
DB2 11 for z/OS

ODBC Guide and Reference

SC19-4063-00

���

DB2 11 for z/OS

ODBC Guide and Reference

SC19-4063-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1997, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . ix
Who should read this information . ix
DB2 Utilities Suite . ix
Terminology and citations. ix
Accessibility features for DB2 11 for z/OS . x
How to send your comments . xi
How to read syntax diagrams . xi

Chapter 1. Introduction to DB2 ODBC . 1
DB2 ODBC background information . 1

Differences between DB2 ODBC and ODBC 3.0 . 2
DB2 ODBC support for ODBC features . 2

Differences between DB2 ODBC and embedded SQL . 4
Advantages of using DB2 ODBC. 7
Considerations for choosing between SQL and DB2 ODBC . 7

Chapter 2. Conceptual view of a DB2 ODBC application 9
Initialization and termination of an ODBC program . 10

Handles . 11
ODBC connection model . 11
How to specify the connection type . 12
How to connect to one or more data sources . 13

Transaction processing in DB2 ODBC. 15
Statement handle allocation . 17
Preparation and execution of SQL statements . 17
How an ODBC program processes results . 19
Commit and rollback in DB2 ODBC . 22
Function for freeing statement handles . 23

Diagnostics . 24
Function return codes . 24
SQLSTATEs for ODBC error reporting . 25
SQLCA retrieval in an ODBC application . 26

Data types and data conversion . 26
C and SQL data types . 26
C data types that do not map to SQL data types . 31
Data conversion . 32

Characteristics of string arguments . 40
Length of string arguments . 40
Nul-termination of strings . 41
String truncation . 41
Interpretation of strings . 41

Functions for querying environment and data source information 41

Chapter 3. Configuring DB2 ODBC and running sample applications 45
Running the SMP/E jobs for DB2 ODBC installation . 45
The DB2 ODBC run time environment . 45

Connectivity requirements . 46
Extra performance linkage . 47
64-bit ODBC driver . 47

DB2 ODBC run time environment setup . 47
Binding DBRMs to create packages . 48
Binding the application plan. 50
Setting up DB2 ODBC for the z/OS UNIX environment 51

Overview of preparing and executing a DB2 ODBC application 52
DB2 ODBC application requirements . 53

© Copyright IBM Corp. 1997, 2013 iii

Preparing and executing an ODBC application . 54
Compiling an ODBC application . 54
Prelinking and link-editing an ODBC application . 57
Executing an ODBC application . 61

How to define a subsystem to DB2 ODBC . 62
DB2 ODBC initialization file . 63

How to use the initialization file . 63
DB2 ODBC initialization keywords . 65

Database metadata stored procedures. 84
Migrating to the current DB2 ODBC driver . 85
Migrating an ODBC 31-bit application to a 64-bit application 86

Example 64-bit ODBC application . 87

Chapter 4. ODBC Functions. 89
Status of support for ODBC functions . 90
SQLAllocConnect() - Allocate a connection handle . 96
SQLAllocEnv() - Allocate an environment handle . 96
SQLAllocHandle() - Allocate a handle. 97
SQLAllocStmt() - Allocate a statement handle . 101
SQLBindCol() - Bind a column to an application variable . 102
SQLBindFileToCol() - Associate a column with a file reference 108
SQLBindFileToParam() - Bind a parameter marker to a file reference 111
SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator 114
SQLBulkOperations() - Add, update, delete or fetch a set of rows 128
SQLCancel() - Cancel statement . 131
SQLCloseCursor() - Close a cursor and discard pending results. 133
SQLColAttribute() - Get column attributes . 135
SQLColAttributes() - Get column attributes . 143
SQLColumnPrivileges() - Get column privileges . 144
SQLColumns() - Get column information . 148
SQLConnect() - Connect to a data source . 155
SQLDataSources() - Get a list of data sources . 160
SQLDescribeCol() - Describe column attributes . 163
SQLDescribeParam() - Describe parameter marker . 168
SQLDisconnect() - Disconnect from a data source . 170
SQLDriverConnect() - Use a connection string to connect to a data source 172
SQLEndTran() - End transaction of a connection . 177
SQLError() - Retrieve error information . 180
SQLExecDirect() - Execute a statement directly . 182
SQLExecute() - Execute a statement . 187
SQLExtendedFetch() - Fetch an array of rows . 190
SQLFetch() - Fetch the next row . 197
SQLFetchScroll() - Fetch the next row . 203
SQLForeignKeys() - Get a list of foreign key columns . 210
SQLFreeConnect() - Free a connection handle . 218
SQLFreeEnv() - Free an environment handle . 219
SQLFreeHandle() - Free a handle . 219
SQLFreeStmt() - Free (or reset) a statement handle . 222
SQLGetConnectAttr() - Get current attribute setting. 224
SQLGetConnectOption() - Return current setting of a connect option 227
SQLGetCursorName() - Get cursor name . 228
SQLGetData() - Get data from a column . 232
SQLGetDiagRec() - Get multiple field settings of diagnostic record 244
SQLGetEnvAttr() - Return current setting of an environment attribute 247
SQLGetFunctions() - Get functions . 249
SQLGetInfo() - Get general information . 254
SQLGetLength() - Retrieve length of a string value . 278
SQLGetPosition() - Find the starting position of a string . 281
SQLGetSQLCA() - Get SQLCA data structure . 284
SQLGetStmtAttr() - Get current setting of a statement attribute 290
SQLGetStmtOption() - Return current setting of a statement option 293

iv ODBC Guide and Reference

SQLGetSubString() - Retrieve a portion of a string value . 293
SQLGetTypeInfo() - Get data type information . 297
SQLMoreResults() - Check for more result sets . 304
SQLNativeSql() - Get native SQL text . 308
SQLNumParams() - Get number of parameters in an SQL statement 310
SQLNumResultCols() - Get number of result columns . 312
SQLParamData() - Get next parameter for which a data value is needed 313
SQLParamOptions() - Specify an input array for a parameter 315
SQLPrepare() - Prepare a statement . 317
SQLPrimaryKeys() - Get primary key columns of a table . 324
SQLProcedureColumns() - Get procedure input/output parameter information 328
SQLProcedures() - Get a list of procedure names . 337
SQLPutData() - Pass a data value for a parameter . 340
SQLRowCount() - Get row count . 344
SQLSetColAttributes() - Set column attributes . 346
SQLSetConnectAttr() - Set connection attributes . 350
SQLSetConnection() - Set connection handle . 360
SQLSetConnectOption() - Set connection option . 362
SQLSetCursorName() - Set cursor name . 362
SQLSetEnvAttr() - Set environment attributes. 365
SQLSetParam() - Bind a parameter marker to a buffer . 369
SQLSetPos - Set the cursor position in a rowset . 369
SQLSetStmtAttr() - Set statement attributes . 376
SQLSetStmtOption() - Set statement attribute . 387
SQLSpecialColumns() - Get special (row identifier) columns 388
SQLStatistics() - Get index and statistics information for a base table 392
SQLTablePrivileges() - Get table privileges . 397
SQLTables() - Get table information . 401
SQLTransact() - Transaction management . 405

Chapter 5. Advanced features . 407
Functions for setting and retrieving environment, connection, and statement attributes 407

