
DB2 11 for z/OS

Managing Security

SC19-4061-00

���





DB2 11 for z/OS

Managing Security

SC19-4061-00

���



Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1982, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Who should read this information . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
DB2 Utilities Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Terminology and citations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Accessibility features for DB2 11 for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . x
How to send your comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
How to read syntax diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1. Getting started with DB2 security . . . . . . . . . . . . . . . . . . . . 1
DB2 security solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What's new in DB2 11 for z/OS security? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
DB2 data access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ID-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Role-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ownership-based access control within DB2 . . . . . . . . . . . . . . . . . . . . . . . . 3
Access control through multilevel security . . . . . . . . . . . . . . . . . . . . . . . . 4
Access control external to DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DB2 subsystem access control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Managing access requests from local applications . . . . . . . . . . . . . . . . . . . . . . 5
Managing access requests from remote applications . . . . . . . . . . . . . . . . . . . . . 5

Data set protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
RACF for data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Scenario: Securing data access at Spiffy Computer . . . . . . . . . . . . . . . . . . . . . . . 6
Determining security objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Securing manager access to employee data . . . . . . . . . . . . . . . . . . . . . . . . 7
Securing access to payroll operations and management . . . . . . . . . . . . . . . . . . . . 11
Managing access privileges of other authorities . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2. Managing access through authorization IDs and roles . . . . . . . . . . 19
Authorization IDs and roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Authorization IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Roles in a trusted context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Privileges and authorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Explicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Implicit privileges through object ownership . . . . . . . . . . . . . . . . . . . . . . . 28
Administrative authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Common DB2 administrative authorities . . . . . . . . . . . . . . . . . . . . . . . . 40
Utility authorities for DB2 catalog and directory . . . . . . . . . . . . . . . . . . . . . . 42
Privileges by authorization ID and authority . . . . . . . . . . . . . . . . . . . . . . . 43

Managing administrative authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Separating the SYSADM authority . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Migrating the SYSADM authority . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Creating roles or trusted contexts with the SECADM authority . . . . . . . . . . . . . . . . . 55
Altering tables with the system DBADM authority . . . . . . . . . . . . . . . . . . . . . 56
Accessing data with the DATAACCESS authority. . . . . . . . . . . . . . . . . . . . . . 57
Granting and revoking privileges with the ACCESSCTRL authority . . . . . . . . . . . . . . . 58

Managing explicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Granting privileges to a role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Granting privileges to the PUBLIC ID . . . . . . . . . . . . . . . . . . . . . . . . . 59
Granting privileges to remote users . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Granting privileges through views. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Granting privileges with the GRANT statement . . . . . . . . . . . . . . . . . . . . . . 62
Revoking privileges with the REVOKE statement . . . . . . . . . . . . . . . . . . . . . . 68

Managing implicit privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

© Copyright IBM Corp. 1982, 2013 iii

||



Managing implicit privileges through object ownership. . . . . . . . . . . . . . . . . . . . 77
Managing implicit privileges through plan or package ownership . . . . . . . . . . . . . . . . 80
Managing implicit privileges through routines. . . . . . . . . . . . . . . . . . . . . . . 88

Retrieving privilege records in the DB2 catalog . . . . . . . . . . . . . . . . . . . . . . . 102
Catalog tables with privilege records . . . . . . . . . . . . . . . . . . . . . . . . . 102
Retrieving all authorization IDs or roles with granted privileges . . . . . . . . . . . . . . . . 103
Retrieving multiple grants of the same privilege. . . . . . . . . . . . . . . . . . . . . . 104
Retrieving all authorization IDs or roles with the DBADM and system DBADM authorities . . . . . . . 105
Retrieving all IDs or roles with access to the same table . . . . . . . . . . . . . . . . . . . 105
Retrieving all IDs or roles with access to the same routine . . . . . . . . . . . . . . . . . . 106
Retrieving plans or packages with access to the same table . . . . . . . . . . . . . . . . . . 107
Retrieving privilege information through views . . . . . . . . . . . . . . . . . . . . . . 107

Implementing multilevel security with DB2 . . . . . . . . . . . . . . . . . . . . . . . . 108
Multilevel security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Mandatory access checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Implementing multilevel security at the object level . . . . . . . . . . . . . . . . . . . . 115
Implementing multilevel security with row-level granularity . . . . . . . . . . . . . . . . . 117
Restricting access to the security label column . . . . . . . . . . . . . . . . . . . . . . 119
Managing data in a multilevel-secure environment . . . . . . . . . . . . . . . . . . . . . 120
Implementing multilevel security in a distributed environment . . . . . . . . . . . . . . . . . 128

Chapter 3. Managing access through RACF . . . . . . . . . . . . . . . . . . . 131
Establishing RACF protection for DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Defining DB2 resources to RACF . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Permitting RACF access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Managing authorization for stored procedures . . . . . . . . . . . . . . . . . . . . . . 142
Protecting connection requests that use the TCP/IP protocol . . . . . . . . . . . . . . . . . 151
Establishing Kerberos authentication through RACF . . . . . . . . . . . . . . . . . . . . 152

Implementing DB2 support for enterprise identity mapping . . . . . . . . . . . . . . . . . . . 154
Configuring the z/OS LDAP server . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Setting up RACF for the z/OS LDAP server . . . . . . . . . . . . . . . . . . . . . . . 156
Setting up the EIM domain controller . . . . . . . . . . . . . . . . . . . . . . . . . 157
Adding the SAF user mapping plug-in data set to LNKLIST . . . . . . . . . . . . . . . . . 158

Implementing DB2 support for distributed identity filters . . . . . . . . . . . . . . . . . . . 158
Managing connection requests from local applications . . . . . . . . . . . . . . . . . . . . . 160

Processing of connection requests . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Using secondary IDs for connection requests . . . . . . . . . . . . . . . . . . . . . . . 162
Processing of sign-on requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Using secondary IDs for sign-on requests . . . . . . . . . . . . . . . . . . . . . . . . 164
Using sample connection and sign-on exit routines for CICS transactions . . . . . . . . . . . . . 165

Managing connection requests from remote applications . . . . . . . . . . . . . . . . . . . . 166
Security mechanisms for DRDA and SNA . . . . . . . . . . . . . . . . . . . . . . . . 166
Communications database for the server . . . . . . . . . . . . . . . . . . . . . . . . 169
Enabling change of user passwords . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Authorization failure code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Global authentication cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Managing inbound SNA-based connection requests . . . . . . . . . . . . . . . . . . . . 172
Managing inbound TCP/IP-based connection requests . . . . . . . . . . . . . . . . . . . 180
Managing denial-of-service attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Preventing SQL injection attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Managing outbound connection requests . . . . . . . . . . . . . . . . . . . . . . . . 184
Translating outbound IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Sending passwords or password phrases . . . . . . . . . . . . . . . . . . . . . . . . 196

Chapter 4. Managing access through row permissions and column masks . . . . . . 201
Row and column access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Row permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Column mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Rules of row and column access control . . . . . . . . . . . . . . . . . . . . . . . . . 204
Creating row permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

iv Managing Security

||



Creating column masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Modifying column masks to reference UDFs . . . . . . . . . . . . . . . . . . . . . . . . 212
Using INSERT on tables with row access control . . . . . . . . . . . . . . . . . . . . . . 214
Creating triggers for tables with row and column access control . . . . . . . . . . . . . . . . . 215

Chapter 5. Managing access through trusted contexts. . . . . . . . . . . . . . . 219
Trusted contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Trusted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Defining trusted contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Creating local trusted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Establishing remote trusted connections by DB2 for z/OS requesters . . . . . . . . . . . . . . . . 222
Establishing remote trusted connections to DB2 for z/OS servers . . . . . . . . . . . . . . . . . 223
Switching users of a trusted connection . . . . . . . . . . . . . . . . . . . . . . . . . 224

Reusing a local trusted connection through the DSN command processor and DB2I . . . . . . . . . . 225
Reusing a remote trusted connection by DB2 for z/OS requesters . . . . . . . . . . . . . . . . 225
Reusing a remote trusted connection through DB2 for z/OS servers . . . . . . . . . . . . . . . 226
Reusing a local trusted connection through RRSAF . . . . . . . . . . . . . . . . . . . . . 226
Reusing a local trusted connection through the SQL CONNECT statement . . . . . . . . . . . . . 227

Defining external security profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Enabling users to perform actions on behalf of others . . . . . . . . . . . . . . . . . . . . . 228
Performing tasks on objects for other users . . . . . . . . . . . . . . . . . . . . . . . . 228

Chapter 6. Managing access through data definition control . . . . . . . . . . . . 231
Data definition statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Data definition control support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Registration tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Installing data definition control support . . . . . . . . . . . . . . . . . . . . . . . . . 234
Enabling data definition control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Controlling data definition by application name . . . . . . . . . . . . . . . . . . . . . . 235
Controlling data definition by application name with exceptions . . . . . . . . . . . . . . . . 236
Controlling data definition by object name . . . . . . . . . . . . . . . . . . . . . . . 237
Controlling data definition by object name with exceptions . . . . . . . . . . . . . . . . . . 239

Registering object sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Disabling data definition control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Managing registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . . 242

Creating registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . 242
Naming registration tables and indexes. . . . . . . . . . . . . . . . . . . . . . . . . 243
Dropping registration tables and indexes . . . . . . . . . . . . . . . . . . . . . . . . 243
Creating table spaces for registration tables . . . . . . . . . . . . . . . . . . . . . . . 244
Adding columns to registration tables . . . . . . . . . . . . . . . . . . . . . . . . . 244
Updating registration tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Chapter 7. Managing access through exit routines . . . . . . . . . . . . . . . . 245
Connection routines and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . . 245

Specifying connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . 245
Sample connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . 246
When connection and sign-on routines are taken . . . . . . . . . . . . . . . . . . . . . 247
Exit parameter list for connection and sign-on routines . . . . . . . . . . . . . . . . . . . 247
Authorization ID parameter list for connection and sign-on routines . . . . . . . . . . . . . . . 250
Input values for connection routines. . . . . . . . . . . . . . . . . . . . . . . . . . 251
Input values for sign-on routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Expected output for connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 252
Processing in sample connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 252
Performance considerations for connection and sign-on routines . . . . . . . . . . . . . . . . 254
Debugging connection and sign-on routines . . . . . . . . . . . . . . . . . . . . . . . 254
Session variables in connection and sign-on routines . . . . . . . . . . . . . . . . . . . . 256

Access control authorization exit routine . . . . . . . . . . . . . . . . . . . . . . . . . 257
Specifying the access control authorization routine . . . . . . . . . . . . . . . . . . . . . 259
The default access control authorization routine . . . . . . . . . . . . . . . . . . . . . . 259
When access control authorization routine is taken . . . . . . . . . . . . . . . . . . . . . 259

Contents v



Considerations for the access control authorization routine . . . . . . . . . . . . . . . . . . 260
Parameter list for access control authorization routines . . . . . . . . . . . . . . . . . . . 268
Expected output for access control authorization routines . . . . . . . . . . . . . . . . . . 279
Debugging access control authorization routines. . . . . . . . . . . . . . . . . . . . . . 282
Determining whether the access control authorization routine is active . . . . . . . . . . . . . . 282

RACF access control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Chapter 8. Managing program authorization . . . . . . . . . . . . . . . . . . . 285

Chapter 9. Protecting data through encryption and RACF . . . . . . . . . . . . . 287
Encrypting your data with Secure Socket Layer support . . . . . . . . . . . . . . . . . . . . 287

AT-TLS configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
SSL authentication level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Configuring the DB2 server for SSL . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Configuring the DB2 requester for SSL . . . . . . . . . . . . . . . . . . . . . . . . . 292

Protecting data sets through RACF . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Adding groups to control DB2 data sets . . . . . . . . . . . . . . . . . . . . . . . . 294
Creating generic profiles for data sets . . . . . . . . . . . . . . . . . . . . . . . . . 294
Authorizing DB2 IDs to use data set profiles . . . . . . . . . . . . . . . . . . . . . . . 296
Enabling DB2 IDs to create data sets . . . . . . . . . . . . . . . . . . . . . . . . . 296

Encrypting your data through DB2 built-in functions . . . . . . . . . . . . . . . . . . . . . 296
Defining columns for encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . 297
Defining column-level encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Defining value-level encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Using predicates for encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Optimizing performance of encrypted data . . . . . . . . . . . . . . . . . . . . . . . 302

Chapter 10. Auditing access to DB2. . . . . . . . . . . . . . . . . . . . . . . 305
Determining active security measures . . . . . . . . . . . . . . . . . . . . . . . . . . 305
DB2 audit trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Authorization IDs traced by auditing . . . . . . . . . . . . . . . . . . . . . . . . . 307
Audit classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Audit trace reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Audit trace records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Limitations of the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Starting the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Stopping the audit trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Collecting audit trace records . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Formatting audit trace records. . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Auditing in a distributed data environment . . . . . . . . . . . . . . . . . . . . . . . 313

DB2 audit policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Audit category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Creating and activating audit policies . . . . . . . . . . . . . . . . . . . . . . . . . 316
Auditing the use of an administrative authority . . . . . . . . . . . . . . . . . . . . . . 318
Auditing tables without specifying the AUDIT clause . . . . . . . . . . . . . . . . . . . . 318

Additional sources of audit information . . . . . . . . . . . . . . . . . . . . . . . . . 319
Determining ID privileges and authorities . . . . . . . . . . . . . . . . . . . . . . . . . 319
Auditing specific IDs or roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Auditing specific tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Preventing audits of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Ensuring data accuracy and integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Ensuring data presence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 322
Protecting data integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Tracking data changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Checking for lost and incomplete transactions . . . . . . . . . . . . . . . . . . . . . . 324

Ensuring data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Using referential integrity for data consistency . . . . . . . . . . . . . . . . . . . . . . 325
Using locks for data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Checking data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

vi Managing Security

||



Information resources for DB2 for z/OS and related products . . . . . . . . . . . 331

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Programming interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Privacy policy considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Contents vii



viii Managing Security



About this information

This information provides guidance that you can use to manage security in a DB2®

for z/OS® environment.

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
This information is primarily intended for security, system, and database
administrators. It assumes that the user is familiar with the basic concepts and
facilities of DB2 for z/OS (DB2), z/OS, RACF®, and Structured Query Language
(SQL).

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups

© Copyright IBM Corp. 1982, 2013 ix

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm


v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

x Managing Security

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able


How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

About this information xi

mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp


�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xii Managing Security



Chapter 1. Getting started with DB2 security

DB2 security refers to the protection of sensitive data and system resources by
controlling access to DB2 objects, subsystems, and other assets.

DB2 security is set through a security plan, implemented through privilege and
authority management, and reinforced through the audit of accesses to protected
data. A security plan defines the security objectives of your organization and
specifies the policies and techniques that you use to meet these objectives. A
security audit traces all data access and determines whether your security plan
works as designed and implemented.

If you are new to DB2 security, skim through the succeeding topics for a brief
overview of the techniques that you can use to manage access to your DB2 and
protect your data before reading the scenario.

DB2 security solutions
With each new release, DB2 gets faster and more secure.

Over the years, DB2 recognizes and addresses the following security problems:
v Privilege theft or mismanagement
v Application or application server tampering
v Data or log tampering
v Storage media theft
v Unauthorized access to objects

DB2 offers the following security solutions to address the problems:
v Authentication
v Authorization
v Data integrity
v Confidentiality
v System integrity
v Audit

What's new in DB2 11 for z/OS security?

DB2 11 for z/OS provides critical enhancements to security and auditing. These
enhancements strengthen DB2 security in the z/OS environment.

DB2 data access control
Access to data can originate from users through interactive terminal sessions, local
or remote stored procedures, utilities, or IMS or CICS transactions. It can also
originate from application programs that run in batch mode, remote applications
that use DDF or CLI and JDBC drivers, or web-based applications supported by
WebSphere® Application Servers.

© Copyright IBM Corp. 1982, 2013 1

|

|
|

|



Given the variety of access originators, the term process is used to represent all
access to data. For example, within a DB2 subsystem, a process can be a primary
authorization ID, one or more secondary IDs, a role, or an SQL ID.

A process can gain access to DB2 data through several routines. As shown in the
following diagram, DB2 provides different ways for you to control access from all
but the data set protection route.

One of the ways that DB2 controls access to data is by using authorization IDs or
roles. DB2 relies on IDs or roles to determine whether to allow or prohibit certain
processes. DB2 assigns privileges and authorities to IDs or roles so that the owning
users can take actions on objects. In this sense, it is an ID or a role, not a user, that
owns an object. In other words, DB2 does not base access control on a specific user
or person who need access. For example, if you allow other users to use your IDs,
DB2 recognizes only the IDs, not the people or programs that use them.
Related concepts:
“DB2 subsystem access control” on page 4

ID-based access control within DB2
DB2 provides a wide range of granularity when you grant privileges to an ID
within DB2. You can grant privileges and authorities to groups, secondary IDs, or
to roles.

For example, you could, separately and specifically, grant to an ID the privilege to
retrieve data from the table, to insert rows, to delete rows, or to update specific
columns. By granting or not granting privileges on views of the table, you can
specify exactly what an ID can do to the table, down to the granularity of specific
fields. You can also grant to an ID specific privileges on databases, plans, packages,
and the entire DB2 subsystem. If you grant or revoke privileges on a procedure or
procedure package, all versions of that procedure or procedure package have those
privileges.

DB2 also defines sets of related privileges, called administrative authorities. When
you grant one of the administrative authorities to a person's ID, that person has all

Figure 1. DB2 data access control

2 Managing Security



of the privileges that are associated with that administrative authority. You can
efficiently grant many privileges by granting one administrative authority.

You can also efficiently grant multiple privileges by granting the privilege to
execute an application plan or a package. When an ID executes a plan or package,
the ID implicitly uses all of the privileges that the owner needed when binding the
plan or package. Therefore, granting to an ID the privilege to execute a plan or
package can provide a finely detailed set of privileges and can eliminate the need
to grant other privileges separately.

Example: Assume that an application plan issues the INSERT and SELECT
statements on several tables. You need to grant INSERT and SELECT privileges
only to the plan owner. However, any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements by executing the plan. You do not need to explicitly grant the INSERT
and SELECT privileges to the ID.

Recommendation: Instead of granting privileges to many primary authorization
IDs, consider associating each of those primary IDs with the same secondary ID or
a role if running in a trusted context. Then grant the privileges to the secondary ID
or role. You can associate a primary ID with one or more secondary IDs or roles
when the primary ID gains access to the DB2 subsystem. DB2 makes the
association within an exit routine. The assignment of privileges to the secondary ID
or role is controlled entirely within DB2.
Related concepts:
“Role-based access control within DB2”
“Ownership-based access control within DB2”

Role-based access control within DB2
A privilege enables the user of an ID to execute certain SQL statements or to access
the objects of another user. A role groups the privileges together so that they can be
simultaneously granted to and revoked from multiple users.

A role is a database object that is created in DB2. It is defined through the SQL
CREATE ROLE statement and a trusted connection. A role cannot be used outside
of a trusted context unless the user in a role grants privileges to an ID.
Related concepts:
“ID-based access control within DB2” on page 2
“Ownership-based access control within DB2”

Ownership-based access control within DB2
Object ownership carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

If you want to prevent users from obtaining implicit privileges from object
ownership, you can make a DB2 role the owner of the object. To do this, you need
to create the object in a trusted context that is defined with the ROLE AS OBJECT
OWNER AND QUALIFIER clause.

Chapter 1. Getting started with DB2 security 3



Related concepts:
“ID-based access control within DB2” on page 2
“Role-based access control within DB2” on page 3
Related tasks:
“Changing object ownership” on page 79

Access control through multilevel security
Multilevel security, also known as label-based access control, allows you to classify
objects and users with security labels. The security labels are based on hierarchical
security levels and non-hierarchical security categories.

DB2 multilevel security solution uses the multilevel security feature in the z/OS
operating system. It prevents unauthorized users from accessing information at a
higher classification than their authorization. It also prevents users from
declassifying information.

Using multilevel security with row-level granularity, you can define strong security
for DB2 objects and perform security checks, including row-level security checks.
Row-level security checks allow you to control which users have authorization to
view, modify, or perform other actions on specific rows of data.
Related reference:
“Implementing multilevel security with DB2” on page 108

Access control external to DB2
You can control access to DB2 by using a DB2-supplied exit routine or an exit
routine that you write.

If your installation uses one of the access control authorization exit routines, you
can use it to control authorization and authentication checking, instead of using
other techniques and methods.
Related concepts:
“Access control authorization exit routine” on page 257

DB2 subsystem access control
You can control whether a process can gain access to a specific DB2 subsystem
from outside of DB2. A common approach is to grant access through RACF or a
similar security system.

A RACF system provides several advantages. For example, you can use RACF for
the following objectives:
v Identify and verify the identifier that is associated with a process
v Connect those identifiers to RACF group names
v Log and report unauthorized attempts to access protected resources

Profiles for access to DB2 from various environments and DB2 address spaces are
defined as resources to RACF. Each request to access DB2 is associated with an ID.
RACF determines whether the ID is authorized for DB2 resources. If the ID is
authorized, RACF permits access to DB2.

You can also consider using the security capabilities of IMS or CICS to manage
access to DB2:

4 Managing Security



v IMS terminal security lets you limit the entry of a transaction code to a particular
logical terminal (LTERM) or group of LTERMs in the system. To protect a
particular program, you can authorize a transaction code that is to be entered
only from any terminal on a list of LTERMs. Alternatively, you can associate
each LTERM with a list of the transaction codes that a user can enter from that
LTERM. IMS then passes the validated LTERM name to DB2 as the initial
primary authorization ID

v CICS transaction code security works with RACF to control the transactions and
programs that can access DB2. Within DB2, you can use the ENABLE and
DISABLE options of the bind operation to limit access to specific CICS
subsystems.

Related concepts:
“DB2 data access control” on page 1

Managing access requests from local applications
If you request access to a local DB2 subsystem, your request is often subject to
several checks before you are granted access.

If you run DB2 under TSO and use the TSO logon ID as the DB2 primary
authorization ID, TSO verifies your ID when you log on. When you gain access to
DB2, you can use a self-written or IBM-supplied DSN3@ATH exit routine that is
connected to DB2 to perform the following actions:
v Check the authorization ID again
v Change the authorization ID
v Associate the authorization ID with secondary IDs

After these actions are performed, the authorization ID can use the services of an
external security system again.

Managing access requests from remote applications
You can require remote users to pass several access checks before they reach DB2.
You can use RACF or a similar security subsystem to control access from a remote
location.

While controlling access from a remote locations, RACF can do the following tasks:
v Verify an ID that is associated with a remote attachment request and check the

ID with a password
v Generate PassTickets on the sending side. PassTickets can be used instead of

passwords. A PassTicket lets a user gain access to a host system without sending
the RACF password across the network.

v Verify a Kerberos ticket if your distributed environment uses Kerberos to
manage user access and perform user authentication

You can also control access authentication by using the DB2 communications database
(CDB). The CDB is a set of tables in the DB2 catalog that are used to establish
conversations with remote database management systems. The CDB can translate
IDs before it sends them to the remote system.

You can use the RACF DSNR general resource class for DB2 for access
authentication. With RACF DSNR, you can control access to the DB2 server by the
IDs that are defined to the ssnm.DIST profile with READ. In addition, you can use
the port of entry (POE) checking by RACF and the z/OS communications server to
protect against unauthorized remote connections to DB2.

Chapter 1. Getting started with DB2 security 5



Data set protection
The data in a DB2 subsystem is contained in data sets. The data sets can be
accessed without going through DB2. To protect your data, you need to control all
access routes by using different access control methods and mechanisms. For
example, you can determine who can use offline utilities by assigning appropriate
access.

RACF for data protection
If you use RACF, or an equivalent security system, to control access to DB2,
consider controlling access to your data sets.

If you want to use RACF for data set protection outside of the DB2 subsystem,
define RACF profiles for data sets and permit access to the data sets for certain
DB2 IDs.

Data encryption
If your data is very sensitive, consider encrypting the data. Encryption protects
against unauthorized access to data sets and to backup copies outside of the DB2
subsystem.

You have the following encryption options for protecting sensitive data:
v IBM System Storage® DS8000® support for data encryption with the IBM Full

Disk Encryption drives
v IBM System Storage TS1130 encryption solution
v Secure Socket Layer (SSL) protocol through the z/OS Communications Server IP

Application Transparent Transport Layer (AT-TLS) service
v IBM Encryption Facility for z/OS
v Advanced Encryption Standard (AES) for encrypting userids and passwords

over network connections
v DB2 edit procedures or field procedures, which can use the Integrated

Cryptographic Service Facility (ICSF)
v IBM Data Encryption for IMS and DB2 Databases tool
v Encryption tools and facilities that used outside of DB2

You can consider compressing your data sets before encrypting the data. Data
compression is not a substitute for encryption. In some cases, the compression
method does not actually shorten the data. In those cases, the data is left
uncompressed and readable. If you encrypt and compress your data, compress it
first. After you obtain the maximum compression, encrypt the result. When you
retrieve your data, first decrypt the data. After the data is decrypted, decompress
the result.

Scenario: Securing data access at Spiffy Computer
This scenario describes a simple approach to securing local and remote access to
the sensitive data of employees, payroll operations, and payroll management at
Spiffy Computer Company. It shows how to enforce a security plan by using
authorization IDs, roles, privileges, authorities, and the audit trace.

You should base your security plan, techniques, and procedures on your actual
security objectives; do not view this sample security plan as an exact model for

6 Managing Security



your security needs. Instead, use it to understand various possibilities and address
problem areas that you might encounter when you implement your security plan.

Determining security objectives
An important step in defining and implementing an effective security plan is to
determine your security objectives.

About this task

Suppose that the Spiffy Computer Company management team determines the
following security objectives:
v Managers can see, but not update, all of the employee data for members of their

own departments.
v Managers of managers can see all of the data for employees of departments that

report to them.
v The employee table resides at a central location. Managers at remote locations

can query the data in the table.
v The payroll operations department makes changes to the employee table.

Members of the payroll operations department can update any column of the
employee table except for the salary, bonus, and commission columns.

v Members of payroll operations can update any row except for rows that are for
members of their own department. Because changes to the table are made only
from a central location, distributed access does not affect payroll operations.

v Changes to the salary, bonus, and commission columns are made through a
process that involves the payroll update table. When an employee's
compensation changes, a member of the payroll operations department can
insert rows in the payroll update table. For example, a member of the payroll
operations department might insert a row in the compensation table that lists an
employee ID and an updated salary. Next, the payroll management group can
verify inserted rows and transfer the changes to the employee table.

v No one else can see the employee data. The security plan cannot fully achieve
this objective because some ID must occasionally exercise SYSADM authority.
While exercising SYSADM authority, an ID can retrieve any data in the system.
The security plan uses the trace facility to monitor the use of that power.

Securing manager access to employee data
As a security measurement, the Spiffy Computer Company sets clear restrictions
on how its managers can access employee data.

Specifically, it imposes the following security restrictions on managers:
v Managers can retrieve, but not change, all information in the employee table for

members of their own departments.
v Managers of managers have the same privileges for their own departments and

for the departments that directly report to them.

Creating views of employee data
The Spiffy security planners decide to use views for implementing the restrictions
on managers' access to employee data.

Procedure

To create a view of employee data for every employee that reports to a manager,
the Spiffy security planners perform the following steps:

Chapter 1. Getting started with DB2 security 7



1. Add a column that contains manager IDs to DSN8910.DEPT, as shown in the
following statement:
ALTER TABLE DSN8B10.DEPT

ADD MGRID CHAR(8) FOR SBCS DATA NOT NULL WITH DEFAULT;

2. Create a view that selects employee information about employees that work for
a given manager, as shown in the following statement:
CREATE VIEW DEPTMGR AS

SELECT * FROM DSN8B10.EMP, DSN8B10.DEPT
WHERE WORKDEPT = DEPTNO
AND MGRID = USER;

3. Ensure that every manager has the SELECT privilege on the view.

Granting managers the SELECT privilege
The security planners for Spiffy Computer Company can take an "individual"
approach or a "functional" approach when they grant the SELECT privilege on a
view to managers.

About this task

With an individual approach, they can grant privileges to individual IDs and
revoke them if the user of the ID leaves the company or transfers to another
position. With a functional approach, they can create RACF groups, and grant
privileges to the group IDs, with the intention of never revoking them. When an
individual ID needs those privileges, connect that ID to the group; disconnect the
ID when its user leaves or transfers.

The Spiffy security planners know that the functional approach is usually more
convenient in the following situations:
v Each function, such as the manager function, requires many different privileges.

When functional privileges are revoked from one user, they must be granted to
another user.

v Several users need the same set of privileges.
v The privileges are given with the grant option, or the privileges let users create

objects that must persist after their original owners leave or transfer. In both
cases, revoking the privileges might not be appropriate. The revokes cascade to
other users. To change ownership, you might need to drop objects and re-create
them.

Some of the Spiffy requirements for securing manager access suggest the functional
approach. However, in this case, the function needs only one privilege. The
privilege does not carry the grant option, and the privilege does not allow new
objects to be created.

Therefore, the Spiffy security planners choose the individual approach, and plan to
re-examine their decision later. Spiffy security planners grant all managers the
SELECT privilege on the views for their departments.

Example

To grant the SELECT privilege on the DEPTMGR view to the manager with ID
EMP0060, the planners use the following GRANT statement:
GRANT SELECT ON DEPTMGR TO EMP0060;

8 Managing Security



Managing distributed access
Some Spiffy managers must use views to query data in the central employee table
from remote locations. The security plan must ensure that this type of distributed
access is secure. Therefore, security administrators must implement a sound plan
for distributed access.

Planning for distributed access:

The Spiffy security planners need to determine how the managers can securely
access employee data in a distributed environment.

About this task

To secure distributed access to employee data, the Spiffy security planners must
address the following questions:
v Which IDs should hold privileges on which views?
v How do the central location and the remote locations divide security

responsibilities for IDs?

The Spiffy security planners answer those questions with the following decisions:
v IDs that are managed at the central location hold privileges on views for

departments that are at remote locations. For example, the ID MGRD11 has the
SELECT privilege on the view DEPTD11.

v If the manager of Department D11 uses a remote system, the ID at that system
must be translated to MGRD11. Then a request is sent to the central system. All
other IDs are translated to CLERK before they are sent to the central system.

v The communications database (CDB) manages the translated IDs, like MGRD11.
v An ID from a remote system must be authenticated on any request to the central

system.

Implementing distributed access at the central server:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the central server location.

About this task

The following actions must occur at the central server location:
v The central DB2 subsystem must authenticate every incoming ID with RACF.
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES in the CDB; the entry in the LUNAME column identifies the
LU name of every remote location. The entry must specify that connections must
be verified.
Example: The following table shows an entry in SYSIBM.LUNAMES for
LUREMOTE.

Table 1. The SYSIBM.LUNAMES table at the central location

LUNAME USERNAMES SECURITY_IN ENCRYPTPSWDS

LUREMOTE blank V N

The value of V for SECURITY_IN indicates that incoming remote connections
must include verification. The value of N for ENCRYPTPSWDS indicates that
passwords are not in internal RACF encrypted format.

Chapter 1. Getting started with DB2 security 9



The security plan treats all remote locations alike, so it does not require
encrypted passwords. The option to require encrypted passwords is available
only between two DB2 subsystems that use SNA connections.

v For TCP/IP connections, the Spiffy security planners must set the TCP/IP
ALREADY VERIFIED field of installation panel DSNTIP5 to NO. This setting
ensures that the incoming requests that use TCP/IP are not accepted without
authentication.

v The Spiffy security planners must grant all privileges and authorities that are
required by the manager of Department D11 to the ID, MGRD11. The security
planners must grant similar privileges to IDs that correspond to the remaining
managers.

Implementing distributed access at remote locations:

To enable distributed access to sensitive employee data, the Spiffy security plan
requires certain security measures to be implemented at the remote locations.

About this task

The following actions must occur at the remote locations to enable distributed
access for the Spiffy security plan:
v For SNA connections, the Spiffy security planners must include an entry in table

SYSIBM.LUNAMES for the LU name of the central location. The entry must
specify an outbound ID translation for attachment requests to that location.
For example, the following table shows an entry in SYSIBM.LUNAMES for
LUCENTRAL.

Table 2. The SYSIBM.LUNAMES table at the remote location

LUNAME USERNAMES SECURITY_OUT

LUCENTRAL O P

The value of O for USERNAMES indicates that translation checking is
performed on outbound IDs, but not on inbound IDs. The value of P for
SECURITY_OUT indicates that outbound connection requests contain a user
password and a RACF PassTicket.

v For TCP/IP connections, the Spiffy security planners must include an entry in
table SYSIBM.IPNAMES for the LU name that is used by the central location.
The content of the LUNAME column is used to generate RACF PassTickets. The
entry must specify outbound ID translation for requests to that location.
For example, the following table shows an entry in SYSIBM.IPNAMES for
LUCENTRAL.

Table 3. The SYSIBM.IPNAMES table at the remote location

LINKNAME USERNAMES SECURITY_OUT IPADDR

LUCENTRAL R central.vnet.ibm.com

v The Spiffy security planners must include entries in table SYSIBM.USERNAMES
to translate outbound IDs.
For example, the following table shows two entries in SYSIBM.USERNAMES.

Table 4. The SYSIBM.USERNAMES table at the remote location

TYPE AUTHID LINKNAME NEWAUTHID

O MEL1234 LUCENTRAL MGRD11

10 Managing Security



Table 4. The SYSIBM.USERNAMES table at the remote location (continued)

TYPE AUTHID LINKNAME NEWAUTHID

O blank LUCENTRAL CLERK

MEL1234 is translated to MGRD11 before it is sent to the LU that is specified in
the LINKNAME column. All other IDs are translated to CLERK before they are
sent to that LU.

Exception: For a product other than DB2 for z/OS, the actions at the remote
location might be different. If you use a different product, check the documentation
for that product. The remote product must satisfy the requirements that are
imposed by the central subsystem.

Auditing manager access
The Spiffy payroll data is extremely sensitive. The security plan requires the audit
trace to be automatically started for all classes whenever DB2 is started.

About this task

To ensure that an audit record exists for every access to the employee table, the
Spiffy security planners create an audit policy for the employee table. Every week,
the security planners scan the records and determine the number of accesses by
each manager.

The report highlights any number of accesses outside an expected range. The
Spiffy system operator makes a summary of the reports every two months, and
scans it for unusual patterns of access. A large number of accesses or an unusual
pattern might reveal use of a manager's logon ID by an unauthorized employee.
Related concepts:
Chapter 10, “Auditing access to DB2,” on page 305
“DB2 audit policy” on page 313

Securing access to payroll operations and management
As a security measurement, the Spiffy security plan sets clear restrictions on how
members of the payroll operations department access and handle sensitive payroll
information.

The plan imposes the following restrictions on members of the payroll operations
department:
v Members of the payroll operations department can update any column of the

employee table except for SALARY, BONUS, and COMM.
v Members of payroll operations can update any row except for rows that are for

members of their own department.

Because changes to the table are made only from the central location, distributed
access does not affect payroll operations.

Creating views of payroll operations
The Spiffy security planners decide to use views for implementing the security
objectives for members of the payroll operations department.

Chapter 1. Getting started with DB2 security 11



About this task

The PAYDEPT view shows all the columns of the employee table except for job,
salary, bonus, and commission. The view does not show the rows for members of
the payroll operations department.

Example: The WORKDEPT value for the payroll operations department is P013.
The owner of the employee table uses the following statement to create the
PAYDEPT view:
CREATE VIEW PAYDEPT AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE

FROM DSN8B10.EMP
WHERE WORKDEPT<>’P013’

WITH CHECK OPTION;

The CHECK OPTION ensures that every row that is inserted or updated through
the view conforms to the definition of the view.

A second view, the PAYMGR view, gives Spiffy payroll managers access to any
record, including records for the members of the payroll operations department.

Example: The owner of the employee table uses the following statement to create
the PAYMGR view:
CREATE VIEW PAYMGR AS

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE

FROM DSN8B10.EMP
WITH CHECK OPTION;

Neither PAYDEPT nor PAYMGR provides access to compensation amounts. When
a row is inserted for a new employee, the compensation amounts remain null. An
update process can change these values at a later time. The owner of the employee
table creates, owns, and grants privileges on both views.

Securing compensation accounts with update tables
The Spiffy security plan does not allow members of payroll operations to update
compensation amounts directly. Instead, a separate payroll update table contains
the employee ID, job, salary, bonus, and commission.

About this task

Members of payroll operations make all job, salary, and bonus changes to the
payroll update table, except those for their own department. After they verify the
prospective changes, the managers of payroll operations run an application
program. The program reads the payroll update table and makes the
corresponding changes to the employee table. Only the payroll update program
has the privilege of updating job, salary, and bonus in the employee table.

The Spiffy Computer Company calculates commission amounts separately by using
a complicated formula. The formula considers the employee's job, department,
years of service with the company, and responsibilities for various projects. The
formula is embedded in the commission program, which is run regularly to insert
new commission amounts in the payroll update table. The plan owner must have
the SELECT privilege on the employee table and other tables to run the
commission program.

12 Managing Security



Securing compensation updates with other measures
By separating potential salary changes into the payroll update table, the Spiffy
security planners allow payroll management to verify changes before they go into
effect.

About this task

At Spiffy Computer Company, managers check the changes against a written
change request that is signed by a required level of management. The Spiffy
security planners consider that check to be the most important control on salary
updates, but the plan also includes the following controls:
v The employee ID in the payroll update table is a foreign key column that refers

to the employee ID in the employee table. Enforcing the referential constraint
prevents an employee ID from being changed to an invalid value.

v The employee ID in the payroll update table is also a primary key for that table.
Therefore, the values in the employee ID column must be unique. Because of
enforced uniqueness, every change that is made for any one employee during a
given operating period must appear in the same row of the table. No two rows
can carry conflicting changes.

The Spiffy security plan documents an allowable range of salaries, bonuses, and
commissions for each job level. To keep the values within the allowable ranges, the
Spiffy security planners use table check constraints for the salaries, bonuses, and
commissions. The planners use this approach because it is both simple and easy to
control.

In a similar situation, you might also consider the following ways to ensure that
updates and inserts stay within certain ranges:
v Keep the ranges in a separate DB2 table. To verify changes, query the payroll

update table and the table of ranges. Retrieve any rows for which the planned
update is outside the allowed range.

v Build the ranges into a validation routine. Apply the validation routine to the
payroll update table to automatically reject any insert or update that is outside
the allowed range.

v Embody the ranges in a view of the payroll table, using WITH CHECK
OPTION, and make all updates to the view. The ID that owns the employee
table also owns the view.

v Create a trigger to prevent salaries, bonuses, and commissions from increasing
by more than the percent that is allowed for each job level.

Granting privileges to payroll operations and management
The Spiffy security plan strongly suggests the functional approach for the payroll
operations department.

About this task

The functional approach meets the security needs of the payroll operations for the
following reasons:
v Payroll operations members require several privileges, including the SELECT,

INSERT, UPDATE, and DELETE privileges on the PAYDEPT view.
v Several members of the department require the same set of privileges.
v If members of the department leave, others are hired or transferred to replace

the departing members.

Chapter 1. Getting started with DB2 security 13



Therefore, the security plan calls for the creation of two RACF groups, with one for
the payroll operations and another for the payroll management.

Creating a RACF group for payroll operations:

The Spiffy security plan calls for the creation of a RACF group for the payroll
operations department. DB2USER can define the group and retain its ownership,
or it can assign the ownership to an ID that is used by payroll management.

About this task

The owner of the employee table can grant the privileges that the group requires.
The owner grants all required privileges to the group ID, with the intent not to
revoke them. The primary IDs of new members of the department are connected to
the group ID, which becomes a secondary ID for each of them. The primary IDs of
members who leave the department are disconnected from the group ID.

Example

The following statement grants the SELECT, INSERT, UPDATE, and DELETE
privileges on the PAYDEPT view to the payroll operations group ID PAYOPS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYDEPT TO PAYOPS;

This statement grants the privileges without the GRANT OPTION to keep
members of payroll operations from granting privileges to other users.

Creating a RACF group for payroll management:

The Spiffy payroll managers require different privileges and a different RACF
group ID. The security planners add a RACF group for payroll managers and
name it PAYMGRS.

About this task

The security planners associate the payroll managers' primary IDs with the
PAYMGRS secondary ID. Next, privileges on the PAYMGR view, the compensation
application, and the payroll update application are granted to PAYMGRS. The
payroll update application must have the appropriate privileges on the update
table.

Example

The following statement grants the SELECT, INSERT, UPDATE, and DELETE
privileges on the PAYMGR view to the payroll managers' group ID PAYMGRS:
GRANT SELECT, INSERT, UPDATE, DELETE ON PAYMGR TO PAYMGRS;

The following statement grants the EXECUTE privilege on the compensation
application:
GRANT EXECUTE ON PLAN COMPENS TO PAYMGRS;

Auditing payroll operations and management
You can create an audit policy for the payroll update table to audit payroll
operation and management activities.

14 Managing Security



About this task

The audit trace records the number of accesses by the payroll operations and
payroll management groups. The Spiffy security planners scan the reports of
payroll access for large numbers or unusual patterns of access.
Related concepts:
Chapter 10, “Auditing access to DB2,” on page 305
“DB2 audit policy” on page 313

Managing access privileges of other authorities
In addition to the privileges for the managers and the payroll operation and
management personnel, the security plan considers the privileges for other roles.

Managing access by the DBADM authority
An ID with the DBADM authority on a database has many privileges on that
database and its tables. These privileges include the SELECT, INSERT, DELETE,
UPDATE, and ALTER statements on any table in the database. They also include
the CREATE and DROP statements on indexes for those tables.

About this task

For security reasons, the Spiffy security planners prefer not to grant all of the
privileges that come with DBADM authority on DSN8D11A. DSN8D11A is the
database that holds the employee table and the payroll update table.

The Spiffy security planners prefer to grant DBCTRL authority on the database
because granting DBCTRL authority does not expose as many security risks as
granting DBADM authority. DBCTRL authority allows an ID to support the
database without allowing the ID to retrieve or change the data in the tables.
However, database DSN8D11A contains several additional tables. These additional
tables require some of the privileges that are included in DBADM authority but
not included in DBCTRL authority.

The Spiffy security planners decide to compromise between the greater security of
granting DBCTRL authority and the greater flexibility of granting DBADM
authority. To balance the benefits of each authority, the Spiffy security planners
create an administrative ID with some, but not all of the DBADM privileges. The
security plan calls for a RACF group ID with the following authorities and
privileges:
v DBCTRL authority over DSN8D81A
v The INDEX privilege on all tables in the database except the employee table and

the payroll update table
v The SELECT, INSERT, UPDATE, and DELETE privileges on certain tables,

excluding the employee table and the payroll update table

An ID with SYSADM authority grants the privileges to the group ID.

In a similar situation, you also might consider putting the employee table and the
payroll update table in a separate database. Then you can grant DBADM authority
on DSN8D11A, and grant DBCTRL authority on the database that contains the
employee table and the payroll update table.

Chapter 1. Getting started with DB2 security 15



Related reference:
“System DBADM” on page 38
“DBADM” on page 36

Managing access by the SYSADM authority
An ID with SYSADM authority can access data from any table in the entire DB2
subsystem, including the employee table and the payroll update table. The Spiffy
security planners want to minimize the security risk by granting the SYSADM
authority to as few users as possible.

About this task

The planners know that the subsystem might require SYSADM authority only for
certain tasks and only for relatively short periods. They also know that the
privileges that are associated with the SYSADM authority give an ID control over
all of the data in a subsystem.

To limit the number of users with SYSADM authority, the Spiffy security plan
grants the authority to DB2OWNER, the ID that is responsible for DB2 security.
That does not mean that only IDs that are connected to DB2OWNER can exercise
privileges that are associated with SYSADM authority. Instead, DB2OWNER can
grant privileges to a group, connect other IDs to the group as needed, and later
disconnect them.

The Spiffy security planners prefer to have multiple IDs with SYSCTRL authority
instead of multiple IDs with SYSADM authority. IDs with SYSCTRL authority can
exercise most of the SYSADM privileges and can assume much of the day-to-day
work. IDs with SYSCTRL authority cannot access data directly or run plans unless
the privileges for those actions are explicitly granted to them. However, they can
run utilities, examine the output data sets, and grant privileges that allow other
IDs to access data. Therefore, IDs with SYSCTRL authority can access some
sensitive data, but they cannot easily access the data. As part of the Spiffy security
plan, DB2OWNER grants SYSCTRL authority to selected IDs.

The Spiffy security planners also use ROLEs, RACF group IDs, and secondary IDs
to relieve the need to have SYSADM authority continuously available. SYSADM
grants the necessary privileges to a ROLE, RACF group ID, or secondary ID. IDs
that have this ROLE, RACF group ID, or secondary ID can then bind plans and
packages it owns.

Managing access by object owners
The Spiffy security plan must consider the ID that owns and grants privileges on
the tables, views, and programs. The ID that owns these objects has many implicit
privileges on the objects. The owner of the objects can also grant privileges on the
objects to other users.

About this task

The Spiffy security planners want to limit the number of IDs that have privileges
on the employee table and the payroll update table to the smallest convenient
value. To meet that objective, they decide that the owner of the employee table
should issue all of the CREATE VIEW and GRANT statements. They also decide to
have the owner of the employee table own the plans and packages that are
associated with employee data. The employee table owner implicitly has the
following privileges, which the plans and packages require:

16 Managing Security



v The owner of the payroll update program must have the SELECT privilege on
the payroll update table and the UPDATE privilege on the employee table.

v The owner of the commission program must have the UPDATE privilege on the
payroll update table and the SELECT privilege on the employee table.

v The owners of several other payroll programs must have the proper privileges to
do payroll processing, such as printing payroll checks, writing summary reports,
and so on.

To bind these plans and packages, an ID must have the BIND or BINDADD
privileges. The list of privileges that are required by the owner of the employee
table suggests the functional approach. The Spiffy security planners create a RACF
group for the owner of the employee table.

Managing access by other users
Users must be authorized to access the employee table or the payroll table.
Exceptions occur when any unauthorized user tries to access the tables.

About this task

The following users are authorized to access the employee and payroll tables:
v Department managers
v Members of the payroll operations department
v Payroll managers
v The payroll update program

The audit report lists each exception in full. Auditors check each exception to
determine whether it was a planned operation by the users with SYSADM or
DBADM authority, or the employee table owner.

The audit report also lists denials of access to the tables. Those denials represent
attempts by unauthorized IDs to use the tables. Some are possibly accidental;
others can be attempts to violate the security system.

After running the periodic reports, the security planners archive the audit records.
The archives provide a complete audit trail of access to the employee data through
DB2.

Chapter 1. Getting started with DB2 security 17



18 Managing Security



Chapter 2. Managing access through authorization IDs and
roles

DB2 controls access to its objects and data through authorization identifiers (IDs)
and roles and the privileges that are assigned to them. Each privilege and its
associated authorities enable you to take specific actions on an object. Therefore,
you can manage access to DB2 objects through authorization IDs and roles.

As the following diagram shows, you can grant privileges and authorities to IDs or
roles and control access to data and processes in several primary ways:

1. Managing access to DB2 through RACF and subsystem access authorization.
2. Managing access to DB2 subsystem through connection and sign-on routines or

trusted contexts.

Privilege:
Controlled by explicit

granting and revoking or
external access control

Tables controlled by
security labels

Multilevel security

Data and processes

Ownership:
Controlled by

privileges needed
to create objects

Plan and package
execution:
Controlled by

privileges to execute

ID and role

Tables controlled by row
permissions and column masks

Row and column
access control

Subsystem access control
Controlled by RACF checking for

DSNR class and administrative authorities

DB2 subsystem
Controlled by connection and signon

exit routines and trusted contexts

Figure 2. Access to objects and data within DB2

© Copyright IBM Corp. 1982, 2013 19



3. Granting and revoking explicit privileges through authorization IDs and roles
or through external access control.
DB2 has primary authorization IDs, secondary authorization IDs, roles, and
SQL IDs. Some privileges can be exercised by only one type of ID or a role;
other privileges can be exercised by multiple IDs or roles. The DB2 catalog
records the privileges that IDs are granted and the objects that IDs own.

4. Managing implicit privileges through ownership of objects other than plans
and packages.

5. Managing implicit privileges through ownership of plans and packages.
6. Controlling access through security labels on tables.
7. Activating and deactivating row and column access control on tables.

Certain privileges and authorities are assigned when you install DB2. You can
reassign these authorities by changing the DSNZPARM subsystem parameter.

As a security planner, you must be aware of these ways to manage privileges and
authorities through authorization IDs and roles before you write a security plan.
After you decide how to authorize access to data, you can implement it through
your security plan.

Authorization IDs and roles
You can control access to DB2 objects by assigning privileges and authorities to an
authorization ID or a role.

Authorization IDs
Every process that connects to or signs on to DB2 is represented by one or more
DB2 short identifiers (IDs), which are called authorization IDs. Authorization IDs are
assigned to a process by default procedures or by user-written exit routines.

When authorization IDs are assigned, every process receives exactly one ID that is
called the primary authorization ID. All other IDs are secondary authorization IDs.
Furthermore, one ID (either primary or secondary) is designated as the current
SQL ID. You can change the value of the SQL ID during your session. More details
about these IDs are as follows:

Role A role is available within a trusted context. You can define a role and
assign it to authorization IDs in a trusted context. When associated with a
role and using the trusted connection, an authorization ID inherits all the
privileges granted to that role.

Primary authorization ID
Generally, the primary authorization ID identifies a process. For example,
statistics and performance trace records use a primary authorization ID to
identify a process.

Secondary authorization ID
A secondary authorization ID, which is optional, can hold additional
privileges that are available to the process. For example, a secondary
authorization ID can be a Resource Access Control Facility (RACF) group
ID.

SQL ID
An SQL ID holds the privileges that are exercised when certain dynamic
SQL statements are issued. The SQL ID can be set equal to the primary ID
or any of the secondary IDs. If an authorization ID of a process has the

20 Managing Security



SYSADM authority and if the SEPARATE SECURITY system parameter on
panel DSNTIPP1 is set to NO during installation, the process can set its
SQL ID to any authorization ID. If the SEPARATE SECURITY parameter is
set to YES, the SYSADM authority can set it to one of the secondary IDs
only. This rule applies even when SET CURRENT SQLID is a static
statement. CURRENT SQLID cannot be set to a role.

RACF ID
The RACF ID is generally the source of the primary and secondary
authorization IDs (RACF groups). When you use the RACF Access Control
Module or multilevel security, the RACF ID is used directly.

Roles in a trusted context
A role is a database entity that groups one or more privileges together in a trusted
context. System administrators can use roles to control access to enterprise objects
in a way that parallels the structure of the enterprise.

A role is available only in a trusted context. A trusted context is an independent
database entity that you can define based on a system authorization ID and
connection trust attributes. The trust attributes specify a set of characteristics about
a specific connection. These attributes include the IP address, domain name, or
SERVAUTH security zone name of a remote client and the job or task name of a
local client.

DB2 for z/OS extends the trusted context concept to allow for the assignment of a
role to a trusted context. An authorization ID that uses the trusted context can
inherit the privileges that are assigned to this role, in addition to the privileges that
are granted to the ID. An authorization ID can have only one role in a trusted
context at any given time.

Using roles provides the flexibility for managing context-specific privileges and
simplifies the processing of authorization. Specific roles can be assigned to the
authorization IDs that use the trusted connection. When your authorization ID is
associated with an assigned role in the trusted context, you inherit all privileges
that are granted by that role, instead of those by the default role, because the
role-based privileges override the privileges that are associated with the default
role.
Related concepts:
“Trusted contexts” on page 219
“Trusted connections” on page 220
Related tasks:
“Defining trusted contexts” on page 220
“Creating local trusted connections” on page 221
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 222
“Establishing remote trusted connections to DB2 for z/OS servers” on page 223

Privileges and authorities
You can control access within DB2 by granting or revoking privileges and related
authorities that you assign to authorization IDs or roles. A privilege enables its
holder to perform a specific operation, sometimes on a specific object.

Chapter 2. Managing access through authorization IDs and roles 21



Privileges can be explicit or implicit. An explicit privilege is a specific type of
privilege. Each explicit privilege has a name and is the result of a GRANT
statement or a REVOKE statement.

An implicit privilege comes from the ownership of objects, including plans and
packages. For example, users are granted implicit privileges on objects that are
referenced by a plan or package when they are authorized to execute the plan or
package.

An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted. For example, when an ID is granted the
SYSOPR administrative authority, the ID is implicitly granted the ability to
terminate any utility job.

Explicit privileges
You can explicitly grant privileges on objects to authorization IDs or roles.

You can explicitly grant privileges on the following objects:
v Collections
v Databases
v Distinct types or JAR
v Functions or procedures
v Packages
v Plans
v Routines
v Schemas
v Sequences
v Systems
v Tables and views
v Usage
v Use
Related concepts:
“Privileges by authorization ID and authority” on page 43
Related reference:
“Implicit privileges through object ownership” on page 28
“Administrative authorities” on page 29
“Utility authorities for DB2 catalog and directory” on page 42

Explicit collection privileges
You can explicitly grant privileges on collections.

DB2 supports the following collection privileges:

Table 5. Explicit collection privileges

Collection
privilege

Operations allowed for a named package collection

CREATE IN The BIND PACKAGE subcommand, to name the collection

22 Managing Security



Explicit database privileges
You can explicitly grant privileges on databases.

DB2 supports the following database privileges:

Table 6. Explicit database privileges

Database privilege Operations allowed on a named database

CREATETAB The CREATE TABLE statement, to create tables in the database.

CREATETS The CREATE TABLESPACE statement, to create table spaces in the
database

DISPLAYDB The DISPLAY DATABASE command, to display the database status

DROP The DROP and ALTER DATABASE statements, to drop or alter the
database

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare for, make,
and merge copies of table spaces in the database; the MODIFY
RECOVERY utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to recover
objects in the database and report their recovery status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD and
DIAGNOSE WAIT) to generate diagnostic information about, and
repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS, CHECK, LOAD, REBUILD INDEX, REORG INDEX,
and REORG TABLESPACE, and MODIFY STATISTICS utilities, to
gather statistics, check indexes and referential constraints for objects in
the database, and delete unwanted statistics history records from the
corresponding catalog tables

STOPDB The STOP DATABASE command, to stop the database

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can
select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.

Explicit package privileges
You can explicitly grant privileges on packages.

DB2 supports the following package privileges:

Chapter 2. Managing access through authorization IDs and roles 23



Table 7. Explicit package privileges

Package privilege Operations allowed for a named package

BIND The BIND, REBIND, and FREE PACKAGE subcommands, and the
DROP PACKAGE statement, to bind or free the package, and,
depending on the installation option BIND NEW PACKAGE, to bind a
new version of a package

COPY The COPY option of BIND PACKAGE, to copy a package

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL All package privileges

Explicit plan privileges
You can explicitly grant privileges on plans.

DB2 supports the following plan privileges:

Table 8. Explicit plan privileges

Plan privilege Subcommands allowed for a named application plan

BIND BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE RUN, to use the plan when running the application

Explicit routine privileges
You can explicitly grant privileges on routines.

DB2 supports the following routine privileges:

Table 9. Explicit routine privileges

Routine privileges Objects available for usage

EXECUTE ON
FUNCTION

A user-defined function

EXECUTE ON
PROCEDURE

A stored procedure

Explicit schema privileges
You can explicitly grant privileges on schemas.

DB2 supports the following schema privileges:

24 Managing Security



Table 10. Explicit schema privileges

Schema privileges Operations available for usage

CREATEIN Create distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

ALTERIN Alter user-defined functions or stored procedures, or specify a
comment for distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

DROPIN Drop distinct types, user-defined functions, triggers, and stored
procedures in the designated schemas

Explicit system privileges
You can explicitly grant privileges on systems.

DB2 supports the following system privileges:

Table 11. Explicit system privileges

System privilege Operations allowed on the system

ARCHIVE The ARCHIVE LOG command, to archive the current active log, the
DISPLAY ARCHIVE command, to give information about input
archive logs, the SET LOG command, to modify the checkpoint
frequency specified during installation, and the SET ARCHIVE
command, to control allocation and deallocation of tape units for
archive processing.

BINDADD The BIND subcommand with the ADD option, to create new plans
and packages

BINDAGENT The BIND, REBIND, and FREE subcommands, and the DROP
PACKAGE statement, to bind, rebind, or free a plan or package, or
copy a package, on behalf of the grantor. The BINDAGENT privilege
is intended for separation of function, not for added security. A bind
agent with the EXECUTE privilege might be able to gain all the
authority of the grantor of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap data set

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table or view
name

CREATEDBA The CREATE DATABASE statement, to create a database and have
DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database and have
DBCTRL authority over it

CREATESG The CREATE STOGROUP statement, to create a storage group

CREATE_SECURE_
OBJECT

The CREATE and ALTER statements, to create secure objects, such as
a secure trigger or a user-defined function. If a trigger is defined for
tables that are enforced with row or column access control, it must
be secure. If a user-defined function is referenced in the definition of
a row permission or column mask, it must be secure. In addition, if a
user-defined function is invoked in a query and its arguments
reference columns with column masks, the user-defined function
must be secure.

Chapter 2. Managing access through authorization IDs and roles 25



Table 11. Explicit system privileges (continued)

System privilege Operations allowed on the system

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to define a
created temporary table

DEBUGSESSION The DEBUGINFO connection attribute, to control debug session
activity for SQL stored procedures, non-inline SQL functions, and
Java™ stored procedures

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY LOG, DISPLAY
THREAD, and DISPLAY TRACE commands, to display system
information

EXPLAIN v The SQL EXPLAIN PLAN and EXPLAIN ALL statements, to issue
the statements without requiring additional privileges

v The SQL PREPARE and DESCRIBE TABLE statements, to prepare
and describe the statements without requiring additional privileges
on the object

v The BIND command, to allow users to specify the
EXPLAIN(ONLY) and SQLERROR(CHECK) options without
creating a plan or package

v Dynamic SQL statements that have the special register CURRENT
EXPLAIN MODE set to EXPLAIN, to allow the capture of
information about the statements, without executing them

An authorization ID or role with any of the following authority or
privilege can grant the EXPLAIN privilege:

v The SECADM authority

v The ACCESSCTRL authority

v The SYSADM authority if the SEPARATE SECURITY system
parameter is set to NO at the installation

v The EXPLAIN privilege with the WITH GRANT OPTION.

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE commands,
to control tracing

Explicit table and view privileges
You can explicitly grant privileges on tables and views.

DB2 supports the following table and view privileges:

26 Managing Security



Table 12. Explicit table and view privileges

Table or view
privilege SQL statements allowed for a named table or view

ALTER ALTER TABLE, to change the table definition

DELETE DELETE, to delete rows

INDEX CREATE INDEX, to create an index on the table

INSERT INSERT, to insert rows

REFERENCES ALTER or CREATE TABLE, to add or remove a referential constraint
that refers to the named table or to a list of columns in the table

SELECT SELECT, to retrieve data

TRIGGER CREATE TRIGGER, to define a trigger on a table

UPDATE UPDATE, to update all columns or a specific list of columns

GRANT ALL SQL statements of all privileges

Explicit usage privileges
You can explicitly grant privileges on usage.

DB2 supports the following usage privileges:

Table 13. Explicit usage privileges

Usage privileges Objects available for usage

USAGE ON DISTINCT TYPE A distinct type

USAGE ON JAR (Java class for a
routine)

A Java class

USAGE ON SEQUENCE A sequence

Explicit use privileges
You can explicitly grant privileges on use.

DB2 supports the following use privileges:

Table 14. Explicit use privileges

Use privileges Objects available for use

USE OF
BUFFERPOOL

A buffer pool

USE OF STOGROUP A storage group

USE OF
TABLESPACE

A table space

Chapter 2. Managing access through authorization IDs and roles 27



Implicit privileges through object ownership
When you create a DB2 object by issuing an SQL statement, you establish its name
and its ownership. By default, the owner implicitly holds certain privileges on the
object.

However, this general rule does not apply to a plan or package that is not
created with SQL CREATE statements. In other words, when you own an object
other than a plan or package, you have implicit privileges over the object. The
following table describes the implicit privileges of ownership for each type of
object:

Table 15. Implicit privileges of ownership by object type

Object type Implicit privileges of ownership

Alias To drop the alias

Database DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) that is used to create it.
DBCTRL authority does not include the privilege to access data in
tables in the database.

Distinct type To use or drop a distinct type

Index To alter, comment on, or drop the index

JAR (Java class for
a routine)

To replace, use, or drop the JAR

Package To bind, rebind, free, copy, execute, drop, or comment on the package

Plan To bind, rebind, free, execute, or comment on the plan

Role To create, alter, commit, drop, or comment on the role

Sequence To alter, comment on, use, or drop the sequence

Storage group To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Stored procedure To execute, alter, drop, start, stop, or display a stored procedure

Synonym To use or drop the synonym

Table v To alter or drop the table or any indexes on it
v To lock the table, comment on it, or label it
v To create an index or view for the table
v To select or update any column (if there is no row permission or

column mask defined or if the row permission and the column mask
definition allows the access)

v To insert, delete, select, or update any row (if there is no row
permission defined or if the row permission definition allows the
access)

v To use the LOAD utility for the table
v To define referential constraints on any table or set of columns
v To create a trigger on the table
v To comment on the table

Table space To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

Trusted context To create, alter, commit, revoke, or comment on the trusted context

User-defined
functions

To execute, alter, drop, start, stop, or display a user-defined function

28 Managing Security



Table 15. Implicit privileges of ownership by object type (continued)

Object type Implicit privileges of ownership

View v To drop, comment on, or label the view, or to select any row or
column

v To execute UPDATE, INSERT, or DELETE on the view if the view is
defined with the INSTEAD OF TRIGGER clause

Related concepts:
“Explicit privileges” on page 22
“Privileges by authorization ID and authority” on page 43
Related reference:
“Administrative authorities”
“Utility authorities for DB2 catalog and directory” on page 42

Administrative authorities
Within DB2, privileges are grouped into administrative authorities, and each
administrative authority is vested with a specific set of privileges.

The following table lists all of the DB2 for z/OS administrative authorities and the
grantable privileges that each of them has.

Table 16. Administrative authorities and grantable privileges

Authority Included authorities Additional grantable privileges

ACCESSCTRL None Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Privileges on security:

GRANT REVOKE

Chapter 2. Managing access through authorization IDs and roles 29



Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

DATAACCESS None System privileges:

DEBUGSESSION

Privileges on all user tables, views, and MQTs:

DELETE INSERT SELECT UPDATE

Privileges on all plans, packages, and routines:

EXECUTE

Privileges on all user databases:

LOAD RECOVERDB REORG REPAIR

Privileges on all JARs:

USAGE

Privileges on all sequences:

USAGE

Privileges on all distinct types:

USAGE

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

DBADM DBCTRL, DBMAINT Privileges on tables in a database:

ALTER DELETE INDEX INSERT
REFERENCES SELECT TRIGGER UPDATE

DBCTRL DBMAINT Privileges on a database:

DROP LOAD RECOVERDB REORG
REPAIR

DBMAINT None Privileges on a database:

CREATETAB CREATETS DISPLAYDB
IMAGCOPY STATS STARTDB STOPDB

Installation
SYSADM

SYSADM, SYSCTRL,
DBADM, Installation
SYSOPR, SYSOPR,
PACKADM, DBCTRL,
DBMAINT, SECADM,
System DBADM,
SQLADM,
ACCESSCTRL,
DATAACCESS

Privileges on security:

GRANT REVOKE

Installation
SYSOPR

SYSOPR Privileges:

ARCHIVE STARTDB(cannot alter access mode)

30 Managing Security



Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

PACKADM None Privileges on a collection:

CREATEIN

Privileges on all packages in a collection:

BIND COPY EXECUTE

SECADM ACCESSCTRL Privileges on all catalog tables:

SELECT

Privileges on all updatable catalog tables:

DELETE INSERT UPDATE

Privileges on security:

GRANT REVOKE

Privileges on security-related objects:

ALTER CREATE DROP

SQLADM None System privileges:

EXPLAIN MONITOR1 MONITOR2

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

SYSADM SYSCTRL, DBADM,
Installation SYSOPR,
SYSOPR, PACKADM,
DBCTRL, DBMAINT,
SECADM, System
DBADM, SQLADM,
ACCESSCTRL,
DATAACCESS

Privileges on all plans:

EXECUTE

Privileges on all routines:

EXECUTE

Privileges on all packages:

All privileges

Privileges on distinct types:

USAGE

Privileges on sequences:

USAGE

System privileges:

DEBUGSESSION

EXPLAIN privilege

Chapter 2. Managing access through authorization IDs and roles 31



Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

SYSCTRL Installation SYSOPR,
SYSOPR, DBCTRL,
DBMAINT,
ACCESSCTRL (except
the ability to grant
certain authorities, such
as DBADM, SYSADM,
PACKADM, and certain
privileges, such as
DELETE, INSERT,
SELECT, and UPDATE
on user tables or views,
EXECUTE on plans,
packages, functions, or
stored procedures,
PACKADM on
collections, and USAGE
on distinct types, JARs,
and sequences)

System privileges:

BINDADD BINDAGENT DBDS
CREATEALIAS CREATEDBA CREATEDBC
CREATESG CREATETMTAB MONITOR1
MONITOR2 STOSPACE

Privileges on all tables:

ALTER INDEX REFERENCES TRIGGER

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Privileges on all plans:

BIND

Privileges on all packages:

BIND COPY

Privileges on all collections:

CREATEIN

Privileges on all schemas:

ALTERIN CREATEIN DROPIN

Privileges on use:

BUFFERPOOLS STOGROUP TABLESPACE

SYSOPR None Privileges:

DISPLAY RECOVER STOPALL TRACE

Privileges on routines:

DISPLAY START STOP

32 Managing Security



Table 16. Administrative authorities and grantable privileges (continued)

Authority Included authorities Additional grantable privileges

System
DBADM

SQLADM System privileges:

BINDADD BINDAGENT CREATEALIAS
CREATEDBA CREATEDBC CREATETMTAB
DISPLAY EXPLAIN MONITOR1
MONITOR2 SQLADM STOPALL
TRACE

Privileges on all collections:

CREATEIN

Privileges on all user databases:

CREATETAB CREATETS DISPLAYDB
DROP IMAGCOPY RECOVERDB
STARTDB STOPDB

Privileges on all user tables (except for those
defined with row permissions or column masks):

ALTER INDEX REFERENCES TRIGGER

Privileges on all packages:

BIND COPY

Privileges on all plans:

BIND

Privileges on all schemas:

ALTERIN CREATEIN DROPIN

Privileges on all sequences:

ALTER

Privileges on all distinct types:

USAGE

Privileges on use:

TABLESPACE

Privileges on all catalog tables:

SELECT

Privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES):

DELETE INSERT UPDATE

Chapter 2. Managing access through authorization IDs and roles 33



Related concepts:
“Explicit privileges” on page 22
“Privileges by authorization ID and authority” on page 43
Related reference:
“Implicit privileges through object ownership” on page 28
“Utility authorities for DB2 catalog and directory” on page 42

Installation SYSADM
Installation SYSADM authority is assigned to one or two IDs when DB2 is
installed; it cannot be assigned to a role. These IDs have all the privileges of the
SYSADM authority.

No other IDs can revoke the installation SYSADM authority; you can
remove the authority only by changing the module that contains the subsystem
initialization parameters (typically DSNZPARM).

In addition, DB2 does not record the installation SYSADM authority in the catalog.
Therefore, the catalog does not need to be available to check installation SYSADM
authority. The authority outside of the catalog is crucial. For example, if the
directory table space DBD01 is stopped, DB2 might not be able to check the
authority to start it again. In this case, only an installation SYSADM can start it.

IDs with the installation SYSADM authority can also perform the following
actions:
v Run the CATMAINT utility
v Access DB2 when the subsystem is started with ACCESS(MAINT)
v Start databases DSNDB01 and DSNDB06 when they are stopped or in restricted

status
v Run the DIAGNOSE utility with the WAIT statement
v Start and stop the database that contains the application registration table (ART)

and the object registration table (ORT).
v Grant, revoke, and manage security-related objects regardless of the setting of

the SEPARATE_SECURITY system parameter.

SYSADM
The SYSADM authority includes all the privileges, including system privileges, for
creating objects and accessing all data. Depending on the setting of the
SEPARATE_SECURITY system parameter, the SYSADM authority can also create
security objects and grant and revoke privileges.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or
role with the SYSADM authority can perform the following actions. If
SEPARATE_SECURITY is set to NO, it can also grant other IDs the required
privileges to perform the same actions.
v Use all the privileges of DBADM over any database
v Use EXECUTE privileges on all packages
v Use EXECUTE privileges on all routines
v Use USAGE privilege on distinct types, JARs, and sequences
v Use BIND on any plan and COPY on any package
v Use privileges over views that are owned by others

34 Managing Security



v Create and drop synonyms and views for other IDs on any table
v Drop database DSNDB07

An authorization ID or role with the SYSADM authority can also perform the
following actions but cannot grant other IDs the privileges to perform them:
v Drop or alter any DB2 object, except system databases
v Issue a COMMENT ON statement for any table, view, index, column, package,

plan
v Issue a LABEL ON statement for any table or view
v Terminate any utility job
v Create roles and trusted contexts (if SEPARATE_SECURITY is set to NO)
v Set the current SQL ID to any valid value (if SEPARATE_SECURITY is set to

NO)
v Use any valid value for OWNER in BIND or REBIND (if SEPARATE_SECURITY

is set to NO)

Although an authorization ID or role with the SYSADM authority cannot grant the
preceding privileges explicitly, it can accomplish this goal by granting to other IDs
the SYSADM authority.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or role with
the SYSADM authority can revoke any privileges that were granted by itself. When
SEPARATE_SECURITY is set to NO, the same ID or role can also revoke privileges
that were granted by others. However, when SEPARATE_SECURITY is set to YES,

the same ID or role cannot revoke privileges that were granted by others.

SYSCTRL
The SYSCTRL authority is designed for administering a system that contains
sensitive data. With the SYSCTRL authority, you have nearly complete control of
the DB2 subsystem. However, you cannot access user data directly unless you are
explicitly granted the privileges to do so.

Regardless of the SEPARATE_SECURITY setting, an authorization ID or
role with the SYSCTRL authority can perform the following actions:
v Act as installation SYSOPR (when the catalog is available) or DBCTRL over any

database
v Run any allowable utility on any database
v Issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any table
v Create a view on any catalog table for itself or for other IDs
v Create tables and aliases for itself or for others IDs
v Bind a new plan or package and name any ID as the owner of the plan or

package
v Create roles (only if SEPARATE_SECURITY is set to NO)
v Use any valid value for OWNER in BIND or REBIND (only if

SEPARATE_SECURITY is set to NO)
v Has implicit ACCESSCTRL authority to grant most privileges (only if

SEPARATE_SECURITY is set to NO)

However, you cannot perform the following actions without the required
additional privileges:
v Execute SQL statements that change data in any user tables or views
v Run plans or packages

Chapter 2. Managing access through authorization IDs and roles 35



v Set the current SQL ID to a value that is not one of its primary or secondary IDs
v Start or stop the database that contains the application registration table (ART)

and the object registration table (ORT)
v Act fully as SYSADM or as DBADM over any database
v Access DB2 when the subsystem is started with ACCESS(MAINT)

The SYSCTRL authority is intended to separate system control functions from
administrative functions. However, SYSCTRL is not a complete solution for a
high-security system. If any plans have their EXECUTE privilege granted to
PUBLIC, an ID or role with the SYSCTRL authority can grant itself the SYSADM
authority. The only control over such actions is to audit the activity of IDs with

high levels of authority.

Installation SYSOPR
Installation SYSOPR authority is assigned to one or two IDs when DB2 is installed;
it cannot be assigned to a role. These IDs have all the privileges of the SYSOPR
authority.

No IDs can revoke the installation SYSOPR authority; you can remove it
only by changing the module that contains the subsystem initialization parameters
(typically DSNZPARM).

In addition, the installation SYSOPR authority is not recorded in the DB2 catalog.
Therefore, the catalog does not need to be available to check the installation
SYSOPR authority.

IDs with the installation SYSOPR authority can perform the following actions:
v Access DB2 when the subsystem is started with ACCESS(MAINT).
v Run all allowable utilities on the directory and catalog databases (DSNDB01 and

DSNDB06).
v Run the REPAIR utility with the DBD statement.
v Start and stop the database that contains the application registration table (ART)

and the object registration table (ORT).
v Issue dynamic SQL statements that are not controlled by the DB2 governor.
v Issue a START DATABASE command to recover objects that have LPL entries or

group buffer pool RECOVERY-pending status. These IDs cannot change the

access mode.

SYSOPR
A user with the SYSOPR authority can issue all DB2 commands except ARCHIVE
LOG, START DATABASE, STOP DATABASE, and RECOVER BSDS.

In addition, that user can run the DSN1SDMP utility and terminate any
utility job. With the GRANT option, that user can grant these privileges to others.

DBADM
The DBADM authority includes the DBCTRL privileges over a specific database. A
user with the DBADM authority can access any tables in a specific database by
using SQL statements.

36 Managing Security



With the DBADM authority, you can also perform the following actions:
v Drop or alter any table space, table, or index in the database
v Issue a COMMENT, LABEL, or LOCK TABLE statement for any table in the

database
v Issue a COMMENT statement for any index in the database

If the value of the DBADM CREATE AUTH field on the DSNTIPP installation
panel is set to YES during the DB2 installation, an ID with the DBADM authority
can create the following objects:
v A view for another ID. The view must be based on at least one table, and that

table must be in the database under DBADM authority.
v An alias for another ID on any table in the database.

An ID with DBADM authority on one database can create a view on tables and
views in that database and other databases only if the ID has all the privileges that
are required to create the view. For example, an ID with DBADM authority cannot
create a view on a view that is owned by another ID.

If a user has the DBADM authority with the GRANT option, that user can grant

these privileges to others.

DBCTRL
The DBCTRL authority includes the DBMAINT privileges on a specific database. A
user with the DBCTRL authority can run utilities that can change the data.

If the value of the DBADM CREATE AUTH field on the DSNTIPP
installation panel is set to YES during the DB2 installation, an ID with DBCTRL
authority can create an alias for another user ID on any table in the database.

If a user has the DBCTRL authority with the GRANT option, that user can grant

those privileges to others.

DBMAINT
A user with the DBMAINT authority can grant the privileges on a specific
database to an ID.

With the DBMAINT authority, that user can perform the following actions
within that database:
v Create objects
v Run utilities that don't change data
v Issue commands
v Terminate all utilities on the database except DIAGNOSE, REPORT, and

STOSPACE

If a user has the DBMAINT authority with the GRANT option, that user can grant

those privileges to others.

PACKADM
The PACKADM authority has the package privileges on all packages in specific
collections and the CREATE IN privilege on these collections.

Chapter 2. Managing access through authorization IDs and roles 37



If the BIND NEW PACKAGE installation option is set to BIND, the
PACKADM authority also has the privilege to add new packages or new versions
of existing packages.

If a user has the PACKADM authority with the GRANT option, that user can grant

those privileges to others.

System DBADM
The system DBADM authority allows an administrator, an authorization ID or a
role, to manage databases across a DB2 subsystem, while having no access to the
data in the databases. In other words, the system DBADM authority enables you to
create, alter, and drop DB2 objects and issue commands for a DB2 subsystem, but
does not give you the authority to access the data or the ability to grant or revoke
privileges.

With the system DBADM authority, you can issue SQL statements to
perform the following tasks:
v Create and drop aliases, auxiliary tables, and distinct types
v Create, alter, and drop databases, tables, global temporary tables, table spaces,

and sequences
v Create triggers, functions, indexes, procedures, and views with additional

required privileges
v Comment on all but security-related objects (i.e., roles, trusted contexts)
v Issue other SQL statements, such as the EXPLAIN, LABEL, PREPARE, and

RENAME statements

You can also issue DB2 commands to perform the following tasks:
v Display status, configuration, and resource information
v Start and stop procedures and profiles
v Start, stop, and access databases
v Start, stop, and modify traces
v Bind, rebind, and free packages and plans
v Set the OWNER in BIND or REBIND to any ID (if SEPARATE_SECURITY is set

to NO)
v Alter and terminate the execution of DB2 utility job steps
v Recover threads that are left in an indoubt state or complete backout processing

for units of recovery that are left incomplete during an earlier restart

With the system DBADM authority, you can also run certain DB2 utilities. The
utilities include CHECK INDEX, CHECK LOB, COPY, COPYTOCOPY, DIAGNOSE,
MODIFY RECOVERY, MODIFY STATISTICS, QUIESCE, REBUILD INDEX,
RECOVER, REPORT, and RUNSTATS. In addition, you have implicit SELECT
access on all catalog tables and implicit INSERT, DELETE, and UPDATE privileges
on updatable catalog tables (except SYSIBM.SYSAUDITPOLICIES).

The system DBADM authority allows you to execute system-defined routines
(recorded in the SYSIBM.SYSROUTINES catalog table), including stored procedures
or functions, and any packages executed within the routines. It also allows you to
drop non-security objects without requiring the ownership or other privileges to
drop.

38 Managing Security



Only an authorization ID or a role with the SECADM authority can grant or
revoke the system DBADM authority. By default, the system DBADM has all the
privileges of the DATAACCESS and ACCESSCTRL authorities. If you do not want
a user (an authorization ID or role) with the system DBADM authority to grant
any explicit privileges, you can specify the WITHOUT ACCESSCTRL clause in the
GRANT statement when you grant the authority. If you do not want a user with
the system DBADM authority to access any user data in the databases, you can
specify the WITHOUT DATAACCESS clause in the GRANT statement when you
grant the authority. If necessary, you can still grant explicit privileges (i.e., SELECT)

to the system DBADM user to access data or perform grants.

SECADM
The SECADM authority enables you to manage security-related objects in DB2 and
control access to all database resources. It does not have any inherent privilege to
access data stored in the objects, such as tables.

With the SECADM authority, you can perform the following tasks:
v Create, alter, drop, and comment on row permissions
v Create, alter, drop, and comment on column masks
v Activate and deactivate row access control
v Activate and deactivate column access control
v Create, drop, and comment on roles
v Create, alter, drop, and comment on trusted contexts
v Create and comment on secure triggers and user-defined functions
v Alter the SECURED or NOT SECURED clause on triggers and user-defined

functions
v Create audit policies by inserting rows into the SYSIBM.SYSAUDITPOLICIES

catalog table
v Access and update the SYSIBM.SYSAUDITPOLICIES catalog table which records

audit policy definitions
v Has implicit SELECT access on all catalog tables and implicit INSERT, DELETE,

and UPDATE privileges on updatable catalog tables
v Grant and revoke all grantable privileges and authorities
v Issue the TRACE command to start, stop, and display a trace

If the SEPARATE_SECURITY system parameter is set to YES, no other authority
can grant the ACCESSCTRL, System DBADM, and DATAACCESS authorities or
the CREATE_SECURE_OBJECT privilege, not even SYSADM. For example, only
SECADM, not SYSADM or DBADM, can activate or deactivate row or column

access control for a table.
Related reference:

Protection panel 2: DSNTIPP1 (DB2 Installation and Migration)

ACCESSCTRL
The ACCESSCTRL authority allows you to grant explicit privileges to authorization
IDs or roles by issuing SQL GRANT statements. It enables you to grant privileges
on all objects and resources, except the CREATE_SECURE_OBJECT privilege and
the system DBADM, DATAACCESS, and ACCESSCTRL authorities.

Chapter 2. Managing access through authorization IDs and roles 39

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipp1.htm#db2z_dsntipp1


With the ACCESSCTRL authority, you can use the BY clause to revoke
explicitly granted privileges from authorization IDs or roles, except the
CREATE_SECURE_OBJECT privilege and the system DBADM, DATAACCESS, and
ACCESSCTRL authorities. In addition, you have implicit SELECT access on all
catalog tables and implicit INSERT, DELETE, and UPDATE privileges on updatable
catalog tables (except SYSIBM.SYSAUDITPOLICIES).

Only an authorization ID or a role with the SECADM authority can grant or
revoke the ACCESSCTRL authority. Revoking the ACCESSCTRL authority does not

revoke the privileges that it has already granted.

DATAACCESS
The DATAACCESS authority allows you to access and update data in user tables,
views, and materialized query tables in a DB2 subsystem. It also allows you to
execute plans, packages, functions, and procedures.

Only an authorization ID or a role with the SECADM authority can grant or
revoke the DATAACCESS authority. With the DATAACCESS authority, you have
implicit SELECT access on all catalog tables and implicit INSERT, DELETE, and
UPDATE privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES).

