Implementing multilevel security in a distributed environment
	Configuring TCP/IP with multilevel security
	Configuring SNA with multilevel security

	Chapter 3. Managing access through RACF
	Establishing RACF protection for DB2
	Defining DB2 resources to RACF
	Naming protected access profiles
	Enabling RACF checking for the DSNR and SERVER classes
	Enabling partner LU verification

	Permitting RACF access
	Defining RACF user IDs for DB2-started tasks
	Adding RACF groups
	Granting users and groups access
	Granting authorization on DB2 commands
	Permitting access from remote requesters
	Enabling IMS transactions to use RACF authorization control of DB2 objects

	Managing authorization for stored procedures
	Authorizing IDs for using RRSAF
	Specifying WLM-established server address spaces for stored procedures
	Managing authorizations for creation of stored procedures in WLM environments
	Authorizing users to refresh WLM environments
	Controlling stored procedure access to non-DB2 resources by using RACF
	Granting the CREATEIN privilege on schemas for stored procedures
	Granting privileges for using distinct types
	Granting privileges for using JAR files
	Granting privileges for executing stored procedures and stored procedure packages
	Controlling remote execution of stored procedures by using trusted contexts

	Protecting connection requests that use the TCP/IP protocol
	Establishing Kerberos authentication through RACF

	Implementing DB2 support for enterprise identity mapping
	Configuring the z/OS LDAP server
	Setting up RACF for the z/OS LDAP server
	Setting up the EIM domain controller
	Adding the SAF user mapping plug-in data set to LNKLIST

	Implementing DB2 support for distributed identity filters
	Managing connection requests from local applications
	Processing of connection requests
	Using secondary IDs for connection requests
	Processing of sign-on requests
	Using secondary IDs for sign-on requests
	Using sample connection and sign-on exit routines for CICS transactions

	Managing connection requests from remote applications
	Security mechanisms for DRDA and SNA
	Security mechanisms for DB2 for z/OS as a requester
	Security mechanisms for DB2 for z/OS as a server

	Communications database for the server
	SYSIBM.LUNAMES columns
	SYSIBM.USERNAMES columns

	Enabling change of user passwords
	Authorization failure code
	Managing inbound SNA-based connection requests
	Processing of remote attachment requests
	Controlling LU attachments to the network
	Verifying partner LUs
	Accepting remote attachment requests
	Managing inbound IDs through DB2
	Managing inbound IDs through RACF
	Authenticating partner LUs
	Encrypting passwords
	Authenticating users through Kerberos
	Translating inbound IDs
	Associating inbound IDs with secondary IDs

	Managing inbound TCP/IP-based connection requests
	Processing of TCP/IP-based connection requests

	Managing denial-of-service attacks
	Preventing SQL injection attacks
	Managing outbound connection requests
	Communications database for the requester
	Processing of outbound connection requests

	Translating outbound IDs
	Sending passwords or password phrases
	Sending RACF-encrypted passwords
	Sending RACF PassTickets
	Sending encrypted passwords or password phrases from DB2 for z/OS clients
	Sending encrypted passwords from workstation clients

	Chapter 4. Managing access through row permissions and column masks
	Row and column access control
	Row permission
	Column mask
	Rules of row and column access control
	Creating row permissions
	Creating column masks
	Modifying column masks to reference UDFs
	Using INSERT on tables with row access control
	Creating triggers for tables with row and column access control

	Chapter 5. Managing access through trusted contexts
	Trusted contexts
	Trusted connections
	Defining trusted contexts
	Creating local trusted connections
	Establishing remote trusted connections by DB2 for z/OS requesters
	Establishing remote trusted connections to DB2 for z/OS servers
	Switching users of a trusted connection
	Reusing a local trusted connection through the DSN command processor and DB2I
	Reusing a remote trusted connection by DB2 for z/OS requesters
	Reusing a remote trusted connection through DB2 for z/OS servers
	Reusing a local trusted connection through RRSAF
	Reusing a local trusted connection through the SQL CONNECT statement

	Defining external security profiles
	Enabling users to perform actions on behalf of others
	Performing tasks on objects for other users