Functions for setting and retrieving environment attributes 408
Functions for setting and retrieving connection attributes. 409
Functions for setting and retrieving statement attributes 409

ODBC and distributed units of work . 409
Functions for establishing a distributed unit-of-work connection 410
Coordinated connections in a DB2 ODBC application . 412

Global transactions in ODBC programs. 415
Use of ODBC for querying the DB2 catalog . 417

Catalog query functions . 417
The DB2 ODBC shadow catalog . 420

Using arrays to pass parameter values . 422
Retrieval of a result set into an array . 427

Column-wise binding for array data. 427
Row-wise binding for array data . 429
The ODBC row status array . 431
Column-wise and row-wise binding example. 432

ODBC limited block fetch . 433
Scrollable cursors in DB2 ODBC . 434

Scrollable cursor characteristics in DB2 ODBC . 435
Relative and absolute scrolling in DB2 ODBC applications 436
Steps for retrieving data with scrollable cursors in a DB2 ODBC application 438
ODBC scrollable cursor example . 440

Performing bulk inserts with SQLBulkOperations() . 447
Updates to DB2 tables with SQLSetPos() . 449

Updating rows in a rowset with SQLSetPos() . 449
Deleting rows in a rowset with SQLSetPos() . 451

Input and retrieval of long data in pieces . 452
Providing long data for bulk inserts and positioned updates 454
Examples of using decimal floating point data in an ODBC application 456

Contents v

Variable-length timestamps in ODBC applications . 457
Using LOBs . 460

Using LOB locators . 461
LOB and LOB locator example . 463
LOB file reference variables in ODBC applications . 463

XML data in ODBC applications . 464
XML column updates in ODBC applications . 464
XML data retrieval in ODBC applications . 466

Distinct types in DB2 ODBC applications . 469
Stored procedures . 471

Advantages of using stored procedures. 471
Stored procedure calls in a DB2 ODBC application . 472
Rules for a DB2 ODBC stored procedure . 473
Result sets from stored procedures . 473

Multithreaded and multiple-context applications in DB2 ODBC 476
DB2 ODBC support for multiple Language Environment threads 476
When to use multiple Language Environment threads . 478
DB2 ODBC support of multiple contexts . 478
External contexts . 483
Application deadlocks . 485

Application encoding schemes and DB2 ODBC . 486
Types of encoding schemes . 486
Application programming guidelines for handling different encoding schemes 486
Suffix-W API function syntax . 488
Examples of handling the application encoding scheme 492

Embedded SQL and DB2 ODBC in the same program . 502
Vendor escape clauses . 504

Function for determining ODBC vendor escape clause support 504
Escape clause syntax . 504
ODBC-defined SQL extensions . 505

Extended indicators in ODBC applications . 509
ODBC programming hints and tips . 509

Guidelines for avoiding common problems . 509
Techniques for improving application performance . 511
Techniques for reducing network flow . 514
Techniques for maximizing application portability . 515

Chapter 6. Problem diagnosis . 517
ODBC trace types . 517

Application trace . 517
ODBC diagnostic trace . 520
Stored procedure trace . 526

Abnormal termination . 530
Internal error code . 530

Chapter 7. DB2 ODBC reference information 531
DB2 ODBC and ODBC differences . 531

DB2 ODBC and ODBC drivers . 531
ODBC APIs and data types. 532
Isolation levels . 534

Extended scalar functions . 535
Errors returned by extended scalar functions . 535
String functions . 535
Date and time functions . 536
System functions . 536

SQLSTATE cross reference . 537
Data conversion between the application and the database server 548

SQL data type attributes. 548
SQL to C data conversion . 552
C to SQL data conversion . 560

vi ODBC Guide and Reference

||

Deprecated functions . 566
Deprecated functions and their replacements . 566
Changes to SQLGetInfo() InfoType argument values . 567
Changes to SQLSetConnectAttr() attributes . 567
Changes to SQLSetEnvAttr() attributes . 568
Changes to SQLSetStmtAttr() attributes . 568
ODBC 3.0 driver behavior . 568
SQLSTATE mappings. 569
Changes to datetime data types . 571

Example DB2 ODBC code . 572
DSN8O3VP sample application . 572
Client application calling a DB2 ODBC stored procedure 576

Information resources for DB2 for z/OS and related products 595

Notices . 597
Programming interface information . 598
Trademarks . 599
Privacy policy considerations . 599

Glossary . 601

Index . 603

Contents vii

viii ODBC Guide and Reference

About this information

This information provides the information necessary to write applications that use
DB2 ODBC to access IBM DB2 servers, or to access any database system that
supports DRDA level 1 or DRDA level 2 protocols. This information should also be
used as a supplement for writing portable ODBC applications that can be executed
in a native environment using DB2 ODBC.

This information assumes that your DB2® subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
This information is for the following users:
v DB2 for z/OS application programmers with a knowledge of SQL and the C

programming language.
v ODBC application programmers with a knowledge of SQL and the C

programming language.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS®, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

© Copyright IBM Corp. 1997, 2013 ix

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

x ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

About this information xi

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xii ODBC Guide and Reference

Chapter 1. Introduction to DB2 ODBC

DB2 ODBC offers advantages over SQL and provides helpful extensions for
application programming.

DB2 Open Database Connectivity (ODBC) is the IBM callable SQL interface by the
DB2 family of products. It is a C and C++ language application programming
interface for relational database access, and it uses function calls to pass dynamic
SQL statements as function arguments. It is an alternative to embedded dynamic
SQL, but unlike embedded SQL, it does not require a precompiler.

DB2 ODBC is based on the Windows Open Database Connectivity (ODBC)
specification, and the X/Open Call Level Interface specification. These
specifications were chosen as the basis for the DB2 ODBC in an effort to follow
industry standards and to provide a shorter learning curve for those application
programmers familiar with either of these data source interfaces. In addition, some
DB2 specific extensions were added to help the DB2 application programmer
specifically exploit DB2 features.
Related concepts:
“Advantages of using DB2 ODBC” on page 7
“DB2 ODBC background information”
“Differences between DB2 ODBC and embedded SQL” on page 4
“Considerations for choosing between SQL and DB2 ODBC” on page 7

DB2 ODBC background information
The DB2 ODBC interface allows you to create portable applications. The interface
also allows you to load drivers dynamically at run time.

To understand DB2 ODBC or any callable SQL interface, you should understand
what it is based on, and to compare it with existing interfaces.

The X/Open Company and the SQL Access Group jointly developed a specification
for a callable SQL interface referred to as the X/Open Call Level Interface. The
goal of this interface is to increase the portability of applications by enabling them
to become independent of any one database product vendor's programming
interface. Most of the X/Open Call Level Interface specification was accepted as
part of the ISO Call Level Interface Draft International Standard (ISO CLI DIS).

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open
CLI. The Call Level Interface specifications in ISO, X/Open, ODBC, and DB2
ODBC continue to evolve in a cooperative manner to provide functions with
additional capabilities.

The ODBC specification also includes an operating environment where data source
specific ODBC drivers are dynamically loaded at run time by a driver manager
based on the data source name provided on the connect request. The application is
linked directly to a single driver manager library rather than to each database

© Copyright IBM Corp. 1997, 2013 1

management system's library. The driver manager mediates the application's
function calls at run time and ensures they are directed to the appropriate ODBC
driver.