SQLADM
The SQLADM authority allows you to issue the SQL EXPLAIN statements, execute
the PROFILE commands, run the RUNSTATS and MODIFY STATISTICS utilities on
all user databases, and execute system-defined routines, such as stored procedures
or functions, and any packages that are executed within the routines.

Only an authorization ID or a role with the SECADM or ACCESSCTRL authority
can grant or revoke the SQLADM authority. With the SQLADM authority, you
have implicit SELECT access on all the catalog tables and implicit INSERT,
DELETE, and UPDATE privileges on updatable catalog tables (except
SYSIBM.SYSAUDITPOLICIES).

Common DB2 administrative authorities
Several DB2 administrative authorities provide the same functionality in DB2 for
z/OS and DB2 for Linux, UNIX, and Windows. With these authorities,
administrators who manage DB2 on multiple operating systems can manage their
database environments in a consistent approach.

The following authorities provide the same administrative functionality in
DB2 for z/OS and DB2 for Linux, UNIX, and Windows:

Table 17. Common DB2 administrative authorities

Administrative
authority Capabilities

System DBADM v Manages resources in all databases

v Does not have access to data or the ability to grant and revoke
privileges

v Executes system-defined routines (i.e., stored procedures or
functions) and any package within the routines

v Has implicit SELECT access on all catalog tables

40 Managing Security



Table 17. Common DB2 administrative authorities (continued)

Administrative
authority Capabilities

SECADM v Controls access to all database resources

v Manages security-related objects (i.e., roles, trusted contexts, row
permissions, and column masks)

v Grants and revokes explicit privileges that are granted by itself
and others

v Has implicit SELECT access on all catalog tables

ACCESSCTRL v Grants privileges on all but security-related objects and resources

v Revokes privileges on all but security-related objects and
resources that are granted by itself or others

v Does not grant the system DBADM, DATAACCESS, or
ACCESSCTRL authority

v Has implicit SELECT access on all catalog tables

DATAACCESS v Has the ability to access data in all user tables, views, and
materialized query tables

v Has the ability to execute all plans, packages, functions, and
procedures

v Has implicit SELECT access on all catalog tables

SQLADM v Issues EXPLAIN SQL statements and PROFILE commands

v Executes RUNSTATS and MODIFY STATISTICS utilities on all
user databases

v Performs tasks that require EXPLAIN and MONITOR2 privileges

v Executes system defined routines (i.e., stored procedures or
functions) and any package executed within the routines

v Has implicit SELECT access on all the catalog tables

DB2 for z/OS provides both the system DBADM authority and the DBADM
authority, with each having a set of privileges. The system DBADM authority
allows you to manage objects in all databases across a DB2 subsystem, but doesn't
give you access to the data in the databases. In addition, with the system DBADM
authority, you can perform administrative tasks and issue commands for a DB2
subsystem, but you don't have the authority to execute objects or the ability to
grant or revoke privileges.

Unlike the system DBADM authority, the DBADM authority allows you to manage
objects in a specific database and gives you access to the data in that database. You
also get the privileges of the DBCTRL and DBMAINT authorities over the same

database.

Chapter 2. Managing access through authorization IDs and roles 41



Related reference:
“System DBADM” on page 38
“SECADM” on page 39
“ACCESSCTRL” on page 39
“DATAACCESS” on page 40
“SQLADM” on page 40

Utility authorities for DB2 catalog and directory
The DB2 catalog is in the DSNDB06 database. Authorities that are granted on
DSNDB06 also cover database DSNDB01, which contains the DB2 directory.

An ID with the ACCESSCTRL or SECADM authority can control access to the
catalog in the following ways:
v By granting privileges or authorities on that database or on its tables or views
v By binding plans or packages that access the catalog

An ID with the ACCESSCTRL or SECADM authority can control access to the
directory by granting privileges to run utilities on DSNDB06, but that ID cannot
grant privileges on DSNDB01 directly.

The following table shows the utilities IDs with different authorities that can run
on the DSNDB01 and DSNDB06 databases. Do not run REPAIR DBD against
DSNDB01 and DSNDB06 because they are system databases; you will receive a
system restriction violation message if you do. Also, you can use the LOAD utility
to add lines to SYSIBM.SYSSTRINGS, but you cannot run it on other DSNDB01 or
DSNDB06 tables.

Table 18. Utility privileges on the DB2 catalog and directory

Utilities

Installation
SYSOPR,
SYSCTRL,
SYSADM,
Installation
SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

System
DBADM DATAACCESS SQLADM

LOAD No No No No No No

REPAIR DBD No No No No No No

CHECK DATA Yes No No No Yes No

CHECK LOB Yes No No Yes No No

REORG
TABLESPACE

Yes No No No Yes No

STOSPACE Yes No No No No No

REBUILD
INDEX

Yes Yes No Yes Yes No

RECOVER Yes Yes No Yes Yes No

REORG INDEX Yes Yes No No Yes No

REPAIR Yes Yes No No Yes No

REPORT Yes Yes No Yes Yes No

CHECK
INDEX

Yes Yes Yes Yes No No

COPY Yes Yes Yes Yes No No

42 Managing Security



Table 18. Utility privileges on the DB2 catalog and directory (continued)

Utilities

Installation
SYSOPR,
SYSCTRL,
SYSADM,
Installation
SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

System
DBADM DATAACCESS SQLADM

MERGECOPY Yes Yes Yes Yes No No

MODIFY Yes Yes Yes Yes No No

QUIESCE Yes Yes Yes Yes No No

RUNSTATS Yes Yes Yes Yes No Yes

Related concepts:
“Explicit privileges” on page 22
“Privileges by authorization ID and authority”
Related reference:
“Implicit privileges through object ownership” on page 28
“Administrative authorities” on page 29

Privileges by authorization ID and authority
When a process gains access to DB2, it has a primary authorization ID, one or
more secondary authorization IDs, an SQL ID, and perhaps a specific role if it runs
in a trusted context. To be able to perform certain actions, an authorization ID or
role must hold the required privileges. To perform other actions, a set of IDs or
roles must hold the required privileges.

For better performance, consider limiting the number of secondary IDs in your
catalog table. A process can have up to 1012 secondary IDs. The more secondary
IDs that must be checked, the longer the check takes. Also, make sure that the role
and the current SQL ID have the necessary privileges for dynamic SQL statements.
Because the role and the current SQL ID are checked first, the operation is fastest if
they have all the necessary privileges.
Related concepts:
“Explicit privileges” on page 22
Related reference:
“Implicit privileges through object ownership” on page 28
“Administrative authorities” on page 29
“Utility authorities for DB2 catalog and directory” on page 42

Privileges required for common job roles and tasks
The labels of the administrative authorities often suggest the job roles and
responsibilities of the users who are empowered with the authorities.

For example, you might expect a system administrator to have the
SYSADM authority. However, some organizations do not divide job responsibilities
in the same way. The following table lists some of common job roles, the tasks that
usually accompany them, and the DB2 authorities or privileges that are needed to
perform those tasks.

Chapter 2. Managing access through authorization IDs and roles 43



Table 19. Required privileges for common jobs and tasks

Job title Tasks Required privileges

System operator Issues commands to:
v Start and stop DB2
v Control traces
v Display databases and threads
v Recover indoubt threads
v Start, stop, and display routines

SYSOPR authority

System administrator Performs emergency backup, with
access to all data.

SYSADM authority

Security
administrator

Authorizes other users, for some or all
levels below.

v SYSCTRL authority (if SEPARATE_SECURITY is
set to NO)

v SECADM authority

v ACCESSCTRL authority

Database
administrator

Designs, creates, loads, reorganizes,
and monitors databases, tables, and
other objects in the database.

v DBADM authority on a database. The DBADM
authority on DSNDB04 allows you access to objects
in all implicitly created databases.

v Use of storage groups and buffer pools

Database
administrator

v Designs and creates databases,
tables, and other objects

v Administers all databases in the
subsystem

System DBADM authority

Database
administrator

Manages data and executes plans and
packages in a DB2 subsystem

DATAACCESS authority

Database
administrator

Manages access to data in a DB2
subsystem

ACCESSCTRL authority

System programmer v Installs a DB2 subsystem.
v Recovers the DB2 catalog.
v Repairs data.

Installation SYSADM, which is assigned when DB2 is
installed. (Consider securing the password for an ID
with this authority so that the authority is available
only when needed.)

Application
programmer

v Develops and tests DB2 application
programs.

v Creates tables of test data.

v BIND on existing plans or packages, or BINDADD

v CREATE IN on some collections

v Privileges on some objects

v CREATETAB on some database, with a default
table space provided

v CREATETAB on DSNDB04. It enables you to create
tables in DSNDB04 and all implicitly created
databases

v Privileges on some objects with the SQLADM
authority

Production binder Binds, rebinds, and frees application
packages and plans

A ROLE, secondary ID, or RACF group of which the
binder has BINDADD, CREATE IN on collections
privileges required by application packages and plans

Package
administrator

Manages collections and the packages
in them, and delegates the
responsibilities.

PACKADM authority

User analyst Defines the data requirements for an
application program, by examining the
DB2 catalog.

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

v CREATETMTAB system privilege to create
temporary tables

Program user Executes an application program. EXECUTE for the application plan

44 Managing Security



Table 19. Required privileges for common jobs and tasks (continued)

Job title Tasks Required privileges

Information center
consultant

v Defines the data requirements for a
query user.

v Provides the data by creating tables
and views, loading tables, and
granting access.

v DBADM authority over some databases

v SELECT on the SYSTABLES, SYSCOLUMNS, and
SYSVIEWS catalog tables

Query user v Issues SQL statements to retrieve,
add, or change data.

v Saves results as tables or in global
temporary tables.

v EXPLAIN privilege on some tables and views

v SELECT, INSERT, UPDATE, DELETE on some
tables and views

v CREATETAB, to create tables in other than the
default database

v CREATETAB, to create tables in the implicitly
created database

v CREATETMTAB system privilege to create
temporary tables

v SELECT on SYSTABLES, SYSCOLUMNS, or views
thereof. QMF™ provides the views.

Checking access authorization for data definition statements
DB2 checks for the necessary authorization privileges and authorities when you
use data definition statements on certain DB2 objects.

At both bind and run time, DB2 determines whether the authorization ID that you
are using has the necessary privileges to access the following objects:
v Alias
v Table
v Explicitly created auxiliary table
v Explicitly created table space
v Explicitly created index
v Storage group
v Database

At run time, DB2 determines whether the authorization ID that you are using has
the necessary privileges to access the following objects:
v Buffer pool that is involved with an implicitly created table space
v Buffer pool and storage group that are involved with an implicitly created

auxiliary index and LOB table space
v Buffer pool and storage group that are involved with implicitly created XML

indexes and XML table space
v Trigger
v Function
v Procedure
v Sequence
v View
v Trusted context

Chapter 2. Managing access through authorization IDs and roles 45



v JAR
v Role
v Distinct type
v Table, buffer pool, and storage group for an implicitly created unique key index,

primary key index, or ROWID index.

Privileges required for handling plans and packages
An ID, or a role that runs in a trusted context, needs specific privileges to perform
actions on plans and packages.

The following table lists the IDs and describes the privileges that they need
for performing each type of plan or package operation. A user-defined function,
stored procedure, or trigger package does not need to be included in a package
list. A trigger package cannot be deleted by FREE PACKAGE or DROP PACKAGE.
The DROP TRIGGER statement must be used to delete the trigger package.

Table 20. Required privileges for basic operations on plans and packages

Operation ID or role Required privileges

Execute a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v EXECUTE privilege for the plan
v DATAACCESS authority
v SYSADM authority

Bind embedded
SQL statements,
for any bind
operation

Package owner Any of the following privileges:
v Applicable privileges required by the

statements
v Authorities that include the privileges
v Ownership that implicitly includes the

privileges

Object names include the value of
QUALIFIER, where it applies.

BIND EXPLAIN
without generating
a package

Plan or package owner Any of the following privileges:
v Ownership of the plan or package
v BIND
v BINDAGENT
v EXPLAIN privilege
v PACKADM
v SQLADM
v System DBADM authority
v SYSCTRL
v SYSADM

Include package in
PKLIST1

Plan owner Any of the following privileges:
v Ownership of the package
v EXECUTE privilege for the package
v PACKADM authority over the package

collection
v SYSADM authority

BIND a new plan
using the default
owner or primary
authorization ID

Primary ID or role Any of the following privileges:
v BINDADD privilege
v System DBADM authority
v SYSCTRL authority
v SYSADM authority

46 Managing Security



Table 20. Required privileges for basic operations on plans and packages (continued)

Operation ID or role Required privileges

BIND a new
package using the
default owner or
primary
authorization ID

Primary ID or role If the value of the field BIND NEW PACKAGE
on installation panel DSNTIPP is BIND, any of
the following privileges:
v BIND privilege and CREATE IN privilege

for the collection
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following privileges:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

BIND REPLACE
or REBIND for a
plan or package
using the default
owner or primary
authorization ID

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan or package
v BIND privilege for the plan or package
v BINDAGENT from the plan or package

owner
v PACKADM authority for the collection (for

a package only)
v System DBADM authority
v SYSADM or SYSCTRL authority.

BIND a new
version of a
package, with
default owner

Primary ID or role If BIND NEW PACKAGE is BIND, any of the
following privileges:
v BIND privilege on the package or collection
v BINDADD privilege and CREATE IN

privilege for the collection
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
the following:
v BINDADD privilege and either the CREATE

IN or PACKADM privilege for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

FREE or DROP a
package2

Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

COPY a package Primary ID, any
secondary ID, or role

Any of the following:
v Ownership of the package
v COPY privilege for the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v System DBADM authority
v SYSADM or SYSCTRL authority

Chapter 2. Managing access through authorization IDs and roles 47



Table 20. Required privileges for basic operations on plans and packages (continued)

Operation ID or role Required privileges

FREE a plan Primary ID, any
secondary ID, or role

Any of the following privileges:
v Ownership of the plan
v BIND privilege for the plan
v BINDAGENT from the plan owner
v System DBADM authority
v SYSADM or SYSCTRL authority

Name a new
OWNER other
than the primary
authorization ID
for any bind
operation

Primary ID, any
secondary ID, or role

Any of the following privileges:
v New owner is the primary or any secondary

ID
v BINDAGENT from the new owner
v System DBADM authority (if

SEPARATE_SECURITY is set to NO)
v SYSADM or SYSCTRL authority (if

SEPARATE_SECURITY is set to NO)

Privileges required for using dynamic SQL statements
An ID needs specific privileges to issue dynamic SQL statements.

The following table lists the IDs and describes the privileges that they need
for issuing each type of SQL statement:

Table 21. Required privileges for basic operations on dynamic SQL statements

Operation ID or role Required privileges

GRANT Current SQL ID or role Any of the following privileges:
v The applicable privilege with the grant

option
v An authority that includes the privilege,

with the grant option (not needed for
SYSADM or SYSCTRL)

v Ownership that implicitly includes the
privilege

REVOKE Current SQL ID or role Must either have granted the privilege that is
being revoked, or hold SYSCTRL or SYSADM
authority.

CREATE, for
unqualified object
name

Current SQL ID or role Applicable table, database, or schema privilege

Qualify name of
object created

ID or role named as
owner

Applicable table or database privilege. The
qualifier can be any ID at all and does not
need to have any privilege if the current SQL
ID or the role (if in a trusted context with the
ROLE AS OBJECT OWNER AND QUALIFIER
clause specified) has the SYSADM. system
DBADM, or SYSCTRL authority (wherever
applicable) or the DBADM or DBCTRL
authority for the database (wherever
applicable).

48 Managing Security



Table 21. Required privileges for basic operations on dynamic SQL statements (continued)

Operation ID or role Required privileges

Other dynamic
SQL if
DYNAMICRULES
uses run behavior

All primary IDs, role,
secondary IDs, and the
current SQL ID
together

As required by the statement. Unqualified
object names are qualified by the value of the
special register CURRENT SQLID.

Other dynamic
SQL if
DYNAMICRULES
uses bind behavior

Plan or package owner As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses define
behavior

Function or procedure
owner

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Other dynamic
SQL if
DYNAMICRULES
uses invoke
behavior

ID of the SQL
statement that invoked
the function or
procedure or role

As required by the statement.
DYNAMICRULES behavior determines how
unqualified object names are qualified.

Managing administrative authorities
DB2 provides a range of auditable administrative authorities that help you control
access to sensitive business data. The granularity and flexibility in DB2
administrative authority help you achieve adequate separation of duties and
responsibilities and prevent a single user from possessing unlimited privileges.

Depending on the setting of the SEPARATE_SECURITY system parameter, you can
separate DB2 security administration from system administration. You can set the
parameter by using the SEPARATE SECURITY field on panel DSNTIPP1 during
installation or migration.

If you set SEPARATE_SECURITY to YES, the SYSADM authority can no longer
manage security-related objects (i.e., roles, trusted contexts, row permissions, and
column masks) or have the ability to grant or revoke privileges that are granted by
others. The SYSCTRL authority can no longer manage roles or grant or revoke
privileges that are granted by others, either. Instead, the SECADM authority will
manage all security-related objects. The SECADM and ACCESSCTRL authorities
control access to all databases even though they cannot access any user data in the
databases.

In addition, the SYSADM authority can only set CURRENT SQLID to its primary
or one of its secondary authorization IDs. The SYSADM, SYSCTRL, and system
DBADM authorities can only set BIND OWNER to the primary or one of the
secondary authorization IDs of the binder. Finally, the SYSADM authority will not
have implicit insert, update, delete access to the SYSIBM.SYSAUDITPOLICIES
table.

If you set SEPARATE_SECURITY to NO (which is the default), the SYSADM
authority retains all the existing privileges and responsibilities and gets implicit
privileges of the SECADM authority. In other words, the SYSADM authority

Chapter 2. Managing access through authorization IDs and roles 49



continues to be the security administrator and manage all security-related objects,
perform grants, and revoke privileges that are granted by others. In addition, it
gets implicit insert, update, delete access on the SYSIBM. SYSAUDITPOLICIES
table and is able to set CURRENT SQLID and BIND OWNER to any value.

Setting SEPARATE_SECURITY to NO also allows the SYSCTRL authority to get
most of the implicit privileges of the ACCESSCTRL authority. SYSCTRL can
manage roles, perform certain grants, revoke privileges that are granted by others,
and set BIND OWNER to any value.

The installation SYSADM authority is not affected by the setting of the
SEPARATE_SECURITY parameter. Installation SYSADM can manage
security-related objects, grant and revoke authorities or privileges, and set
CURRENT SQLID and BIND OWNER to any value regardless of the setting of the
SEPARATE_SECURITY parameter.

Separating the SYSADM authority
Granularity and flexibility in DB2 administrative authority allows you to separate
security administration, database administration, and data access control from
system administration. Separating the SYSADM authority (a combination of
security and system administration) can help you simplify your system
administration and strengthen the security administration of your business data.

Procedure

To separate the SYSADM authority, choose the system and security
administration model that best meets the security needs of your business:
v Maintain the existing system administration model in which the SYSADM

authority continues to be able to perform security administration
You must first set the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 to NO (which is the default) during installation or migration. As
shown below, this setting allows the system administrator to continue to be the
security administrator and the SYSADM authority to get implicit privileges of
the SECADM authority. A system administrator can therefore manage all
security-related objects, perform grants, and revoke privileges that are granted
by others.

Security Administration

System Administration

Database Administration

Data Access

SYSADM

System Administrator

SYSADM

Installation SYSOPR

System DBADM

SECADM

DATAACCESS

50 Managing Security



Setting SEPARATE_SECURITY to NO also allows the SYSCTRL authority to get
implicit privileges of the ACCESSCTRL authority. SYSCTRL can manage roles,
perform grants, and revoke privileges that are granted by others.

v Separate security administration from system administration (SYSADM)
You must first set the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 to YES during installation or migration. As shown below, this setting
separates the security administration from the SYSADM authority. A system
administrator can no longer manage access control, audit policies, or
security-related objects, including roles and trusted contexts. The SYSCTRL
authority can no longer manage roles. Neither the SYSADM authority nor the
SYSCTRL authority can grant or revoke privileges that are granted by others.

System Administration

Database Administration

Data Access

Access Control

SECADMSYSADM

System Administrator Security Administrator

In addition to setting the SEPARATE_SECURITY system parameter, you also
need to set one of the system SECADM parameters to an authorization ID or a
role during installation that will perform security administration. To ensure
complete separation of system and security administration, do not set the
SECADM system parameter to a SYSADM ID. Instead, set SECADM to a
SECADM ID and installation SYSADM to an installation SYSADM ID.

v Separate system database administration with the data access authority and the
access control authority from system and security administration.
DB2 provides both the system DBADM authority and the DBADM authority,
with each having a different set of privileges. The system DBADM authority
allows you to manage objects in all databases across a DB2 subsystem, but
doesn't give you access to the data in the databases. In addition, with the system
DBADM authority, you can perform administrative tasks and issue commands
for a DB2 subsystem, but you don't have the authority to execute objects or the
ability to grant or revoke privileges.
Unlike the system DBADM authority, the DBADM authority allows you to
manage objects in a specific database and gives you access to the data in that
database. You also get the privileges of the DBCTRL and DBMAINT authorities
over the same database.
If you want the system database administrators to have access to data and the
ability to grant and revoke privileges, you can grant them the system DBADM,
DATAACCESS, and ACCESSCTRL authorities, as shown below. By default, the
DATAACCESS and ACCESSCTRL authorities are granted when the system
DBADM authority is granted.

Chapter 2. Managing access through authorization IDs and roles 51



Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

SECADMSystem DBADM

Database Administrator Security Administrator

Data Access
DATAACCESS

Access Control
ACCESSCTRL

System Administration

If you want the system database administrators to have access to data, but not
the ability to grant or revoke privileges, you can grant them the system DBADM
and DATAACCESS authorities, but not the ACCESSCTRL authority, as shown
below. You can also grant system database administrators the SYSOPR authority
and the privileges to perform ARCHIVE, BSDS, CREATESG, STOSPACE, or
other system-related tasks.

Data Access
DATAACCESS

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

SECADMSystem DBADM

Database Administrator Security Administrator

System Administration

v Separate system database administration from the data access authority, the
access control authority, security administration, and system administration.

52 Managing Security



System DBADM
Database Administrator

DATAACCESS
Data Access

System Administration

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

Access Control
ACCESSCTRL

ACCESSCTRL
Access Control

SECADM

Security Administrator

If you want the system database administrators to manage database objects, but
have no access to data or the ability to grant and revoke privileges, you can
grant them the system DBADM authority, but not the SYSADM, DATAACCESS,

or ACCESSCTRL authority.
Related reference:
“System DBADM” on page 38
“SECADM” on page 39
“ACCESSCTRL” on page 39
“DATAACCESS” on page 40
“SQLADM” on page 40

Migrating the SYSADM authority
To take advantage of the granularity of DB2 administrative authority and simplify
your system database administration, you can separate the privileges of the
SYSADM authority and migrate them to other administrative authorities based on
the security needs of your business. This will allow you to eliminate or minimize
the need for granting the SYSADM authority.

About this task

If you decide to separate the SYSADM authority into the SECADM and other
administrative authorities, consider setting the SEPARATE_SECURITY system
parameter on panel DSNTIPP1 to YES during installation or migration. This setting
enables you to achieve complete separation of administrative duties.

Procedure

To migrate the SYSADM authority that is currently assigned to authorization IDs
or roles:
1. In your security policies, identify the administration model that you will use

for separating the SYSADM authority and define the criteria for assigning
specific administrative authorities to specific authorization IDs or roles.

Chapter 2. Managing access through authorization IDs and roles 53



Suppose that you choose the following model to separate the current SYSADM
authority into the system DBADM, SECADM, DATAACCESS, ACCESSCTRL,
and SQLADM authorities:

System Administration

DATAACCESS
Access data in all user tables

System DBADM
Manage objects

SECADM
Perform security - related tasks

SQLADM
EXPLAIN, monitor queries

ACCESSCTRL
Control data access except

for security objects

SYSADM

Requires SYSOPR, ARCHIVE, BSDS, CREATESG, STOSPACE

You can define the following set of criteria for granting administrative
authorities:
v The system DBADM authority can be granted to database administrators

who need to manage objects
v The DATAACCESS authority can be granted to database administrators who

need to access data
v The ACCESSCTRL authority can be granted to database administrators who

need to control access to DB2 subsystems
v The SECADM authority can be assigned (during installation) to security

administrators who perform security administration and manage access
control

v The SQLADM authority can be assigned to performance analysts who are
responsible for analyzing the performance of DB2 subsystems

v The EXPLAIN privilege can be granted to application architects who need to
explain SQL statements or collect metadata information about the statements

v The SYSOPR authority and the ARCHIVE, BSDS, CREATESG, and
STOSPACE privileges can be granted to system administrators for
performing system administrative tasks.

2. Perform a query to list all the users and roles that are currently granted the
SYSADM authority.
The SYSADM authority can be granted to authorization IDs or roles. You can
query the catalog and find out the users and roles who are currently granted
the SYSADM authority.
Suppose that your query returns a list of the following six users, user groups,
or roles that are assigned the SYSADM authority:
v John (Security administrator)
v Sally (Application Architect)
v Bob (Performance Analyst)
v ApplProgrammer_role (Application Programmer role)
v SysAdmin_Role (System administrator role)
v DBAdmGrp (database administrator group).

3. Divide the responsibilities of the SYSADM authority and grant to different IDs
or roles based on your security policies, as shown below:

54 Managing Security



v John is granted the SECADM authority to perform security-related
administration tasks and control access to DB2.

v Sally is granted the DATAACCESS authority because she requires DML
privileges on tables during application development, but she does not need
access control or database administration.

v Bob is granted the SQLADM authority who analyzes the performance of DB2
subsystems, but does not need access to data.

v ApplProg_role is granted the EXPLAIN privilege because all application
programmers need to explain SQL statements and collect metadata
information in trusted context definitions.

v DBAdmGrp is granted the system DBADM authority for managing and
maintaining objects. Since database administrators belong to the DBAdmGrp
RACF group, they should not be able to access data or grant and revoke
privileges.

v SysAdmin_role is granted the SYSOPR authority and the ARCHIVE, BSDS,
CREATESG, and STOSPACE privileges to perform system administrative
tasks.

4. Revoke the SYSADM authority from all current IDs or roles.
Once the authorities are granted, you can revoke the SYSADM authority from
John, Sally, Bob, ApplProgrammer_ role and DBAdmGrp. Revoking the
SYSADM authority causes the revoking of dependent privileges, by default. If
you want to leave the grants that they had made, you can issue the REVOKE
statement with the NOT INCLUDING DEPENDENT PRIVILEGES clause,
assuming the REVOKE_DEP_PRIVILEGES system parameter is set to
SQLSTMT.

5. Once the SYSADM authority is revoked, set the SEPARATE_SECURITY system
parameter to YES on panel DSNTIPP1. With the installation SYSADM authority,
you can perform an online change of the SEPARATE_SECURITY system
parameter and set it to YES. This further ensures that SYSADM is separated
into SECADM and other authorities.

Related reference:
“System DBADM” on page 38
“SECADM” on page 39
“ACCESSCTRL” on page 39
“DATAACCESS” on page 40
“SQLADM” on page 40

Creating roles or trusted contexts with the SECADM authority
If you separate security administration from system and database administration,
you need to have the SECADM authority to manage security-related objects in DB2
and control access to all database objects and resources in a subsystem.

Before you begin

To separate security administration from system administration, you must set the
SEPARATE_SECURITY system parameter on panel DSNTIPP1 to YES during
installation or migration.

To use trusted connections, you cannot set the ALL subsystem parameter to ALL
and set the RESTART subsystem parameter to DEFER on installation panel
DSNTIPS.

Chapter 2. Managing access through authorization IDs and roles 55



About this task

With the separation of security administration from system administration, the
SYSADM authority can no longer define roles or trusted contexts or manage any
other security-related objects; the SECADM authority is, instead, responsible for
performing security administrative tasks, including creating roles and trusted
contexts, activating row and column access control, and granting security-related
authorities and privileges on objects.

Procedure

To create roles or trusted contexts with the SECADM authority:
v Issue the following CREATE ROLE statement to create CTXROLE by using an

authorization ID or role that is given the SECADM authority.
If SEPARATE_SECURITY is set to YES, the SECADM authority is required to

create roles and trusted contexts.
CREATE ROLE CTXROLE;

DB2 checks to make sure that you have the required privilege to create roles
and, upon successful verification, allows the creation of role CTXROLE.

v Issue the following CREATE TRUSTED CONTEXT statement to create CTX1 and
associate CTXROLE with CTX1:

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
DEFAULT ROLE CTXROLE
ATTRIBUTES (ADDRESS ’9.67.40.219’)
WITH USE FOR USER2, USER3
ENABLE;

DB2 checks to make sure that you have the required privilege to create trusted
contexts and, upon successful verification, allows the creation of trusted context
CTX1.

Related reference:
“SECADM” on page 39

Altering tables with the system DBADM authority
The system DBADM authority separates object management from data access and
access control. It allows object management without requiring the ownership of the
object in a DB2 subsystem.

About this task

Suppose that you are a database administrator DB2ADMIN1 and need to alter
TABLE1, but do not have any table privileges on the table. You must first be
granted the system DBADM authority before you can alter the table.

56 Managing Security



Procedure

To alter tables with the system DBADM authority:
1. Obtain the system DBADM authority from a security administrator

An authorization ID or role with the SECADM authority can grant you the

system DBADM authority by issuing the following statement:
GRANT DBADM WITHOUT DATAACCESS WITHOUT ACCESSCTRL ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the column
SDBADMAUTH set to 'Y', where column GRANTEE is set to DB2ADMIN1.

2. With the system DBADM authority, issue the ALTER TABLE statement to alter
table TABLE1.
DB2 checks to make sure that you have the required privilege set, including the
ALTER TABLE privilege that is allowed by the system DBADM authority. The
table is altered successfully.

Related reference:
“System DBADM” on page 38

Accessing data with the DATAACCESS authority
A database administrator must have the DATAACCESS authority to access data in
all user tables, views, and materialized query tables in a DB2 subsystem.

About this task

Suppose that you are a database administrator DB2ADMIN1 and need access to
data in TABLE1. You must first be granted the DATAACCESS authority.

Procedure

To access data with the DATAACCESS authority:
1. Obtain the DATAACCESS authority from a security administrator. The

SECADM (an authorization ID or role) can grant you the DATAACCESS
authority by issuing the following statement:

GRANT DATAACCESS ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the new column
DATAACCESSAUTH set to 'Y', where column GRANTEE is set DB2ADMIN1.

2. After obtaining the DATAACCESS authority, issue an SQL SELECT statement
to select from table TABLE1. DB2 checks to make sure that you have the
required privilege set, including the SELECT privilege that is granted by the
DATAACCESS authority. The SELECT statement completes successfully.

Chapter 2. Managing access through authorization IDs and roles 57



Related reference:
“DATAACCESS” on page 40

Granting and revoking privileges with the ACCESSCTRL
authority

If you separate database administration from system and security administration, a
database administrator must have the ACCESSCTRL or SECADM authority to
grant or revoke user privileges in a DB2 subsystem.

About this task

The ACCESSCTRL authority allows you to grant and revoke (BY clause)
privileges on all resources in a DB2 subsystem. However, it cannot grant the
CREATE_SECURE_OBJECT privilege or the system DBADM, DATAACCESS, and
ACCESSCTRL authorities.

If you are a database administrator DB2ADMIN1 and need to grant application
developer APPDEV1 load privileges on DBTEMP1, you must first have the
ACCESSCTRL authority for yourself.

Procedure

To grant or revoke privileges with the ACCESSCTRL authority:
1. Obtain the ACCESSCTRL authority from a security administrator. The

SECADM (an authorization ID or role) can grant you the ACCESSCTRL
authority by issuing the following statement:
GRANT ACCESSCTRL ON SYSTEM TO DB2ADMIN1;

DB2 inserts a row in SYSIBM.SYSUSERAUTH with the new column
ACCESSCTRLAUTH set to 'Y', where column GRANTEE is set to
DB2ADMIN.1.
You can specify WITH GRANT OPTION when you issue the GRANT
statement, but the option is ignored when the authority is ACCESSCTRL,
DBADM, or DATAACCESS.

2. After obtaining the ACCESSCTRL authority, grant APPDEV1 load privileges on
DBTEMP1 by issuing the following GRANT statement:
GRANT LOAD ON DATABASE DBTEMP1 TO APPDEV1;

DB2 checks to make sure that you have the required privilege set, including the
GRANT privilege that is allowed by the ACCESSCTRL authority. The GRANT

statement completes successfully.
Related reference:
“ACCESSCTRL” on page 39

Managing explicit privileges
You can use the SQL GRANT and REVOKE statements to grant and remove
privileges if you enable authorization checking during DB2 installation. You can
grant to or revoke privileges from authorization IDs or roles if they run in a
trusted context. You can revoke only privileges that are explicitly granted.

58 Managing Security



About this task

You can grant privileges in the following ways:
v Grant a specific privilege on one object in a single statement
v Grant a list of privileges
v Grant privileges on a list of objects
v Grant ALL, for all the privileges of accessing a single table, or for all privileges

that are associated with a specific package

If you grant privileges on a procedure or a package, all versions of that procedure
or package have those privileges. DB2 ignores duplicate grants and keeps only one
record of a grant in the catalog. The suppression of duplicate records applies not
only to explicit grants, but also to the implicit grants of privileges that are made
when a package is created.

For example, suppose that Susan grants the SELECT privilege on the EMP table to
Ray. Then suppose that Susan grants the same privilege to Ray again, without
revoking the first grant. When Susan issues the second grant, DB2 ignores it and
maintains the record of the first grant in the catalog.

Database privileges that are granted on DSNDB04 apply to all implicitly created
databases. For example, if you have the DBADM authority on DSNDB04, you can
select data from any table in any implicitly created database. If you have the
STOPDB privilege on DSNDB04, you can stop any implicitly created database.
However, you cannot grant the same authorities or privileges to others on any
implicitly created database.
Related tasks:
“Managing implicit privileges” on page 77

Granting privileges to a role
You can grant privileges to a role by using the GRANT statement. You can
associate primary authorization IDs with a role in the definition of the trusted
context and then use the GRANT statement with the ROLE option to grant
privileges to the role.

About this task

You can improve access control by granting privileges to roles. When you grant
certain privileges to a role, you make those privileges available to all users that are
associated with the role in the specific trusted context.

You can also simplify the administration of granting privileges by using roles
rather than individual authorization IDs. To make a role a grantor, you need to
specify the ROLE AS OBJECT OWNER clause when you define the trusted context.
For a static GRANT statement, the grantor is the role that owns the plan or
package. For a dynamic GRANT statement, the role for the primary authorization
ID that executes the GRANT statement becomes the grantor.

Granting privileges to the PUBLIC ID
You can grant to the PUBLIC ID privileges or authorities other than
CREATE_SECURE_OBJECT, system DBADM, DATAACCESS, or ACCESSCTRL.

Chapter 2. Managing access through authorization IDs and roles 59



About this task

When you grant privileges to PUBLIC, the privileges become available to all IDs at
the local DB2® site, including the owner IDs of packages that are bound from a
remote location. Public access is generally not a good practice when it comes to the
protection of sensitive business data and critical system resources. Many
compliance requirements prohibit public access to any system components. For
example, the Payment Card Industry (PCI) Data Security Standard Requirements
and Security Assessment Procedures restrict the use of PUBLIC.

When you grant any privilege to PUBLIC, DB2 catalog tables record the grantee of
the privilege as PUBLIC. DB2 also grants the following implicit table privileges to
PUBLIC for declared temporary tables:
v All table privileges on the tables and the authority to drop the tables
v The CREATETAB privilege to define temporary tables in the work file database
v The USE privilege to use the table spaces in the work file database

You do not need any additional privileges to access the work file database and the
temporary tables that are in it. You cannot grant or revoke table privileges for
temporary tables. The DB2 catalog does not record these implicit privileges for
declared temporary tables.

Because PUBLIC is a special identifier that is used by DB2 internally, you should
not use PUBLIC as a primary ID or secondary ID. When a privilege is revoked
from PUBLIC, authorization IDs to which the privilege was specifically granted
retain the privilege.

However, when an ID uses PUBLIC privileges to perform actions, the actions and
the resulting objects depend on the privileges that are currently in effect for
PUBLIC. If PUBLIC loses a privilege, objects that are created with that privilege
can be dropped or invalidated. The following examples demonstrate how certain
objects depend on PUBLIC not losing its privileges.

Example

Suppose that Juan has the ID USER1 and that Meg has the ID USER2. Juan creates
a table TAB1 and grants ALL PRIVILEGES on it to PUBLIC. Juan does not
explicitly grant any privileges on the table to Meg's ID, USER2. Using the PUBLIC
privileges, Meg creates a view on TAB1. Because the ID USER2 requires the
SELECT privilege on TAB1 to create the view, the view is dropped if PUBLIC loses
the privilege.
Related tasks:
“Granting privileges to remote users”

Granting privileges to remote users
A query that arrives at your local DB2 subsystem through the distributed data
facility (DDF) is accompanied by an authorization ID. After connection processing,
the ID can be translated to another value and be associated with secondary
authorization IDs.

About this task

DB2 also uses the ID to determine if the connection is associated with a trusted
context. As the end result of these processes, the remote query is associated with a

60 Managing Security



set of IDs that is known to your local DB2 subsystem. You assign privileges to
these IDs in the same way that you assign privileges to IDs that are associated
with local queries.

Related tasks:
“Granting privileges to the PUBLIC ID” on page 59

Granting privileges through views
You can grant most table privileges (except ALTER, REFERENCES, TRIGGER, and
INDEX) on a view. By creating a view and granting privileges through it, you can
give an ID access to only a specific combination of data.

About this task

The ability to grant privileges through views is sometimes called field-level access
control or field-level sensitivity.

Suppose that you want the ID MATH110 to be able to extract the following column
data from the sample employee table for statistical investigation: HIREDATE, JOB,
EDLEVEL, SEX, SALARY, BONUS, and COMM for DSN8910.EMP. However, you
want to impose the following restrictions:
v No access to employee names or identification numbers
v No access to data for employees hired before 1996
v No access to data for employees with an education level less than 13
v No access to data for employees whose job is MANAGER or PRES

You can create and name a view that shows exactly that combination of data.

Procedure

To grant privileges to the view that you create:
1. Issue the following CREATE statement to create the view that you want:

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM

FROM DSN8B10.EMP
WHERE HIREDATE > ’1995-12-31’ AND

EDLEVEL >= 13 AND
JOB <> ’MANAGER’ AND
JOB <> ’PRES’;

2. Issue the following statement to grant the SELECT privilege on the SALARIES
view to MATH110:

GRANT SELECT ON SALARIES TO MATH110;

Chapter 2. Managing access through authorization IDs and roles 61



Results

After you grant the privilege, MATH110 can execute SELECT statements on the
restricted set of data only. Alternatively, you can give an ID access to only a
specific combination of data by using multilevel security with row-level
granularity.
Related tasks:
“Granting privileges with the GRANT statement”
“Revoking privileges with the REVOKE statement” on page 68

Granting privileges with the GRANT statement
You can assign privileges to an ID or a role by issuing the GRANT statement.

About this task

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards. For example, the
database might hold notices of upcoming holidays and bowling scores.

To create and maintain the tables and programs that are needed for this
application, the Spiffy Computer Company develops the security plan shown in
the following diagram.

The Spiffy Computer Company's system of privileges and authorities associates
each role with an authorization ID. For example, the System Administrator role has
the ADMIN authorization ID.

The system administrator uses the ADMIN authorization ID, which has the
SYSADM authority, to create a storage group (SG1) and to issue the following
statements:
1. GRANT PACKADM ON COLLECTION BOWLS TO PKA01 WITH GRANT OPTION;

System administrator
ID: ADMIN

Package administrator
ID: PKA01

Database administrator
ID: PKA01

Application programmers
IDs: PGMR01, PGMR02

PGMR03

Production binder
ID: BINDER

Database controllers
IDs: DBUTIL1, DBUTIL2

Figure 3. Security plan for the Spiffy Computer Company

Privileges: Ownership of SG1
Authority: SYSADM

User ID: ADMIN

62 Managing Security



This statement grants to PKA01 the CREATE IN privilege on the collection
BOWLS and BIND, EXECUTE, and COPY privileges on all packages in the
collection. Because ADMIN used the WITH GRANT OPTION clause, PKA01
can grant those privileges to others.

2. GRANT CREATEDBA TO DBA01;

This statement grants to DBA01 the privilege to create a database and to have
DBADM authority over that database.

3. GRANT USE OF STOGROUP SG1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use storage group SG1 and to grant that
privilege to others.

4. GRANT USE OF BUFFERPOOL BP0, BP1 TO DBA01 WITH GRANT OPTION;

This statement allows DBA01 to use buffer pools BP0 and BP1 and to grant that
privilege to others.

5. GRANT CREATE IN COLLECTION DSN8CC91 TO ROLE ROLE1;

This statement grants to ROLE1 the privilege to create new packages in

collections DSN8CC91.

The package administrator, PKA01, controls the binding of packages into
collections. PKA01 can use the CREATE IN privilege on the collection BOWLS and
the BIND, EXECUTE, and COPY privileges on all packages in the collection.
PKA01 also has the authority to grant these privileges to others.

The database administrator, DBA01, using the CREATEDBA privilege, creates the
database DB1. When DBA01 creates DB1, DBA01 automatically has DBADM
authority over the database.

The database administrator at Spiffy Computer Company wants help with running
the COPY and RECOVER utilities. Therefore DBA01 grants DBCTRL authority over
database DB1 to DBUTIL1 and DBUTIL2.

To grant DBCTRL authority, the database administrator issues the
following statement:
GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

Authority: PACKADM over the collection BOWLS
User ID: PKA01

Privi leges: CREATEDBA
Use of SG1 with GRANT

Ownership of DB1
Use of BP0 and BP1 with GRANT

Authority: DBADM over DB1
User ID: DBA01

Authority: DBCTRL over DB1
User ID: DBUTIL1, DBUTIL2

Chapter 2. Managing access through authorization IDs and roles 63



Related tasks:
“Granting privileges through views” on page 61

Granting privileges to secondary IDs
The Spiffy Computer Company uses RACF to manage external access to DB2.
Therefore, Spiffy can use secondary authorization IDs to define user groups and
associate primary authorization IDs with those user groups.

About this task

The primary authorization IDs are the RACF user IDs. The secondary
authorization IDs are the names of the groups with which the primary IDs are
associated.

Spiffy can grant DB2 privileges to primary IDs indirectly, by granting privileges to
secondary IDs that are associated with the primary IDs. This approach associates
privileges with a functional ID rather than an individual ID. Functional IDs, also
called group IDs, are granted privileges based on the function that certain job roles
serve in the system. Multiple primary IDs can be associated with a functional ID
and receive the privileges that are granted to that functional ID. In contrast,
individual IDs are connected to specific people. Their privileges need to be
updated as people join the company, leave the company, or serve different roles
within the company. Functional IDs have the following advantages:
v Functional IDs reduce system maintenance because they are more permanent

than individual IDs. Individual IDs require frequent updates, but each functional
ID can remain in place until Spiffy redesigns its procedures.
Example: Suppose that Joe retires from the Spiffy Computer Company. Joe is
replaced by Mary. If Joe's privileges are associated with functional ID DEPT4,
those privileges are maintained in the system even after Joe's individual ID is
removed from the system. When Mary enters the system, she will have all of
Joe's privileges after her ID is associated with the functional ID DEPT4.

v Functional IDs reduce the number of grants that are needed because functional
IDs often represent groups of individuals.

v Functional IDs reduce the need to revoke privileges and re-create objects when
they change ownership.
Example: Suppose that Bob changes jobs within the Spiffy Computer Company.
Bob's individual ID has privileges on many objects in the system and owns three
databases. When Bob's job changes, he no longer needs privileges over these
objects or ownership of these databases. Because Bob's privileges are associated
with his individual ID, a system administrator needs to revoke all of Bob's
privileges on objects and drop and re-create Bob's databases with a new owner.
If Bob received privileges by association with a functional ID, the system
administrator would only need to remove Bob's association with the functional
ID.

Granting privileges to user groups
You can simplify the assignment and management of privileges by creating user
groups and by granting privileges to the groups. In this way, you can efficiently
assign the same set of privileges to all the users of a given group at the same time.

64 Managing Security



About this task

Suppose that the database administrator at Spiffy wants several employees in the
Software Support department to create tables in the DB1 database. The database
administrator creates DEVGROUP as a RACF group ID for this purpose. To
simplify the process, the database administrator decides that each CREATE TABLE
statement should implicitly create a unique table space for the table. Hence,
DEVGROUP needs the CREATETAB privilege, the CREATETS privilege, the
privilege to use the SG1 storage group and, the privilege to use one of the buffer
pools, BP0, for the implicitly created table spaces. The following diagram shows
this group and their privileges:

The database administrator, DBA01, owns database DB1 and has the
privileges to use storage group SG1 and buffer pool BP0. The database
administrator holds both of these privileges with the GRANT option. The database
administrator issues the following statements:
1. GRANT CREATETAB, CREATETS ON DATABASE DB1 TO DEVGROUP;
2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;

3. GRANT USE OF BUFFERPOOL BP0 TO DEVGROUP;

Because the system and database administrators at Spiffy still need to control the
use of those resources, the preceding statements are issued without the GRANT
option.

Three programmers in the Software Support department write and test a new
program, PROGRAM1. Their IDs are PGMR01, PGMR02, and PGMR03. Each
programmer needs to create test tables, use the SG1 storage group, and use one of
the buffer pools. All of those resources are controlled by DEVGROUP, which is a
RACF group ID.

Therefore, granting privileges over those resources specifically to PGMR01,
PGMR02, and PGMR03 is unnecessary. Each ID should be associated with the
RACF group DEVGROUP and receive the privileges that are associated with that
functional ID. The following diagram shows the DEVGROUP and its members:

The security administrator connects as many members as required to the group
DEVGROUP. Each member can exercise all the privileges that are granted to the
group ID.

Granting privileges for binding plans
Binding requires additional privileges. You must have the required privileges to
bind a plan.

Use of BP0
Use of SG1
CREATETS on DB1
CREATETAB on DB1

Privileges: (All without GRANT)
RACF Group ID: DEVGROUP

RACF group ID: DEVGROUP
Group members: PGMR01, PGMR02, PGMR03

Chapter 2. Managing access through authorization IDs and roles 65



About this task

Suppose that three programmers can share the tasks that are done by the
DEVGROUP ID. Someone creates a test table, DEVGROUP.T1, in database DB1 and
loads it with test data. Someone writes a program, PROGRAM1, to display
bowling scores that are contained in T1. Someone must bind the plan and packages
that accompany the program.

Binding requires an additional privilege. ADMIN, who has the SYSADM authority,
grants the required privilege by issuing the following statement:
GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages that are to be owned by DEVGROUP. Any member of the group can
rebind a plan or package that is owned by DEVGROUP. The following diagram
shows the BINDADD privilege granted to the group:

The Software Support department proceeds to create and test the program.

Granting privileges for rebinding plans and packages
You can use the GRANT statement to grant privileges for rebuilding plans and
packages.

About this task

Spiffy has a different set of tables, which contain actual data that is owned by the
ROLE PRODCTN. PROGRAM1 is written with unqualified table names. For
example, table T1 was referred to as simply T1, not DEVGROUP.T1. The new
packages and plan must refer to table PRODCTN.T1. To move the completed
program into production, someone must perform the following steps:
v Rebind the application plan with the owner PRODCTN.
v Rebind the packages into the collection BOWLS, again with the owner

PRODCTN.

Spiffy gives that job to a production binder with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or
package with OWNER (PRODCTN), and to add a package to the collection
BOWLS. BINDER acquires these abilities through its RACF DEVGROUP group and
ROLE PRODCTN. ROLE PRODCTN needs to have all the necessary privileges.

Suppose that ID BINDER has ROLE PRODCTN when binding in a trusted context
and that ROLE PRODCTN has the following privileges:

Privilege: BINDADD
RACF group ID: DEVGROUP

66 Managing Security



BINDER can bind plans and packages for owner ROLE PRODCTN because it
performs binds in a trusted context with ROLE PRODCTN.

PACKADM, the package administrator for BOWLS, can grant the CREATE
privilege with the following statement:

GRANT CREATE ON COLLECTION BOWLS TO ROLE PRODCTN;

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAM1 plan available to all employees by issuing the following statement:

GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

More than one ID has the authority or privileges that are necessary to issue this
statement. For example, ADMIN has SYSADM authority and can grant the
EXECUTE privilege. Also, any ID in a trusted context with ROLE PRODCTN that
owns PROGRAM1 can issue the statement. When EXECUTE is granted to PUBLIC,
other IDs do not need any explicit authority on T1.

Finally, the plan to display bowling scores at Spiffy Computer Company is
complete. The production plan, PROGRAM1, is created, and all IDs have the
authority to execute the plan.

Granting privileges for accessing distributed data
Some time after the system and database administrators at Spiffy Computer
Company implement their security plan, the company president tells them that
other applications on other systems must connect to the local DB2 subsystem. She
wants people at every location to be able to access bowling scores through
PROGRAM1 on the local subsystem.

Procedure

The administrators perform the following steps to enable access from all
Spiffy locations:
1. Add a CONNECT statement to the program, naming the location at which

table PRODCTN.T1 resides. In this case, the table and the package reside at
only the central location.

2. Issue the following statement so that PKA01, who has PACKADM authority,
can grant the required privileges to DEVGROUP:
GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP;

DB2 Role: PRODCTN
Privileges: BINDADD

CREATE IN collection BOWLS
Privileges on SQL objects referenced in application

Chapter 2. Managing access through authorization IDs and roles 67



3. Bind the SQL statements in PROGRAM1 as a package.
4. Bind the SQL statements in PROGRAM1 as a package by the package owner:

GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Results

Any system that is connected to the original DB2 location can run PROGRAM1
and execute the package by using DRDA® access. However, if the remote system is
another DB2, a plan must be bound there that includes the package in its package

list.

Revoking privileges with the REVOKE statement
You can use the REVOKE statement to remove the privileges that you explicitly
grant to an ID or a role.

About this task

You can revoke the privilege that you grant to an ID by issuing the
following statement:
REVOKE authorization-specification FROM auth-id

Generally, you can revoke only the privileges that you grant. If you revoke
privileges on a procedure or package, the privileges are revoked from all versions
of that procedure or package.

However, an ID with the SECADM or ACCESSCTRL authority can revoke a
privilege that has been granted by another ID with the following statement:
REVOKE authorization-specification FROM auth-id BY auth-id

If the SEPARATE SECURITY system parameter on panel DSNTIPP1 is set to NO
(the default) during installation, an ID with the SYSADM or SYSCTRL authority
can revoke a privilege that has been granted by another ID. In this case, the
SYSADM authority implicitly has the privileges of the SECADM authority, and the
SYSCTRL authority implicitly has the privileges of the ACCESSCTRL authority.

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single
REVOKE statement does not remove the privilege. To remove it, each grant of the
privilege must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass
the granted privilege to others. If the privilege is removed from the ID, its
revocation can cascade to others depending on the setting of the REVOKE DEP
PRIV system parameter. For example, when a privilege is removed from
authorization ID X, it is also removed from any ID to which X granted it, unless
that ID also has the privilege from some other source.

Example: Suppose that DBA01 grants DBCTRL authority with the GRANT option
on database DB1 to DBUTIL1. Then DBUTIL1 grants the CREATETAB privilege on
DB1 to PGMR01. If DBA01 revokes DBCTRL from DBUTIL1, PGMR01 loses the

1. DB2 does not cascade a revoke of the SYSADM authority from the installation SYSADM authorization IDs.

68 Managing Security



CREATETAB privilege. If PGMR01 also granted the CREATETAB privilege to
OPER1 and OPER2, they also lose the privilege.

Example: Suppose that PGMR01 from the preceding example created table T1
while holding the CREATETAB privilege. If PGMR01 loses the CREATETAB
privilege, table T1 is not dropped, and the privileges that PGMR01 has as owner of
the table are not deleted. Furthermore, the privileges that PGMR01 grants on T1
are not deleted. For example, PGMR01 can grant SELECT on T1 to OPER1 as long
as PGMR01 owns of the table. Even when the privilege to create the table is
revoked, the table remains, the privilege remains, and OPER1 can still access T1.

Example: Consider the following REVOKE scenario:
1. Grant #1: SYSADM, SA01, grants SELECT on TABLE1 to USER01 with the

GRANT option.
2. Grant #2: USER01 grants SELECT on TABLE1 to USER02 with the GRANT

option.
3. Grant #3: USER02 grants SELECT on TABLE1 back to SA01.
4. USER02 then revokes SELECT on TABLE1 from SA01.

The cascade REVOKE process of Grant #3 determines if SA01 granted SELECT to
anyone else. It locates Grant #1. Because SA01 did not have SELECT from any
other source, this grant is revoked. The cascade REVOKE process then locates
Grant #2 and revokes it for the same reason. In this scenario, the single REVOKE
action by USER02 triggers and results in the cascade removal of all the grants even
though SA01 has the SYSADM authority. The SYSADM authority is not

considered.
Related tasks:
“Granting privileges with the GRANT statement” on page 62
“Revoking dependent privileges”

Revoking dependent privileges
Revoking a privilege or authority, such as the SYSADM authority, from one user
(an authorization ID or role) can result in the automatic removal of that privilege
from other users and the privileges that it has granted. To prevent this, you can
assign the REVOKE DEP PRIV parameter different values to control whether or
not dependent privileges or authorities should be removed.

Procedure

To specify the REVOKE DEP PRIV parameter, use one of the following approaches:
v Set REVOKE DEP PRIV to SQLSTMT (the default) if you want to use the

dependent privileges clause on the REVOKE statement to control the revocation
of dependent privileges.
– Specify the NOT INCLUDING DEPENDENT PRIVILEGES clause on the

REVOKE statement when you need to revoke a privilege or authority from a
user but retain all the grants that are already made by that user. However, if
the same privilege is later granted to that user again and subsequently
revoked with the INCLUDING DEPENDENT PRIVILEGES clause specified,
all dependent privileges including the grants made by the user earlier are
removed.

– Specify the INCLUDING DEPENDENT PRIVILEGES clause (the default)
when you need to revoke a privilege or authority (other than ACCESSCTRL,

Chapter 2. Managing access through authorization IDs and roles 69



DATAACCESS, and system DBADM) from a user and remove all the
privileges or authorities that are already granted by that privilege or
authority.

v Set REVOKE DEP PRIV to YES if you want to remove all dependent privileges
or authorities whenever you revoke a privilege or authority other than
ACCESSCTRL, DATAACCESS, and system DBADM.
You will receive an error if you specify the NOT INCLUDING DEPENDENT
PRIVILEGES clause on the REVOKE statement when you revoke a privilege or
authority other than ACCESSCTRL, DATAACCESS, and system DBADM.

v Set REVOKE DEP PRIV to NO if you want to retain all dependent privileges or
authorities whenever you revoke a privilege or authority.
You will receive an error if you specify the INCLUDING DEPENDENT
PRIVILEGES clause on the REVOKE statement.

Results

If REVOKE DEP PRIV is set to NO or SQLSTMT or if the NOT INCLUDING
DEPENDENT PRIVILEGES clause is specified on the REVOKE statement,
dependent privileges or authorities are not revoked when a privilege or authority
is revoked from a user. However, any packages, views, or MQTs that are owned by
that user are invalidated, inoperative, or dropped.

Revoking dependent privileges does not occur in any of the following conditions:
v If the ACCESSCTRL authority is revoked from a user, grants made by the user

are not revoked. However, if the user has already revoked its own grants prior
to the removal of the ACCESSCTRL authority, that revocation of dependent
privileges continues to take effect unless otherwise instructed through the
REVOKE_DEP_PRIV parameter or the REVOKE statement.

v If the SECADM authority is removed from a user, grants made by the user are
not revoked. However, if the user has already revoked its own grants prior to
the removal of the SECADM authority, that revocation of dependent privileges
continues to take effect unless otherwise instructed through the
REVOKE_DEP_PRIV parameter or the REVOKE statement.

Revoking privileges granted by multiple IDs
A user can be granted the same privilege by multiple IDs at different times, but
that privilege and any dependent privileges can be simultaneously revoked.

About this task

Suppose that DBUTIL1 grants the CREATETAB privilege to PGMR01 and
that DBUTIL2 also grants the CREATETAB privilege to PGMR01. The second grant
is recorded in the catalog, with its date and time, but it has no other effect until the
grant from DBUTIL1 to PGMR01 is revoked. After the first grant is revoked, DB2
must determine the authority that PGMR01 used to grant CREATETAB to OPER1.
The following diagram illustrates the situation; the arrows represent the granting
of the CREATETAB privilege.

70 Managing Security



Suppose that DBUTIL1 issues the GRANT statement at Time 1 and that DBUTIL2
issues the GRANT statement at Time 2. DBUTIL1 and DBUTIL2 both use the
following statement to issue the grant:
GRANT CREATETAB ON DATABASE DB1 TO PGMR01 WITH GRANT OPTION;

At Time 3, PGMR01 grants the privilege to OPER1 by using the following
statement:
GRANT CREATETAB ON DATABASE DB1 TO OPER1;

After Time 3, DBUTIL1's authority is revoked, along with all of the privileges and
authorities that DBUTIL1 granted. However, PGMR01 also has the CREATETAB
privilege from DBUTIL2, so PGMR01 does not lose the privilege. The following
criteria determine whether OPER1 loses the CREATETAB privilege when
DBUTIL1's authority is revoked:
v If Time 3 comes after Time 2, OPER1 does not lose the privilege. The recorded

dates and times show that, at Time 3, PGMR01 could have granted the privilege
entirely on the basis of the privilege that was granted by DBUTIL2. That
privilege was not revoked.

v If Time 3 precedes Time 2, OPER1 does lose the privilege. The recorded dates and
times show that, at Time 3, PGMR01 could have granted the privilege only on
the basis of the privilege that was granted by DBUTIL1. That privilege was

revoked, so the privileges that are dependent on it are also revoked.

Revoking privileges granted by other IDs
An ID with the SYSADM or SYSCTRL authority can revoke privileges that are
granted by other IDs.

Procedure

To revoke privileges granted by other IDs, choose one of the following
approaches:
v Issue a REVOKE statement and include BY ALL in that statement. This

statement will revoke privileges granted by all other IDs. The following example
revokes the CREATETAB privileges that are granted to PGMR01 on database
DB1 by all IDs:
REVOKE CREATETAB ON DATABASE DB1 FROM PGMR01 BY ALL;

v Issue a REVOKE statement and include the specific ID in that statement. This
statement will revoke privileges that were granted by a specific ID and leave
intact the same privileges if they were granted by any other ID. The following
example revokes privileges that are granted by DBUTIL1 and leaves intact the
same privileges if they were granted by any other ID:
REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMR01 BY DBUTIL1;

DBUTIL2

Time 2

Time 3Time 1
DBUTIL1 PGMR01 OPER1

Figure 4. Authorization granted by two or more IDs

Chapter 2. Managing access through authorization IDs and roles 71



Related reference:

REVOKE (DB2 SQL)

Revoking privileges granted by a role
You can use the REVOKE statement to revoke privileges that are granted by a role
in a trusted context.

About this task

To revoke privileges that are granted by a role, you can issue the REVOKE
statement in the trusted context that was defined with the ROLE AS OBJECT
OWNER clause. Also, make sure the role that revokes a privilege matches the one
that grants the privilege. For a static REVOKE statement, the revoker is the role
that owns the plan or package. For a dynamic REVOKE statement, the role for the
primary authorization ID that executes the REVOKE statement becomes the
revoker.

An authorization ID or role that has the SYSADM or SYSCTRL authority can use
the BY (ROLE role-name) clause of the REVOKE statement to revoke privileges that
are granted by a role.

Revoking all privileges from a role
You can revoke all privileges that are assigned to a role by dropping the role itself
or by using the REVOKE statement.

About this task

When you attempt to drop a role, make sure that the role does not own
any objects. If the role owns objects, the DROP statement is terminated. If the role
does not own any objects, the role is dropped. As a result, all privileges that are

held by this role are revoked, and the revocation is cascaded.

Revoking privileges for views
If a table privilege is revoked from the owner of a view on the table, the
corresponding privilege on the view is revoked. The same privilege is also revoked
from other IDs if it was granted by the view owner.

About this task

If the SELECT privilege on the base table is revoked from the owner of the
view, the view is dropped. However, if another grantor granted the SELECT
privilege to the view owner before the view was created, the view is not dropped.

Example: Suppose that OPER2 has the SELECT and INSERT privileges on table T1
and creates a view of the table. If the INSERT privilege on T1 is revoked from
OPER2, all insert privileges on the view are revoked. If the SELECT privilege on
T1 is revoked from OPER2, and if OPER2 did not have the SELECT privilege from
another grantor before the view was created, the view is dropped.

If a view uses a user-defined function, the view owner must have the EXECUTE
privilege on the function. If the EXECUTE privilege is revoked, the revoke fails
because the view is using the privilege and the RESTRICT clause prevents the
revoke.

72 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_revoke.htm#db2z_sql_revoke


An authorization ID with the SYSADM authority can create a view for another
authorization ID. In this case, the view could have both a creator and an owner.
The owner is automatically given the SELECT privilege on the view. However, the
privilege on the base table determines whether the view is dropped.

Example: Suppose that IDADM, with SYSADM authority, creates a view on
TABLX with OPER as the owner of the view. OPER now has the SELECT privilege
on the view, but not necessarily any privileges on the base table. If SYSADM is
revoked from IDADM, the SELECT privilege on TABLX is gone and the view is
dropped.

If one ID creates a view for another ID, the catalog table SYSIBM.SYSTABAUTH
needs either one or two rows to record the associated privileges. The number of
rows that DB2 uses to record the privilege is determined by the following criteria:
v If IDADM creates a view for OPER when OPER has enough privileges to create

the view by itself, only one row is inserted in SYSTABAUTH. The row shows
only that OPER granted the required privileges.

v If IDADM creates a view for OPER when OPER does not have enough
privileges to create the view by itself, two rows are inserted in SYSTABAUTH.
One row shows IDADM as GRANTOR and OPER as GRANTEE of the SELECT
privilege. The other row shows any other privileges that OPER might have on

the view because of privileges that are held on the base table.

Revoking privileges for materialized query tables
If the SELECT privilege on a source table is revoked from the owner of a
materialized query table, the corresponding privilege on the materialized query
table is revoked. The same privilege is also revoked from other IDs if it was
granted by the table owner.

About this task

If the SELECT privilege on the source table is revoked from the owner of a
materialized query table, the materialized query table is dropped. However, if
another grantor granted the SELECT privilege to the materialized query table
owner before the materialized query table was created, the materialized query
table is not dropped.

Example: Suppose that OPER7 has the SELECT privilege on table T1 and creates a
materialized query table T2 by selecting from T1. If the SELECT privilege on T1 is
revoked from OPER7, and if OPER7 did not have the SELECT privilege from
another grantor before T2 was created, T2 is dropped.

If a materialized query table uses a user-defined function, the owner of the
materialized query table must have the EXECUTE privilege on the function. If the
EXECUTE privilege is revoked, the revoke fails because the materialized query

table is using the privilege and the RESTRICT clause prevents the revoke.

Revoking privileges for plans or packages
If the owner of an application plan or package loses a required privilege and does
not have that privilege from another source, DB2 invalidates the package.

Chapter 2. Managing access through authorization IDs and roles 73



About this task

Suppose that OPER2 has the SELECT and INSERT privileges on table T1
and creates a package that uses SELECT, but not INSERT. When privileges are
revoked from OPER2, the plan is affected in the following ways:
v If the INSERT privilege is revoked, the plan is unaffected.
v If the revoked privilege was EXECUTE on a user-defined function, DB2 marks

the package inoperative instead of invalid.

If authorization data is cached for a package and an ID loses EXECUTE authority
on the package, that ID is removed from the cache. Similarly, if authorization data
is cached for routines, a revoke or cascaded revoke of EXECUTE authority on a
routine, or on all routines in a schema (schema.*), from any ID causes the ID to be
removed from the cache.

If authorization data is cached for plans, a revoke of EXECUTE authority on the
plan from any ID causes the authorization cache to be invalidated.

If an application is caching dynamic SQL statements, and a privilege is revoked
that was needed when the statement was originally prepared and cached, that
statement is removed from the cache. Subsequent PREPARE requests for that
statement do not find it in the cache and therefore execute a full PREPARE. If the
plan or package is bound with KEEPDYNAMIC(YES), which means that the
application does not need to explicitly re-prepare the statement after a commit
operation, you might get an error on an OPEN, DESCRIBE, or EXECUTE of that
statement following the next commit operation. The error can occur because a
prepare operation is performed implicitly by DB2. If you no longer have sufficient

authority for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking the SYSADM authority from users
You can revoke the SYSADM authority from users (IDs or roles) without revoking
dependent privileges.

About this task

Revoking the SYSADM authority causes the revoking of dependent privileges, by
default. If you want to leave the grants that they had made, you can issue the
REVOKE statement with the NOT INCLUDING DEPENDENT PRIVILEGES clause,
assuming the REVOKE_DEP_PRIVILEGES system parameter is set to SQLSTMT.

Restrictions on privilege revocation
You can specify the RESTRICT clause of the REVOKE statement to impose
limitations on privilege revocation.

About this task

Whether specified or not, the RESTRICT clause of the REVOKE statement
always applies to the following objects:
v User-defined functions
v JARs (Java classes for a routine)
v Stored procedures
v Distinct types
v Sequences

74 Managing Security



When an attempt is made to revoke a privilege on one of these objects, DB2
determines whether the revokee owns an object that is dependent on the privilege.
If such a dependency exists, the REVOKE statement proceeds only if the revokee
also holds this privilege from another grantor or holds this privilege indirectly
(such as if PUBLIC has this privilege, or if the revokee has SYSADM authority).

Example

Consider the following scenario:
1. UserA creates a user-defined function named UserA.UDFA.
2. UserA grants EXECUTE on UserA.UDFA to UserB.
3. User B then creates a user-defined function UserB.UDFB that is sourced on

UserA.UDFA.

At this point, UserA attempts to revoke the EXECUTE privilege on UserA.UDFA
from UserB. The revoke succeeds or fails based on the following criteria:
v If UserB has the EXECUTE privilege on UserA.UDFA only from UserA, the

revoke fails with an accompanying message that indicates that a dependency on
this privilege.

v If UserB has the EXECUTE privilege on UserA.UDFA from another source,
directly or indirectly, the EXECUTE privilege that was granted by UserA is
revoked successfully.

For distinct types, the following objects that are owned by the revokee can have
dependencies:
v A table that has a column that is defined as a distinct type
v A user-defined function that has a parameter that is defined as a distinct type
v A stored procedure that has a parameter that is defined as a distinct type
v A sequence that has a parameter that is defined as a distinct type

For user-defined functions, the following objects that are owned by the revokee can
have dependencies:
v Another user-defined function that is sourced on the user-defined function
v A view that uses the user-defined function
v A table that uses the user-defined function in a check constraint or user-defined

default clause
v A trigger package that uses the user-defined function

For JARs (Java classes for a routine), the following objects that are owned by the
revokee can have dependencies:
v A Java user-defined function that uses a JAR
v A Java stored procedure that uses a JAR

For stored procedures, a trigger package that refers to the stored procedure in a
CALL statement can have dependencies.

For sequences, the following objects that are owned by the revokee can have
dependencies:
v Triggers that contain NEXT VALUE or PREVIOUS VALUE expressions that

specify a sequence
v Inline SQL routines that contain NEXT VALUE or PREVIOUS VALUE

expressions that specify a sequence

Chapter 2. Managing access through authorization IDs and roles 75



One way to ensure that the REVOKE statement succeeds is to drop the object that
has a dependency on the privilege. To determine which objects are dependent on
which privileges before attempting the revoke, use the following SELECT
statements.

For a distinct type:
v List all tables that are owned by the revokee USRT002 that contain columns that

use the distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSCOLUMNS WHERE

TBCREATOR = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
COLTYPE = ’DISTINCT’;

v List the user-defined functions that are owned by the revokee USRT002 that
contain a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
ROUTINETYPE = ’F’;

v List the stored procedures that are owned by the revokee USRT002 that contain
a parameter that is defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = ’USRT002’ AND
TYPESCHEMA = ’USRT001’ AND
TYPENAME = ’UDT1’ AND
ROUTINETYPE = ’P’;

v List the sequences that are owned by the revokee USRT002 that contain a
parameter that is defined as distinct type USRT001.UDT1:
SELECT SYSIBM.SYSSEQUENCES.SCHEMA, SYSIBM.SYSSEQUENCES.NAME

FROM SYSIBM.SYSSEQUENCES, SYSIBM.SYSDATATYPES WHERE
SYSIBM.SYSSEQUENCES.DATATYPEID = SYSIBM.SYSDATATYPES.DATATYPEID AND
SYSIBM.SYSDATATYPES.SCHEMA =’USRT001’ AND
SYSIBM.SYSDATATYPES.NAME =’UDT1’;

For a user-defined function:
v List the user-defined functions that are owned by the revokee USRT002 that are

sourced on user-defined function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = ’USRTOO2’ AND
SOURCESCHEMA = ’USRTOO1’ AND
SOURCESPECIFIC = ’SPECUDF1’ AND
ROUTINETYPE = ’F’;

v List the views that are owned by the revokee USRT002 that use user-defined
function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSVIEWDEP WHERE

DCREATOR = ’USRTOO2’ AND
BSCHEMA = ’USRT001’ AND
BNAME = ’SPECUDF1’ AND
BTYPE = ’F’;

v List the tables that are owned by the revokee USRT002 that use user-defined
function USRT001.A_INTEGER in a check constraint or user-defined default
clause:
SELECT * FROM SYSIBM.SYSCONSTDEP WHERE

DTBCREATOR = ’USRT002’ AND
BSCHEMA = ’USRT001’ AND
BNAME = ’A_INTEGER’ AND
BTYPE = ’F’;

76 Managing Security



v List the trigger packages that are owned by the revokee USRT002 that use
user-defined function USRT001.UDF4:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = ’USRT002’ AND
BQUALIFIER = ’USRT001’ AND
BNAME = ’UDF4’ AND
BTYPE = ’F’;

For a JAR (Java class for a routine), list the routines that are owned by the revokee
USRT002 and that use a JAR named USRT001.SPJAR:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = ’USRT002’ AND
JARCHEMA = ’USRT001’ AND
JAR_ID = ’SPJAR’;

For a stored procedure that is used in a trigger package, list the trigger packages
that refer to the stored procedure USRT001.WLMLOCN2 that is owned by the
revokee USRT002:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = ’USRT002’ AND
BQUALIFIER = ’USRT001’ AND
BNAME = ’WLMLOCN2’ AND
BTYPE = ’O’;

For a sequence:
v List the sequences that are owned by the revokee USRT002 and that use a

trigger named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

BNAME = ’SEQ1’
BQUALIFIER = ’USRT001’
BTYPE = ’Q’
DOWNER = ’USRT002’
DTYPE = ’T’;

v List the sequences that are owned by the revokee USRT002 and that use a inline
SQL routine named USRT001.SEQ1:
SELECT * FROM SYSIBM.SYSSEQUENCESDEP WHERE

DCREATOR = ’USRT002’
DTYPE = ’F’
BNAME = ’SEQ1’
BSCHEMA = ’USRT001’;

Managing implicit privileges
You acquire privileges implicitly through ownership of objects, including
ownership of plans and packages. You can control access to data by managing
those privileges through object ownership and stored procedures, which are also
known as routines.
Related tasks:
“Managing explicit privileges” on page 58

Managing implicit privileges through object ownership
Ownership of an object carries with it a set of related privileges on the object. DB2
provides separate controls for creation and ownership of objects.

Chapter 2. Managing access through authorization IDs and roles 77



In general, when you create an object, the owner of the object can be your primary
authorization ID, one of your secondary authorization IDs, or the role that you are
associated with in a trusted context.

Ownership of objects with unqualified names
If an object name is unqualified, the object type and the way it is created
determine its ownership.

If the name of a table, view, index, alias, or synonym is unqualified, you
can establish the object's ownership in the following ways:
v If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF, or

some similar program, the owner of the created object is your current SQL ID.
That ID must have the privileges that are needed to create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the ownership of the created object depends on the option that is
used for the bind operation. You can bind the plan or package with either the
QUALIFIER option, the OWNER option, or both.
– If the plan or package is bound with the QUALIFIER option only, the

authorization ID in the QUALIFIER option is the owner of the object. The
QUALIFIER option allows the binder to name a qualifier to use for all
unqualified names of tables, views, indexes, aliases, or synonyms that appear
in the plan or package.

– If the plan or package is bound with the OWNER option only, the
authorization ID in the OWNER option is the owner of the object.

– If the plan or package is bound with both the QUALIFIER option and the
OWNER option, the authorization ID in the QUALIFIER option is the owner
of the object.

– If neither option is specified, the authorization ID of the binder of the plan or
package is implicitly the object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, you can establish the ownership of one of these objects in
these ways:
v If you issue the CREATE statement dynamically, the owner of the created object

is your current SQL ID. That ID must have the privileges that are needed to
create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use
the OWNER bind option, the binder of the package or plan is implicitly the
object owner.

If the name of a user-defined function, stored procedure, distinct type, sequence, or
trigger is unqualified, the implicit qualifier is determined based on the schema
name in dynamic statements and the PATH bind option in static statements. The
owner of a JAR (Java class for a routine) that is used by a stored procedure or a
user-defined function is the current SQL ID of the process that performs the

INSTALL_JAR function.

Ownership of objects with qualified names
If an object name is qualified, the type of object indicates its ownership.

78 Managing Security



If you create a table, view, index, or alias with a qualified name, the owner
of the object is the schema name. The schema name identifies the schema to which
the object belongs. You can consider all of the objects that are qualified by the
same schema name as a group of related objects.

If you create a distinct type, user-defined function, stored procedure, sequence, or
trigger with a qualified name, the owner of the object is the authorization ID of the
process. The owner of a JAR (Java class for a routine) that is used by a stored
procedure or a user-defined function is the current SQL ID of the process that

performs the INSTALL_JAR function.

Ownership of objects within a trusted context
You can simplify the administration of authorization by having roles as object
owners. In addition, object ownership carries with it a set of related privileges on
the object; you can prevent users from obtaining implicit privileges from object
ownership by making roles object owners.

If the owner of an object is an authorization ID and you need to transfer
the ownership to another ID, you need to drop the object first and re-create it with
the new authorization ID as the owner. You don't need to take these steps if the
owner is a role because all users that are associated with that role have the owner
privilege.

The definition of a trusted context determines the ownership of objects that are
created in the trusted context. Assume that you issue the CREATE statement
dynamically and that the trusted context is defined with the ROLE AS OBJECT
OWNER clause. In this case, the associated role is the owner of the objects,
regardless of whether the objects are explicitly qualified.

In contrast, assume that you issue the CREATE statement statically and that the
plan or package is bound in the trusted context with the ROLE AS OBJECT
OWNER clause. In this case, the role that owns the plan or package also owns the
objects that are created, regardless of whether the objects are explicitly qualified.

Related concepts:
“Trusted contexts” on page 219
Related reference:
“Establishing plan and package ownership in a trusted context” on page 81

Changing object ownership
You can make a DB2 role, a primary authorization ID, or a secondary authorization
ID the owner of an object.

About this task

Object ownership carries with it a set of related privileges on the object. The
privileges that are implicit in ownership cannot be revoked; you cannot replace or
change the owner of an object while the object exists.

If you a DB2 role the owner of an object, you don't need to change or replace the
ownership. All users that are associated with that role have the same owner

Chapter 2. Managing access through authorization IDs and roles 79



privileges. To make a role the owner of an object, you need to create the object in a
trusted context that is defined with the ROLE AS OBJECT OWNER AND
QUALIFIER clause.

You can change the owner of an object from an authorization ID to a role by using
the CATMAINT UPDATE utility with the OWNER option. To do so, you must also
have the installation SYSADM authority, define a trusted context with the ROLE
AS OBJECT OWNER AND QUALIFIER clause, and run the process in the new
function mode.

Alternately, you can make the object owning ID a secondary ID with which several
primary IDs are associated. You can change the list of primary IDs that are
associated with the secondary ID without dropping and re-creating the object.

If the owner of the object is a primary authorization ID and if you need to transfer
the ownership to another ID, you must drop the object and then re-create it with a
new authorization ID as the owner.

Granting implicit privileges of object ownership
Certain implicit privileges of ownership correspond to the privileges that can be
granted by a GRANT statement. For the privileges that do correspond, the owner
of the object can grant them to other users.

About this task

The owner of a table can grant the SELECT privilege on the table to any
other user.

Example

To grant the SELECT privilege on TABLE3 to USER4, the owner of the table can
issue the following statement:
GRANT SELECT ON TABLE3 TO USER4

Managing implicit privileges through plan or package
ownership

If you are the owner of a plan or package, you must hold privileges to perform
actions on the plan or package. You can grant privileges to execute the plan or
package to any ID.

When the EXECUTE privilege on a plan or package is granted to an ID,
the ID can execute a plan or package without holding the privileges for every
action that the plan or package performs. However, the ID is restricted by the SQL
statements in the original program.

Example: The program might contain the following statement:
EXEC SQL

SELECT * INTO :EMPREC FROM DSN8B10.EMP
WHERE EMPNO=’000010’;

The statement puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN8B10.EMP, but the ID does not have

80 Managing Security



unlimited access to DSN8910.EMP. Instead, the ID that has EXECUTE privilege for
this plan can access rows in the DSN8B10.EMP table only when EMPNO =
'000010'.

If any of the privileges that are required by the package are revoked from the
owner, the package is invalidated. The package must be rebound, and the new

owner must have the required privileges.

Establishing or changing plan or package ownership
You can use the BIND and REBIND subcommands to create or change an
application plan or a package.

About this task

On either subcommand, you can use the OWNER option to name the owner of the
resulting plan or package. Consider the following factors when naming an owner:
v Any user can name the primary ID or any secondary ID.
v An ID with the BINDAGENT privilege can name the grantor of that privilege.
v An ID with SYSCTRL or SYSADM authority can name any authorization ID on

a BIND command, but not on a REBIND command.

If you omit the OWNER option, your primary ID becomes the owner on BIND,
and the previous owner retains ownership on REBIND.

Some systems that can bind a package at a DB2 system do not support the
OWNER option. When the OWNER option is not supported, the primary
authorization ID is always the owner of the package because a secondary ID
cannot be named as the owner.
Related reference:
“Establishing plan and package ownership in a trusted context”

Establishing plan and package ownership in a trusted context
You can issue the BIND and REBIND commands in a trusted context with the
ROLE AS OBJECT OWNER clause to specify the ownership of a plan or package.
In this trusted context, you can specify only a role, not an authorization ID, as the
OWNER of a plan or package.

If you specify the OWNER option, the specified role becomes the owner of
the plan or package. If you don't specify the OWNER option, the role that is
associated with the binder becomes the owner. If the ROLE AS OBJECT OWNER
clause is omitted for the trusted context, the current rules for plan and package
ownership apply.

Considerations: If you want a role to own the package at the remote DB2, you
need to define the role ownership in the trusted context at the remote server. Make
sure to establish the connection to the remote DB2 as trusted when binding or
re-binding the package at the remote server.

If you specify the OWNER option in a trusted connection during the remote BIND
processing, the outbound authorization ID translation is not performed for the
OWNER.

If the plan owner is a role and the application uses a package bound at a remote
DB2 for z/OS server, the privilege of the plan owner to execute the package is not

Chapter 2. Managing access through authorization IDs and roles 81



considered at the remote DB2 server. The privilege set of the authorization ID
(either the package owner or the process runner determined by the
DYNAMICRULES behavior) at the DB2 for z/OS server must have the EXECUTE

privilege on the package at the DB2 server.
Related concepts:
“Trusted contexts” on page 219
Related tasks:
“Establishing or changing plan or package ownership” on page 81
Related reference:
“Ownership of objects within a trusted context” on page 79

How DB2 resolves unqualified names
A plan or package can contain SQL statements that use unqualified table and view
names.

For static SQL, the default qualifier for those names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND
command to specify a different qualifier. For static statements, the PATH bind
option determines the path that DB2 searches to resolve unqualified distinct types,
user-defined functions, stored procedures, sequences, and trigger names.

When you perform bind operations on packages or plans that contain static SQL,
you should use group and ROLE authority rather than individual ID authority
whenever possible. The combinations of OWNER, QUALIFIER, SCHEMA, and
ROLE ownership provide you more flexibility.