	Chapter 6. Managing access through data definition control
	Data definition statements
	Data definition control support
	Registration tables
	Installing data definition control support
	Enabling data definition control
	Controlling data definition by application name
	Controlling data definition by application name with exceptions
	Controlling data definition by object name
	Controlling data definition by object name with exceptions

	Registering object sets
	Disabling data definition control
	Managing registration tables and indexes
	Creating registration tables and indexes
	Naming registration tables and indexes
	Dropping registration tables and indexes
	Creating table spaces for registration tables
	Adding columns to registration tables
	Updating registration tables

	Chapter 7. Managing access through exit routines
	Connection routines and sign-on routines
	Specifying connection and sign-on routines
	Sample connection and sign-on routines
	When connection and sign-on routines are taken
	Exit parameter list for connection and sign-on routines
	Authorization ID parameter list for connection and sign-on routines
	Input values for connection routines
	Input values for sign-on routines
	Expected output for connection and sign-on routines
	Processing in sample connection and sign-on routines
	Performance considerations for connection and sign-on routines
	Debugging connection and sign-on routines
	Session variables in connection and sign-on routines

	Access control authorization exit routine
	Specifying the access control authorization routine
	The default access control authorization routine
	When access control authorization routine is taken
	Considerations for the access control authorization routine
	When DB2 cannot provide an ACEE
	Authorization IDs and ACEEs
	Invalid and inoperative packages
	Automatic rebind with DB2 roles
	DB2 roles for the DYNAMICRULES(BIND) Option
	Using DB2 roles for BINDAGENT
	View authorization
	Behavior of EXPLAIN STMTCACHE with the access control authorization routine
	Dropping views
	Caching of EXECUTE on plans, packages, and routines
	Caching of dynamic SQL statements
	Resolution of user-defined functions
	Creating materialized query tables

	Parameter list for access control authorization routines
	Expected output for access control authorization routines
	Handling return codes
	Handling reason codes
	Exception processing

	Debugging access control authorization routines
	Determining whether the access control authorization routine is active

	RACF access control module

	Chapter 8. Protecting data through encryption and RACF
	Encrypting your data with Secure Socket Layer support
	AT-TLS configuration
	SSL authentication level
	Configuring SSL authentication levels
	Creating and activating client certificate name filters

	Configuring the DB2 server for SSL
	Configuring the DB2 requester for SSL

	Protecting data sets through RACF
	Adding groups to control DB2 data sets
	Creating generic profiles for data sets
	Authorizing DB2 IDs to use data set profiles
	Enabling DB2 IDs to create data sets

	Encrypting your data through DB2 built-in functions
	Defining columns for encrypted data
	Defining column-level encryption
	Creating views with column-level encryption
	Using password hints with column-level encryption

	Defining value-level encryption
	Using password hints with value-level encryption
	Encrypting non-character values

	Using predicates for encrypted data
	Optimizing performance of encrypted data

	Chapter 9. Auditing access to DB2
	Determining active security measures
	DB2 audit trace
	Authorization IDs traced by auditing
	Audit classes
	Audit trace reports
	Audit trace records
	Limitations of the audit trace
	Starting the audit trace
	Stopping the audit trace
	Collecting audit trace records
	Formatting audit trace records
	Auditing in a distributed data environment

	DB2 audit policy
	Audit category
	Creating and activating audit policies
	Auditing the use of an administrative authority
	Auditing tables without specifying the AUDIT clause

	Additional sources of audit information
	Determining ID privileges and authorities
	Auditing specific IDs or roles
	Auditing specific tables
	Ensuring data accuracy and integrity
	Ensuring data presence and uniqueness
	Protecting data integrity
	Tracking data changes
	Checking for lost and incomplete transactions

	Ensuring data consistency
	Using referential integrity for data consistency
	Using locks for data consistency
	Checking data consistency
	Checking data consistency with SQL queries
	Checking data consistency with the CHECK utilities
	Checking data consistency with the DISPLAY DATABASE command
	Checking data consistency with the REPORT utility
	Checking data consistency with the operation log
	Checking data consistency with internal integrity reports

	Information resources for DB2 for z/OS and related products
	How to obtain DB2 information
	How to use the DB2 library
	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