The ODBC driver manager only knows about the ODBC-specific functions, that is,
those functions supported by the database management system for which no API
is specified. Therefore, functions that are specific to one database management
system cannot be directly accessed in an ODBC environment. However, dynamic
SQL statements that are specific to a database management system are indirectly
supported using a mechanism called the vendor escape clause.

ODBC is not limited to Microsoft operating systems. Other implementations are
available, such as DB2 ODBC, or are emerging on various platforms.
Related concepts:
“Vendor escape clauses” on page 504

Differences between DB2 ODBC and ODBC 3.0
Several differences exist between the drivers and runtime environment of DB2
ODBC and ODBC 3.0.

DB2 ODBC is derived from the ISO Call Level Interface Draft International
Standard (ISO CLI DIS) and ODBC 3.0.

If you port existing ODBC applications to DB2 for z/OS or write a new application
according to the ODBC specifications, you must comply with the specifications
defined in this publication. However, before you write to any API, validate that the
API is supported by DB2 ODBC and that the syntax and semantics are identical.
For any differences, you must code to the APIs documented in this publication.

On the DB2 for z/OS platform, no ODBC driver manager exists. Consequently,
DB2 ODBC support is implemented as a CLI/ODBC driver/driver manager that is
loaded at run time into the application address space.

The DB2 for Linux, UNIX, and Windows support for CLI executes on Windows
and AIX® as an ODBC driver, loaded by the Windows driver manager (Windows
environment) or the Visigenic driver manager (UNIX platforms). In this context,
DB2 ODBC support is limited to the ODBC specifications. Alternatively, an
application can directly invoke the CLI application programming interfaces (APIs)
including those not supported by ODBC. In this context, the set of APIs supported
by DB2 for Linux, UNIX, and Windows is referred to as the "Call Level Interface."

The use of DB2 ODBC in this publication refers to DB2 for z/OS support of DB2
ODBC unless otherwise noted.
Related concepts:
“DB2 ODBC and ODBC drivers” on page 531
“The DB2 ODBC run time environment” on page 45
Related information:

Microsoft open database connectivity (ODBC)

DB2 ODBC support for ODBC features
DB2 ODBC supports ODBC 3.0 features with certain exceptions.

2 ODBC Guide and Reference

http://msdn.microsoft.com/en-us/library/windows/desktop/ms710252%28v=vs.85%29.aspx

DB2 ODBC support should be viewed as consisting of most of ODBC 3.0 along
with IBM extensions. Where differences exist, applications should be written to the
specifications defined in this publication.

DB2 ODBC supports the following ODBC functionality:
v ODBC core conformance with the following exceptions:

– Manipulating fields of descriptors is not supported. DB2 ODBC does not
support SQLCopyDesc(), SQLGetDescField(), SQLGetDescRec(),
SQLSetDescField(), or SQLSetDescRec().

– Driver management is not supported. The ODBC driver manager and support
for SQLDrivers() is not applicable in the DB2 for z/OS ODBC environment.

v ODBC level 1 conformance with the following exceptions:
– Asynchronous execution of ODBC functions for individual connections is not

supported.
– Connecting interactively to data sources is not supported. DB2 ODBC does

not support SQLBrowseConnect() and supports SQLDriverConnect() with
SQL_DRIVER_NOPROMPT only.

v ODBC level 2 conformance with the following exceptions:
– Asynchronous execution of ODBC functions for individual statements is not

supported.
– Bookmarks are not supported. DB2 ODBC does not support SQLFetchScroll()

with SQL_FETCH_BOOKMARK; SQLBulkOperations() with
SQL_UPDATE_BY_BOOKMARK, SQL_DELETE_BY_BOOKMARK, or
SQL_FETCH_BY_BOOKMARK; or retrieving bookmarks on column 0 with
SQLDescribeColumn() and SQLColAttribute().

– The SQL_ATTR_LOGIN_TIMEOUT connection attribute, which times out
login requests, and the SQL_ATTR_QUERY_TIMEOUT statement attribute,
which times out SQL queries, are not supported.

v Some X/Open CLI functions
v Some DB2 specific functions

.

The following DB2 features are available to both ODBC and DB2 ODBC
applications:
v The double-byte (graphic) data types
v Stored procedures
v Distributed unit of work (DUW) as defined by DRDA®, two-phase commit
v Distinct types
v User-defined functions
v Unicode and ASCII support

DB2 ODBC contains extensions to access DB2 features that can not be accessed by
ODBC applications:
v SQLCA access for detailed DB2 specific diagnostic information
v Control over nul-termination of output strings
v Support for large objects (LOBs) and LOB locators

Chapter 1. Introduction to DB2 ODBC 3

Related concepts:
“ODBC and distributed units of work” on page 409
“Stored procedures” on page 471
“Length of string arguments” on page 40
“Using LOBs” on page 460
“Application encoding schemes and DB2 ODBC” on page 486
“Distinct types in DB2 ODBC applications” on page 469
Related reference:
“SQLGetSQLCA() - Get SQLCA data structure” on page 284
“Status of support for ODBC functions” on page 90
“DB2 ODBC initialization keywords” on page 65
“DB2 ODBC and ODBC differences” on page 531

Differences between DB2 ODBC and embedded SQL
Even though key differences exist between DB2 ODBC and embedded SQL, DB2
ODBC can execute any SQL statements that can be prepared dynamically in
embedded SQL.

An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the data
source, and executed. In contrast, a DB2 ODBC application does not have to be
precompiled or bound, but instead uses a standard set of functions to execute SQL
statements and related services at run time.

This difference is important because, traditionally, precompilers have been specific
to each database product, which effectively ties your applications to that product.
DB2 ODBC enables you to write portable applications that are independent of any
particular database product. Because you do not precompile ODBC applications,
the DB2 ODBC driver imposes a fixed set of precompiler options on statements
that you execute through ODBC. These options are intended for general ODBC
applications.

This independence means DB2 ODBC applications do not have to be recompiled or
rebound to access different DB2 or DRDA data sources, but rather just connect to
the appropriate data source at run time.

DB2 ODBC and embedded SQL also differ in the following ways:
v DB2 ODBC does not require the explicit declaration of cursors. They are

generated by DB2 ODBC as needed. The application can then use the generated
cursor in the normal cursor fetch model for multiple-row SELECT statements
and positioned UPDATE and DELETE statements.

v The OPEN statement is not used in DB2 ODBC. Instead, the execution of a
SELECT automatically causes a cursor to be opened.

v Unlike embedded SQL, DB2 ODBC allows the use of parameter markers on the
equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect()
function).

v A COMMIT or ROLLBACK in DB2 ODBC is issued using the SQLEndTran()
function call rather than by passing it as an SQL statement.

v DB2 ODBC manages statement related information on behalf of the application,
and provides a statement handle to refer to it as an abstract object. This handle
eliminates the need for the application to use product specific data structures.

4 ODBC Guide and Reference

v Similar to the statement handle, the environment handle and connection handle
provide a means to refer to all global variables and connection specific
information.

v DB2 ODBC uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent with
values used by the IBM relational database products, differences do exist (some
ODBC SQLSTATEs and X/Open defined SQLSTATEs also differ).

Despite these differences, embedded SQL and DB2 ODBC share the following
concept in common: DB2 ODBC can execute any SQL statement that can be
prepared dynamically in embedded SQL.