For plans or packages that contain dynamic SQL, DYNAMICRULES behavior
determines how DB2 qualifies unqualified object names. For unqualified distinct
types, user-defined functions, stored procedures, sequences, and trigger names in
dynamic SQL statements, DB2 uses the schema name as the qualifier. DB2 finds the
schema name in the CURRENT PATH special register. For unqualified tables,
views, aliases, and indexes, DB2 uses the CURRENT SCHEMA special register as
the qualifier.

Exception: ALTER, CREATE, DROP, COMMENT ON, GRANT, and REVOKE
statements follow different conventions for assigning qualifiers. For static SQL, you
must specify the qualifier for these statements in the QUALIFIER bind option. For
dynamic SQL, the qualifier for these statements is the value in the CURRENT

SCHEMA special register.

Validating authorization for executing plans or packages
You can use the VALIDATE option to control how DB2 handles existence and
authorization errors.

About this task

The owner of a plan or package must have authorization to execute all
static SQL statements that are embedded in the plan or package. A bind operation
always checks whether a local object exists and whether the owner has the
required privileges on it. However, you do not need to have the authorization
when the plan or package is bound. The objects to which the plan or package
refers do not even need to exist at bind time. If the initial checking fails, an error

82 Managing Security



message is returned. You can choose whether the failure prevents the bind
operation from completion by using the VALIDATE option on the BIND PLAN
and BIND PACKAGE commands.

The following values for the VALIDATE option determine how DB2 is to handle
existence and authorization errors:

RUN If you choose RUN for the VALIDATE option, the bind succeeds even
when existence or authorization errors exist. DB2 checks existence and
authorization at run time.

BIND If you choose BIND for the VALIDATE option, which is recommended, the
bind fails when existence or authorization errors exist. Exception: If you
use the SQLERROR(CONTINUE) option on the BIND PACKAGE
command, the bind succeeds, but the package's SQL statements that have
errors cannot execute.

The corresponding existence and authorization checks for remote objects are
always made at run time. Authorization to execute dynamic SQL statements is also
checked at run time. Applications that use the Resource Recovery Services

attachment facility (RRSAF) to connect to DB2 do not require a plan.

Checking authorization at a DB2 database server:

A remote requester, either a DB2 for z/OS server or other requesting system, runs
a package at the DB2 intermediate server. DB2 checks for the privileges that are
required for service requests.

About this task

As shown in the following diagram, a statement in the package uses an
alias or a three-part name to request services from a DB2 database server.

The ID that is checked for the required privileges to run at the DB2 database server
can be:
v The owner of the plan, if not a role, that is running at the requester site (if the

requester is DB2 for z/OS)
If the owner of the plan is a role and the application uses a package bound at a
remote DB2 for z/OS server, the authorization ID at the DB2 for z/OS server
must have the EXECUTE privilege on the package at the DB2 server. The
authorization ID can be the package owner or the process runner that is
determined by the DYNAMICRULES behavior.

v The owner of the package that is running at the DB2 server

Requester

DB2 intermediate server
(Process runner)

DB2 database server

Runs a package

Figure 5. Execution at a second DB2 server

Chapter 2. Managing access through authorization IDs and roles 83



In addition, if a remote alias is used in the SQL statement, the alias must be
defined at the requester site. The ID that is used depends on the following factors:
v Whether the requester is a DB2 for z/OS server or a different system
v The value of the DYNAMICRULES bind option
v Whether the SQL statement that is executed at the DB2 database server is static

or dynamic

Checking authorization for executing an RRSAF application without a plan:

RRSAF provides the capability for an application to connect to DB2 and run
without a DB2 plan.

About this task

If an RRSAF application does not have a plan, the following authorization rules are
true:
v For the following types of packages, the primary or secondary authorization ID

and role of the process are used for checking authorization to execute the
package:
– A local package
– A remote package that is on a DB2 for z/OS system and is accessed using

DRDA
v At a DB2 for z/OS system, the authorization to execute the DESCRIBE TABLE

statement includes checking the primary and secondary authorization IDs.
v For a double hop situation, the authorization ID that must hold the required

privileges to execute SQL statements at the second server is determined as if the
requester is not a DB2 for z/OS system.

Caching authorization IDs for better performance
You can specify that DB2 is to cache authorization IDs for plans, packages, or
routines (user-defined functions and stored procedures). Caching IDs can help
improve performance, especially when IDs are frequently reused.

One cache exists for each plan, one global cache exists for packages, and a global
cache exists for routines. The global cache for packages and routines are allocated
at the DB2 startup. For a data sharing group, each member does its own
authorization caching.

Caching authorization IDs for plans:

Authorization checking is fastest when the plan is reused by an ID or role that
already appears in the cache and when the EXECUTE privilege is granted to
PUBLIC.

About this task

You can set the size of the plan authorization cache by using the BIND PLAN
subcommand. The default cache size is specified by an installation option, with an
initial default setting of 3072 bytes.

84 Managing Security



Caching authorization IDs for packages:

DB2 authorization can cache roles or primary authorization IDs for handling
packages. DB2 checks and caches a role if it is in effect and authorized. If a role is
not in effect or authorized, DB2 checks and caches the primary authorization ID.

About this task

Caching roles or authorization IDs for packages can provide benefits for handling
the following objects at run time:
v Stored procedures
v Remotely bound packages
v Local packages in a package list in which the plan owner does not have execute

authority on the package at bind time, but does at run time
v Local packages that are not explicitly listed in a package list, but are implicitly

listed by collection-id.*, *.*, or *.package-id

You can set the size of the package authorization cache by using the PACKAGE
AUTH CACHE field on the DSNTIPP installation panel. The default value, 5 MB,
is enough storage to support about 690 collection-id.package-id entries or
collection-id.* entries.

You can cache more package authorization information by using any of the
following strategies:
v Granting package execute authority to collection.*
v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context
v Granting package execute authority to PUBLIC for some packages or collections

PSPI The QTPACAUT field in the package accounting trace indicates how often

DB2 succeeds at reading package authorization information from the cache. PSPI

Related reference:
“Caching of EXECUTE on plans, packages, and routines” on page 267

Caching authorization IDs for routines:

DB2 authorization can cache roles or primary authorization IDs for handling
routines. DB2 checks and caches a role if it is in effect and authorized. If a role is
not in effect or authorized, DB2 checks and caches the primary authorization ID.

About this task

The routine authorization cache stores roles or authorization IDs with the
EXECUTE privilege on a specific routine. A routine is identified as
schema.routine-name.type, where the routine name is one of the following names:
v The specific function name for user-defined functions
v The procedure name for stored procedures
v '*' for all routines in the schema

You can set the size of the routine authorization cache by using the ROUTINE
AUTH CACHE field on the DSNTIPP installation panel. The initial default size of
5 MB is enough storage to support about 690schema.routine.type or
schema.*.typeentries.

Chapter 2. Managing access through authorization IDs and roles 85



You can cache more authorization information about routines by using the
following strategies:
v Granting EXECUTE on schema.*

v Increasing the size of the cache
v Granting package authority to a secondary ID or role when running in a trusted

context
v Granting routine execute authority to PUBLIC for some or all routines in the

schema.
Related reference:
“Caching of EXECUTE on plans, packages, and routines” on page 267

Authorizing plan or package access through applications
Because an ID executes a package or plan by running an application program,
implementing control measures in an application program can be useful.

About this task

Example: Consider the following SQL statement:

EXEC SQL
SELECT * INTO :EMPREC FROM DSN8B10.EMP

WHERE EMPNO=’000010’;

The statement permits access to the row of the employee table WHERE
EMPNO='000010'. If you replace the value 000010 with a host variable, the
program could supply the value of the variable and permit access to various
employee numbers. Routines in the program could limit that access to certain IDs,
certain times of the day, certain days of the week, or other special circumstances.

Stored procedures provide an alternative to controls in the application. By
encapsulating several SQL statements into a single message to the DB2 server, a
stored procedure can protect sensitive portions of the application program. Also,
stored procedures can include access to non-DB2 resources, as well as DB2.

Recommendation: Do not use programs to extend security. Whenever possible, use
other techniques, such as stored procedures or views, as a security mechanism.
Using programs to extend security has the following drawbacks:
v Program controls are separate from other access controls, can be difficult to

implement properly, are difficult to audit, and are relatively simple to bypass.
v Almost any debugging facility can be used to bypass security checks in a

program.
v Other programs might use the plan without doing the needed checking.
v Errors in the program checks might allow unauthorized access.
v Because the routines that check security might be quite separate from the SQL

statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

v A BIND REPLACE operation for an existing plan does not necessarily revoke the
existing EXECUTE privileges on the plan. (Revoking those privileges is the

86 Managing Security



default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted
only to a carefully planned list of IDs.

Restricting access of plans or packages to particular systems:

If you use controls in an application program, you can limit the access of a plan or
package to the particular systems for which the application program is designed.

About this task

DB2 does not ensure that only specific programs are used with a plan, but
program-to-plan control can be enforced in IMS and CICS. DB2 provides a
consistency check to avoid accidental mismatches between program and plan, but
the consistency check is not a security check.

You can use the the ENABLE and DISABLE options on the BIND and REBIND
subcommands to restrict access of plans and packages to a particular system.

Example: The ENABLE IMS option allows the plan or package to run from any
IMS connection. Unless other systems are also named, ENABLE IMS does not
allow the plan or package to run from any other type of connection.

Example: DISABLE BATCH prevents a plan or package from running through a
batch job, but it allows the plan or package to run from all other types of
connection.

You can exercise even finer control with the ENABLE and DISABLE options. You
can enable or disable particular IMS connection names, CICS application IDs,

requesting locations, and so forth.

Authorization checking for executing packages:

If PKLIST is specified in the BIND and REBIND options and the location.collection is
an asterisk (*), DB2 defers the package authorization check until run time. Make
sure that you use a specific location name or omit this part of the identifier if you
do not want the package authorization check deferred until run time.

If you execute the packages remotely, make sure that the privileges
required for a remote bind (BIND PACKAGE location.collection) are granted at the
server location. The ID that owns the package must have all of the privileges that
are required to run the package at the server, and BINDADD2 and CREATE IN
privileges at the server.

Exceptions:

v For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2 site or subsystem, where the package that is being copied resides.

2. Or BIND, depending on the installation option BIND NEW PACKAGE.

Chapter 2. Managing access through authorization IDs and roles 87

|
|
|
|



v If the creator of the package is not the owner, the creator must have SYSCTRL
authority or higher, or must have been granted the BINDAGENT privilege by
the owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,
and bind privileges must be held there. Authorization to execute a package at a
remote location is checked at execution time, as follows:
v If the server is a DB2 for z/OS subsystem:

– If the subsystem parameter PRIVATE_PROTOCOL is set to NO, the
authorization ID of the process (primary ID or any secondary ID) must have
the EXECUTE privilege for the package at the DB2 server.

– If subsystem parameter PRIVATE_PROTOCOL is set to AUTH, the owner of
the plan at the DB2 requester must have the EXECUTE privilege on the
package at the DB2 server.

v If the server is not DB2 for z/OS, the primary authorization ID must have

whatever privileges are needed. Check that product's documentation.

Managing implicit privileges through routines
You can control authorization checking by using a DB2-supplied exit routine or an
exit routine that you write. You can use the access control authorization routine to
control authorization checking.

Privileges required for executing routines
A number of steps are involved in implementing, defining, and invoking
user-defined functions and stored procedures, which are also called routines.

The following table summarizes the common tasks and the privileges that
are required for executing routines.

Table 22. Common tasks and required privileges for routines

Role Tasks Required privileges

Implementer If SQL is in the routine: codes, precompiles,
compiles, and link-edits the program to use as the
routine. Binds the program as the routine
package.

If no SQL is in the routine: codes, compiles, and
link-edits the program.

If binding a package, BINDADD system
privilege and CREATE IN on the collection.

Definer Issues a CREATE FUNCTION statement to define
a user-defined function or CREATE PROCEDURE
statement to define a stored procedure.

CREATEIN privilege on the schema. EXECUTE
authority on the routine package when
invoked.

Invoker Invokes a routine from an SQL application. EXECUTE authority on the routine.

The routine implementer typically codes the routine in a program and precompiles
the program. If the program contains SQL statements, the implementer binds the
DBRM. In general, the authorization ID that binds the DBRM into a package is the
package owner. The implementer is the routine package owner. As package owner,
the implementer implicitly has EXECUTE authority on the package and has the
authority to grant EXECUTE privileges to other users to execute the code within
the package.

The implementer grants EXECUTE authority on the routine package to the definer.
EXECUTE authority is necessary only if the package contains SQL. For

88 Managing Security



user-defined functions, the definer requires EXECUTE authority on the package.
For stored procedures, the EXECUTE privilege on the package is checked for the
definer and other IDs.

The routine definer owns the routine. The definer issues a CREATE FUNCTION
statement to define a user-defined function or a CREATE PROCEDURE statement
to define a stored procedure. The definer of a routine is determined as follows:
v If the SQL statement is embedded in an application program, the definer is the

authorization ID of the owner of the plan or package.
v If the SQL statement is dynamically prepared, the definer is the SQL

authorization ID that is contained in the CURRENT SQLID special register. If the
SQL statement is executed in a trusted context that is specified with the ROLE
AS OBJECT OWNER clause, the definer is the role in effect.

The definer grants EXECUTE authority on the routine to the invoker, that is, any
user that needs to invoke the routine.

The routine invoker invokes the routine from an SQL statement in the invoking
plan or package. The invoker for a routine is determined as follows:
v For a static statement, the invoker is the plan or package owner.
v For a dynamic statement, the invoker depends on DYNAMICRULES behavior.

Granting privileges through routines
You can grant users the required privileges for implementing, defining, and using
a user-defined function through exit routines.

Implementing a user-defined function:

You can code an application program to implement a user-defined function.

Procedure

To implement a user-defined function:
1. The implementer codes a program that implements the user-defined function.

Assume that the implementer codes the following external user-defined
function in C and names the function C_SALARY:
/**********************************************************************
* This routine accepts an employee serial number and a percent raise. *
* If the employee is a manager, the raise is not applied. Otherwise, *
* the new salary is computed, truncated if it exceeds the employee’s *
* manager’s salary, and then applied to the database. *
**********************************************************************/
void C_SALARY /* main routine */
( char *employeeSerial /* in: employee serial no. */

decimal *percentRaise /* in: percentage raise */
decimal *newSalary, /* out: employee’s new salary */
short int *niEmployeeSerial /* in: indic var, empl ser */
short int *niPercentRaise /* in: indic var, % raise */
short int *niNewSalary, /* out: indic var, new salary */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */

)
{

EXEC SQL BEGIN DECLARE SECTION;

Chapter 2. Managing access through authorization IDs and roles 89



char hvEMPNO-7-; /* host var for empl serial */
decimal hvSALARY; /* host var for empl salary */
char hvWORKDEPT-3-; /* host var for empl dept no. */
decimal hvManagerSalary; /* host var,emp’s mgr’s salary*/
EXEC SQL END DECLARE SECTION;

sqlstate = 0;
memset( message,0,70 );
/*******************************************************************
* Copy the employee’s serial into a host variable *
*******************************************************************/
strcpy( hvEMPNO,employeeSerial );
/*******************************************************************
* Get the employee’s work department and current salary *
*******************************************************************/
EXEC SQL SELECT WORKDEPT, SALARY

INTO :hvWORKDEPT, :hvSALARY
FROM EMP
WHERE EMPNO = :hvEMPNO;

/*******************************************************************
* See if the employee is a manager *
*******************************************************************/
EXEC SQL SELECT DEPTNO

INTO :hvWORKDEPT
FROM DEPT
WHERE MGRNO = :hvEMPNO;

/*******************************************************************
* If the employee is a manager, do not apply the raise *
*******************************************************************/
if( SQLCODE == 0 )

{
newSalary = hvSALARY;

}
/*******************************************************************
* Otherwise, compute and apply the raise such that it does not *
* exceed the employee’s manager’s salary *
*******************************************************************/
else

{
/***************************************************************
* Get the employee’s manager’s salary *
***************************************************************/
EXEC SQL SELECT SALARY

INTO :hvManagerSalary
FROM EMP
WHERE EMPNO = (SELECT MGRNO

FROM DSN8610.DEPT
WHERE DEPTNO = :hvWORKDEPT);

/***************************************************************
* Compute proposed raise for the employee *
***************************************************************/
newSalary = hvSALARY * (1 + percentRaise/100);
/***************************************************************
* Don’t let the proposed raise exceed the manager’s salary *
***************************************************************/
if( newSalary > hvManagerSalary

newSalary = hvManagerSalary;
/***************************************************************
* Apply the raise *
***************************************************************/
hvSALARY = newSalary;
EXEC SQL UPDATE EMP

SET SALARY = :hvSALARY
WHERE EMPNO = :hvEMPNO;

90 Managing Security



}

return;
} /* end C_SALARY */

The implementer requires the UPDATE privilege on table EMP. Users with the
EXECUTE privilege on function C_SALARY do not need the UPDATE privilege
on the table.

2. Because this program contains SQL, the implementer performs the following
steps:
a. Precompile the program that implements the user-defined function.
b. Link-edit the user-defined function with DSNRLI (RRS attachment facility),

and name the program's load module C_SALARY.
c. Bind the DBRM into package MYCOLLID.C_SALARY.
After performing these steps, the implementer is the function package owner.

3. The implementer then grants EXECUTE privilege on the user-defined function
package to the definer.
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY
TO definer

As package owner, the implementer can grant execute privileges to other users,
which allows those users to execute code within the package. For example:
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY

TO other_user

Defining a user-defined function:

You can define a user-defined function to perform specific operations by issuing
the CREATE FUNCTION statement.

Procedure

To define a user-defined function:
1. Issue the CREATE FUNCTION statement. For example, the following CREATE

FUNCTION statement defines the user-defined function SALARY_CHANGE to
DB2:
CREATE FUNCTION

SALARY_CHANGE(
VARCHAR( 6 )
DECIMAL( 5,2 ) )

RETURNS
DECIMAL( 9,2 )

SPECIFIC schema.SALCHANGE
LANGUAGE C
DETERMINISTIC
MODIFIES SQL DATA
EXTERNAL NAME C_SALARY
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 1
STAY RESIDENT NO

Chapter 2. Managing access through authorization IDs and roles 91



PROGRAM TYPE SUB
WLM ENVIRONMENT WLMENV
SECURITY DB2
NO DBINFO;

After issuing the CREATE FUNCTION statement, the person who defined the
function owns the user-defined function. This person (the definer) can execute
the user-defined function package. In this case, the owner of the user-defined
function package (the implementer) granted to the definer the EXECUTE
privilege on the package that contains the user-defined function.

2. The definer grants the EXECUTE privilege on SALARY_CHANGE to all
function invokers.
GRANT EXECUTE ON FUNCTION SALARY_CHANGE

TO invoker1, invoker2, invoker3, invoker4

Using a user-defined function:

The invoker of a user-defined function need to perform a sequence of tasks to use
the user-defined function.

About this task

1. The invoker codes an application program, named SALARY_ADJ. The
application program contains a static SQL statement that invokes the
user-defined function SALARY_CHANGE. SALARY_CHANGE gives an
employee a 10% raise if the employee is not a manager. The static SQL
statement follows:
EXEC SQL SELECT FIRSTNME,

LASTNAME
SALARY_CHANGE( :hvEMPNO, 10.0 )

INTO :hvFIRSTNME,
:hvLASTNAME,
:hvSALARY

FROM EMP
WHERE EMPNO = :hvEMPNO;

2. The invoker then precompiles, compiles, link-edits, and binds the invoking
application's DBRM into the invoking package. An invoking package or invoking
plan is the package or plan that contains the SQL that invokes the user-defined
function. After performing these steps, the invoker is the owner of the invoking
plan or package.

Restriction: The invoker must hold the SELECT privilege on the table EMP
and the EXECUTE privilege on the function SALARY_CHANGE.

Authorization ID validation:

DB2 uses the rules for static SQL to determine the authorization ID (invoker) that
executes the user-defined function package. For a static statement, the invoker is
the authorization ID of the plan or package owner.

The invoking package SALARY_ADJ contains a static SQL SELECT
statement that invokes the user-defined function SALARY_CHANGE.

92 Managing Security



v While execution occurs in invoking package SALARY_ADJ, DB2 uses the
authorization ID of the invoker (the package owner).
The invoker requires the EXECUTE privilege on the user-defined function
SALARY_CHANGE, which the package SALARY_ADJ invokes. Because the
user-defined function definer has the EXECUTE privilege on the user-defined
function package C_SALARY, the invoker does not require the explicit EXECUTE
privilege.

v When execution changes to the user-defined function package C_SALARY, DB2
uses the authorization ID of the implementer (the package owner). The package
owner is the authorization ID with authority to execute all static SQL in the

user-defined function package C_SALARY.

Authorization behaviors for dynamic SQL statements
The two key factors that influence authorization behaviors are the
DYNAMICRULES value and the run time environment of a package. The
combination of the DYNAMICRULES value and the run time environment
determine the values for the dynamic SQL attributes. Those attribute values are
called the authorization behaviors.

The DYNAMICRULES option on the BIND or REBIND command
determines the values that apply at run time for the following dynamic SQL
attributes:
v The authorization ID or role that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements

The DYNAMICRULES option also determines whether dynamic SQL statements
can include GRANT, REVOKE, ALTER, CREATE, DROP, and RENAME statements.

In addition to the DYNAMICRULES value, the run time environment of a package
controls how dynamic SQL statements behave at run time. The two possible run
time environments are:
v The package runs as part of a stand-alone program.
v The package runs as a stored procedure or user-defined function package, or

runs under a stored procedure or user-defined function.
A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:
– The program is called by a stored procedure or user-defined function.
– The program is in a series of nested calls that start with a stored procedure or

user-defined function.

Run behavior:

DB2 processes dynamic SQL statements by using their standard attribute. These
attributes are collectively called the run behavior.

The run behavior consists of the following attributes:

v DB2 uses the authorization IDs (primary, secondary and the current SQL
ID) of the application process to check for authorization of dynamic SQL
statements. It also checks the role in effect if running in a trusted context.

Chapter 2. Managing access through authorization IDs and roles 93



v Dynamic SQL statements use the values of application programming options
that were specified during installation. The installation option USE FOR
DYNAMICRULES has no effect.

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements can

be executed dynamically.
Related concepts:
“Bind behavior”
“Define behavior”
“Invoke behavior” on page 95
Related reference:
“Common attribute values for bind, define, and invoke behaviors” on page 95

Bind behavior:

DB2 uses the bind behavior to process dynamic SQL statements.

The bind behavior consists of the following attributes:
v DB2 uses the authorization ID or role of the plan or package for authorization

checking of dynamic SQL statements.
v Unqualified table, view, index, and alias names in dynamic SQL statements are

implicitly qualified by the default schema, which is the value of the bind option
QUALIFIER. If you do not specify the QUALIFIER bind option, DB2 uses the
plan or package owner as the qualifier.
The values of the authorization ID or role and the qualifier for unqualified
objects are the same as those that are used for embedded or static SQL
statements.

v The bind behavior consists of the common attribute values for bind, define, and

invoke behaviors.
Related concepts:
“Run behavior” on page 93
“Define behavior”
“Invoke behavior” on page 95
Related reference:
“Common attribute values for bind, define, and invoke behaviors” on page 95

Define behavior:

When the package is run as or under a stored procedure or a user-defined function
package, DB2 processes dynamic SQL statements by using the define behavior.

The define behavior consists of the following attribute values:
v DB2 uses the authorization ID or role of the user-defined function or the stored

procedure owner for authorization checking of dynamic SQL statements in the
application package.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure owner.

v Define behavior consists of the common attribute values for bind, define, and
invoke behaviors.

94 Managing Security



When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES value specified.
Related concepts:
“Run behavior” on page 93
“Bind behavior” on page 94
“Invoke behavior”
Related reference:
“Common attribute values for bind, define, and invoke behaviors”

Invoke behavior:

When the package is run as, or runs under, a stored procedure or a user-defined
function package, DB2 processes dynamic SQL statements by using the invoke
behavior.

The invoke behavior consists of the following attribute values:
v DB2 uses the authorization ID of the user-defined function or the stored

procedure invoker to check the authorization for dynamic SQL statements in the
application package. It uses the following rules:
– The current SQL ID of the invoker is checked for the required authorization.
– Secondary authorization IDs and roles that are associated with the primary

authorization ID are also checked if they are needed for the required
authorization.

v The default qualifier for unqualified objects is the user-defined function or the
stored procedure invoker.

v Invoke behavior consists of the common attribute values for bind, define, and
invoke behaviors.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the

DYNAMICRULES specified value.
Related concepts:
“Run behavior” on page 93
“Bind behavior” on page 94
“Define behavior” on page 94
Related reference:
“Common attribute values for bind, define, and invoke behaviors”

Common attribute values for bind, define, and invoke behaviors:

Certain attribute values apply to dynamic SQL statements in plans or packages
that specify the bind, define, or invoke behavior.

The following attribute values apply:

v You can execute the statement SET CURRENT SQLID in a package or
plan that is bound with any DYNAMICRULES value. However, DB2 does not
use the current SQL ID as the authorization ID for dynamic SQL statements.

Chapter 2. Managing access through authorization IDs and roles 95



DB2 always uses the current SQL ID as the qualifier for the EXPLAIN output
PLAN_TABLE.

v If the value of installation option USE FOR DYNAMICRULES is YES, DB2 uses
the application programming default values that were specified during
installation to parse and semantically verify dynamic SQL statements. If the
value of USE for DYNAMICRULES is NO, DB2 uses the precompiler options to
parse and semantically verify dynamic SQL statements.

v The GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements
cannot be executed dynamically.

The following table shows the DYNAMICRULES values and run time
environments, and the dynamic SQL behaviors that they yield.

Table 23. How DYNAMICRULES and the run time environment determine dynamic SQL statement behavior

DYNAMICRULES value
Dynamic SQL statements in a
stand-alone program environment

Dynamic SQL statements in a
user-defined function or stored
procedure environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 24. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Authorization IDs of
the process and role,
if applicable

User-defined
function or stored
procedure owner

Authorization ID of
invoker 1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

Current Schema
register determines
the qualifier

User-defined
function or stored
procedure owner

Authorization ID of
invoker or role

CURRENT SQLID 2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
dsnhdecp3 parameter
DYNRULS 4

Install panel
DSNTIPF

Determined by
dsnhdecp3 parameter
DYNRULS 4

Determined by
dsnhdecp3 parameter
DYNRULS 4

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

1. If the invoker is the primary authorization ID of the process or the current SQL
ID, the following rules apply:
v The ID or role of the invoker is checked for the required authorization.
v Secondary authorization IDs are also checked if they are needed for the

required authorization.
2. DB2 uses the current SQL ID as the authorization ID for dynamic SQL

statements only for plans and packages that have DYNAMICRULES run

96 Managing Security



behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID
that is associated with each dynamic SQL behavior, as shown in this table.
The initial current SQL ID is independent of the dynamic SQL behavior. For
stand-alone programs, the current SQL ID is initialized to the primary
authorization ID.You can execute the SET CURRENT SQLID statement to
change the current SQL ID for packages with any dynamic SQL behavior, but
DB2 uses the current SQL ID only for plans and packages with run behavior.

3. dsnhdecp is the application default load module. The default name is
DSNHDECP.

4. The value of dsnhdecp parameter DYNRULS, which you specify in field USE
FOR DYNAMICRULES in installation panel DSNTIPF, determines whether DB2
uses the precompiler options or the application programming defaults for

dynamic SQL statements.
Related concepts:
“Run behavior” on page 93
“Bind behavior” on page 94
“Define behavior” on page 94
“Invoke behavior” on page 95

Determining authorization IDs for dynamic SQL statements in routines:

You can determine the authorization IDs under which dynamic SQL statements in
routines run based on various factors. These factors include the ownership of the
stored procedure or the stored procedure package.

Suppose that A is a stored procedure and C is a program that is neither a
user-defined function nor a stored procedure. Also suppose that subroutine B is
called by both stored procedure A and program C. Subroutine B, which is invoked
by a language call, is neither a user-defined function nor a stored procedure. AP is
the package that is associated with stored procedure A, and BP is the package that
is associated with subroutine B. A, B, and C execute as shown in the following
diagram.

Chapter 2. Managing access through authorization IDs and roles 97



Stored procedure A was defined by IDASP and is therefore owned by IDASP. The
stored procedure package AP was bound by IDA and is therefore owned by IDA.
Package BP was bound by IDB and is therefore owned by IDB. The authorization
ID under which EXEC SQL CALL A runs is IDD, the owner of plan DP.

The authorization ID under which dynamic SQL statements in package AP run is
determined in the following way:
v If package AP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package AP is IDA, the owner of package AP.
v If package AP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package AP is the value of CURRENT SQLID when
the statements execute.

v If package AP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package AP is IDASP, the definer (owner) of stored
procedure A.

v If package AP uses DYNAMICRULES invoke behavior, the authorization ID for
dynamic SQL statements in package AP is IDD, the invoker of stored procedure
A.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.

Program C

Program D

Package AP

Plan DP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Subroutine B

Call B(...) Call B(...)

Figure 6. Authorization for dynamic SQL statements in programs and routines

98 Managing Security



v If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDASP, the definer of stored
procedure A.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option DEFINERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option DEFINEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

v If package BP uses DYNAMICRULES invoke behavior:
– When subroutine B is called by stored procedure A, the authorization ID for

dynamic SQL statements in package BP is IDD, the authorization ID under
which EXEC SQL CALL A executed.

– When subroutine B is called by program C:
- If package BP uses the DYNAMICRULES option INVOKERUN, DB2

executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option INVOKEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

Now suppose that B is a user-defined function, as shown in the following diagram.

Chapter 2. Managing access through authorization IDs and roles 99



User-defined function B was defined by IDBUDF and is therefore owned by ID
IDBUDF. Stored procedure A invokes user-defined function B under authorization
ID IDA. Program C invokes user-defined function B under authorization ID IDC.
In both cases, the invoking SQL statement (EXEC SQL SELECT B) is static.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
v If package BP uses DYNAMICRULES bind behavior, the authorization ID for

dynamic SQL statements in package BP is IDB, the owner of package BP.
v If package BP uses DYNAMICRULES run behavior, the authorization ID for

dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package BP is IDBUDF, the definer of user-defined
function B.

v If package BP uses DYNAMICRULES invoke behavior:
– When user-defined function B is invoked by stored procedure A, the

authorization ID for dynamic SQL statements in package BP is IDA, the
authorization ID under which B is invoked in stored procedure A.

– When user-defined function B is invoked by program C, the authorization ID
for dynamic SQL statements in package BP is IDC, the owner of package CP,

and is the authorization ID under which B is invoked in program C.

Program C

Program D

Package AP

Plan DP

Package CP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored Procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Package
owner: IDC

User-defined
function B

UDF owner: IDBUDF

(Authorization ID IDA)

EXEC SQL
SELECT B(...)...

(Authorization ID IDC)

EXEC SQL
SELECT B(...)...

Figure 7. Authorization for dynamic SQL statements in programs and nested routines

100 Managing Security



Related tasks:
“Simplifying access authorization for routines”
“Using composite privileges”
“Performing multiple actions in one statement” on page 102

Simplifying access authorization for routines:

You can simplify authorization for routines in several ways without violating any
of the authorization standards at your installation.

About this task

Consider the following strategies to simplify authorization:
v Have the implementer bind the user-defined function package using

DYNAMICRULES define behavior. With this behavior in effect, DB2 only needs
to check the definer's ID to execute dynamic SQL statements in the routine.
Otherwise, DB2 needs to check the many different IDs that invoke the
user-defined function.

v If you have many different routines, group those routines into schemas. Then
grant EXECUTE on the routines in the schema to the appropriate users. Users
have execute authority on any functions that you add to that schema.

Example: To grant the EXECUTE privilege on a schema to PUBLIC, issue the
following statement:
GRANT EXECUTE ON FUNCTION schemaname.* TO PUBLIC;

Related reference:
“Determining authorization IDs for dynamic SQL statements in routines” on page
97

Using composite privileges:

SQL statements that name more than one object require privileges on all of the
tables included in the statement.

About this task

An SQL statement can name more than one object. A SELECT operation,
for example, can join two or more tables, or an INSERT statement can use a
subquery. These operations require privileges on all of the tables that are included
in the statement. However, you might be able to issue such a statement
dynamically even though one of your IDs alone does not have all the required
privileges.

If the DYNAMICRULES run behavior is in effect when the dynamic statement is
prepared and your primary ID, any associated role, or any of your secondary IDs
has all the needed privileges, the statement is validated. However, if you embed
the same statement in a host program and try to bind it into a plan or package, the
validation fails. The validation also fails for the dynamic statement if
DYNAMICRULES bind, define, or invoke behavior is in effect when you issue the
dynamic statement. In each case, all the required privileges must be held by the

Chapter 2. Managing access through authorization IDs and roles 101



single authorization ID, determined by DYNAMICRULES behavior.
Related reference:
“Determining authorization IDs for dynamic SQL statements in routines” on page
97

Performing multiple actions in one statement:

A REBIND or FREE subcommand can name more than one plan or package. If no
owner is named, the set of privileges that is associated with the primary ID, the
associated role, and the secondary IDs must include the BIND privilege for each
object.

Example

Suppose that a user with a secondary ID of HQFINANCE has the BIND
privilege on plan P1 and that another user with a secondary ID of HQHR has the
BIND privilege on plan P2. Assume that someone with HQFINANCE and HQHR
as secondary authorization IDs issues the following command:
REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither the HQFINANCE nor

HQHR has the BIND privilege for both plans.
Related reference:
“Determining authorization IDs for dynamic SQL statements in routines” on page
97

Retrieving privilege records in the DB2 catalog
You can query the DB2 catalog tables by using the SQL SELECT statement.
Executing the SQL statement requires appropriate privileges and authorities. You
can control access to the catalog by granting and revoking these privileges and
authorities.

Catalog tables with privilege records
An authorization ID can hold different privileges. DB2 records information about
the privileges of an ID in catalog tables.

The following catalog tables contain information about the privileges that
IDs can hold:

Table 25. Privileges information in DB2 catalog tables

Table name Records privileges held for or authorization related to

SYSIBM.SYSCOLAUTH Updating columns

SYSIBM.SYSDBAUTH Databases

SYSIBM.SYSPLANAUTH Plans

SYSIBM.SYSPACKAUTH Packages

SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections, table spaces,
JARs, and distinct types

SYSIBM.SYSROUTINEAUTH User-defined functions and stored procedures

SYSIBM.SYSSCHEMAAUTH Schemas

102 Managing Security



Table 25. Privileges information in DB2 catalog tables (continued)

Table name Records privileges held for or authorization related to

SYSIBM.SYSTABAUTH Tables and views

SYSIBM.SYSUSERAUTH System authorities

SYSIBM.SYSSEQUENCEAUTH Sequences

SYSIBM.SYSCONTEXT Associating a role with a trusted context

SYSIBM.SYSCTXTTRUSTATTRS Associating trust attributes with a trusted context

SYSIBM.SYSCONTEXTAUTHIDS Associating users with a trusted context

Retrieving all authorization IDs or roles with granted
privileges

Catalog tables that contain authorization information include GRANTEE and
GRANTEETYPE columns. Depending on the settings of these columns, you can
modify the WHERE clause of the SELECT statement to retrieve all IDs or roles
with the same privileges.

About this task

No single catalog table contains information about all privileges. If
GRANTEETYPE is blank, the value of GRANTEE is the primary or secondary
authorization ID that has been granted a privilege. If GRANTEETYPE is "L", the
value of GRANTEE is a role.

To retrieve all IDs or roles with privileges, you can issue the SQL code as shown in
the following example:
SELECT GRANTEE, ’PACKAGE ’ FROM SYSIBM.SYSPACKAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’TABLE ’ FROM SYSIBM.SYSTABAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’COLUMN ’ FROM SYSIBM.SYSCOLAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’ROUTINE ’ FROM SYSIBM.SYSROUTINEAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’PLAN ’ FROM SYSIBM.SYSPLANAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SYSTEM ’ FROM SYSIBM.SYSUSERAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’DATABASE’ FROM SYSIBM.SYSDBAUTH

WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SCHEMA ’ FROM SYSIBM.SYSSCHEMAAUTH
WHERE GRANTEETYPE IN (’ ’,’L’)

UNION
SELECT GRANTEE, ’USER ’ FROM SYSIBM.SYSRESAUTH

Chapter 2. Managing access through authorization IDs and roles 103



WHERE GRANTEETYPE IN (’ ’,’L’)
UNION

SELECT GRANTEE, ’SEQUENCE ’ FROM SYSIBM.SYSSEQUENCEAUTH
WHERE GRANTEETYPE IN (’ ’,’L’);

Periodically, you should compare the list of IDs or roles that is retrieved by this
SQL code with the following lists:
v Lists of users from subsystems that connect to DB2 (such as IMS, CICS, and

TSO)
v Lists of RACF users and groups
v Lists of users from other DBMSs that access your DB2 subsystem
v Lists of remote connections.

If DB2 lists IDs or roles that do not exist elsewhere, you should revoke their

privileges.

Retrieving multiple grants of the same privilege
You can query the catalog to find information about duplicate grants of the same
privilege on objects. If multiple grant records clutter your catalog, consider
revoking unnecessary grants, which removes duplicate grant data from the catalog.

Procedure

To retrieve duplicate grants on plans:

Issue the following SQL statement:

SELECT GRANTEE, NAME, COUNT(*)
FROM SYSIBM.SYSPLANAUTH
GROUP BY GRANTEE, NAME
HAVING COUNT(*) > 2
ORDER BY 3 DESC;

This statement orders the duplicate grants by frequency, so that you can easily
identify the most duplicated grants. Similar statements for other catalog tables can
retrieve information about multiple grants on other types of objects.
If several grantors grant the same privilege to the same grantee, the DB2 catalog
can become cluttered with similar data. This similar data is often unnecessary, and
it might cause poor performance.

Example

Example 1: Suppose that Judy, Kate, and Patti all grant the SELECT privilege on
TABLE1 to Chris. If you care that Chris's ID has the privilege but not who granted
the privilege, you might consider two of the SELECT grants to be redundant and
unnecessary performance liabilities.

However, you might want to maintain information about authorities that are
granted from several different IDs, especially when privileges are revoked.

Example 2: Suppose that the SELECT privilege from the previous example is
revoked from Judy. If Chris has the SELECT privilege from only Judy, Chris loses
the SELECT privilege. However, Chris retains the SELECT privilege because Kate

104 Managing Security



and Patti also granted the SELECT privilege to Chris. In this case, the similar
grants prove not to be redundant.

Retrieving all authorization IDs or roles with the DBADM and
system DBADM authorities

You can retrieve all authorization IDs or roles that have the DBADM and system
DBADM authorities.

About this task

Issue the following statement to retrieve all authorization IDs or roles that have the
DBADM authority:

SELECT DISTINCT GRANTEE
FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <>’ ’ AND GRANTEETYPE IN (’ ’,’L’);

Issue the following statement to retrieve all authorization IDs or roles that have the
system DBADM authority on specific databases in the DB2 system:
SELECT DISTINCT GRANTEE

FROM SYSIBM.SYSUSERAUTH
WHERE SDBADMAUTH <>’ ’ AND GRANTEETYPE IN (’ ’,’L’);

Retrieving all IDs or roles with access to the same table
You can retrieve all IDs or roles (GRANTEETYPE="L") that are explicitly
authorized to access the same object.

About this task

To retrieve all IDs or roles (GRANTEETYPE="L") that are explicitly
authorized to access the sample employee table (DSN8B10.EMP in database
DSN8D11A), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’);

To retrieve all IDs or roles (GRANTEETYPE="L") that can change the sample
employee table (IDs with administrative authorities and IDs to which authority is
explicitly granted), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND
TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
(ALTERAUTH <> ’ ’ OR
DELETEAUTH <> ’ ’ OR
INSERTAUTH <> ’ ’ OR
UPDATEAUTH <> ’ ’)

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ’ ’
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ’ ’ AND NAME=’DSN8D91A’;

Chapter 2. Managing access through authorization IDs and roles 105



To retrieve the columns of DSN8B10.EMP for which update privileges have been
granted on a specific set of columns, issue the following statement:
SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH

WHERE CREATOR=’DSN8B10’ AND TNAME=’EMP’
ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to a primary or secondary authorization ID (blank), a role (L), or are
used by an application plan or package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN8B10.EMP, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND
TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
UPDATEAUTH <> ’ ’;

The query returns only the IDs or roles (GRANTEETYPE="L") to which update
privileges have been specifically granted. It does not return IDs or roles that have
the privilege because of SYSADM or DBADM authority. You could include them
by forming a union with additional queries, as shown in the following example:
SELECT DISTINCT GRANTEE GRANTEETYPE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME=’EMP’ AND
TCREATOR=’DSN8910’ AND
GRANTEETYPE IN (’ ’,’L’) AND
UPDATEAUTH <> ’ ’

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ’ ’
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ’ ’ AND NAME=’DSN8D91A’;

Retrieving all IDs or roles with access to the same routine
You can retrieve the IDs or roles (GRANTEETYPE="L") that are authorized to
access the same routines.

Example

To retrieve the IDs or roles (GRANTEETYPE="L") that are authorized to
access stored procedure PROCA in schema SCHEMA1, issue the following
statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME=’PROCA’ AND
SCHEMA=’SCHEMA1’ AND
GRANTEETYPE IN (’ ’,’L’) AND
ROUTINETYPE=’P’;

You can write a similar statement to retrieve the IDs or roles (GRANTEETYPE="L")
that are authorized to access a user-defined function. To retrieve the IDs or roles
that are authorized to access user-defined function UDFA in schema SCHEMA1,
issue the following statement:

106 Managing Security



SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH
WHERE SPECIFICNAME=’UDFA’ AND

SCHEMA=’SCHEMA1’ AND
GRANTEETYPE IN (’ ’,’L’) AND
ROUTINETYPE=’F’;

Retrieving plans or packages with access to the same table
You can retrieve all the plans or packages that are granted access to the same table.

About this task

For example, to retrieve the names of application plans and packages that
refer to table DSN8B10.EMP directly, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ’P’ AND
TCREATOR = ’DSN8B10’ AND
TTNAME = ’EMP’;

The preceding query does not distinguish between plans and packages. To identify
a package, use the COLLID column of table SYSTABAUTH, which names the
collection in which a package resides and is blank for a plan.

A plan or package can refer to the table indirectly, through a view.

To find all views that refer to the table:
1. Issue the following query:

SELECT DISTINCT DNAME FROM SYSIBM.SYSVIEWDEP
WHERE BTYPE = ’T’ AND

BCREATOR = ’DSN8B10’ AND
BNAME = ’EMP’;

2. Write down the names of the views that satisfy the query. These values are
instances of DNAME_list.

3. Find all plans and packages that refer to those views by issuing a series of SQL
statements. For each instance of DNAME_list, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ’P’ AND
TCREATOR = ’DSN8B10’ AND
TTNAME = DNAME_list;

Retrieving privilege information through views
An ID with the SQLADM, system DBADM, DATAACCESS, ACCESSCTRL,
SECADM, SYSADM, or SYSCTRL authority automatically has the privilege of
retrieving data from catalog tables. If you do not want to grant the SELECT
privilege on all catalog tables to PUBLIC, consider using views to let each ID
retrieve information about its own privileges.

About this task

The following view includes the owner and the name of every table on
which a user's primary authorization ID has the SELECT privilege:

Chapter 2. Managing access through authorization IDs and roles 107



CREATE VIEW MYSELECTS AS
SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE SELECTAUTH <> ’ ’ AND
GRANTEETYPE = ’ ’ AND
GRANTEE IN (USER, ’PUBLIC’, CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue the following GRANT statement:
GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This view shows privileges over columns:
CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)

AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL
FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH

WHERE TCREATOR = TBCREATOR AND
TTNAME = TBNAME AND
GRANTEETYPE = ’ ’ AND
GRANTEE IN (USER,’PUBLIC’,CURRENT SQLID);

Implementing multilevel security with DB2
Multilevel security allows you to classify objects and users with security labels that
are based on hierarchical security levels and non-hierarchical security categories.
Multilevel security prevents unauthorized users from accessing information at a
higher classification than their authorization. It also prevents users from
declassifying information.

Using multilevel security with row-level granularity, you can define security for
DB2 objects and perform security checks, including row-level security checks.
Row-level security checks allow you to control which users have authorization to
view, modify, or perform other actions on specific rows of data.

You can implement multilevel security with the following combinations:

DB2 authorization with multilevel security with row-level granularity
In this combination, DB2 grants are used for authorization at the DB2
object level (database, table, and so forth). Multilevel security is
implemented only at the row level within DB2.

External access control and multilevel security with row-level granularity
In this combination, external access control (such as the RACF access
control module) is used for authorization at the DB2 object level. External
access control also uses security labels to perform mandatory access
checking on DB2 objects as part of multilevel security. Multilevel security is
also implemented on the row level within DB2.

Important: The following information about multilevel security is specific to DB2.
It does not describe all aspects of multilevel security. However, this specific
information assumes that you have general knowledge of multilevel security.

108 Managing Security



Related concepts:
“Multilevel security”
“Access control through multilevel security” on page 4

Multilevel security
Multilevel security is a security policy that allows you to classify objects and users
based on a system of hierarchical security levels and a system of non-hierarchical
security categories.

Multilevel security provides the capability to prevent unauthorized users from
accessing information at a higher classification than their authorization, and
prevents users from declassifying information.

Multilevel security offers the following advantages:
v Multilevel security enforcement is mandatory and automatic.
v Multilevel security can use methods that are difficult to express through

traditional SQL views or queries.
v Multilevel security does not rely on special views or database variables to

provide row-level security control.
v Multilevel security controls are consistent and integrated across the system, so

that you can avoid defining users and authorizations more than once.
v Multilevel security does not allow users to declassify information.

Using multilevel security, you can define security for DB2 objects and perform
other checks, including row-level security checks. Row-level security checks allow
you to control which users have authorization to view, modify, or perform other
actions on specific rows of data.

Multilevel security and row access control are mutually exclusive. While you can
activate column access control on a table that has a security label column and
enforce it on a security label column, you cannot do the same with row access
control. If a table has a security label column, you cannot enable it with row access
control. Vice versa is true; if a table is activated with row access control, you
cannot alter it to include a security label column.
Related reference:
“Implementing multilevel security with DB2” on page 108

Security labels
Multilevel security restricts access to an object or a row based on the security label
of the object or row and the security label of the user.

For local connections, the security label of the user is the security label that the
user specified during sign-on. This security label is associated with the DB2
primary authorization ID and accessed from the RACF ACEE control block. If no
security label is specified during sign-on, the security label is the user's default
security label.

For normal TCP/IP connections, the security label of the user can be defined by
the security zone. IP addresses are grouped into security zones on the DB2 server.
For trusted TCP/IP connections, the security label of the user is the security label
established under the trusted context.

Chapter 2. Managing access through authorization IDs and roles 109



For SNA connections, the default security label for the user is used instead of the
security label that the user signed on with.

Security labels can be assigned to a user by establishing a trusted connection
within a trusted context. The trusted context definition specifies the security label
that is associated with a user on the trusted connection. You can define trusted
contexts if you have the SYSADM authority.

Security labels are based on security levels and security categories. You can use the
Common Criteria (COMCRIT) environment's subsystem parameter to require that
all tables in the subsystem are defined with security labels.

When defining security labels, do not include national characters, such as @, #, and
$. Use of these characters in security labels may cause CCSID conversion errors.
Related concepts:
“Security levels”
“Security categories”

Determining the security label of a user
DB2 provides several built-in session variables that contain information about the
server and application process. You can obtain the value of a built-in session
variable by invoking the GETVARIABLE command with the name of the built-in
session variable.

One of the built-in session variables is the user's security label. You can issue the
GETVARIABLE('SYSIBM.SECLABEL') command to obtain the security label of a
user.

Security levels
Along with security categories, hierarchical security levels are used as a basis for
mandatory access-checking decisions.

When you define the security level of an object, you define the degree of
sensitivity of that object. Security levels ensure that an object of a certain security
level is protected from access by a user of a lower security level.
Related concepts:
“Security labels” on page 109
“Security categories”

Security categories
Security categories are the non-hierarchical basis for mandatory access-checking
decisions.

When making security decisions, mandatory access control checks whether one set
of security categories includes the security categories that are defined in a second
set of security categories.

110 Managing Security



Related concepts:
“Security labels” on page 109
“Security levels” on page 110

Users and objects in multilevel security
In multilevel security, a user is any entity that requires access to system resources;
the entity can be a human user, a stored procedure, or a batch job. An object is any
system resource to which access must be controlled; the resource can be a data set,
a table, a table row, or a command.
Related concepts:
“Global temporary tables with multilevel security”
“Materialized query tables with multilevel security”
“Constraints in a multilevel-secure environment” on page 112
“Field, edit, and validation procedures in a multilevel-secure environment” on
page 112
“Triggers in a multilevel-secure environment” on page 113

Global temporary tables with multilevel security
For a declared temporary table with a column definition, no syntax exists to
specify a security label on a DECLARE GLOBAL TEMPORARY TABLE statement.
An attempt to specify a security label results in an error.

If a DECLARE GLOBAL TEMPORARY TABLE statement uses a fullselect or a
LIKE predicate or a CREATE GLOBAL TEMPORARY TABLE statement uses a
LIKE predicate, the resulting temporary table can inherit the security label column
from the referenced table or view. However, the temporary table does not inherit
any security attributes on that column. That means that the inherited column in
the temporary table is not defined AS SECURITY LABEL. The column in the
temporary table is defined as NOT NULL, with no default. Therefore, any
statements that insert data in the temporary table must provide a value for the
inherited column.
Related concepts:
“Users and objects in multilevel security”
“Materialized query tables with multilevel security”
“Constraints in a multilevel-secure environment” on page 112
“Field, edit, and validation procedures in a multilevel-secure environment” on
page 112
“Triggers in a multilevel-secure environment” on page 113

Materialized query tables with multilevel security
Materialized query tables are tables that contain information that is derived and
summarized from other tables.

If one or more of the source tables for a materialized query table has multilevel
security with row-level granularity enabled, some additional rules apply to
working with the materialized query table and the source tables.

Chapter 2. Managing access through authorization IDs and roles 111



Related concepts:
“Users and objects in multilevel security” on page 111
“Global temporary tables with multilevel security” on page 111
“Constraints in a multilevel-secure environment”
“Field, edit, and validation procedures in a multilevel-secure environment”
“Triggers in a multilevel-secure environment” on page 113

Constraints in a multilevel-secure environment
Although a referential constraint is not allowed for the security label column, DB2
enforces referential constraints for other columns in the table that are not defined
with a security label.

Constraints operate in an multilevel-secure environment in the following ways:
v A unique constraint is allowed on a security label column.
v A referential constraint is not allowed on a security label column.
v A check constraint is not allowed on a security label column.

Multilevel security with row-level checking is not enforced when DB2 checks a
referential constraint.
Related concepts:
“Users and objects in multilevel security” on page 111
“Global temporary tables with multilevel security” on page 111
“Materialized query tables with multilevel security” on page 111
“Field, edit, and validation procedures in a multilevel-secure environment”
“Triggers in a multilevel-secure environment” on page 113

Field, edit, and validation procedures in a multilevel-secure
environment
In a multilevel-secure environment, field procedures, edit procedures, and
validation procedures operate in certain ways.
v Field procedures are not allowed on a security label column. Edit procedures

that are defined as WITH ROW ATTRIBUTES are not allowed on a table with a
security label column.

v Validation procedures are allowed on a table that is defined with a security label
column. When an authorized user with write-down privilege makes an INSERT
or UPDATE request for a row, the validation procedure passes the new row with
the security label of the user. If the authorized user does not have write-down
privilege, the security label of the row remains the same.

112 Managing Security



Related concepts:
“Users and objects in multilevel security” on page 111
“Global temporary tables with multilevel security” on page 111
“Materialized query tables with multilevel security” on page 111
“Constraints in a multilevel-secure environment” on page 112
“Triggers in a multilevel-secure environment”

Triggers in a multilevel-secure environment
When a transition table is generated as the result of a trigger, the security label of
the table or row from the original table is not inherited by the transition table.
Therefore, multilevel security with row-level checking is not enforced for transition
tables and transition values.

If an ALTER TABLE statement is used to add a security label column to a table
with a trigger on it, the same rules apply to the new security label column that
would apply to any column that is added to the table with the trigger on it.

When a BEFORE trigger is activated, the value of the NEW transition variable that
corresponds to the security label column is set to the security label of the user if
either of the following criteria are met:
v Write-down control is in effect and the user does not have the write-down

privilege
v The value of the security label column is not specified
Related concepts:
“Users and objects in multilevel security” on page 111
“Global temporary tables with multilevel security” on page 111
“Materialized query tables with multilevel security” on page 111
“Constraints in a multilevel-secure environment” on page 112
“Field, edit, and validation procedures in a multilevel-secure environment” on
page 112

Mandatory access checking
Mandatory access checking evaluates dominance relationships between user
security labels and object security labels and determines whether to allow certain
actions based on certain rules.
v If the security label of the user dominates the security label of the object, the

user can read from the object.
v If the security label of a user and the security label of the object are equivalent,

the user can read from and write to the object.
v If the security label of the user dominates the security label of the object, the

user cannot write to the object unless the user has the write-down RACF
privilege.

v If the security label of the user is disjoint with the security label of the object,
the user cannot read or write to that object.

Exception: IDs with the installation SYSADM authority bypass mandatory access
checking at the DB2 object level because actions by installation SYSADM do not
invoke the external access control exit routine (DSNX@XAC). However, multilevel
security with row-level granularity is enforced for IDs with installation SYSADM
authority.

Chapter 2. Managing access through authorization IDs and roles 113



After the user passes the mandatory access check, a discretionary check follows.
The discretionary access check restricts access to objects based on the identity of a
user, the user's role (if one exists), and the groups to which the user belongs. The
discretionary access check ensures that the user is identified as having a “need to
know” for the requested resource. The check is discretionary because a user with a
certain access permission is capable of passing that permission to any other user.

Dominance relationships between security labels
Mandatory access checking is based on the dominance relationships between user
security labels and object security labels. One security label dominates another
security label in certain conditions.
v The security level that defines the first security label is greater than or equal to

the security level that defines the second security label.
v The set of security categories that defines one security label includes the set of

security categories that defines the other security label.

Comparisons between user security labels and object security labels can result in
four types of relationships:

Dominant
One security label dominates another security label when both of the
following conditions are true:
v The security level that defines the first security label is greater than or

equal to the security level that defines the second security label.
v The set of security categories that defines the first security label includes

the set of security categories that defines the other security label.

Reading data requires that the user security label dominates the data
security label.

Reverse dominant
One security label reverse dominates another security label when both of
the following conditions are true:
v The security level that defines the first security label is less than or equal

to the security level that defines the second security label.
v The set of security categories that defines the first security label is a

subset of the security categories that defines the other security label.

Equivalent
One security label is equivalent to another security label when they are the
same or have the same level and set of categories. If both dominance and
reverse dominance are true for two security labels, they are equivalent. The
user security label must be equivalent to the data security label to be able
to read and write data without being able to write down.

Disjoint
A security label is disjoint or incompatible with another security label if
incompatible security categories cause neither security label to dominate
the other security label. Two security labels are disjoint when each of them
has at least one category that the other does not have. Disjoint access is not
allowed, even when a user is allowed to write down. If a user security
label that is disjoint to the data security label issues an INSERT, UPDATE,
or LOAD command, DB2 issues an error.

Example: Suppose that the security level "secret" for the security label HIGH is
greater than the security level "sensitive" for the security label MEDIUM. Also,
suppose that the security label HIGH includes the security categories Project_A,

114 Managing Security



Project_B, and Project_C, and that the security label MEDIUM includes the security
categories Project_A and Project_B. The security label HIGH dominates the security
label MEDIUM because both conditions for dominance are true.

Example: Suppose that the security label HIGH includes the security categories
Project_A, Project_B, and Project_C, and that the security label MEDIUM includes
the security categories Project_A and Project_Z. In this case, the security label
HIGH does not dominate the security label MEDIUM because the set of security
categories that define the security label HIGH does not contain the security
category Project_Z.

Write-down control
Mandatory access checking prevents a user from declassifying information. It
prevents a user from writing to an object unless the security label of the user is
equivalent to or dominated by that of the object.

DB2 requires either the equivalence of the security labels or the write-down privilege
of the user to write to DB2 objects.

Example: Suppose that user1 has a security label of HIGH and that row_x has a
security label of MEDIUM. Because the security label of the user and the security
label of the row are not equivalent, user1 cannot write to row_x. Therefore,
write-down control prevents user1 from declassifying the information that is in
row_x.

Example: Suppose that user2 has a security label of MEDIUM and that row_x has
a security label of MEDIUM. Because the security label of the user and the security
label of the row are equivalent, user2 can read from and write to row_x. However,
user2 cannot change the security label for row_x unless user2 has write-down
privilege. Therefore write-down control prevents user2 from declassifying the
information that is in row_x.

Granting write-down privileges
To grant the write-down privilege, you need to define a profile and then allow
users to access the profile.

Procedure

To grant write-down privilege to users:
1. Issue the following RACF command to define an IRR.WRITEDOWN.BYUSER

profile.
RDEFINE FACILITY IRR.WRITEDOWN.BYUSER UACC(NONE)

2. Issue the following RACF command to allow users to access the
IRR.WRITEDOWN.BYUSER profile that you just created.
PERMIT IRR.WRITEDOWN.BYUSER ID(USRT051 USRT052 USRT054 USRT056 -

USRT058 USRT060 USRT062 USRT064 USRT066 USRT068 USRT041) -
ACCESS(UPDATE) CLASS(FACILITY)

Implementing multilevel security at the object level
You can implement multilevel security with DB2 at the object level.

Procedure

To implement multilevel security with DB2 at the object level:

Chapter 2. Managing access through authorization IDs and roles 115



1. Define security labels in RACF for all DB2 objects that require mandatory
access checking by using the RDEFINE command.
Define security labels for the following RACF resource classes:
v DSNADM (administrative authorities)
v DSNR (access to DB2 subsystems)
v MDSNBP and GSNBP (buffer pools)
v MDSNCL and GDSNCL (collections)
v MDSNJR and MDSNJR (JAR)
v MDSNPN and GDSNPN (plans)
v MDSNSC and GDSNSC (schema)
v MDSNSG and GDSNSG (storage groups)
v MDSNSM and GDSNSM (system privileges)
v MDSNSP and GDSNSP (stored procedures)
v MDSNSQ and GDSNSQ (sequences)
v MDSNTB and GDSNTB (tables, views, indexes)
v MDSNTS and GDSNTS (table spaces)
v MDSNUF and GDSNUF (user-defined functions)
Recommendation: Define the security label SYSMULTI for DB2 subsystems that
are accessed by users with different security labels and tables that require
row-level granularity.

2. Specify a proper hierarchy of security labels.
In general, the security label of an object that is higher in the object hierarchy
should dominate the security labels of objects that are lower in the hierarchy.
RACF and DB2 do not enforce the hierarchy; they merely enforce the
dominance rules that you establish.
You can use RACF to define security labels for the DB2 objects in the following
object hierarchy:
v Subsystem or data sharing group

– Database
- Table space

v Table
– Column
– Row

– View
– Storage group
– Buffer pool
– Plan
– Collection

- Package
– Schema

- Stored procedure or user-defined function
- Java Archive (JAR)
- Distinct type
- Sequence

The following examples suggest dominance relationships among objects in the
DB2 object hierarchy.
Example: A collection should dominate a package.
Example: A subsystem should dominate a database. That database should
dominate a table space. That table space should dominate a table. That table
should dominate a column.
Example: If a view is based on a single table, the table should dominate the
view. However, if a view is based on multiple tables, the view should dominate
the tables.

116 Managing Security



3. Define security labels and associate users with the security labels in RACF. If
you are using a TCP/IP connection, you need to define security labels in RACF
for the security zones into which IP addresses are grouped. These IP addressed
represent remote users. Give users with SYSADM, SYSCTRL, and SYSOPR
authority the security label of SYSHIGH.

4. Activate the SECLABEL class in RACF. If you want to enforce write-down
control, turn on write-down control in RACF.

5. Install the external security access control authorization exit routine
(DSNX@XAC), such as the RACF access control module.

Related tasks:
“Implementing multilevel security with row-level granularity”
“Restricting access to the security label column” on page 119

Implementing multilevel security with row-level granularity
Many applications need row-level security within the relational database so that
access can be restricted to a specific set of rows. This security control often needs
to be mandatory so that users are unable to bypass the row-level security
mechanism. Using mandatory controls with z/OS and RACF provides consistency
across the system.

About this task

Requirement: You must have z/OS Version 1 Release 5 or later to use DB2
authorization with multilevel security with row-level granularity.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level. If you implement multilevel
security on the object level, you must define security labels in RACF for all DB2
objects and install the external security access control authorization exit routine. If
you do not use the access control authorization exit routine or RACF access
control, you can use DB2 native authorization control.

You can implement multilevel security with row-level granularity with or without
implementing multilevel security on the object level.

Recommendation: Use multilevel security at the object level with multilevel
security with row-level granularity. Using RACF with multilevel security provides
an independent check at run time and always checks the authorization of a user to
the data.

DB2 performs multilevel security with row-level granularity by comparing the
security label of the user to the security label of the row that is accessed. Because
security labels can be equivalent without being identical, DB2 uses the RACROUTE
REQUEST=DIRAUTH macro to make this comparison when the two security
labels are not the same. For read operations, such as SELECT, DB2 uses
ACCESS=READ. For update operations, DB2 uses ACCESS=READWRITE.

The write-down privilege for multilevel security with row-level granularity has the
following properties:
v A user with the write-down privilege can update the security label of a row to

any valid value. The user can make this update independent of the user's
dominance relationship with the row.

v DB2 requires that a user have the write-down privilege to perform certain
utilities.

Chapter 2. Managing access through authorization IDs and roles 117



v If write-down control is not enabled, all users with valid security labels are
equivalent to users with the write-down privilege.

Related tasks:
“Implementing multilevel security at the object level” on page 115
“Restricting access to the security label column” on page 119

Creating tables with multilevel security
You can use multilevel security with row-level checking to control table access. You
can do so by creating or altering a table that has a column with the AS SECURITY
LABEL attribute.

About this task

Tables with multilevel security in effect can be dropped by using the DROP
TABLE statement. Users must have a valid security label to execute CREATE
TABLE, ALTER TABLE, and DROP TABLE statements on tables with multilevel
security enabled.

The performance of tables that you create and alter can suffer if the security label
is not included in indexes. The security label column is used whenever a table
with multilevel security enabled is accessed. Therefore, the security label column
should be included in indexes on the table. If you do not index the security label
column, you cannot maintain index-only access.

When a user with a valid security label creates a table, the user can implement
row-level security by including a security label column. The security label column
can have any name, but it must be defined as CHAR(8) and NOT NULL WITH
DEFAULT. It also must be defined with the AS SECURITY LABEL clause.

After the user specifies the AS SECURITY LABEL clause on a column, users can
indicate the security label for each row by entering values in that column. When a
user creates a table and includes a security label column, SYSIBM.SYSTABLES
indicates that the table has row-level security enabled. Once a user creates a table
with a security label column, the security on the table cannot be disabled. The

table must be dropped and re-created to remove this protection.

Example

To create a table that is named TABLEMLS1 and that has row-level security
enabled, issue the following statement:
CREATE TABLE TABLEMLS1

(EMPNO CHAR(6) NOT NULL,
EMPNAME VARCHAR(20) NOT NULL,
DEPTNO VARCHAR(5)
SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL,
PRIMARY KEY (EMPNO) )

IN DSN8D71A.DSN8S71D;

Adding multilevel security to existing tables
If you have a valid security label, you can implement row-level security on an
existing table by adding a security label column to the table.

118 Managing Security



About this task

The security label column can have any name, but it must be defined as CHAR(8)
and NOT NULL WITH DEFAULT. It also must be defined with the AS SECURITY
LABEL clause.

Example: Suppose that the table EMP does not have row-level security enabled. To
alter EMP so that it has row-level security enabled, issue the following statement:

ALTER TABLE EMP
ADD SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL;

After a user specifies the AS SECURITY LABEL clause on a column, row-level
security is enabled on the table and cannot be disabled. The security label for
existing rows in the table at the time of the alter is the same as the security label of
the user that issued the ALTER TABLE statement.

Important: Packages and dynamic statements are invalidated when a table is
altered to add a security label column.

Removing tables with multilevel security
With valid privileges, you can drop a table that has row-level security in effect.

About this task

It is the required privilege that you have on the table, not the row-level security of
the table, that determines whether or not a DROP statement succeeds. When you
drop a table that has row-level security, DB2 generates an audit record.

Caching security labels
DB2 caches security labels to improve performance when multilevel security with
row-level granularity is used.

About this task

DB2 caches all security labels that are checked (successfully and unsuccessfully)
during processing. At commit or rollback, the security labels are removed from the
cache. If a security policy that employs multilevel security with row-level
granularity requires an immediate change and long-running applications have not
committed or rolled back, you might need to cancel the application.

Restricting access to the security label column
If you do not want users to see a security label column, you can create views that
do not include the column.

Procedure

To restrict access to the security label column, choose one of the following
options:
v Create a view that only includes those columns that are not security columns.

For example, suppose that the ORDER table has the following columns:

Chapter 2. Managing access through authorization IDs and roles 119



ORDERNO, PRODNO, CUSTNO, SECURITY. Suppose that SECURITY is the
security label column, and that you do not want users to see the SECURITY
column. Use the following statement to create a view that hides the security
label column from users:
CREATE VIEW V1 AS

SELECT ORDERNO, PRODNO, CUSTNO FROM ORDER;

v Retrieve the value of the SYSIBM.SECLABEL session variable, and create a view
that includes only the rows that match the session variable value. This will
create a view that gives each user access only to the rows that include that user's
security label column. For example, you would use the following statement to
create a view that allows access only to the rows that match the user's security
label:
CREATE VIEW V2 AS SELECT * FROM ORDER

WHERE SECURITY=GETVARIABLE(’SYSIBM.SECLABEL’);

Related tasks:
“Implementing multilevel security at the object level” on page 115
“Implementing multilevel security with row-level granularity” on page 117

Managing data in a multilevel-secure environment
Multilevel security with row-level checking affects the results of the SELECT,
INSERT, UPDATE, MERGE, DELETE, and TRUNCATE statements.

For example, row-level checking ensures that DB2 does not return rows that have a
HIGH security label to a user that has a LOW security label. Users must have a
valid security label to execute the SELECT, INSERT, UPDATE, MERGE, DELETE,
and TRUNCATE statements.

This effect also applies to the results of the LOAD, UNLOAD, and REORG
TABLESPACE utilities on tables that are enabled with multilevel security.

Using the SELECT statement with multilevel security
When a user with a valid security label selects data from one or more tables with
row-level security enabled, DB2 compares the security label of the user to the
security label of each row.

About this task

The results from the comparison of the security label of the user to the
security label of each row are returned according to the following rules:
v If the security label of the user dominates the security label of the row, DB2

returns the row.
v If the security label of the user does not dominate the security label of the row,

DB2 does not return the data from that row, and DB2 does not generate an error
report.

Example

Suppose that Alan has a security label of HIGH, Beth has a security label of
MEDIUM, and Carlos has a security label of LOW. Suppose that DSN8910.EMP
contains the data that is shown in the following table and that the SECURITY
column has been declared with the AS SECURITY LABEL clause.

120 Managing Security



Table 26. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000010 HAAS A00 LOW

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

000330 LEE E21 MEDIUM

Now, suppose that Alan, Beth, and Carlos each submit the following SELECT
statement:
SELECT LASTNAME

FROM EMP
ORDER BY LASTNAME;

Because Alan has the security label HIGH, he receives the following result:
BROWN
HAAS
JONES
LEE
LUTZ

Because Beth has the security label MEDIUM, she receives the following result:
HAAS
JONES
LEE
LUTZ

Beth does not see BROWN in her result set because the row with that information
has a security label of HIGH.

Because Carlos has the security label LOW, he receives the following result:
HAAS
LUTZ

Carlos does not see BROWN, JONES, or LEE in his result set because the rows
with that information have security labels that dominate Carlos's security label.
Although Beth and Carlos do not receive the full result set for the query, DB2 does

not return an error code to Beth or Carlos.

Using the INSERT statement with multilevel security
When a user with a valid security label inserts data into a table with row-level
security, the security label of the row is determined according to a specific set of
rules.

About this task

v If the user has write-down privilege or write-down control is not
enabled, the user can set the security label for the row to any valid security
label. If the user does not specify a value for the security label, the security label
of the row becomes the same as the security label of the user.

v If the user does not have write-down privilege and write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

Chapter 2. Managing access through authorization IDs and roles 121



Considerations for INSERT from a fullselect: For statements that insert the result
of a fullselect, DB2 does not return an error code if the fullselect contains a table
with a security label column. DB2 allows it if the target table does not contain a
security label column while the source table contains one.

Considerations for SELECT...FROM...INSERT statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that insert
rows and select the inserted rows, the INSERT statement succeeds. However, the
inserted row is not returned.

Considerations for INSERT with subselect: If you insert data into a table that
does not have a security label column, but a subselect in the INSERT statement
does include a table with a security label column, row-level checking is performed
for the subselect. However, the inserted rows will not be stored with a security

label column.

Example

Suppose that Alan has a security label of HIGH, that Beth has a security label of
MEDIUM and write-down privilege defined in RACF, and that Carlos has a
security label of LOW. Write-down control is enabled.

Now, suppose that Alan, Beth, and Carlos each submit the following INSERT
statement:
INSERT INTO DSN8910.EMP(EMPNO, LASTNAME, WORKDEPT, SECURITY)

VALUES(’099990’, ’SMITH’, ’C01’, ’MEDIUM’);

Because Alan does not have write-down privilege, Alan cannot choose the security
label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
HIGH because Alan's security label is HIGH.

Because Beth has write-down privilege on the table, she can specify the security
label of the new row. In this case, the security label of the new row is MEDIUM. If
Beth submits a similar INSERT statement that specifies a value of LOW for the
security column, the security label for the row becomes LOW.

Because Carlos does not have write-down privilege, Carlos cannot choose the
security label of the row that he inserts. Therefore DB2 ignores the security label of
MEDIUM that is specified in the statement. The security label of the row becomes
LOW because Carlos' security label is LOW.

Using the UPDATE statement with multilevel security
When a user with a valid security label updates a table with row-level security
enabled, DB2 compares the security label of the user to the security label of the
row.

About this task

The update to the table proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is updated and the value of the security label is determined by whether
the user has write-down privilege:

122 Managing Security



– If the user has write-down privilege or write-down control is not enabled, the
user can set the security label of the row to any valid security label.

– If the user does not have write-down privilege and write-down control is
enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE statement is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or write-down control is not enabled, the

row is updated and the user can set the security label of the row to any valid
security label.

– If the user does not have write-down privilege and write-down control is
enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Recommendation: To avoid failed updates, qualify the rows that you want to
update with the following predicate, for the security label column SECLABEL:
WHERE SECLABEL=GETVARIABLE(’SYSIBM.SECLABEL’)

Using this predicate avoids failed updates because it ensures that the user's
security label is equivalent to the security label of the rows that DB2 attempts to
update.

Considerations for SELECT...FROM...UPDATE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
update rows and select the updated rows, the UPDATE statement succeeds.
However, the updated row is not returned.

Example

Suppose that Alan has a security label of HIGH, that Beth has a security label of
MEDIUM and write-down privilege defined in RACF, and that Carlos has a
security label of LOW. Write-down control is enabled.

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Table 27. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following UPDATE
statement:
UPDATE DSN8910.EMP

SET DEPTNO=’X55’, SECURITY=’MEDIUM’
WHERE DEPTNO=’D11’;

Chapter 2. Managing access through authorization IDs and roles 123



Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
updated. Alan does not have write-down privilege, so the update fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the update on that row succeeds. However, the
security label for that row remains HIGH because Alan does not have the
write-down privilege that is required to set the security label to any value. The
results of Alan's update are shown in the following table:

Table 28. Sample data from DSN8910.EMP after Alan's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN X55 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is updated. Beth has
write-down privilege, so the update succeeds for this row and the security label for
the row becomes MEDIUM. Because Beth has a security label that is equivalent to
the security label of the row with MEDIUM security, the update succeeds for that
row. Because the row with the security label of HIGH dominates Beth's security
label, the update fails for that row. The results of Beth's update are shown in the
following table:

Table 29. Sample data from DSN8910.EMP after Beth's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES X55 MEDIUM

000210 LUTZ X55 MEDIUM

Because Carlos's security label is LOW, the update fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the update on that
row succeeds. However, the security label for that row remains LOW because
Carlos does not have the write-down privilege, which is required to set the
security label to any value. The results of Carlos's update are shown in the
following table:

Table 30. Sample data from DSN8910.EMP after Carlos's update

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ X55 LOW

Using the MERGE statement with multilevel security
MERGE is an SQL statement that combines the conditional INSERT and UPDATE
operations on a target table. Data that is not already present in the target table is

124 Managing Security



inserted with the INSERT part of the MERGE statement. Data that is already
present in the target table is updated with the UPDATE part of the MERGE
statement.

About this task

Because the MERGE statement consists of the INSERT and UPDATE
operations, the multilevel security rules for the INSERT operation apply to the
INSERT part of the MERGE statement and the multilevel security rules for the
UPDATE operation apply to the UPDATE part of the MERGE statement.

For the INSERT part of the MERGE statement, when a user with a valid security
label inserts data into a table with row-level security enabled, the security label of
the row is determined according to the following rules:
v If the user has write-down privilege or if the write-down control is not enabled,

the user can set the security label for the row to any valid security label. If the
user does not specify a value for the security label, the security label of the row
becomes the same as the security label of the user.

v If the user does not have write-down privilege and if the write-down control is
enabled, the security label of the row becomes the same as the security label of
the user.

For the UPDATE part of the MERGE statement, when a user with a valid security
label updates a table with row-level security enabled, DB2 compares the security
label of the user to the security label of the row. The update proceeds according to
the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is updated and the value of the security label is determined by whether
the user has write-down privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the user can set the security label of the row to any valid security
label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the security label of the row is set to the value of the security label
of the user.

v If the security label of the user dominates the security label of the row, the result
of the UPDATE operation is determined by whether the user has write-down
privilege:
– If the user has write-down privilege or if the write-down control is not

enabled, the row is updated and the user can set the security label of the row
to any valid security label.

– If the user does not have write-down privilege and if the write-down control
is enabled, the row is not updated.

v If the security label of the row dominates the security label of the user, the row
is not updated.

Considerations for SELECT...FROM...MERGE statements: If the user has
write-down privilege or if the write-down control is not in effect, the security label
of the user might not dominate the security label of the row. For statements that
merge rows and select the merged rows, the MERGE statement succeeds. However,

the merged row is not returned.

Chapter 2. Managing access through authorization IDs and roles 125



Using the DELETE statement with multilevel security
When a user with a valid security label deletes data from a table with row-level
security, DB2 compares the security label of the user to that of the row.

About this task

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user's

write-down privilege determines the result of the DELETE statement:
– If the user has write-down privilege or write-down control is not enabled, the

row is deleted.
– If the user does not have write-down privilege and write-down control is

enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user, the row

is not deleted.

Example: Suppose that Alan has a security label of HIGH, that Beth has a security
label of MEDIUM and write-down privilege defined in RACF, and that Carlos has
a security label of LOW. Write-down control is enabled.

Suppose that DSN8910.EMP contains the data that is shown in the following table
and that the SECURITY column has been declared with the AS SECURITY LABEL
clause.

Table 31. Sample data from DSN8910.EMP

EMPNO LASTNAME WORKDEPT SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Now, suppose that Alan, Beth, and Carlos each submit the following DELETE
statement:
DELETE FROM DSN8910.EMP

WHERE DEPTNO=’D11’;

Because Alan has a security label that dominates the rows with security labels of
MEDIUM and LOW, his write-down privilege determines whether these rows are
deleted. Alan does not have write-down privilege, so the delete fails for these
rows. Because Alan has a security label that is equivalent to the security label of
the row with HIGH security, the delete on that row succeeds. The results of Alan's
delete are shown in the following table:

Table 32. Sample data from DSN8910.EMP after Alan's delete

EMPNO EMPNAME DEPTNO SECURITY

000200 JONES D11 MEDIUM

000210 LUTZ D11 LOW

Because Beth has a security label that dominates the row with a security label of
LOW, her write-down privilege determines whether this row is deleted. Beth has

126 Managing Security



write-down privilege, so the delete succeeds for this row. Because Beth has a
security label that is equivalent to the security label of the row with MEDIUM
security, the delete succeeds for that row. Because the row with the security label
of HIGH dominates Beth's security label, the delete fails for that row. The results of
Beth's delete are shown in the following table:

Table 33. Sample data from DSN8910.EMP after Beth's delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

Because Carlos's security label is LOW, the delete fails for the rows with security
labels of MEDIUM and HIGH. Because Carlos has a security label that is
equivalent to the security label of the row with LOW security, the delete on that
row succeeds. The results of Carlos's delete are shown in the following table:

Table 34. Sample data from DSN8910.EMP after Carlos's delete

EMPNO EMPNAME DEPTNO SECURITY

000190 BROWN D11 HIGH

000200 JONES D11 MEDIUM

Important: Do not omit the WHERE clause from DELETE statements. If you omit
the WHERE clause from the DELETE statement, checking occurs for rows that
have security labels. This checking behavior might have a negative impact on
performance.

Considerations for SELECT...FROM...DELETE statements: If the user has
write-down privilege or write-down control is not in effect, the security label of the
user might not dominate the security label of the row. For statements that delete
rows and select the deleted rows, the DELETE statement succeeds. However, the

deleted row is not returned.

Using the TRUNCATE statement with multilevel security
When a user with a valid security label uses a TRUNCATE statement to delete all
data from a table with row-level security enabled, DB2 compares the security label
of the user to the security label of each row.

About this task

The delete proceeds according to the following rules:
v If the security label of the user and the security label of the row are equivalent,

the row is deleted.
v If the security label of the user dominates the security label of the row, the user's

write-down privilege determines the result of the DELETE statement:
– If the user has write-down privilege or write-down control is not enabled, the

row is deleted.
– If the user does not have write-down privilege and write-down control is

enabled, the row is not deleted.
v If the security label of the row dominates the security label of the user, the row

is not deleted.

Chapter 2. Managing access through authorization IDs and roles 127



v If the row cannot be deleted as a result of the security label verification, the

TRUNCATE statement fails.

Using utilities with multilevel security
You need a valid security label and additional authorizations to run certain LOAD,
UNLOAD, and REORG TABLESPACE jobs on tables that have multilevel security
enabled. All other utilities check only for authorization to operate on the table
space; they do not check for row-level authorization.

About this task

There are valid security label and additional authorizations required to run certain
LOAD, UNLOAD, and REORG TABLESPACE jobs on tables that have multilevel
security enabled:

LOAD
You must have the write-down privilege to run LOAD REPLACE on a
table space that contains a table with multilevel security enabled. In this
case, you can specify the values for the security label column.

UNLOAD
Additional restrictions apply to UNLOAD jobs on tables that have
multilevel security enabled. Each row is unloaded only if the security label
of the user dominates the security label of the row. If security label of the
user does not dominate the security label of the row, the row is not
unloaded and DB2 does not issue an error message.

REORG TABLESPACE
REORG TABLESPACE jobs on tables that have multilevel security enabled
have the following restrictions:
v For jobs with the UNLOAD EXTERNAL option, each row is unloaded

only if the security label of the user dominates the security label of the
row. If the security label of the user does not dominate the security label
of the row, the row is not unloaded and DB2 does not issue an error
message.

v For jobs with the DISCARD option, a qualifying row is discarded only
if the user has the write-down privilege and the security label of the
user dominates the security label of the row.

Implementing multilevel security in a distributed environment
SQL statements that originate from remote requesters can participate in a
multilevel secure environment if all information on the requester has the same
security label and all users of the requester are permitted to that security label.

Management of multilevel security in a distributed environment requires physical
control of the participating systems and careful management of the network.
Managed systems must be prevented from communicating with other systems that
do not have equivalent security labels.

Configuring TCP/IP with multilevel security
A communications server IP stack that runs in a multilevel secure environment can
be configured as either a restricted stack or an unrestricted stack.

128 Managing Security



About this task

Recommendations: Use an unrestricted stack for DB2. An unrestricted stack is
configured with an ID that is defined with a security label of SYSMULTI. A single
z/OS system can concurrently run a mix of restricted and unrestricted stacks.
Unrestricted stacks allow DB2 to use any security label to open sockets.

All users on a TCP/IP connection have the security label that is associated with
the IP address that is defined on the server. If a user requires a different security
label, the user must enter through an IP address that has that security label
associated with it. If you require multiple IP addresses on a remote z/OS server, a
workstation, or a gateway, you can configure multiple virtual IP addresses. This
strategy can increase the number of security labels that are available on a client.