Table 1 lists each DB2 for z/OS SQL statement and indicates whether you can
execute that statement with DB2 ODBC.

Each database management system might have additional statements that can be
dynamically prepared, in which case DB2 ODBC passes them to the database
management system.

Exception: COMMIT and ROLLBACK can be dynamically prepared by some
database management systems but are not passed. The SQLEndTran() function
should be used instead to specify either COMMIT or ROLLBACK.

Table 1. ODBC support for SQL statements

SQL statement Dynamic1 DB2 ODBC2

ALTER TABLE Yes Yes

ALTER DATABASE Yes Yes

ALTER INDEX Yes Yes

ALTER STOGROUP Yes Yes

ALTER TABLESPACE Yes Yes

BEGIN DECLARE SECTION3 No No

CALL No Yes4

CLOSE No SQLFreeHandle()

COMMENT ON Yes Yes

COMMIT Yes SQLEndTran()

CONNECT (type 1) No SQLConnect(), SQLDriverConnect()

CONNECT (type 2) No SQLConnect(), SQLDriverConnect()

CREATE { ALIAS, DATABASE, INDEX,
STOGROUP, SYNONYM, TABLE,
TABLESPACE, VIEW, DISTINCT
TYPE }

Yes Yes

DECLARE CURSOR3 No SQLAllocHandle()

DECLARE STATEMENT No No

DECLARE TABLE No No

DECLARE VARIABLE No No

DELETE Yes Yes

DESCRIBE No SQLDescribeCol(), SQLColAttribute()

DROP Yes Yes

END DECLARE SECTION3 No No

Chapter 1. Introduction to DB2 ODBC 5

Table 1. ODBC support for SQL statements (continued)

SQL statement Dynamic1 DB2 ODBC2

EXECUTE No SQLExecute()

EXECUTE IMMEDIATE No SQLExecDirect()

EXPLAIN Yes Yes

FETCH No SQLFetch(), SQLExtendedFetch()

FREE LOCATOR4 No Yes

GET DIAGNOSTICS No No

GRANT Yes Yes

HOLD LOCATOR4 No Yes

INCLUDE3 No No

INSERT Yes Yes

LABEL ON Yes Yes

LOCK TABLE Yes Yes

MERGE5 Yes Yes

OPEN No SQLExecute(), SQLExecDirect()

PREPARE No SQLPrepare()

RELEASE No No

RENAME Yes Yes

REVOKE Yes Yes

ROLLBACK Yes SQLEndTran()

select-statement Yes Yes

SELECT INTO No No

SET CONNECTION No SQLSetConnection()

SET host_variable No No

SET CURRENT APPLICATION
ENCODING SCHEME

No No

SET CURRENT DEGREE Yes Yes

SET CURRENT PACKAGESET No No

SET CURRENT PATH Yes Yes

SET CURRENT SCHEMA Yes Yes

SET CURRENT SQLID Yes Yes

UPDATE Yes Yes

WHENEVER3 No No

Note:

1. All statements in this list can be coded as static SQL, but only those marked Yes can be coded as dynamic SQL.

2. An X indicates that this statement can be executed using either SQLExecDirect(), or SQLPrepare() and
SQLExecute(). Equivalent DB2 ODBC functions are listed.

3. This statement is not executable.

4. Although this statement is not dynamic, DB2 ODBC allows the statement to be specified when calling either
SQLExecDirect() or SQLPrepare() and SQLExecute().

5. The FOR n ROWS clause cannot be specified in a MERGE statement in a DB2 ODBC program. To specify the
number of rows to be merged, use SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE statement attribute.

6 ODBC Guide and Reference

Related reference:
“SQLSTATE cross reference” on page 537

Advantages of using DB2 ODBC
DB2 ODBC provides a number of key features that offer advantages in contrast to
embedded SQL.

DB2 ODBC has the following features:
v Ideally suits the client-server environment in which the target data source is

unknown when the application is built. It provides a consistent interface for
executing SQL statements, regardless of which database server the application
connects to.

v Lets you write portable applications that are independent of any particular
database product. DB2 ODBC applications do not have to be recompiled or
rebound to access different DB2 or DRDA data sources. Instead they connect to
the appropriate data source at run time.

v Reduces the amount of management required for an application while in general
use. Individual DB2 ODBC applications do not need to be bound to each data
source. Bind files provided with DB2 ODBC need to be bound only once for all
DB2 ODBC applications.

v Lets applications connect to multiple data sources from the same application.
v Allocates and controls data structures, and provides a handle for the application

to refer to them. Applications do not have to control complex global data areas
such as the SQLDA and SQLCA.

v Provides enhanced parameter input and fetching capability. You can specify
arrays of data on input to retrieve multiple rows of a result set directly into an
array. You can execute statements that generate multiple result sets.

v Lets you retrieve multiple rows and result sets generated from a call to a stored
procedure.

v Provides a consistent interface to query catalog information that is contained in
various database management system catalog tables. The result sets that are
returned are consistent across database management systems. Application
programmers can avoid writing version-specific and server-specific catalog
queries.

v Provides extended data conversion which requires less application code when
converting information between various SQL and C data types.

v Aligns with the emerging ISO CLI standard in addition to using the accepted
industry specifications of ODBC and X/Open CLI.

v Allows application developers to apply their knowledge of industry standards
directly to DB2 ODBC. The interface is intuitive for programmers who are
familiar with function libraries but know little about product specific methods of
embedding SQL statements into a host language.

Considerations for choosing between SQL and DB2 ODBC
Before you determine which interface to use, consider key factors like performance,
encapsulation, and security.

DB2 ODBC is ideally suited for query-based applications that require portability.
Use the following information to help you decide which interface meets your
needs.

Chapter 1. Introduction to DB2 ODBC 7

ODBC is a dynamic SQL interface: Only embedded SQL applications can use static
SQL. Both static and dynamic SQL have advantages. Consider these factors:
v Performance

Dynamic SQL is prepared at run time. Static SQL is prepared at bind time. The
preparation step for dynamic SQL requires more processing and might incur
additional network traffic.
However, static SQL does not always perform better than dynamic SQL.
Dynamic SQL can make use of changes to the data source, such as new indexes,
and can use current catalog statistics to choose the optimal access plan.

v Encapsulation and security
In static SQL, authorization to objects is associated with a package and validated
at package bind time. Database administrators can grant execute authority on a
particular package to a set of users rather than grant explicit access to each
database object.
In dynamic SQL, authorization is validated at run time on a per statement basis;
therefore, users must be granted explicit access to each database object.

An ODBC application can call a stored procedure that uses static SQL: An application
programmer can create a stored procedure that contains static SQL. The stored
procedure is called from within a DB2 ODBC application and executed on the
server. After the stored procedure is created, any DB2 ODBC or ODBC application
can call it.

An ODBC application can mix static and dynamic SQL: You can write a mixed
application that uses both DB2 ODBC and embedded SQL. In this scenario, DB2
ODBC provides the base application, and you write key modules using static SQL
for performance or security. Choose this option only if stored procedures do not
meet your applications requirements.

DB2 ODBC does not support embedded SQL statements in a multiple context
environment.
Related concepts:
“Embedded SQL and DB2 ODBC in the same program” on page 502
“DB2 ODBC support of multiple contexts” on page 478

8 ODBC Guide and Reference

Chapter 2. Conceptual view of a DB2 ODBC application

A typical DB2 ODBC application includes initialization, transaction processing, and
termination tasks.