Remote users that access DB2 by using a TCP/IP network connection use the
security label that is associated with the RACF SERVAUTH class profile when the
remote user is authenticated. Security labels are assigned to the database access
thread when the DB2 server authenticates the remote server by using the
RACROUTE REQUEST = VERIFY service.

If you use a trusted context for your TCP/IP connection, you can define a default
security label for all users or specific security labels for individual users who use
the trusted context. The security label that is defined in the trusted context
overrides the one for the TCP/IP connection in RACF.

Configuring SNA with multilevel security
Security labels are assigned to the database access thread when the DB2 server
authenticates the remote server by using the RACROUTE REQUEST = VERIFY
service. The service establishes a security label for the authorization ID that is
associated with the database access thread.

About this task

For SNA connections, this security label is the default security label that is defined
for the remote user.

Chapter 2. Managing access through authorization IDs and roles 129



130 Managing Security



Chapter 3. Managing access through RACF

You can control whether a local or remote application can gain access to a specific
DB2 subsystem from different environments. You can set different levels of security
depending on whether the requesting application uses SNA or Transmission
Control Protocol/Internet Protocol (TCP/IP) protocols to access DB2.

After the local system authenticates the incoming ID, it treats the ID like a local
connection request or a local sign-on request. You can process the ID with your
connection or sign-on exit routine and associate secondary authorization IDs with
the ID. If you are sending a request to a remote DB2 subsystem, that subsystem
can subject your request to various security checks.

You can use an external security system, such as RACF, IMS, or CICS, to authorize
and authenticate a remote request before it reaches your DB2 subsystem. The
discussion in the following topics assumes that you use RACF, or an equivalent
system, for external access control.

Establishing RACF protection for DB2
You can install and use RACF to protect your DB2 resources.

Procedure

To establish RACF protection for DB2, complete the following steps in any order:
v Define DB2 resources to RACF for protection.
v Grant RACF access to the protected DB2 resources.

Defining DB2 resources to RACF
To establish RACF protection for your DB2 subsystem, you must define your DB2
resources to RACF and authorize RACF for authentication checking.

Procedure

To define your DB2 resources to RACF:
v Define the names of protected access profiles.
v Enable RACF checking for the DSNR and SERVER classes.

What to do next

You can also perform the following tasks:
v Control whether two DBMSs that use VTAM® LU 6.2 can establish sessions with

each other.
v Authorize IDs that are associated with stored procedures address spaces to run

the appropriate attachment facility.
v Authorize the ID that is associated with the DDF address space to use z/OS

UNIX System Services if you use TCP/IP.

© Copyright IBM Corp. 1982, 2013 131



Related tasks:
“Permitting RACF access” on page 133
“Managing authorization for stored procedures” on page 142
“Protecting connection requests that use the TCP/IP protocol” on page 151
“Establishing Kerberos authentication through RACF” on page 152

Naming protected access profiles
The RACF resource class for DB2 is DSNR that is contained in the RACF class
descriptor table. The profiles in that class help you control access to a DB2
subsystem from another environment. The environment can be IMS, CICS, the
distributed data facility (DDF), Time Sharing Option (TSO), the call attachment
facility (CAF), or batch.

About this task

Each profile has a name of the form subsystem.environment, where:
v subsystem is the name of a DB2 subsystem, of one to four characters; for

example, DSN or DB2T.
v environment denotes the environment, by one of the following terms:

– MASS for IMS (including MPP, BMP, Fast Path, and DL/I batch).
– SASS for CICS.
– DIST for DDF.
– RRSAF for Resource Recovery Services attachment facility. Stored procedures

use RRSAF in WLM-established address spaces.
– BATCH for all others, including TSO, CAF, and utilities.

To control access, you need to define a profile, as a member of class DSNR, for
every combination of subsystem and environment you want to use. For example,
suppose that you want to access:
v Subsystem DSN from TSO and DDF
v Subsystem DB2P from TSO, DDF, IMS, and RRSAF
v Subsystem DB2T from TSO, DDF, CICS, and RRSAF

Then define the profiles with the following names:
DSN.BATCH DSN.DIST
DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF
DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF

You can do that with a single RACF command, which also names an owner for the
resources:
RDEFINE DSNR (DSN.BATCH DSN.DIST DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF) OWNER(DB2OWNER)

In order to access a subsystem in a particular environment, a user must be on the
access list of the corresponding profile. You add users to the access list by using
the RACF PERMIT command. If you do not want to limit access to particular users
or groups, you can give universal access to a profile with a command like this:
RDEFINE DSNR (DSN.BATCH) OWNER(DB2OWNER) UACC(READ)

Enabling RACF checking for the DSNR and SERVER classes
You can allow RACF to check for the DSNR and SERVER classes.

132 Managing Security



About this task

If you are using stored procedures in a WLM-established address space, you might
also need to enable RACF checking for the SERVER class.

Procedure

To enable RACF access control to check for resources in the DSNR resource class:

Issue the following command:
SETROPTS CLASSACT(DSNR)

Enabling partner LU verification
With RACF and VTAM, you can control whether two logical units (LU) that use
LU 6.2 can connect to each other.

About this task

Each member of a connecting pair must establish a profile for the other member.
For example, if LUAAA and LUBBB are to connect and know each other by those
LUNAMES, issue RACF commands similar to these:

At LUAAA: RDEFINE APPCLU netid.LUAAA.LUBBB UACC(NONE) ...
At LUBBB: RDEFINE APPCLU netid.LUBBB.LUAAA UACC(NONE) ...

Here, netid is the network ID, given by the VTAM start option NETID.

When you create those profiles with RACF, use the SESSION operand to supply:
v The VTAM password as a session key (SESSKEY suboperand)
v The maximum number of days between changes of the session key (INTERVAL

suboperand)
v An indication of whether the LU pair is locked (LOCK suboperand)

Finally, to enable RACF checking for the new APPCLU resources, issue this RACF
command at both LUAAA and LUBBB:
SETROPTS CLASSACT(APPCLU)

Permitting RACF access
You must perform certain tasks in a required order to enable a process to use
protected RACF resources.

Procedure

To enable a process to use protected RACF resources:
1. Define RACF user IDs for DB2-started tasks
2. Add RACF groups
3. Grant users and groups access

Chapter 3. Managing access through RACF 133



Related tasks:
“Defining DB2 resources to RACF” on page 131
“Managing authorization for stored procedures” on page 142
“Protecting connection requests that use the TCP/IP protocol” on page 151
“Establishing Kerberos authentication through RACF” on page 152

Defining RACF user IDs for DB2-started tasks
A DB2 subsystem provides started-task address spaces.

About this task

The following are DB2 started-task address spaces:
v ssnmDBM1 for database services
v ssnmMSTR for system services
v ssnmDIST for the distributed data facility
v Names for your WLM-established address spaces for stored procedures

You must associate each of these address spaces with a RACF user ID. You can
also assign each of them to a RACF group name. The RACF user IDs and group
names that are associated with DB2 address spaces are listed in the following table:

Table 35. DB2 address spaces and associated RACF user IDs and group names

Address Space RACF User ID RACF Group Name

DSNMSTR SYSDSP DB2SYS

DSNDBM1 SYSDSP DB2SYS

DSNDIST SYSDSP DB2SYS

DSNWLM SYSDSP DB2SYS

DB2TMSTR SYSDSPT DB2TEST

DB2TDBM1 SYSDSPT DB2TEST

DB2TDIST SYSDSPT DB2TEST

DB2TSPAS SYSDSPT DB2TEST

DB2PMSTR SYSDSPD DB2PROD

DB2PDBM1 SYSDSPD DB2PROD

DB2PDIST SYSDSPD DB2PROD

CICSSYS CICS CICSGRP

IMSCNTL IMS IMSGRP

You can use one of the two ways that RACF provides to associate user IDs and
groups with started tasks: the STARTED class and the started procedures table
(ICHRIN03). If you use the STARTED class, the changes take effect without a
subsequent IPL. If you use ICHRIN03, you must perform another IPL for the
changes to take effect. You cannot start the DB2 address spaces with batch jobs.

If you have IMS or CICS applications issuing DB2 SQL requests, you must
associate RACF user IDs, and can associate group names, with:
v The IMS control region
v The CICS address space

134 Managing Security



v The four DB2 address spaces

If the IMS and CICS address spaces are started as batch jobs, provide their RACF
IDs and group names with the USER and GROUP parameters on the JOB
statement. If they are started as started-tasks, assign the IDs and group names as
you do for the DB2 address spaces, by changing the RACF STARTED class or the
RACF started procedures table.

The RACF user ID and group name do not need to match those that are used for
the DB2 address spaces, but they must be authorized to run the Resource Recovery
Services attachment facility (for WLM-established stored procedures address
spaces). Note that the WLM-established stored procedures started tasks IDs require
an OMVS segment.

If your installation has implemented the RACF STARTED class, you can use it to
associate RACF user IDs and group names with the DB2 started procedures
address spaces. If you have not previously set up the STARTED class, you first
need to enable generic profile checking for the class:
SETROPTS GENERIC(STARTED)

Then, you need to define the RACF identities for the DB2 started tasks:
RDEFINE STARTED DSNMSTR.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDBM1.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNDIST.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))
RDEFINE STARTED DB2TMSTR.** STDATA(USER(SYSDSPT) GROUP(DB2TEST) TRUSTED(NO))
...

Then, you need to activate the RACLIST processing to read the profiles into a data
space:
SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)

Lastly, you need to refresh the in-storage profiles:
SETROPTS RACLIST(STARTED) REFRESH

If you use the RACF-started procedures table (ICHRIN03) to associate RACF user
IDs and group names with the DB2 started procedures address spaces, you need to
change, reassemble, and link edit the resulting object code to z/OS. The following
example shows a sample job that reassembles and link edits the RACF
started-procedures table (ICHRIN03):
//*
//* REASSEMBLE AND LINKEDIT THE RACF STARTED-PROCEDURES
//* TABLE ICHRIN03 TO INCLUDE USERIDS AND GROUP NAMES
//* FOR EACH DB2 CATALOGED PROCEDURE. OPTIONALLY, ENTRIES
//* FOR AN IMS OR CICS SYSTEM MIGHT BE INCLUDED.
//*
//* AN IPL WITH A CLPA (OR AN MLPA SPECIFYING THE LOAD
//* MODULE) IS REQUIRED FOR THESE CHANGES TO TAKE EFFECT.
//*

ENTCOUNT DC AL2(((ENDTABLE-BEGTABLE)/ENTLNGTH)+32768)
* NUMBER OF ENTRIES AND INDICATE RACF FORMAT
*
* PROVIDE FOUR ENTRIES FOR EACH DB2 SUBSYSTEM NAME.
*
BEGTABLE DS 0H
* ENTRIES FOR SUBSYSTEM NAME "DSN"

DC CL8’DSNMSTR’ SYSTEM SERVICES PROCEDURE

Chapter 3. Managing access through RACF 135



DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

ENTLNGTH EQU *-BEGTABLE CALCULATE LENGTH OF EACH ENTRY
DC CL8’DSNDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DSNDIST’ DDF PROCEDURE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DSNWLM’ WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2T"
DC CL8’DB2TMSTR’ SYSTEM SERVICES PROCEDURE
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2TDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2TDIST’ DDF PROCEDURE
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSPT’ USERID
DC CL8’DB2TEST’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* ENTRIES FOR SUBSYSTEM NAME "DB2P"
DC CL8’DB2PMSTR’ SYSTEM SERVICES PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2PDBM1’ DATABASE SERVICES PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’DB2PDIST’ DDF PROCEDURE
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’SYSDSPD’ USERID
DC CL8’DB2PROD’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

* OPTIONAL ENTRIES FOR CICS AND IMS CONTROL REGION
DC CL8’CICSSYS’ CICS PROCEDURE NAME
DC CL8’CICS’ USERID

136 Managing Security



DC CL8’CICSGRP’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES
DC CL8’IMSCNTL’ IMS CONTROL REGION PROCEDURE
DC CL8’IMS’ USERID
DC CL8’IMSGRP’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

ENDTABLE DS 0D
END

The example shows the sample entries for three DB2 subsystems (DSN, DB2T, and
DB2P), optional entries for CICS and IMS, and DB2 started tasks for the DB2
subsystems, CICS, the IMS control region.
Related tasks:
“Adding RACF groups”
“Granting users and groups access” on page 138

Adding RACF groups
You can issue the ADDGROUP command to add a new RACF group.

About this task

You need first to issue the following ADDUSER command to add user DB2OWNER
and give it class authorization for DSNR and USER.
ADDUSER DB2OWNER CLAUTH(DSNR USER) UACC(NONE)

DB2OWNER can now add users to RACF and issue the RDEFINE command to
define resources in class DSNR. It also has control over and responsibility for the
entire DB2 security plan in RACF.

To add group DB2 to the existing SYS1 group and make DB2OWNER the owner of
the new group, issue the following RACF command:
ADDGROUP DB2 SUPGROUP(SYS1) OWNER(DB2OWNER)

To connect DB2OWNER to group DB2 with the authority to create new subgroups,
add users, and manipulate profiles, issue the following RACF command:
CONNECT DB2OWNER GROUP(DB2) AUTHORITY(JOIN) UACC(NONE)

To make DB2 the default group for commands issued by DB2OWNER, issue the
following RACF command:
ALTUSER DB2OWNER DFLTGRP(DB2)

To create the group DB2USER and add five users to it, issue the following RACF
commands:
ADDGROUP DB2USER SUPGROUP(DB2)
ADDUSER (USER1 USER2 USER3 USER4 USER5) DFLTGRP(DB2USER)

To define a user to RACF, use the RACF ADDUSER command. That invalidates the
current password. You can then log on as a TSO user to change the password.

DB2 considerations when using RACF groups:

v When a user is newly connected to, or disconnected from, a RACF group, the
change is not effective until the next logon. Therefore, before using a new group
name as a secondary authorization ID, a TSO user must log off and log on, or a
CICS or IMS user must sign on again.

Chapter 3. Managing access through RACF 137



v A user with the SPECIAL, JOIN, or GROUP-SPECIAL RACF attribute can define
new groups with any name that RACF accepts and can connect any user to
them. Because the group name can become a secondary authorization ID, you
should control the use of those RACF attributes.

v Existing RACF group names can duplicate existing DB2 authorization IDs. That
duplication is unlikely for the following reasons:
– A group name cannot be the same as a user name.
– Authorization IDs that are known to DB2 are usually known to RACF.
However, you can create a table with an owner name that is the same as a
RACF group name and use the IBM-supplied sample connection exit routine.
Then any TSO user with the group name as a secondary ID has ownership
privileges on the table. You can prevent that situation by designing the
connection exit routine to stop unwanted group names from being passed to
DB2.

Related tasks:
“Defining RACF user IDs for DB2-started tasks” on page 134
“Granting users and groups access”

Granting users and groups access
You can use the PERMIT command to grant users or groups access to resources in
class DSNR.

About this task

Suppose that the DB2OWNER group in the following example is authorized for
class DSNR, owns the profiles, and has the right to change them. You can issue the
following commands to authorize the DB2USER members, the system
administrators, and operators to be TSO users.

These users can run batch jobs and DB2 utilities on the three systems: DSN, DB2P,
and DB2T. The ACCESS(READ) operand allows use of DB2 without the ability to
manipulate profiles.
PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2P.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2T.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

Defining profiles for IMS and CICS: You want the IDs for attaching systems to use
the appropriate access profile. For example, to let the IMS user ID use the access
profile for IMS on system DB2P, issue the following RACF command:
PERMIT DB2P.MASS CLASS(DSNR) ID(IMS) ACCESS(READ)

To let the CICS group ID use the access profile for CICS on system DB2T, issue the
following RACF command:
PERMIT DB2T.SASS CLASS(DSNR) ID(CICSGRP) ACCESS(READ)

Providing installation authorities to default IDs: When DB2 is installed, IDs are
named to have special authorities—one or two IDs for SYSADM and one or two
IDs for SYSOPR. Those IDs can be connected to the group DB2USER; if they are
not, you need to give them access. The next command permits the default IDs for
the SYSADM and SYSOPR authorities to use subsystem DSN through TSO:
PERMIT DSN.BATCH CLASS(DSNR) ID(SYSADM,SYSOPR) ACCESS(READ)

Using secondary IDs: You can use secondary authorization IDs to define a RACF
group. After you define the RACF group, you can assign privileges to it that are

138 Managing Security



shared by multiple primary IDs. For example, suppose that DB2OWNER wants to
create a group GROUP1 and to give the ID USER1 administrative authority over
the group. USER1 should be able to connect other existing users to the group. To
create the group, DB2OWNER issues this RACF command:
ADDGROUP GROUP1 OWNER(USER1) DATA(’GROUP FOR DEPT. G1’)

To let the group connect to the DSN system through TSO, DB2OWNER issues this
RACF command:
PERMIT DSN.BATCH CLASS(DSNR) ID(GROUP1) ACCESS(READ)

USER1 can now connect other existing IDs to the group GROUP1 by using the
RACF CONNECT command:
CONNECT (USER2 EPSILON1 EPSILON2) GROUP(GROUP1)

If you add or update secondary IDs for CICS transactions, you must start and stop
the CICS attachment facility to ensure that all threads sign on and get the correct
security information.

Allowing users to create data sets: You can use RACF to protect the data sets that
store DB2 data. If you use the approach and when you create a new group of DB2
users, you might want to connect it to a group that can create data sets. To allow
USER1 to create and control data sets, DB2OWNER creates a generic profile and
permits complete control to USER1 and to the four administrators. The SYSDSP
parameter also gives control to DB2.
ADDSD ’DSNC110.DSNDBC.ST*’ UACC(NONE)

PERMIT ’DSNC110.DSNDBC.ST*’
ID(USER1 SYSDSP SYSAD1 SYSAD2 SYSOP1 SYSOP2) ACCESS(ALTER)

Related tasks:
“Defining RACF user IDs for DB2-started tasks” on page 134
“Adding RACF groups” on page 137

Granting authorization on DB2 commands
IDs must be authorized to issue DB2 commands. If you authorize IDs by issuing
DB2 GRANT statements, the GRANT statements must be made to a primary
authorization ID, a secondary authorization ID, a role, or PUBLIC.

About this task

When RACF is used for access control, an ID must have appropriate RACF
authorization on DB2 commands or must be granted authorization for DB2
commands to issue commands from a logged-on MVS console or from TSO SDSF.

Procedure

To ensure that an ID can issue DB2 commands from logged-on MVS consoles or
TSO SDSF, choose one of the following:
v Grant authorization for DB2 commands to the primary, secondary authorization

ID, or role.
v Define RACF classes and permits for DB2 commands.
v Grant SYSOPR authority to appropriate IDs.

Chapter 3. Managing access through RACF 139



Permitting access from remote requesters
You can use the DSNR RACF class to access the distributed data address space and
to control access from remote requesters.

About this task

The following RACF commands let the users in the group DB2USER access DDF
on the DSN subsystem. These DDF requests can originate from any partner in the
network.

For example, to permit READ access on profile DSN.DIST in the DSNR class to
DB2USER, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(DB2USER) ACCESS(READ)

If you want to ensure that a specific user can access only when the request
originates from a specific LU name, you can use WHEN(APPCPORT) on the
PERMIT command.

For example, to permit access to DB2 distributed processing on subsystem DSN
when the request comes from USER5 at LUNAME equal to NEWYORK, issue the
following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(NEWYORK))

For connections that come through TCP/IP, use the RACF APPCPORT class or the
RACF SERVAUTH class with TCP/IP Network Access Control to protect
unauthorized access to DB2.

Example: To use the RACF APPCPORT class, perform the following steps:
1. Activate the ACCPORT class by issuing the following RACF command:

SETROPTS CLASSACT(APPCPORT) REFRESH

2. Define the general resource profile and name it TCPIP. Specify NONE for
universal access and APPCPORT for class. Issue the following RACF command:
RDEFINE APPCPORT (TCPIP) UACC(NONE)

3. Permit READ access on profile TCPIP in the APPCPORT class. To permit READ
access to USER5, issue the following RACF command:
PERMIT TCPIP ACCESS(READ) CLASS(APPCPORT) ID(USER5)

4. Permit READ access on profile DSN.DIST in the DSNR class. To permit READ
access to USER5, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(TCPIP))

5. Refresh the APPCPORT class by issuing the following RACF command:
SETROPTS CLASSACT(APPCPORT) REFRESH RACLIST(APPCPORT)

If the RACF APPCPORT class is active on your system, and a resource profile for
the requesting LU name already exists, you must permit READ access to the
APPCPORT resource profile for the user IDs that DB2 uses. You must permit
READ access even when you are using the DSNR resource class. Similarly, if you
are using the RACF APPL class and that class restricts access to the local DB2 LU
name or generic LU name, you must permit READ access to the APPL resource for
the user IDs that DB2 uses.

140 Managing Security



Recommendation: Use z/OS Communications Server IP Network Access Control
and z/OS Security Server RACF SERVAUTH class if you want to use the port of
entry (POE) for remote TCP/IP connections.

Requirement: To use the RACF SERVAUTH class and TCP/IP Network Access
Control, you must have z/OS V1.5 (or later) installed.

Example: To use the RACF SERVAUTH class and TCP/IP Network Access
Control, perform the following steps:
1. Set up and configure TCP/IP Network Access Control by using the

NETACCESS statement that is in your TCP/IP profile.
For example, suppose that you need to allow z/OS system access only to IP
addresses from 9.0.0.0 to 9.255.255.255. You want to define these IP addresses as
a security zone, and you want to name the security zone IBM. Suppose also
that you need to deny access to all IP addressed outside of the IBM security
zone, and that you want to define these IP addresses as a separate security
zone. You want to name this second security zone WORLD. To establish these
security zones, use the following NETACCESS clause:
NETACCESS INBOUND OUTBOUND
; NETWORK/MASK SAF

9.0.0.0/8 IBM
DEFAULT WORLD

ENDNETACCESS

Now, suppose that USER5 has an IP address of 9.1.2.3. TCP/IP Network Access
Control would determine that USER5 has an IP address that belongs to the IBM
security zone. USER5 would be granted access to the system. Alternatively,
suppose that USER6 has an IP address of 1.1.1.1. TCP/IP Network Access
Control would determine that USER6 has an IP address that belongs to the
WORLD security zone. USER6 would not be granted access to the system.

2. Activate the SERVAUTH class by issuing the following TSO command:
SETROPTS CLASSACT(SERVAUTH)

3. Activate RACLIST processing for the SERVAUTH class by issuing the following
TSO command:
SETROPTS RACLIST(SERVAUTH)

4. Define the IBM and WORLD general resource profiles in RACF to protect the
IBM and WORLD security zones by issuing the following commands:
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.IBM) UACC(NONE)
RDEFINE SERVAUTH (EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD) UACC(NONE)

5. Permit USER5 and SYSDSP read access to the IBM profile by using the
following commands.
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(USER5)
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.IBM ACCESS READ CLASS(SERVAUTH) ID(SYSDSP)

6. Permit SYSDSP read access to the WORLD profile by using the following
command:
PERMIT EZB.NETACCESS.ZOSV1R5.TCPIP.WORLD ACCESS READ CLASS(SERVAUTH) ID(USER5)

7. For these permissions to take effect, refresh the RACF database by using the
following command:
SETROPTS CLASSACT(SERVAUTH) REFRESH RACLIST(SERVAUTH)

Enabling IMS transactions to use RACF authorization control of
DB2 objects
You can enable IMS transactions to use RACF authorization control of DB2 objects
and other resources.

Chapter 3. Managing access through RACF 141

|
|
|
|



Procedure

To enable IMS transactions to exploit RACF authorization of DB2 objects and
resources:
1. Configure IMS to use APPC/OTMA security FULLor create an IMS Build

Security Environment exit routine (DFSBSEX0). Code DFSBSEX0 to return RC4
in register 15, which will instruct IMS to create the ACEE in the dependent
region.

2. Install the default DB2 exit routine DSNX@XAC.
3. Define a RACF profile for each DB2 object and resource to be accessed by IMS

transactions.
4. Issue the RACF PERMIT command to authorize IMS transaction authorization

IDs that are allowed to access these DB2 objects and resources.
Related concepts:

The default DB2 exit routine (RACF Access Control Module Guide)
Related information:
IMS build security environment exit routine
Administering APPC/IMS

Managing authorization for stored procedures
DB2 for z/OS provides a variety of methods to help you ensure that users are
properly authorized to create and execute stored procedures. DB2 also provides
ways for you to keep stored procedures secure.

About this task
v “Authorizing IDs for using RRSAF”
v “Specifying WLM-established server address spaces for stored procedures” on

page 143
v “Managing authorizations for creation of stored procedures in WLM

environments” on page 144
v “Authorizing users to refresh WLM environments” on page 145
v “Controlling stored procedure access to non-DB2 resources by using RACF” on

page 145
v “Granting the CREATEIN privilege on schemas for stored procedures” on page

146
v “Granting privileges for using distinct types” on page 147
v “Granting privileges for using JAR files” on page 148
v “Granting privileges for executing stored procedures and stored procedure

packages” on page 148
v “Controlling remote execution of stored procedures by using trusted contexts”

on page 149

Authorizing IDs for using RRSAF
When started, WLM-established address spaces use the Resource Recovery Services
attachment facility (RRSAF) to attach to DB2. You must authorize the IDs that are
associated with WLM-established stored procedures address spaces so that they
can use RRSAF.

142 Managing Security

|

|
|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.racf/src/tpc/db2z_defaultexitroutine.htm#db2z_defaultexitroutine
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.err/ims_dfsbsex0.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.ccg/ims_appcad_estab.htm


Procedure

To authorize user IDs that are associated with WLM-established stored procedures
address spaces to use RRSAF:
1. Create a ssnm.RRSAF profile in RACF. For example, you can define

ssnm.RRSAF in the DSNR resource class with a universal access authority of
NONE by issuing the following command:
RDEFINE DSNR (DB2P.RRSAF DB2T.RRSAF) UACC(NONE)

2. Refresh the in-storage profiles with the profile that you just defined. For
example, you can issue the following command:
SETROPTS RACLIST(DSNR) REFRESH

3. Add user IDs that are associated with WLM-established stored procedures
address spaces to the RACF-started procedures table. For example, you can
issue the following command:
RDEFINE STARTED DSNWLM.** STDATA(USER(SYSDP) GROUP(DB2SYS) TRUSTED(NO))

4. Refresh the in-storage profiles. For example, you can issue the following
command:
SETROPTS RACLIST(STARTED) REFRESH

5. Grant read access to ssnm.RRSAF to the IDs that are associated with the stored
procedures address spaces. For example, you can issue the following command:
PERMIT DB2P.RRSAF CLASS(DSNR) ID(SYSDSP) ACCESS(READ)

Related information:

Summary of RACF commands (CICS Transaction Server for z/OS)

Specifying WLM-established server address spaces for stored
procedures
You can manage access to WLM through the server resource class and specify
address spaces as WLM-established server address spaces for running stored
procedures.

Procedure

To specify address spaces as WLM-established server address spaces that can run
stored procedures:
1. Define a new SERVER class by using the server resource class.

If you do not define a SERVER class, any address space that connects to WLM
as a server address space can run stored procedures.

2. Authorize a RACF profile to associate with the SERVER class. For example:
RDEFINE SERVER (DB2.ssnm.applenv)

In this command, applenv is the name of the application environment that is
associated with the stored procedure. For example, assume that you want to
define the following profile names:
v DB2.DB2T.TESTPROC
v DB2.DB2P.PAYROLL
v DB2.DB2P.QUERY

To define these profile names, use the following RACF command:
RDEFINE SERVER (DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY)

3. Activate the resource class. For example, you can issue the following command:
SETROPTS RACLIST(SERVER) REFRESH

Chapter 3. Managing access through RACF 143

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


4. Grant read access to the user IDs that are associated with the stored procedures
address space. For example, you can issue the following commands:
PERMIT DB2.DB2T.TESTPROC CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.PAYROLL CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.QUERY CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

Related information:

Summary of RACF commands (CICS Transaction Server for z/OS)

Managing authorizations for creation of stored procedures in
WLM environments
You can group and isolate applications into different WLM environments based on
their security requirements. You can then authorize or prevent users from creating
stored procedures in a security-sensitive environment.

About this task

DB2 invokes RACF to determine if users are allowed to create stored procedures in
a WLM environment. The WLM ENVIRONMENT keyword on the CREATE
PROCEDURE statement identifies the WLM environment to use for running a
given stored procedure. DB2 performs a resource authorization check using the
DSNR RACF class as follows:
v In a DB2 data sharing environment, DB2 uses the following RACF resource

name:
db2_groupname.WLMENV.wlm_environment

v In a non-data sharing environment, DB2 checks the following RACF resource
name:
db2_subsystem_id.WLMENV.wlm_environment

Attempts fail when unauthorized users try to create or run stored procedures.

Procedure

To manage authorizations for individual users or groups in the creation of stored
procedures in a specific WLM environment:

Use RACF commands:
v To authorize individual users or groups of users to create stored procedures in a

specific WLM environment, issue the RACF PERMIT command. For example,
you can authorize the user whose ID is DB2USER1 to create stored procedures
on the DB2 subsystem DB2A (non-data sharing) in a WLM environment named
PAYROLL:
PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

When user ID DB2USER1 attempts to create a stored procedure in the PAYROLL
WLM environment, DB2 performs a resource authorization check by using the
DSNR RACF class and grants permission.

v To prevent users on a particular DB2 subsystem from creating stored procedures,
issue the RACF DEFINE command. You can also use this command to revoke the
default universal access of a WLM environment and set it to NONE,
For example, you can issue the following command to prevent all users on DB2
subsystem DB2A (non-data sharing) from creating stored procedures or
user-defined functions in the WLM environment named PAYROLL:
RDEFINE DSNR (DB2A.WLMENV.PAYROLL) UACC(NONE)

144 Managing Security

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


Related information:

Summary of RACF commands (CICS Transaction Server for z/OS)

Authorizing users to refresh WLM environments
When you prepare a new version of a stored procedure in a WLM application
environment, you need to activate the updated stored procedure by refreshing the
application environment.

About this task

You can refresh the WLM environment by issuing a VARY REFRESH command at
a z/OS command line. Alternatively, you can execute the WLM_REFRESH stored
procedure, which is supplied by DB2 and executes the VARY REFRESH command.
This stored procedure is useful when users need to refresh the WLM environment
but are not authorized to issue operator commands.

Procedure

To authorize users to use the WLM_REFRESH stored procedure:
1. Grant access to the RACF resource profile for each application environment.

For example, assume that you want to authorize RACF group DEVL7083 to
access the WLM_REFRESH RACF resource profile for application environment
DB9AWLM on subsystem DB9A. To authorize the RACF group in this way, you
can issue this command:
RDEFINE DSNR (DB9A.WLM_REFRESH.DB9AWLM)
PE DB9A.WLM_REFRESH.DB9AWLM +
CLASS(DSNR) ID(DEVL7083) ACCESS(READ)
END

2. Grant the EXECUTE privilege on the stored procedure to users or groups who
need to refresh the environment. For example, you can issue the following
GRANT statement to authorize the RACF group DEVL7083 to execute the
WLM_REFRESH stored procedure on application environment DB9AWLM:

GRANT EXECUTE ON PROCEDURE SYSPROC.WLM_REFRESH TO DEVL7083;

You need to grant the EXECUTE privilege only once because you supply the
application environment name as a variable when you execute the stored
procedure.

Related reference:

WLM_REFRESH stored procedure (DB2 Application programming and SQL)

GRANT (function or procedure privileges) (DB2 SQL)
Related information:

Summary of RACF commands (CICS Transaction Server for z/OS)

Controlling stored procedure access to non-DB2 resources by
using RACF
You can control DB2 stored procedure access to non-DB2 resources (such as VSAM
files) by using RACF (or another external security product).

Chapter 3. Managing access through RACF 145

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_sp_wlmrefresh.htm#db2z_sp_wlmrefresh
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp?topic=/com.ibm.cics.ts31.doc/dfht5/topics/dfht523.htm


Procedure

To control access to non-DB2 resources for an existing stored procedure
that does not require RACF (or another external security product):
1. Issue the ALTER PROCEDURE statement with the SECURITY USER clause.
2. Ensure that the user ID that calls the stored procedure has RACF authority to

the resources.
3. Enable RACF checking for the caller's ID.
4. For improved performance, specify the following keywords in the COFVLFxx

member of library SYS1.PARMLIB to cache the RACF profiles in the virtual
look-aside facility (VLF) of z/OS. For example:
CLASS NAME(IRRACEE)
EMAJ(ACEE)

Related reference:

CREATE PROCEDURE (SQL - external) (DB2 SQL)

CREATE PROCEDURE (external) (DB2 SQL)

ALTER PROCEDURE (SQL - external) (DB2 SQL)

ALTER PROCEDURE (external) (DB2 SQL)
Related information:

COFVLFxx (virtual lookaside facility parameters) (MVS Initialization and
Tuning Reference)

Granting the CREATEIN privilege on schemas for stored
procedures
When a stored procedure is created, it is explicitly or implicitly qualified by a
schema. Users must have the required CREATEIN privilege on the schema before
they can create stored procedures.

About this task

Many users create stored procedures in the same schema at an application
level. These users need the CREATEIN privilege on the schema. You can grant this
privilege to a secondary ID or role that is associated with individual users. Those
users can then issue a SET CURRENT SQLID statement to the secondary ID or role
prior to creating stored procedures in the schema.

Procedure

To grant the CREATEIN privilege on schemas for stored procedures:

Issue a GRANT statement with the appropriate options, depending on whether
you are granting the privilege to a secondary ID or to a role.
v For a secondary ID, issue a GRANT statement with the CREATEIN ON

SCHEMA clause. Specify the schema name and secondary ID. For example,
assume that you want a user with the secondary ID of PAOLORW to be able to
create stored procedures in a schema named DEVL7083. To give this user the
necessary privilege, you can issue this statement:
GRANT CREATEIN ON SCHEMA DEVL7083 TO PAOLORW;

146 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlexternal.htm#db2z_sql_alterproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2e2a0/20.0
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2e2a0/20.0


If the ID PAOLORW issues a CREATE PROCEDURE statement without having
the required CREATEIN privilege on the schema, an error occurs, and the
procedure is not created.

v For a role, issue a GRANT statement with the CREATEIN ON SCHEMA clause.
Specify the schema name and the role that will be in effect when the stored
procedure is created. (For users to be associated with a role, the trusted context
that links them to the role needs to be defined with the ROLE AS OBJECT
OWNER AND QUALIFIER clause.) For example, assume that you want to grant
the CREATEIN privilege to a role named ADMINISTRATOR so that users who
are associated with the ADMINISTRATOR role can create stored procedures in a
schema named DEVL7083. To grant this privilege, you can issue this statement:
GRANT CREATEIN ON SCHEMA DEVL7083 TO ROLE ADMINISTRATOR;

If a user who is associated with the role named ADMINISTRATOR issues a
CREATE PROCEDURE statement without having the required CREATEIN
privilege on the schema, an error occurs, and the procedure is not created.

Results

After a secondary ID or role is granted the CREATEIN privilege for a stored
procedure and then creates a stored procedure, that ID or role is the owner of that

stored procedure.
Related reference:

GRANT (schema privileges) (DB2 SQL)

Granting privileges for using distinct types
Stored procedures can pass parameters that have a distinct type as a data type.
When a distinct type is used as a stored procedure parameter, users who create the
stored procedure need the USAGE privilege on the distinct type.

About this task

When you create a distinct type, you, as the owner of that type, implicitly have the
USAGE privilege on the type. You also have the EXECUTE privilege on the
associated cast functions. If other users want to create stored procedures that pass
a parameter with that distinct type, you need to explicitly grant the USAGE
privilege to them.

Procedure

To grant privileges for using distinct types:

Issue the GRANT statement with the USAGE ON TYPE clause, and specify the
name of the distinct type.
v You can grant privileges for using distinct types to an authorization ID. For

example, assume that you want the user whose authorization ID is PAOLORW
to be able to use the US_DOLLARS distinct type, which you created. Specifically,
this user needs to create a stored procedure that passes a parameter with this
data type. To grant this privilege, you can issue this statement:

GRANT USAGE ON TYPE US_DOLLARS TO PAOLORW;

Chapter 3. Managing access through RACF 147

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantschemaprivileges.htm#db2z_sql_grantschemaprivileges


v You can grant privileges for using distinct types to a role. For example, if you
want the role named ADMINISTRATOR to be able to use the US_DOLLARS
distinct type, you can issue this statement:

GRANT USAGE ON TYPE US_DOLLARS TO ROLE ADMINISTRATOR;

Related reference:

GRANT (type or JAR file privileges) (DB2 SQL)

Granting privileges for using JAR files
To use Java archive (JAR) files, you need to have the USAGE privilege on the JAR.

About this task

If you have the USAGE privilege on the JAR, you can specify a JAR file in the
EXTERNAL NAME clause of a stored procedure with a language type of Java.

Procedure

To grant privileges for using JAR files:

Issue the GRANT statement, specifying the USAGE clause. For example, assume
that you want the user whose AUTHID is PAOLORW to create a Java stored
procedure, EMPDTL1J. Assume that the external name of the stored procedure is
to be DEVL7083.EmpJar:EmpDtl1J.GetEmpDtls, where:

DEVL7083.EmpJar
Is the JAR file name.

EmpDtl1J
Is the class name.

GetEmpDtls
Is the method name.

AUTHID PAOLORW needs the USAGE privilege (from the JAR file owner ID or
schema that was used for executing the INSTALL_JAR stored procedure). The
following statement grants this privilege:

GRANT USAGE ON JAR DEVL7083.EmpJar TO PAOLORW;

In addition, if specified, the contents of the JAR file must already be installed in
the DB2 catalog at the time the stored procedure is created.
Related reference:

GRANT (type or JAR file privileges) (DB2 SQL)

Granting privileges for executing stored procedures and stored
procedure packages
After you create a stored procedure, you need to grant EXECUTE privilege to
users who plan to run the stored procedure and the stored procedure package. You
can use the GRANT statement to grant the required privileges.

148 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_granttypeorjarprivileges.htm#db2z_sql_granttypeorjarprivileges
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_granttypeorjarprivileges.htm#db2z_sql_granttypeorjarprivileges


About this task

Invoking a stored procedure requires the EXECUTE privilege on the stored
procedure. For external stored procedures (including external SQL procedures),
additional authority is needed for the stored procedure package and for most
packages that run in the stored procedure.

Procedure

To grant privileges for executing stored procedures and stored procedure packages:
1. Issue the SQL GRANT statement with the EXECUTE ON PROCEDURE clause

to the appropriate authorization ID or role.
v To grant the EXECUTE privilege to an authorization ID, use the GRANT

statement with the EXECUTE ON PROCEDURE clause. For example, to
grant EXECUTE privilege for a stored procedure named SPNAME to a user
whose authorization ID is PAOLORW, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO PAOLORW;

v To grant the EXECUTE privilege to a role, use the GRANT statement with
the EXECUTE ON PROCEDURE clause and the ROLE clause. For example,
to grant EXECUTE privilege for a stored procedure named SPNAME to a
role named ADMINISTRATOR, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE SPNAME TO ROLE ADMINISTRATOR;

The DYNAMICRULES behavior for the plan or package that contains the CALL
statement determines which authorization ID or role holds the privilege.

2. Issue the SQL GRANT EXECUTE ON PACKAGE statement with the
appropriate options, depending on whether you are granting the privilege to an
authorization ID or a role:
v To grant the EXECUTE privilege on the package to an authorization ID, issue

the GRANT statement with the EXECUTE ON PACKAGE clause. For
example, to grant the privilege to execute a package named PKGNAME to a
user whose authorization ID is PAOLORW, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO PAOLORW;

v To grant the EXECUTE privilege on the package to a role, issue the GRANT
statement with the EXECUTE ON PACKAGE clause and the ROLE clause.
For example, to grant this privilege to execute a package named PKGNAME
to a role named ADMINISTRATOR, you can issue this statement:
GRANT EXECUTE ON PACKAGE PKGNAME TO ROLE ADMINISTRATOR;

The complete syntax of the GRANT statement that you should use depends on

the type of package.
Related reference:

CALL (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

GRANT (package privileges) (DB2 SQL)

Controlling remote execution of stored procedures by using
trusted contexts
You can use trusted contexts and roles to control how a stored procedure can be
executed. A trusted context is an independent database entity that is based on a
system authorization ID (SYSTEM AUTHID) and connection trust attributes.

Chapter 3. Managing access through RACF 149

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantpackageprivileges.htm#db2z_sql_grantpackageprivileges


Before you begin

To use trusted connections, you cannot set the ALL subsystem parameter to ALL
and set the RESTART subsystem parameter to DEFER on installation panel
DSNTIPS.

About this task

For a remote stored procedure CALL, the SYSTEM AUTHID is derived
from the system user ID that is provided by an external entity, such as a
middleware server. This ID is derived when the connection is initiated. The
connection trust attributes are as follows, specified in the CREATE TRUSTED
CONTEXT statement:

ADDRESS
IP address or domain name. (The protocol is restricted to TCP/IP only.)

SERVAUTH
A resource in the RACF SERVAUTH class.

ENCRYPTION
Minimum level of encryption for the connection:

NONE
No encryption. This is the default value.

LOW DRDA data stream encryption.

HIGH Secure Sockets Layer (SSL) encryption.

Procedure

To call a stored procedure in trusted contexts:
1. Define a role by issuing the CREATE ROLE statement. A role is a database

entity that groups together one or more privileges and that can be assigned to
users by using a trusted context. A role can be used in conjunction with a
trusted context and stored procedures to identify one or more authorization IDs
that can execute a stored procedure. For example, assume that you want to call
stored procedure DEVL7083.EMPDTL1C, which resides on DB2 subsystem
DB9A by using authorization ID PAOLORW. Assume also that you want to
define a role called SP_CALLER for use by PAOLORW. You can issue the
following SQL statement:
CREATE ROLE SP_CALLER;

2. Grant the EXECUTE privilege on a stored procedure to that role. For example,
to grant the EXECUTE privilege to the role called SP_CALLER for the stored
procedure named EMPDTL1C, you can issue the following statement:
GRANT EXECUTE ON PROCEDURE DEVL7083.EMPDTL1C TO ROLE SP_CALLER;

3. Have an authorized user bind the stored procedure package. The user either
needs SYSADM authority or must have explicitly bind authority for that stored
procedure. For example, assume that an authorized user wants to bind stored
procedure DEVL7083.EMPDTL1C into stored procedure package
DEVL7083.EMPDTL1CPKG. You can issue the following statement:
BIND PACKAGE(DEVL7083) MEMBER(EMPDTL1CPKG)

4. Grant the EXECUTE privilege on the stored procedure package to the
authorization ID or role that needs to run it. For example, to grant the
EXECUTE privilege on stored procedure package DEVL7083.EMPDTL1CPKG
to the role named SP_CALLER, you can issue this statement:

150 Managing Security



GRANT EXECUTE ON PACKAGE DEVL7083.EMPDTL1CPKG TO ROLE SP_CALLER;

5. Define the trusted context. For example, assume that you want to define a
trusted context named TRUSTED_EMPDTL1C that uses:
v System authorization ID PAOLORW
v Default role SP_CALLER
v IP address 9.30.28.113

To define this trusted context, you can issue the following statement:
CREATE TRUSTED CONTEXT TRUSTED_EMPDTL1C
BASED UPON CONNECTION USING SYSTEM AUTHID PAOLORW
ATTRIBUTES (ADDRESS ’9.30.28.113’)
DEFAULT ROLE SP_CALLER
ENABLE;

6. Optional: Verify that the authorization ID can execute the stored procedure by
running the application program that invokes the stored procedure and looking
at the system output. For example, assume that an application named
CALLEMPD uses a CALL :host-variable statement to invoke the stored
procedure named DEVL7083.EMPDTL1C. Assume also that the application
program generates trace output. You might see the following system output:
DEVL7083.CALLEMPD - Run started.
Data returned in result sets is limited to the first 50 rows.
Data returned in result set columns is limited to the first 100

bytes or characters.
DEVL7083.CALLEMPD - Calling the stored procedure.
DEVL7083.CALLEMPD - Run completed.

Related reference:

CREATE TRUSTED CONTEXT (DB2 SQL)

CREATE ROLE (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

Protecting connection requests that use the TCP/IP protocol
You can set your DB2 subsystem to send or receive connection requests that use
the TCP/IP network protocol. You need to authorize the started task user ID
(SYSDSP) that is associated with the DB2 distributed address space (ssnmDIST) to
use the z/OS UNIX System Services.

Procedure

To secure connection requests over TCP/IP:
1. Create an OMVS segment in the RACF user profile for the started task user ID

(SYSDSP)
2. Specify a z/OS UNIX user identifier of 0 and the maximum number of files of

that the user is allowed to have concurrently active to 131702 in the following
command:
ADDUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

If the ddfuid ID already exists, use:
ALTUSER ddfuid OMVS(UID(0) FILEPROCMAX(131702))

The started task user ID of the DB2 distributed address space only needs a
z/OS UNIX user identifier of 0 (UID(0)). A UID 0 is considered a superuser. If
you don't want to grant the superuser authority to the started task user ID that

Chapter 3. Managing access through RACF 151

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrustedcontext.htm#db2z_sql_createtrustedcontext
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createrole.htm#db2z_sql_createrole
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges


is associated with the ssnmDIST address space during the DB2 installation, you
can specify a value other than 0 for the UID parameter. Make sure that the
value is a valid z/OS UNIX user identifier.

3. If you want to assign a z/OS group name to the address space, assign an
OMVS segment to the z/OS group name by using one of the following RACF
commands:
ADDGROUP ddfgnm OMVS(GID(nnn))...

ALTGROUP ddfgnm OMVS(GID(nnn))...

where ddfgnm is the z/OS group name and nnn is any valid, unique identifier.
The standard way to assign a z/OS userid and a z/OS group name to a started
address space is to use the z/OS Security Server (RACF) STARTED resource
class. This method enables you to dynamically assign a z/OS user ID by using
commands instead of requiring an IPL to have the assignment take effect. The
alternative method to assign a z/OS user ID and a z/OS group name to a
started address space is to change the RACF started procedures table,
ICHRIN03.

Results

You can also manage TCP/IP requests in a trusted context. A trusted context
allows you to use a trusted connection without needing additional authentication
and to acquire additional privileges through the definition of roles.

The TCP/IP Already Verified (DSN6FAC TCPALVER) controls whether DB2
accepts TCP/IP connection requests that contain only a user ID. However, in the
case of a trusted context, it is the definition of the trusted context, not the
TCPALVER setting, handles the requirement for switching users of a trusted
connection.

Do not set DSN6FAC TCPALVER to YES if you use a trusted context. If you set
TCPALVER to YES in the definition of the trusted context, you need to define the
authorization ID that establishes the trusted connection in the USER clause to
enforce the authentication requirement.
Related tasks:
“Defining DB2 resources to RACF” on page 131
“Permitting RACF access” on page 133
“Managing authorization for stored procedures” on page 142
“Establishing Kerberos authentication through RACF”

Establishing Kerberos authentication through RACF
Kerberos security is a network security technology that was developed at the
Massachusetts Institute of Technology. The Kerberos security technology does not
require passwords to flow in readable text because it uses encrypted tickets that
contain authentication information for the users.

About this task

DB2 can use Kerberos security services to authenticate remote users. With Kerberos
security services, remote users need to issue their Kerberos name and password to
access DB2. They can use the same name and password for access throughout the
network, which makes a separate password to access DB2 unnecessary.

152 Managing Security



A remote user who is authenticated to DB2 by means of Kerberos authentication
must be registered in RACF profiles. An organization that runs a Kerberos server
establishes its own realm. The name of the realm in which a client is registered is
part of the client's name and can be used by the application server to accept or
reject a request.

Procedure

To authenticate and register a remote user in RACF profiles:
1. Define the Kerberos realm to RACF by issuing the following command:

RDEFINE REALM KERBDFLT KERB(KERBNAME(localrealm) PASSWORD(mykerpw)

You must specify the name of the local realm in the definition. You must also
specify a Kerberos password for RACF to grant Kerberos tickets.

2. Define local principals to RACF by issuing the following command:
AU RONTOMS KERB(KERBNAME(rontoms))
ALU RONTOMS PASSWORD(new1pw) NOEXPIRE

Make sure to change RACF passwords before the principals become active
Kerberos users.

3. Map foreign Kerberos principals by defining KERBLINK profiles to RACF with
a command similar to the following:
RDEFINE KERBLINK /.../KERB390.ENDICOTT.IBM.COM/RWH APPLDATA(’RONTOMS’)

You must also define a principal name for the user ID that is used in the
ssnmDIST started task address space, as shown in the following example:
ALU SYSDSP PASSWORD(pw) NOEXPIRE KERB(KERBNAME(SYSDSP))

The ssnmDIST address space must have the RACF authority to use its SAF
ticket parsing service. The user ID that is used for the ssnmDIST started task
address space is SYSDSP.

4. Define foreign Kerberos authentication servers to the local Kerberos
authentication server by issuing the following command:
RDEFINE REALM /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/KER2000.ENDICOTT.IBM.COM +
KERB(PASSWORD(realm0pw))

You must supply a password for the key to be generated. REALM profiles
define the trust relationship between the local realm and the foreign Kerberos
authentication servers. PASSWORD is a required keyword, so all REALM
profiles have a KERB segment.

What to do next

Data sharing environment: Data sharing Sysplex environments that use Kerberos
security must have a Kerberos Security Server instance running on each system in
the Sysplex. The instances must either be in the same realm and share the same
RACF database, or have different RACF databases and be in different realms.

Chapter 3. Managing access through RACF 153



Related tasks:
“Defining DB2 resources to RACF” on page 131
“Permitting RACF access” on page 133
“Managing authorization for stored procedures” on page 142
“Protecting connection requests that use the TCP/IP protocol” on page 151

Implementing DB2 support for enterprise identity mapping
Enterprise identity mapping (EIM) enables the mapping of user identities across
servers that are integrated but that do not share user registries. DB2 supports the
EIM capability by implementing the SAF user mapping plug-in callable service,
which is part of the z/OS Security Server (RACF).

Before you begin

You can exploit the EIM support by using the IBM WebSphere Application Server
6.0.1, the IBM DB2 Driver for JDBC and SQLJ, and the IBM DB2 Driver for ODBC
and CLI.

You must install the z/OS SAF user mapping plug-in service to implement the
DB2 support for the EIM.

Procedure

To implement the DB2 support for EIM:
1. Configure the z/OS LDAP server with a TDBM backend
2. Set up RACF for the LDAP server
3. Configure the z/OS EIM domain controller
4. Add the SAF user mapping data set to LNKLIST

Results

If you enable DB2 support for EIM, DB2 can retrieve the mapped user ID from the
SAF user mapping plug-in and specify the information in the ICTX structure.
During the ENVIR=CREATE processing, DB2 passes the information to RACF
through the RACROUTE REQUEST=VERIFY macro service. When RACF
successfully authenticates the user, the ICTX structure is anchored in the
ACEEICTX field.

Note: The SAF user identity mapping plug-in service will not be supported in the
future release of DB2 for z/OS.
Related reference:

z/OS Security Server RACF Command Language Reference

z/OS Integrated Security Services LDAP Server Administration and Use

z/OS Integrated Security Services Enterprise Identity Mapping (EIM) Guide
and Reference

Configuring the z/OS LDAP server
When DB2 receives an authenticated user registry name, it invokes the SAF user
mapping plug-in service. This service uses the EIM domain, which is an LDAP
server, to retrieve the z/OS user ID that is used as the primary authorization ID.

154 Managing Security

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ichza4a1/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/glda2a40/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/EIMA1160/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/EIMA1160/CCONTENTS


About this task

You can use the LDAP configuration (ldapcnf) utility to configure and set up a
z/OS LDAP server. The LDAP configuration utility requires the ldap.profile
input file that is shipped in the /usr/lpp/ldap/etc directory. The ldap.profile file
contains the settings that you need to set up the LDAP server.

Procedure

To configure a z/OS LDAP server:
1. Copy and modify the ldap.profile file based on your own environment.
2. Issue the following command to run the LDAP configuration utility with the

ldap.profile file that you modified:
ldapcnf –i ldap.profile

The LDAP configuration utility generates the following output files:
v SLAPDCNF member as the LDAP server configuration file
v SLAPDENV member as the LDAP server environment variable file
v PROG member for APF authorization
v GLDSRV procedure for starting the LDAP server
v DSNAOINI configuration file for DB2 CLI
v TDBSPUFI DB2 SQL DDL statements for creating the TDBM environment
v DBCLI DB2 SQL BIND statements for binding the CLI/ODBC packages and

plan
v RACF member for creating the RACF profiles that protect the LDAP server

service task and grant permissions for the user ID to run the LDAP server
These output files are stored in the OUTPUT_DATASET_NAME that you
specified in the ldap.profile file.

3. Submit the following output JCL files after DB2 is started:
v DBCLI member file
v RACF member file

4. Submit the TDBSPUFI member file by using the DB2 SPUFI interactive tool.
5. Start the LDAP server from SDSF or the operator's console.

The name of the LDAP server procedure file is the same as the user ID that is
specified on the LDAPUSRID statement. The pre-assigned value is GLDSRV.
To start the LDAP server from SDSF, enter:
/s GLDSRV

To start the LDAP server from the operator's console, enter:
s GLDSRV

6. Copy the schema.user.ldif file from the /usr/lpp/ldap/etc directory to a local
directory

7. Use the following ldapmodify utility to modify the schema entry for the TDBM
backend
ldapmodify -h ldaphost -p ldapport -D binddn -w passwd -f file

The following example shows how to use the ldapmodify utility:
ldapmodify –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f schema.user.ldif

At the top of the schema.user.ldif file, find the following line, and supply the
appropriate TDBM suffix in that line

Chapter 3. Managing access through RACF 155



dn: cn=schema, <suffix>

The suffix is the same value that is used in the TDBM_SUFFIX statement in the
ldap.profile file, as in the following example:
dn: cn=schema, o=IBM, c=US

8. Use the ldapadd utility to load the suffix entry and to create a user ID that is
used by the SAF user mapping plug-in for binding with the LDAP server. You
can use the following ldapadd utility statement:
ldapadd –h ldaphost –p ldapport –D binddn –w passwd –f file

The following is an example of using the ldapadd utility:
ldapadd –h v25ec099.svl.ibm.com –p 3389
–D “cn=LDAP Administrator”
–w secret –f setup.ldap.ldif

Setting up RACF for the z/OS LDAP server
After you configure the z/OS LDAP server, you need to set up RACF to activate
identity mapping. You also need to grant DB2 authority to use the SAF user
mapping plug-in service.

Procedure

To set up RACF for the z/OS LDAP server:
1. Enable identity mapping by activating the FACILITY class.

The FACILITY class must be active to enable identity mapping. Use the
following SETROPTS command if it is not already active at your installation:
SETROPTS CLASSACT(FACILITY)

2. Define a KEYMSTR profile to store an encryption key.
Make sure to choose a key that is known only to the security administrator,
and store it in the KEYMSTR profile that you defined, as shown in the
following example:
RDEF KEYSMSTR LDAP.BINDPW.KEY SSIGNON(KEYMASKED(0123456789ABCDEF))

The LDAP BIND passwords are encrypted with the key that is stored in the
LDAP.BINDPW.KEY profile. The value of the key in this example is
0123456789ABCDEF.

3. Authorize DB2 to request lookup services by defining and granting READ
access to the SYSDSP user in the following RACF profiles:
RDEF FACILITY IRR.RGETINFO.EIM UACC(NONE)
PE IRR.RGETINFO.EIM ACCESS(READ) ID(SYSDSP) CL(FACILITY)

RDEF FACILITY IRR.RDCEKEY UACC(NONE)
PE IRR.RDCEKEY ACCESS(READ) ID(SYSDSP) CL(FACILITY)

4. Define the IRR.PROXY.DEFAULTS profile in the FACILITY class, as follows:
RDEF FACILITY IRR.PROXY.DEFAULTS
PROXY(LDAPHOST('ldap://v25ec099.svl.ibm.com:3389’)
BINDDN('cn=eim user,o=IBM,c=US’) BINDPW('secret’))
EIM(DOMAINDN('ibm-eimDomainName=My Domain,o=IBM,c=US’)
LOCALREG('My Target Registry’))

SETROPTS RACLIST(FACILITY) REFRESH

5. Grant DB2 the authority to use the SAF user mapping plug-in service by
issuing the following commands:
RDEF PROGRAM IRRSPIM ADDMEM (’USER.PRIVATE.DLLLIB’//NOPADCHK)
PE IRRSPIM ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

156 Managing Security



RDEF PROGRAM IRRSPIME ADDMEM ('USER.PRIVATE.DLLLIB’//NOPADCHK)
PE IRRSPIME ACCESS(READ) ID(SYSDSP) CL(PROGRAM)

SETROPTS WHEN(PROGRAM) REFRESH

Setting up the EIM domain controller
After you set up the LDAP server and RACF, you need to use the RACF eimadmin
utility to create and configure an EIM domain controller.

Procedure

To create an EIM domain controller in this situation:
1. Create an EIM domain by issuing the following command:

eimadmin –aD -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b “cn=LDAP Administrator” -w secret

The example shows that the new domain name is "My Domain." It also shows
that the TDBM_SUFFIX statement in the ldap.profile file is defined as
o=IBM,c=US.

2. Grant the EIM user access to the EIM domain for performing lookup services
by issuing the following command:
eimadmin -aC -c MAPPING -q "cn=eim user, o=IBM, c=US" -f DN
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

3. Create the source registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Source Registry" -y KERBEROS
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

4. Create the target registry in the EIM domain by issuing the following
command:
eimadmin -aR -r "My Target Registry" -y RACF
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

5. Add the enterprise identifier “Cat” to the EIM domain by issuing the following
command:
eimadmin -aI -i "Cat" -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

You can add multiple enterprise identifiers to the same EIM domain at any
time.

6. Associate registry user IDs with the identifiers in the EIM domain by issuing
the following commands:
eimadmin -aA -u "Kitty" -r "My Source Registry" -t SOURCE
-i "Cat" -d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

eimadmin -aA -u "Buffy" -r "My Target Registry" -t TARGET
-o "db2/stlec1/va1adist" -i "Cat"
-d ’ibm-eimDomainName=My Domain,o=IBM,c=US’
-h ldap://v25ec099.svl.ibm.com:3389
-b ’cn=LDAP Administrator’ -w secret

Chapter 3. Managing access through RACF 157



Specify the "-o" flag with the "db2/location-name/subsystem-name"+ "dist" value
when you define a user ID for DB2 to use as the primary authorization ID in
your target registry. As the examples show, when DB2 calls the SAF user
mapping plug-in service to retrieve the primary authorization ID, DB2 specifies
the additional db2/location-name/subsystem-name"+ "dist" information for the
plug-in service to look up.
If a target identity is found with the same information, the target identity
"Buffy" is returned. If the target identity does not contain any additional
information, user ID "Buffy" is also returned to DB2. However, if the target
registry contains multiple user identities and if none of them contains the
recommended additional information, no user identity is returned to DB2.

Adding the SAF user mapping plug-in data set to LNKLIST
The SAF user mapping plug-in IRRSPIME resides in a z/OS data set. This data set
must be included in the LNKLST. If the data set is not included, you need to add
it to the LNKLST.

Procedure

To add the z/OS data set that contains the SAF user mapping plug-in to the
LNKLST:
1. Define a new LNKLST by issuing the following command from the operator

console:
SETPROG LNKLST,DEFINE,NAME=MYLNKLST,COPYFROM=CURRENT

2. Add the USER.PRIVATE.DLLLIB data set on the USER01 volume to the new
MYLNKLST by issuing the following command:
SETPROG LNKLST,ADD,NAME=MYLNKLST,DSNAME=USER.PRIVATE.DLLLIB,
VOLUME=USER01

3. Activate the new MYLNKLST by issuing the following command:
SETPROG LNKLST,ACTIVATE,NAME=MYLNKLST

4. Use the MYLNKLST to update the current tasks in the system by issuing the
following command:
SETPROG LNKLST,UPDATE,JOB=*

Implementing DB2 support for distributed identity filters
A distributed identity filter is a RACF mapping association between a RACF user ID
and one or more distributed user identities. You can use the RACF RACMAP
command to associate a distributed user identity with a RACF user ID.

Before you begin

RACF distributed identity filters are implemented through z/OS identify
propagation. You must install and run z/OS Version 1 Release 11 to use distributed
identity filters.

About this task

DB2 provides support for z/OS identify propagation and distributed identity
filters. You need to create distributed identity filters to take advantage of this
support.

158 Managing Security



Procedure

To create a distributed identity filter:
1. Activate the RACF general resource IDIDMAP class and enable it for RACLIST

processing by issuing the following command:
SETROPTS CLASSACT(IDIDMAP) RACLIST(IDIDMAP)

2. Define a distributed identity filter and associate the distributed user name with
a RACF user ID by issuing the RACF RACMAP command. To define a filter for a
non-LDAP user name, specify the user name as a simple character string to be
defined in a non-LDAP registry. Suppose that the distributed user name is
'MARY' which is defined in user registry 'Registry01'. If you want to map this
user name to RACF user ID 'DB2USER1', you can issue the RACMAP command,
as follows
RACMAP ID(DB2USER1) MAP

USERIDFILTER(NAME(’MARY’))
REGISTRY(NAME(’Registry01’))
WITHLABEL(’Filter for MARY from Registry01’)

3. Refresh the IDIDMAP class profile by issuing the following command:
SETROPTS RACLIST(IDIDMAP) REFRESH

4. If necessary, review the distributed identity filter by issuing the following
RACMAP LISTMAP command:
RACMAP ID(DB2USER1) LISTMAP

If the new filter is successfully created, the following ouput is returned:
Mapping information for user DB2USER1:

Label: Filter for MARY from Registry01
Distributed Identity User Name Filter:

>MARY<
Registry name:

>Registry01<

Results

The new filter assigns RACF user ID DB2USER1 when the distributed identity is
user MARY from Registry01. When user MARY authenticates her identity at her
distributed application server and performs tasks that access a remote DB2 server
system, DB2 passes distributed user name MARY and registry name Registry01 as
character strings to RACF.

During DB2 remote connection processing, DB2 calls the RACF RACROUTE
REQUEST=VERIFY ENVIR=CREATE macro service. RACF uses these data values
to search the IDIDMAP profiles for a matching filter. RACF finds the matching
filter labeled 'Filter for MARY from Registry01 and assigns it the DB2USER1 user
ID. The remote connection then executes its transactions with the authority of the
DB2USER1 user ID. If in place, audit records for this transaction contains both
RACF user ID DB2USER1, distributed user MARY, and registry name Registry01
that DB2 passes to RACF.

Chapter 3. Managing access through RACF 159



Related reference:

z/OS Security Server RACF Security Administrator's Guide

Managing connection requests from local applications
Different local processes enter the access control procedure at different points,
depending on the environment in which they originate.

The following processes go through connection processing only:
v Requests originating in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs
v Requests through started task control address spaces (from the z/OS START

command)

The following processes go through connection processing and can later go
through the sign-on processing:
v The IMS control region.
v The CICS recovery coordination task.
v DL/I batch.
v Applications that connect using the Resource Recovery Services attachment

facility (RRSAF).

The following processes go through sign-on processing:
v Requests from IMS dependent regions (including MPP, BMP, and Fast Path)
v CICS transaction subtasks

IMS, CICS, RRSAF, and DDF-to-DDF connections can send a sign-on request,
typically to execute an application plan. That request must provide a primary ID,
and can also provide secondary IDs. After a plan is allocated, it need not be
deallocated until a new plan is required. A different transaction can use the same
plan by issuing a new sign-on request with a new primary ID.

Processing of connection requests
A connection request makes a new connection to DB2; it does not reuse an
application plan that is already allocated. Therefore, an essential step in processing
the request is to check that the ID is authorized to use DB2 resources.

DB2 completes the following steps to process a connection request:
1. DB2 obtains the initial primary authorization ID. As shown in the following

table, the source of the ID depends on the type of address space from which
the connection was made.

Table 36. Sources of initial primary authorization IDs

Source Initial primary authorization ID

TSO TSO logon ID.

BATCH USER parameter on JOB statement.

IMS control region or CICS USER parameter on JOB statement.

IMS or CICS started task Entries in the started task control table.

Remote access requests Depends on the security mechanism used.

160 Managing Security

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ichza7a0/CCONTENTS


2. RACF is called through the z/OS system authorization facility (SAF) to check
whether the ID that is associated with the address space is authorized to use
the following resources:
v The DB2 resource class (CLASS=DSNR)
v The DB2 subsystem (SUBSYS=ssnm)
v The requested connection type
The SAF return code (RC) from the invocation determines the next step, as
follows:
v If RC > 4, RACF determined that the RACF user ID is not valid or does not

have the necessary authorization to access the resource name. DB2 rejects the
request for a connection.

v If RC = 4, the RACF return code is checked.
– If RACF return code value is equal to 4, the resource name is not defined

to RACF and DB2 rejects the request with reason code X'00F30013'.
– If RACF return code value is not equal to 4, RACF is not active. DB2

continues with the next step, but the connection request and the user are
not verified.

v If RC = 0, RACF is active and has verified the RACF user ID; DB2 continues
with the next step.

3. If RACF is active and has verified the RACF user ID, DB2 runs the connection
exit routine. To use DB2 secondary IDs, you must replace the exit routine.
If you do not want to use secondary IDs, do nothing. The IBM-supplied default
connection exit routine continues the connection processing. The process has
the following effects:
v The DB2 primary authorization ID is set based on the following rules:

– If a value for the initial primary authorization ID exists, the value
becomes the DB2 primary ID.

– If no value exists (the value is blank), the primary ID is set by default, as
shown in the following table.

Table 37. Sources of default authorization identifiers

Source Default primary authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job with
no USER parameter

Default authorization ID set when DB2 was installed
(UNKNOWN AUTHID on installation panel DSNTIPP)

Remote request None. The user ID is required and is provided by the DRDA
requester.

v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

4. DB2 determines if TSO and BATCH connections that use DSN, RRSAF, and
Utilities are trusted.
For a TSO and BATCH connection that uses DSN, RRSAF, and Utilities, DB2
checks to see if a matching trusted context is defined for the primary
authorization ID and the job name. If a matching trusted context is found, the
connection is established as trusted.

Chapter 3. Managing access through RACF 161



Related concepts:
“Connection routines and sign-on routines” on page 245
Related tasks:
“Using sample connection and sign-on exit routines for CICS transactions” on page
165
“Specifying connection and sign-on routines” on page 245
“Debugging connection and sign-on routines” on page 254
Related reference:
“Processing of sign-on requests” on page 163

Using secondary IDs for connection requests
If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary
IDs, the easiest method is to use the IBM-supplied sample routine.

About this task

The following table lists the difference between the default and sample connection
exit routines.

Table 38. Differences between the default and sample connection exit routines

Default connection exit routine Sample connection exit routine

Supplied as object code. Supplied as source code. You can change the
code.

Installed as part of the normal DB2
installation procedure.

Must be compiled and placed in the DB2
library.

Provides values for primary IDs and SQL
IDs, but does not provide values for
secondary IDs.

Provides values for primary IDs, secondary
IDs, and SQL IDs.

The sample connection exit routine has the following effects:
v The sample connection exit routine sets the DB2 primary ID in the same way

that the default routine sets the DB2 primary ID, and according to the following
rules:
– If the initial primary ID is not blank, the initial ID becomes the DB2 primary

ID.
– If the initial primary ID is blank, the sample routine provides the same

default value as does the default routine.
– If the sample routine cannot find a nonblank primary ID, DB2 uses the

default ID (UNKNOWN AUTHID) from the DSNTIPP installation panel. In
this case, no secondary IDs are supplied.

v The sample connection exit routine sets the SQL ID based on the following
criteria:
– The routine sets the SQL ID to the TSO data set name prefix in the TSO user

profile table if the following conditions are true:
- The connection request is from a TSO-managed address space, including

the call attachment facility, the TSO foreground, and the TSO background.
- The TSO data set name prefix is equal to the primary ID or one of the

secondary IDs.
– In all other cases, the routine sets the SQL ID equal to the primary ID.

162 Managing Security



v The secondary authorization IDs depend on RACF options:
– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists (the default connected group name) if the attachment facility
supplied the default connected group name.

– If RACF is active and the “list of groups” option is active, the routine sets the
list of DB2 secondary IDs to the list of group names to which the RACF user
ID is connected. Those RACF user IDs that are in REVOKE status do not
become DB2 secondary IDs. The maximum number of groups is 1012. The list
of group names is obtained from RACF and includes the default connected
group name.

If the default connection exit routine and the sample connection exit routine do not
provide the flexibility and features that your subsystem requires, you can write
your own exit routine.

Processing of sign-on requests
Requests can come from IMS-dependent regions, CICS transaction subtasks, or RRS
connections. For each of these types of requests, the initial primary ID is obtained
immediately before a plan for the transaction is allocated. A new sign-on request
can run the same plan without de-allocating and reallocating the plan.

Unlike the connection processing, the sign-on processing does not check the RACF
for the user ID of the address space. DB2 completes the following steps to process
sign-on requests:
1. DB2 determines the initial primary ID as follows:

For IMS sign-ons from message-driven regions, if the user has signed on, the
initial primary authorization ID is the user's sign-on ID. IMS passes to DB2 the
IMS sign-on ID and the associated RACF connected group name, if one exists.
If the user has not signed on, the primary ID is the LTERM name, or if that is
not available, the PSB name. For a batch-oriented region, the primary ID is the
value of the USER parameter on the job statement, if that is available. If that is
not available, the primary ID is the program's PSB name.
For remote requests, the source of the initial primary ID is determined by
entries in the SYSIBM.USERNAMES table. For connections using Resource
Recovery Services attachment facility, the processing depends on the type of
signon request:
v SIGNON
v AUTH SIGNON
v CONTEXT SIGNON
For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if an
ACEE is associated with the TCB (TCBSENV). This is the normal case.
However, if an ACEE is not associated with the TCB, SIGNON uses the
primary authorization ID that is associated with the address space, that is, from
the ASXB. If the new primary authorization ID was retrieved from the ACEE
that is associated with the TCB and ACEEGRPN is not null, DB2 uses
ACEEGRPN to establish secondary authorization IDs.
With AUTH SIGNON, an APF-authorized program can pass a primary
authorization ID for the connection. If a primary authorization ID is passed,
AUTH SIGNON also uses the value that is passed in the secondary
authorization ID parameter to establish secondary authorization IDs. If the
primary authorization ID is not passed, but a valid ACEE is passed, AUTH
SIGNON uses the value in ACEEUSRI for the primary authorization ID if

Chapter 3. Managing access through RACF 163



ACEEUSRL is not 0. If ACEEUSRI is used for the primary authorization ID,
AUTH SIGNON uses the value in ACEEGRPN as the secondary authorization
ID if ACEEGRPL is not 0.
For CONTEXT SIGNON, the primary authorization ID is retrieved from data
that is associated with the current RRS context using the context_key, which is
supplied as input. CONTEXT SIGNON uses the CTXSDTA and CTXRDTA
functions of RRS context services. An authorized function must use CTXSDTA
to store a primary authorization ID prior to invoking CONTEXT SIGNON.
Optionally, CTXSDTA can be used to store the address of an ACEE in the
context data that has a context_key that was supplied as input to CONTEXT
SIGNON. DB2 uses CTXRDTA to retrieve context data. If an ACEE address is
passed, CONTEXT SIGNON uses the value in ACEEGRPN as the secondary
authorization ID if ACEEGRPL is not 0.

2. DB2 runs the sign-on exit routine. User action: To use DB2 secondary IDs, you
must replace the exit routine.
If you do not want to use secondary IDs, do nothing. Sign-on processing is
then continued by the IBM-supplied default sign-on exit routine, which has the
following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.
You can replace the exit routine with one of your own, even if it has nothing to
do with secondary IDs. If you do, remember that IMS and CICS recovery
coordinators, their dependent regions, and RRSAF take the exit routine only if
they have provided a user ID in the sign-on parameter list.

3. DB2 determines if the user of a trusted RRSAF SIGNON connection is allowed
to switch.
For a RRSAF SIGNON connection that is trusted, DB2 checks to see if the
primary authorization ID is allowed to switch in the trusted connection. If the
primary authorization ID is not allowed to switch, the connection is returned to
the unconnected state.

Related concepts:
“Connection routines and sign-on routines” on page 245
Related tasks:
“Using sample connection and sign-on exit routines for CICS transactions” on page
165
“Specifying connection and sign-on routines” on page 245
“Debugging connection and sign-on routines” on page 254
Related reference:
“Processing of sign-on requests” on page 163

Using secondary IDs for sign-on requests
If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine.

About this task

The procedure is similar to that for connection processing. If you want to use
RACF group names as DB2 secondary IDs, the easiest method is to use the
IBM-supplied sample routine. An installation job can automatically replace the
default routine with the sample routine.

164 Managing Security



Distinguish carefully between the two routines. The default sign-on routine
provides no secondary IDs and has the following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

Like the sample connection routine, the sample sign-on routine supports DB2
secondary IDs and has the following effects:
v The initial primary authorization ID is left unchanged as the DB2 primary ID.
v The SQL ID is made equal to the DB2 primary ID.
v The secondary authorization IDs depend on RACF options:

– If RACF is not active, no secondary IDs exist.
– If RACF is active but its “list of groups” option is not active, one secondary

ID exists; it is the name passed by CICS or by IMS.
– If RACF is active and you have selected the option for a list of groups, the

routine sets the list of DB2 secondary IDs to the list of group names to which
the RACF user ID is connected, up to a limit of 1012 groups. The list of group
names includes the default connected groupname.

Using sample connection and sign-on exit routines for CICS
transactions

For a CICS transaction to use the sample connection or sign-on exit routines, the
external security system, such as RACF, must be defined to CICS.

About this task

Define an external security system, such as RACF, to CICS with the following
specifications:
v The CICS system initialization table must specify external security.

– For CICS Version 4 or later, specify SEC=YES.
– For earlier releases of CICS, specify EXTSEC=YES.

If you are using the CICS multiple region option (MRO), you must specify
SEC=YES or EXTSEC=YES for every CICS system that is connected by
interregion communication (IRC).

v If your version of CICS uses a sign-on table (SNT), the CICS sign-on table must
specify EXTSEC=YES for each signed on user that uses the sign-on exit.

v When the user signs on to a CICS terminal-owning region, the terminal-owning
region must propagate the authorization ID to the CICS application-owning
region.

You must change the sample sign-on exit routine (DSN3SSGN) before using it if
the following conditions are all true:
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF.

Chapter 3. Managing access through RACF 165



Related concepts:
“Connection routines and sign-on routines” on page 245
Related reference:
“Processing of connection requests” on page 160
“Processing of sign-on requests” on page 163
“Sample connection and sign-on routines” on page 246
“Exit parameter list for connection and sign-on routines” on page 247

Managing connection requests from remote applications
If you control requests from remote applications, your DB2 subsystem might be
accepting requests from applications that use SNA network protocols, TCP/IP
network protocols, or both.

Security mechanisms for DRDA and SNA
DRDA encryption is not intended to provide confidentiality and integrity of
passwords or data over a network that is not secure, such as the Internet. DRDA
encryption uses an anonymous key exchange, Diffie-Hellman, which does not
provide authentication of the server or the client. DRDA encryption is vulnerable
to man-in-the-middle attacks.

DB2 for z/OS and z/OS support a wide variety of cryptographic authentication
schemes and protocols, such as the use of the z/OS Communications Server IP
Application Transparent Transport Layer Security (AT-TLS), to provide an
authenticated key agreement that helps prevent man-in-the-middle and related
attacks. These methods mathematically bind the agreed-upon key to other
agreed-upon data to secure data over a network that is not secure.

DRDA and SNA have different security mechanisms. DRDA allows a user to be
authenticated by using SNA security mechanisms or DRDA mechanisms, which are
independent of the underlying network protocol. Make sure to use network
security, such as client certificate authentication, SSL connections that use AT-TLS,
or IPSec, to secure DRDA authentication mechanisms over a network that is not
secure.

For an SNA network connection, a DRDA requester can send security tokens by
using a SNA attach or a DRDA command. DB2 for z/OS as a requester uses SNA
security mechanisms if it uses a SNA network connection (except for Kerberos) and
DRDA security mechanisms for TCP/IP network connections (or when Kerberos
authentication is chosen, regardless of the network type).

166 Managing Security



Related concepts:
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Security mechanisms for DB2 for z/OS as a requester
As a requester, DB2 for z/OS chooses SNA or DRDA security mechanisms based
on the network protocol and the authentication mechanisms that you use. Make
sure to use network security, such as client certificate authentication, SSL
connections that use AT-TLS, or IPSec, to secure DRDA authentication mechanisms
over a network that is not secure.

If you use SNA protocols, DB2 supports the following SNA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicket

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, DB2 supports the following DRDA authentication
mechanisms:
v User ID only (already verified)
v User ID and password
v User ID and PassTicke

If you use TCP/IP protocols with the z/OS Integrated Cryptographic Service
Facility, DB2 also supports the following DRDA authentication mechanisms:
v Encrypted user ID and encrypted password
v Encrypted user ID and encrypted security-sensitive data

Authentication is performed based on DRDA protocols, which means that the
authentication tokens are sent in DRDA security flows. See “Security mechanisms
for DRDA and SNA” on page 166 for more information about using DRDA
encryption.

Chapter 3. Managing access through RACF 167

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


Related concepts:
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Security mechanisms for DB2 for z/OS as a server
As a server, DB2 for z/OS can accept either SNA or DRDA authentication
mechanisms. Make sure to use network security, such as client certificate
authentication, SSL connections that use AT-TLS, or IPSec, to secure DRDA
authentication mechanisms over a network that is not secure.

DB2 authenticates remote users from the security tokens that are obtained from the
SNA ATTACH (FMH-5) or from the DRDA security commands that are described
by each of the protocols. See “Security mechanisms for DRDA and SNA” on page
166 for more information about using DRDA encryption.

DB2 for z/OS accepts connection requests from remote clients that use an AES or
DES encryption algorithm to protect user IDs and passwords over a TCP/IP
network. Specifically, DB2 supports the following authentication methods:
v User ID only (already verified at the requester)
v User ID and password
v User ID and PassTicket
v Kerberos tickets
v Unencrypted user ID and encrypted password
v Encrypted user ID and encrypted password
v User ID, password, and new password

DB2 for z/OS as a server also supports the following authentication mechanisms if
the z/OS Integrated Cryptographic Service Facility is installed and active:
v Encrypted user ID and encrypted security-sensitive data
v Encrypted user ID, encrypted password, and encrypted security-sensitive data
v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data

168 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


Related concepts:
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Communications database for the server
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of how requests leave a DB2 subsystem and how requests come in.
Columns in the SYSIBM.LUNAMES and SYSIBM.USERNAMES tables pertain to
security on the inbound side (the server).

SYSIBM.LUNAMES columns
The SYSIBM.LUNAMES table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_IN CHAR(1)
The acceptance option for a remote request from the corresponding
LUNAME:

V The option is “verify.” An incoming request must include one of
the following authentication entities:
v User ID and password
v User ID and RACF PassTicket
v User ID and RACF encrypted password (not recommended)
v Kerberos security tickets
v User ID and DRDA encrypted password
v User ID, password, and new password
v User ID and encrypted password, or encrypted user ID and

encrypted password

A The option is “already verified.” This is the default. With A, a
request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:
v User ID only
v All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains I or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

Chapter 3. Managing access through RACF 169

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


ENCRYPTPSWDS CHAR(1)
This column only applies to DB2 for z/OS or DB2 for z/OS partners when
passwords are used as authentication tokens. It indicates whether
passwords received from and sent to the corresponding LUNAME are
encrypted:

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as if it is encrypted.

N No, passwords are not encrypted. This is the default; any character
other than Y is treated as N. Specify N for CONNECT statements
that contain a USER parameter.

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R') instead of using passwords.

USERNAMES CHAR(1)
This column indicates whether an ID accompanying a remote request, sent
from or to the corresponding LUNAME, is subject to translation and “come
from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

SYSIBM.USERNAMES columns
The SYSIBM.USERNAMES table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the system authorization ID for
establishing a trusted connection.

I The row applies to inbound IDs (not applicable for TCP/IP
connections).

O The row applies to outbound IDs.

The field should contain only I or O. Any other character, including blank,
causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME; all
authorization IDs are translated in the same way. Outbound translation is
not performed on CONNECT statements that contain an authorization ID
for the value of the USER parameter.

170 Managing Security



LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

Enabling change of user passwords
You can specify YES in the EXTENDED SECURITY field of the DSNTIPR
installation panel so that DB2 can return information about errors and expired
passwords to the DRDA requester.