You can consider a DB2 ODBC application as a set of tasks. Some of these tasks
consist of discrete steps, while others might apply throughout the application. One
or more DB2 ODBC functions carry out each of these core tasks.

Every DB2 ODBC application performs three core tasks: initialization, transaction
processing, and termination. The following figure illustrates an ODBC application
in terms of these tasks.

Initialization
This task allocates and initializes some resources in preparation for the
transaction processing task.

Transaction processing
This task provides functionality to the application. It passes SQL
statements to DB2 ODBC that query and modify data.

Termination
This task frees allocated resources. The resources generally consist of data
areas identified by unique handles.

In addition to the three tasks listed above, general tasks, such as handling
diagnostic messages, occur throughout an application.

Initialization

Termination

Transaction

processing

Figure 1. Conceptual view of a DB2 ODBC application

© Copyright IBM Corp. 1997, 2013 9

Related concepts:
“Functions for querying environment and data source information” on page 41
Chapter 5, “Advanced features,” on page 407
“Diagnostics” on page 24
“Data types and data conversion” on page 26
“Initialization and termination of an ODBC program”
“Transaction processing in DB2 ODBC” on page 15
“Characteristics of string arguments” on page 40
Related information:
Chapter 4, “ODBC Functions,” on page 89

Initialization and termination of an ODBC program
Initialization and termination processes allocate and free resources by using
handles.

The following figure shows the function call sequences for both the initialization
and termination tasks.

In the initialization task, an application allocates handles and connects to data
sources. In the termination task, an application frees handles and disconnects from
data sources. Use handles and the ODBC connection model to initialize and
terminate an application.

Allocate environment

Connect

Free connection

Disconnect

Free environment

SQLAllocHandle()

SQLConnect()
or

SQLDriverConnect()

SQLAlloc ()Handle

SQLFree ()Handle

SQLDisconnect()

Allocate connection

Initialization

Termination

Transaction
processing

SQLFree ()Handle

Figure 2. Conceptual view of initialization and termination tasks

10 ODBC Guide and Reference

Related concepts:
“Transaction processing in DB2 ODBC” on page 15

Handles
A handle is a variable that refers to a data object that is controlled by DB2 ODBC.
The environment, connection, and statement handles are necessary for the
initialization and termination processes.

Using handles relieves the application from managing global variables or data
structures, such as the SQLDA or SQLCA, that the IBM embedded SQL interfaces
use.

DB2 ODBC defines the three following handles:

Environment handle
The environment handle refers to the data object that contains information
regarding the global state of the application, such as attributes and
connections. This handle is allocated by calling SQLAllocHandle() (with
HandleType set to SQL_HANDLE_ENV), and freed by calling
SQLFreeHandle() (with HandleType set to SQL_HANDLE_ENV). An
environment handle must be allocated before a connection handle can be
allocated.

Connection handle
A connection handle refers to a data object that contains information
associated with a connection to a particular data source. This includes
connection attributes, general status information, transaction status, and
diagnostic information. Each connection handle is allocated by calling
SQLAllocHandle() (with HandleType set to SQL_HANDLE_DBC) and freed
by calling SQLFreeHandle() (with HandleType set to SQL_HANDLE_DBC).

An application can be connected to several database servers at the same
time. An application requires a connection handle for each concurrent
connection to a database server.

Call SQLGetInfo() to determine if a user-imposed limit on the number of
connection handles has been set.

Statement handles
A statement handle refers to the data object that describes and tracks the
execution of an SQL statement. You can allocate a statement handle by
calling SQLAllocHandle() and must do so before you can execute a
statement.

The initialization task consists of the allocation and initialization of environment
and connection handles. The termination task later frees these handles. An
application then passes the appropriate handle when it calls other DB2 ODBC
functions.
Related concepts:
“Statement handle allocation” on page 17
“How to connect to one or more data sources” on page 13

ODBC connection model
The ODBC specifications support any number of concurrent connections, each of
which is an independent transaction.

Chapter 2. Conceptual view of a DB2 ODBC application 11

An application can issue SQLConnect() to X, perform some work, issue
SQLConnect() to Y, perform some work, and then commit the work at X. ODBC
supports multiple concurrent and independent transactions, one per connection.

DB2 ODBC restrictions on the ODBC connection model
DB2 ODBC does not fully support the ODBC connection model if the initialization
file does not specify MULTICONTEXT=1.

In this case, to obtain simulated support of the ODBC connection model, an
application must specify CONNECTTYPE=1 either through the initialization file or
the SQLSetConnectAttr() API.

An application that uses DB2 ODBC to simulate support of the ODBC model can
logically connect to any number of data sources. However, the DB2 ODBC driver
maintains only one physical connection. This single connection is to the data
source to which the application last successfully connected or issued an SQL
statement.

An application that operates with simulated support of the ODBC connection
model, regardless of the commit mode, behaves as follows:
v When the application accesses multiple data sources, it allocates a connection

handle to each data source. Because this application can make only one physical
connection at a time, the DB2 ODBC driver commits the work on the current
data source and terminates the current connection before the application
connects to a new data source. Therefore, an application that operates with
simulated support of the ODBC connection model cannot open cursors
concurrently at two data sources (including cursors WITH HOLD).

v When the application does not explicitly commit or roll back work on the
current connection before it calls a function on another connection, the DB2
ODBC driver implicitly performs the following actions:
1. Commits work on the current connection
2. Disconnects from the current data source
3. Connects to the new data source
4. Executes the function

When you enable multiple-context support (MULTICONTEXT=1), DB2 ODBC fully
supports the ODBC connection model.
Related concepts:
“How to specify the connection type”
“DB2 ODBC support of multiple contexts” on page 478
Related reference:
“DB2 ODBC initialization keywords” on page 65

How to specify the connection type
Every IBM RDBMS supports both type 1 and type 2 connection type semantics, in
which only one transaction is active at any time.

In SQL, CONNECT (type 1) lets the application connect to only a single database
at any time so a single transaction is active on the current connection. This
connection type models DRDA remote unit of work processing.

12 ODBC Guide and Reference

Conversely, CONNECT (type 2), in SQL, lets the application connect concurrently
to any number of database servers, all of which participate in a single transaction.
This connection type models DRDA distributed unit of work processing.

DB2 ODBC supports both these connection types, but all connections in your
application must use only one connection type at a given time. You must free all
current connection handles before you change the connection type.

Important: Establish a connection type before you issue SQLConnect().

You can establish the connection type with either of the following methods:
v Specify CONNECTTYPE=1 (for CONNECT (type 1)) or CONNECTTYPE=2 (for

CONNECT (type 2)) in the common section of the initialization file.
v Invoke SQLSetConnectAttr() with the Attribute argument set to

SQL_ATTR_CONNECTTYPE andValuePtr set to SQL_CONCURRENT_TRANS
(for CONNECT (type 1)) or SQL_COORDINATED_TRANS (for CONNECT (type
2)).

Related concepts:
“How to use the initialization file” on page 63

How to connect to one or more data sources
DB2 ODBC supports different connection types to remote data sources through
DRDA.

If an application is CONNECT (type 1) and specifies MULTICONTEXT=0, DB2
ODBC allows the application to logically connect to multiple data sources.
However, DB2 ODBC allows the application only one outstanding transaction (a
transaction the application has not yet committed or rolled back) on the active
connection. If the application is CONNECT (type 2), then the transaction is a
distributed unit of work and all data sources participate in the disposition of the
transaction (commit or rollback).

To connect concurrently to one or more data sources, call SQLAllocHandle() (with
HandleType set to SQL_HANDLE_DBC) once for each connection. Use the
connection handle that this statement yields in an SQLConnect() call to request a
data source connection. Use the same connection handle in an SQLAllocHandle()
call (with HandleType set to SQL_HANDLE_STMT) to allocate statement handles to
use within that connection. An extended connect function, SQLDriverConnect(),
allows you to set additional connection attributes. However, statements that
execute on different connections do not coordinate.

Example: The following example illustrates an application that connects, allocates
handles, frees handles, and disconnects. This application connects to multiple data
sources but does not explicitly set a connection type or specify multiple-context
support. The CONNECTTYPE and MULTICONTEXT keywords in the initialization
file declare these settings.
/* ... */
/***
** - Demonstrate basic connection to two data sources.
** - Error handling mostly ignored for simplicity
**
** Functions used:
**
** SQLAllocHandle SQLDisconnect
** SQLConnect SQLFreeHandle
** Local Functions:

Chapter 2. Conceptual view of a DB2 ODBC application 13

** DBconnect
**
**/
#include <stdio.h>
#include <stdlib.h>
#include "sqlcli1.h"
int
DBconnect(SQLHENV henv,

SQLHDBC * hdbc,
char * server);

#define MAX_UID_LENGTH 18
#define MAX_PWD_LENGTH 30
#define MAX_CONNECTIONS 2
int
main()
{

SQLHENV henv;
SQLHDBC hdbc[MAX_CONNECTIONS];
char * svr[MAX_CONNECTIONS] =

{
"KARACHI" ,
"DAMASCUS"

}
/* Allocate an environment handle */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* Connect to first data source */
DBconnect(henv, &hdbc[0],

svr[0]);
/* Connect to second data source */
DBconnect(henv, &hdbc[1],

svr[1]);
/********* Start processing step *************************/
/* Allocate statement handle, execute statement, and so on */
/********* End processing step ***************************/
/**/
/* Commit work on connection 1. */
/**/
SQLEndTran(SQL_HANDLE_DBC, hdbc[0], SQL_COMMIT);
/**/
/* Commit work on connection 2. This has NO effect on the */
/* transaction active on connection 1. */
/**/
SQLEndTran(SQL_HANDLE_DBC, hdbc[1], SQL_COMMIT);
printf("\nDisconnecting\n");
SQLDisconnect(hdbc[0]); /* disconnect first connection */

SQLDisconnect(hdbc[1]); /* disconnect second connection */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc[0]); /* free first connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc[1]); /* free second connection handle */
SQLFreeHandle(SQL_HANDLE_ENV, henv); /* free environment handle */
return (SQL_SUCCESS);

}
/**
** Server is passed as a parameter. Note that NULL values are **
** passed for USERID and PASSWORD. **
**/
int
DBconnect(SQLHENV henv,

SQLHDBC * hdbc,
char * server)

{
SQLRETURN rc;
SQLCHAR buffer[255];
SQLSMALLINT outlen;

SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc); /* allocate connection handle */
rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc != SQL_SUCCESS) {

14 ODBC Guide and Reference

printf(">--- Error while connecting to database:
return (SQL_ERROR);

} else {
printf(">Connected to
return (SQL_SUCCESS);

}
}
/* ... */

Related concepts:
“ODBC and distributed units of work” on page 409

Transaction processing in DB2 ODBC
Transaction processing is the second core task after initialization. During this task,
SQL statements query and modify data in DB2 ODBC.

The following figure shows the typical order of function calls in a DB2 ODBC
application. It does not show all functions or possible paths.

Figure 3. An application that connects to two data sources

Chapter 2. Conceptual view of a DB2 ODBC application 15

The transaction processing task contains five general steps:
1. Allocating statement handles
2. Preparing and executing SQL statements
3. Processing results
4. Committing or rolling back
5. Optionally, freeing statement handles if the statement is unlikely to be executed

again

Prepare a statement

Execute a statement

Directly execute
a statement

Commit or Rollback

Free statement

If statement is not executed again:

Allocate a statement

Receive query results Update data Other

(SELECT, VALUES) (UPDATE, DELETE,
INSERT, MERGE)

(ALTER, CREATE,
DROP, GRANT,
REVOKE, SET)

SQLExecute()

SQLAllocHandle()

SQLEndTran()

SQLFreeHandle()
(statement)

SQLFetch()

SQLExecDirect()

SQLGetData()

SQLRowCount() (no functions
required)

SQLBindCol()

SQLColAttribute()
or

SQLBindParameter()SQLBindParameter()

SQLDescribeCol()

SQLNumResultsCols()

SQLPrepare()

Figure 4. Transaction processing

16 ODBC Guide and Reference

Statement handle allocation
A statement handle refers to the data object that describes and tracks the execution
of an SQL statement. You must allocate a statement handle before you can execute
a statement.

SQLAllocHandle() (with HandleType set to SQL_HANDLE_STMT) allocates a
statement handle to describe an SQL statement. The description of an SQL
statement includes information such as statement attributes, SQL statement text,
dynamic parameters, cursor information, bindings for dynamic arguments and
columns, result values, and status information (these are discussed later). Each
statement handle associates the statement it describes with a connection.

By default, the maximum number of statement handles you can allocate at any one
time is limited by the application heap size. The maximum number of statement
handles you can actually use, however, is defined by DB2 ODBC. Table 2 lists the
number of statement handles DB2 ODBC allows for each isolation level. If an
application exceeds these limits, SQLPrepare() and SQLExecDirect() return
SQLSTATE HY014.

Table 2. Maximum number of statement handles allocated at one time

Isolation level Without hold With hold Total

Cursor stability 296 254 550

No commit 296 254 550

Repeatable read 296 254 550

Read stability 296 254 550

Uncommitted read 296 254 550

Preparation and execution of SQL statements
After you allocate a statement handle, you can specify and execute SQL statements.

You can execute SQL statements through the following steps:
v Prepare then execute:

1. Call SQLPrepare() with an SQL statement as an argument.
2. Call SQLBindParameter() if the SQL statement contains parameter markers.
3. Call SQLExecute().

v Execute direct:
1. Call SQLBindParameter() if the SQL statement contains parameter markers.
2. Call SQLExecDirect() with an SQL statement as an argument.

The first method, prepare then execute, splits the preparation of the statement from
the execution. Use this method when either of the following conditions is true:
v You execute a statement repeatedly (usually with different parameter values).

This method allows you to prepare the same statement only once. Subsequent
executions of that statement make use of the access plan the prepare generated.

v You require information about the columns in the result set, before it executes
the statement.

The second method combines the prepare step and the execute step into one. Use
this method when both of the following conditions are true:
v You execute the statement only once. This method allows you to call one

function instead of two to execute an SQL statement.

Chapter 2. Conceptual view of a DB2 ODBC application 17

v You do not require information about the columns in the result set before you
actually execute the statement.