About this task

When the DRDA requester is notified that the RACF password has expired, and
the requester has implemented function to allow passwords to be changed, the
requester can prompt the user for the old password and a new password. The
requester sends the old and new passwords to the DB2 server. This function is
supported through DB2 Connect™.

With the extended security option, DB2 passes the old and new passwords to
RACF. If the old password is correct, and the new password meets the
installation's password requirements, the user's password is changed and the
DRDA connection request is honored.

When a user changes a password, the user ID, the old password, and the new
password are sent to DB2 by the client system. The client system can optionally
encrypt these three tokens before they are sent.

Authorization failure code
If the EXTENDED SECURITY field is set to YES on the DSNTIPR installation
panel, DB2 returns detailed reason codes to a DRDA client when a DDF connection
request fails.

When using SNA protocols, the requester must have included support for
extended security sense codes. One such product is DB2 Connect.

If the proper requester support is present, the requester generates SQLCODE
-30082 (SQLSTATE '08001') with a specific indication for the failure. Otherwise, a
generic security failure code is returned.

Global authentication cache
DB2 can cache user credentials when processing remote TCP/IP connections.

Chapter 3. Managing access through RACF 171

|

|



When processing a TCP/IP connection, DB2 authenticates a user ID by using
RACF. If the user ID is successfully authenticated, DB2 caches the user credentials
for three minutes during which DB2 reuses the cached credentials for subsequent
connection requests from the same user ID. DB2 deletes the cache entries if the
password is changed through a DRDA password change request or if the
AUTHEXIT_CACHEREFRESH system parameter is set and the user permissions
are changed in RACF.

DB2 does not differentiate PassTickets from passwords while caching user
credentials.

Managing inbound SNA-based connection requests
Requests from a remote LU are subject to security checks before they come into
contact with DB2. Those checks control what LUs can attach to the network and
verify the identity of a partner LU.

About this task

DB2 itself imposes several checks before accepting an attachment request.

Processing of remote attachment requests
The DB2 server completes a specific sequence of authentication process before
accepting a remote attachment request that uses the SNA protocol.
1. As the following diagram shows, if the remote request has no authentication

token, DB2 checks the security acceptance option in the SECURITY_IN column
of table SYSIBM.LUNAMES. No password is sent or checked for the plan or
package owner that is sent from a DB2 subsystem.

172 Managing Security

|
|
|
|
|
|
|

|
|



2. If the acceptance option is “verify” (SECURITY_IN = V), a security token is
required to authenticate the user. DB2 rejects the request if the token missing.

3. If the USERNAMES column of SYSIBM.LUNAMES contains I or B, the
authorization ID, and the plan or package owner that is sent by a DB2
subsystem, are subject to translation under control of the
SYSIBM.USERNAMES table. If the request is allowed, it eventually goes
through sign-on processing. If USERNAMES does not contain I or B, the
authorization ID is not translated.

4. DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to check
the ID. DB2 uses the PASSCHK=NO option if no password is specified and
ENCRYPT=YES if the ENCRYPTPSWDS column of SYSIBM.LUNAMES
contains Y. If the ID, password, or PassTicket cannot be verified, DB2 rejects
the request.

Activity at the DB2 server

Remote attach request using SNA protocols

ID and authentication check

Step 1: Is an
authentication
token present?

Step 2: Test
the value of
SECURITY_IN.

No =V
Token
required;
reject
request.

Yes =A

Step 3: Is
USERNAMES
I or B?

Check SYSIBM.LUNAMES

Yes

No

Check ID for sign-ons

Step 7: Is a
password
present?

No

Yes Step 8: Verify
ID by RACF.

Not authorized;
reject request.

Check USERNAMES table

Step 9: Seek a
translation row
in USERNAMES.

Not found;
reject request.

Found

Step 10: Obtain
the primary ID.

Connection processing

Not authorized;
reject request.

Step 5: Verify by
RACF that the ID
can access DB2.

Request accepted: continue
Request accepted: continue

Sign-on processing

Step 11: Is RACF access control
authorization (DSNX@XAC) exit or
IBM-supplied RACF general resource
class, SECLABEL, active?

Step 6: Run the
connection exit
routine (DSN3@ATH).

Not authorized;
reject request.

Step 4: Verify
ID by RACF.

Check ID for connections

Yes

Not authorized;
reject request.No

Step 13: Run the sign-on
exit routine (DSN3@SGN).

Step 10: Obtain
the primary ID.

Step 14: Local privilege
check at the server.

Step 12: Verify ID
by RACF.

Figure 8. DB2 processing of remote attachment requests

Chapter 3. Managing access through RACF 173



In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has been given

access to the DB2 APPL. The APPL resource that is checked is the LU name
that the requester used when the attachment request was issued. This is
either the local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the Port of Entry (POE). The POE that
RACF uses in the verify call is the requesting LU name.

5. The remote request is now treated like a local connection request with a DIST
environment for the DSNR resource class. DB2 calls RACF by the RACROUTE
macro with REQUEST=AUTH, to check whether the authorization ID is
allowed to use DB2 resources that are defined to RACF.
The RACROUTE macro call also verifies that the user is authorized to use
DB2 resources from the requesting system, known as the port of entry (POE).

6. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where a remote request originated.

7. If no password exists, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

8. If a password exists, DB2 calls RACF through the RACROUTE macro with
REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If DB2 cannot verify the ID or password, the
request is rejected.

9. DB2 searches SYSIBM.USERNAMES for a row that indicates how to translate
the ID. The need for a row that applies to a particular ID and sending location
imposes a “come-from” check on the ID: If no such row exists, DB2 rejects the
request.

10. If an appropriate row is found, DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID exists in the row, that value becomes

the primary authorization ID.
v If NEWAUTHID is blank, the primary authorization ID remains unchanged.

11. The remote request is now treated like a local sign-on request. DB2 invokes
the sign-on exit routine. The parameter list that is passed to the routine
describes where a remote request originated.

12. The remote request now has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. A request from a remote DB2 is also known by
a plan or package owner. Privileges and authorities that are granted to those
IDs at the DB2 server govern the actions that the request can take.

Controlling LU attachments to the network
VTAM checks to prevent an unauthorized logical unit (LU) from attaching to the
network and presenting itself to other LUs as an acceptable partner in
communication. It requires each LU that attaches to the network to identify itself
by a password.

About this task

If that requirement is in effect for your network, your DB2 subsystem, like every
other LU on the network, must:
1. Choose a VTAM password.

174 Managing Security



2. Code the password with the PRTCT parameter of the VTAM APPL statement,
when you define your DB2 to VTAM.

Verifying partner LUs
RACF and VTAM check the identity of a logical unit (LU) that sends a request to
your DB2 subsystem.

Procedure

Perform the following steps to specify partner-LU verification:
1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define

your DB2 to VTAM.
2. Establish a RACF profile for each LU from which you permit a request.

Accepting remote attachment requests
When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2
subsystem.

About this task

Make sure that you do not confuse the remote request with a local attachment
request that comes through one of the DB2 attachment facilities—IMS, CICS, TSO,
and so on. A remote attachment request is defined by Systems Network
Architecture and LU 6.2 protocols; specifically, it is an SNA Function Management
Header 5.

In order to accept remote attachment requests, you must first define your DB2 to
VTAM with the conversation-level security set to “already verified”. That is, you
need to code SECACPT=ALREADYV on the VTAM APPL statement. The
SECACPT=ALREADYV setting provides more options than does
SECACPT=CONV or “conversation”, which is not recommended.

The primary tools for controlling remote attachment requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attachment
requests, a dummy row that allows any system to send attachment requests, or
both. You might need rows in SYSIBM.USERNAMES to permit requests from
specific IDs or specific LUNAMES, or to provide translations for permitted IDs.

Managing inbound IDs through DB2
If you manage incoming IDs through DB2, you can avoid calls to RACF. You can
accept many IDs by specifying them in a single row in the SYSIBM.USERNAMES
table.

About this task

To manage incoming IDs through DB2, put an I in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. If an O is already specified because you
are also sending requests to that LU, change O to B. Attachment requests from that
LU now go through the sign-on processing, and its IDs are subject to translation.

Managing inbound IDs through RACF
If you manage incoming IDs through RACF, you must register every acceptable ID
with RACF, and DB2 must call RACF to process every request.

Chapter 3. Managing access through RACF 175



About this task

You can use RACF or Kerberos can authenticate the user. Kerberos cannot be used
if you do not have RACF on the system.

To manage incoming IDs through RACF, leave USERNAMES blank for that LU, or
leave the O unchanged, if already specified. Requests from that LU now go
through the connection processing, and its IDs are not subject to translation.

Authenticating partner LUs
If RACF has already validated the identity of an LU and if you trust incoming IDs
from the LU, you do not need to validate them by an authentication token.

About this task

You can choose whether to require an authentication token from a particular LU.

Procedure

To authenticate partner LUs, choose one of the following options:
v If you do not want DB2 to require an authentication token from a particular LU,

check that you have defined DB2 to VTAM with SECACPT=ALREADYV. Then
put an A in the SECURITY_IN column of the row in the SYSIBM.LUNAMES
table that corresponds to the other LU. Your acceptance level for requests from
that LU is now “already verified”. Requests from that LU are accepted without
an authentication token.

v If you want DB2 to require an authentication token from a particular LU, put a
V in the SECURITY_IN column in the SYSIBM.LUNAMES table. Your
acceptance level for requests from that LU is now “verify”.

What to do next

If you require an authentication token, you must register every acceptable
incoming ID and its password with RACF.

If an authentication token does accompany a request, DB2 calls RACF to check the
authorization ID against it.

: Each request to RACF to validate authentication tokens results in an I/O
operation, which has a high performance cost.

: To eliminate the I/O, allow RACF to cache security information in VLF. To
activate this option, add the IRRACEE class to the end of z/OS VLF member
COFVLFxx in SYS1.PARMLIB, as follows:
CLASS NAME(IRRACEE)
EMAJ (ACEE)

Related reference:

SYSIBM.LUNAMES table (DB2 SQL)

Encrypting passwords
You can encrypt passwords to secure network connection requests.

176 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmlunamestable.htm#db2z_sysibmlunamestable


Procedure

To encrypt passwords, use one of the following methods:
v RACF using PassTickets.
v DRDA password encryption support. DB2 for z/OS as a server supports DRDA

encrypted passwords and encrypted user IDs with encrypted passwords. See
“Security mechanisms for DRDA and SNA” on page 166 for more information
about using DRDA encryption.

v The SET ENCRYPTION PASSWORD statement. This encryption method should
not be used for distributed access because the unencrypted passwords in the
SET ENCRYPTION PASSWORD statement flow from the client to the server.

Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Authenticating users through Kerberos
If your distributed environment uses Kerberos to manage users and perform user
authentication, DB2 for z/OS can use Kerberos security services to authenticate
remote users.
Related tasks:
“Establishing Kerberos authentication through RACF” on page 152

Translating inbound IDs
Duplication of authorization IDs on different logical units (LUs) is a serious
security exposure. For tighter security, make sure that each of the authorization IDs
has the same meaning throughout your entire network.

About this task

Example: Suppose that the ID DBADM1 is known to the local DB2 and has
DBADM authority over certain databases there; suppose also that the same ID
exists in some remote LU. If an attachment request comes in from DBADM1, and if
nothing is done to alter the ID, the wrong user can exercise privileges of DBADM1
in the local DB2. The way to protect against that exposure is to translate the
remote ID into a different ID before the attachment request is accepted.

You must be prepared to translate the IDs of plan owners, package owners, and
the primary IDs of processes that make remote requests. Do not plan to translate
all IDs in the connection exit routine—the routine does not receive plan and
package owner IDs.

If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities

Chapter 3. Managing access through RACF 177

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


only to the translated value. The “translation” is not affected by anything you do
in your connection or sign-on exit routine. The output of the translation becomes
the input to your sign-on exit routine.

Recommendation: Do not translate inbound IDs in an exit routine; translate them
only through the SYSIBM.USERNAMES table.

The examples in the following table shows the possibilities for translation and how
to control translation by SYSIBM.USERNAMES. You can use entries to allow
requests only from particular LUs or particular IDs, or from combinations of an ID
and an LU. You can also translate any incoming ID to another value.

Table 39. Your SYSIBM.USERNAMES table. (Row numbers are added for reference.)

Row TYPE AUTHID LINKNAME NEWAUTHID

1 I blank LUSNFRAN blank

2 I BETTY LUSNFRAN ELIZA

3 I CHARLES blank CHUCK

4 I ALBERT LUDALLAS blank

5 I BETTY blank blank

The following table shows the search order of the SYSIBM.USERNAMES table.

Table 40. Precedence search order for SYSIBM.USERNAMES table

AUTHID LINKNAME Result

Name Name If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for the specified LINKNAME.

Name Blank If NEWAUTHID is specified, AUTHID is translated
to NEWAUTHID for all LINKNAMEs.

Blank Name If NEWAUTHID is specified, it is substituted for
AUTHID for the specified LINKNAME.

Blank Blank Unavailable resource message (SQLCODE -904) is
returned.

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
requests that are listed in the following table.

Table 41. How DB2 translates inbound authorization ids

Request How DB2 translates request

ALBERT requests
from LUDALLAS

DB2 searches for an entry for AUTHID=ALBERT and
LINKNAME=LUDALLAS. DB2 finds one in row 4, so the request is
accepted. The value of NEWAUTHID in that row is blank, so ALBERT is
left unchanged.

BETTY requests
from LUDALLAS

DB2 searches for an entry for AUTHID=BETTY and
LINKNAME=LUDALLAS; none exists. DB2 then searches for
AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5,
so the request is accepted. The value of NEWAUTHID in that row is
blank, so BETTY is left unchanged.

178 Managing Security



Table 41. How DB2 translates inbound authorization ids (continued)

Request How DB2 translates request

CHARLES
requests from
LUDALLAS

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS;
no such entry exists. DB2 then searches for AUTHID=CHARLES and
LINKNAME=blank. The search ends at row 3; the request is accepted.
The value of NEWAUTHID in that row is CHUCK, so CHARLES is
translated to CHUCK.

ALBERT requests
from LUSNFRAN

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; no
such entry exists. DB2 then searches for AUTHID=ALBERT and
LINKNAME=blank; again no entry exists. Finally, DB2 searches for
AUTHID=blank and LINKNAME=LUSNFRAN, finds that entry in row
1, and the request is accepted. The value of NEWAUTHID in that row is
blank, so ALBERT is left unchanged.

BETTY requests
from LUSNFRAN

DB2 finds row 2, and BETTY is translated to ELIZA.

CHARLES
requests from
LUSNFRAN

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

WILBUR requests
from LUSNFRAN

No provision is made for WILBUR, but row 1 of the
SYSIBM.USERNAMES table allows any ID to make a request from
LUSNFRAN and to pass without translation. The acceptance level for
LUSNFRAN is “already verified”, so WILBUR can pass without a
password check by RACF. After accessing DB2, WILBUR can use only
the privileges that are granted to WILBUR and to PUBLIC (for DRDA
access).

WILBUR requests
from LUDALLAS

Because the acceptance level for LUDALLAS is “verify” as recorded in
the SYSIBM.LUNAMES table, WILBUR must be known to the local
RACF. DB2 searches in succession for one of the combinations
WILBUR/LUDALLAS, WILBUR/blank, or blank/LUDALLAS. None of
those is in the table, so the request is rejected. The absence of a row
permitting WILBUR to request from LUDALLAS imposes a
“come-from” check: WILBUR can attach from some locations
(LUSNFRAN), and some IDs (ALBERT, BETTY, and CHARLES) can
attach from LUDALLAS, but WILBUR cannot attach if coming from
LUDALLAS.

In the process of accepting remote attachment requests, any step that calls RACF is
likely to have a relatively high performance cost. To trade some of that cost for a
somewhat greater security exposure, have RACF check the identity of the other LU
just once. Then trust the partner LU, translating the inbound IDs and not requiring
or using passwords. In this case, no calls are made to RACF from within DB2; the
penalty is only that you make the partner LU responsible for verifying IDs.

If you update tables in the CDB while the distributed data facility is running, the
changes might not take effect immediately. If incoming authorization IDs are
managed through DB2 and if the ICSF is installed and properly configured, you
can use the DSNLEUSR stored procedure to encrypt translated authorization IDs
and store them in the NEWAUTHID column of the SYSIBM.USERNAMES table.
DB2 decrypts the translated authorization IDs during connection processing.

Associating inbound IDs with secondary IDs
Your decisions on password encryption and ID translation determine the value that
you use for the primary authorization ID on an attachment request.

Chapter 3. Managing access through RACF 179



About this task

They also determine whether those requests are next treated as connection requests
or as sign-on requests. That means that the remote request next goes through the
same processing as a local request, and that you have the opportunity to associate
the primary ID with a list of secondary IDs in the same way you do for local
requests.

Managing inbound TCP/IP-based connection requests
DRDA connections that use TCP/IP have fewer security controls than do
connections that use SNA protocols. When planning to control inbound TCP/IP
connection requests, you must decide whether you want the requests to have
authentication information, such as RACF passwords, RACF PassTickets, and
Kerberos tickets, passed along with authorization IDs.

About this task

Attention: To protect your authentication information, use the z/OS
Communications Server IP Application Transparent Transport Layer Security
(AT-TLS) to secure your network connections. To complement the use of AT-TLS,
set the TCPALVER subsystem parameter of installation panel DSNTIP5 to
SERVER_ENCRYPT. Setting this parameter to SERVER_ENCRYPT provides the
strongest level of security. Connections are accepted only if user credentials are
provided to authenticate the user ID, and strong encryption is used to protect the
user ID and credentials.

Procedure

To manage inbound TCP/IP-based connection requests:
v For requests that use RACF passwords or PassTickets, enter the following RACF

command to indicate which user IDs that use TCP/IP are authorized to access
DDF (the distributed data facility address space):
PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)

WHEN(APPCPORT(TCPIP))

Consider the following questions:
Do you permit access by TCP/IP? If the serving DB2 for z/OS subsystem has a
DRDA port and resynchronization port specified in the BSDS, DB2 is enabled for
TCP/IP connections.
Do you manage inbound IDs through DB2 or RACF? All IDs must be passed to
RACF or Kerberos for processing. No option exists to handle incoming IDs
through DB2.
Do you trust the partner? TCP/IP does not verify partner LUs, as SNA does. If
your requesters support mutual authentication, use Kerberos to handle this
authentication on the requester side.
If you use passwords, are they encrypted? Passwords can be encrypted through:
– RACF using PassTickets
– DRDA password encryption support. DB2 for z/OS as a server supports

DRDA-encrypted passwords and encrypted user IDs with encrypted
passwords. See “Security mechanisms for DRDA and SNA” on page 166 for
more information about using DRDA encryption.

If you use Kerberos, are users authenticated? If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for z/OS
can use Kerberos security services to authenticate remote users.

180 Managing Security



Do you translate inbound IDs? Inbound IDs are not translated when you use
TCP/IP.
How do you associate inbound IDs with secondary IDs? To associate an
inbound ID with secondary IDs, modify the default connection exit routine
(DSN3@ATH). TCP/IP requests do not use the sign-on exit routine.

v To receive requests from a DB2 for z/OS requester over TCP/IP connections that
use RACF-protected user IDs and RACF PassTickets (as passwords), you must
take the following additional actions in RACF:
1. Create a RACF PTKTDATA resource profile at the server system or sysplex

by issuing one of the following commands:
RDEFINE PTKTDATA IRRPTAUTH.applname.userid

RDEFINE PTKTDATA IRRPTAUTH.applname.*

where
– applname is either the generic LU name, the IPNAME assigned to each

member of a serving data sharing group, or the LUNAME or IPNAME
assigned to the serving non-data sharing subsystem.

– userid is either an asterisk ("*") or a RACF-protected user ID that you want
to allow into the serving subsystem or a member of a data sharing group.

2. Refresh and load the PTKTDATA resource profile by issuing the following
command:
SETROPTS RACLIST(PTKTDATA) REFRESH

3. Permit the user ID that is assigned in the STARTED profile in the ssidDIST
address space to read the new profile by issuing one of the following
commands:

PERMIT IRRPTAUTH.applanme.userid CLASS(PTKTDATA) -
ID(dist_userid) ACCESS(READ)

PERMIT IRRPTAUTH.applname.* CLASS(PTKTDATA) -
ID(dist_userid) ACCESS(READ)

where userid and dist_userid are not the same.

You need to take these additional actions in RACF if RACF-protected user IDs
are used in connection requests from a DB2 for z/OS requester to a DB2 for
z/OS server.

Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Sending encrypted passwords or password phrases from DB2 for z/OS clients”
on page 198
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Processing of TCP/IP-based connection requests
The DB2 server completes a sequence of authentication tasks when handling a
remote connection request that uses the TCP/IP protocol.
1. As the following diagram shows, DB2 checks to see if an authentication token

(RACF encrypted password, RACF PassTicket, DRDA encrypted password, or

Chapter 3. Managing access through RACF 181

|
|
|

|
|

|

|

|

|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


Kerberos ticket) accompanies the remote request. See “Security mechanisms for
DRDA and SNA” on page 166 for more information about using DRDA
encryption.

2. If no authentication token is supplied, DB2 checks the TCPALVER subsystem
parameter to see if DB2 accepts IDs without authentication information.
v If TCPALVER=NO | SERVER, DB2 requires the minimum of a userid and a

password.
v If TCPALVER=SERVER_ENCRYPT, DB2 requires a userid and a password. In

addition, it requires that the security credentials be AES-encrypted or that the
connection is accepted on a port that ensures AT-TLS policy protection, such
as a DB2 Security Port (SECPORT). Kerberos tickets are accepted. RACF
PassTickets, or non-encrypted security credentials, are accepted only when
the connection is secured by the TCP/IP network.

v If TCPALVER=YES | CLIENT, DB2 accepts TCP/IP connection requests that
contain only a userid.

Activity at the DB2 server

TCP/IP request from remote user

Verify remote connections

Step 1:
Is authentication
information present?

Yes

No
Step 2:
Does the serving
subsystem accept
remote requests
without verification?

TCPALVER=YES

TCPALVER=NO Reject
request.

Check ID for connections

Step 3:
Verify identity by RACF or Kerberos.

Not authorized;
reject request.

Connection processing

Step 4:
Verify by RACF that the ID can access DB2.

Not authorized;
reject request.

Step 5:
Run the connection exit routine (DSN3@ATH).

Step 6:
Check local privilege at the server.

Figure 9. DB2 processing of TCP/IP-based connection requests

182 Managing Security



3. The identity is a RACF ID that is authenticated by RACF if a password or
PassTicket is provided, or the identity is a Kerberos principal that is validated
by Kerberos Security Server, if a Kerberos ticket is provided. Ensure that the ID
is defined to RACF in all cases. When Kerberos tickets are used, the RACF ID
is derived from the Kerberos principal identity. To use Kerberos tickets, ensure
that you map Kerberos principal names with RACF IDs.
In addition, depending on your RACF environment, the following RACF
checks may also be performed:
v If the RACF APPL class is active, RACF verifies that the ID has access to the

DB2 APPL. The APPL resource that is checked is the LU name that the
requester used when the attachment request was issued. This is either the
local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access z/OS from the port of entry (POE). The POE that RACF
uses in the RACROUTE VERIFY call depends on whether all the following
conditions are true:
– The current operating system is z/OS V1.5 or later
– The TCP/IP Network Access Control is configured
– The RACF SERVAUTH class is active

If all these conditions are true, RACF uses the remote client's POE security
zone name that is defined in the TCP/IP Network Access Control file. If one
or more of these conditions is not true, RACF uses the literal string 'TCPIP'.
If this is a request to change a password, the password is changed.

4. The remote request is now treated like a local connection request (using the
DIST environment for the DSNR resource class). DB2 calls RACF to check the
ID's authorization against the ssnm.DIST resource.

5. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where the remote request originated.

6. The remote request has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The plan or
package owner ID also accompanies the request. Privileges and authorities that
are granted to those IDs at the DB2 server govern the actions that the request
can take.

Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:
“Processing of outbound connection requests” on page 191

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Managing denial-of-service attacks
With DB2, you can manage denial-of-service attacks in the network connections to
a DB2 server.

Chapter 3. Managing access through RACF 183

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


About this task

The most common type of denial-of-service attack occurs when an attacker "floods"
a network with connection requests to a DB2 server. If this occurs, the attacker
quickly exhausts the threshold for the maximum number of remote connections
that are defined to the DB2 server system. As a result, no additional remote
connections can be accepted by the DB2 server, including those from legitimate
client systems.

To prevent the typical denial-of-service attacks, DB2 monitors the traffic of inbound
connections and terminates those that don't contain data for establishing a valid
connection.

Preventing SQL injection attacks
SQL injection attacks might occur when dynamic SQL statements are constructed
from user input and the input is inadequately checked. You can use several
techniques to prevent or reduce SQL injection attacks.

Procedure

To eliminate or reduce the risk of SQL injection attacks:
v Avoid dynamic SQL, whenever possible.
v Use pureQuery or SQLJ rather than JDBC for Java.
v Use system security techniques, such as views and access control mechanisms,

whenever possible.
Understand the limitations of security within an application. System security can
use security and integrity mechanisms that are not available to application
programs. The level of assurance that can be provided in system security can be
much higher. If the applications are run on the client or have fewer protection
layers and firewalls than the database, make sure to address those limitations.

v Use row permissions and column masks to protect data even if the statement is
compromised by SQL injection attacks.

v Put input data into host variables with just the value or use a parameter marker
in dynamic SQL.

v Make sure to check all input:
– Check that the input is the intended data type and format. This is generally

required for all programs to ensure that they work properly but especially
crucial for data intended as part of an SQL statement.

– Accept numbers for a numeric comparison only.
– Do not allow special characters if they do not apply.

Managing outbound connection requests
If you plan to send requests to another DB2 subsystem, you need to consider the
subsystem's security measures for network connections. You need to know what
those measures are and make entries in your CDB to correspond to them.

About this task

If you are planning to send remote requests to a DBMS that is not DB2 for z/OS,
you need to satisfy the requirements of that system.

184 Managing Security



DB2 chooses how to send authentication tokens based on the network protocols
that are used (SNA or TCP/IP). If the request is sent using SNA, the authentication
tokens are sent in the SNA attachment request (FMH5), unless you are using
Kerberos. If you use Kerberos, authentication tokens are sent with DRDA security
commands. If the request uses TCP/IP, the authentication tokens are always sent
using DRDA security commands. See “Security mechanisms for DRDA and SNA”
on page 166 for more information about using DRDA encryption.

At least one authorization ID is always sent to the server to be used for
authentication. That ID is one of the following values:
v The primary authorization ID of the process.
v If you connect to the server using a CONNECT statement with the USER

keyword, the ID that you specify as the USER ID. The CONNECT statement
allows non-RACF user IDs on the USER keyword. If connecting to a remote
location, the user ID is not authenticated by RACF.

However, other IDs can accompany some requests. You need to understand what
other IDs are sent because they are subject to translation. You must include these
other IDs in table SYSIBM.USERNAMES to avoid an error when you use outbound
translation. The following table shows the IDs that you send in the different
situations:

Table 42. IDs that accompany the primary ID on a remote request

In this situation: You send this ID also:

An SQL query, using DB2 DRDA-protocol
access

The plan owner

A remote BIND, COPY, or REBIND
PACKAGE command

The package owner

If the connection is to a remote non-DB2 for z/OS server using DRDA protocol
and if the outbound translation is specified, a row for the plan owner in the
USERNAMES table is optional.
Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Communications database for the requester
The communications database (CDB) is a set of DB2 catalog tables that let you control
aspects of remote requests. Columns in the SYSIBM.LUNAMES,
SYSIBM.IPNAMES, SYSIBM.USERNAMES, and SYSIBM.LOCATIONS tables
pertain to security that related to the requesting system.

Chapter 3. Managing access through RACF 185

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


SYSIBM.LUNAMES columns:

The SYSIBM.LUNAMES table is used only for outbound requests that use SNA
protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_OUT (CHAR 1)
Indicates the security option that is used when local DB2 SQL applications
connect to any remote server that is associated with the corresponding
LUNAME.

A The letter A signifies the security option of already verified, and it
is the default. With A, outbound connection requests contain an
authorization ID and no authentication token. The value that is
used for an outbound request is either the DB2 user's authorization
ID or a translated ID, depending on the value in the USERNAMES
column.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. The LUNAME column is used as the RACF PassTicket
application name.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from RACF if ENCRYPTPSWDS=Y, or
from SYSIBM.USERNAMES if ENCRYPTPSWDS=N. If you get the
password from SYSIBM.USERNAMES, the USERNAMES column
of SYSIBM.LUNAMES must contain B or O. The value that is used
for an outbound request is the translated ID.

ENCRYPTPSWDS CHAR(1)
Indicates whether passwords received from and sent to the corresponding
LUNAME are encrypted. This column only applies to DB2 for z/OS and
DB2 for z/OS partners when passwords are used as authentication tokens.

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as encrypted.

N No, passwords are not encrypted. This is the default; any character
but Y is treated as N.

Recommendation: When you connect to a DB2 for z/OS partner that is at
Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R') instead of encrypting passwords.

USERNAMES CHAR(1)
Indicates whether an ID accompanying a remote attachment request, which

186 Managing Security



is received from or sent to the corresponding LUNAME, is subject to
translation and “come from” checking. When you specify I, O, or B, use
the SYSIBM.USERNAMES table to perform the translation.

I An inbound ID is subject to translation.

O An outbound ID, sent to the corresponding LUNAME, is subject to
translation.

B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

SYSIBM.IPNAMES columns:

The SYSIBM.IPNAMES table is used only for outbound requests that use TCP/IP
protocols.

LINKNAME CHAR(8)
The name used in the LINKNAME column of SYSIBM.LOCATIONS to
identify the remote system.

IPADDR
Specifies an IP address or domain name of a remote TCP/IP host.

SECURITY_OUT
Indicates the DRDA security option that is used when local DB2 SQL
applications connect to any remote server that is associated with this
TCP/IP host.

A The letter A signifies the security option of already verified, and it
is the default. Outbound connection requests contain an
authorization ID and no password. The value that is used for an
outbound request is either the DB2 user's authorization ID or a
translated ID, depending on the value in the USERNAMES
column.

The authorization ID is not encrypted when it is sent to the
partner. For encryption, see option D.

R The letter R signifies the RACF PassTicket security option.
Outbound connection requests contain a user ID and a RACF
PassTicket. When a RACF PassTicket is generated, the LINKNAME
column value is used as the RACF PassTicket application name
and must match the following at the target server
v LUNAME - if the remote site is a DB2 subsystem that is defined

with only an LUNAME value and no GENERIC LU name value
or IPNAME value

v GENERIC - if the remote site is a DB2 subsystem that is defined
with a GENERIC LU name value in addition to an LUNAME
value but no IPNAME value

v IPNAME - if the remote site is a DB2 subsystem that is defined
with an IPNAME value that triggers the remote DB2 subsystem's
DDF to activate only its TCP/IP communications support.

Chapter 3. Managing access through RACF 187



The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value
in the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

The authorization ID is not encrypted when it is sent to the
partner.

D The letter D signifies the security option of user ID and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and no password. The authorization
ID that is used for an outbound request is either the DB2 user's
authorization ID or a translated ID, depending on the
USERNAMES column.

This option indicates that the user ID and the security-sensitive
data are to be encrypted. If you do not require encryption, see
option A.

E The letter E signifies the security option of user ID, password, and
security-sensitive data encryption. Outbound connection requests
contain an authorization ID and a password. The password is
obtained from the SYSIBM.USERNAMES table. The USERNAMES
column must specify "O".

This option indicates that the user ID, password, and
security-sensitive data are to be encrypted. If you do not require
security-sensitive data encryption, see option P.

P The letter P signifies the password security option. Outbound
connection requests contain an authorization ID and a password.
The password is obtained from the SYSIBM.USERNAMES table. If
you specify P, the USERNAMES column must specify "O".

If you specify P and the server supports encryption, the user ID
and the password are encrypted. If the server does not support
encryption, the user ID and the password are sent to the partner in
clear text. If you also need to encrypt security-sensitive data, see
option E.

USERNAMES CHAR(1)
This column indicates whether an outbound request translates the
authorization ID. When you specify O, use the SYSIBM.USERNAMES table
to perform the translation.

O The letter O signifies an outbound ID that is subject to translation.
Rows in the SYSIBM.USERNAMES table are used to perform ID
translation. If a connection to any remote server is to be established
as trusted, a row in the SYSIBM.USERNAMES table is used to
obtain the system authorization ID.

S The letter S signifies the system authorization ID, within a trusted
context, obtained from the SYSIBM.USERNAMES table. If the
system authorization ID that is specified in the AUTHID column is
different from the primary authorization ID, DB2 sends the user
switch request on behalf of the primary authorization ID after
successfully establishing the trusted connection.

blank No translation is done.

188 Managing Security



SYSIBM.USERNAMES columns:

The SYSIBM.USERNAMES table is used by outbound connection requests that use
SNA and TCP/IP protocols.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:

S The row is used to obtain the outbound system authorization ID
for establishing a trusted connection.

I The row applies to inbound IDs.

O The row applies to outbound IDs.

The field should contain only I, O, or S. Any other character, including
blank, causes the row to be ignored.

AUTHID VARCHAR(128)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME, and all
authorization IDs are translated in the same way.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

NEWAUTHID VARCHAR(128)
The translated authorization ID. If blank, no translation occurs.

PASSWORD VARCHAR(255)
A password or password phrase that is sent with an outbound request if
passwords or phrases are not encrypted by RACF. The column is not used
if passwords or phrases are encrypted or if the row is for inbound
requests. A password or password phrase can be stored as encrypted data
by calling the DSNLEUSR stored procedure. To send the encrypted value
of the PASSWORD column through a network, you must specify one of the
encryption options in the SYSIBM.IPNAMES table.

SYSIBM.LOCATIONS columns:

The SYSIBM.LOCATIONS table contains a row for every accessible remote server.
Each row associates a LOCATION name with the TCP/IP or SNA network
attributes for the remote server. Requesters are not defined in the
SYSIBM.LOCATIONS table.

Chapter 3. Managing access through RACF 189



LOCATION CHAR(16)
Indicates the unique location name by which the the remote server is
known to local DB2 SQL applications.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the
following situations must be true:
v A row exists in table SYSIBM.LUNAMES that has an LUNAME value

that matches the LINKNAME value that appears in this column.
v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value

that matches the LINKNAME value that appears in this column.

PORT CHAR(32)
Indicates that TCP/IP is used for outbound connections when the
following statement is true:
v A row exists in SYSIBM.IPNAMES, where the LINKNAME column

matches the value that is specified in the SYSIBM.LOCATIONS
LINKNAME column.

If the previously mentioned row is found, and the SECURE column has a
value of 'N', the value of the PORT column is interpreted as follows:
v If PORT is blank, the default DRDA port (446) is used.
v If PORT is nonblank, the value that is specified for PORT can take one

of two forms:
– If the value in PORT is left-justified with one to five numeric

characters, the value is assumed to be the TCP/IP port number of the
remote database server.

– Any other value is assumed to be a TCP/IP service name, which you
can convert to a TCP/IP port number by using the TCP/IP
getservbyname socket call. TCP/IP service names are not
case-sensitive.

If the previously mentioned row is found, and the SECURE column has a
value of 'Y', the value of the PORT column is interpreted as follows:
v If PORT is blank, the default secure DRDA port (448) is used.
v If PORT is nonblank, the value that is specified for PORT takes the value

of the configured secure DRDA port at the remote server.

TPN VARCHAR(64)
Used only when the local DB2 begins an SNA conversation with another
server. When used, TPN indicates the SNA LU 6.2 transaction program
name (TPN) that will allocate the conversation. A length of zero for the
column indicates the default TPN. For DRDA conversations, this is the
DRDA default, which is X'07F6C4C2'.

DBALIAS(128)
Used to access a remote database server. If DBALIAS is blank, the location
name is used to access the remote database server. This column does not
change the name of any database objects sent to the remote site that
contains the location qualifier.

190 Managing Security



TRUSTED
Indicates whether the connection to the remote server can be trusted. This
is restricted to TCP/IP only. This column is ignored for connections that
use SNA.

Y The location is trusted. Access to the remote location requires a
trusted context that is defined at the remote location.

N The location is not trusted.

SECURE
Indicates the use of the Secure Socket Layer (SSL) protocol for outbound
connections when local DB2 applications connect to the remote database
server by using TCP/IP.

Y A secure SSL connection is required for the outbound connection.

N A secure connection is not required for the outbound connection.

Processing of outbound connection requests
A DB2 subsystem completes a sequence of tasks when sending out a connection
request.

Step 1:
Check local privilege

Step 2:
Is outbound translation specified?

Translate remote primary ID using
NEWAUT HID column of
SYSIBM.USERNAMES.

Remote primary ID is the same
as the local primary ID.

Step 3:
Check SECURITY_OUT column of
SYSIBM.LUNAMES or SYSIBM.USERNAMES.

NoYes

Step 4:
Send request.

Figure 10. Steps in sending a request from a DB2 subsystem

Chapter 3. Managing access through RACF 191



1. The DB2 subsystem that sends the request checks whether the primary
authorization ID has the privilege to execute the plan or package.
DB2 determines which value in the LINKNAME column of the
SYSIBM.LOCATIONS table matches either the LUNAME column in the
SYSIBM.LUNAMES table or the LINKNAME column in the SYSIBM.IPNAMES
table. This check determines whether SNA or TCP/IP protocols are used to
carry the DRDA request. See “Security mechanisms for DRDA and SNA” on
page 166 for more information about using DRDA encryption.

2. When a plan is executed, the authorization ID of the plan owner is sent with
the primary authorization ID. When a package is bound, the authorization ID
of the package owner is sent with the primary authorization ID. If the
USERNAMES column of the SYSIBM.LUNAMES table contains O or B, or if the
USERNAMES column of the SYSIBM.IPNAMES table contains O, both IDs are
subject to translation under control of the SYSIBM.USERNAMES table. Ensure
that these IDs are included in SYSIBM.USERNAMES, or SQLCODE -904 is
issued. DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID is in the row, that value becomes the

new ID.
v If NEWAUTHID is blank, the ID is not changed.
If the SYSIBM.USERNAMES table does not contain a new authorization ID to
which the primary authorization ID is translated, the request is rejected with
SQLCODE -904.
If the USERNAMES column does not contain O or B, the IDs are not translated.

3. SECURITY_OUT is checked for outbound security options as shown in the
following diagram.

192 Managing Security



A Already verified. No password is sent with the authorization ID. This
option is valid only if the server accepts already verified requests.
v For SNA, the server must have specified A in the SECURITY_IN

column of SYSIBM.LUNAMES.
v For TCP/IP, the server must have specified YES in the TCP/IP

ALREADY VERIFIED field of installation panel DSNTIP5.

R RACF PassTicket. If the primary authorization ID was translated, that
translated ID is sent with the PassTicket.

P Password. The outbound request must be accompanied by a password:
v If the requester is DB2 for z/OS and uses SNA protocols, passwords

can be encrypted if you specify Y in the ENCRYPTPSWDS column of
SYSIBM.LUNAMES. If passwords are encrypted, the password is
obtained from RACF. If passwords are not encrypted, the password
is obtained from the PASSWORD column of SYSIBM.USERNAMES.

v If the requester uses TCP/IP protocols, the password is obtained
from the PASSWORD column of SYSIBM.USERNAMES. If the

P:
SNA or TCP/IP protocol?

Encrypt?

Get password
from RACF.

Encrypt?

Get password from
SYSIBM.USERNAMES.

Error
- 904 or
- 30082

D:
ICSF enabled and
server supports encryption?

No password sent.
Get authorization ID
and encrypt with ICSF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No YesNoYes

TCP/IPSNA

No Yes

Step 2

Error
- 904 or
- 30082

E:
ICSF enabled and
server supports encryption?

A:
No password
is sent.

R:
Get PassTicket
from RACF.

Get password from
SYSIBM.USERNAMES
and encrypt with ICSF.

No Yes

Step 4:
Send request.

Figure 11. Details of Step 3

Chapter 3. Managing access through RACF 193



Integrated Cryptographic Service Facility is enabled and properly
configured and the server supports encryption, the password is
encrypted.
Recommendation: Use RACF PassTickets to avoid sending
unencrypted passwords over the network.

D User ID and security-sensitive data encryption. No password is sent
with the authorization ID. If the Integrated Cryptographic Service
Facility (ICSF) is enabled and properly configured and the server
supports encryption, the authorization ID is encrypted before it is sent.
If the ICSF is not enabled or properly configured, SQL return code –904
is returned. If the server does not support encryption, SQL return code
–30082 is returned.

E User ID, password, and security-sensitive data encryption. If the ICSF
is enabled and properly configured and the server supports encryption,
the password is encrypted before it is sent. If the ICSF is not enabled or
properly configured, SQL return code –904 is returned. If the server
does not support encryption, SQL return code –30082 is returned.

4. Send the request.
Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:
“Processing of TCP/IP-based connection requests” on page 181

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Translating outbound IDs
If an ID on your system is duplicated on a remote system, you can translate
outbound IDs to avoid confusion. You can also translate IDs to ensure that they are
accepted by the remote system.

Procedure

To indicate that you want to translate outbound user IDs, perform the following
steps:
1. Specify an O in the USERNAMES column of the SYSIBM.IPNAMES or

SYSIBM.LUNAMES table.
2. Use the NEWAUTHID column of the SYSIBM.USERNAMES table to specify the

ID to which the outbound ID is translated.

Example

Suppose that the remote system accepts from you only the IDs XXGALE, GROUP1,
and HOMER.

194 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


1. Specify that outbound translation is in effect for the remote system LUXXX by
specifying in SYSIBM.LUNAMES the values that are shown in the following
table.

Table 43. SYSIBM.LUNAMES to specify that outbound translation is in effect for the remote
system LUXXX

LUNAME USERNAMES

LUXXX O

If your row for LUXXX already has I for the USERNAMES column (because
you translate inbound IDs that come from LUXXX), change I to B for both
inbound and outbound translation.

2. Translate the ID GALE to XXGALE on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Table 44. Values in SYSIBM. USERNAMES to translate GALE to XXGALE on outbound
requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O GALE LUXXX XXGALE GALEPASS

3. Translate EVAN and FRED to GROUP1 on all outbound requests to LUXXX by
specifying in SYSIBM.USERNAMES the values that are shown in the following
table.

Table 45. Values in SYSIBM. USERNAMES to translate EVAN and FRED to GROUP1 on
outbound requests to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O EVAN LUXXX GROUP1 GRP1PASS

O FRED LUXXX GROUP1 GRP1PASS

4. Do not translate the ID HOMER on outbound requests to LUXXX. (HOMER is
assumed to be an ID on your DB2, and on LUXXX.) Specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Table 46. Values in SYSIBM. USERNAMES to not translate HOMER on outbound requests
to LUXXX

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER LUXXX (blank) HOMERSPW

5. Reject any requests from BASIL to LUXXX before they are sent. To do that,
leave SYSIBM.USERNAMES empty. If no row indicates what to do with the ID
BASIL on an outbound request to LUXXX, the request is rejected.

If you send requests to another LU, such as LUYYY, you generally need another
set of rows to indicate how your IDs are to be translated on outbound requests to
LUYYY.

However, you can use a single row to specify a translation that is to be in effect on
requests to all other LUs. For example, if HOMER is to be sent untranslated
everywhere, and DOROTHY is to be translated to GROUP1 everywhere, specify in
SYSIBM.USERNAMES the values that are shown in the following table.

Chapter 3. Managing access through RACF 195



Table 47. Values in SYSIBM. USERNAMES to not translate HOMER and to translate
DOROTHY to GROUP1

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O HOMER (blank) (blank) HOMERSPW

O DOROTHY (blank) GROUP1 GRP1PASS

You can also use a single row to specify that all IDs that accompany requests to a
single remote system must be translated. For example, if every one of your IDs is
to be translated to THEIRS on requests to LUYYY, specify in SYSIBM.USERNAMES
the values that are shown in the following table.

Table 48. Values in SYSIBM. USERNAMES to translate every ID to THEIRS

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD

O (blank) LUYYY THEIR THEPASS

If the ICSF is installed and properly configured, you can use the DSNLEUSR
stored procedure to encrypt the translated outbound IDs that are specified in the
NEWAUTHID column of SYSIBM.USERNAMES. DB2 decrypts the translated
outbound IDs during connection processing.

Sending passwords or password phrases
DB2 provides several security mechanisms to send password or password phrase
information.

About this task

Specifically, DB2 supports the following security mechanisms:
v RACF encrypted passwords
v RACF PassTickets
v Kerberos tickets
v DRDA-encrypted passwords or password phrases or DRDA-encrypted user IDs

with encrypted passwords or password phrases. See “Security mechanisms for
DRDA and SNA” on page 166 for more information about using DRDA
encryption.

If you have to send passwords or password phrases through the network, you can
put the password or password phrase for a user ID in the PASSWORD column of
the SYSIBM.USERNAMES table.

Recommendation: Use the DSNLEUSR stored procedure to encrypt passwords or
password phrases in SYSIBM.USERNAMES. If the ICSF is installed and properly
configured, you can use the DSNLEUSR stored procedure to encrypt passwords or
password phrases in the SYSIBM.USERNAMES table. DB2 decrypts the password
or password phrase during connection processing.

DB2 for z/OS allows the use of RACF encrypted passwords or RACF PassTickets.
However, workstations, such as Windows workstations, do not support these
security mechanisms. RACF encrypted passwords are not a secure mechanism
because they can be replayed. RACF PassTickets are not compatible with
SECURITY_ENCRYPT; they are allowed only when the connections are secured by
the TCP/IP network.

196 Managing Security



Recommendation: Do not use RACF encrypted passwords unless you are
connecting to a previous release of DB2 for z/OS.
Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients” on page 199
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Sending RACF-encrypted passwords
For DB2 subsystems that use SNA protocols to communicate with each other, you
can specify password encryption in the SYSIBM.LUNAMES table.

About this task

Table 49. Specifying password encryption in SYSIBM.LUNAMES

LUNAME USERNAMES ENCRYPTPSWDS

LUXXX O Y

The partner DB2 must also specify password encryption in its SYSIBM.LUNAMES
table. Both partners must register each ID and its password with RACF. Then, for
every request to LUXXX, your DB2 calls RACF to supply an encrypted password
to accompany the ID. With password encryption, you do not use the PASSWORD
column of SYSIBM.USERNAMES, so the security of that table becomes less critical.

Sending RACF PassTickets
To send RACF PassTickets with your remote requests to a particular remote
system, you can specify 'R' in the SECURITY_OUT column of the
SYSIBM.IPNAMES or SYSIBM.LUNAMES table for that system.

Procedure

To set up RACF to generate PassTickets:
1. Activate the RACF PTKTDATA class by issuing the following RACF

commands:
SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)

2. Define a RACF profiles for each remote system by entering the system name as
it appears in the LINKNAME column in the SYSIBM.LOCATIONS table.
For example, issue the following command defines a profile for a remote
system, DB2A, in the RACF PTKTDATA class:
RDEFINE PTKTDATA DB2A SSIGNON(KEYMASKED(E001193519561977))

3. Refresh the RACF PTKTDATA definition with the new profiles by issuing the
following command:
SETROPTS RACLIST(PTKTDATA) REFRESH

Chapter 3. Managing access through RACF 197

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504


Sending encrypted passwords or password phrases from DB2
for z/OS clients
As a requester, a DB2 for z/OS client can send connection requests that use 256-bit
Advanced Encryption Standard (AES) or 56-bit Data Encryption Standards (DES)
encryption security through a TCP/IP network to remote servers.

About this task

If the DB2 for z/OS client supports DRDA Security Manager (SECMGR) 9 or
higher, and if z/OS ICSF is configured and started, the DB2 for z/OS client can
send AES requests to a remote server. After the first successful connection, the DB2
for z/OS client can determine whether the remote server supports AES encryption
security. If the remote server supports DRDA SECMGR 9 (or higher), the remote
server accepts AES requests and encrypts the user IDs and passwords or password
phrases that the client sends in AES.

If AES encryption is not available for the remote DB2 for z/OS server, the DB2 for
z/OS client tries DES encryption. If DES encryption fails, the DB2 for z/OS client
sends the user ID and password or password phrase in clear text.

See “Security mechanisms for DRDA and SNA” on page 166 for more information
about using DRDA encryption. See the DB2 for z/OS Program Directory for ICSF
hardware and software requirements for AES encryption.

As a client, DB2 for z/OS supports only the IPNAMES.SECURITY_OUT option 'P'
("password") for AES encryption and decryption. DB2 for z/OS does not support
the IPNAMES.SECURITY_OUT option 'D' ("user ID and security-sensitive data
encryption") or 'E' ("user ID, password, and security-sensitive data encryption").
These outbound security options remain encrypted in DES.

Attention: To protect your authentication information, use the z/OS
Communications Server IP Application Transparent Transport Layer Security
(AT-TLS) to secure your network connections. To complement the use of AT-TLS,
set the TCPALVER subsystem parameter of installation panel DSNTIP5 to
SERVER_ENCRYPT. Setting this parameter to SERVER_ENCRYPT provides the
strongest level of security. Connections are accepted only if user credentials are
provided to authenticate the user ID, and strong encryption is used to protect the
user ID and credentials.

198 Managing Security



Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287

Encrypted password, user ID, or data security under the IBM Data Server
Driver for JDBC and SQLJ (DB2 Application Programming for Java)
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords from workstation clients”
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:

DB2 for z/OS Program Directories
Chapter 9, “Protecting data through encryption and RACF,” on page 287

Sending encrypted passwords from workstation clients
As a server, DB2 for z/OS can accept requests from remote workstation clients that
use 256-bit Advanced Encryption Standard (AES) or 56-bit Data Encryption
Standards (DES) encryption security over a TCP/IP network connection.

About this task

Depending on the DRDA level, a remote client can use AES or DES encryption
algorithm for sending passwords, user IDs and associated passwords, or other
security-sensitive data to a DB2 for z/OS server. If the client explicitly requests
AES encryption, only user IDs, passwords, or both are encrypted in AES, and any
data in the request is encrypted in DES. Any persistent attempt to encrypt the data
in AES causes the client to reject the connection request. See “Security mechanisms
for DRDA and SNA” on page 166 for more information about using DRDA
encryption. See the DB2 for z/OS Program Directory for ICSF hardware and
software requirements for AES encryption.

To enable the DB2 for z/OS AES server support, you must install and configure
z/OS Integrated Cryptographic Services Facility (ICSF). During DB2 startup,
DSNXINIT invokes the MVS LOAD macro service to load various ICSF services,
including the ICSF CSNESYE and CSNESYD modules that DB2 calls for processing
AES encryption and decryption requests. If ICSF is not installed or if ICSF services
are not available, DB2 cannot provide AES support, and DB2 terminates the
connection.

To use DES encryption, you can enable DB2 Connect to send encrypted passwords
by setting database connection services (DCS) authentication to DCS_ENCRYPT in
the DCS directory entry. When a client application issues an SQL CONNECT
statement, the client negotiates this support with the database server. If supported,
a shared private key is generated by the client and server using the Diffie-Hellman
public key technology, and the password is encrypted using 56-bit DES with the
shared private key. The encrypted password cannot be replayed, and the shared
private key is generated on every connection. If the server does not support
password encryption, the application receives SQLCODE -30073 (DRDA security
manager level 6 is not supported).

Chapter 3. Managing access through RACF 199

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
https://www-304.ibm.com/support/docview.wss?uid=swg27019288


Attention: To protect your authentication information, use the z/OS
Communications Server IP Application Transparent Transport Layer Security
(AT-TLS) to secure your network connections. To complement the use of AT-TLS,
set the TCPALVER subsystem parameter of installation panel DSNTIP5 to
SERVER_ENCRYPT. Setting this parameter to SERVER_ENCRYPT provides the
strongest level of security. Connections are accepted only if user credentials are
provided to authenticate the user ID, and strong encryption is used to protect the
user ID and credentials.
Related concepts:
“Security mechanisms for DRDA and SNA” on page 166
“Encrypting your data with Secure Socket Layer support” on page 287

Encrypted password, user ID, or data security under the IBM Data Server
Driver for JDBC and SQLJ (DB2 Application Programming for Java)
Related tasks:
“Managing inbound TCP/IP-based connection requests” on page 180
“Sending encrypted passwords or password phrases from DB2 for z/OS clients”
on page 198
Related reference:

TCP/IP ALREADY VERIFIED field (TCPALVER subsystem parameter) (DB2
Installation and Migration)
Related information:

DB2 for z/OS Program Directories
Chapter 9, “Protecting data through encryption and RACF,” on page 287

200 Managing Security

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_cjvjcsen.htm#imjcc_cjvjcsen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_tcpalver.htm#db2z_dsntip504
https://www-304.ibm.com/support/docview.wss?uid=swg27019288


Chapter 4. Managing access through row permissions and
column masks

Row and column access control enables you to manage access to a table at the level of
a row, a column, or both. You can implement row access control through row
permissions and column access control through column masks.

Row and column access control
Row and column access control is a DB2 security solution that uses SQL to control
access to a table at the level of a row, a column, or both.

Traditionally, access control at the row and column level is implemented through
views. Using views as an access control method works well only when access
rules, restrictions, and conditions are monolithic and simple. It however becomes
ineffective when view definitions become too complex because of the complexity
and granularity of privacy and security policies. It also becomes costly when a
large number of views must be manually updated and maintained. In addition, the
ability to update views proves to be challenging. As privacy and security policies
evolve, required updates to views may negatively affect the security logic
particularly when database applications reference the views directly by name. DB2
row and column access control helps resolve all these problems.

Implemented through SQL and managed by the DB2 security administrator, row
and column access control allows you to manage access to a table with filtering
and data masking. Unlike multilevel security, row and column access control is
integrated into a database system, and all applications and tools that use SQL to
access the database are automatically subject to the same control. This effectively
eliminates the need to filter security-sensitive data at the application level and
ensures that the data is protected when the applications and tools use SQL to
access it.

Row and column access control is based on a security policy that specifies the rules
and conditions under which a user, group, or role can access rows, columns, or
both of a base table. The access control is not needed at the view level because the
view automatically receives row and column access control that is activated on the
underlining base table. The row and column access control rules do not affect how
a read-only view is determined. All users access the same base table (as opposed to
alternative views of a table), but access restrictions are based on individual user
permissions and masks that are specified by a policy associated with the table.

An authorization ID or role with the SECADM authority can manage row and
column access control. The SECADM authority can activate or deactivate row and
column access control for a table, grant or revoke the CREATE_SECURE_OBJECT
system privilege, and create, alter, or drop row permissions and column masks.
The SYSADM authority can perform the same tasks if the SEPARATE SECURITY
system parameter on panel DSNTIPP1 is set to NO during installation.

Row and column access control can be activated for a table before or after row
permissions or column masks are created for the table. If row permissions or
column masks already exist, activating row and column access control simply
makes the permissions or masks become effective. If row permissions or column

© Copyright IBM Corp. 1982, 2013 201



masks do not yet exist, activating row access control for a table means that DB2
will generate a default row permission that prevents any access to the table by
SQL, and activating column access control means to wait for the column masks to
be created.

When a table is activated for row or column access control, all users, including the
table owner and the SECADM, SYSDM, or DBADM authorities, are subject to the
same security rules and restrictions. This ensures that access to security-sensitive
data is truly on a need basis and prevents system and database administrators
from unnecessarily accessing it. Since security policies or rules are expressed and
enforced through SQL, row and column access control is inherently flexible.

Row access control and multilevel security are mutually exclusive. If a table is
activated for row access control, it cannot be altered to include a security label
column; if a table has a security label column, it cannot be activated for row access
control. Column access control, on the other hand, is not affected by multilevel
security. If a table is activated for column level access control, it can be altered to
include a security label column, and vice versa.
Related concepts:
“Row permission”
“Column mask” on page 203
Related reference:
“Explicit system privileges” on page 25
“SECADM” on page 39

Row permission
A row permission is a database object that describes a specific row access control
rule for a table. In the form of an SQL search condition, the rule specifies the
conditions under which a user, group, or role can access the rows of data in the
table.

Stored in the system catalog, row permissions can be created on all base tables
except materialized query tables, and they are maintained on an individual basis.
The definition of each row permission may reference the user, group, or role in the
search condition.

If multiple row permissions are defined for a table and when row access control is
activated, the search condition in each row permission is connected by the logical
OR operator to form the row access control search condition. This row access
control search condition is applied whenever the table is accessed. It acts as a filter
to the table before any other user-specified operations, such as predicates and
ordering, are processed. It also acts like the WITH CHECK OPTION clause of a
view to ensure that a row to be inserted or updated conforms to the definitions of
the row permissions in an INSERT, UPDATE, or MERGE statement.

Only an authorization ID or role with the SECADM or SYSADM authority can
manage row permissions. If the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 is set to YES during installation or migration, you must have the
SECADM authority to create, alter, or drop row permissions. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

202 Managing Security



Related concepts:
“Column mask”
Related tasks:
“Creating row permissions” on page 208
“Creating column masks” on page 210
Related reference:
“Rules of row and column access control” on page 204
“Explicit system privileges” on page 25
“SECADM” on page 39

Column mask
A column mask is a database object that describes a specific column access control
rule for a column. In the form of an SQL CASE expression, the rule specifies the
condition under which a user, group, or role can receive the masked values that
are returned for a column.

Stored in the system catalog, column masks can be created on all base tables except
materialized query tables and maintained on an individual basis. The definition of
each column mask may reference the user, group, or role in the search conditions
in the CASE WHEN clause.

While multiple columns in a table may have column masks, only one column mask
can be created for a single column. When column access control is activated for the
table, the CASE expression in the column mask definition is applied to an output
column to determine the masked values that are returned to an application. The
application of column masks affects the final output only; it does not impact the
operations, such as predicates and ordering, in an SQL statement. In addition, the
application of column masks must not change the values in a row that is being
inserted or updated in an INSERT, UPDATE, or MERGE statement.

Only an authorization ID or role with the SECADM or SYSADM authority can
manage column masks. If the SEPARATE_SECURITY system parameter on panel
DSNTIPP1 is set to YES during installation or migration, you must have the
SECADM authority to create, alter, or drop column masks. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

Chapter 4. Managing access through row permissions and column masks 203



Related concepts:
“Row permission” on page 202
Related tasks:
“Creating row permissions” on page 208
“Creating column masks” on page 210
Related reference:
“Rules of row and column access control”
“Explicit system privileges” on page 25
“SECADM” on page 39

Rules of row and column access control
The rules of row and column access control apply to both read and write
operations on a table. The conditions that are specified in row permissions and
column masks apply to both data retrieval operations and data change operations.

The following table shows an example of how row and column access control rules
are applied depending on the types of data operations. Assume that tables T1 and
T2 are activated for row and column access control and that both tables include
columns C1 and C2.

Table 50. Rules and access types for row and column access control

SQL statement Row permission
Column mask (defined for column
C1)

SELECT
SUBSTR( C1,8,4)
FROM T1;

v If user-defined row
permissions exist for the table,
only the rows that satisfy the
permissions are returned.

v If no user-defined row
permissions exist for the table,
the default row permission is
applied and no row is
returned.

v The column mask is applied to
column C1 that is referenced in the
select list of the outermost SELECT
clause. It does not interfere with the
operations of other clauses within
the statement, such as the WHERE,
GROUP BY, HAVING, SELECT
DISTINCT, or ORDER BY clauses.
Some column mask restrictions may
apply to the other clauses within
the statement.

v The masked value that is
determined by the evaluation of the
CASE expression in the column
mask is returned in place of the
column value in the output row. If
column C1 is embedded in an
expression, the column mask is
applied to the input column before
the evaluation of the expression
takes place.

204 Managing Security



Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

INSERT INTO
T1(C1, C2)
VALUES('A', 'B');

For each row to be inserted:

v If a user-defined row
permission exists, the row can
be inserted only when that
row can be subsequently
retrieved by the authorization
ID of the INSERT statement.
If the row cannot be inserted,
the INSERT statement returns
an error.

v If no user-defined row
permissions exist for the table
only the default row
permission is applied and no
row is inserted. The INSERT
statement returns an error.

The ENFORCED FOR ALL
ACCESS clause ensures that
users cannot insert data that
they cannot read.

Chapter 4. Managing access through row permissions and column masks 205



Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

INSERT INTO
T1(C1) SELECT
SUBSTR( T2.C1,
8, 4) FROM T2
WHERE T2.C2 >
10;

v When the columns are used to
derive the new values for an
INSERT statement, the original
column values, not the masked
values, are used. If the columns
have column masks, those column
masks are applied to ensure the
evaluation of the access control
rules at run time masks the column
to itself, not to a constant or an
expression. This ensures that the
masked values are the same as the
original column values. If a column
mask does not mask the column to
itself, the new row is not inserted
and an error is returned at run
time.

For example, column T2.C1 is used
to derive the value of a new row
for INSERT. The column value of
T2.C1, not the masked value, is
used to derive the new value.
Because column T2.C1 has a
column mask, the column mask is
applied to ensure the evaluation of
the access control rule in the
column mask masks column T2.C1
to itself, not to a constant or an
expression. This ensures the masked
value is the same as the original
column value. If the column mask
of T2.C1 does not mask column
T2.C1 to itself, the new value
cannot be used and an error is
returned at run time.

v The column mask rules that apply
to the new value for INSERT are
the same as those for SELECT.

206 Managing Security



Table 50. Rules and access types for row and column access control (continued)

SQL statement Row permission
Column mask (defined for column
C1)

UPDATE T1 SET
C2 = (SELECT
SUBSTR(T2.C1,
8, 4) FROM T2
WHERE T2.C2 >
10);

The following rules are applied in the order as shown:

1. Identify candidate rows for updates:

If a user-defined row permission exists, only the rows of the table
that satisfy the row permission can be the candidate rows for
UPDATE.

If no user-defined row permissions exist for the table, only the
default row permission is applied and no rows are updated.

2. If there are rows to be updated, for each row to be updated:

v When the columns are used to derive the new values for an
UPDATE statement, the original column values, not the masked
values, are used. If the columns have column masks, those column
masks are applied to ensure that the evaluation of the access
control rules at run time masks the column to itself, not to a
constant or an expression. This ensures the masked values are the
same as the original column values. If a column mask does not
mask the column to itself, the new rvalue cannot be used for the
update and an error is returned at run time.

For example, column T2.C1 is used to derive the new value for the
update. The column value of T2.C1, not the masked value, is used
to derive the new value. Because column T2.C1 has a column
mask, the column mask is applied to ensure that the evaluation of
the access control rule in the column mask masks column T2.C1 to
itself, not to a constant or an expression. This ensures that the
masked value is the same as the original column value. If the
column mask of T2.C1 does not mask column T2.C1 to itself, the
new value cannot be used for the update and an error is returned
at run time

v The column mask rules that apply to the new value for UPDATE
are the same as those for SELECT.

3. If there are rows to be updated, for each row to be updated:

v If a user-defined row permission exists, the row can be updated
only when that row can be subsequently retrieved by the
authorization ID of the UPDATE statement. If the row cannot be
updated, the UPDATE statement returns an error. The ENFORCED
FOR ALL ACCESS clause ensures that users cannot update data
that they cannot read.

v The column mask is not applicable in this retrieval.

MERGE The row and column access control rules for the UPDATE and INSERT
operations in the MERGE statement are the same as those for the
UPDATE and INSERT statements.

DELETE v If a user-defined row
permission exists for the table,
only the rows that satisfy the
permission are the candidate
rows for an DELETE
statement.

v If no user-defined row
permissions exist for the table,
the default row permission is
applied and no row can be
deleted.

Chapter 4. Managing access through row permissions and column masks 207



Related concepts:
“Row permission” on page 202
“Column mask” on page 203
Related tasks:
“Creating row permissions”
“Creating column masks” on page 210
“Using INSERT on tables with row access control” on page 214
“Creating triggers for tables with row and column access control” on page 215
“Modifying column masks to reference UDFs” on page 212

Creating row permissions
A row permission specifies the conditions under which users can access a row. With
the SECADM authority, you can use the CREATE PERMISSION statement to create
a row permission.

Before you begin

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set to YES
during installation or migration, you must have the SECADM authority to create a
row permission. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

About this task

Suppose that you are a data security administrator (SECADM) for a national health
organization (NetHMO) and responsible for safeguarding sensitive patient
information. You want to create a data privacy and security policy and implement
it through row permissions on tables that are enabled with row access control. The
permission definitions prescribe the conditions under which patients, physicians,
pharmacists, or account administrators can only receive certain rows based on their
roles or account authentication IDs.

Procedure

To create a row permission:
1. Issue the CREATE TABLE statement to create table HOSPITAL.PATIENT.

The HOSPITAL.PATIENT table contains columns for recording a patient's social
security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMACY), account balance

(ACCT_BALANCE), and doctor (PCP_ID), as shown below:
CREATE TABLE HOSPITAL.PATIENT (

SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(5000),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18));

208 Managing Security



2. Issue the CREATE ROLE statements to create the following roles and determine
the rules for each role to access the HOSPITAL.PATIENT table
The row access control rules specify the specific types of information that users
in a specific role can access and the conditions under which the role can access

the information.
CREATE ROLE PCP;
CREATE ROLE DRUG_RESEARCH;
CREATE ROLE ACCOUNTING;
CREATE ROLE MEMBERSHIP;
CREATE ROLE PATIENT;

3. Issue the CREATE PERMISSION statement to create row permissions that allow
each role to access data in specific rows.
You can use the built-in function VERIFY_
TRUSTED_CONTEXT_ROLE_FOR_USER to determine whether the user
identified in special register SESSION_USER is associated with a particular
ROLE that is specified as the input argument to the function.
In the following example, Role PATIENT is allowed to access his or her own
row. Role PCP is allowed to access his or her patients' rows. Roles
MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are allowed to access

all rows.
CREATE PERMISSION NETHMO.ROW_ACCESS ON HOSPITAL.PATIENT

FOR ROWS WHERE (VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’PATIENT’) = 1 AND
HOSPITAL.PATIENT.USERID = SESSION_USER) OR

(VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’PCP’) = 1 AND
HOSPITAL.PATIENT.PCP_ID = SESSION_USER) OR

(VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’MEMBERSHIP’) = 1 OR

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’ACCOUNTING’) = 1 OR

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’DRUG_RESEARCH’) = 1)

ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

The definitions of the new row permissions are stored in the new catalog table
SYSIBM.SYSCONTROLS.

4. Issue the ALTER TABLE statement with the ACTIVATE ROW ACCESS
CONTROL clause to activate row access control for table HOSPITAL.PATIENT.

ALTER TABLE HOSPITAL.PATIENT ACTIVATE ROW ACCESS CONTROL;

COMMIT;

The ALTER TABLE serialization process takes place and invalidates all
packages and dynamic cached statements that reference table

Chapter 4. Managing access through row permissions and column masks 209



HOSPITAL.PATIENT. The value 'R' in the new column SYSTABLES.CONTROL
indicates that the table is activated for row access control.
DB2 also implicitly creates a default row permission which restricts all access
from HOSPITAL.PATIENT. The default row permission definition is stored in
the new catalog table SYSIBM.SYSCONTROLS.
Whenever table HOSPITAL.PATIENT is referenced in a data manipulation
statement, all row permissions that have been created for it, including the
default row permission, are implicitly applied by DB2 to control the rows in the
table that are accessible. A row access control search condition is derived from
the logical OR operators that connect the search condition in each row
permission. This search condition acts as a filter to HOSPITAL.PATIENT before
any user-specified operations, such as predicates, grouping, ordering. are
processed.
If necessary, SECADM can deactivate row access control from table
HOSPITAL.PATIENT by simply issuing the following ALTER TABLE statement:

ALTER TABLE HOSPITAL.PATIENT DEACTIVATE ROW ACCESS CONTROL;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
HOSPITAL.PATIENT. DB2 reflects the removal of row access control by setting
SYSTABLES.CONTROL to blank. This also means that table
HOSPITAL.PATIENT does not have any access control and that users can
retrieve data from all its rows.

Related concepts:
“Row permission” on page 202
“Column mask” on page 203
Related tasks:
“Creating column masks”
“Using INSERT on tables with row access control” on page 214
“Creating triggers for tables with row and column access control” on page 215
“Modifying column masks to reference UDFs” on page 212
Related reference:
“Rules of row and column access control” on page 204
“Explicit system privileges” on page 25
“SECADM” on page 39

Creating column masks
A column mask specifies the rules for users to receive the masked values that are
returned for the column. With the SECADM authority, you can use the CREATE
MASK statement to create a column mask.

Before you begin

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set
to YES during installation or migration, you must have the SECADM authority to
create a column mask. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

210 Managing Security



About this task

Suppose that you are a data security administrator (SECADM) for a national health
organization (NetHMO) and responsible for safeguarding sensitive patient
information. You want to create a data privacy and security policy and implement
it through column masks on tables that are enabled with column access control.
The mask definitions prescribe the conditions under which patients, physicians,
pharmacists, or account administrators can only receive certain masked values
from the column based on their roles or account authentication IDs.

Procedure

To create a column mask:
1. Issue the CREATE TABLE statement to create table HOSPITAL.PATIENT

The HOSPITAL.PATIENT table contains columns for recording a patient's social
security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMACY), account balance
(ACCT_BALANCE), and doctor (PCP_ID), as shown below:
CREATE TABLE HOSPITAL.PATIENT (

SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(5000),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18));

2. Issue the CREATE ROLE statements to create the following roles that access the
HOSPITAL.PATIENT table.
CREATE ROLE PCP;
CREATE ROLE DRUG_RESEARCH;
CREATE ROLE ACCOUNTING;
CREATE ROLE MEMBERSHIP;
CREATE ROLE PATIENT;

3. Issue the CREATE MASK statement to create column masks that allow each
role to receive certain masked values from specific columns.
You can use the built-in function VERIFY_
TRUSTED_CONTEXT_ROLE_FOR_USER to determine whether the user
identified in special register SESSION_USER is associated with a particular
ROLE that is specified as the input argument to the function.
The following example shows how column mask SSN_MASK is created. Roles
PATIENT and ACCOUNTING are allowed to receive column values from
column SSN. Other roles that access the column will receive masked values.
CREATE MASK NETHMO.SSN_MASK ON HOSPITAL.PATIENT FOR

COLUMN SSN RETURN
CASE WHEN VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,

’PATIENT’) = 1 OR
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,

’ACCOUNTING’) = 1
THEN SSN
ELSE CHAR(’XXX-XX-’) || SUBSTR(SSN,8,4)
END

ENABLE;

COMMIT;

Chapter 4. Managing access through row permissions and column masks 211



You can issue the CREATE MASK statements to create column masks
USERID_MASK, NAME_MASK, and ADDRESS_MASK. The definitions of all
these column masks are stored in the new catalog table
SYSIBM.SYSCONTROLS.

4. Use the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS
CONTROL clause to activate column access control for table
HOSPITAL.PATIENT
ALTER TABLE HOSPITAL.PATIENT ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

The ALTER TABLE serialization process takes place and invalidates all
packages and dynamic cached statements that reference table
HOSPITAL.PATIENT. The value 'C' in the new column SYSTABLES.CONTROL
indicates that the table is activated for column access control.
Whenever column SSN of table HOSPITAL.PATIENT is referenced in the
outermost SELECT clause of a data manipulation statement, column mask
SSN_MASK is implicitly applied by DB2 to control the masked values that are
returned for it.
If necessary, SECADM can deactivate column access control from table
HOSPITAL.PATIENT by simply issuing the following ALTER TABLE statement:
ALTER TABLE HOSPITAL.PATIENT DEACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
HOSPITAL.PATIENT. DB2 reflects the removal of column access control by

setting SYSTABLES.CONTROL to blank.
Related concepts:
“Row permission” on page 202
“Column mask” on page 203
Related tasks:
“Creating row permissions” on page 208
“Using INSERT on tables with row access control” on page 214
“Creating triggers for tables with row and column access control” on page 215
“Modifying column masks to reference UDFs”
Related reference:
“Rules of row and column access control” on page 204
“Explicit system privileges” on page 25
“SECADM” on page 39

Modifying column masks to reference UDFs
With the SECADM authority, you can modify column masks on tables that are
activated for column access control.

Before you begin

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set
to YES during installation or migration, you must have the SECADM authority to
modify a column mask. If SEPARATE_SECURITY is set to NO, you must have the
SECADM or SYSADM authority.

212 Managing Security



About this task

Suppose that table HOSPITAL.PATIENT contains columns to record a patient's
social security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMCY), account balance (ACCT_BALANCE),
and doctor (PCD_ID). The table is activated for column access control.

Also, suppose that database developer Paul has created a new powerful accounting
application NetHMLAccountingUDF (an external scalar user-defined function). You
want to modify column mask ACCT_BALANCE_MASK for column
HOSPITAL.PATIENT.ACCT_BALANCE to include NetHMLAccountingUDF.

Procedure

To modify column mask ACCT_BALANCE_MASK to include
NetHMLAccountingUDF:
1. Make sure that all the operations in the new UDF are secure.

Only secure UDFs can be invoked in a column mask. The SECURED attribute
is required if the user-defined function is referenced in the definition of a row
permission or column mask. This is because the user-defined function may
access sensitive data. The SECURED attribute is also required for a user-defined
function that is invoked in an SQL statement when the function arguments
reference columns that are activated with column access control.
Make sure that all the operations inside the new application
NetHMLAccountingUDF are actually secure. Then, you can issue the following
GRANT CREATE_SECURE_OBJECT statement to allow userid PAUL the
privilege for creating a secure UDF:
GRANT CREATE_SECURE_OBJECT TO PAUL;

COMMIT;

DB2 records the grant in SYSUSERAUTH: GRANTOR = GRANTORID,
GRANTEE = PAUL, AUTHHOWGOT = E, and CREATESECUREAUTH = Y.
This means that authid GRANTORID has used the SECADM authority
(AUTHHOWGOT = E) to grant userid PAUL the CREATE_SECURE_OBJECT
privilege.
With the CREATE_SECURE_OBJECT privilege, Paul issues the following
ALTER FUNCTION statement to secure NetHMLAccountingUDF:
ALTER FUNCTION NETHMOACCOUNTINGUDF(ACCT_BALANCE) SECURED;

COMMIT;

DB2 sets the new column in catalog SYSROUTINES.SECURE to Y and
invalidates all packages and dynamic cached statements that reference
NetHMOAccountingUDF(ACCT_BALANCE).

2. After the UDF has been altered to be secure, revoke the
CREATE_SECURE_OBJECT privilege from userid PAUL by issuing the
following REVOKE CREATE_SECURE_OBJECT statement:
REVOKE CREATE_SECURE_OBJECT FROM PAUL;

COMMIT;

DB2 completes the privilege removal by deleting the row from SYSUSERAUTH
with GRANTOR = GRANTORID, GRANTEE = PAUL, AUTHHOWGOT = E,
and CREATESECUREAUTH = Y.

3. Drop the existing column mask ACCT_BALANCE_MASK for column
ACCT_BALANCE

Chapter 4. Managing access through row permissions and column masks 213



You can issue the DROP MASK statement to remove the existing column mask,
but do not follow it with the COMMIT statement. This will prevent any
ongoing transactions from accessing table HOSPITAL.PATIENT before you can
put a new column mask in place.
DROP MASK ACCT_BALANCE_MASK;

DB2 invalidates all packages and dynamic cached statements that reference
table HOSPITAL.PATIENT. It also deletes the row for ACCT_BALANCE_MASK
in the catalog table SYSIBM.SYSCONTROLS. Since there isn't a COMMIT
statement immediately after the DROP MASK statement, DB2 keeps possessing
the lock on HOSPITAL.PATIENT and doesn't commit the work it has done for
the DROP MASK statement. Any transactions that try to access
HOSPITAL.PATIENT may be timed out.

4. Create a new column mask ACCT_BALANCE_MASK for column
ACCT_BALANCE
You can issue the CREATE MASK statement to create a new column mask and
follow it immediately with the COMMIT statement. This will enable DB2 to
commit all the work it has done so far for HOSPITAL.PATIENT and allow
other transactions to access HOSPITAL.PATIENT.
CREATE MASK NETHMO.ACCT_BALANCE_MASK ON HOSPITAL.PATIENT FOR

COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER

(SESSION_USER,’ACCOUNTING’) = 1

THEN NETHMOACCOUNTINGUDF(ACCT_BALANCE)
ELSE 0.00

END
ENABLE;

COMMIT;

DB2 invalidates all packages and dynamic cached statements that reference
table HOSPITAL.PATIENT and inserts the new ACCT_BALANCE_MASK
definition into the catalog table SYSIBM.SYSCONTROLS. It also records the
dependency on NetHMOAccountingUDF in SYSIBM.SYSDEPENDENCIES for
ACCT_BALANCE_MASK.
The COMMIT statement immediately after the CREATE MASK statement
ensures that DB2 commits all the work it has done so far on
HOSPITAL.PATIENT and releases the lock from the table. This allows other

transactions to access the same table without being timed out.

Using INSERT on tables with row access control
You can use the INSERT statement on tables that are activated for row access
control.

About this task

Suppose that you are responsible for managing patient memberships and you are
associated with role MEMBERSHIP that is already created for table
HOSPITAL.PATIENT. Table HOSPITAL.PATIENT is also activated for row access
control, and Role MEMBERSHIP is allowed to access, create, and retrieve rows in
the table.

Suppose that table HOSPITAL.PATIENT contains columns to record a patient's
social security number (SSN), account authorization ID (USERID), name (NAME),
address (ADDRESS), pharmacy (PHARMCY), account balance (ACCT_BALANCE),

214 Managing Security



and doctor (PCD_ID). You want to add a new row for a new patient Bob.

Procedure

To add a row to a table that is enforced with row access control:
1. Ensure that role MEMBERSHIP is allowed to access, insert, and update rows

when row permission rules are set for table HOSPITAL.PATIENT by the
SECADM authority.
CREATE PERMISSION NETHMO.ROW_ACCESS ON HOSPITAL.PATIENT

FOR ROWS WHERE (VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,
’MEMBERSHIP’) = 1 )

ENFORCED FOR ALL ACCESS
ENABLE;

COMMIT;

2. Issue the INSERT statement to insert a new row for patient Bob:
INSERT INTO HOSPITAL.PATIENT(SSN, USERID, NAME, ADDRESS)

VALUES(’123-45-6789’,’BobXYZ100’,'Bob’,'123 Some St.’);

COMMIT;

3. Verify that Bob was successfully added by issuing the following SELECT
statement:
SELECT * FROM HOSPITAL.PATIENT WHERE SSN = '123-45-6789’;

COMMIT;

The following result is returned and shows that a new row for Bob was
successfully added to the table.
SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID
----------- --------- ---- ------------ -------- ------------ ------
123-45-6789 BobXYZ100 Bob 123 Some St. ? 0.00 ?

DSNT400I SQLCODE = 000, SUCCESSFUL EXECUTION
SUCCESSFUL RETRIEVAL OF 1 ROW(S)

Creating triggers for tables with row and column access control
With the required authority and privileges, you can create triggers for tables that
are activated for row and access control.

Before you begin

If the SEPARATE_SECURITY system parameter on panel DSNTIPP1 is set to YES
during installation or migration, you must have the SECADM authority to create
triggers for tables that are activated with row and column access control. If
SEPARATE_SECURITY is set to NO, you must have the SECADM or SYSADM
authority.

About this task

Suppose that table HOSPITAL.PATIENT is activated for row and column access
control. The table contains columns to record a patient's social security number
(SSN), account authorization ID (USERID), name (NAME), address (ADDRESS),
pharmacy (PHARMCY), account balance (ACCT_BALANCE), and doctor
(PCD_ID). Paul, a database developer, needs to create a new AFTER UPDATE

Chapter 4. Managing access through row permissions and column masks 215



trigger for HOSPITAL.PATIENT to monitor the history of the ACCT_BALANCE
column.

Procedure

To create a trigger for a table that is enforced with row and access control:
1. Make sure that all operations on the transition variables and transition tables

inside the new trigger body are secure.
Only secure triggers can be defined on tables that are already enforced with
row and column access control. The SECURED attribute is required for a
trigger when the associated table is row or column access control enforced or
the associated view whose underlying table is enforced with row or column
access control. If a trigger exists but is not secure, row or column access control
cannot be activated for the associated table.
Make sure that all operations on the transition variables and transition tables
inside the new trigger body are actually secure. Then, you can issue the
following GRANT CREATE_SECURE_OBJECT statement to allow userid PAUL

the privilege for creating secure triggers for table HOSPITAL.PATIENT:
GRANT CREATE_SECURE_OBJECT TO PAUL;

COMMIT;

DB2 records the grant in SYSUSERAUTH: GRANTOR = GRANTORID,
GRANTEE = PAUL, AUTHHOWGOT = E, and CREATESECUREAUTH = Y.
This means that authid GRANTORID has used the SECADM authority
(AUTHHOWGOT = E) to grant userid PAUL the CREATE_SECURE_OBJECT
privilege.