DB2 for z/OS and DB2 for Linux, UNIX, and Windows provide dynamic statement
caching at the database server. In DB2 ODBC terms, dynamic statement caching
means that for a given statement handle, once the database prepares a statement, it
does not need to prepare it again (even after commits or rollbacks), as long as you
do not free the statement handle. Applications that repeatedly execute the same
SQL statement across multiple transactions, can save a significant amount of
processing time and network traffic by:
1. Associating each such statement with its own statement handle, and
2. Preparing these statements once at the beginning of the application, then
3. Executing the statements as many times as is needed throughout the

application.

Functions for binding parameters in SQL statements
Both SQLPrepare(), followed by SQLExecute(), and SQLExecDirect() enable you to
execute an SQL statement that uses parameter markers in place of expressions or
host variables (for embedded SQL).

Parameter markers are question mark characters (?) that you place in SQL
statements. When you execute a statement that contains parameter markers, these
markers are replaced with the contents of host variables.

Binding associates an application variable to a parameter marker. Your application
must bind an application variable to each parameter marker in an SQL statement
before it can execute that statement. To bind a parameter, call SQLBindParameter()
with the appropriate arguments to indicate the numerical position of the
parameter, the SQL type of the parameter, the data type of the variable, a pointer
to the application variable, and length of the variable.

You refer to parameter markers in an SQL statement sequentially, from left to right,
starting at 1, in ODBC function calls. You can call SQLNumParams() to determine the
number of parameters in a statement.

The bound application variable and its associated length are called deferred input
arguments. These arguments are called deferred because only pointers are passed
when the parameter is bound; no data is read from the variable until the statement
is executed. Deferred arguments enable you to modify the contents of bound
parameter variables and execute SQL statements that use the most recent value
with another call to SQLExecute().

Information for each parameter remains in effect until the application overrides or
unbinds the parameter, or drops the statement handle. If the application executes
the SQL statement repeatedly without changing the parameter binding, DB2 ODBC
uses the same pointers to locate the data on each execution. The application can
also change the parameter binding to a different set of deferred variables. The
application must not deallocate or discard deferred input fields between the time it
binds the fields to parameter markers and the time DB2 ODBC accesses them at
execution time.

You can bind parameters to a variable with a different data type than the SQL
statement requires. Your application must indicate the C data type of the source,
and the SQL type of the parameter marker. DB2 ODBC converts the contents of the
variable to match the SQL data type you specified. For example, the SQL statement

18 ODBC Guide and Reference

might require an integer value, but your application has a string representation of
an integer. You can bind the string to the parameter, and DB2 ODBC will convert
the string to the corresponding integer value when you execute the statement. Not
every C data type can be bound to a parameter marker.

Use SQLDescribeParam() to determine the data type of a parameter marker. If the
application indicates an incorrect data type for the parameter marker, an extra
conversion by the database server or an error can occur.

When you use an SQL predicate that compares a distinct type to a parameter
marker, you must either cast the parameter marker to the distinct type or cast the
distinct type to a source type. Otherwise, an error occurs.
Related concepts:
“Input and retrieval of long data in pieces” on page 452
“Data types and data conversion” on page 26
“Cast parameter markers to distinct types or distinct types to source types” on
page 510
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114

How an ODBC program processes results
After an application executes an SQL statement, it must process the results that the
statement produced. The type of processing that an application performs depends
on the type of SQL statement that it initially issues.

Processing query (SELECT, VALUES) statements
While processing query statements, the application must also run diagnostic
checks.

About this task

Applications generally perform better if columns are bound rather than retrieved
using SQLGetData(). However, an application can be constrained in the amount of
long data that it can retrieve and handle at one time. If this is a concern, then
SQLGetData() might be the better choice.

Procedure

To process query statements in an ODBC application:
1. Analyze the executed or prepared statement and describe the structure of the

result set, including the number, types, and lengths of the columns. If the SQL
statement was generated by the application, then this step might not be
necessary because the application might know the structure of the result set
and the data types of each column.
If you know the structure of the entire result set, especially if the result set
contains a very large number of columns, you might want to supply DB2
ODBC with the descriptor information. This can reduce network traffic because
DB2 ODBC does not have to retrieve the information from the server.
If the SQL statement was generated at run time (for example, entered by a
user), then the application has to query the number of columns, the type of
each column, and perhaps the names of each column in the result set. This

Chapter 2. Conceptual view of a DB2 ODBC application 19

information can be obtained by calling SQLNumResultCols() and
SQLDescribeCol(), or by calling SQLColAttribute(), after preparing or after
executing the statement.

2. Optional: To bind application variables to columns in order to receive the data,
retrieve column data directly into an application variable on the next call to
SQLFetch(). For each column to be retrieved, the application calls SQLBindCol()
to bind an application variable to a column in the result set. The application
can use the information obtained from Step 1 to determine the C data type of
the application variable and to allocate the maximum storage the column value
could occupy. Similar to variables bound to parameter markers using
SQLBindParameter(), columns are bound to deferred arguments. This time the
variables are deferred output arguments, as data is written to these storage
locations when SQLFetch() is called.
If the application does not bind any columns, as in the case when it needs to
retrieve columns of long data in pieces, it can use SQLGetData(). Both the
SQLBindCol() and SQLGetData() techniques can be combined if some columns
are bound and some are unbound. The application must not deallocate or
discard variables used for deferred output fields between the time it binds
them to columns of the result set and the time DB2 ODBC writes the data to
these fields.

3. Call SQLFetch() to fetch the first or next row of the result set. If any columns
are bound, the application variable is updated. You can also write an
application that fetches multiple rows of the result set into an array.
If data conversion was indicated by the data types specified on the call to
SQLBindCol(), the conversion occurs when SQLFetch() is called.

4. Optional: Call SQLGetData() to retrieve columns that were not previously
bound.
Data conversion can also be indicated here, as in SQLBindCol(), by specifying
the target C data type of the application variable.
To unbind a particular column of the result set, use SQLBindCol() with a null
pointer for the application variable argument (rgbValue). To unbind all of the
columns at one time, call SQLFreeHandle() on the statement handle.

Related concepts:
“Input and retrieval of long data in pieces” on page 452
“Data types and data conversion” on page 26
“Retrieval of a result set into an array” on page 427
“Functions for setting and retrieving environment, connection, and statement
attributes” on page 407
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLColAttribute() - Get column attributes” on page 135
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLFetch() - Fetch the next row” on page 197
“SQLGetData() - Get data from a column” on page 232
“SQLNumResultCols() - Get number of result columns” on page 312

Processing UPDATE, DELETE, INSERT, and MERGE statements
In some cases, you might need to use a cursor if you perform a positioned
UPDATE or DELETE in your application. Otherwise, you need to check only for
diagnostic messages.

20 ODBC Guide and Reference

About this task

If a statement modifies data (UPDATE, DELETE, INSERT, or MERGE statements),
no action is required, other than the normal check for diagnostic messages. In this
case, use SQLRowCount() to obtain the number of rows the SQL statement affects.

If the SQL statement is a positioned UPDATE or DELETE, you need to use a
cursor. A cursor is a moveable pointer to a row in the result table of an active
query statement. (This query statement must contain the FOR UPDATE OF clause
to ensure that the query is not opened as read-only.) In embedded SQL, the names
of cursors are used to retrieve, update or delete rows. In DB2 ODBC, a cursor
name is needed only for positioned UPDATE or DELETE SQL statements as they
reference the cursor by name.