2. Create a new trigger for table HOSPITAL.PATIENT
With the CREATE_SECURE_OBJECT privilege, Paul can create a secure
NETHMO_ACCT_BALANCE_TRIGGER by issuing the following CREATE

TRIGGER statement:
CREATE TRIGGER NETHMO_ACCT_BALANCE_TRIGGER NO CASCADE

AFTER UPDATE OF ACCT_BALANCE ON HOSPITAL.PATIENT SECURED
REFERENCING OLD AS O NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO ACCT_HISTORY
(SSN, BEFORE_BALANCE, AFTER_BALANCE, WHEN, BY_WHO)
VALUES(O.SSN, O.ACCT_BALANCE, N.ACCT_BALANCE,

CURRENT TIMESTAMP, SESSION_USER);
END!

COMMIT!

DB2 inserts a new row into SYSIBM.SYSTRIGGERS with
SYSTRIGGERS.SECURE = 'Y'. DB2 completes other catalog table updates for
the trigger creation.

3. After trigger NETHMO_ACCT_BALANCE_TRIGGER is created, revoke the
CREATE_SECURE_OBJECT privilege from userid PAUL by issuing the
following REVOKE CREATE_SECURE_OBJECT statement:

216 Managing Security



REVOKE CREATE_SECURE_OBJECT FROM PAUL;

COMMIT;

DB2 completes the privilege removal by deleting the row with GRANTOR =
GRANTORID, GRANTEE = PAUL, AUTHHOWGOT = E, and
CREATESECUREAUTH = Y from SYSUSERAUTH. This means that authid
GRANTORID has used the SECADM authority (AUTHHOWGOT = E) to
revoke the CREATE_SECURE_OBJECT privilege from userid PAUL.

Chapter 4. Managing access through row permissions and column masks 217



218 Managing Security



Chapter 5. Managing access through trusted contexts

You can use trusted contexts to manage access to your DB2 subsystems, which
helps you improve data security.

You can use trusted connections within a trusted context. When you do this, you
can reuse the authorization and switch users of the connection without the
database server needing to authenticate the IDs. To use trusted connections, you
cannot set the ALL subsystem parameter to ALL and set the RESTART subsystem
parameter to DEFER on installation panel DSNTIPS

Trusted contexts
A trusted context is an independent database entity that you can define based on a
system authorization ID and connection trust attributes.

The trust attributes specify a set of characteristics about a specific connection.
These attributes include the IP address, domain name, or SERVAUTH security zone
name of a remote client and the job or task name of a local client.

A trusted context allows for the definition of a unique set of interactions between
DB2 and the external entity, including the following abilities:
v The ability for the external entity to use an established database connection with

a different user without the need to authenticate that user at the DB2 server.
This ability eliminates the need to manage end-user passwords by the external
entity. Also, a database administrator can assume the identity of other users and
perform actions on their behalf.

v The ability for a DB2 authorization ID to acquire one or more privileges within a
trusted context that are not available to it outside of that trusted context. This is
accomplished by associating a role with the trusted context.

The following client applications provide support for the trusted context:
v The DB2 Universal Java Driver introduces new APIs for establishing trusted

connections and switching users of a trusted connection.
v The DB2 CLI/ODBC Driver introduces new keywords for connecting APIs to

establish trusted connections and switch users of a trusted connection.
v The WebSphere Application Server 6.0 exploits the trusted context support

through its "propagate client identity" property.

© Copyright IBM Corp. 1982, 2013 219



Related concepts:
“Trusted connections”
“Roles in a trusted context” on page 21
Related tasks:
“Defining trusted contexts”
“Creating local trusted connections” on page 221
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 222
“Establishing remote trusted connections to DB2 for z/OS servers” on page 223
Related reference:
“Establishing plan and package ownership in a trusted context” on page 81
“Ownership of objects within a trusted context” on page 79

Trusted connections
A trusted connection is a database connection that is established when the
connection attributes match those of a trusted context that is defined at the server.
A trusted connection can be established locally or at a remote location.

A trusted context allows you to establish a trusted relationship between DB2 and
an external entity, such as a middleware server. DB2 evaluates a series of trust
attributes to determine if a specific context is to be trusted. Currently, the only
attribute that DB2 considers is the database connection. The relationship between a
connection and a trusted context is established when the connection to the server is
first created, and that relationship remains as long as that connection exists.
Related concepts:
“Trusted contexts” on page 219
“Roles in a trusted context” on page 21
Related tasks:
“Defining trusted contexts”
“Creating local trusted connections” on page 221
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 222
“Establishing remote trusted connections to DB2 for z/OS servers” on page 223

Defining trusted contexts
Before you can create a trusted connection, you must define a trusted context by
using a system authorization ID and connection trust attributes.

About this task

A system authorization ID is the DB2 primary authorization ID that is used to
establish the trusted connection. For local connections, the system authorization ID
is derived as shown in the following table.

Table 51. System authorization ID for local connections

Source System authorization ID

Started task (RRSAF) USER parameter on JOB statement or RACF USER

TSO TSO logon ID

BATCH USER parameter on JOB statement

220 Managing Security



For remote connections, the system authorization ID is derived from the system
user ID that is provided by an external entity, such as a middleware server.

The connection trust attributes identify a set of characteristics about the specific
connection. The connection trust attributes are required for the connection to be
considered a trusted connection. For a local connection, the connection trust
attribute is the job or started task name. For a remote connection, the connection
trust attribute is the client's IP address, domain name, or SERVAUTH security zone
name. The connection trust attributes are as follows:

ADDRESS
Specifies the client's IP address or domain name, used by the connection to
communicate with DB2. The protocol must be TCP/IP.

SERVAUTH
Specifies the name of a resource in the RACF SERVAUTH class. This
resource is the network access security zone name that contains the IP
address of the connection to communicate with DB2.

ENCRYPTION
Specifies the minimum level of encryption of the data stream (network
encryption) for the connection. Supported values are as follows:
v NONE - No encryption. This is the default.
v LOW - DRDA data stream encryption.
v HIGH - Secure Socket Layer (SSL) encryption.

JOBNAME
Specifies the local z/OS started task or job name. The value of JOBNAME
depends on the source of the address space, as shown in the following
table.

Table 52. JOBNAME for local connections

Source JOBNAME

Started task (RRSAF) Job or started task name

TSO TSO logon ID

BATCH Job name on JOB statement

The JOBNAME attribute cannot be specified with the ADDRESS,
SERVAUTH, or ENCRYPTION attributes.

Related concepts:
“Trusted contexts” on page 219
“Trusted connections” on page 220
“Roles in a trusted context” on page 21
Related tasks:
“Creating local trusted connections”
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 222
“Establishing remote trusted connections to DB2 for z/OS servers” on page 223

Creating local trusted connections
You can establish a trusted connection to a local DB2 subsystem by using RRSAF,
CAF, or the DSN command processor under TSO and DB2I.

Chapter 5. Managing access through trusted contexts 221



About this task

When you attempt to create a local trusted connection, DB2 searches for a trusted
context that matches the primary authorization ID and the job or started task name
that you supply. If DB2 finds a matching trusted context, DB2 checks if the
DEFAULT SECURITY LABEL attribute is defined in the trusted context.

If the DEFAULT SECURITY LABEL attribute is defined with a security label, DB2
verifies the security label with RACF. This security label is used for multilevel
security verification for the system authorization ID. If verification is successful,
the connection is established as trusted. If the verification is not successful, the
connection is established as a normal connection without any additional privileges.

In addition, the DB2 online utilities can run in a trusted connection if a matching
trusted context is defined, if the primary authorization ID matches the SYSTEM
AUTHID value of the trusted context, and if the job name matches the JOBNAME
attribute defined for the trusted context.
Related concepts:
“Trusted contexts” on page 219
“Trusted connections” on page 220
“Roles in a trusted context” on page 21
Related tasks:
“Defining trusted contexts” on page 220
“Establishing remote trusted connections by DB2 for z/OS requesters”
“Establishing remote trusted connections to DB2 for z/OS servers” on page 223

Establishing remote trusted connections by DB2 for z/OS requesters
A DB2 for z/OS requester can establish a trusted connection to a remote location
by setting up the new TRUSTED column in the SYSIBM.LOCATIONS table.

About this task

How DB2 obtains the system authorization ID to establish the trusted connection
depends on the value of the SECURITY_OUT option in the SYSIBM.IPNAMES
table. The SECURITY_OUT option in the SYSIBM.IPNAMES table must be 'E', 'P',
or 'R'.

When the z/OS requester receives an SQL CONNECT with or without the USER
and USING clauses to a remote location or if an application references a remote
table or procedure, DB2 looks at the SYSIBM.LOCATIONS table to find a matching
row. If DB2 finds a matching row, it checks the TRUSTED column. If the value of
TRUSTED column is set to 'Y', DB2 looks at the SYSIBM.IPNAMES table. The
values in the SECURITY_OUT column and USERNAMES column are used to
determine the system authorization ID as follows:

SECURITY_OUT = 'P' or 'E' and USERNAMES = 'S'
The system authorization ID credentials that are used to establish the
trusted connection are obtained from the row in the SYSIBM.USERNAMES
table with TYPE 'S'.

DB2 sends the user switch request on behalf of the primary authorization
ID without authentication under two conditions. First, the system

222 Managing Security



authorization ID value in the AUTHID column is different from the
primary authorization ID. Second, a trusted connection is successfully
established.

SECURITY_OUT='P' or 'E' and USERNAMES = 'O'
If a row with TYPE 'S' is defined in the SYSIBM.USERNAMES table, the
system authorization ID credentials that are used to establish the trusted
connection are obtained from the row.

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID information for the primary authorization ID
from the row in the SYSIBM.USERNAMES table with TYPE 'O'. DB2 sends
the user switch request on behalf of the primary authorization ID with
authentication.

If a row with TYPE 'S' is not defined in the SYSIBM.USERNAMES table,
DB2 obtains the system authorization ID information that is used to
establish the trusted connection from the row in the SYSIBM.USERNAMES
table with TYPE 'O'.

SECURITY_OUT = 'R' and USERNAMES = ' '
The primary authorization ID is used as the system authorization ID to
establish the trusted connection.

SECURITY_OUT = 'R' and USERNAMES = 'S'
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with TYPE='S'.

After establishing the trusted connection successfully, DB2 sends the user
switch request on behalf of the primary authorization ID without
authentication.

SECURITY_OUT = 'R' and USERNAMES = 'O'
The system authorization ID that is used to establish the trusted connection
is obtained from the row in the SYSIBM.USERNAMES table with TYPE 'S'.

After successfully establishing the trusted connection, DB2 obtains the
translated authorization ID for the primary authorization ID from the row
in the SYSIBM.USERNAMES table with TYPE 'O'. DB2 sends the user
switch request on behalf of the primary authorization ID with RACF
passticket authentication.

If the SECURITY_OUT option is not correctly set up, DB2 returns an error.
Related concepts:
“Trusted contexts” on page 219
“Trusted connections” on page 220
“Roles in a trusted context” on page 21
Related tasks:
“Defining trusted contexts” on page 220
“Creating local trusted connections” on page 221
“Establishing remote trusted connections to DB2 for z/OS servers”

Establishing remote trusted connections to DB2 for z/OS servers
When the DB2 for z/OS server receives a remote request to establish a trusted
connection, DB2 checks to see if an authentication token accompanies the request.

Chapter 5. Managing access through trusted contexts 223



About this task

The authentication token can be a password, a RACF passticket, or a Kerberos
ticket. The requester goes through the standard authorization processing at the
server. If the authorization is successful, DB2 invokes the connection exit routine,
which associates the primary authorization ID, possibly one or more secondary
authorization IDs, and an SQL ID with the remote request. DB2 searches for a
matching trusted context. If DB2 finds a matching trusted context, it validates the
following attributes:
v If the SERVAUTH attribute is defined for the identified trusted context and

TCP/IP provides a RACF SERVAUTH profile name to DB2 during the
establishment of the connection, DB2 matches the SERVAUTH profile name with
the SERVAUTH attribute value.

v If the SERVAUTH attribute is not defined or the SERVAUTH name does not
match the SERVAUTH that is defined for the identified trusted context, DB2
matches the remote client's TCP/IP address with the ADDRESS attribute that is
defined for the identified trusted context.

v If the ENCRYPTION attribute is defined, DB2 validates whether the connection
is using the proper encryption as specified in the value of the ENCRYPTION
attribute.

v If the DEFAULT SECURITY LABEL attribute is defined for the system
authorization ID, DB2 verifies the security label with RACF. This security label is
used for verifying multilevel security for the system authorization ID. However,
if the system authorization ID is also in the ALLOW USER clause with
SECURITY LABEL, then that one is used.

If the validation is successful, DB2 establishes the connection as trusted. If the
validation is not successful, the connection is established as a normal connection
without any additional privileges, DB2 returns a warning, and SQLWARN8 is set.
Related concepts:
“Trusted contexts” on page 219
“Trusted connections” on page 220
“Roles in a trusted context” on page 21
Related tasks:
“Defining trusted contexts” on page 220
“Creating local trusted connections” on page 221
“Establishing remote trusted connections by DB2 for z/OS requesters” on page 222

Switching users of a trusted connection
When a trusted connection is established, DB2 enables the trusted connection to be
reused by a different user on a transaction boundary.

You can reuse a trusted connection at a local DB2 subsystem by using RRSAF, the
DSN command processor under TSO, DB2I, and the SQL CONNECT statement
with the USER and USING clauses. To reuse the trusted connection, you must add
the specific user to the trusted context. If you specify 'PUBLIC' as the user, DB2
allows the trusted connection to be used by any authorization ID; the trusted
connection can be used by a different user with or without authentication.
However, you can require authentication by specifying the WITH
AUTHENTICATION clause.

224 Managing Security



You can use RRSAF, the DSN command processor under TSO, and DB2I to switch
to a new user on a trusted connection without authentication. If authentication is
required, you can use the SQL CONNECT statement with the USER and USING
clauses. The SQL CONNECT semantics prevent the use of CONNECT TO with the
USER and USING clauses to switch authorization IDs on a remote connection.
Related tasks:
“Enabling users to perform actions on behalf of others” on page 228
“Performing tasks on objects for other users” on page 228

Reusing a local trusted connection through the DSN
command processor and DB2I

You can use the DSN command processor and DB2I to switch the user on a trusted
connection if the DSN ASUSER option is specified.

About this task

DB2 establishes a trusted connection if the primary authorization ID and job name
match a trusted context that is defined in DB2. The user ID that is specified for the
ASUSER option goes through the standard authorization processing. If the user ID
is authorized, DB2 runs the connection exit routine to associate the primary and
secondary IDs.

DB2 then searches to see if the primary authorization ID is allowed to use the
trusted connection without authentication. If the primary authorization ID is
allowed to use the trusted connection without authentication, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either
explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the verification of the security
label is successful, the trusted connection is established and used by the user ID
that is specified for the ASUSER option. DB2 uses the security label for multilevel
security verification for the user.

If the primary authorization ID that is associated with the user ID that is specified
for the ASUSER option is not allowed or requires authentication information, the
connection request fails. If the security label verification is not successful, the
connection request fails.

Reusing a remote trusted connection by DB2 for z/OS
requesters

After establishing a trusted connection with a system authorization ID, the DB2 for
z/OS requester automatically switches the user on the connection to the primary
authorization ID on the remote trusted connection.

About this task

The DB2 for z/OS requester reuses a remote trusted connection in the following
scenarios:
v The system authorization ID is different from the primary authorization ID that

is associated with the application user.
v The system authorization ID is different from the authorization ID that is

specified in the SQL CONNECT statement with the USER and USING clauses.
v Outbound translation is required for the primary authorization ID.

Chapter 5. Managing access through trusted contexts 225



Reusing a remote trusted connection through DB2 for z/OS
servers

The DB2 for z/OS server performs a sequence of tasks when it receives a request
to switch users on a trusted connection.

About this task

The DB2 z/OS server performs these tasks in the following sequence:
1. DB2, on successful authorization, invokes the connection exit routine. The

invocation associates the primary authorization ID, possibly one or more
secondary authorization IDs, and an SQL ID with the remote request. This new
set of IDs replaces the previous set of IDs that was associated with the request.

2. DB2 determines if the primary authorization ID is allowed to use the trusted
connection. If the WITH AUTHENTICATION clause is specified for the user,
DB2 requires an authentication token for the user. The authentication token can
be a password, a RACF passticket, or a Kerberos ticket.

3. Assuming that the primary authorization ID is allowed, DB2 determines the
trusted context for any SECURITY LABEL definition. If a specific SECURITY
LABEL is defined for this user, it becomes the SECURITY LABEL for this user.
If no specific SECURITY LABEL is defined for this user but a DEFAULT
SECURITY LABEL is defined for the trusted context, DB2 verifies the validity
of this SECURITY LABEL for this user through RACF by issuing the
RACROUTE VERIFY request.
If the primary authorization ID is allowed, DB2 performs a connection
initialization. This results in an application environment that truly mimics the
environment that is initialized if the new user establishes the connection in the
normal DB2 manner. For example, any open cursor is closed, and temporary
table information is dropped.

4. If the primary authorization ID is not allowed to use the trusted connection or
if SECURITY LABEL verification fails, the connection is returned to an
unconnected state. The only operation that is allowed is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, if any SQL statement is issued, an error
(SQLCODE -900) is returned.

Reusing a local trusted connection through RRSAF
If you use Resource Recovery Services Attachment Facility (RRSAF) to switch to a
new user on a trusted connection, DB2 obtains the primary authorization ID and
runs the sign-on exit routine.

About this task

DB2 searches to determine if the primary authorization ID is allowed to use the
trusted connection without authentication. If the primary authorization ID is
allowed, DB2 determines if SECURITY LABEL is explicitly or implicitly defined in
the trusted context for the user. If SECURITY LABEL is defined, DB2 verifies the
SECURITY LABEL with RACF by using the RACROUTE VERIFY request. If the
SECURITY LABEL verification is successful, the trusted connection is used by the
new user.

If the primary authorization ID is not allowed to use the trusted connection
without authentication, DB2 returns the connection to an unconnected state. The
only action that you can take is to try running the sign-on exit routine again. Until

226 Managing Security



a valid authorization is established, any SQL statement that you issue causes DB2
to return an error.

Reusing a local trusted connection through the SQL
CONNECT statement

You can switch users on a trusted connection by using the SQL CONNECT
statement with the USER and USING clauses.

About this task

DB2, on successful authorization, invokes the connection exit routine if it is
defined. The connection then has a primary authorization ID, zero or more
secondary IDs, and an SQL ID.

DB2 searches to determine if the primary authorization ID is allowed to use the
trusted connection. If the primary authorization ID is allowed, DB2 determines if
the SECURITY LABEL attribute is defined in the trusted context for the user either
explicitly or implicitly. If the SECURITY LABEL attribute is defined with a security
label, DB2 verifies the security label with RACF. If the security label verification is
successful, DB2 switches the user on the trusted connection. DB2 uses the security
label for multilevel security verification for the user.

If the primary authorization ID is not allowed to use the trusted connection or if
the security label verification is not successful, DB2 returns the connection to an
unconnected state. The only action you can take is to establish a valid
authorization ID to be associated with the trusted connection. Until a valid
authorization is established, any SQL statement that you issue causes DB2 to
return an error.

Defining external security profiles
You can control the users who can be switched in a trusted connection by defining
an external security profile in RACF and authorizing users to use the profile.

Procedure

To define an external security profile in RACF:
1. Create a general resource profile in RACF for the DSNR class by issuing the

following command:
RDEFINE DSNR (TRUSTEDCTX.PROFILE1) UACC(NONE)

2. Add users to the TRUSTEDCTX.PROFILE1 profile and define their level of
access authority by issuing the following command:
PERMIT TRUSTEDCTX.PROFILE1 CLASS(DSNR) ID(USER1 USER2) ACCESS(READ)

3. Associate the profile with the trusted context definition by using the
EXTERNAL SECURITY PROFILE keyword in the trusted context user clause
definition.

Results

You can remove users who can be switched in a trusted connection individually
from the TRUSTEDCTX.PROFILE1 profile in RACF. You can also remove all users
by simply dissociating the profile from the trusted context definition.

Chapter 5. Managing access through trusted contexts 227



Enabling users to perform actions on behalf of others
Within a trusted context, you can allow users to perform actions on objects on
behalf of others.

About this task

You can specify the DSN ASUSER option with the authorization ID of the object
owner. During the connection processing, the authorization ID is used to determine
if a trusted context exists for this authorization ID. If a trusted context exists, a
trusted connection is established. The primary authorization ID that is associated
with the user ID and specified in the ASUSER option is used to determine if the
user can be switched on the trusted connection.

If the user ID that is specified in the ASUSER option is allowed to use the trusted
connection, the user runs under the authorization ID of the object owner and can
perform actions on behalf of the object owner. The authorization ID of the original
user is traced for audit purposes.
Related concepts:
“Switching users of a trusted connection” on page 224

Performing tasks on objects for other users
If you have DBADM authority, you can assume the identity of other users within a
trusted context and perform tasks on their behalf.

About this task

After you successfully assume the identity of a view owner, you inherit all the
privileges from the ID that owns the view and can therefore perform the CREATE,
DROP, and GRANT actions on the view.

Procedure

To perform tasks on behalf of another user:
1. Define a trusted context. Make sure that the SYSTEM AUTH ID is the primary

authorization ID that you use in SPUFI.
2. Specify the primary authorization ID as the JOBNAME for the trusted

connection.
3. Specify the primary authorization ID of the user whose identity you want to

assume.
4. Log onto TSO with your primary authorization ID.
5. Set the ASUSER option on the DB2I DEFAULTS panel to the primary

authorization ID of the user whose identity you want to assume.
6. Perform the actions that you want by using the privileges of the specified user.

Example

For example, assume that you have DBADM authority, your primary authorization
ID is BOB, and you want to drop a view that is owned by user SALLY. You can
issue the following statement to create and enable a trusted context called
CTXLOCAL in which BOB can drop the selected view on SALLY's behalf:

228 Managing Security



CREATE TRUSTED CONTEXT CTXLOCAL
BASED UPON CONNECTION USING SYSTEM AUTHID BOB
ATTRIBUTES (JOBNAME ’BOB’)
ENABLE
ALLOW USE FOR SALLY;

After logging onto TSO, you can set the ASUSER option to SALLY in the DB2I
DEFAULTS panel and invoke SPUFI to process SQL statements. DB2 obtains the
primary authorization ID BOB and JOBNAME BOB from the TSO logon session,
authenticates BOB, searches for the matching trusted context (CTXLOCAL), and
establishes a trusted connection. DB2 then authenticates the primary authorization
ID SALLY and validates all privileges that are assigned to SALLY. After successful
authentication and validation, you, BOB, can drop the view that is owned by
SALLY.
Related concepts:
“Switching users of a trusted connection” on page 224

Chapter 5. Managing access through trusted contexts 229



230 Managing Security



Chapter 6. Managing access through data definition control

Data definition control is a DB2 security measure that provides additional constraints
to existing authorization checks. You can use data definition control to manage
access to your DB2 data.

Data definition statements
Data definition control support can control data definition statements.

The following data definition statements are controlled through the DB2 data
definition control support.

Table 53. Data definition Statements

Object CREATE statement ALTER statement DROP statement

Alias CREATE ALIAS DROP ALIAS

Database CREATE DATABASE ALTER DATABASE DROP DATABASE

Index CREATE INDEX ALTER INDEX DROP INDEX

Storage group CREATE STOGROUP ALTER STOGROUP DROP STOGROUP

Synonym CREATE SYNONYM DROP SYNONYM

Table CREATE TABLE ALTER TABLE DROP TABLE

Table space CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE

View CREATE VIEW DROP VIEW

The data definition control support also controls the COMMENT and LABEL
statements.
Related concepts:
“Registration tables” on page 232
Related reference:
“Data definition control support”

Data definition control support
If you want to use data definition statements for your plans and packages, you
must install data definition control support on the DB2 DSNTIPZ installation panel.

As shown in the following example, you can specify appropriate values for several
installation options to install the data definition control support and to control data
definition behaviors.

© Copyright IBM Corp. 1982, 2013 231



Related concepts:
“Registration tables”
Related reference:
“Data definition statements” on page 231
“Data definition control support” on page 231

Registration tables
If you use data definition control support, you must create and maintain an
application registration table (ART) and an object registration table (ORT). You can
register plans and package collections in the ART and objects that are associated
with the plans and collections in the ORT.

DB2 consults these two registration tables before accepting a data definition
statement from a process. It denies a request to create, alter, or drop a particular
object if the registration tables indicate that the process is not allowed to do so.

Both ART and ORT contain the CREATOR and CHANGER columns. The
CREATOR and CHANGER columns are CHAR(26) and large enough for a
three-part authorization ID. You need to separate each 8-byte part of the ID with a
period in byte 9 and in byte 18. If you enter only the primary authorization ID,
consider entering it right-justified in the field (that is, preceded by 18 blanks).

In addition to the CREATOR and CHANGER columns, an ART also contains the
following columns, some of which are optional and reserved for administrator use;
DB2 does not use these columns.

Table 54. Columns of the ART

Column name Description

APPLIDENT Indicates the collection-ID of the package that executes the data
definition language. If no package exists, it indicates the name
of the plan that executes the data definition language.

APPLIDENTTYPE Indicates the type of application identifier.

DSNTIPZ INSTALL DB2 - DATA DEFINITION CONTROL SUPPORT
===>

Enter data below:

1 INSTALL DD CONTROL SUPT. ===> NO YES - activate the support
NO - omit DD control support

2 CONTROL ALL APPLICATIONS ===> NO YES or NO
3 REQUIRE FULL NAMES ===> YES YES or NO
4 UNREGISTERED DDL DEFAULT ===> ACCEPT Action for unregistered DDL:

ACCEPT - allow it
REJECT - prohibit it
APPL - consult ART

5 ART/ORT ESCAPE CHARACTER ===> Used in ART/ORT Searches
6 REGISTRATION OWNER ===> DSNRGCOL Qualifier for ART and ORT
7 REGISTRATION DATABASE ===> DSNRGFDB Database name
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL Table name
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT Table name

Note: ART = Application Registration Table
ORT = Object Registration Table

PRESS: ENTER to continue RETURN to exit HELP for more information

Figure 12. DSNTIPZ installation panel with default values

232 Managing Security



Table 54. Columns of the ART (continued)

Column name Description

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

DEFAULTAPPL Indicates whether all data definition language should be
accepted from this application.

QUALIFIEROK Indicates whether the application can supply a missing name
part for objects that are named in the ORT. Applies only if
REQUIRE FULL NAMES = NO.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

An ORT also contains the following columns, some of which are optional and
reserved for administrator use; DB2 does not use these columns.

Table 55. Columns of the ORT

Column name Description

QUALIFIER Indicates the object name qualifier.

NAME Indicates the unqualified object name.

TYPE Indicates the type of object.

APPLMATCHREQ Indicates whether an application that names this object must
match the one that is named in the APPLIDENT column.

APPLIDENT Collection-ID of the plan or package that executes the data
definition language.

APPLIDENTTYPE Indicates the type of application identifier.

APPLICATIONDESC1 Optional data. Provides a more meaningful description of each
application than the eight-byte APPLIDENT column can contain.

CREATOR1, 2 Optional data. Indicates the authorization ID that created the
row.

CREATETIMESTAMP1 Optional data. Indicates when a row was created. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you load or insert a row.

CHANGER1, 2 Optional data. Indicates the authorization ID that last changed
the row.

CHANGETIMESTAMP1 Optional data. Indicates when a row was changed. If you use
CURRENT TIMESTAMP, DB2 automatically enters the value of
CURRENT TIMESTAMP When you update a row.

Chapter 6. Managing access through data definition control 233



Related reference:
“Data definition statements” on page 231
“Data definition control support” on page 231

Installing data definition control support
You can install data definition control support that is available through the DB2
DSNTIPZ installation panel.

Procedure

To install data definition control support:
1. Enter YES for option 1 on the DSNTIPZ installation panel, as shown in the

following example.
1 INSTALL DD CONTROL SUPT. ===> YES

2. Enter the names and owners of the registration tables in your DB2 subsystem
and the databases in which these tables reside for options 6, 7, 8, and 9 on the
DSNTIPZ installation panel.
The default values for these options are as follows:
6 REGISTRATION OWNER ===> DSNRGCOL
7 REGISTRATION DATABASE ===> DSNRGFDB
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT

You can accept the default names or assign names of your own. If you specify
your own table names, each name can have a maximum of 17 characters.

3. Enter an escape character for option 5 on the DSNTIPZ installation panel if you
want to use the percent character (%) or the underscore character (_) as a
regular character in the ART or ORT.
You can use any special character other than underscore or percent as the
escape character. For example, you can use the pound sign (#) as an escape
character. If you do, the value for option looks like this:
5 ART/ORT ESCAPE CHARACTER ===> #

After you specify the pound sign as an escape character, the pound sign can be
used in names in the same way that an escape character is used in an SQL
LIKE predicate.

4. Register plans, packages, and objects in the ART and ORT.
Choose the plans, packages, and objects to register based on whether you want
to control data definition by application name or object name.

5. Enter the values for the three other options on the DSNTIPZ installation panel
as follows:
2 CONTROL ALL APPLICATIONS ===>
3 REQUIRE FULL NAMES ===>
4 UNREGISTERED DDL DEFAULT ===>

Related reference:
“Data definition control support” on page 231

Enabling data definition control
You can use data definition control after you install the DB2 data definition control
support and create the application registration table (ART) and the object
registration table (ORT).

234 Managing Security



Procedure

You can use data definition control in the following four ways:
v Controlling data definition by application name
v Controlling data definition by application name with exceptions
v Controlling data definition by object name
v Controlling data definition by object name with exceptions
Related tasks:
“Disabling data definition control” on page 241

Controlling data definition by application name
The simplest way to implement data definition control is to give one or more
applications total control over the use of data definition statements in the
subsystem.

Procedure

To control data definition by application name:
1. Enter YES for the first option on the DSNTIPZ installation panel, as shown:

2 CONTROL ALL APPLICATIONS ===> YES

When you specify YES, only package collections or plans that are registered in
the ART are allowed to use data definition statements.

2. In the ART, register all package collections and plans that you will allow to
issue DDL statements, and enter the value Y in the DEFAULTAPPL column for
these package collections. You must supply values for the APPLIDENT,
APPLIDENTTYPE, and DEFAULTAPPL columns of the ART. You can enter
information in other columns for your own use.

Example

Suppose that you want all data definition language in your subsystem to be issued
only through certain applications. The applications are identified by the following
application plan names, collection-IDs, and patterns:

PLANA
The name of an application plan

PACKB
The collection-ID of a package

TRULY%
A pattern name for any plan name beginning with TRULY

TR% A pattern name for any plan name beginning with TR

The following table shows the entries that you need in your ART.

Table 56. Table DSN_REGISTER_APPL for total subsystem control

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

PACKB C Y

TRULY% P Y

TR% P Y

Chapter 6. Managing access through data definition control 235



If the row with TR% for APPLIDENT contains the value Y for DEFAULTAPPL, any
plan with a name beginning with TR can execute data definition language. If
DEFAULTAPPL is later changed to N to disallow that use, the changed row does
not prevent plans beginning with TR from using data definition language; the row
merely fails to allow that specific use. In this case, the plan TRXYZ is not allowed
to use data definition language. However, the plan TRULYXYZ is allowed to use
data definition language, by the row with TRULY% specified for APPLIDENT.

Controlling data definition by application name with
exceptions

You can register an application name with exceptions in the application registration
table (ART) as a way to control data definition.

Procedure

To control data definition by application name with exceptions:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, specify the following for option 4:
4 UNREGISTERED DDL DEFAULT ===> APPL

When you specify APPL, you restrict the use of data definition statements for
objects that are not registered in the ORT. If an object is registered in the ORT,
any applications that are not registered in the ART can use data definition
language on the object. However, if an object is not registered in the ORT, only
applications that are registered in the ART can use data definition language on
the object.

3. In the ART, register package collections and plans that you will allow to issue
data definition statements on any object. Enter the value Y in the
DEFAULTAPPL column for these package collections. Applications that are
registered in the ART retain almost total control over data definition. Objects
that are registered in the ORT are the only exceptions.

4. In the ORT, register all objects that are exceptions to the subsystem data
definition control that you defined in the ART. You must supply values for the
QUALIFIER, NAME, TYPE, APPLMATCHREQ, APPLIDENT, and
APPLIDENTTYPE columns of the ORT. You can enter information in other
columns of the ORT for your own use.

Example

Suppose that you want almost all of the data definition language in your
subsystem to be issued only through an application plan (PLANA) and a package
collection (PACKB).

Table 57. Table DSN_REGISTER_APPL for total subsystem control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PLANA P Y

236 Managing Security



Table 57. Table DSN_REGISTER_APPL for total subsystem control with
exceptions (continued)

APPLIDENT APPLIDENTTYPE DEFAULTAPPL

PACKB C Y

However, suppose that you also want the following specific exceptions:
v Object KIM.VIEW1 can be created, altered, or dropped by the application plan

PLANC.
v Object BOB.ALIAS can be created, altered, or dropped only by the package

collection PACKD.
v Object FENG.TABLE2 can be created, altered, or dropped by any plan or

package collection.
v Objects with names that begin with SPIFFY.MSTR and exactly one following

character can be created, altered, or dropped by any plan that matches the name
pattern TRULY%. For example, the plan TRULYJKL can create, alter, or drop the
object SPIFFY.MSTRA.

The following table shows the entries that are needed to register these exceptions
in the ORT.

Table 58. Table DSN_REGISTER_OBJT for subsystem control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM VIEW1 C Y PLANC P

BOB ALIAS C Y PACKD C

FENG TABLE2 C N

SPIFFY MSTR_ C Y TRULY% P

You can register objects in the ORT individually, or you can register sets of objects.

Controlling data definition by object name
You can register object names in the object registration table (ORT) as a way to
control data definition. You need to control data definition by object names if you
want all objects in the subsystem to be registered and if you want some
applications to control specific sets of objects.

About this task

When you control data definition by object name, all objects are registered
regardless of whether they are controlled by specific applications.

Procedure

To control data definition by object name:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, complete option 4 as follows:

Chapter 6. Managing access through data definition control 237



4 UNREGISTERED DDL DEFAULT ===> REJECT

When you specify REJECT for option 4, you totally restrict the use of data
definition statements for objects that are not registered in the ORT. Therefore,
no application can use data definition statements for any unregistered object.

3. In the ORT, register all of the objects in the subsystem, and enter Y in the
APPLMATCHREQ column. You must supply values for the QUALIFIER,
NAME, TYPE, APPLMATCHREQ, APPLIDENT, and APPLIDENTTYPE
columns of the ORT. You can enter information in other columns of the ORT for
your own use.

4. In the ART, register any plan or package collection that can use a set of objects
that you register in the ORT with an incomplete name. Enter the value Y in the
QUALIFIEROK column. These plans or package collections can use data
definition language on sets of objects regardless of whether a set of objects has
a value of Y in the APPLMATCHREQ column.

Example

The following table shows entries in the ORT for a DB2 subsystem that contains
the following objects that are controlled by object name:
v Two storage groups (STOG1 and STOG2) and a database (DATB1) that are not

controlled by a specific application. These objects can be created, altered, or
dropped by a user with the appropriate authority by using any application, such
as SPUFI or QMF.

v Two table spaces (TBSP1 and TBSP2) that are not controlled by a specific
application. Their names are qualified by the name of the database in which
they reside (DATB1).

v Three objects (OBJ1, OBJ2, and OBJ3) whose names are qualified by the
authorization IDs of their owners. Those objects might be tables, views, indexes,
synonyms, or aliases. Data definition statements for OBJ1 and OBJ2 can be
issued only through the application plan named PLANX. Data definition
statements for OBJ3 can be issued only through the package collection named
PACKX.

v Objects that match the qualifier pattern E%D and the name OBJ4 can be created,
altered, or deleted by application plan SPUFI. For example, the objects
EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, can be created, altered, or deleted
by application plan SPUFI. Entry E%D in the QUALIFIER column represents all
three objects.

v Objects with names that begin with TRULY.MY_, where the underscore character
is actually part of the name. Assuming that you specify # as the escape character,
all of the objects with this name pattern can be created, altered, or dropped only
by plans with names that begin with TRULY.

Table 59. Table DSN_REGISTER_OBJT for total control by object

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N

STOG2 S N

DATB1 D N

DATB1 TBSP1 T N

DATB1 TBSP2 T N

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

238 Managing Security



Table 59. Table DSN_REGISTER_OBJT for total control by object (continued)

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

QUENTIN OBJ3 C Y PACKX C

E%D OBJ4 C Y SPUFI P

TRULY MY#_% C Y TRULY% P

Assume the following installation option:
3 REQUIRE FULL NAMES ===> YES

The entries do not specify incomplete names. Hence, objects that are not
represented in the table cannot be created in the subsystem, except by an ID with
installation SYSADM authority.

Controlling data definition by object name with exceptions
You can register an object name with exceptions in the object registration table
(ORT) as a way to control data definition.

About this task

You can allow some applications to control specific sets of registered objects while
allowing other applications to use data definition statements for unregistered
objects.

Procedure

To control data definition by object name with exceptions:
1. Choose not to control all applications. On the DSNTIPZ installation panel,

specify the following value for option 2:
2 CONTROL ALL APPLICATIONS ===> NO

When you specify NO, you allow unregistered applications to use data
definition statements on some objects.

2. On the DSNTIPZ installation panel, complete option 4 as follows:
4 UNREGISTERED DDL DEFAULT ===> ACCEPT

This option does not restrict the use of data definition statements for objects
that are not registered in the ORT. Therefore, any application can use data
definition language for any unregistered object.

3. Register all controlled objects in the ORT. Use a name and qualifier to identify
a single object. Use only one part of a two-part name to identify a set of objects
that share just that part of the name. For each controlled object, use
APPLMATCHREQ = Y. Enter the name of the plan or package collection that
controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the
ORT), register the controlling application in the ART. You must supply values
for the APPLIDENT, APPLIDENTTYPE, and QUALIFIEROK columns of the
ART.

Chapter 6. Managing access through data definition control 239



Example

The following two tables assume that the installation option REQUIRE FULL
NAMES is set to NO. The following table shows entries in the ORT for the
following controlled objects:

Table 60. Table DSN_REGISTER_OBJT for object control with exceptions

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM OBJ1 C Y PLANX P

FENG OBJ2 C Y PLANX P

QUENTIN OBJ3 C Y PACKX C

EDWARD OBJ4 C Y PACKX C

TABA C Y PLANA P

TABB C Y PACKB C

v The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all of
which are controlled by PLANX or PACKX. DB2 cannot interpret the object
names as incomplete names because the objects that control them, PLANX and
PACKX, are registered, with QUALIFIEROK=N, in the corresponding ART as
shown in the following table:

Table 61. Table DSN_REGISTER_APPL for object control with exceptions

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANX P N N

PACKX C N N

PLANA P N Y

PACKB C N Y

In this situation, with the combination of installation options shown previously,
any application can use data definition language for objects that are not covered
by entries in the ORT. For example, if HOWARD has the CREATETAB privilege,
HOWARD can create the table HOWARD.TABLE10 through any application.

v Two sets of objects, *.TABA and *.TABB, are controlled by PLANA and PACKB,
respectively.

Registering object sets
Registering object sets enables you to save time and to simplify object registration.

About this task

Registering object sets is not a data definition control method; you must install of
the data definition control methods before you can register any object sets.

Because complete two-part names are not required for every object that is
registered in the ORT, you can use incomplete names to register sets of objects. To
use incomplete names and register sets of objects, enter option 3 on the DSNTIPZ
installation panel as follows:
3 REQUIRE FULL NAMES ===> NO

The default value YES requires you to use both parts of the name for each
registered object. If you specify the value NO, an incomplete name in the ORT

240 Managing Security



represents a set of objects that all share the same value for one part of a two-part
name. Objects that are represented by incomplete names in the ORT require an
authorizing entry in the ART.

Example: If you specify NO for option 3, you can include entries with incomplete
names in the ORT. The following table shows entries in the ORT for the following
objects:

Table 62. Table DSN_REGISTER_OBJT for objects with incomplete names

QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P

TABB C Y PACKY C

SYSADM C N

DBSYSADM T N

USER1 TABLEX C N

v Two sets of objects, *.TABA and *.TABB, which are controlled by PLANX and
PACKY, respectively. Only PLANX can create, alter, or drop any object whose
name is *.TABA. Only PACKY can create, alter, or drop any object whose name
is *.TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in the following table: That setting allows the
applications to use sets of objects that are registered in the ORT with an
incomplete name.

Table 63. Table DSN_REGISTER_APPL for plans that use sets of objects

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK

PLANA P N Y

PACKB C N Y

v Tables, views, indexes, or aliases with names like SYSADM.*.
v Table spaces with names like DBSYSADM.*; that is, table spaces in database

DBSYSADM.
v Tables with names like USER1.* and tables with names like *.TABLEX.

ART entries for objects with incomplete names in the
ORT: APPLMATCHREQ=N and objects SYSADM.*, DBSYSADM.*, USER1.*, and
*.TABLEX can be created, altered, or dropped by any package collection or
application plan. However, the collection or plan that creates, alters, or drops such
an object must be registered in the ART with QUALIFIEROK=Y to allow it to use
incomplete object names.

Disabling data definition control
When data definition control is active, only IDs with the installation SYSADM or
installation SYSOPR authority can stop a database, a table space, or an index space
that contains a registration table or index.

About this task

When the object is stopped, only an ID with one of those authorities can start it
again.

Chapter 6. Managing access through data definition control 241



An ID with the installation SYSADM authority can execute data definition
statements regardless of whether data definition control is active and whether the
ART or ORT is available.

Procedure

To bypass data definition control, an ID with the installation SYSADM authority
can use the following methods:
v If the ID is the owner of the plan or package that contains the statement, the ID

can bypass data definition control by using a static SQL statement.
v If the ID is the current SQL ID, the ID can bypass data definition control

through a dynamic CREATE statement.
v If the ID is the current SQL ID, the primary ID, or any secondary ID of the

executing process, the ID can bypass data definition control through a dynamic
ALTER or DROP statement.

Related tasks:
“Enabling data definition control” on page 234

Managing registration tables and indexes
You can create, update, and drop registration tables and indexes. You can also
create table spaces for or add columns to registration tables.

Creating registration tables and indexes
When you install data definition control support, you create the application
registration table (ART), the object registration table (ORT), and the unique indexes
that are required on the tables. You can re-create these objects if you drop any of
them.

About this task

You can use the following CREATE statements to re-create ART, the ORT, or the
required unique indexes:

CREATE statements for the ART and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
DEFAULTAPPL CHAR(1) NOT NULL WITH DEFAULT,
QUALIFIEROK CHAR(1) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI
ON DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)
CLUSTER;

242 Managing Security



CREATE statements for the ORT and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER CHAR(8) NOT NULL WITH DEFAULT,
NAME CHAR(18) NOT NULL WITH DEFAULT,
TYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLMATCHREQ CHAR(1) NOT NULL WITH DEFAULT,
APPLIDENT VARCHAR(128) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI
ON DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER, NAME, TYPE) CLUSTER;

You can alter these CREATE statements in the following ways:
v Add columns to the ends of the tables
v Assign an auditing status
v Choose buffer pool or storage options for indexes
v Declare table check constraints to limit the types of entries that are allowed

Naming registration tables and indexes
Every member of a data sharing group must have the same names for the
application registration table (ART) and object registration tables (ORT) table.
Avoid changing the names of the ART and ORT tables.

About this task

If you change the names, owners, or residing database of your ART and ORT, you
must reinstall DB2 in update mode and make the corresponding changes on the
DSNTIPZ installation panel.

Name the required index by adding the letter I to the corresponding table name.
For example, suppose that you are naming a required index for the ART named
ABC. You should name the required index ABCI.

Dropping registration tables and indexes
If you drop any of the registration tables or their indexes, most data definition
statements are rejected until the dropped objects are re-created.

About this task

The only data definition statements that are allowed under such circumstances are
those that create the following objects:
v Registration tables that are defined during installation
v Indexes of the registration tables that are defined during installation
v Table spaces that contain the registration tables that are defined during

installation

Chapter 6. Managing access through data definition control 243



v The database that contains the registration tables that are defined during
installation

Creating table spaces for registration tables
The DSNTIJSG installation job creates a segmented table space that holds the
application registration table (ART) and the object registration table (ORT):

About this task

You can issue the following statement to create the table space:
CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify the DSNTIJSG job before installing DB2. Alternatively, you can drop
the table space and re-create it, the ART and ORT tables, and their indexes.

Adding columns to registration tables
You can use the ALTER TABLE statement to add columns to the application
registration table (ART) or the object registration table (ORT) for your own use. If
you add columns, the additional columns must come at the end of the table, after
existing columns.

About this task

Use a special character, such as the plus sign (+), in your column names to avoid
possible conflict. If IBM adds columns to the ART or the ORT in future releases,
the column names will contain only letters and numbers.

Updating registration tables
You can use the LOAD utility or the INSERT, UPDATE, or DELETE statements to
update the application registration table (ART) and the object registration table
(ORT).

About this task

Because security provisions are important, allow only a restricted set of
authorization IDs, or perhaps only those with the SYSADM authority, to update
the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column.

A registration table cannot be updated until all jobs whose data definition
statements are controlled by the table have completed.

244 Managing Security



Chapter 7. Managing access through exit routines

You can control access to DB2 by using a DB2-supplied exit routine or an exit
routine that you write. DB2 provides installation-wide exit points to the
connection, sign-on, and access control authorization routines.
Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)
Related information:

Exit routines (DB2 Administration Guide)

Connection routines and sign-on routines
Your DB2 subsystem has two exit points for authorization routines, one in
connection processing and one in sign-on processing. Both exit points perform
crucial steps in the assignment of values to primary IDs, secondary IDs, and SQL
IDs.

PSPI You must have a routine for each exit. Default routines are provided for
both. DSN3@ATH is the default exit routine for connections, and DSN3@SGN is
the default exit routine for sign-ons.

If your installation has a connection exit routine and you plan to use CONNECT
with the USER/USING clause, you should examine your exit routine. DB2 does
not update the following information to reflect the user ID and password that are
specified in the USER/USING clause of the CONNECT statement:
v The security-related control blocks that are normally associated with the thread
v The address space that your exit routine can access

If you want to use secondary authorization IDs, you must replace the default

routines with the sample routines, or with routines of your own. PSPI

Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)
Related tasks:
“Using sample connection and sign-on exit routines for CICS transactions” on page
165
“Specifying connection and sign-on routines”
“Debugging connection and sign-on routines” on page 254
Related reference:
“Processing of connection requests” on page 160
“Processing of sign-on requests” on page 163
“Sample connection and sign-on routines” on page 246
“Exit parameter list for connection and sign-on routines” on page 247

Specifying connection and sign-on routines
Your connection routine must have a CSECT name and entry point of DSN3@ATH.
The name of the load module for the connection routine can be the same name, or

© Copyright IBM Corp. 1982, 2013 245

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_writingexitroutine.htm#db2z_writingexitroutine
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration


it can be a different name. Your sign-on routine must have a CSECT name and
entry point of DSN3@SGN. The name of the load module for the sign-on routine
can be the same, or it can be a different name.

About this task

PSPI You can use an ALIAS statement of the linkage editor to provide the
entry-point name.

Default routines exist in library prefix.SDSNLOAD. To use your routines instead,
place your routines in library prefix.SDSNEXIT. You can use the installation job
DSNTIJEX to assemble and link-edit the routines and place them in the new
library. If you use any other library, you might need to change the STEPLIB or
JOBLIB concatenations in the DB2 start-up procedures.

You can combine both routines into one CSECT and load module, but the module
must include both entry points, DSN3@ATH and DSN3@SGN. Use standard
assembler and linkage editor control statements to define the entry points. DB2
loads the module twice at startup, by issuing the z/OS LOAD macro first for entry
point DSN3@ATH and then for entry point DSN3@SGN. However, because the

routines are reentrant, only one copy of each remains in virtual storage. PSPI

Related concepts:
“Connection routines and sign-on routines” on page 245
Related reference:
“Processing of connection requests” on page 160
“Processing of sign-on requests” on page 163
“Sample connection and sign-on routines”
“Exit parameter list for connection and sign-on routines” on page 247

Sample connection and sign-on routines
The sample DB2 exit routines are provided in the source code as members of
prefix.SDSNSAMP.

PSPI To examine the sample connection routine, list or assemble member
DSN3SATH. To examine the sample sign-on routine, list or assemble member
DSN3SSGN. You must use the High Level Assembler to assemble them.

Change required for some CICS users: You must change the sample sign-on exit
routine (DSN3SSGN) before assembling and using it, if the following conditions
are true:
v You attach to DB2 with an AUTH parameter other than AUTH=GROUP.
v You have the RACF list-of-groups option active.
v You have transactions whose initial primary authorization ID is not defined to

RACF

To change the sample sign-on exit routine (DSN3SSGN), perform the following
steps:
1. Locate the following statement in DSN3SSGN as a reference point:

SSGN035 DS OH BLANK BACKSCAN LOOP REENTRY

2. Locate the following statement, which comes after the reference point:
B SSGN037 ENTIRE NAME IS BLANK, LEAVE

246 Managing Security



3. Replace the statement with the following statement:
B SSGN090 NO GROUP NAME... BYPASS RACF CHECK

By changing the statement, you avoid an abend with SQLCODE -922. The routine
with the new statement provides no secondary IDs unless you use AUTH=GROUP.

PSPI

Related concepts:
“Connection routines and sign-on routines” on page 245
Related tasks:
“Using sample connection and sign-on exit routines for CICS transactions” on page
165
“Specifying connection and sign-on routines” on page 245
“Debugging connection and sign-on routines” on page 254
Related reference:
“Processing of sign-on requests” on page 163

When connection and sign-on routines are taken
Different local processes enter the access control procedure at different points,
depending on the environment from which they originate. Different criteria apply
to remote requests.

PSPI The following processes go through connection processing only:
v Requests that originate in TSO foreground and background (including online

utilities and requests through the call attachment facility)
v JES-initiated batch jobs
v Requests through started task control address spaces (from the MVS START

command)

The following processes go through connection processing, and can later go
through the sign-on exit:
v The IMS control region
v The CICS recovery coordination task
v DL/I batch
v Requests through the Resource Recovery Services attachment facility (RRSAF)

The following processes go through sign-on processing:
v Requests from IMS-dependent regions (including MPP, BMP, and Fast Path)
v CICS transaction subtasks
v Scheduled tasks that are executed by the DB2 administrative task scheduler

PSPI

Exit parameter list for connection and sign-on routines
The parameter list of connection and sign-on routines contains pointers to other
information, such as the authorization ID list.

PSPI The following diagram shows how the parameter list points to other
information.

Chapter 7. Managing access through exit routines 247



Connection routines and sign-on routines use 28 more bytes of the exit parameter
list EXPL than other routines. The following table shows the entire list of
connection routines and sign-on routines. The exit parameter list is described by
macro DSNDEXPL.

Table 64. Exit parameter list for connection routines and sign-on routines

Name
Hex
offset Data type Description

EXPLWA 0 Address Address of a 8192-byte work area to be used
by the routine.

EXPLWL 4 Signed 4-byte
integer

Length of the work area, in bytes; value is
8192.

EXPLRSV1 8 Signed 2-byte
integer

Reserved.

EXPLRC1 A Signed 2-byte
integer

Not used.

EXPLRC2 C Signed 4-byte
integer

Not used.

Register 1
Address of EXPL

Address of
authorization ID list

Authorization ID list

Primary ID

Control block information

SQL ID

Maximum number of secondary
ID entries

Reserved

ACEE address of zero

Space for secondary ID list
(= maximum * 8 bytes)

Address of work area

Length of work area

Access return code

DB2 subsystem name

Connection name

Connection type

Location name

LU name

Network name

Work area
(8192 bytes)

Maximum number of entries
in session variable array

Actual number of entries
in session variable array

Pointer to session
variable array

Pointer to session
variable structure

EXPL

Session variable structure

DB2 version ID

Extended location
name address Extended

location name

Figure 13. How a connection or sign-on parameter list points to other information

248 Managing Security



Table 64. Exit parameter list for connection routines and sign-on routines (continued)

Name
Hex
offset Data type Description

EXPLARC 10 Signed 4-byte
integer

Access return code. Values can be:
0 Access allowed; DB2 continues

processing.
12 Access denied; DB2 terminates

processing with an error.

EXPLSSNM 14 Character, 8
bytes

DB2 subsystem name, left justified; for
example, 'DSN '.

EXPLCONN 1C Character, 8
bytes

Connection name for requesting location.

EXPLTYPE 24 Character, 8
bytes

Connection type for requesting location. For
DDF threads, the connection type is
'DIST '.

EXPLSITE 2C Character, 16
bytes

For SNA protocols, this is the location name
of the requesting location or <luname>. For
TCP/IP protocols, this is the dotted decimal
IP address of the requester. If the value of
EXPLSITE_OFF is not 0, EXPLSITE is not
used.

EXPLLUNM 3C Character, 8
bytes

For SNA protocols, this is the locally known
LU name of the requesting location. For
TCP/IP protocols, this is the character string
'TCPIP'.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location. For
TCP/IP protocols, this field is reserved.

EXPLVIDS 55 Character, 1 byte DB2 version identifier

EXPLSITE_OFF 56 Signed 2-byte
integer

Offset from the beginning of the work area
to the extended location name of the DB2
site that originated the work request. Use
this value if the location name is greater
than 16 bytes. The extended location name
has the following format:

v Signed, 2-byte integer: Length of the
extended location name

v Character, 128 bytes: Extended location
name

PSPI

Chapter 7. Managing access through exit routines 249



Related concepts:
“Connection routines and sign-on routines” on page 245
Related tasks:
“Using sample connection and sign-on exit routines for CICS transactions” on page
165
“Specifying connection and sign-on routines” on page 245
“Debugging connection and sign-on routines” on page 254
Related reference:
“Processing of sign-on requests” on page 163

Authorization ID parameter list for connection and sign-on
routines

An authorization ID list contains information that is specific to connection routines
and sign-on routines.

The following table includes the authorization ID list for a connection or sign-on
exit routine.

PSPI

Table 65. Authorization ID list for a connection or sign-on exit routine

Name Hex offset Data type Description

AIDLPRIM 0 Character, 8
bytes

Primary authorization ID for input and
output; see descriptions in the text.

AIDLCODE 8 Character, 2
bytes

Control block identifier.

AIDLTLEN A Signed 2-byte
integer

Total length of control block.

AIDLEYE C Character, 4
bytes

Eyecatcher for block, “AIDL”.

AIDLSQL 10 Character, 8
bytes

On output, the current SQL ID.

AIDLSCNT 18 Signed 4-byte
integer

Number of entries allocated to secondary
authorization ID list. Always equal to 1012.

AIDLSAPM 1C Address For a sign-on routine only, the address of
an 8-character additional authorization ID.
If RACF is active, the ID is the user ID's
connected group name. If the address was
not provided, the field contains zero.

AIDLCKEY 20 Character, 1 byte Storage key of the ID pointed to by
AIDLSAPM. To move that ID, use the
“move with key” (MVCK) instruction,
specifying this key.

AIDLRSV1 21 Character, 3
bytes

Reserved

AIDLRSV2 24 Signed 4-byte
integer

Reserved

AIDLACEE 28 Signed 4-byte
integer

The address of the ACEE structure, if
known; otherwise, zero

250 Managing Security



Table 65. Authorization ID list for a connection or sign-on exit routine (continued)

Name Hex offset Data type Description

AIDLRACL 2C Signed 4-byte
integer

Length of data area returned by RACF, plus
4 bytes

AIDLRACR 30 26 bytes Reserved

AIDLSEC 4A Character,
maximum x 8
bytes

List of the secondary authorization IDs, 8
bytes each

PSPI

Input values for connection routines
A connection routine can have different input values.

The input values for a connection routine include the following:

v
PSPI The initial primary authorization ID for a local request can be obtained

from the z/OS address space extension block (ASXB).
The ASXB contains at most only a seven-character value. That is always
sufficient for a TSO user ID or a user ID from an z/OS JOB statement, and the
ASXB is always used for those cases.
For CICS, IMS, or other started tasks, z/OS can also pass an eight-character ID.
If an eight-character ID is available, and if its first seven characters agree with
the ASXB value, then DB2 uses the eight-character ID. Otherwise it uses the
ASXB value.
If RACF is active, the field used contains a verified RACF user ID; otherwise, it
contains blanks.

v The primary ID for a remote request is the ID passed in the conversation attach
request header (SNA FMH5) or in the DRDA SECCHK command.

v The SQL ID contains blanks.

v The list of secondary IDs contains blanks. PSPI

Input values for sign-on routines
A sign-on routine can have different input values.

The input values for a sign-on routine are as follows:

v
PSPI The initial primary ID depends on the sign-on method.

v The SQL ID and all secondary IDs contain blanks.
v Field AIDLSAPM in the authorization ID list can contain the address of an

8-character additional authorization ID, obtained by the CICS attachment facility
using the RACROUTE REQUEST=EXTRACT service with the requester's user
ID. If RACF is active, this ID is the RACF-connected group name from the ACEE
corresponding to the requester's user ID. Otherwise, this field contains blanks.
IMS does not pass this parameter.

v Field AIDLCKEY contains the storage key of the identifier pointed to by
AIDLSAPM. To move that ID, use the “move with key” (MVCK) instruction,
specifying this key.

Chapter 7. Managing access through exit routines 251



v Field AIDLACEE contains the ACEE address only for a sign-on through the
CICS attachment facility and only when the CICS RCT uses AUTH=GROUP.

PSPI

Expected output for connection and sign-on routines
DB2 uses the output values of the primary ID, the SQL ID, and the secondary IDs.
Your routines can set these IDs to any value that is an SQL short identifier.

PSPI If your identifier does not meet the 8-character criteria, the request fails.
Therefore, when necessary, add blanks to the end of short identifiers to ensure that
they meet the criteria.

If the values that are returned are not blank, DB2 interprets them in the following
ways:
v The primary ID becomes the primary authorization ID.
v The list of secondary IDs, down to the first blank entry or to a maximum of 1012

entries, becomes the list of secondary authorization IDs. The space allocated for
the secondary ID list is only large enough to contain the maximum number of
authorization IDs. This number is in field AIDLSCNT.

Important: If you allow more than 1012 secondary authorization IDs, abends
and storage overlays can occur.

v The SQL ID is checked to see if it is the same as the primary or one of the
secondary IDs. If it is not, the connection or sign-on process fails. Otherwise, the
validated ID becomes the current SQL ID.

If the returned value of the primary ID is blank, DB2 takes the following steps:
v In connection processing, the default ID that is defined when DB2 is installed

(UNKNOWN AUTHID on panel DSNTIPP) is substituted as the primary
authorization ID and the current SQL ID. The list of secondary IDs is set to
blanks.

v Sign-on processing abends. No default value exists for the primary ID.

If the returned value of the SQL ID is blank, DB2 makes it equal to the value of the
primary ID. If the list of secondary IDs is blank, it remains blank. No default
secondary IDs exist.

Your routine must also set a return code in word 5 of the exit parameter list to
allow or deny access (field EXPLARC). By those means you can deny the
connection altogether. The code must have one of the values that are shown in
Table 66.

Table 66. Required return code in EXPLARC

Value Meaning

0 Access allowed; continue processing.

12 Access denied; terminate.

Any other value will cause an abend. PSPI

Processing in sample connection and sign-on routines
The sample routines that are provided by IBM can serve as models for the
processing that is required in connection routines and sign-on routines.

252 Managing Security



PSPI Recommendation: Consider using the sample routines as a starting point
when you write your own routines.

Both the sample connection routine (DSN3SATH) and the sample sign-on routine
have similar sections for setup, constants, and storage areas. Both routines set
values of the primary ID, the SQL ID, and the secondary IDs in three numbered
sections.

In the sample connection routine (DSN3SATH): The three sections of the sample
connection routine perform the following functions:

Section 1
Section 1 provides the same function as in the default connection routine.
It determines whether the first character of the input primary ID has a
value that is greater than blank (hex 40), and performs the following
operations:
v If the first character is greater than hex 40, the value is not changed.
v If the first character is not greater than hex 40, the value is set according

to the following rules:
– If the request is from a TSO foreground address space, the primary ID

is set to the logon ID.
– If the request is not from a TSO foreground address space, the

primary ID is set to the job user ID from the JES job control table.
– If no primary ID is located, Section 2 is bypassed.

Section 2
At the beginning of Section 2, you can restore one commented-out
instruction, which then truncates the primary authorization ID to 7
characters. (The instruction is identified by comments in the code.)

Section 2 next tests RACF options and makes the following changes in the
list of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is not active, but an ACEE exists, the

connected group name is copied as the only secondary ID. The source of
the ACEE is one of the following:
– An ACEE that is passed by the caller
– The address-space-level ACEE
– The task-level ACEE if the connection is for batch utilities.

v If the list of groups option is active, the list of group names from the
ICHPCGRP block is copied into AIDLSEC in the authorization ID list.

Section 3
Section 3 performs the following steps:
1. The SQL ID is set equal to the primary ID.
2. If the TSO data set name prefix is a valid primary or secondary ID, the

SQL ID is replaced with the TSO data set name prefix. Otherwise, the
SQL ID remains set to the primary ID.

In the sample sign-on routine (DSN3SSGN): The three sections of the sample
sign-on routine perform the following functions:

Section 1
Section 1 does not change the primary ID.

Chapter 7. Managing access through exit routines 253



Section 2
Section 2 sets the SQL ID to the value of the primary ID.

Section 3
Section 3 tests RACF options and makes the following changes in the list
of secondary IDs, which is initially blank:
v If RACF is not active, the list remains blank.
v If the list of groups option is active, section 3 attempts to find an

existing ACEE from which to copy the authorization ID list.
– If AIDLACEE contains a valid ACEE, it is used.

Otherwise, look for a valid ACEE chained from the TCB or from the
ASXB or, if no usable ACEE exists, issue RACROUTE to have RACF
build an ACEE structure for the primary ID.
Copy the list of group names from the ACEE structure into the
secondary authorization list.

– If the exit issued RACROUTE to build an ACEE, another RACROUTE
macro is issued and the structure is deleted.

v If a list of secondary authorization IDs has not been built, and
AIDLSAPM is not zero, the data that is pointed to by AIDLSAPM is

copied into AIDLSEC. PSPI

Performance considerations for connection and sign-on
routines

Your sign-on exit routine is part of the critical path for transaction processing in
IMS and CICS. Therefore, try to execute as quickly as possible.

About this task

PSPI Avoid writing SVC calls like GETMAIN, FREEMAIN, and ATTACH. Also
avoid I/O operations to any data set or database. To improve performance, you
might be able to delete the list of groups that process in Section 3 of the sample
sign-on exit routine.

The sample sign-on exit routine can issue the RACF RACROUTE macro with the
default option SMC=YES. If another product issues RACROUTE with SMC=NO, a
deadlock might occur.

Your routine can also enhance the performance of later authorization checking.
Authorization for dynamic SQL statements is checked first for the CURRENT
SQLID, then for the primary authorization ID, and then for the secondary
authorization IDs. If you know that a user's privilege most often comes from a
secondary authorization ID, then set the CURRENT SQLID to this secondary ID

within your exit routine. PSPI

Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)

Debugging connection and sign-on routines
The diagnostic aids can assist you in debugging connection exit routines and
sign-on exit routines.

254 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration


About this task

PSPI Subsystem support identify recovery: The identify ESTAE recovery routine,
DSN3IDES, generates the following VRADATA entries. The last entry, key
VRAIMO, is generated only if the abend occurred within the connection exit
routine.

Table 67. VRADATA entries that are generated by DSN3IDES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant 'IDESTRAK'

VRAFP 23 24 v 32-bit recovery tracking flags

v 32-bit integer AGNT block unique identifier

v AGNT block address

v AIDL block address

v Initial primary authorization ID as copied from
ASXBUSER

VRAIMO 7C 10 v Connection exit load module load point address

v Connection exit entry point address

v Offset of failing address in the PSW from the
connection exit entry point address

Subsystem support sign-on recovery: The sign-on ESTAE recovery routine
DSN3SIES generates the following VRADATA entries. The last entry, key VRAIMO,
is generated only if the abend occurred within the sign-on exit routine.

Table 68. VRADATA entries that are generated by DSN3SIES

VRA
keyname

Key hex
value Data length Content

VRAFPI 22 8 Constant 'SIESTRAK'

VRAFP 23 20 v Primary authorization ID (CCBUSER)
v AGNT block address
v Identify-level CCB block address
v Sign-on-level CCB block address

VRAIMO 7C 10 v Sign-on exit load module load point address

v Sign-on exit entry point address

v Offset of failing address in the PSW from the
sign-on exit entry point address

Diagnostics for connection exit routines and sign-on exit routines: The connection
(identify) recovery routine and the sign-on recovery routine provide diagnostics for
the corresponding exit routines. The diagnostics are produced only when the
abend occurs in the exit routine. The following diagnostics are available:

Dump title
The component failing module name is “DSN3@ATH” for a connection exit
or “DSN3@SGN” for a sign-on exit.

z/OS and RETAIN® symptom data
SDWA symptom data fields SDWACSCT (CSECT/) and SDWAMODN
(MOD/) are set to “DSN3@ATH” or “DSN3@SGN”, as appropriate.

Chapter 7. Managing access through exit routines 255



Summary dump additions
The AIDL, if addressable, and the SADL, if present, are included in the
summary dump for the failing allied agent. If the failure occurred in
connection or sign-on processing, the exit parameter list (EXPL) is also
included. If the failure occurred in the system services address space, the

entire SADL storage pool is included in the summary dump. PSPI

Related concepts:
“Connection routines and sign-on routines” on page 245
Related reference:
“Processing of connection requests” on page 160
“Processing of sign-on requests” on page 163
“Sample connection and sign-on routines” on page 246
“Exit parameter list for connection and sign-on routines” on page 247

Session variables in connection and sign-on routines
DB2 supplies default session variables. In addition, the connection exit routine and
the sign-on exit routine support up to 10 more session variables. You can define
these additional session variables and use them to provide information to
applications by using the GETVARIABLE function.

PSPI The session variable structure: The connection exit routine and the sign-on
exit routine point to the session variable structure (DSNDSVS). DSNDSVS specifies
the maximum number of entries in the session array, the actual number of entries
in the session array, and a pointer to the session variable array. The default value
for the actual number of session variables is zero.

Defining session variables: To define session variables, use the session variable
array (DSNDSVA) to list up to 10 session variables as name and value pairs. The
session variables that you establish in the connection exit routine and the sign-on
exit routine are defined in the SESSION schema. The values that the exit routine
supplies in the session variable array replace the previous values.

Example: The following session variable array lists six session variables.

Table 69. Sample session variable array

Name Value

default_database DATAXM

default_driver PZN4Y7

location Kyoto

member_of GROUP_42

filename report.txt

account_number A1-X142783

The unqualified names are defined as VARCHAR(128), and the values are defined
as VARCHAR(255). The exit routines must provide these values in Unicode CCSID

1208. PSPI

256 Managing Security



Access control authorization exit routine
You can provide your own access control authorization exit routine by using an
exit point that DB2 provides. Alternatively, after you carefully consider several
important factors, you might choose to let RACF perform DB2 authorization
checking for you.

PSPI

Is the access control authorization exit routine right for you?

Using the RACF (Security Server for z/OS) to perform access control is not the
best choice for every customer. Consider the following points before choosing
RACF to perform access control:
v If you want the database administrators to manage security, integration with

DB2 is very important. Using RACF access control provides less integration with
DB2. In most of these cases, DB2 authorization provides advantages.

v If you want security administrators to manage security, integration with the
security server is more important. In most of these cases, using RACF for access
control provides advantages. Furthermore, if you want a security group to
define authorization and a centralized security control point, RACF access
control is an excellent match.

If you change from DB2 authorization to RACF access control, you must change to
RACF methods for some authorization techniques, and you must understand how
DB2 and RACF work together. Expect to make the following changes when you
implement RACF access control:
v Plan to use RACF facilities (such as groups and patterns) more.
v Plan to use patterns instead of individual item access profiles and permissions.
v Plan to use DB2 roles, RACF groups, or both, instead of secondary authorization

IDs, which are not implemented in RACF. OWNER generally must be a valid
group or a DB2 role.

v Plan to use DB2 roles for BINDAGENT processing. BINDAGENT based on
secondary authorizations IDs is not implemented in RACF.

v Understand how SET CURRENT SQLID works with RACF. SET CURRENT
SQLID can set a qualifier, but does not change authorization.

v Know that authorizations are not dropped when objects are dropped or
renamed.

v Be aware of the relationship between objects and revoked privileges. Packages
are not invalidated when authorizations are revoked. Views are not dropped
when authorizations are revoked.

If the AUTHEXIT_CHECK system parameter is set to DB2, DB2 provides the ACEE
of the package owner to perform authorization checking when processing the
autobind, BIND and REBIND commands. DB2 provides the ACEE of the
authorization ID as determined by the DYNAMICRULES option to perform
dynamic SQL authorization checking. The access control authorization exit uses the
ACEE for XAPLUCHK for authorization checking. The XAPLUCHK authorization
ID can be a user or a group in RACF. To ensure successful authorization checks
with the owner ACEE, the owner authorization ID in XAPLUCHK must be
permitted access to the resources in RACF.

Chapter 7. Managing access through exit routines 257

|
|
|
|
|
|
|
|
|



How the access control authorization routine works

Your routine specifies whether the authorization checking should all be done by
RACF only, or by both RACF and DB2. (Also, the routine can be called and still let
all checking be performed by DB2.)

When DB2 invokes the routine, it passes three possible functions to the routine:
v Initialization (DB2 startup)
v Authorization check
v Termination (DB2 shutdown)

The bulk of the work in the routine is for authorization checking. When DB2 must
determine the authorization for a privilege, it invokes your routine. The routine
determines the authorization for the privilege and then indicates to DB2 whether
the privilege is authorized or not authorized, or whether DB2 should do its own
authorization check, instead.

When you write an access control authorization routine, use the general guidelines
for writing exit routines, with the following exceptions to the environment
description:
v The routine executes in non-cross-memory mode during initialization and

termination (XAPLFUNC of 1 or 3).
v During authorization checking, the routine can execute under a TCB or SRB in

cross-memory or non-cross-memory mode.

Bypass of the access control authorization routine

In the following situations, the access control authorization routine is not called to
check authorization:
v The authorization ID that DB2 uses to determine access has installation

SYSADM or installation SYSOPR authority (where installation SYSOPR authority
is sufficient to authorize the request). This authorization check is made strictly
within DB2. For example, if the execute privilege is being checked on a package,
DB2 performs the check on the plan owner that this package is in. If the plan
owner has installation SYSADM, the routine is not called.

v DB2 security has been disabled. (You can disable DB2 security by specifying NO
on the USE PROTECTION field of installation panel DSNTIPP).

v Authorization has been cached from a prior check.
v In a prior invocation of the exit routine, the routine indicated that it should not

be called again.
v GRANT statements.

The routine executes in the ssnmDBM1 address space of DB2.

PSPI

258 Managing Security



Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)
“Access control external to DB2” on page 4

Introduction to the RACF access control module (RACF Access Control Module
Guide)
Related reference:
“Parameter list for access control authorization routines” on page 268

Specifying the access control authorization routine
Your access control authorization routine must have a CSECT name and an entry
point of DSNX@XAC. The load module name or alias name must also be
DSNX@XAC. A default routine with this name and entry point exists in library
prefix.SDSNLOAD.

About this task

PSPI To use your routine instead of the default routine, place it in the
prefix.SDSNEXIT library. Use installation job DSNTIJEX to assemble and link-edit
the routine and to place it in the prefix.SDSNEXIT library. If you use any other
library, you might need to change the STEPLIB or JOBLIB concatenations in the
DB2 start-up procedures.

The source code for the default routine is in prefix.SDSNSAMP as DSNXSXAC. You
can use it to write your own exit routine. To assemble it, you must use the High
Level Assembler.

RACF provides a sample exit routine DSNXRXAC, which is shipped with DB2. It

can be found in prefix.SDSNSAMP. PSPI

The default access control authorization routine
The default exit routine returns a code to the DB2 authorization module. The code
indicates that a user-defined access control authorization exit routine is not
available. DB2 then performs normal authorization checking and does not attempt
to invoke this exit routine again.

When access control authorization routine is taken
DB2 can take the access control authorization routine when it starts up, shuts
down, or performs an authorization check on a privilege.

PSPI The access control authorization routine is taken in the following three
instances:

At DB2 startup
This exit routine is taken when DB2 starts to allow the external
authorization checking application to perform any required setup prior to
authorization checking. For example, loading authorization profiles into
storage is a required setup task. DB2 uses the reason code that the exit
routine sets during startup to determine how to handle exception
situations.

When an authorization check is to be performed on a privilege
This exit routine is taken when DB2 accesses security tables in the catalog

Chapter 7. Managing access through exit routines 259

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview


to check authorization on a privilege. The exit routine is taken only if none
of the prior invocations have indicated that the exit routine must not be
called again.

At DB2 shutdown
This exit routine is taken when DB2 is stopping, to let the external
authorization checking application perform its cleanup before DB2 stops.

PSPI

Considerations for the access control authorization routine
You need to take additional factors into consideration when you use the access
control authorization exit routine.

After a privilege is granted, the authorization information is cached for faster
re-checking. If the AUTHEXIT_CACHEREFRESH system parameter is specified
and RACF commands are issued with generic character ** or * in the resource
names, the entire authorization cache for the corresponding class being revoked
might be refreshed. In this case, the performance of authorization checking might
be impacted until the cache is successfully rebuilt.

When DB2 cannot provide an ACEE
Sometimes DB2 cannot provide an ACEE. This happens, for example, when you do
not use external security in CICS and CICS does not pass an ACEE to the CICS
attachment facility.

PSPI When DB2 does not have an ACEE, it passes zeros in the XAPLACEE field.
If this happens, your routine can return a 4 in the EXPLRC1 field, and let DB2
handle the authorization check.

DB2 does not pass the ACEE address for IMS transactions. The ACEE address is
passed for CICS transactions, if available.

DB2 does pass the ACEE address when it is available for DB2 commands that are
issued from a logged on z/OS console. DB2 does not pass the ACEE address for
DB2 commands that are issued from a console that is not logged on, or for the
START DB2 command, or commands issued automatically during DB2 startup.

An ACEE is available to DB2 for an IMS transaction if IMS is configured to use
either APPC/OTMA security full or the IMS Build Security Environment exit
(DFSBSEX0). You need to code DFSBSEX0 to return RC4 in register 15, which will

instruct IMS to create the ACEE in the dependent region. PSPI

Authorization IDs and ACEEs
XAPL has two authorization ID fields, XAPLUPRM (the primary authorization ID)
and XAPLUCHK (the authorization ID that DB2 uses to perform the
authorization). These two fields might have different values.

PSPI The ACEE passed in XAPLACEE is that of the primary authorization ID,
XAPLUPRM. If XAPLOWAC is on, the ACEE passed in XAPLACEE is that of the
authorization ID that DB2 uses to perform the authorization, XAPLUCHK.

The implications of the XAPLUPRM and XAPLUCHK relationship need to be
clearly understood. XAPLUCHK, the authorization ID that DB2 uses to perform

260 Managing Security

|
|
|
|
|
|

|
|
|

|



authorization may be the primary authorization ID (XAPLUPRM), a secondary
authorization ID, or another authorization ID such as a package owner.

If the RACF access control module is used, the following rules apply:
v RACF uses the ACEE of the primary authorization ID (XAPLUPRM) or the

owner ID (XAPLUCHK) to perform authorization. The ACEE of the XAPLUCHK
ID is used when the AUTHEXIT_CHECK system parameter is set to DB2.
To ensure successful authorization checks with the owner ACEE, the owner
authorization ID in XAPLUCHK must be permitted access to the resources in
RACF. If the owner is a group in RACF, you need to permit the group access to
the resource associated with the connection in the RACF DSNR class. For
example, if the group access is from a batch application, you can issue the
following PERMIT command to grant a group access to subsystem.BATCH or
subsystem.* in the DSNR class:
PERMIT DSN.BATCH CLASS(DSNR) ID(DB2GRP) ACCESS(READ)
PERMIT DSN.* CLASS(DSNR) ID(DB2GRP) ACCESS(READ)

v Secondary authorization IDs are not implemented in RACF. DB2 roles or RACF
groups should be used instead.

Examples: The following examples show how the rules apply:
v A package may be bound successfully by using the privileges of the binder

(XAPLUPRM). Then only the EXECUTE privilege on the package is needed to
execute it. If at some point this package is marked invalid (for instance, if a table
it depends upon is dropped and re-created), the next execution of it will cause
an autobind, which will usually fail. In this case, autobind checks the runner for
the necessary authorization, but the runner does not have the required privileges
for a successful rebind. However, if the owner of the package is a DB2 role, and
the role has the necessary authorization, autobind will succeed. Or, if the
AUTHEXIT_CHECK system parameter is set to DB2, RACF checks the owner of
the package (XAPLUCHK) for the necessary privileges, and autobind will
succeed.

v If the OWNER on the BIND command is based on secondary authorization IDs,
which are not supported by RACF. RACF groups should be used instead.

v SET CURRENT SQLID can set a qualifier, but it cannot change authorization.
v The DYNAMICRULES settings have a limited effect on which authorization ID

is checked. Only the primary authorization ID and secondary IDs that are valid
RACF groups for this user are considered. For dynamic statements with the
DYNAMICRULES(BIND) option to work, for example, the package owner must
be the primary authorization ID or one of the RACF groups of the user who
executes the statements.
However, the DYNAMICRULES settings will have the effect that you want on
which authorization is checked if the authorization is based on a DB2 role or if
the AUTHEXIT_CHECK system parameter is set to DB2. For example, using a
DB2 role, the dynamic statements with the DYNAMICRULES(BIND) option will
work if a DB2 role is the owner of a plan or package or the definer of a stored
procedure. If the AUTHEXIT_CHECK system parameter is set to DB2, the
dynamic statements with the DYNAMICRULES(BIND) option will work.

v User-defined function and stored procedure authorizations involve several
authorization IDs, such as implementer, definer, invoker, and so forth. Only the
primary authorization ID and secondary IDs that are DB2 roles or RACF groups
are considered. If the AUTHEXIT_CHECK system parameter is set to DB2, the
user-defined function and stored procedure authorizations that involve various

authorization IDs will work. PSPI

Chapter 7. Managing access through exit routines 261

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|



DB2 processing of ENF signals
When the AUTHEXIT_CACHEREFRESH system parameter is set to ALL and when
DB2 and the access control authorization exit are active, DB2 listens to type 62,
type 71, and type 79 ENF signals from RACF for any user profile or resource
access changes. If DB2 receives ENF 62, 71, and 79 signals, it refreshes the cache
entries of the package authorization, the routine authorization, the DDF user
authentication, and the dynamic statement.

PSPI RACF issues the ENF 71 signal for any change to a RACF user or group
profile. DB2 listens to the ENF 71 signal when you use the following RACF
commands:
v ALTUSER with the REVOKE option
v CONNECT with the REVOKE option
v DELUSER (to delete a user from RACF)
v DELGROUP (to delete a group and its relationship with its parent group from

RACF)
v REMOVE (to remove a user from a group)

RACF issues the ENF 79 signal for any change to a RACF user's or group's
authorization to resources. DB2 listens to the ENF 79 signal when you use the
following RACF commands:
v PERMIT with the DELETE, ACCESS(NONE), RESET, or

WHEN(CRITERIA(SQLROLE ...)) option
v RALTER with the UACC(NONE) or DELMEM option
v RDELETE

When the ENF 79 signal is issued, DB2 caches the resource changes first and
refreshes the cache entries only after the SETROPTS RACLIST REFRESH command
is issued. RACF issues the ENF 62 signal when the SETROPTS RACLIST REFRESH
command is used. Upon receiving the ENF 62 signal, DB2 refreshes the cache
entries for the resources that are cached during ENF 79 notification. However, DB2
does not refresh the cache entries when the RDELETE command is used to delete
general resource profiles for DSNADM and MDSNSM/GDSNSM classes without a
profile name.

The ENF 79 signal is issued only for resource classes that are defined in the RACF
Class Descriptor Table with the SIGNAL=YES option. The SIGNAL=YES option is
enabled, by default, for the following IBM-supplied RACF resource classes for DB2:
v MDSNPK / GDSNPK
v MDSNTB / GDSNTB
v MDSNSP / GDSNSP
v MDSNSQ / GDSNSQ
v DSNADM and MDSNSM / GDSNSM
v MDSNUF / GDSNUF
v MDSNGV / GDSNGV

If you define RACF classes for DB2 objects and administrative authorities without
using IBM-supplied RACF resource classes, you need to enable the SIGNAL=YES
option for these classes in the RACF Class Descriptor Table. Class names for DB2
objects in both single-subsystem scope and multiple-subsystem scope are
supported.

262 Managing Security

|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|



Profile names with discrete and generic resource characters are supported with the
following restrictions:
v Generic character ampersand (&) indicates that RACF uses a profile in the

RACFVARS class to determine the actual values for that part of the profile name.
DB2 ignores a RACF profile that contains the & character and does not perform
cache refresh for the profile.

v Generic character % is not supported in the privilege part of the profile name for
cache refresh. DB2 ignores a RACF profile that contains the % character in the
privilege part and does not perform cache refresh for the profile.

v If a profile name for classes other than DSNADM contains generic character * or
** and has parts few than what the CLASS parameter supports, all objects or all
privileges or both for the specified CLASS parameter may be considered for
cache refresh. For example, if you issue the PERMIT SYS1.** ID(USER01)
DELETE CLASS(MDSNPK) command, DB2 deletes the entries in the package
authorization cache for user USER01. If you issue the PERMIT SYS1.**.GV* ID(*)
DELETE CLASS(MDSNGV) command, DB2 deletes the entries in the dynamic
statement cache for object type global variables where the schema name starts
with GV. If you issue the PERMIT SYS1.TSCH.**.VNAM.* ID(USER03) DELETE
CLASS(MDSNTB) command, DB2 deletes the entries in the dynamic statement
cache for object type table where the schema is TSCH for user USER03. It also
deletes the entries where the schema is VNAM for user USER03.

v Generic character * is not supported when it is specified as an authid in ID(*) for
revoking the DSNADM class authority or the MDSNSM class for the SQLADM
authority. DB2 ignores the authid and does not perform cache refresh for the
authid. When ID(authid) is specified, DB2 deletes all the entries in the caches for
the specified authid.
DB2 may cache the entries for the users who are associated with a group that
has the required authorization. If the privilege is revoked from the group, DB2
may not delete the cache entries for all users associated with the group. You
need to explicitly permit the users associated with the group the required

privilege and then delete the permissions in RACF. PSPI

Related reference:
“Invalid and inoperative packages”

AUTH EXIT CACHE REFR (AUTHEXIT_CACHEREFRESH subsystem
parameter) (DB2 Installation and Migration)

Invalid and inoperative packages
In DB2, when a privilege that is required by a package is revoked, the package is
invalidated. DB2 can automatically rebind an invalidated package if proper
privileges are granted.

PSPI If the revoked privilege is the EXECUTE privilege on a user-defined
function, DB2 marks the package inoperative, instead of invalid; you will need to
manually rebind the inoperative package.

If a privilege that the package depends on is revoked, and if you want to
invalidate the package or make it inoperative, you must use the SQL GRANT
statement to grant the revoked privilege and then use the SQL REVOKE statement
to revoke it.

If you use an authorization access control routine, the exit routine does not have
the ability to tell DB2 that a privilege is revoked. In this case, DB2 does not know
that it needs to invalidate the package.

Chapter 7. Managing access through exit routines 263

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cacherefresh.htm#db2z_ipf_cacherefresh
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cacherefresh.htm#db2z_ipf_cacherefresh


If you set the AUTHEXIT_CACHEREFRESH system parameter to ALL and when
the user profile or resource access is changed in RACF, DB2 refreshes the cache
entries of the package authorization, the routine authorization, and the dynamic
statement. DB2 also checks for static package dependency and invalidates the
package when one of the following resource class permissions is removed from the
user:
v INSERT, UPDATE, DELETE, SELECT on a table
v USAGE on a sequence
v EXECUTE on a stored procedure
v EXECUTE on an UDF (Dependent packages are marked inoperative.)
v READ, WRITE on a global variable.

If EXECUTE on a package is revoked from the user, DB2 will check for plan
dependency and invalidates the plan.

A package can be invalidated only when DB2 is active during ENF notification and
if the name of the affected RACF profile contains discrete characters. ENF
notification ignores a profile if it is associated with the DSNADM class or if its
name contains any generic characters (*, **, &, %). If the package owner is a user
(not a RACF group) and if the user is associated with a group that had the
required privileges when the package was bound, you need to explicitly permit the
user all the privileges required for invalidating the package and then delete the
permissions in RACF.

PSPI

Related concepts:

Changes that invalidate packages (DB2 Application programming and SQL)
Related tasks:

Checking for invalid packages (DB2 Performance)
Related reference:
“Explicit package privileges” on page 23

GRANT (DB2 SQL)

REVOKE (DB2 SQL)
Related information:

00E30305 (DB2 Codes)

Automatic rebind with DB2 roles
If you execute a package that is marked invalid, DB2 will attempt to rebind it.

PSPI If the package contains static SQL statements, DB2 will check the owner for
the required authorization for a successful rebind. If RACF access control is used
and if the owner of the plan or package is a DB2 role, DB2 will be able to complete
the rebind.

If the AUTHEXIT_CHECK system parameter is set to DB2, DB2 provides the ACEE
of the package owner to perform authorization checking when processing the
autobind, BIND and REBIND commands. DB2 provides the ACEE of the
authorization ID as determined by the DYNAMICRULES option to perform
dynamic SQL authorization checking. The access control authorization exit uses the
ACEE for XAPLUCHK for authorization checking. The XAPLUCHK authorization

264 Managing Security

|
|
|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_changesinvalidateplanspkgs.htm#db2z_changesinvalidateplanspkgs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_check4invalidplanspackages.htm#db2z_check4invalidplanspackages
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grant.htm#db2z_sql_grant
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_revoke.htm#db2z_sql_revoke
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/00e30305.htm#e30305


ID can be a user or a group in RACF. To ensure successful authorization checks
with the owner ACEE, the owner authorization ID in XAPLUCHK must be

permitted access to the resources in RACF. PSPI

DB2 roles for the DYNAMICRULES(BIND) Option
The DYNAMICRULES(BIND) option provides the flexibility for you to specify the
owner of a plan or a package that DB2 checks for the required authorization for
dynamic SQL statements. Because RACF does not support secondary IDs, you can
use DB2 roles to exploit this flexibility.

PSPI To use DB2 roles with the DYNAMICRULES(BIND) option, the owner of
the plan or package must be a DB2 role. Similarly, for the define and invoke
behavior of the DYNAMICRULES BIND options, the definer or invoker must be a
DB2 role. In order to make the owner of the plan, package, or stored procedure a
DB2 role, you need to create the plan, package, or stored procedure in a trusted
context that is defined with the ROLE AS OBJECT OWNER AND QUALIFIER
clause.

If the AUTHEXIT_CHECK system parameter is set to DB2, DB2 provides the ACEE
of the package owner to perform authorization checking when processing the
autobind, BIND and REBIND commands. DB2 provides the ACEE of the
authorization ID as determined by the DYNAMICRULES option to perform
dynamic SQL authorization checking. The access control authorization exit uses the
ACEE for XAPLUCHK for authorization checking. The XAPLUCHK authorization
ID can be a user or a group in RACF. To ensure successful authorization checks
with the owner ACEE, the owner authorization ID in XAPLUCHK must be

permitted access to the resources in RACF. PSPI

Using DB2 roles for BINDAGENT
You can bind plans and packages on the behalf of the owner by using the RACF
BINDAGENT privilege through a DB2 role.

About this task

PSPI RACF provides support for BINDAGENT through DB2 roles. To use
BINDAGENT, you must specify a role, instead of a secondary ID, as the owner of
a plan or package and perform the BIND task within a trusted context. To use
trusted connections, you cannot set the ALL subsystem parameter to ALL and set
the RESTART subsystem parameter to DEFER on installation panel DSNTIPS.

For this task, suppose you want role ROLEOWNER to own package
COLLECTION01.PACKAGE01, but will have role ROLEBINDAGENT perform the
BIND on behalf of role ROLEOWNER.

Procedure

To have ROLEBINDAGENT perform the BIND on behalf of ROLEOWNER:
1. Create role ROLEOWNER and role ROLEBINDAGENT. Make sure that the

ROLEOWNER role is the owner of the package and that the binder is
associated with the ROLEBINDAGENT role and will bind the package.

2. Create trusted context CTX1 with the WITH ROLE AS OBJECT OWNER AND
QUALIFIER clause. Specify ROLEBINDAGENT as the default role and set
JOB=BINDPKG (which is the bind job name) and SYSTEM AUTHID=UBINDER
(which is the binder's userid).

Chapter 7. Managing access through exit routines 265

|
|

|

|
|
|
|
|
|
|
|

|



3. Create a RACF profile V91A.ROLEOWNER.BINDAGENT to control
BINDAGENT access

4. Permit role ROLEBINDAGENT access to profile
V91A.ROLEOWNER.BINDAGENT by issuing a RACF PERMIT command:
PERMIT V91A.ROLEOWNER.BINDAGENT ID(*) +

WHEN(CRITERIA(SQLROLE(’ROLEBINDAGENT’))) CL(MDSNSM)

5. Set up appropriate RACF profiles and give role ROLEOWNER the BINDADD
and CREATE IN privileges on the package collection:
PERMIT V91A.BINDADD ID(*) CL(MDSNSM) +

WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

PERMIT V91A.COLLECTION01.CREATEIN ID(*) CL(MDSNCL) +
WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

6. Permit role ROLEOWNER all the required privileges for executing SQL
statements in the application as shown in the following example:
PERMIT V91A.USRT007.TABL01.SELECT ID(*) CL(MDSNTB) +

WHEN(CRITERIA(SQLROLE(’ROLEOWNER’)))

7. Have UBINDER submit bind job BINDPKG that will run in trusted context
CTX1 with role ROLEBINDAGENT and perform the BIND on behalf of role
ROLEOWNER:
BIND PACKAGE(COLLECTION01) MEMBER(PACKAGE01) ACTION(REP) OWNER(ROLEOWNER)

RACF performs the BINDAGENT check on binder UBINDER, its role
ROLEBINDAGENT, and its RACF groups. It then perform all the remaining
checks on role ROLEOWNER and allows the BIND command to complete.

PSPI

View authorization
DB2 passes specific base table information to an access control authorization exit
(ACAE) routine. This information helps the routine to effectively control data
access through views.

PSPI For the DELETE and INSERT privileges, DB2 passes the schema and name
of the base table in the XAPLBSCM and XAPLBSNAM fields, along with the
information about the view itself. For the UPDATE privilege, DB2 additionally
passes the name of the base table column in the XAPLBCOL field that is being
updated.

For any view in a nested stack, DB2 passes the base table information in addition
to that of the view itself. All the intermediate views between the base table and the
view that is being processed are ignored.

In the cases when the view is not updatable, the view information will be repeated
in the XAPLBSCM, XAPLBSNAM, and XAPLBCOL fields. For example, if the view
is specified with the Instead of Trigger, the base table of the view is not being
updated using the view because all processing is based on the content of the
trigger package. The view information is repeated in the base table fields to
facilitate any view authorization check.

When a view is created, DB2 checks whether the owner of the view has the
INSERT, UPDATE and DELETE privileges on the underlying base table. DB2
performs this check to determine what privileges should be granted to the view
owner. This processing occurs whether or not an ACAE routine, like the RACF
access control module, is in effect. If an ACAE routine is in effect, the result of the
DB2 authorization check does not impact the creation of the view or the privileges
that the view owner gets on the view. In the case when the view is created based

266 Managing Security



on another view, the base view information will be repeated in the XAPLBSCM,

XAPLBSNAM, and XAPLBCOL fields. PSPI

Behavior of EXPLAIN STMTCACHE with the access control
authorization routine
The behavior of EXPLAIN STMTCACHE changes because in some instances the
primary authorization ID replaces the statement authorization ID.

PSPI Dynamic statements are cached by using the primary authorization ID that
runs the plan or package regardless of the DYNAMICRULES value. Therefore, if
the access control authorization routine is used for security, the EXPLAIN
STMTCACHE statement must be issued with the same primary authorization ID as

that for inserting the dynamic statements into the cache. PSPI

Dropping views
A view is dropped when the privilege that is required to create it is revoked.

PSPI Revoking the privilege on a view is not communicated to DB2 by the
authorization checking routine. If you want DB2 to drop the view when the

privilege is revoked, you must issue the SQL REVOKE statement. PSPI

Caching of EXECUTE on plans, packages, and routines
The results of authorization checks on the EXECUTE privilege for plans are not
cached when those checks are performed by the authorization access control exit
routine. The results of authorization checks on the EXECUTE privilege for
packages and routines are cached if package and routine authorization caching is
enabled on your system.

PSPI If authorization checks on the EXECUTE privilege for packages and
routines are performed by the authorization access control exit routine, the role in
effect or the primary authorization ID is cached. DB2 authorization can cache roles
or primary authorization IDs for handling packages and routines. DB2 checks and
caches a role if it is in effect and authorized. If a role is not in effect or authorized,
DB2 checks and caches the primary authorization ID.

If this privilege is revoked in the exit routine, the cached information is not
updated to reflect the revoke. You must use the GRANT statement and the
REVOKE statement to update the cached information.

If the AUTHEXIT_CACHEREFRESH system parameter is set to DB2, DB2 refreshes
the cache entries of the package authorization, the routine authorization, the DDF
user authorization, and the dynamic statement when a user profile or resource
access is changed in RACF and the access control authorization exit is active.

PSPI

Caching of dynamic SQL statements
Dynamic statements can be cached when they have passed the authorization
checks if the dynamic statement caching is enabled on your system.

PSPI If authorization checks for dynamic statements are performed by the
authorization access control exit routine, the role in effect or the primary
authorization ID is cached. DB2 authorization can cache roles or primary

Chapter 7. Managing access through exit routines 267

|
|
|
|

|



authorization IDs for handling dynamic statements. DB2 checks and caches a role
if it is in effect and authorized. If a role is not in effect or authorized, DB2 checks
and caches the primary authorization ID.

If the privileges that this statement requires are revoked from the authorization ID
that is cached with the statement, this cached statement must be invalidated. If the
privilege is revoked in the exit routine this does not happen, and you must use the

SQL statements GRANT and REVOKE to refresh the cache. PSPI

Resolution of user-defined functions
The create timestamp for a user-defined function must be older than the bind
timestamp for the package or plan in which the user-defined function is invoked.
If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that invokes a user-defined function, any user-defined
functions that are created after the original BIND or REBIND of the invoking plan
or package are not candidates for execution.

PSPI If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. If a user-defined
function is invoked during an automatic rebind, and that user-defined function is
invoked from a trigger body and receives a transition table, the form of the
invoked function that DB2 uses for function selection includes only the columns of
the transition table that existed at the time of the original BIND or REBIND of the

package or plan for the invoking program. PSPI

Creating materialized query tables
When a materialized query table is created, a CRTVUAUTT authorization check is
performed. The CRTVUAUTT check is used to determine whether the creator of a
materialized query table can provide the required SELECT privileges on base
tables to the owner of the materialized query table.

PSPI If the owner of the materialized query table has the required privileges, the
CRTVUAUTT authorization check proves redundant. However, the check is
performed before the owner of the materialized query table's privileges are
determined. Therefore, if the materialized query table owner holds the necessary
privileges and the creator of the materialized query table does not, the
CRTVUAUTT check can produce unwanted error messages.

For an ACA exit routine to suppress unwanted error messages during the creation

of materialized query tables, XAPLFSUP is turned on. PSPI

Parameter list for access control authorization routines
The parameter list of access control authorization routines contains pointers to
other information, such as the work area and the authorization ID list.

PSPI The following diagram shows how the parameter list points to other
information.

268 Managing Security



The work area (4096 bytes) is obtained once during the startup of DB2 and only
released when DB2 is shut down. The work area is shared by all invocations to the
exit routine.

At invocation, registers are set, and the authorization checking routine uses the
standard exit parameter list (EXPL). The following is a list of the exit-specific
parameters, described by macro DSNDXAPL. Field names indicated by an asterisk
(*) apply to initialization, termination, and authorization checking. Field names
indicated by double asterisks (**) apply to initialization only. Other fields apply to
authorization checking only.

Table 70. Parameter list for access control authorization routines

Name
Hex
offset Data type

Input or
output Description

XAPLCBID* 0 Character, 2
bytes

Input Control block identifier; value X'216A'.

XAPLLEN * 2 Signed,
2-byte
integer

Input Length of XAPL; value X'100' (decimal 256).

XAPLEYE * 4 Character, 4
bytes

Input Control block eye catcher; value “XAPL”.

XAPLLVL * 8 Character, 8
bytes

Input DB2 version and level; for example, “VxRxMx ”.

XAPLSTCK * 10 Character, 8
bytes

Input The store clock value when the exit is invoked. Use this to
correlate information to this specific invocation.

XAPLSTKN * 18 Character, 8
bytes

Input STOKEN of the address space in which XAPLACEE resides.
Binary zeroes indicate that XAPLACEE is in the home address
space.

Register 1
Address of EXPL

Address of XAPL
authorization
checking list

EXPL

Address of work area

Length of work area

Return code--EXPLRC1

Reason code--EXPLRC2

Work area
(4096 bytes)

Parameter list for DSNX@XAC routine

Control block information

DB2 level information

Store clock value at exit invocation

STOKEN of ACEE address space

Primary authorization ID

ACEE address of authorization ID of the process

.

..

Figure 14. How an authorization routine's parameter list points to other information

Chapter 7. Managing access through exit routines 269

|
|



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLACEE * 20 Address, 4
bytes

Input v ACEE address

– Of the DB2 address space (ssnmDBM1) when XAPLFUNC
is 1 or 3.

– Of the primary authorization ID associated with this agent
or XAPLUCHK ID when XAPLFUNC is 2.

There might be cases where an ACEE address is not
available for an agent. In such cases this field contains
binary zeroes.

XAPLUPRM * 24 Character, 8
bytes

Input One of the following IDs:

v When XAPLFUNC is 1 or 3, it contains the User ID of the
DB2 address space (ssnmDBM1)

v When XAPLFUNC is 2, it contains the primary authorization
ID associated with the agent. The primary authorization ID is
set to XAPLUCHK ID when XAPLOWAC is on.

XAPLFUNC * 2C Signed,
2-byte
integer

Input Function to be performed by exit routine:

1 Initialization

2 Authorization Check

3 Termination

XAPLGPAT * 2E Character, 4
bytes

Input DB2 group attachment name for data sharing. The DB2
subsystem name if not data sharing.

XAPLUCKT 32 Character, 1
byte

Input Type of the authorization ID on which DB2 performs the check:

' ' An authorization ID

L A role

XAPLONRT 33 Character, 1
byte

Input Type of the authorization ID that owns the object in
XAPLOWNR:

' ' An authorization ID

L A role

XAPLSDEF 34 Character, 1
byte

Input System-defined object:

S A system-defined routine or package

' ' Not a system-defined object

XAPLRSV1 35 Character, 3
bytes

Reserved

XAPLPRIV 38 Signed,
2-byte
integer

Input DB2 privilege being checked. Security administrator (SECADM)
authority and secure object creation
(CREATE_SECURE_OBJECT) privilege required for row and
column access control

270 Managing Security

|

|
|



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLTYPE 3A Character, 1 Input DB2 object type:

B Buffer pool

C Collection

D Database

E Distinct typeDistinct type

F User-defined functionUser-defined function

H Global variable

J JAR

K Package

L Role

M Schema

N Trusted context

O Stored procedure

P Application plan

Q Sequence

R Table space

S Storage group

T Table

U System privilege

V View

Chapter 7. Managing access through exit routines 271

||



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLFLG1 3B Character, 1
byte

Input The highest-order bit, bit 8, (XAPLCHKS) is on if the secondary
IDs associated with this authorization ID (XAPLUCHK) are
included in DB2's authorization check. If it is off, only this
authorization ID is checked.

Bit 7 (XAPLUTB) is on if this is a table or view privilege
(SELECT, INSERT, and so on) and if SYSCTRL, SQLADM,
System DBADM, ACCESSCTRL, DATAACCESS, or SECADM is
not sufficient authority to perform the specified operation on a
table or view. SYSCTRL, SQLADM, System DBADM,
ACCESSCTRL, DATAACCESS, or SECADM does not have the
privilege of accessing user data unless the privilege is
specifically granted to it.

Bit 6 (XAPLAUTO) is on if this is an autobind.

Bit 5 (XAPLCRVW) is on if the installation parameter DBADM
CREATE AUTH is set to YES.

Bit 4 (XAPLRDWR) is on if the privilege is a write privilege. If
the privilege is a read-only privilege, bit 4 is off.

Bit 3 (XAPLFSUP) is on to suppress error messages from the
CRTVUAUTT authorization check during the creation of a
materialized query table. These error messages are caused by
intermediate checks that do not affect the final result.

Bit 2 (XAPLRAOO) is on if this operation is in a trusted context
that is defined with the ROLE AS OBJECT OWNER clause.

Bit 1 (XAPLIMPD) is on if authorization checking involves an
implicitly created database.

XAPLUCHK 3C Address, 4
bytes

Input Address to the authorization ID on which DB2 performs the
check. It could be the primary, secondary, or some other ID.
This is a VARCHAR(128) field.

272 Managing Security



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLOBJN 40 Address, 4
bytes

Input Address to the unqualified name of the object with which the
privilege is associated. This is a VARCHAR(128) field.It is one
of the following names:

Name Length

Application plan
8

Buffer pool
8

Collection
VARCHAR(128)

Database
8

Distinct type
VARCHAR(128)

Variable name
VARCHAR(128)

JAR VARCHAR(128)

Package
VARCHAR(128)

Role VARCHAR(128)

Schema
VARCHAR(128)

Sequence
VARCHAR(128)

Storage group
VARCHAR(128)

Table VARCHAR(128)

Table space
8

Trusted context
VARCHAR(128)

User-defined function
VARCHAR(128)

View VARCHAR(128)

For special system privileges (SYSADM, SYSCTRL, and so on)
this field might contain binary zeroes.

XAPLOWNQ 44 Address, 4
bytes

Input Address of the object owner (creator) or object qualifier. The
contents of this parameter depends on either the privilege
being checked or the object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

Chapter 7. Managing access through exit routines 273

|
|



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLREL1 48 Address, 4
bytes

Input Address of other related information 1. The contents of this
parameter depend on either the privilege being checked or the
object. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLREL2 4C Address, 4
bytes

Input Address of other related information 2. The contents of this
parameter depends on the privilege being checked. This is a
VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLDBSP 50 Address, 4
bytes

Input Address of database information. This information is passed for
CREATE VIEW and CREATE ALIAS.

If this field is not applicable, it contains binary zeros.

XAPLOWNR 54 Address, 4
bytes

Input Address of the object owner. This is a VARCHAR(128) field.

If this field is not applicable, it contains binary zeros.

XAPLROLE 58 Address, 4
bytes

Input Address of the user's role when operating in a trusted context.
If this field is not applicable, it contains binary zeros.

XAPLOONM 5C Address, 4
bytes

Input Address of other object name

XAPLOOON 60 Address, 4
bytes

Input Address of other object owner

XAPLBSCM 64 Address, 4
bytes

Input Address of base table qualifier of a view or repeated view
qualifier

XAPLBNAM 68 Address, 4
bytes

Input Address of base table name of a view or repeated view name

XAPLBCOL 6C Address, 4
bytes

Input Address of base table column name of a view or repeated view
column name

XAPLCLST** 70 Address, 4
bytes

Output Address to the RACLISTed class list

XAPLCLNM** 74 Signed,
2-byte
integer

Output Number of RACLISTed DB2 classes

XAPLFLG3** 76 Character, 1
byte

Output Bit 8 (the highest order bit) is on if classes are defined in
multi-subsystem scope (XAPLMSSC)

The remaining 7 bits are reserved.

XAPLRSV2 77 Character, 42
bytes

Reserved.

XAPLOOTP A1 Character, 1
byte

Input Other object type or the owner of the base table of a view

XAPLOOOT A2 Character, 1
byte

Input Other object owner type or the owner type of the base table of
a view

XAPLRSV3 A3 Character, 1
byte

Reserved

XAPLXBTS A4 Timestamp,
10 bytes

Input The function resolution timestamp. Authorizations received
prior to this timestamp are valid.

Applicable to functions and procedures.

274 Managing Security

|||
|
||

|||
|
|

||

|||
|
||
|

|



Table 70. Parameter list for access control authorization routines (continued)

Name
Hex
offset Data type

Input or
output Description

XAPLONWT AE Character, 1
byte

Output Information required by DB2 from the exit routine for the
UPDATE and REFERENCES table privileges:

Value Explanation

' ' Requester has privilege on the entire table

* Requester has privilege on just this column

XAPLFLG2 AF Character, 1
byte

Input Bit 8 (the highest-order bit) is on if an object is associated with
the row and column access control (XAPLSOBJ)

Bit 7 is on if the SEPARATE SECURITY system parameter is set
to YES (XAPLSPSC)

Bit 6 is on when a catalog table (XAPLSCTB) can be accessed
only by the SECADM authority.

Bit 5 (XAPLACAC) is on when authorization checking is done
for statements that involve the package authorization, routine
authorization, or dynamic statement cache.

Bit 4 (XAPLOWAC) is on if ACEE FOR XAPLUCHK ID is set
IN XAPLACEE

Bit 3 is on if class names are defined in multi-subsystem scope
(XAPLMSSC)

The remaining 2 bits are reserved.

XAPLDIAG B0 Character, 80
bytes

Output Information returned by the exit routine to help diagnose
problems.

The following table includes database information for determining authorization
for creating a view. The address to this parameter list is in XAPLREL2.

Table 71. Parameter list for access control authorization routines—database information

Name Hex offset Data type
Input or
output Description

XAPLDBNP 0 Address Input Address of information for the next
database. X'00000000' indicates no next
database exists.

XAPLDBNM 4 Character, 8 bytes Input Database name.

Chapter 7. Managing access through exit routines 275

|
|

|
|

|



Table 71. Parameter list for access control authorization routines—database information (continued)

Name Hex offset Data type
Input or
output Description

XAPLDBDA C Character, 1 byte Output
Required by DB2 from the exit routine for
CREATE VIEW.

A value of Y and EXPLRC1=0 indicate that
the user ID in field XAPLUCHK has
database administrator authority on the
database in field XAPLDBNM.

When the exit checks if XAPLUCHK can
create a view for another authorization ID, it
first checks for SYSADM or SYSCTRL
authority. If the check is successful, no more
checking is necessary because SYSCTRL
authority (for non-user tables) or SYSADM
authority satisfies the requirement that the
view owner has the SELECT privilege for all
tables and views that the view might be
based on. This is indicated by a blank value
and EXPLRC1=0.

If the authorization ID does not have
SYSADM or SYSCTRL authority, the exit
checks if the view creator has DBADM on
each database of the tables that the view is
based on because the DBADM authority on
the database of the base table satisfies the
requirement that the view owner has the
SELECT privilege for all base tables in that
database.

XAPLDBIM D Character, 1 bytes Input A value of 'Y' indicates that the database is
implicitly created.

XAPLRSV5 E Character, 2 bytes none Reserved.

Table 72. Parameter list for access control authorization routines-class list array information

Name
Hex
offset Data type

Input or
output Description

XAPLCMEM** 0 Character, 8
bytes

Output DB2 class name

XAPLOWNQ, XAPLREL1 and XAPLREL2 might further qualify the object or may
provide additional information that can be used in determining authorization for
certain privileges. The following is a list of the privileges and the contents of
XAPLOWNQ, XAPLREL1 and XAPLREL2.

Table 73. Related information for certain privileges

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0263 (USAGE) E Address of
schema name

Address of
distinct type
owner

Contains
binary zeroes

Address of
distinct type
owner

276 Managing Security

||

|
|
||
|
||

|||
|
||

|



Table 73. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0291 (READ)
0292 (WRITE)

H Address of
schema name

Address of
global variable
owner

Contains
binary zeroes

Address of global
variable owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

F Address of
schema name

Address of
user-defined
function owner

Contains
binary zeroes

Address of
user-defined
function owner

0263 (USAGE) J Address of
schema name

Address of JAR
owner

Contains
binary zeroes

Address of JAR
owner

0064 (EXECUTE) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0065 (BIND) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0073 (DROP) K Address of
collection ID

Contains binary
zeroes

Address of
version ID

Contains binary
zeroes

0097 (COMMENT) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0225 (COPY ON PKG) K Address of
collection ID

Address of
package owner

Contains
binary zeroes

Address of
package owner

0228 (ALLPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0229 (SUBPKAUT) K Address of
collection ID

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0252 (ALTERIN)
0097 (COMMENT)
0252 (DROPIN)

M Address of
schema name

Address of
object owner

Contains
binary zeroes

Address of object
owner

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

O Address of
schema name

Address of
procedure
owner

Contains
binary zeroes

Address of
procedure owner

0065 (BIND) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0097 (COMMENT) P Address of plan
owner

Contains binary
zeroes

Contains
binary zeroes

Address of plan
owner

0061 (ALTER)
0263 (USAGE)

Q Address of
schema name

Address of
sequence name

Contains
binary zeroes

Contains binary
zeroes

0061 (ALTER) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0073 (DROP) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0087 (USE) R Address of
database name

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0053 (UPDATE)
0054 (REFERENCES)

T Address of table
schema

Address of
column name, if
applicable

Address of
database name

Address of table
owner

Chapter 7. Managing access through exit routines 277

|
|
||
|
|
|
|

|
|
|
|



Table 73. Related information for certain privileges (continued)

Privilege
Object type
(XAPLTYPE) XAPLOWNQ XAPLREL1 XAPLREL2 XAPLOWNR

0022 (CATMAINT
CONVERT)

0050 (SELECT)
0051 (INSERT)
0052 (DELETE)
0055 (TRIGGER)
0056 (CREATE INDEX)
0061 (ALTER)
0073 (DROP)
0075 (LOAD)
0076 (CHANGE NAME

QUALIFIER)
0097 (COMMENT)
0098 (LOCK)
0233 (ANY TABLE

PRIVILEGE)
0251 (RENAME)
0275 (REFRESH)

T Address of table
schema

Contains binary
zeroes

Address of
database name

Address of table
owner

0020 (DROP ALIAS)
0104 (DROP SYNONYM)

T Address of table
schema

Contains binary
zeroes

Contains
binary zeroes

Contains binary
zeroes

0103 (ALTER INDEX)
0105 (DROP INDEX)
0274 (COMMENT ON

INDEX)
0283 (RENAME INDEX)

T Address of table
schema

Contains binary
zeroes

Address of
database name

Address of index
owner

0227 (BIND AGENT) U Address of
package owner

Contains binary
zeroes

Contains
binary zeroes

Address of
package owner

0015 (CREATE ALIAS) U Contains binary
zeroes

Contains binary
zeroes

Address of
database name,
if the alias is
on a table

Contains binary
zeroes

0053 (UPDATE) V Address of view
schema

Address of
column name, if
applicable

Address of the
database name
of the view's
base table, if
applicable

Address of view
owner

0051 (INSERT)
0052 (DELETE)

V Address of view
schema

Contains binary
zeroes

Address of the
database name
of the view's
base table, if
applicable

Address of view
owner

0050 (SELECT)
0073 (DROP)
0097 (COMMENT)
0233 (ANY TABLE

PRIVILEGE)

V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0055 (TRIGGER) V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

0061 (ALTER) V Address of view
schema

Contains binary
zeroes

Contains
binary zeroes

Address of view
owner

The following is a list of data types and field lengths.

278 Managing Security



Table 74. Data types and field lengths

Resource name or other Type Length

Database name Character 8

Global variable name Character VARCHAR(128)

Table name qualifier Character VARCHAR(128)

Object name qualifier Character VARCHAR(128)

Column name Character VARCHAR(128)

Collection ID Character VARCHAR(128)

Plan owner Character VARCHAR(128)

Package owner Character VARCHAR(128)

Package version ID Character VARCHAR(64)

Schema name Character VARCHAR(128)

Distinct typeowner Character VARCHAR(128)

JAR owner Character VARCHAR(128)

User-defined function owner Character VARCHAR(128)

Procedure owner Character VARCHAR(128)

View name qualifier Character VARCHAR(128)

Sequence owner Character VARCHAR(128)

Sequence name Character VARCHAR(128)

PSPI

Expected output for access control authorization routines
Your authorization exit routine is expected to return certain fields when it is called.
If an unexpected value is returned in any of these fields, an abend occurs.

PSPI

The following is a list of output fields for the access control authorization routine.
Register 3 points to the field in error, and abend code 00E70009 is issued.

Table 75. Output fields for the access control authorization routine

Field Required or optional

EXPLRC1 Required

EXPLRC2 Optional

XAPLONWT Required only for UPDATE and
REFERENCES table privileges

XAPLDIAG Optional

PSPI

Handling return codes
You need to place the return codes from the access control authorization routine in
the EXPL field named EXPLRC1. The EXPLRC1 value affects DB2 processing.

Chapter 7. Managing access through exit routines 279

|||



About this task

PSPI EXPLRC1 must have one of the following values during initialization.

Table 76. Required values in EXPLRC1 during initialization

Value Meaning

0 Initialization successful.

12 Unable to service request; don't call exit again.

DB2 does not check EXPLRC1 on return from the exit routine during termination.
Make sure that EXPLRC1 has one of the following values during the authorization
check.

Table 77. Required values in EXPLRC1 during authorization check

Value Meaning

0 Access permitted.

4 Unable to determine; perform DB2 authorization checking.

8 Access denied.

12 Unable to service request; don't call exit routine again.

On authorization failures, the return code is included in the IFCID 0140 trace
record.

PSPI

Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)
Related reference:
“Exception processing” on page 281

Handling reason codes
After initialization, the access control authorization routine returns reason code
EXPLRC2. EXPLRC2 determines how DB2 processes return code EXPLRC1 that is
returned during authorization checking.

About this task

PSPI The following is a list of reason codes during initialization.

Table 78. Reason codes during initialization

Value Meaning

-1 Identifies the default exit routine shipped with DB2. If you replace or
modify the default exit, you should not use this value.

16 Indicates to DB2 that it should terminate if the exit routine returns
EXPLRC1=12, an invalid EXPLRC1 or abnormally terminates during
initialization or authorization checking. When the exit routine sets the
reason code to 16, DB2 does an immediate shutdown, without waiting
for tasks to end. For long-running tasks, an immediate shutdown can
mean that recovery times are long.

Other Ignored by DB2.

280 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration


Field EXPLRC2 enables you to put in any code for authorization check. You can
use EXPLRC2 to determine why the authorization check in the exit routine failed.
On authorization failures, the reason code is included in the IFCID 0140 trace

record. PSPI

Related concepts:

General guidelines for writing exit routines (DB2 Administration Guide)
Related reference:
“Exception processing”

Exception processing
During initialization or authorization checking, DB2 issues diagnostic message
DSNX210I to the operator's console when an error condition occur.

PSPI DB2 issues diagnostic message DSNX210I if one of the following conditions
occur:
v The authorization exit returns a return code of 12 or an invalid return code.
v The authorization exit abnormally terminates.

Additional actions that DB2 performs depend on the reason code that the exit
returns during initialization. The following is a list of these actions.

Table 79. How an error condition affects DB2 actions during initialization and authorization
checking

Exit result
Reason code of 16 returned by
exit routine during initialization

Reason code other than 16 or -1
returned by exit routine during
initialization1

Return code 12 v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Invalid return code v The task2 abnormally
terminates with reason code
00E70015

v DB2 terminates

v The task2 abnormally
terminates with reason code
00E70009

v DB2 switches to DB2
authorization checking

Abnormal termination
during initialization

DB2 terminates DB2 switches to DB2
authorization checking

Abnormal termination
during authorization
checking

You can use the subsystem
parameter AEXITLIM3 to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
stops and DB2 terminates.

You can use the subsystem
parameter AEXITLIM to control
how DB2 and the exit behave.

Example: If you set AEXITLIM
to 10, the exit routine continues
to run after the first 10 abnormal
terminations. On the eleventh
abnormal termination, the exit
routine stops and DB2 switches
to DB2 authorization checking.

Chapter 7. Managing access through exit routines 281

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_exitroutineconsideration.htm#db2z_exitroutineconsideration


Table 79. How an error condition affects DB2 actions during initialization and authorization
checking (continued)

Exit result
Reason code of 16 returned by
exit routine during initialization

Reason code other than 16 or -1
returned by exit routine during
initialization1

Note:

1. During initialization, DB2 sets a value of -1 to identify the default exit. The user exit
routine should not set the reason code to -1.

2. During initialization, the task is DB2 startup. During authorization checking, the task is
the application.

3. AEXITLIM (authorization exit limit) can be updated online.

PSPI

Debugging access control authorization routines
You can use IFCID 0314 to provide a trace record of the parameter list on return
from the exit routine. You can activate the trace record by turning on trace class 22.

Determining whether the access control authorization routine
is active

You can determine whether the exit routine or DB2 is performing authorization
checks.

Procedure

PSPI To determine whether the exit routine or DB2 is performing authorization
checks:
1. Start audit trace class 1.
2. Choose a DB2 table on which to issue a SELECT statement and an

authorization ID to perform the SELECT. The authorization ID must not have
the DB2 SELECT privilege or the external security system SELECT privilege on
the table.

3. Use the authorization ID to issue a SELECT statement on the table. The
SELECT statement should fail.

4. Format the trace data and examine the return code (QW0140RC) in the IFCID
0140 trace record.
v QW0140RC = –1 indicates that DB2 performed the authorization check and

denied access.
v QW0140RC = 8 indicates that the external security system performed the

authorization check and denied access. PSPI

RACF access control module
The RACF access control module allows you to use RACF as an alternative to DB2
authorization checking for DB2 objects, authorities, and utilities.

PSPI You can activate the RACF access control module at the DB2 access control
authorization exit point (DSNX@XAC), where you can replace the default routine.

282 Managing Security



The RACF access control module is provided as an assembler source module in the
DSNXRXAC member of DB2.SDSNSAMP.

The RACF access control module (DSNXRXAC) does not provide full support of

role on z/OS 1.7. PSPI

Related concepts:

Introduction to the RACF access control module (RACF Access Control Module
Guide)

Chapter 7. Managing access through exit routines 283

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.racf/src/tpc/db2z_racfoverview.htm#db2z_racfoverview


284 Managing Security



Chapter 8. Managing program authorization

Program authorization lets you control whether a DB2 application program is
authorized to use a plan.

Before you begin

Table SYSIBM.DSNPROGAUTH and index SYSIBM.DSNPROGAUTH_IDX1 must
exist on your DB2 subsystem. They are created by installation job DSNTIJSG.

About this task

Program authorization is a useful technique when you do not know all of the
programs and packages that might use a plan. In addition, program authorization
lets you determine at the time that a program is loaded whether it has been
modified. Program authorization is performed in addition to package
authorization.

Restriction:

Programs that run in the following environments do not support program
authorization:
v RRSAF applications that issue CREATE THREAD with a collection name, and

therefore use the default plan name ?RRSAF
v Multicontext ODBC applications, which use the RRSAF attachment facility and

the plan name DSNACLI
v Programs that run in stored procedure address spaces

Procedure

To enable program authorization:
1. Bind or rebind plans for which you want to enable program authorization with

the PROGAUTH(ENABLE) option.
2. Add a row in the SYSIBM.DSNPROGAUTH table for each program and plan

combination for which the plan is bound with PROGAUTH(ENABLE).
The program name that you need to insert in the row depends on the
attachment facility that the program uses to connect to DB2:
v If the program uses the TSO attachment facility, the program name is the

name that you specify in the DSN RUN subcommand.
v If the program uses any other attachment facility, the program name is the

name of the module that is executed first under the job step TCB.
Job DSNTIJSG contains a sample INSERT statement for a
SYSIBM.DSNPROGAUTH row. You can modify the INSERT statement and
execute it to add a row for a program and plan.

© Copyright IBM Corp. 1982, 2013 285

|

|

|
|

|

|
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|



286 Managing Security



Chapter 9. Protecting data through encryption and RACF

You can use the DB2 Secure Socket Layer (SSL) support or built-in data encryption
functions to protect your sensitive data. You can also use the security features of
RACF, or an equivalent system, to protect your data sets.

Encrypting your data with Secure Socket Layer support
DB2 supports Secure Socket Layer (SSL) protocol by using the z/OS
Communications Server IP Application Transparent Transport Layer Security
(AT-TLS).

The z/OS Communications Server for TCP/IP (beginning in V1R7 of z/OS)
supports the AT-TLS function in the TCP/IP stack for applications that require
secure TCP/IP connections. AT-TLS performs TLS on behalf of the application,
such as DB2, by invoking the z/OS system SSL in the TCP layer of the TCP/IP
stack. The z/OS system SSL supports TLS V1.0, SSL V3.0, and SSL V2.0 protocols.

AT-TLS also uses policies that provide system SSL configurations for connections
that use AT-TLS. An application continues to send and receive clear text data over
the socket while the transmission is protected by the system SSL.

AT-TLS support is policy-driven and can be deployed transparently underneath
many existing sockets applications.
Related concepts:
“Encrypting your data through DB2 built-in functions” on page 296
“Protecting data sets through RACF” on page 293

AT-TLS configuration
You need to complete a set of configurations that are required for DB2 to take
advantage of AT-TLS support.

You must complete the following configurations of your DB2 to use the AT-TLS
support:
v PROFILE.TCPIP configuration

You can specify the TTLS or NOTTLS parameter on the TCPCONFIG statement
in PROFILE.TCPIP to control whether you want to use the AT-TLS support.

v TCP/IP stack access control configuration
To protect TCP/IP connections, you can configure the RACF
EZB.INITSTACK.sysname.tcpname resource in the SERVAUTH class to block all
stack access except for the user IDs that are permitted to use the resource.

v Policy configuration
The policy agent provides AT-TLS policy rules to the TCP/IP stack. Each rule
defines a set of security conditions that the policy agent compares to the
conditions at the connection that it is checking. When the policy agent finds a
match, it assigns the connection to the actions that are associated with the rule.

© Copyright IBM Corp. 1982, 2013 287



SSL authentication level
The Secure Socket Layer (SSL) protocol supports server and client authentication
during the handshake phase.

The SSL provides server authentication as the minimum level of security. It uses
the Server Authentication mechanism to secure communications between a server
and its client and allows the client to validate the authenticity of the server.

The SSL provides client authentication as an additional level of authentication and
access control. It enables a server to validates the certificates of a client at the
server and thus prevents the client from obtaining a secure connection without an
installation-approved certificate.

Client authentication is optional and, if used, can provide the following three
levels of authentication:
v Level 1 authentication is performed by system SSL. A client passes a digital

certificate to a server as part of the SSL handshake. To successfully pass the
required authentication, the Certificate Authority (CA) that signs the client
certificate must be trusted by the server. That is, the certificate for the CA must
be in the key ring that the server uses and designates as trusted.

v Level 2 (addition to level 1) authentication requires that a client certificate be
registered with RACF (or other SAF-compliant security products) and mapped
to a valid user ID. When AT-TLS receives the client certificate during the SSL
handshake, it queries RACF to verify that the certificate maps to a valid user ID
before allowing a secure connection to be established. This level of client
authentication provides additional access control at the server and ensures that
the client is known to have a valid user ID on the server host.

v Level 3 (addition to levels 1 and 2) authentication provides the capability to
restrict access to a server based on the user ID associated with a client certificate.
A client can access a server only if the client itself is valid to the server, its
certificate is valid, and a user ID associated with the certificate is valid. This
level of authentication uses the RACF SERVAUTH general resource class to
restrict access to the server based on the user ID of the client. If the SERVAUTH
general resource class is not active or the SERVAUTH profile for the server is not
defined, AT-TLS assumes that this level of authentication is not requested.
However, if the SERVAUTH general resource class is active and the server's
SERVAUTH profile is defined, a remote secure connection is be established only
if the user ID that is associated with the client certificate is permitted to the
server's SERVAUTH profile. Otherwise, the secure connection is not established
and the connection itself is dropped.

Configuring SSL authentication levels
The Secure Socket Layer (SSL) protocol supports server and client authentication
during the handshake phase. You can specify to use either server authentication,
client authentication, or both depending on your security need.

Procedure

To specify whether to use server authentication, client authentication, or both, use
the following approaches:
v If you need only a minimum level of security to authenticate the

communications between a server and its clients, consider using server
authentication. To use server authentication, specify the HandshakeRole Server
parameter for the TTLSEnvironmentAction statement in the AT-TLS policy, as
shown in the following example:

288 Managing Security



TTLSEnvironmentAction DB2ServerSecureEnvAct
{

TTLSKeyRingParms
{

Keyring DB2ServerKeyring
}
HandshakeRole Server

}

With this configuration, AT-TLS sends the server certificate to the client during
the handshake phase of a connection request. The client then validates the server
by examining the server certificate that it receives.

v If you need additional security, consider using client authentication. To use client
authentication:
1. Specify the HandshakeRole ServerWithClientAuth parameter for the

TTLSEnvironmentAction statement in the AT-TLS policy, as shown in the
following example:
TTLSEnvironmentAction DB2ServerSecureEnvAct
{

TTLSKeyRingParms
{

Keyring DB2SERVERKEYRING
}
HandshakeRole ServerWithClientAuth
TTLSEnvironmentAdvancedParms
{

ClientAuthType SAFCheck
}

}

2. Determining the level of client authentication by specifying the
ClientAuthType parameter for the TTLSEnvironmentAdvancedParms
statement in the AT-TLS policy.

Table 80. Client authentication levels

Client
Authentication
Level ClientAuthType

Client
Certificate

SERVAUTH Class
Active and Server
SERVAUTH Profile
Defined Certificate Validation

None PassThru Optional N/A None

None Full Optional N/A Certificate is validated against key
ring, if provided

Level 1 Required
(default)

Required N/A Certificate is validated against key
ring

Level 2 SAFCheck Required Optional Certificate is validated against key
ring and must be associated with
a user ID in the security product

Level 3 SAFCheck Required Required Certificate is validated against key
ring and must be associated to a
user ID in the security product
and must be permitted to access
server's SERVAUTH profile

Depending on the authentication type (ClientAuthType) you specify, AT-TLS
may not require the client to present its certificate during the SSL handshake
phase.

3. Register the client Certificate Authority (CA) certificate to RACF as trusted
by issuing the RACDCERT ADD command, as shown in the following
example:

Chapter 9. Protecting data through encryption and RACF 289



RACDCERT ID(USRT001) ADD(’USRT001.CLIENT.CRT’) TRUST

This registers the client CA certificate in data set 'USRT001.CLIENT.CRT' to
the RACF database. The certificate is owned by RACF-defined user USRT001.
The client CA certificate is also marked as trusted so that RACF can use it to
verify the client certificate when it is presented to the system.

4. Add the client CA certificate to a key ring and map it to a user ID by issuing
the RACDCERT CONNECT command, as shown in the following example:
RACDCERT ID(SYSDSP) CONNECT(ID(USRT001) LABEL(’LABEL00000001’)
RING(DB2SERVERKEYRING) USAGE(PERSONAL))

This adds the client CA certificate to server key ring DB2SERVERKEYRING.
The certificate is owned by user USRT001.

Results

DB2 is now ready to accept secure connections from remote clients that use SSL
client and server authentication.

Creating and activating client certificate name filters
A certificate name filter enables you to associate many client certificates with one
user ID based on the unique user information in the certificate, such as the user's
affiliation. You can create one or more certificate name filters to map a large
number of client certificates to a limited number of user IDs, which helps you
reduce administrative costs.

Procedure

To create and activate a certificate name filter:
1. Create a certificate name filter by issuing the RACDCERT MAP command, as shown

in the following example:
RACDCERT MAP ID(USRT001) -

SDNFILTER(’O=IBM.L=San Jose.SP=CA.C=US’)
WITHLABEL(’IBMers’) TRUST

This creates a new certificate name filter based on the subject's distinguished
name in the certificate. The filter associates user ID USRT001 to any user
presenting a certificate with subject name 'O=IBM, L=San Jose, ST=CA, C=US'.

2. Activate the SETROPTS RACLIST processing for the DIGTNMAP class.
Using the RACDCERT MAP command to create a certificate name filter
automatically generates a mapping profile in the DIGTNMAP class that
represents the new filter. Both the DIGTNMAP class and the SETROPTS
RACLIST processing for the DIGTNMAP class must be active before you can
complete the creation of the new certificate name filter. Issue the following
command to activate the SETROPTS RACLIST processing for the DIGTNMAP
class:
SETROPTS CLASSACT(DIGTNMAP) RACLIST(DIGTNMAP)

3. Refresh the DIGTNMAP class.
Once SETROPTS RACLIST processing for the DIGTNMAP class is active, you
must refresh the DIGTNMAP class for the certificate name filter to take effect.
Issue the following command to refresh the DIGTNMAP class:
SETROPTS RACLIST(DIGTNMAP) REFRESH

4. Register a client CA certificate to use with the certificate name filter.
During the SSL handshake phase of establishing a secure connection, AT-TLS
retrieves certificate information from RACF if client authentication is specified.

290 Managing Security



In order for AT-TLS to retrieve the client CA certificate and private keys from
RACF, the client CA certificate must be connected to the server key ring. You
can use the new certificate name filter to register the client CA certificate to
RACF, connect to the server key ring, and map to the user ID CERTAUTH as
trusted by issuing the following command:
RACDCERT CERTAUTH ADD(’USRT001.CLIENT.CRT’) TRUST
RACDCERT ID(SYSDSP) CONNECT(CERTAUTH LABEL(’LABEL00000001’)
RING(DB2SERVERKEYRING) USAGE(CERTAUTH))

This registers the client CA certificate to RACF and maps it to the ID
CERTAUTH as TRUST. It the adds the certificate to key ring
DB2ASERVERKEYRING (owned by ID SYSDSP) and and indicates it is used
for certificate authority purposes. As a result, when a remote client establishes a
secure connection with DB2, AT-TLS is able to authenticate the client from the
client CA certificate in RACF. Because the certificate name filter is active, user
ID USRT001 is returned by AT-TLS to DB2.

Configuring the DB2 server for SSL
To implement SSL support for a DB2 server, you need to make sure that the
TCP/IP SQL Listener service task of DDF is capable of listening to a secondary
secure port for inbound SSL connections.

About this task

The TCP/IP Listener accepts regular (non-SSL) connections on the DRDA port,
whereas the secure port accepts only SSL connections to provide secure
communications with a partner. Clients are assured of getting the SSL protocol
connections that they require.

The secure port is used only for accepting secure connections that use the SSL
protocol. When the TCP/IP Listener accepts an inbound connection on the secure
port, DDF invokes the SIOCTTLSCTL IOCTL service with TTLSi_Req_Type set to
TTLS_QUERY_ONLY. It also retrieves the following AT-TLS policy information:
v Status of the connection. The status of a connection is either SECURE or NOT

SECURE.
v Policy status of the connection. The IOCTL returns one of the following policy

status:
– If the IOCTL returns a policy status of TTLS_POL_NO_POLICY, a matching

policy rule is not found for the connection and subsequently the connection
status is not secure.

– If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a
matching policy rule is found for the connection but the policy is not
configured to allow a secure connection for that client.

– If the IOCTL returns a policy status of TTLS_POL_ENABLED, a matching
policy rule is found, and SSL is enabled for the connection.

v Security type for the connection. The security type is either server or server with
client authentication (with ClientAuthType = SAFCheck)

v RACF-defined user ID that is associated with a client certificate. If a client
certificate is provided by the client and validated by AT-TLS and if a user ID is
mapped to the certificate, the user ID is returned. Otherwise, the user ID is not
returned.

If a secure port is not properly configured, DDF rejects the inbound connection
request on the secure port. You must change the client system to either use the
non-secure port, or you can configure the secure port to access DB2 remotely.

Chapter 9. Protecting data through encryption and RACF 291



Procedure

To specify a secure port to DB2, use one of the following approaches:
v Specify the TCP/IP port number in the DRDA SECURE PORT field of the

Distributed Data Facility Panel 2 (DSNTIP5) during DB2 installation.
The DRDA SECURE PORT field specifies the port number that is to be used for
accepting TCP/IP connection requests from remote DRDA clients that want to
establish a secure connection using the SSL protocol. The value of the port
number is a decimal number between 1 and 65534, and it cannot have the same
value as the values of the DRDA PORT and RESYNC PORT fields. Any non-zero
port numbers are verified to ensure that they are all unique port numbers. If an
error is detected, installation is not allowed to proceed until you resolve the
error condition. If the DRDA SECURE PORT field is blank, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.

v Update the SECPORT parameter of the DDF statement in the BSDS with the
change log inventory (DSNJU003) stand-alone utility.
The SECPORT parameter specifies the port number for the DB2 TCP/IP SQL
Listener to accept inbound SSL connections. The value of the port number is a
decimal number between 0 to 65535, and it cannot have the same value as the
values of the PORT and RESPORT parameters. If the value of SECPORT secure
port is the same as the value of PORT or RESPORT, DB2 issues an error
message. If you specify a value of 0 for the SECPORT parameter, SSL verification
support is disabled, and the DB2 TCP/IP SQL Listener does not accept any
inbound SSL connections on the secure port.
If the value of SECPORT is disabled, the client can still use the DRDA PORT and
use SSL on it, but DB2 does not validate whether the connection uses SSL
protocol.

What to do next

Data Sharing Considerations: For a data sharing environment, each DB2 member
with SSL support must specify a secure port. The secure port for each DB2 member
of the group should be the same, just as the DRDA PORT for each member should
also be the same. If each DB2 member specifies a unique secure port, unpredictable
behaviors might occur. For example, Sysplex member workload balancing might
not work correctly.

Similarly, for DB2 members that are defined as a subset of the data sharing group,
each DB2 member that belongs to the subset needs to configure the secure port.
You do not need to define a separate unique secure port for the location alias.
Related information:

DB2 10 for z/OS: Configuring SSL for Secure Client-Server Communications

Configuring the DB2 requester for SSL
A DB2 requester must be able to insist on an SSL-protected connection to certain
servers. To ensure SSL-protected connections, you can make communications
database (CDB) changes that indicate that SSL-protected connections are required
to certain remote locations.

292 Managing Security

http://www.redbooks.ibm.com/redpieces/abstracts/redp4799.html?Open


About this task

If a secure connection is required, DDF must determine whether an AT-TLS policy
rule is defined and whether AT-TLS is enabled for the connection. To obtain this
AT-TLS information, DDF invokes SIOCTTLSCTL IOCTLwith TTLSi_Req_Type =
TTLS_QUERY_ONLY. If the IOCTL returns a policy status of
TTLS_POL_NO_POLICY, a matching policy rule is not found for the connection.

If the IOCTL returns a policy status of TTLS_POL_NOT_ENABLED, a policy rule
is defined for the connection, but AT-TLS is not enabled, and a secure connection is
not established with the remote server. DDF issues a message, and the connection
is closed.

If the IOCTL returns a policy status of TTLS_POL_ENABLED, a matching policy
rule is found, and SSL is enabled for the connection.

Procedure

To specify a secure connection to DB2, use one of the following approaches:
v Specify 'Y' for the SECURE column in the SYSIBM.LOCATIONS table.
v Specify a value for the PORT column in the SYSIBM.LOCATIONS table for SSL

connections.
For SSL support, the PORT column must contain the value of the configured
secure DRDA port at the remote server. However, if the value of the PORT
column is blank and the value of the SECURE column is 'Y', DB2 uses the
reserved secure DRDA port (448) as the default.

What to do next

Some DB2 applications might require SSL protection and accept the performance
cost for this level of security. However, some applications might be satisfied with
unprotected connections. This flexibility can be accomplished by the use of the
LOCATION ALIAS name feature.

Consider a DB2 server that is configured to support both non-secure and secure
connections. At the DB2 requester, you can define two rows in the
SYSIBM.LOCATIONS table: one row that specifies the location name and the
non-secure DRDA port of the server and another row that specifies a different
location name and the secure DRDA port of the server and SECURE='Y'. At the
DB2 server, you can define a LOCATION ALIAS name to provide alternative
names for any DB2 requesters that need to access the server by using the SSL
protocol.
Related information:

DB2 10 for z/OS: Configuring SSL for Secure Client-Server Communications

Protecting data sets through RACF
To fully protect the data in DB2, you must take steps to ensure that no other
process has access to the data sets in which DB2 data resides.

Use RACF, or a similar external security system, to control access to the data sets
just as RACF controls access to the DB2 subsystem. This section explains how to
create RACF profiles for data sets and allow their use through DB2.

Chapter 9. Protecting data through encryption and RACF 293

http://www.redbooks.ibm.com/redpieces/abstracts/redp4799.html?Open


Assume that the RACF groups DB2 and DB2USER, and the RACF user ID
DB2OWNER, have been set up for DB2 IDs. Given that setting, the examples that
follow show you how to:
v Add RACF groups to control data sets that use the default DB2 qualifiers.
v Create generic profiles for different types of DB2 data sets and permit their use

by DB2 started tasks.
v Permit use of the profiles by specific IDs.
v Allow certain IDs to create data sets.
Related concepts:
“Encrypting your data through DB2 built-in functions” on page 296
“Encrypting your data with Secure Socket Layer support” on page 287

Adding groups to control DB2 data sets
The default high-level qualifier for data sets that contain DB2 databases and
recovery logs is DSNC110. The default high-level qualifier for distribution, target,
SMP, and other installation data sets is DSNB10.

About this task

The DB2OWNER user ID can create groups that control those data sets by issuing
the following commands:
ADDGROUP DSNC110 SUPGROUP(DB2) OWNER(DB2OWNER)
ADDGROUP DSNB10 SUPGROUP(DB2) OWNER(DB2OWNER)

Creating generic profiles for data sets
DB2 uses specific names to identify data sets for special purposes.

About this task

Suppose that SYSDSP is the RACF user ID for DB2 started tasks in the following
examples. DB2OWNER can issue the following commands to create generic
profiles for the data sets and give complete control over the data sets to DB2
started tasks:
v For active logs, issue the following commands:

ADDSD ’DSNC110.LOGCOPY*’ UACC(NONE)
PERMIT ’DSNC110.LOGCOPY*’ ID(SYSDSP) ACCESS(ALTER)

v For archive logs, issue the following commands:
ADDSD ’DSNC110.ARCHLOG*’ UACC(NONE)
PERMIT ’DSNC110.ARCHLOG*’ ID(SYSDSP) ACCESS(ALTER)

v For bootstrap data sets, issue the following commands:
ADDSD ’DSNC110.BSDS*’ UACC(NONE)
PERMIT ’DSNC110.BSDS*’ ID(SYSDSP) ACCESS(ALTER)

v For table spaces and index spaces, issue the following commands:
ADDSD ’DSNC110.DSNDBC.*’ UACC(NONE)
PERMIT ’DSNC110.DSNDBC.*’ ID(SYSDSP) ACCESS(ALTER)

v For installation libraries, issue the following command:
ADDSD ’DSNB10.*’ UACC(READ)

Started tasks do not need control.
v For other general data sets, issue the following commands:

ADDSD ’DSNC110.*’ UACC(NONE)
PERMIT ’DSNC110.*’ ID(SYSDSP) ACCESS(ALTER)

294 Managing Security



Although all of those commands are not absolutely necessary, the sample shows
how you can create generic profiles for different types of data sets. Some
parameters, such as universal access, could vary among the types. In the example,
installation data sets (DSNB10.*) are universally available for read access.

If you use generic profiles, specify NO on installation panel DSNTIPP for
ARCHIVE LOG RACF, or you might get a z/OS error when DB2 tries to create the
archive log data set. If you specify YES, DB2 asks RACF to create a separate profile
for each archive log that is created, which means that you cannot use generic
profiles for these data sets.

To protect VSAM data sets, use the cluster name. You do not need to protect the
data component names, because the cluster name is used for RACF checking.

The VSAM resource that is used to store the administrative scheduler task list
must be protected in RACF against unauthorized access. Only the administrative
scheduler started task user has the UPDATE authority on VSAM resources.

Access by stand-alone DB2 utilities: The following DB2 utilities access objects that
are outside of DB2 control:
v DSN1COPY and DSN1PRNT: table space and index space data sets
v DSN1LOGP: active logs, archive logs, and bootstrap data sets
v Change Log Inventory (DSNJU003) and Print Log Map (DSNJU004): bootstrap

data sets

The Change Log Inventory and Print Log Map utilities run as batch jobs that are
protected by the USER and PASSWORD options on the JOB statement. To provide
a value for the USER option, for example SVCAID, issue the following commands:
v For DSN1COPY:

PERMIT ’DSNC110.*’ ID(SVCAID) ACCESS(CONTROL)

v For DSN1PRNT:
PERMIT ’DSNC110.*’ ID(SVCAID) ACCESS(READ)

v For DSN1LOGP:
PERMIT ’DSNC110.LOGCOPY*’ ID(SVCAID) ACCESS(READ)
PERMIT ’DSNC110.ARCHLOG*’ ID(SVCAID) ACCESS(READ)
PERMIT ’DSNC110.BSDS*’ ID(SVCAID) ACCESS(READ)

v For Change Log Inventory:
PERMIT ’DSNC110.BSDS*’ ID(SVCAID) ACCESS(CONTROL)

v For Print Log Map:
PERMIT ’DSNC110.BSDS*’ ID(SVCAID) ACCESS(READ)

The level of access depends on the intended use, not on the type of data set
(VSAM KSDS, VSAM linear, or sequential). For update operations,
ACCESS(CONTROL) is required; for read-only operations, ACCESS(READ) is
sufficient.

You can use RACF to permit programs, rather than user IDs, to access objects.
When you use RACF in this manner, IDs that are not authorized to access the log
data sets might be able to do so by running the DSN1LOGP utility. Permit access
to database data sets through DSN1PRNT or DSN1COPY.

Chapter 9. Protecting data through encryption and RACF 295



Authorizing DB2 IDs to use data set profiles
Authorization IDs with the installation SYSADM or installation SYSOPR authority
need access to most DB2 data sets.

About this task

The following command adds the two default IDs that have the SYSADM and
SYSOPR authorities if no other IDs are named when DB2 is installed:
ADDUSER (SYSADM SYSOPR)

The next two commands connect those IDs to the groups that control data sets,
with the authority to create new RACF database profiles. The ID that has the
installation SYSOPR authority (SYSOPR) does not need that authority for the
installation data sets.
CONNECT (SYSADM SYSOPR) GROUP(DSNC110) AUTHORITY(CREATE) UACC(NONE)
CONNECT (SYSADM) GROUP(DSNB10) AUTHORITY(CREATE) UACC(NONE)

The following set of commands gives the IDs complete control over DSNC110 data
sets. The system administrator IDs also have complete control over the installation
libraries. Additionally, you can give the system programmer IDs the same control.
PERMIT ’DSNC110.LOGCOPY*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC110.ARCHLOG*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC110.BSDS*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC110.DSNDBC.*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNC110.*’ ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT ’DSNB10.*’ ID(SYSADM) ACCESS(ALTER)

Enabling DB2 IDs to create data sets
You can enable DB2 IDs to create data sets by connecting them to the DSNC110
group that has the CREATE authority.

About this task

You can issue the following command to connect several IDs to the DSNC110
group:
CONNECT (USER1 USER2 USER3 USER4 USER5)

GROUP(DSNC110) AUTHORITY(CREATE) UACC(NONE)

Those IDs can now explicitly create data sets whose names have DSNC110 as the
high-level qualifier. Any such data sets that are created by DB2 or by these RACF
user IDs are protected by RACF. Other RACF user IDs are prevented by RACF
from creating such data sets.

If no option is supplied for PASSWORD on the ADDUSER command that adds
those IDs, the first password for the new IDs is the name of the default group,
DB2USER. The first time that the IDs sign on, they all use that password, but they
must change the password during their first session.

Encrypting your data through DB2 built-in functions
DB2 provides built-in data encryption and decryption functions that you can use to
encrypt sensitive data, such as credit card numbers and medical record numbers.

You can encrypt data at the column or value level. You must install the Integrated
Cryptographic Service Facility to use the built-in functions for data encryption.

296 Managing Security



When you use data encryption, DB2 requires the correct password to retrieve the
data in a decrypted format. If an incorrect password is provided, DB2 does not
decrypt the data.

The ENCRYPT keyword encrypts data. The DECRYPT_BIT, DECRYPT_CHAR, and
DECRYPT_DB keywords decrypt data. These functions work like other built-in
functions. To use these functions on data, the column that holds the data must be
properly defined.

Built-in encryption functions work for data that is stored within DB2 subsystem
and is retrieved from within that same DB2 subsystem. The encryption functions
do not work for data that is passed into and out of a DB2 subsystem. This task is
handled by DRDA data encryption, and it is separate from built-in data encryption
functions.

Attention: DB2 cannot decrypt data without the encryption password, and DB2
does not store encryption passwords in an accessible format. If you forget the
encryption password, you cannot decrypt the data, and the data might become
unusable.
Related concepts:
“Encrypting your data with Secure Socket Layer support” on page 287
“Protecting data sets through RACF” on page 293

Defining columns for encrypted data
When data is encrypted, it is stored as a binary data string. Therefore, encrypted
data should be stored in columns that are defined as VARCHAR FOR BIT DATA.

About this task

Columns that hold encrypted data also require additional bytes to hold a header
and to reach a multiple of 8 bytes.

Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(6). Use the following calculation to determine the column definition for
storing the data in encrypted format:
Maximum length of non-encrypted data 6 bytes
Number of bytes to the next multiple of 8 2 bytes
24 bytes for encryption key 24 bytes

--------
Encrypted data column length 32 bytes

Therefore, define the column for encrypted data as VARCHAR(32) FOR BIT DATA.

If you use a password hint, DB2 requires an additional 32 bytes to store the hint.
Suppose that you have non-encrypted data in a column that is defined as
VARCHAR(10). Use the following calculation to determine the column definition
for storing the data in encrypted format with a password hint:
Maximum length of non-encrypted data 10 bytes
Number of bytes to the next multiple of 8 6 bytes
24 bytes for encryption key 24 bytes
32 bytes for password hint 32 bytes

--------
Encrypted data column length 72 bytes

Therefore, define the column for encrypted data as VARCHAR(72) FOR BIT DATA.

Chapter 9. Protecting data through encryption and RACF 297



Related tasks:
“Defining column-level encryption”
“Defining value-level encryption” on page 300
“Optimizing performance of encrypted data” on page 302

Defining column-level encryption
For column-level encryption, all encrypted values in a column are encrypted with
the same password.

Procedure

To define column-level encryption:
1. Create the EMP table with the EMPNO column. The EMPNO column must be

defined with the VARCHAR data type, must be defined FOR BIT DATA, and
must be long enough to hold the encrypted data. The following statement
creates the EMP table:

CREATE TABLE EMP (EMPNO VARCHAR(32) FOR BIT DATA);

2. Set the encryption password. The following statement sets the encryption
password to the host variable :hv_pass:

SET ENCRYPTION PASSWORD = :hv_pass;

3. Use the ENCRYPT keyword to insert encrypted data into the EMP table by
issuing the following statements:

INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’47138’));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’99514’));
INSERT INTO EMP (EMPNO) VALUES(ENCRYPT(’67391’));

4. Select the employee ID numbers in decrypted format:

SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

If you provide the correct password, DB2 returns the employee ID numbers in
decrypted format.

298 Managing Security



Related tasks:
“Defining columns for encrypted data” on page 297
“Defining value-level encryption” on page 300
“Optimizing performance of encrypted data” on page 302

Creating views with column-level encryption
You can create a view that uses column-level encryption and selects decrypted data
from a table.

About this task

You can define the view with a decryption function in the defining fullselect. If the
correct password is provided when the view is queried, DB2 will return decrypted
data. Suppose that you want to create a view that contains decrypted employee ID
numbers from the EMP table.

Procedure

To create a view that uses column-level encryption and selects decrypted data:
1. Create a view on the EMP table by using the following statement:

CREATE VIEW CLR_EMP (EMPNO) AS SELECT DECRYPT_CHAR(EMPNO) FROM EMP;

2. Set the encryption password so that the fullselect in the view definition can
retrieve decrypted data.

Use the following statement:
SET ENCRYPTION PASSWORD = :hv_pass;

3. Select data from the view by using the following statement:

SELECT EMPNO FROM CLR_EMP;

Using password hints with column-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

Procedure

To use password hints with column-level encryption, choose one of the following
options:
v Issue the SET ENCRYPTION PASSWORD statement to set the password hint.

Use the following statement to set the password hint to the host variable

hv_hint:
SET ENCRYPTION PASSWORD = :hv_pass WITH HINT = :hv_hint;

Chapter 9. Protecting data through encryption and RACF 299



v Use the GETHINT function to return the password hint. Suppose that the
EMPNO column in the EMP table contains encrypted data and that you
submitted a password hint when you inserted the data. Suppose that you cannot
remember the encryption password for the data. Use the following statement to

return the password hint:
SELECT GETHINT (EMPNO) FROM EMP;

Defining value-level encryption
When you use value-level encryption, each value in a given column can be
encrypted with a different password. You set the password for each value by using
the ENCRYPT keyword with the password.

About this task

The following keywords are used with value-level encryption:

ENCRYPT
Indicates which data requires encryption. Also, encryption passwords, and
optionally password hints, are indicated as part of the ENCRYPT keyword
for value-level encryption.

Recommendation: Use host variables instead of literal values for all
passwords and password hints. If statements contain literal values for
passwords and password hints, the security of the encrypted data can be
compromised in the DB2 catalog and in a trace report.

DECRYPT_BIT, DECRYPT_CHAR, DECRYPT_DB
Checks for the correct password and decrypts data when the data is
selected.

Example

Suppose that a web application collects user information about a customer. This
information includes the customer name, which is stored in host variable
custname; the credit card number, which is stored in a host variable cardnum; and
the password for the card number value, which is stored in a host variable
userpswd. The application uses the following statement to insert the customer

information:
INSERT INTO CUSTOMER (CCN, NAME)

VALUES(ENCRYPT(:cardnum, :userpswd), :custname);

Before the application displays the credit card number for a customer, the customer
must enter the password. The application retrieves the credit card number by
using the following statement:

SELECT DECRYPT_CHAR(CCN, :userpswd) FROM CUSTOMER WHERE NAME = :custname;

300 Managing Security



Related tasks:
“Defining columns for encrypted data” on page 297
“Defining column-level encryption” on page 298
“Optimizing performance of encrypted data” on page 302

Using password hints with value-level encryption
DB2 can store encryption password hints to help with forgotten encryption
passwords. Each password hint uses 32 bytes in the encrypted column.

About this task

For value-level encryption, the password hint is set with the ENCRYPT keyword.
The GETHINT function returns the password hint.

Recommendation: Use host variables instead of literal values for all passwords
and password hints. If the statements contain literal values for passwords and
password hints, the security of the encrypted data can be compromised in the DB2
catalog and in a trace report.

Example

Suppose that you want the application from the previous example to use a hint to
help customers remember their passwords. The application stores the hint in the
host variable pswdhint. For this example, assume the values 'Tahoe' for userpswd
and 'Ski Holiday' for pswdhint. The application uses the following statement to

insert the customer information:
INSERT INTO CUSTOMER (CCN, NAME)

VALUES(ENCRYPT(:cardnum, :userpswd, :pswdhint), :custname);

If the customer requests a hint about the password, the following query is used:

SELECT GETHINT(CCN) INTO :pswdhint FROM CUSTOMER WHERE NAME = :custname;

The value for pswdhint is set to 'Ski Holiday' and returned to the customer.
Hopefully the customer can remember the password 'Tahoe' from this hint.

Encrypting non-character values
DB2 supports encryption for numeric and datetime data types indirectly through
casting. If non-character data is cast as VARCHAR or CHAR, the data can be
encrypted.

Example

Suppose that you need to encrypt timestamp data and retrieve it in decrypted
format. Perform the following steps:

Chapter 9. Protecting data through encryption and RACF 301



1. Create a table to store the encrypted values and set the column-level encryption
password by using the following statements:
CREATE TABLE ETEMP (C1 VARCHAR(124) FOR BIT DATA);
SET ENCRYPTION PASSWORD :hv_pass;

2. Cast, encrypt, and insert the timestamp data by using the following statement:
INSERT INTO ETEMP VALUES ENCRYPT(CHAR(CURRENT TIMESTAMP));

3. Recast, decrypt, and select the timestamp data by using the following
statement:
SELECT TIMESTAMP(DECRYPT_CHAR(C1)) FROM ETEMP;

Using predicates for encrypted data
When data is encrypted, only = and <> predicates provide accurate results.
Predicates such as >, <, and LIKE return inaccurate results for encrypted data.

About this task

Suppose that the value 1234 is encrypted as H71G. Also suppose that the value
5678 is encrypted as BF62. If you use a <> predicate to compare these two values
in encrypted format, you receive the same result as you will if you compare these
two values in decrypted format:
Decrypted: 1234 <> 5678 True
Encrypted: H71G <> BF62 True

In both case, they are not equal. However, if you use a < predicate to compare
these values in encrypted format, you receive a different result than you will if you
compare these two values in decrypted format:
Decrypted: 1234 < 5678 True
Encrypted: H71G < BF62 False

To ensure that predicates such as >, <, and LIKE return accurate results, you must
first decrypt the data.

Optimizing performance of encrypted data
Encryption typically degrades the performance of most SQL statements. Decryption
requires extra processing, and encrypted data requires more space in DB2.

About this task

If a predicate requires decryption, the predicate is a stage 2 predicate, which can
degrade performance. Encrypted data can also impact your database design, which
can indirectly impact performance. To minimize performance degradation, use
encryption only in cases that require encryption.

Recommendation: Encrypt only a few highly sensitive data elements, such credit
card numbers and medical record numbers.

Some data values are poor candidates for encryption. For example, boolean values
and other small value sets, such as the integers 1 through 10, are poor candidates
for encryption. Because few values are possible, these types of data can be easy to
guess even when they are encrypted. In most cases, encryption is not a good
security option for this type of data.

Data encryption and indexes: Creating indexes on encrypted data can improve
performance in some cases. Exact matches and joins of encrypted data (if both

302 Managing Security



tables use the same encryption key to encrypt the same data) can use the indexes
that you create. Because encrypted data is binary data, range checking of
encrypted data requires table space scans. Range checking requires all the row
values for a column to be decrypted. Therefore, range checking should be avoided,
or at least tuned appropriately.

Encryption performance scenario: The following scenario contains a series of
examples that demonstrate how to improve performance while working with
encrypted data.

Example: Suppose that you must store EMPNO in encrypted form in the EMP
table and in the EMPPROJ table. To define tables and indexes for the encrypted
data, use the following statements:

CREATE TABLE EMP (EMPNO VARCHAR(48) FOR BIT DATA, NAME VARCHAR(48));
CREATE TABLE EMPPROJ(EMPNO VARCHAR(48) FOR BIT DATA, PROJECTNAME VARCHAR(48));
CREATE INDEX IXEMPPRJ ON EMPPROJ(EMPNO);

Example: Next, suppose that one employee can work on multiple projects, and
that you want to insert employee and project data into the table. To set the
encryption password and insert data into the tables, use the following statements:

SET ENCRYPTION PASSWORD = :hv_pass;
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT(’A7513’),’Super Prog’));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’UDDI Project’);
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’DB2 10’);
SELECT INTO :hv_enc_val FROM FINAL TABLE

(INSERT INTO EMP VALUES (ENCRYPT(’4NF18’),’Novice Prog’));
INSERT INTO EMPPROJ VALUES (:hv_enc_val,’UDDI Project’);

You can improve the performance of INSERT statements by avoiding unnecessary
repetition of encryption processing. Note how the host variable hv_enc_val is
defined in the SELECT INTO statement and then used in subsequent INSERT
statements. If you need to insert a large number of rows that contain the same
encrypted value, you might find that the repetitive encryption processing degrades
performance. However, you can dramatically improve performance by encrypting
the data, storing the encrypted data in a host variable, and inserting the host
variable.

Note: Next, suppose that you want to find the programmers who are working on
the UDDI Project. Consider the following pair of SELECT statements:
v

Poor Performance: The following query shows how not to write the query for
good performance:

Chapter 9. Protecting data through encryption and RACF 303



SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJECT B
WHERE DECRYPT_CHAR(A.EMPNO) = DECRYPT_CHAR(B.EMPNO) AND

B.PROJECT =’UDDI Project’;

Although the preceding query returns the correct results, it decrypts
every EMPNO value in the EMP table and every EMPNO value in the
EMPPROJ table where PROJECT = 'UDDI Project' to perform the join. For large
tables, this unnecessary decryption is a significant performance problem.

v

Good performance: The following query produces the same result as the
preceding query, but with significantly better performance. To find the
programmers who are working on the UDDI Project, use the following
statement:

SELECT A.NAME, DECRYPT_CHAR(A.EMPNO) FROM EMP A, EMPPROJ B
WHERE A.EMPNO = B.EMPNO AND B.PROJECT =’UDDI Project’;

Example: Next, suppose that you want to find the projects that the programmer
with employee ID A7513 is working on. Consider the following pair of SELECT
statements:
v

Poor performance: The following query requires DB2 to decrypt every EMPNO
value in the EMPPROJ table to perform the join:

SELECT PROJECTNAME FROM EMPPROJ WHERE DECRYPT_CHAR(EMPNO) = ’A7513’;

v

Good performance: The following query encrypts the literal value in the
predicate so that DB2 can compare it to encrypted values that are stored in the
EMPNO column without decrypting the whole column. To find the projects that
the programmer with employee ID A7513 is working on, use the following
statement:

SELECT PROJECTNAME FROM EMPPROJ WHERE EMPNO = ENCRYPT(’A7513’);

Related tasks:
“Defining columns for encrypted data” on page 297
“Defining column-level encryption” on page 298
“Defining value-level encryption” on page 300

304 Managing Security



Chapter 10. Auditing access to DB2

Security auditing allows you to inspect and examine the adequacy and effectiveness
of the policies and procedures that you put in place to secure your data.

DB2 provides the ability for you to monitor if your security plan is adequately
designed based on your security objectives and determine if your implementation
techniques and procedures are effectively carried out to protect your data access
and consistency. It enables you to address the following fundamental questions
about your data security.
v What sensitive data requires authorized access?
v Who is privileged to access the data?
v Who has actually accessed the data?
v What attempts are made to gain unauthorized access?

The DB2 catalog contains critical authorization and authentication information.
This information provides the primary audit trail for the DB2 subsystem. You can
retrieve the information from the catalog tables by issuing SQL queries.

Most of the catalog tables describe the DB2 objects, such as tables, views, table
spaces, packages, and plans. Other tables, particularly those with the “AUTH”
character string in their names, hold records of every granted privilege and
authority. Each catalog record of a grant contains the following information:
v Name of the object
v Type of privilege
v IDs that receive the privilege
v IDs that grant the privilege
v Time of the grant

The DB2 audit trace can help you monitor and track all the accesses to your
protected data. The audit trace records provide another important trail for the DB2
subsystem. You can use the the audit trace to record the following access
information:
v Changes in authorization IDs
v Changes to the structure of data, such as dropping a table
v Changes to data values, such as updating or inserting records
v Access attempts by unauthorized IDs
v Results of GRANT statements and REVOKE statements
v Mapping of Kerberos security tickets to IDs
v Other activities that are of interest to auditors
Related tasks:
“Auditing manager access” on page 11
“Auditing payroll operations and management” on page 14

Determining active security measures
If you are a security auditor, you must know the security measures that are
enabled on the DB2 subsystem.

© Copyright IBM Corp. 1982, 2013 305



About this task

You can determine whether DB2 authorization checking, the audit trace, and data
definition control are enabled in the following ways:

Audit trace
To see whether the trace is running, display the status of the trace by the
command DISPLAY TRACE(AUDIT).

DB2 authorization checking
Without changing anything, look at panel DSNTIPP. If the value of the
USE PROTECTION field is YES, DB2 checks privileges and authorities
before permitting any activity.

Data definition control
Data definition control is a security measure that provides additional
constraints to existing authorization checks. With it, you control how
specific plans or collections of packages can use data definition statements.
To determine whether data definition control is active, look at option 1 on
the DSNTIPZ installation panel.

DB2 audit trace
The audit trace enables you to trace different events or categories of events by
authorization IDs, object ownership, and so on.

When started, the audit trace records certain types of actions and sends the report
to a named destination. The trace reports can indicate who has accessed data.

As with other types of DB2 traces, you can choose the following options for the
audit trace:
v Categories of events
v Particular authorization IDs or plan IDs
v Methods to start and stop the audit trace
v Destinations for audit records

You can choose whether to audit the activity on a table by specifying an option of
the CREATE and ALTER statements.

Audit trace classes

Table 81. Classes for DB2 audit trace

Class Description of class Activated IFCIDs

1 Access attempts denied due to inadequate
authorization. This default class is also activated
when you omit the CLASS keyword from the
START TRACE command when you start the
audit trace.

0140

2 Explicit GRANT and REVOKE. 0141

3 CREATE, ALTER, and DROP operations against
audited tables.

0142

4 First change of audited object. 0143

5 First read of audited object. 0144

6 Bind time information about SQL statements that
involve audited objects.

0145

306 Managing Security



Table 81. Classes for DB2 audit trace (continued)

Class Description of class Activated IFCIDs

7 Assignment or change of authorization ID. 0055, 0083, 0087, 0169, 0319

8 Utilities. 0023, 0024, 0025, 0219, 0220

9 Installation-defined audit record. 0146

10 Trusted context information. 0269, 0270

11 Audits of successful access. 03611

12 - 29 Reserved.

30 - 32 Available for local use.

Notes:

1. If IFCID 0361 is started through START TRACE, all successful access is traced. If IFCID 0361 is started because
audit policy category SYSADMIN is on, only successful access using the SYSADMIN administrative authority is
traced. If IFCID 0361 is started because audit policy category DBADMIN is on, only successful access using the
DBADMIN administrative authority is traced.

Related concepts:
“Audit trace records” on page 309
“Audit trace reports” on page 309
Related tasks:
“Starting the audit trace” on page 310
“Stopping the audit trace” on page 311
Related reference:

-START TRACE (DB2) (DB2 Commands)

Authorization IDs traced by auditing
An audit traces generally identifies a process by its primary authorization ID. It
records the primary ID before and after the invocation of an authorization exit
routine. Therefore, you can identify the primary ID that is associated with a data
change.

Exception: If a primary ID has been translated many times, you might not be able
to identify the primary ID that is associated with a change. Suppose that the server
does not recognize the translated ID from the requesting site. In this case, you
cannot use the primary ID to gather all audit records for a user that accesses
remote data.

The AUTHCHG record shows the values of all secondary authorization IDs that
are established by an exit routine.

With the audit trace, you can also determine which primary ID is responsible for
the action of a secondary ID or a current SQL ID. Suppose that the user with
primary ID SMITHJ sets the current SQL ID to TESTGRP to grant privileges over
the table TESTGRP.TABLE01 to another user. The DB2 catalog records the grantor
of the privileges as TESTGRP. However, the audit trace shows that SMITHJ issued
the grant statement.

Recommendation: Consider carefully the consequences of altering that ID by using
an exit routine because the trace identifies a process by its primary ID. If the
primary ID identifies a unique user, individual accountability is possible. However,

Chapter 10. Auditing access to DB2 307

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_starttrace.htm#db2z_cmd_starttrace


if several users share the same primary ID, you cannot tell which user issues a
particular GRANT statement or runs a particular application plan.

Audit classes
When you start the trace, you choose the events to audit by specifying one or more
audit classes.

PSPI

The trace records are limited to 5000 bytes; the descriptions that contain long SQL
statements might be truncated. The following table describes the available classes
and the events that they include.

Table 82. Audit classes and the events that they trace

Audit class Events that are traced

1 Access attempts that DB2 denies because of inadequate authorization. This
class is the default.

2 Explicit GRANT and REVOKE statements and their results. This class does
not trace implicit grants and revokes.

3 Traces CREATE, DROP, and ALTER operations against an audited table or
a table that is enabled with multilevel security with row-level granularity.
For example, it traces the updates to a table created with the AUDIT
CHANGES or AUDIT ALL clause. It also traces the deletion of a table as
the result of a DROP TABLESPACE or DROP DATABASE statement.

4 Changes to audited tables. Only the first attempt to change a table, within
a unit of recovery, is recorded. (If the agent or the transaction issues more
than one COMMIT statement, the number of audit records increases
accordingly.) The changed data is not recorded; only the attempt to make a
change is recorded. If the change is not successful and is rolled back, the
audit record remains; it is not deleted. This class includes access by the
LOAD utility. Accesses to a dependent table that are caused by attempted
deletions from a parent table are also audited. The audit record is written
even if the delete rule is RESTRICT, which prevents the deletion from the
parent table. The audit record is also written when the rule is CASCADE or
SET NULL, which can result in deletions that cascade to the dependent
table.

5 All read accesses to tables that are identified with the AUDIT ALL clause.
As in class 4, only the first access within a DB2 unit of recovery is
recorded. References to a parent table are also audited.

6 The bind of static and dynamic SQL statements of the following types:

v INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE
statements for audited tables. Except for the values of host variables, the
audit record contains the entire SQL statement.

v SELECT statements on tables that are identified with the AUDIT ALL
clause. Except for the values of host variables, the audit record contains
the entire SQL statement.

7 Assignment or change of an authorization ID because of the following
reasons:

v Changes through an exit routine (default or user-written)

v Changes through a SET CURRENT SQLID statement

v An outbound or inbound authorization ID translation

v An ID that is being mapped to a RACF ID from a Kerberos security
ticket

308 Managing Security



Table 82. Audit classes and the events that they trace (continued)

Audit class Events that are traced

8 The start of a utility job, and the end of each phase of the utility

9 Various types of records that are written to IFCID 0146 by the IFI WRITE
function

10 CREATE and ALTER TRUSTED CONTEXT statements, establish trusted
connection information and switch user information

11 Audit the use of any administrative authority and the successful execution
of any authorization ID

PSPI

Audit trace reports
If you regularly start the audit trace for all classes, you can generate audit reports
based on the data that you accumulate.

Consider producing audit trace reports that focus on the following important
security events:

Use of sensitive data
You should define tables that contain sensitive data, such as employee
salary records, with the AUDIT ALL option. You can report use by table
and by authorization ID to look for access by unusual IDs, at unusual
times, or of unexpected types. You should also record any ALTER or DROP
operations that affect the data. Use audit classes 3, 4, and 5.

Grants of critical privileges
Carefully monitor IDs with special authorities, such as SYSADM and
DBADM. Also carefully monitor IDs with privileges over sensitive data,
such as an update privilege on records of accounts payable. You can query
the DB2 catalog to determine which IDs hold privileges and authorities at
a particular time. To determine which IDs received privileges and then had
them revoked, use audit class 2 and consult the audit records.

Unsuccessful access attempts
Investigate all unsuccessful access attempts. Although some access failures
are only user errors, others can be attempts to violate security. If you have
sensitive data, always use trace audit class 1. You can report by table or by
authorization ID.

Related concepts:
“DB2 audit trace” on page 306
“Audit trace records”

Audit trace records
An audit trace record contains the information about the authorization ID that
initiated the activity that is traced.

In addition, it contains the following information:
v The LOCATION of the ID that initiated the activity (if the access was initiated

from a remote location)
v The type of activity and the time that the activity occurred
v The DB2 objects that were affected

Chapter 10. Auditing access to DB2 309



v Whether access was denied
v The owner of a particular plan and package
v The database alias (DBALIAS) that was used to access a remote location or a

location alias that was accepted from a remote application.
Related concepts:
“DB2 audit trace” on page 306
“Audit trace reports” on page 309
Related tasks:
“Collecting audit trace records” on page 312
“Formatting audit trace records” on page 312

Limitations of the audit trace
The audit trace has certain limitations, including that it does not automatically
record everything.

The audit trace has the following additional limitations:
v The audit trace must be turned on; it is not on by default.
v The trace does not record old data after it is changed.
v If an agent or transaction accesses a table more than once in a single unit of

recovery, the audit trace records only the first access.
v The audit trace does not record accesses if you do not start the audit trace for

the appropriate class of events.
v Except class 8, the audit trace does not audit certain utilities. For example, the

trace audits the first access of a table with the LOAD utility, but it does not
audit access by the COPY, RECOVER, and REPAIR utilities. The audit trace does
not audit access by stand-alone utilities, such as DSN1PRNT.

v The trace audits only the tables that you specifically choose to audit.
v You cannot audit access to auxiliary tables.
v You cannot audit the catalog tables because you cannot create or alter catalog

tables.

This auditing coverage is consistent with the goal of providing a moderate volume
of audit data with a low impact on performance. However, when you choose
classes of events to audit, consider that you might ask for more data than you are
willing to process.

Starting the audit trace
You can start an audit trace at any time or specify that an audit trace starts
automatically whenever DB2 is started.

About this task

The default option for the AUDITST subsystem parameter is NO. When NO is
specified, audit traces do not start automatically.

Procedure

To start an audit trace, choose one of the following options:
v Set the AUDITST subsystem parameter to * (an asterisk). This will cause a

complete audit trace to start automatically whenever DB2 is started.

310 Managing Security

|
|
|
|



v Set the AUDITST subsystem parameter to YES. This will cause an audit trace for
the default class (class 1: access denials) and the default destination (the SMF
data set) to start automatically whenever DB2 is started.

v Set the AUDITST subsystem parameter to a list of those classes (for example,
1,3,5). This will cause an audit trace for specific audit trace classes to start
automatically whenever DB2 is started.

v Issue the START TRACE command at any time. This will cause an audit trace to
start. You can choose the audit classes to trace and the destination for trace
records. You can also include an identifying comment. The following command

starts an audit trace for classes 4 and 6 with distributed activity:
-START TRACE (AUDIT) CLASS (4,6) DEST (GTF) LOCATION (*)

COMMENT (’Trace data changes; include text of dynamic DML statements.’)

Related concepts:
“DB2 audit trace” on page 306
Related tasks:
“Stopping the audit trace”
Related reference:

AUDIT TRACE field (AUDITST subsystem parameter) (DB2 Installation and
Migration)

Tracing parameters panel: DSNTIPN (DB2 Installation and Migration)

-START TRACE (DB2) (DB2 Commands)

Stopping the audit trace
You can have multiple traces that run at the same time, including more than one
audit trace. You can stop a particular trace by issuing the STOP TRACE command
with the same options that you use for START TRACE.

About this task

You must include enough options to uniquely identify a particular trace when you
issue the command.

Example: The following command stops the trace that you started:
-STOP TRACE (AUDIT) CLASS (4,6) DEST (GTF)

If you did not save the START command, you can determine the trace number and
stop the trace by its number. Use DISPLAY TRACE to find the number.

Example: DISPLAY TRACE (AUDIT) might return a message like the following
output:
TNO TYPE CLASS DEST QUAL
01 AUDIT 01 SMF NO
02 AUDIT 04,06 GTF YES

Chapter 10. Auditing access to DB2 311

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_auditst.htm#db2z_dsntipn01
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_auditst.htm#db2z_dsntipn01
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipn.htm#db2z_dsntipn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_starttrace.htm#db2z_cmd_starttrace


The message indicates that two audit traces are active. Trace 1 traces events in class
1 and sends records to the SMF data set. Trace 1 can be a trace that starts
automatically whenever DB2 starts. Trace 2 traces events in classes 4 and 6 and
sends records to GTF.

You can stop either trace by using its identifying number (TNO).

Example: To stop trace 1, use the following command:
-STOP TRACE AUDIT TNO(1)

Related concepts:
“DB2 audit trace” on page 306
Related tasks:
“Starting the audit trace” on page 310

Collecting audit trace records
You can prepare the System Management Facility (SMF) or Generalized Trace
Facility (GTF) to accept audit trace records the same way as you prepare
performance trace records. The records are of SMF type 102, as are performance
trace records.

About this task

If you send trace records to SMF (the default), data might be lost in the following
circumstances:
v SMF fails while DB2 continues to run.
v An unexpected abend (such as a TSO interrupt) occurs while DB2 is transferring

records to SMF.

In those circumstances, SMF records the number of records that are lost. z/OS
provides an option to stop the system rather than to lose SMF data.
Related concepts:
“Audit trace records” on page 309
Related tasks:
“Formatting audit trace records”

Formatting audit trace records
You can extract, format, and print DB2 trace records.

About this task

You can use any of the following methods to extract, format, and print the trace
records:
v DB2 Audit Management Expert for z/OS
v IBM Tivoli zSecure Audit
v IBM Tivoli OMEGAMON XE on z/OS
v Your own application program to access the SMF data
v The instrumentation facility interface (IFI) as an online resource to retrieve audit

records.

312 Managing Security



Related concepts:
“Audit trace records” on page 309
Related tasks:
“Collecting audit trace records” on page 312

Auditing in a distributed data environment
The DB2 audit trace records any access to your data, whether the request is from a
remote location or from your local DB2 subsystem.

The trace record for a remote request reports the authorization ID as the final
result of one of the following conditions:
v An outbound translation
v An inbound translation
v Activity of an authorization exit routine

Essentially, the ID on a trace record for a remote request is the same as the ID to
which you grant access privileges for your data. Requests from your location to a
remote DB2 are audited only if an audit trace is active at the remote location. The
output from the trace appears only in the records at that location.

DB2 audit policy
An audit policy is a set of criteria that determines the categories to be audited. It
helps you configure and control the audit requirements of your security policies
and to monitor data access by applications and individual users (authorization IDs
or roles), including administrative authorities.

You can create an audit policy by inserting a row in the
SYSIBM.SYSAUDITPOLICIES table. The SECADM, ACCESSCTRL, DATAACCESS,
system DBADM, SQLADM, SYSCRTL, and SYSADM authorities all have the
implicit SELECT privilege on the SYSIBM.SYSAUDITPOLICIES table. The
SECADM authority also has implicit INSERT, UPDATE, and DELETE privileges on
the SYSIBM.SYSAUDITPOLICIES table.

If you have the required privileges to issue the START TRACE, STOP TRACE, and
DISPLAY TRACE commands, you can activate, deactivate, and display an audit policy
by issuing those commands with the AUDTPLCY option. The SECADM authority
has the implicit privileges to issue the START TRACE, STOP TRACE, and DISPLAY TRACE

commands.

Audit category
DB2 audit policies are created and stored in the SYSIBM.SYSAUDITPOLICIES
table. Each policy is specified with specific audit categories.

PSPI DB2 supports the following audit categories:

Table 83. DB2 audit policy categories

Category Description

CHECKING Generates IFCID 140 trace records for denied access attempts due to
inadequate DB2 authorization and IFCID 83 trace records for RACF
authentication failures

Chapter 10. Auditing access to DB2 313



Table 83. DB2 audit policy categories (continued)

Category Description

VALIDATE Generates IFCID 55, 83, 87, 169, and 319 trace records for new or
changed assignments of authorization IDs and IFCID 269 trace records
for the establishment of trusted connections or the switch of users in
existing trusted connections

OBJMAINT Generates IFCID 142 trace records when tables are altered or dropped.
When an audit policy is defined, it specifies the tables to be audited.
The same audit policy can be used to audit different tables in a schema
by specifying the table names with the SQL LIKE predicate.

Only tables that are defined in the following types of table spaces can
be audited:

v Universal table space (UTS), including UTS that contains implicitly
created tables, such as XML tables

v Traditional partitioned table space

v Segmented table space.

In addition to tables, an audit policy can also be used to audit clone
tables and tables that are implicitly created for XML columns.

The type of the object to be audited can be specified by using the
OBJECTTYPE column. The default OBJECTTYPE column value of blank
indicates that all of the supported object types are audited.

EXECUTE Generates IFCID 143, 144 and 145 trace records for every SQL
statement that changes or reads against tables that are identified in the
audit policy. IFCID 145 records SQL bind time information that
includes the text and the unique ID of a SQL statement. The SQL
statement ID is used in the IFCID 143 and 144 trace records to record
any change or reading by the SQL statement identified in the IFCID
145 trace records.

When an audit policy is defined, it specifies the tables to be audited.
The same audit policy can be used to audit different tables in a schema
by specifying the table names with the SQL LIKE predicate.

Only tables that are defined in the following types of table spaces can
be audited:

v Universal table space (UTS), including UTS that contains implicitly
created tables, such as XML tables

v Traditional partitioned table space

v Segmented table space.

In addition to tables, an audit policy can also be used to audit clone
tables and tables that are implicitly created for XML columns.

The type of the object to be audited can be specified by using the
OBJECTTYPE column. The default OBJECTTYPE column value of blank
indicates that all of the supported object types are audited.

These trace records are written when the table that is identified by the
OBJECTSCHEMA, OBJECTNAME and OBJECTTYPE is accessed
during the first operation by each unit of work. If the audit policy is
started after the SQL query is started, access to the table will not be
audited.

CONTEXT Generates IFCID 23, 24, and 25 records.

314 Managing Security

|
|
|
|
|
|
|



Table 83. DB2 audit policy categories (continued)

Category Description

SECMAINT Generates IFCID 141 trace records for granting and revoking privileges
or administrative authorities, IFCID 270 trace records for creating and
altering trusted contexts, and IFCID 271 trace records for creating,
altering, and dropping row permissions or column masks.

SYSADMIN Generates IFCID 361 trace records when an administrative authority, in
the order of installation SYSADM, installation SYSOPR, SYSOPR,
SYSCTRL, or SYSADM, satisfies the required privilege for performing
an operation

If the Access Control Authorization Exit (ACAE) is active, only the
operations that are performed by the installation SYSADM and
installation SYSOPR authorities are audited.

DBADMIN Generates IFCID 361 trace records when an administrative authority, in
the order of DBMAINT, DBCTRL, DBADM, PACKADM, SQLADM,
system DBADM, DATAACCESS, ACCESSCTRL, or SECADM, satisfies
the required privilege for performing an operation

The database name can be specified for auditing the DBADM, DBCTRL
and DBMAINT authorities. If the database name is not specified, all the
databases, including implicit databases, are audited.

The collection ID can be specified for auditing the PACKADM
authority. If the collection ID is specified, all packages in that collection
are audited. If the collection ID is not specified, the packages in all
collections are audited.

If the Access Control Authorization Exit (ACAE) is active, only the
operations that are performed by the SECADM authority are audited.

For the SYSADMIN and DBADMIN categories, DB2 checks a set of rules for each
operation to determine the required authorization. In general, the rules are checked
in the order of installation SYSADM, installation SYSOPR (if applicable), specific
privileges required for the operation (i.e., SELECT, UPDATE), database authorities
(i.e., DBMAINT, DBCTRL, DBADM), system database authorities (i.e., SQLADM,
system DBADM, DATAACCESS, and ACCESSCTRL), and system authorities (i.e.,
SYSCTRL, SYSADM, and SECADM).

For example, to determine whether a user can alter a table, DB2 checks the
required privilege in the following order:
1. Installation SYSADM
2. ALTER table privilege
3. DBADM authority on the database that the table is in
4. System DBADM
5. SYSCTRL
6. SYSADM

If the user has only the ALTER privilege on the table and if the audit policy is
activated to audit the SYSADM authority, DB2 does not generate an IFCID 361
audit record on the ALTER operation. If the user also has the SYSADM authority,
DB2 still does not generate an IFCID 361 record because the lowest (ALTER)
privilege permits the operation.

Chapter 10. Auditing access to DB2 315



In general, DB2 always checks the installation SYSADM and installation SYSOPR
authorities prior to the lowest (ALTER) privilege. If the user has the installation
SYSADM authority and the audit policy is activated to audit the installation

SYSADM authority, DB2 generates an IFCID 361 record. PSPI

Creating and activating audit policies
With the SECADM authority, you can create, display, activate, or inactivate DB2
audit policies.

Procedure

To create and activate an audit policy:
1. Obtain the SECADM authority if you don't have it. Alternately, you can have

the SECADM authority grant you the required privileges to create an audit
policy. A user with the SYSOPR authority can activate the policy.

2. Create a new audit policy by issuing the INSERT statement.
You need to specify a name for the new audit policy. An audit policy name is
an identifier that is 1 to 128 letters or digits in length, begins with a letter.
You also need to specify proper audit categories in the new audit policy. If you
specify the OBJMAINT or EXECUTE category, you must also specify the
OBJECTSCHEMA, OBJECTNAME, and OBJECTTYPE columns in the
SYSIBM.SYSAUDITPOLICIES table that identify the table to be audited.
For example, if you want to create a new AUDITADMIN1 policy to audit the

SYSADM authority, you can specify SYSADMIN as the category:
INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, SYSADMIN)

VALUES(’AUDITADMIN1’,’S’);

You can also use the SQL LIKE predicate to audit tables of the same
characteristics. For example, you can audit all tables that start with EMP in

schema TSCHEMA by issuing the following INSERT statement:
INSERT INTO SYSIBM.SYSAUDITPOLICIES

(AUDITPOLICYNAME, OBJECTSCHEMA, OBJECTNAME, OBJECTTYPE, EXECUTE)
VALUES(’TEST2’,’TSCHEMA’,’’’E_P%’’’,’T’,’C’);

3. Activate the audit policy by issuing the START TRACE command with the
AUDTPLCY option.
You need to specify the AUDTPLCY option on the command to enable a

specific audit policy:
-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMIN1)

This command starts IFCID 361 trace record to audit the use of the SYSADM
authority. DB2 also starts an IFCID 362 trace record to trace the audit policy
information as defined in the catalog. If multiple audit policies are specified to
start at the same time, the IFCID 362 record is cut for every audit policy
specified and contains the information about whether the policies successfully
started or failed.

316 Managing Security



Depending on the categories in the audit policy, DB2 starts the associated audit
trace records, one for each IFCID that is related to the specified audit category.
DB2 runs against the audit policies that are already defined in the
SYSIBM.SYSAUDITPOLICIES table when you issue the START TRACE command;
it ignores any change you make to a specific audit policy after you start the
START TRACE command. If you want DB2 to run against the updated audit
policy, you need to stop and then start the audit policy trace. In addition, you
cannot specify the CLASS or IFCID option when you specify the AUDTPLCY
option on the START TRACE command.
If you prefer the audit policy to be automatically started, you need to set the
DB2START column to Y or S in the SYSIBM.SYSAUDITPOLICIES table. The
audit policy will be started during DB2 startup. When you specify
DB2START='S', only users (authorization IDs or roles) with the SECADM
authority can stop the policy. If you set DB2START='S' to an audit policy that is
already started, you must stop and restart the policy for the new setting to take
effect.
You can automatically start up to 8 audit policies during DB2 startup. If you
specify to automatically start multiple audit policies with different DB2START
column settings, DB2 will start two traces, one for policies with DB2START =
'Y' and the other for policies with DB2START = 'S'. If you need to stop any
audit policy that is automatically started, you must simultaneously stop all the
policies that are assigned the same trace number.

4. If necessary, display the audit policy by issuing the DISPLAY TRACE command.
You need to specify the AUDTPLCY option on the command to show the name

and other details about the AUDITADMIN1 audit policy:
-DISPLAY TRACE (AUDIT) DETAIL(2) DEST (GTF) AUDTPLCY(AUDITADMIN1)

The command returns an output like the following sample:
15.49.46 -DIS TRACE(AUDIT) DETAIL(2)
15.49.47 STC00125 DSNW143I - CURRENT TRACE QUALIFICATIONS ARE -
15.49.47 STC00125 DSNW152I - BEGIN TNO 04 QUALIFICATIONS:
NO QUALIFICATIONS
END TNO 04 QUALIFICATIONS
15.49.47 STC00125 DSNW185I - BEGIN TNO 04 AUDIT POLICIES:
ACTIVE AUDIT POLICY: AUDITADMIN1
ACTIVE AUDIT POLICY: AUDITTABLE1
END TNO 04 AUDIT POLICIES
15.49.47 STC00125 DSNW148I - ******END OF DISPLAY TRACE QUALIFICATION

DATA******
15.49.47 STC00125 DSN9022I - DSNWVCM1 ’-DIS TRACE’ NORMAL COMPLETION

5. If necessary, disable the audit policy by issuing the STOP TRACE command.
You need to specify the AUDTPLCY option on the command to stop all the

trace activities that are started by a specific audit policy:
-STO TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMIN1)

Only the STOP TRACE command can stop all the trace activities that are started
by a specific audit policy; deleting the active policy row from the
SYSIBM.SYSAUDITPOLICIES table does not stop the tracing.

Chapter 10. Auditing access to DB2 317



Auditing the use of an administrative authority
You can create and activate an audit policy to audit how a DB2 administrative
authority is used.

About this task

Suppose that you have the SECADM authority and are responsible for making
sure that all security policies, including audit policies, work as designed. You want
to audit the use of the SYSADM authority by user SYSADMIN1.

Procedure

To audit the use of the SYSADM authority by SYSADMIN1:
1. Create audit policy AUDITADMN1 by issuing the following INSERT statement:

INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, SYSADMIN)
VALUES(’AUDITADMN1’,’S’);

DB2 checks to make sure that you have the required privilege to issue the
INSERT statement. Upon successful verification, it inserts a row in
SYSIBM.SYSAUDITPOLICIES to include the new policy.

2. Activate the audit policy by issuing the START TRACE command:

-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(AUDITADMN1)

PSPI DB2 checks to make sure that you have the required privilege to run
the START TRACE command. Upon successful verification, it starts an IFCID 361
trace record.
For example, if SYSADM1 issues the ALTER BUFFERPOOL command to alter
the attributes for active buffer pools, DB2 records the ALTER activity in the

IFCID 361 trace record. PSPI

Auditing tables without specifying the AUDIT clause
With the SECADM authority, you can set up audit policies and dynamically enable
auditing of tables that do not have the AUDIT clause specified.

Procedure

To audit the activities on table EMPLOYEE.SALARY without having to specify the
AUDIT clause:
1. Obtain the SECADM authority if you do not have it. Alternately, you can have

the SECADM authority grant you the required privileges to create an audit
policy. A user with the SYSOPR authority can activate the policy.

2. Create audit policy TABADT1 by issuing the following INSERT statement:

318 Managing Security



INSERT INTO SYSIBM.SYSAUDITPOLICIES(AUDITPOLICYNAME, OBJECTSCHEMA,
OBJECTNAME, OBJECTTYPE, EXECUTE)

VALUES(’TABADT1’,’EMPLOYEE’,’SALARY’,’T’,’A’);

DB2 checks to make sure that you have the required privilege to issue the
INSERT statement. Upon successful verification, it inserts a row in
SYSIBM.SYSAUDITPOLICIES to include the new policy.

3. Activate the audit policy by issuing the START TRACE command:

-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(TABADT1);

PSPI DB2 checks to make sure that you have the required privilege to run
the START TRACE command. Upon successful verification, it starts the IFCID 143,
144, and 145 trace records.
For example, if a user issues the SELECT statement to select from the
EMPLOYEE.SALARY table, DB2 records the query activity in the IFCID 144

trace record. PSPI

Additional sources of audit information
In addition to the audit trace, DB2 offers other sources of audit information for you
to use.

Additional DB2 traces
DB2 accounting, statistics, and performance traces are also available. You
can also use DB2 Performance Expert to print reports of these traces.

Recovery log
Although the recovery log is not an all-purpose log, it can be useful for
auditing. You can print information from the log by using the DSN1LOGP
utility. For example, the summary report can show which table spaces have
been updated within the range of the log that you scan. The REPORT
utility can indicate what log information is available and where it is
located.

Image copies of table spaces
Typical recovery procedures generate image copies of table spaces. You can
inspect these copies, or use them with the RECOVER utility to recover a
table space to a particular point in time. If you recover to a point in time,
you narrow the time period during which a particular change could have
been made.

z/OS console log
The z/OS console log contains messages about exceptional conditions that
are encountered during DB2 operation. Inspect this log for symptoms of
problems.

Determining ID privileges and authorities
As an auditor, you must be aware of the privileges and authorities that are
associated with the IDs or roles in the DB2 subsystem.

Chapter 10. Auditing access to DB2 319



About this task

You can use the following methods to determine the privileges and authorities that
a specific ID or role holds:
v Query the DB2 catalog to determine which IDs or roles hold particular

privileges.
v Check on individual IDs that are associated with group IDs or roles. Some

authorization IDs that you encounter are probably group IDs, to which many
individual IDs can be connected. To see which IDs are connected to a group,
obtain a report from RACF or from whatever external security system you are
using. These reports can tell you which IDs have the required privileges to use
DB2 data sets and other resources.

Auditing specific IDs or roles
As with other types of DB2 traces, you can start an audit trace for a particular plan
name, a primary authorization ID, a role, or all of the above.

About this task

You might consider having audit traces on at all times for IDs with the SYSADM
authority because they have complete access to every table. If you have a network
of DB2 subsystems, you might need to trace multiple authorization IDs if the
primary authorization IDs are translated several times. For embedded SQL, the
audited ID is the primary authorization ID of the plan or package owner. For
dynamic SQL, the audited ID is the primary authorization ID.

You can also start an audit trace for a particular role in a trusted context by using
the ROLE and XROLE filters. For example, you can issue the following command
to write accounting records for threads with a ROLE = abc:

-start trace(acctg) dest(smf) role(abc)

You can also issue the following command to write accounting records for threads
with a ROLE= abc:

-start trace(acctg) dest(smf) xrole(abc)

In addition, you can use the asterisk (*) wildcard character (as in "abc*") or the
underscore (_) wildcard character (as in "a_c") for more flexibility in audit tracing.

320 Managing Security



Related tasks:
“Auditing specific tables”

Auditing specific tables
You can issue the CREATE TABLE or ALTER TABLE statement to audit a specific
table.

About this task

For the CREATE TABLE statement, the default audit option is NONE. For the
ALTER TABLE statement, no default option exists. If you do not use the AUDIT
clause in an ALTER TABLE statement, the audit option for the table is unchanged.

When CREATE TABLE statements or ALTER TABLE statements affect the audit of
a table, you can audit those statements. However, the results of those audits are in
audit class 3, not in class 4 or class 5. Use audit class 3 to determine whether
auditing was turned off for a table for an interval of time.

If an ALTER TABLE statement turns auditing on or off for a specific table, any
packages that use the table are invalidated and must be rebound. If you change the
auditing status, the change does not affect packages, or dynamic SQL statements
that are currently running. The change is effective only for packages or dynamic
SQL statements that begin running after the ALTER TABLE statement has
completed.

Procedure

To audit your table, choose any of the following options:
v To audit a table whenever the audit trace is on, include the AUDIT CHANGES

option when you create the table.
CREATE TABLE DSN8B10.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO) )

IN DSN8D11A.DSN8S11D
AUDIT CHANGES;

Because this statement includes the AUDIT CHANGES option, DB2 audits the
table for each access that inserts, updates, or deletes data (trace class 4).

v To also audit the table for read accesses (class 5), issue the following statement:
ALTER TABLE DSN8B10.DEPT

AUDIT ALL;

The statement is effective regardless of whether the table was previously chosen
for auditing.

Chapter 10. Auditing access to DB2 321



Related tasks:
“Auditing specific IDs or roles” on page 320

Preventing audits of tables
You can use the AUDIT NONE clause in the ALTER TABLE statement to prevent
auditing of a table.

About this task

For the CREATE TABLE statement, the default audit option is NONE. For the
ALTER TABLE statement, no default option exists. If you do not use the AUDIT
clause in an ALTER TABLE statement, the audit option for the table is unchanged.

If an ALTER TABLE statement turns auditing on or off for a specific table, any
packages that use the table are invalidated and must be rebound. If you change the
auditing status, the change does not affect packages, or dynamic SQL statements
that are currently running. The change is effective only for packages or dynamic
SQL statements that begin running after the ALTER TABLE statement has
completed.

Procedure

To prevent audits of tables:

Issue the following statement:
ALTER TABLE DSN8B10.DEPT

AUDIT NONE;

Ensuring data accuracy and integrity
DB2 provides many controls that you can apply to data entry and update.

Some of the controls are automatic; some are optional. All of the controls prohibit
certain operations and provide error or warning messages if those operations are
attempted. You can use these controls as a set auditing techniques to ensure data
accuracy and integrity.

The set of techniques is not intended to be exhaustive. Other combinations of
techniques are possible. For example, you can use table check constraints or a view
with the check option to ensure that data values are members of a certain set. Or
you can set up a master table and define referential constraints. You can also
enforce the controls through application programs, and restrict the INSERT and
UPDATE privileges only to those programs.
Related tasks:
“Ensuring data consistency” on page 325

Ensuring data presence and uniqueness
You can ensure data presence with the NOT NULL clause and control the type of
data by assigning data types and lengths to column data.

322 Managing Security



About this task

You can define columns with the NOT NULL clause to ensure that the required
data is present. You can also control the type of data by assigning data types and
lengths to column data. For example, you can specify that alphabetic data cannot
be entered into a column with one of the numeric data types. You can also specify
that the data for a DATE or TIME column must use a specific format.

You must ensure that the data in a column or a set of columns is unique. You can
do so by creating a unique index on a column or set of columns.

Protecting data integrity
Triggers and table check constraints enhance the ability to control data integrity.

About this task

Triggers are very useful for defining and enforcing rules that involve different
states of DB2 data. For example, a rule can prevent a salary column from more
than a ten percent increase. A trigger can enforce this rule and provide the value of
the salary before and after the increase for comparison.

Table check constraints designate the values that specific columns of a base table
can contain. A check constraint can express simple constraints, such as a required
pattern or a specific range, and rules that refer to other columns of the same table.

As an auditor, you can verify that the table definitions express the required
constraints on column values as table check constraints. You can also create a view
with the check option and insert or update values only through that view.

Example

Suppose that, in table T, data in column C1 must be a number between 10
and 20. Suppose also that data in column C2 is an alphanumeric code that must
begin with A or B. Create view V1 with the following statement:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A%’ OR C2 LIKE ’B%’)

WITH CHECK OPTION;

Because of the CHECK OPTION, view V1 allows only data that satisfies the

WHERE clause.

You cannot use the LOAD utility with a view, but that restriction does not apply to
user-written exit routines; you can consider using the following types of
user-written routines:

Validation routines
You can use validation routines to validate data values. Validation routines
access an entire row of data, check the current plan name, and return a
nonzero code to DB2 to indicate an invalid row.

Edit routines
Edit routines have the same access as validation routines, and can also
change the row that is to be inserted. Auditors typically use edit routines

Chapter 10. Auditing access to DB2 323



to encrypt data and to substitute codes for lengthy fields. However, edit
routines can also validate data and return nonzero codes.

Field procedures
Field procedures access data that is intended for a single column; they
apply only to short-string columns. However, they accept input
parameters, so generalized procedures are possible. A column that is
defined with a field procedure can be compared only to another column
that uses the same procedure.

Tracking data changes
Triggers offer an efficient means of maintaining an audit trail. You can define a
trigger to activate in response to certain DELETE, INSERT, or UPDATE statements
that change data.

About this task

You can qualify a trigger by providing a list of column names when you define the
trigger. The qualified trigger is activated only when one of the named columns is
changed. A trigger that performs validation for changes that are made in an
UPDATE operation must access column values both before and after the update.
Transition variables (available only to row triggers) contain the column values of
the row change that activated the trigger. The old column values and the column
values from after the triggering operation are both available.

Checking for lost and incomplete transactions
You can use the database balancing technique to alert you about lost and
incomplete transactions. For each set of data, database balancing determines
whether the opening balance and control totals equal the closing balance and
control totals of processed transactions.

About this task

DB2 has no automatic mechanism to calculate control totals and column balances
and compare them with transaction counts and field totals. Therefore, to use
database balancing, you must design these mechanisms into the application
program.

Example

Use your application program to maintain a control table. The control table
contains information to balance the control totals and field balances for update
transactions against a user's view. The control table might contain these columns:
v View name
v Authorization ID
v Number of logical rows in the view (not the same as the number of physical

rows in the table)
v Number of insert transactions and update transactions
v Opening balances
v Totals of insert transaction amounts and update transaction amounts
v Relevant audit trail information such as date, time, workstation ID, and job

name

324 Managing Security



The program updates the transaction counts and amounts in the control table each
time it completes an insert or update to the view. To maintain coordination during
recovery, the program commits the work only after it updates the control table.
After the application processes all transactions, the application writes a report that
verifies the control total and balancing information.

Ensuring data consistency
When you control data entry, you perform only part of a complete security and
auditing policy. You must also verify the results when data is accessed and
changed. In addition, you need to make sure that your data is consistent.
Related concepts:
“Ensuring data accuracy and integrity” on page 322

Using referential integrity for data consistency
Referential integrity ensures that data is consistent across tables.

About this task

When you define primary and foreign keys, DB2 automatically enforces referential
integrity. As a result, every value of a foreign key in a dependent table must be a
value of a primary key in the appropriate parent table. However, DB2 does not
enforce informational referential constraints across subsystems.

Recommendation: Use referential integrity to ensure that a column allows only
specific values. Set up a master table of allowable values, and define its primary
key. Define foreign keys in other tables that must have matching values in their
columns. In most cases, you should use the SET NULL delete rule.
Related tasks:
“Using locks for data consistency”
“Checking data consistency” on page 326

Using locks for data consistency
Locks can ensure that data remains consistent even when multiple users try to
access the same data at the same time. You can use locks to ensure that only one
user is privileged to change data at a given time and that no user is privileged to
access uncommitted data.

About this task

If you use repeatable read (RR), read stability (RS), or cursor stability (CS) as your
isolation level, DB2 automatically controls access to data by using locks. However,
if you use uncommitted read (UR) as your isolation level, users can access
uncommitted data and introduce inconsistent data. As an auditor, you must know
the applications that use UR isolation and that can introduce inconsistent data or
create security risks.

For static SQL, you can determine the plans and packages that use UR
isolation by querying the catalog.

Example: For static SQL statements, use the following query to determine which
plans use UR isolation:

Chapter 10. Auditing access to DB2 325



SELECT DISTINCT Y.PLNAME
FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y
WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = ’U’)

OR Y.ISOLATION = ’U’
ORDER BY Y.PLNAME;

Example: For static SQL statements, use the following query to determine which
packages use UR isolation:
SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION

FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y
WHERE (X.LOCATION = Y.LOCATION AND

X.LOCATION = ’ ’ AND
X.COLLID = Y.COLLID AND
X.NAME = Y.NAME AND
X.VERSION = Y.VERSION AND
X.ISOLATION = ’U’)

OR Y.ISOLATION = ’U’
ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

For dynamic SQL statements, turn on performance trace class 3 to determine which

plans and packages use UR isolation.

Consistency between systems: When an application program writes data to both
DB2 and IMS, or to both DB2 and CICS, the subsystems prevent concurrent use of
data until the program declares a point of consistency.
Related tasks:
“Using referential integrity for data consistency” on page 325
“Checking data consistency”

Checking data consistency
Whenever an operation changes the contents of a data page or an index page, DB2
verifies that the modifications do not produce inconsistent data.

About this task

You can use a variety of SQL queries, commands, and utilities to check data
consistency.
Related tasks:
“Using referential integrity for data consistency” on page 325
“Using locks for data consistency” on page 325

Checking data consistency with SQL queries
If you suspect that a table contains inconsistent data, you can submit an SQL query
to search for a specific type of error.

About this task

Consider the view that is created by the following statement as an example of
submitting an SQL query to search for an error:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A%’ OR C2 LIKE ’B%’)

WITH CHECK OPTION;

326 Managing Security



The view allows an insert or update to table T1 only if the value in column C1 is
between 10 and 20 and if the value in C2 begins with A or B. To check that the
control has not been bypassed, issue the following statement:
SELECT * FROM T1

WHERE NOT (C1 BETWEEN 10 AND 20
AND (C2 LIKE ’A

If the control has not been bypassed, DB2 returns no rows and thereby confirms
that the contents of the view are valid. You can also use SQL statements to get
information from the DB2 catalog about referential constraints that exist.

Checking data consistency with the CHECK utilities
One way to check data consistency is to use the CHECK DATA, CHECK INDEX,
and CHECK LOB online utilities. You might want to use these utilities when you
do a conditional restart or a point-in-time recovery or repair data.

Before you begin

Before you run CHECK DATA or CHECK LOB, you can find out all of the related
tables spaces by using the REPORT utility with the TABLESPACESET option.

Procedure

To check data consistency with the CHECK utilities:

Run one of the following utilities as needed:

CHECK DATA
The CHECK DATA utility checks referential constraints (but not
informational referential constraints). It determines whether each foreign
key value in each row is a value of the primary key in the appropriate
parent table.

The CHECK DATA utility also checks table check constraints and checks
the consistency between a base table space and any associated LOB or
XML table spaces. It determines whether each value in a row is within the
range that was specified for that column when the table was created.

The CHECK DATA utility also performs consistency checks on XML table
spaces and related NodeID indexes. It verifies the consistency of XML
documents that are stored in an XML table space and validates the
documents against one or more XML schemas that are specified in the
XML type modifier.

CHECK INDEX
The CHECK INDEX utility checks the consistency of indexes with the data
to which the indexes point. It determines whether each index pointer
points to a data row with the same value as the index key. If an index key
points to a LOB, the CHECK INDEX utility determines whether the index
key points to the correct LOB. If an index key points to an XML, the
CHECK INDEX utility determines whether the index key points to the
correct XML.

CHECK LOB
The CHECK LOB utility checks the consistency of a LOB table space. It
determines whether any LOBs in the LOB table space are invalid.

Chapter 10. Auditing access to DB2 327



Related reference:

Syntax and options of the REPORT control statement (DB2 Utilities)

CHECK DATA (DB2 Utilities)

CHECK INDEX (DB2 Utilities)

CHECK LOB (DB2 Utilities)

Checking data consistency with the DISPLAY DATABASE
command
If you allow a table to be loaded without enforcing referential constraints on its
foreign key columns, the table might contain data that violates the constraints. In
this case, DB2 places the table space that contains the table in the CHECK-pending
status.

About this task

You can determine the table spaces with the CHECK-pending status by using the
DISPLAY DATABASE command with the RESTRICT option. You can also use the
DISPLAY DATABASE command to display table spaces with invalid LOBs.

Checking data consistency with the operation log
You can use the operation log to verify that DB2 is operated reliably and to reveal
unauthorized operations and overrides. The operation log consists of an automated
log of DB2 operator commands, such as those for starting and stopping the
subsystem, and DB2 abends.

About this task

The operation log records the following information:
v Command or condition type
v Date and time when the command was issued
v Authorization ID that issued the command
v Database connection code

You can obtain this information from the system log (SYSLOG), the SMF data set,
or the automated job scheduling system. To obtain the information, use SMF
reporting, job-scheduler reporting, or a user-developed program. As a good
practice, review the log report daily and keep a history file for comparison.
Because abnormal DB2 termination can indicate integrity problems, implement an
immediate notification procedure to alert the appropriate personnel (DBA, systems
supervisor, and so on) of abnormal DB2 terminations.

Checking data consistency with internal integrity reports
You can generate internal integrity reports for application programs and utilities.

About this task

For application programs, you can record any DB2 return codes that indicate
possible data integrity problems, such as inconsistency between index and table
information, physical errors on database disk, and so on. All programs must check
the SQLCODE or the SQLSTATE for the return code that is issued after an SQL
statement is run. DB2 records, on SMF, the occurrence (but not the cause) of
physical disk errors and application program abends. The program can retrieve
and report this information; the system log (SYSLOG) and the DB2 job output also

328 Managing Security

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_reportsyntax.htm#db2z_reportsyntax
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_checkdata.htm#db2z_utl_checkdata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_checkindex.htm#db2z_utl_checkindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_checklob.htm#db2z_utl_checklob


have this information. However, in some cases, only the program can provide
enough detail to identify the exact nature of problem.

You can incorporate these integrity reports into application programs, or you can
use them separately as part of an interface. The integrity report records the
incident in a history file and writes a message to the operator's console, a database
administrator's TSO terminal, or a dedicated printer for certain codes. The recorded
information includes the following:
v Date
v Time
v Authorization ID
v Terminal ID or job name
v Application
v Affected view or affected table
v Error code
v Error description

When a DB2 utility reorganizes or reconstructs data in the database, it produces
statistics to verify record counts and to report errors. The LOAD and REORG
utilities produce data record counts and index counts to verify that no records
were lost. In addition to that, keep a history log of any DB2 utility that updates
data, particularly REPAIR. Regularly produce and review these reports, which you
can obtain through SMF customized reporting or a user-developed program.

Chapter 10. Auditing access to DB2 329



330 Managing Security



Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 1982, 2013 331

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm


332 Managing Security



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1982, 2013 333



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

334 Managing Security



Programming interface information
This information is intended to help you to plan for and administer DB2 11 for
z/OS. This information also documents General-use Programming Interface and
Associated Guidance Information and Product-sensitive Programming Interface
and Associated Guidance Information provided by DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 335

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

336 Managing Security

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy


Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1982, 2013 337

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm


338 Managing Security



Index

A
access checking

mandatory 113, 115
object security labels 113
user security labels 113

access control
applications 86
auditing 305
authorities 2, 15, 20
authorization IDs 19, 20
authorizing 86, 87
catalog tables 102
CICS 131
columns 201
data definition control

overview 231
DB2 subsystem

RACF 4
exit routines 4, 245
external 131

overview 131
external DB2 data sets 6
IMS 131
internal

overview 19
internal DB2 data 2
managing 86
multilevel security 4
object ownership 3
privileges 2, 15, 20
RACF 4, 131
restricting 87
roles 3, 19, 20
rows 201
subsystems

local 5, 160
remote 5, 166

trusted connections 219
trusted contexts

overview 219
access control authorization routine 260

ACEE 260
active 282
authorization IDs 260
debugging 282
default 259
expected output 279
EXPLAIN STMTCACHE 267
invoking 259
overview 257
packages

inoperative 263
parameter list 268
processing exceptions 281
reason codes 280
return codes 280
specifying 259

access profile
defining 132
RACF 132

access requests
remote

permitting 140
ACCESSCTRL authority 29, 40, 50, 53

granting privileges 58
revoking privileges 58

accessibility
keyboard x
shortcut keys x

accessing
data 57

activating
client certificate name filters 290

adding
RACF groups 137
SAF user mapping plug-in 158

address spaces
started-task 134
WLM-established 143

altering
tables 56

application registration tables (ART)
ART columns 232

applications
authorization

validating 84
executing 84
RRSAF 84

AT-TLS
configuring 287
data protection 287

attachment requests
remote 175

audit classes 308
audit policies

audit categories 313
creating 316
displaying 316
overview 313

audit trace records 309
collecting 312
formatting 312

audit trace reports 309
audit traces 306, 307, 319

audit classes 308
limitations 310
starting 310
stopping 311

auditing
access

overview 305
administrative authorities 318
AUDIT ALL option 15
audit categories 313
audit policies 313
authorization IDs 307, 320
distributed environment 313
security measures 320
tables 321

AUDIT clause 318

© Copyright IBM Corp. 1982, 2013 339



authentication cache
global 172

authentication level
configuring 288
Secure Socket Layer (SSL) 288

authorities
access control 2
ACCESSCTRL authority 29, 40, 58
administrative 22, 29, 34, 35, 36, 37, 38, 39, 40, 43, 49, 50,

53, 55, 56, 57, 58
auditing 318

DATAACCESS authority 29, 40, 57
DB2 catalogs 42
DBADM authority 29, 37, 40, 105
DBCTRL authority 29, 37
DBMAINT authority 29, 37
directories 42
installation SYSADM authority 29, 34
installation SYSOPR authority 29, 36
managing 49
migrating 53
PACKADM authority 29, 38
REVOKE statement 74
revoking 74
SECADM authority 29, 39, 40, 55
security 39
separating 50
SQLADM authority 29, 40
SYSADM authority 29, 34, 40, 69, 74
SYSCTRL authority 29, 35
SYSOPR authority 29, 36
system DBADM authority 29, 38, 40, 56, 105
utilities 42

authorization
access control 45
failure code 171
views 266

authorization IDs 62, 68, 70, 71
access control 19
audit traces 307
auditing 307, 320
caching 84, 85
determining 97
dynamic SQL 93, 97
managing access 19
packages 85
plans 84
primary 20, 43
RACF 20
routines 85
secondary 20, 43, 64

connection processing 162
sign-on processing 164

sign-on processing 163
SQL 20, 43
translating

inbound IDs 177
outbound IDs 194

validation 92
automatic rebind

roles 264

B
bind behavior 95

attributes 94

BINDAGENT
RACF 265
roles 265

C
caching

authorization IDs 84, 85
plans 84
routines 85

EXECUTE privilege
packages 267
plans 267
routines 267

roles 85
security labels 119
SQL statements 267

catalog tables
privilege records 102

catalogs 42
CICS 4

connection routines
samples 165

sign-on routines
samples 165

client certificate 288
client certificate name filters

activating 290
creating 290

collecting
audit trace records 312

collection privileges
CREATE IN privilege 22

column access control 214
activating 210, 212
column masks 201, 203, 210, 212
deactivating 210, 212

column masks 201, 203, 204
creating 210
modifying 212

column-level encryption
password hints 299
views 299

commands
DB2

DISPLAY DATABASE command 328
DISPLAY TRACE command 310, 311
required authorization 139
START TRACE command 310
STOP TRACE command 311

DISPLAY DATABASE command 328
RACF

ADDGROUP command 137
WLM REFRESH command 145

communications databases (CDB)
requesters 186
servers 169

configuring
AT-TLS 287
enterprise identity mapping (EIM)

domain controller 157
IMS 142
LDAP

server 155
RACF

LDAP server 156
Secure Socket Layer (SSL) 287

340 Managing Security



configuring (continued)
SNA 129
SSL authentication level 288
TCP/IP 129

connection
requests

connection processing 160
local 160
managing 160

connection processing
attachment requests 172, 191
BATCH 160
CICS 160
IMS 160
RACF 160
secondary authorization IDs 162
TSO 160

connection requests
inbound 180, 181
managing 172, 180, 184
outbound 184
processing 160, 181
SNA-based 172
TCP/IP-based 180, 181

connection routines 254
debugging 255
expected output 252
input values 251
invoking 247
overview 245
parameter list 247, 250
processing 253
samples 246
session variables 256
specifying 246

connections
VTAM 133

creating
audit policies 316
client certificate name filters 290
materialized query tables 268
table spaces 244
trusted connections

local 222

D
data

access control 2
accessing 67
changes

tracking 324
consistency 322, 325, 326, 327, 328

SQL queries 326
verifying 325

distributed 67
integrity 322, 323
internal integrity reports 328
operation logs 328
transactions

database balancing 324
uniqueness 323

data consistency
locks 325
referential integrity 325

data definition control
access control 231

data definition control (continued)
application registration tables (ART) 235
controlling

application name 235
application name with exceptions 236
object name with exceptions 239
object names 237

data definition statements 231
DB2 support

DSNTIPZ panel 231
installing 234

disabling 241
managing 231
object registration tables (ORT) 235
restarting 241
stopping 241

data definition statements 45
data definition control 231

data protection
DB2 built-in functions 296
encryption 6

overview 287
RACF 6

overview 287
Secure Socket Layer (SSL)

DB2 support 287
data sets

adding groups 294
creating 296
generic profiles

adding authorization IDs 296
creating 294

protecting 293
DATAACCESS authority 29, 40, 50, 53

accessing data 57
database balancing

incomplete transactions 324
lost transactions 324

database privileges
CREATETAB privilege 23
CREATETS privilege 23
DISPLAYDB privilege 23
DROP privilege 23
IMAGCOPY privilege 23
LOAD privilege 23
RECOVERDB privilege 23
REORG privilege 23
REPAIR privilege 23
STARTDB privilege 23
STATS privilege 23
STOPDB privilege 23

DB2 directories 42
DB2 support

enterprise identity mapping (EIM) 154
z/OS identity filter 158

DB2I 225
DBADM authority 29, 37, 40

managing access 15
DBCTRL authority 29, 37
DBMAINT authority 29, 37, 40
decryption

DB2 built-in functions 296
define behavior 95

attributes 94
definer, description 88
defining

column-level encryption 298

Index 341



defining (continued)
DB2 resources

RACF 131
external security profiles 227
trusted contexts 220
user-defined functions (UDF) 91

DELETE statement 126, 204
denial-of-service attack

managing 184
dependent privileges 69
disability x
disabling

data definition control 241
DISPLAY TRACE command 310, 311
displaying

audit policies 316
distinct types

stored procedures 147
distributed access

implementing 9, 10
planning 9
servers

central 9
remote 10

views 9
distributed environment

auditing 313
DRDA access

security mechanisms 166, 167, 168
DROP statement 72
dropping

views 267
DSN command processor 225
DSNDB01 database 42
DSNDB06 database 42
dynamic SQL

authorization 93
DYNAMICRULES 93, 97
DYNAMICRULES(BIND)

roles 265

E
edit procedures 112
encrypted data

defining columns 297
performance optimization 302
predicates 302

encrypting
AES 198, 199
DES 198, 199
non-character values 301
passwords 196, 198, 199

encryption
AT-TLS 287
column level

defining 298
column-level encryption 299
data protection 287
DB2 built-in functions 296
encrypted data 297, 302
non-character values 301
options 6
password hints 299
performance optimization 302
predicates 302
Secure Socket Layer (SSL) 287, 291, 293

encryption (continued)
value-level encryption 300, 301

ENF signal
processing 262

enterprise identity mapping (EIM)
configuring 157
DB2 support 154
domain controller 157
implementing 154

establishing
trusted connections

remote 222, 224
executing

stored procedure 150
exit routines

access control 4, 245
managing access 245

EXPLAIN STMTCACHE
SQL statements 267

explicit privileges 22
collection privileges 22
database privileges 22, 23
distinct type privileges 22
function privileges 22
granting 59
JAR privileges 22
managing 59
package privileges 22, 23
plan privileges 22, 24
procedure privileges 22
routine privileges 22, 24
schema privileges 22, 24
sequence privileges 22
system privileges 22, 25
table privileges 22, 26
usage privileges 22, 27
use privileges 22, 27
view privileges 22, 26

explicit view privileges
ALTER privilege 26
DELETE privilege 26
GRANT ALL privilege 26
INDEX privilege 26
INSERT privilege 26
REFERENCES privilege 26
SELECT privilege 26
TRIGGER privilege 26
UPDATE privilege 26

F
field procedures 112
formatting

audit trace records 312

G
general-use programming information, described 335
global authentication cache 172
global temporary tables 111
GRANT statement 61, 62, 64, 65, 66, 67

PUBLIC clause 59, 60
ROLE AS OBJECT OWNER clause 59

granting
privileges 58
write-down privileges 115

342 Managing Security



GUPI symbols 335

I
image copies 319
implementing

column access control 201
enterprise identity mapping (EIM) 154
multilevel security 108
row access control 201
user-defined functions (UDF) 89
z/OS identity filter 158

implementor, description 88
implicit privileges 22

granting
object ownership 80

managing 80, 88
object ownership 77, 78
stored procedures 77

object ownership 28, 78, 79, 80
changing 79
trusted contexts 79

routines 88
inbound IDs

associating
secondary IDs 180

managing 175, 176
translating 177

indexes
creating 242
dropping 243
managing 242
naming 243

INSERT statement 121, 204
column access control 214
row access control 214

installation SYSADM authority 29, 34
installation SYSOPR authority 29, 36
installing

DB2 support
data definition control 234

invoke behavior 95
attributes 95

invoker, description 88

J
JAR files 148

K
Kerberos

authenticating 177
authentication

RACF 152

L
LDAP

configuring 155
RACF 156

z/OS 155

M
managing

authorities 49
connection requests

outbound 184
SNA-based 172

data
multilevel-secure environment 120

denial-of-service attack 184
materialized query tables 111

dropping 73
MERGE statement 125, 204
migrating

ACCESSCTRL authority 53
authorities 53
DATAACCESS authority 53
SECADM authority 53
SYSADM authority 53
SYSCTRL authority 53
system DBADM authority 53

multilevel security
access control 4
advantages 109
constraints 112
discretionary access checking 113
distributed environment 128
edit procedures 112
field procedures 112
global temporary tables 111
implementing 115, 117
mandatory access checking 113
materialized query tables 111
objects 111, 115
rows 117
security categories 110
security labels 109
security levels 110
SNA

configuring 129
tables

adding 119
columns 118, 119
creating 118
removing 119

TCP/IP
configuring 129

triggers 113
users 111
validation procedures 112
views 119

O
object owners

managing access 16
object ownership

access control 3
aliases 28
changing 79
databases 28
distinct types 28
implicit privileges 78

granting 80
indexes 28
JAR 28
packages 28, 80, 81

Index 343



object ownership (continued)
plans 28, 80, 81
privileges

implicit 28
qualified names 79
roles 28
sequences 28
storage groups 28
stored procedures 28
synonyms 28
table spaces 28
tables 28
trusted contexts 28, 79
unqualified names 78
user-defined functions 28
views 28

object registration tables (ORT)
ORT columns 232

object sets
registering 240

objectives 7
objects

multilevel security 111
outbound IDs

translating 194

P
PACKADM authority 29, 38
package ownership

changing 81
creating 81
trusted contexts 81

package privileges
BIND privilege 23
COPY privilege 23
EXECUTE privilege 23
GRANT ALL privilege 23

packages
access authorization 86
authorization

validating 82, 83
binding 66
executing 82, 83
inoperative 74
invalidating 74
rebinding 66
unqualified names 82

parameters
REVOKE DEP PRIV parameter 69, 74
SEPARATE SECURITY parameter 35, 56, 57, 58, 201, 214
SEPARATE_SECURITY parameter 29, 49, 50, 53, 55, 202,

203, 208, 210, 212, 215
system 29, 35, 49, 50, 53, 55, 56, 57, 58, 69, 74, 201, 202,

203, 208, 210, 212, 214, 215
PassTickets

configuring 197
RACF 177

passwords
changing 171
encrypting 177, 198, 199
RACF-encrypted 197
sending 196, 197

performance optimization
encrypted data 302

plan ownership
changing 81

plan ownership (continued)
creating 81
trusted contexts 81

plan privileges
BIND privilege 24
EXECUTE privilege 24

plans
access authorization 86, 87
authorization

validating 82
binding 66
executing 82

remotely 87
rebinding 66
unqualified names 82

port of entry 174
RACF APPCPORT class 140
RACF SERVAUTH class 141

predicates
encrypted data 302

preventing
SQL injection attacks 184

primary authorization ID 20
privileges

access control 2
application programmers 43
authorization IDs 43, 103
catalog tables 104
composite

using 101
CREATE DATABASE statement 48
CREATE INDEX statement 48
CREATE STOGROUP statement 48
CREATE TABLE statement 48
CREATE TABLESPACE statement 48
CREATE VIEW statement 48
CREATEIN privilege

granting 146
data

distributed 67
data definition statements 45
database administrators 43
dependent 69
DROP statement 72
dynamic SQL 48
EXECUTE privilege

caching 267
executing

routines 88
explicit 22, 23, 24, 25, 26, 27, 59
GRANT statement 48, 62, 64, 65, 66, 67
granted 103
granting 13, 60, 61, 62, 64, 65, 66, 67, 80, 89

distinct types 147
JAR files 148
stored procedure packages 149
stored procedures 149

implicit 22, 28, 77, 78, 79, 80, 81, 82, 88, 228
information center consultants 43
multiple grants 104
object ownership 28
package administrators 43
packages 46, 66, 102
plans 46, 66, 102
production binders 43
PUBLIC ID 60
query users 43

344 Managing Security



privileges (continued)
restrictions 74
REVOKE statement 48, 68, 69, 70, 71, 72, 73, 74
revoking 68, 69, 70, 71, 72, 73, 74
roles 43, 103
routines 89
security administrators 43
static SQL 48
system administrators 43
system operators 43
system programmers 43
trusted contexts 228
user analysts 43
users

group 65
remote 60

views 61
processing

ENF signals 262
product-sensitive programming information, described 335
program authorization 285
programming interface information, described 335
PSPI symbols 335
PUBLIC clause

GRANT statement 59, 60
PUBLIC ID 60

R
RACF

access authorization
protected resources 133
SERVER resource class 143

access checking
DSNR class 133
SERVER class 133

access control 4, 131
non-DB2 resources 146

authorization 6, 142
authorizing

group access 138
BINDAGENT 265
data protection 6, 287, 293
DB2 resources

defining 131
defining

access profiles 132
DB2 resources 151
user IDs 134

encrypted passwords 197
groups

adding 137
Kerberos authentication 152
managing access 131

DB2 131
PassTickets 197
roles 265

RACF access control module 282
RACF groups

creating 14
recovery logs 319
registering

object sets 240
registration tables

adding columns 244
application registration tables (ART) 232
creating 242

registration tables (continued)
dropping 243
managing 242
naming 243
object registration tables (ORT) 232
updating 244

Resource Recovery Services attachment facility (RRSAF)
RACF profiles 143
stored procedures 143

retrieving
authorization IDs 103, 105, 106
multiple grants 104
packages 107
plans 107
privilege records 107
roles 103, 105, 106

reusing
trusted connections 224, 225, 226, 227

REVOKE statement 68, 69, 70, 71, 72, 73, 74
ROLE AS OBJECT OWNER clause 72

revoking
privileges 58

ROLE AS OBJECT OWNER clause
GRANT statement 59

roles 20, 43, 62, 68
access control 3, 19
automatic rebind 264
BINDAGENT 265
caching 85
dropping 72
DYNAMICRULES(BIND) 265
managing 19
packages 85
privileges 59
RACF 265
ROLE AS OBJECT OWNER clause 59
SECADM authority 55
trusted connection 21
trusted contexts 21, 55

routine privileges
EXECUTE ON FUNCTION privilege 24
EXECUTE ON PROCEDURE privilege 24

routines
access authorization

simplifying 101
access control authorization routine 257, 259, 260, 263,

267, 268, 279, 280, 281, 282
authorization IDs 106
connection routines 245, 246, 247, 250, 251, 252, 253, 254,

255, 256
executing 88
implicit privileges 88
privileges 88

granting 89
roles 106
sign-on routines 245, 246, 247, 250, 251, 252, 253, 254, 255,

256
stored procedures 88
user-defined functions (UDF) 88

row access control 214
activating 208
deactivating 208
row permissions 201, 202, 208

row and column access control 215
access types 204
column masks 204
implementing 201

Index 345



row and column access control (continued)
row permissions 204
rules 204

row permissions 201, 202, 204
creating 208

RRSAF 84, 226
run behavior

attributes 93

S
SAF

user mapping plug-in
adding 158

scenarios
security plans 6

schema privileges
ALTERIN privilege 24
CREATEIN privilege 24
DROPIN privilege 24

schemas
stored procedures 146

SECADM authority 29, 39, 40, 50, 53
roles 55
trusted contexts 55

secondary authorization ID
RACF ID 20
SQL ID 20

secondary IDs
privileges 64

Secure Socket Layer (SSL)
authentication level 288

configuring 288
configuring 287
data protection 287
DB2 requesters

configuring 293
DB2 servers

configuring 291
security 1

active security measures 306
column access control 201
DB2 1
DB2 solutions

overview 1
getting started 1
mechanisms 166, 167, 168

DRDA access 166
multilevel 109, 110, 111, 112, 113, 115, 117, 118, 119, 120,

121, 122, 125, 126, 127, 128, 129
implementing 108
managing 120

profiles
defining 227

row access control 201
security measures 320

security categories 110
security labels 109

caching 119
columns 118, 119
determining 110
objects 113, 114
RACF resource classes 115
relationships

dominance 114
users 113, 114

security levels 110

security plans 7
access control 15, 17
access restrictions 7, 11
auditing access 11, 15
distributed access 9, 10
privileges

granting 13
RACF groups

creating 14
scenarios 6
SELECT privilege 8
tables

keys 13
triggers 13
updating 12

views 8
creating 7, 12

SELECT statement 120, 204
separating

ACCESSCTRL authority 50
authorities 50
DATAACCESS authority 50
SECADM authority 50
SYSADM authority 50
SYSCTRL authority 50
SYSOPR authority 50
system DBADM authority 50

server certificate 288
shortcut keys

keyboard x
sign-on processing

requests 160
usage 160

sign-on requests
authorization IDs 163
secondary authorization IDs 164

sign-on routines 254
debugging 255
expected output 252
input values 251
invoking 247
overview 245
parameter list 247, 250
processing 253
samples 246
session variables 256
specifying 246

simplifying
access authorization

routines 101
SNA access

protocols 172
security mechanisms 166, 167, 168

SQL 184
attributes 95
CONNECT statement 227
CREATE statement 242
dynamic 48, 93, 94, 95, 97
static 48

SQL injection attacks
preventing 184

SQL statements
caching 267

SQLADM authority 29, 40
START TRACE command 310
starting

audit traces 310

346 Managing Security



STOP TRACE command 311
stopping

audit traces 311
data definition control 241

stored procedure packages 149
stored procedures 94, 95, 149

access control
non-DB2 resources 146

creating 144
distinct types 147
executing

remote 150
required authorization 144

managing 142
trusted contexts 150
WLM 143, 144, 145

subsystems
access control 5, 131
managing 131

syntax diagram
how to read xi

SYSADM authority 29, 34, 50, 53, 74
managing access 16

SYSCTRL authority 29, 35, 50, 53
SYSIBM.IPNAMES columns 187
SYSIBM.LOCATIONS columns 190
SYSIBM.LUNAMES columns 169, 186
SYSIBM.USERNAMES columns 170, 189
SYSOPR authority 29, 36, 50
system administrator

privileges 62
system DBADM authority 29, 38, 40, 50, 53

altering tables 56
System Management Facility (SMF) 307
system privileges

ARCHIVE privilege 25
BINDADD privilege 25
BINDAGENT privilege 25
BSDS privilege 25
CREATE_SECURE_OBJECT privilege 25
CREATEALIAS privilege 25
CREATEDBA privilege 25
CREATEDBC privilege 25
CREATESG privilege 25
CREATETMTAB privilege 25
DEBUGSESSION privilege 25
DISPLAY privilege 25
EXPLAIN privilege 25
MONITOR1 privilege 25
MONITOR2 privilege 25
RECOVER privilege 25
STOPALL privilege 25
STOSPACE privilege 25
TRACE privilege 25

system programmer 44

T
table privileges

ALTER privilege 26
DELETE privilege 26
GRANT ALL privilege 26
INDEX privilege 26
INSERT privilege 26
REFERENCES privilege 26
SELECT privilege 26
TRIGGER privilege 26

table privileges (continued)
UPDATE privilege 26

table spaces
registration tables 244

tables
auditing 321
catalogs

access control 102
privileges 102

creating 268
packages 107
plans 107
updating 12

tablesMoved
authorization IDs 105
roles 105

tasks
DB2-started 134

TCP/IP
connection requests

protecting 151
protocols 180, 181

tracking
data changes 324

translating
inbound IDs 177
outbound IDs 194

triggers 113, 215
creating 215

TRUNCATE statement 127
trusted connections

local
creating 222
reusing 225, 226, 227

remote
establishing 222, 224
reusing 225, 226

reusing 224
roles 21
trusted contexts 220

trusted contexts 228
access control 219
ASUSER 228
BINDAGENT 265
defining 220
managing 219
object ownership 79
package ownership 81
plan ownership 81
RACF 265
roles 21, 55, 265
stored procedure 150
trusted connections 219, 220, 227

U
UPDATE statement 122, 204
updating

registration tables 244
usage privileges

USAGE ON DISTINCT TYPE privilege 27
USAGE ON JAR privilege 27
USAGE ON SEQUENCE privilege 27

use privileges
USE OF BUFFERPOOL privilege 27
USE OF STOGROUP privilege 27
USE OF TABLESPACE privilege 27

Index 347



user-defined functions (UDF) 94, 95, 212
defining 91
implementing 89
invoking 268
using 92

users
group 65
multilevel security 111

using
user-defined functions (UDF) 92

utilities 128
CHECK DATA utility 327
CHECK INDEX utility 327
CHECK LOB utility 327

V
validation procedures 112
value-level encryption

defining 300
using passwords hints 301

verifying
VTAM partner LUs 175

views 61
authorization 266
creating 7, 12
dropping 72, 267
privileges records 107

VTAM
APPL statement 175
connection control 133, 174
conversation-level security 175
partner LU verification 175
passwords

choosing 174
VTAM partner LUs

authenticating 176
VTAM partner LUsC

verifying 175

W
WLM

refreshing 145
stored procedures 143, 145

creating 144
write-down control

mandatory access checking 115
write-down privileges 115

write-down privileges
granting 115

Z
z/OS console logs 319
z/OS identity filter

DB2 support 158
implementing 158

348 Managing Security





����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4061-00



Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
M

an
ag

in
g

Se
cu

rit
y

�
�

�


	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Getting started with DB2 security
	DB2 security solutions
	What's new in DB2 11 for z/OS security?
	DB2 data access control
	ID-based access control within DB2
	Role-based access control within DB2
	Ownership-based access control within DB2
	Access control through multilevel security
	Access control external to DB2

	DB2 subsystem access control
	Managing access requests from local applications
	Managing access requests from remote applications

	Data set protection
	RACF for data protection
	Data encryption

	Scenario: Securing data access at Spiffy Computer
	Determining security objectives
	Securing manager access to employee data
	Creating views of employee data
	Granting managers the SELECT privilege
	Managing distributed access
	Auditing manager access

	Securing access to payroll operations and management
	Creating views of payroll operations
	Securing compensation accounts with update tables
	Securing compensation updates with other measures
	Granting privileges to payroll operations and management
	Auditing payroll operations and management

	Managing access privileges of other authorities
	Managing access by the DBADM authority
	Managing access by the SYSADM authority
	Managing access by object owners
	Managing access by other users



	Chapter 2. Managing access through authorization IDs and roles
	Authorization IDs and roles
	Authorization IDs
	Roles in a trusted context

	Privileges and authorities
	Explicit privileges
	Explicit collection privileges
	Explicit database privileges
	Explicit package privileges
	Explicit plan privileges
	Explicit routine privileges
	Explicit schema privileges
	Explicit system privileges
	Explicit table and view privileges
	Explicit usage privileges
	Explicit use privileges

	Implicit privileges through object ownership
	Administrative authorities
	Installation SYSADM
	SYSADM
	SYSCTRL
	Installation SYSOPR
	SYSOPR
	DBADM
	DBCTRL
	DBMAINT
	PACKADM
	System DBADM
	SECADM
	ACCESSCTRL
	DATAACCESS
	SQLADM

	Common DB2 administrative authorities
	Utility authorities for DB2 catalog and directory
	Privileges by authorization ID and authority
	Privileges required for common job roles and tasks
	Checking access authorization for data definition statements
	Privileges required for handling plans and packages
	Privileges required for using dynamic SQL statements


	Managing administrative authorities
	Separating the SYSADM authority
	Migrating the SYSADM authority
	Creating roles or trusted contexts with the SECADM authority
	Altering tables with the system DBADM authority
	Accessing data with the DATAACCESS authority
	Granting and revoking privileges with the ACCESSCTRL authority

	Managing explicit privileges
	Granting privileges to a role
	Granting privileges to the PUBLIC ID
	Granting privileges to remote users
	Granting privileges through views
	Granting privileges with the GRANT statement
	Granting privileges to secondary IDs
	Granting privileges to user groups
	Granting privileges for binding plans
	Granting privileges for rebinding plans and packages
	Granting privileges for accessing distributed data

	Revoking privileges with the REVOKE statement
	Revoking dependent privileges
	Revoking privileges granted by multiple IDs
	Revoking privileges granted by other IDs
	Revoking privileges granted by a role
	Revoking all privileges from a role
	Revoking privileges for views
	Revoking privileges for materialized query tables
	Revoking privileges for plans or packages
	Revoking the SYSADM authority from users
	Restrictions on privilege revocation


	Managing implicit privileges
	Managing implicit privileges through object ownership
	Ownership of objects with unqualified names
	Ownership of objects with qualified names
	Ownership of objects within a trusted context
	Changing object ownership
	Granting implicit privileges of object ownership

	Managing implicit privileges through plan or package ownership
	Establishing or changing plan or package ownership
	Establishing plan and package ownership in a trusted context
	How DB2 resolves unqualified names
	Validating authorization for executing plans or packages
	Caching authorization IDs for better performance
	Authorizing plan or package access through applications

	Managing implicit privileges through routines
	Privileges required for executing routines
	Granting privileges through routines
	Authorization behaviors for dynamic SQL statements


	Retrieving privilege records in the DB2 catalog
	Catalog tables with privilege records
	Retrieving all authorization IDs or roles with granted privileges
	Retrieving multiple grants of the same privilege
	Retrieving all authorization IDs or roles with the DBADM and system DBADM authorities
	Retrieving all IDs or roles with access to the same table
	Retrieving all IDs or roles with access to the same routine
	Retrieving plans or packages with access to the same table
	Retrieving privilege information through views

	Implementing multilevel security with DB2
	Multilevel security
	Security labels
	Determining the security label of a user
	Security levels
	Security categories
	Users and objects in multilevel security
	Global temporary tables with multilevel security
	Materialized query tables with multilevel security
	Constraints in a multilevel-secure environment
	Field, edit, and validation procedures in a multilevel-secure environment
	Triggers in a multilevel-secure environment

	Mandatory access checking
	Dominance relationships between security labels
	Write-down control
	Granting write-down privileges

	Implementing multilevel security at the object level
	Implementing multilevel security with row-level granularity
	Creating tables with multilevel security
	Adding multilevel security to existing tables
	Removing tables with multilevel security
	Caching security labels

	Restricting access to the security label column
	Managing data in a multilevel-secure environment
	Using the SELECT statement with multilevel security
	Using the INSERT statement with multilevel security
	Using the UPDATE statement with multilevel security
	Using the MERGE statement with multilevel security
	Using the DELETE statement with multilevel security
	Using the TRUNCATE statement with multilevel security
	Using utilities with multilevel security

	Implementing multilevel security in a distributed environment
	Configuring TCP/IP with multilevel security
	Configuring SNA with multilevel security



	Chapter 3. Managing access through RACF
	Establishing RACF protection for DB2
	Defining DB2 resources to RACF
	Naming protected access profiles
	Enabling RACF checking for the DSNR and SERVER classes
	Enabling partner LU verification

	Permitting RACF access
	Defining RACF user IDs for DB2-started tasks
	Adding RACF groups
	Granting users and groups access
	Granting authorization on DB2 commands
	Permitting access from remote requesters
	Enabling IMS transactions to use RACF authorization control of DB2 objects

	Managing authorization for stored procedures
	Authorizing IDs for using RRSAF
	Specifying WLM-established server address spaces for stored procedures
	Managing authorizations for creation of stored procedures in WLM environments
	Authorizing users to refresh WLM environments
	Controlling stored procedure access to non-DB2 resources by using RACF
	Granting the CREATEIN privilege on schemas for stored procedures
	Granting privileges for using distinct types
	Granting privileges for using JAR files
	Granting privileges for executing stored procedures and stored procedure packages
	Controlling remote execution of stored procedures by using trusted contexts

	Protecting connection requests that use the TCP/IP protocol
	Establishing Kerberos authentication through RACF

	Implementing DB2 support for enterprise identity mapping
	Configuring the z/OS LDAP server
	Setting up RACF for the z/OS LDAP server
	Setting up the EIM domain controller
	Adding the SAF user mapping plug-in data set to LNKLIST

	Implementing DB2 support for distributed identity filters
	Managing connection requests from local applications
	Processing of connection requests
	Using secondary IDs for connection requests
	Processing of sign-on requests
	Using secondary IDs for sign-on requests
	Using sample connection and sign-on exit routines for CICS transactions

	Managing connection requests from remote applications
	Security mechanisms for DRDA and SNA
	Security mechanisms for DB2 for z/OS as a requester
	Security mechanisms for DB2 for z/OS as a server

	Communications database for the server
	SYSIBM.LUNAMES columns
	SYSIBM.USERNAMES columns

	Enabling change of user passwords
	Authorization failure code
	Global authentication cache
	Managing inbound SNA-based connection requests
	Processing of remote attachment requests
	Controlling LU attachments to the network
	Verifying partner LUs
	Accepting remote attachment requests
	Managing inbound IDs through DB2
	Managing inbound IDs through RACF
	Authenticating partner LUs
	Encrypting passwords
	Authenticating users through Kerberos
	Translating inbound IDs
	Associating inbound IDs with secondary IDs

	Managing inbound TCP/IP-based connection requests
	Processing of TCP/IP-based connection requests

	Managing denial-of-service attacks
	Preventing SQL injection attacks
	Managing outbound connection requests
	Communications database for the requester
	Processing of outbound connection requests

	Translating outbound IDs
	Sending passwords or password phrases
	Sending RACF-encrypted passwords
	Sending RACF PassTickets
	Sending encrypted passwords or password phrases from DB2 for z/OS clients
	Sending encrypted passwords from workstation clients



	Chapter 4. Managing access through row permissions and column masks
	Row and column access control
	Row permission
	Column mask
	Rules of row and column access control
	Creating row permissions
	Creating column masks
	Modifying column masks to reference UDFs
	Using INSERT on tables with row access control
	Creating triggers for tables with row and column access control

	Chapter 5. Managing access through trusted contexts
	Trusted contexts
	Trusted connections
	Defining trusted contexts
	Creating local trusted connections
	Establishing remote trusted connections by DB2 for z/OS requesters
	Establishing remote trusted connections to DB2 for z/OS servers
	Switching users of a trusted connection
	Reusing a local trusted connection through the DSN command processor and DB2I
	Reusing a remote trusted connection by DB2 for z/OS requesters
	Reusing a remote trusted connection through DB2 for z/OS servers
	Reusing a local trusted connection through RRSAF
	Reusing a local trusted connection through the SQL CONNECT statement

	Defining external security profiles
	Enabling users to perform actions on behalf of others
	Performing tasks on objects for other users

	Chapter 6. Managing access through data definition control
	Data definition statements
	Data definition control support
	Registration tables
	Installing data definition control support
	Enabling data definition control
	Controlling data definition by application name
	Controlling data definition by application name with exceptions
	Controlling data definition by object name
	Controlling data definition by object name with exceptions

	Registering object sets
	Disabling data definition control
	Managing registration tables and indexes
	Creating registration tables and indexes
	Naming registration tables and indexes
	Dropping registration tables and indexes
	Creating table spaces for registration tables
	Adding columns to registration tables
	Updating registration tables


	Chapter 7. Managing access through exit routines
	Connection routines and sign-on routines
	Specifying connection and sign-on routines
	Sample connection and sign-on routines
	When connection and sign-on routines are taken
	Exit parameter list for connection and sign-on routines
	Authorization ID parameter list for connection and sign-on routines
	Input values for connection routines
	Input values for sign-on routines
	Expected output for connection and sign-on routines
	Processing in sample connection and sign-on routines
	Performance considerations for connection and sign-on routines
	Debugging connection and sign-on routines
	Session variables in connection and sign-on routines

	Access control authorization exit routine
	Specifying the access control authorization routine
	The default access control authorization routine
	When access control authorization routine is taken
	Considerations for the access control authorization routine
	When DB2 cannot provide an ACEE
	Authorization IDs and ACEEs
	DB2 processing of ENF signals
	Invalid and inoperative packages
	Automatic rebind with DB2 roles
	DB2 roles for the DYNAMICRULES(BIND) Option
	Using DB2 roles for BINDAGENT
	View authorization
	Behavior of EXPLAIN STMTCACHE with the access control authorization routine
	Dropping views
	Caching of EXECUTE on plans, packages, and routines
	Caching of dynamic SQL statements
	Resolution of user-defined functions
	Creating materialized query tables

	Parameter list for access control authorization routines
	Expected output for access control authorization routines
	Handling return codes
	Handling reason codes
	Exception processing

	Debugging access control authorization routines
	Determining whether the access control authorization routine is active

	RACF access control module

	Chapter 8. Managing program authorization
	Chapter 9. Protecting data through encryption and RACF
	Encrypting your data with Secure Socket Layer support
	AT-TLS configuration
	SSL authentication level
	Configuring SSL authentication levels
	Creating and activating client certificate name filters

	Configuring the DB2 server for SSL
	Configuring the DB2 requester for SSL

	Protecting data sets through RACF
	Adding groups to control DB2 data sets
	Creating generic profiles for data sets
	Authorizing DB2 IDs to use data set profiles
	Enabling DB2 IDs to create data sets

	Encrypting your data through DB2 built-in functions
	Defining columns for encrypted data
	Defining column-level encryption
	Creating views with column-level encryption
	Using password hints with column-level encryption

	Defining value-level encryption
	Using password hints with value-level encryption
	Encrypting non-character values

	Using predicates for encrypted data
	Optimizing performance of encrypted data


	Chapter 10. Auditing access to DB2
	Determining active security measures
	DB2 audit trace
	Authorization IDs traced by auditing
	Audit classes
	Audit trace reports
	Audit trace records
	Limitations of the audit trace
	Starting the audit trace
	Stopping the audit trace
	Collecting audit trace records
	Formatting audit trace records
	Auditing in a distributed data environment

	DB2 audit policy
	Audit category
	Creating and activating audit policies
	Auditing the use of an administrative authority
	Auditing tables without specifying the AUDIT clause

	Additional sources of audit information
	Determining ID privileges and authorities
	Auditing specific IDs or roles
	Auditing specific tables
	Preventing audits of tables
	Ensuring data accuracy and integrity
	Ensuring data presence and uniqueness
	Protecting data integrity
	Tracking data changes
	Checking for lost and incomplete transactions

	Ensuring data consistency
	Using referential integrity for data consistency
	Using locks for data consistency
	Checking data consistency
	Checking data consistency with SQL queries
	Checking data consistency with the CHECK utilities
	Checking data consistency with the DISPLAY DATABASE command
	Checking data consistency with the operation log
	Checking data consistency with internal integrity reports



	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z