Procedure

To perform a positioned update or delete in your application:
1. Issue a SELECT statement to generate a result set.
2. Call SQLGetCursorName() to retrieve the name of the cursor on the result set

that you generated in the preceding step. You use this cursor name in the
UPDATE or DELETE statement.

Tip: Use the name that DB2 automatically generates. Although you can define
your own cursor names by using SQLSetCursorName(), use the name that DB2
generates. All error messages reference the DB2 generated name, not the name
that you define with SQLSetCursorName().

3. Allocate a second statement handle to execute the positioned update or delete.
To update or delete a row that has been fetched, you use two statement
handles: one handle for the fetch and one handle for the update of the delete.
You cannot reuse the fetch statement handle to execute a positioned update or
delete because this handle holds the cursor while the positioned update or
delete executes.

4. Call SQLFetch() to position the cursor on a row in the result set.
5. Create the UPDATE or DELETE SQL statement with the WHERE CURRENT of

clause and specify the cursor name that you obtained in step 2.
sprintf((char *)stmtPositionedUpdate,
"UPDATE org SET location = ’San Jose’ WHERE CURRENT of %s",
cursorName);

6. Execute the positioned update or delete statement.
Related concepts:

Positioned updates of columns (DB2 SQL)
Related tasks:

Cursors (DB2 Application programming and SQL)
Related reference:
“SQLFetch() - Fetch the next row” on page 197
“SQLGetCursorName() - Get cursor name” on page 228
“SQLRowCount() - Get row count” on page 344
“SQLSetCursorName() - Set cursor name” on page 362

Processing other statements
You do not need to take further action other than a normal check for diagnostic
messages if the statement neither queries nor modifies data.

Chapter 2. Conceptual view of a DB2 ODBC application 21

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_positionedcolumnupdates.htm#db2z_positionedcolumnupdates
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_cursor.htm#db2z_cursor

Commit and rollback in DB2 ODBC
DB2 ODBC supports two commit modes: autocommit and manual-commit. A
transaction is a recoverable unit of work or a group of SQL statements that can be
treated as one atomic operation. This means that all the operations within the
group are guaranteed to be completed (committed) or undone (rolled back), as if
they were a single operation.

A transaction can also be referred to as a unit of work or a logical unit of work.
When the transaction spans multiple connections, it is referred to as a distributed
unit of work.

In autocommit mode, every SQL statement is a complete transaction, which is
automatically committed. For a non-query statement, the commit is issued at the
end of statement execution. For a query statement, the commit is issued after the
cursor is closed. Given a single statement handle, the application must not start a
second query before the cursor of the first query is closed.

In manual-commit mode, transactions are started implicitly with the first access to
the data source using SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any
function that returns a result set. At this point a transaction begins, even if the call
failed. The transaction ends when you use SQLEndTran() to either rollback or
commit the transaction. This means that any statements executed (on the same
connection) between these are treated as one transaction.

The default commit mode is autocommit, except when participating in a
coordinated transaction. An application can switch between manual-commit and
autocommit modes by calling SQLSetConnectAttr(). Typically, a query-only
application might want to stay in autocommit mode. Applications that need to
perform updates to the data source should turn off autocommit as soon as the data
source connection is established.

When multiple connections exist, each connection has its own transaction (unless
CONNECT (type 2) is specified). Special care must be taken to call SQLEndTran()
with the correct connection handle to ensure that only the intended connection and
related transaction is affected. Unlike distributed unit of work connections,
transactions on each connection do not coordinate.
Related concepts:
“ODBC and distributed units of work” on page 409
“Use of ODBC for querying the DB2 catalog” on page 417

When to call SQLEndTran()
In manual-commit mode, SQLEndTran() must be called before SQLDisconnect() is
called.

An application in autocommit mode is not required to call SQLEndTran() because a
commit is issued implicitly at the end of each statement execution. If distributed
unit of work is involved, additional rules can apply.

Recommendation: If your application performs updates, do not wait until the
application disconnects before you commit or roll back transactions.

The other extreme is to operate in autocommit mode, which is also not
recommended as this adds extra processing. The application can modify the
autocommit mode by starting the SQLSetConnectAttr() function.

22 ODBC Guide and Reference

Consider the following behaviors to decide where in the application to end a
transaction:
v If using CONNECT (type 1) with MULTICONTEXT=0, only the current

connection can have an outstanding transaction. If using CONNECT (type 2), all
connections participate in a single transaction.

v If using MULTICONTEXT=1, each connection can have an outstanding
transaction.

v Various resources can be held while you have an outstanding transaction.
Ending the transaction releases the resources for use by other users.

v When a transaction is successfully committed or rolled back, it is fully
recoverable from the system logs. Open transactions are not recoverable.

Related concepts:
“ODBC and distributed units of work” on page 409
“Functions for setting and retrieving environment, connection, and statement
attributes” on page 407
Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350

Effects of calling SQLEndTran()
When a transaction ends, an application behaves with certain characteristics.
v All locks on database server objects are released, except those that are associated

with a held cursor.
v Prepared statements are preserved from one transaction to the next if the data

source supports statement caching (as DB2 for z/OS does). After a statement is
prepared on a specific statement handle, it does not need to be prepared again
even after a commit or rollback, provided the statement continues to be
associated with the same statement handle.

v Cursor names, bound parameters, and column bindings are maintained from
one transaction to the next.

v By default, cursors are preserved after a commit (but not a rollback). All cursors
are defined using the WITH HOLD clause (except when connected to DB2
Server for VSE & VM, which does not support the WITH HOLD clause).

Related reference:
“SQLSetStmtOption() - Set statement attribute” on page 387
“SQLTransact() - Transaction management” on page 405

Function for freeing statement handles
You call the SQLFreeHandle() function (with HandleType set to
SQL_HANDLE_STMT) to terminate processing for a particular statement handle.

SQLFreeHandle() also performs the following tasks:
v Unbinds all columns of the result set
v Unbinds all parameter markers
v Closes any cursors and discard any pending results
v Drops the statement handle, and release all associated resources

The statement handle can be reused for other statements provided it is not
dropped. If a statement handle is reused for another SQL statement string, any
cached access plan for the original statement is discarded.

Chapter 2. Conceptual view of a DB2 ODBC application 23

The columns and parameters must always be unbound before using the handle to
process a statement with a different number or type of parameters or a different
result set; otherwise application programming errors might occur.

Diagnostics
Diagnostics deal with warning or error conditions that are generated within an
application.

DB2 ODBC functions generate two levels of diagnostics:
v Return codes
v Detailed diagnostics (SQLSTATEs, messages, SQLCA)

Each DB2 ODBC function returns the function return code as a basic diagnostic.
The SQLGetDiagRec() function provides more detailed diagnostic information. The
SQLGetSQLCA() function provides access to the SQLCA, if the diagnostic is reported
by the data source. This arrangement lets applications handle the basic flow
control, and the SQLSTATEs allow determination of the specific causes of failure.

The SQLGetDiagRec() function returns the following three pieces of information:
v SQLSTATE
v Native error: if the diagnostic is detected by the data source, this is the

SQLCODE; otherwise, this is set to -99999.
v Message text: this is the message text associated with the SQLSTATE.
Related concepts:
Chapter 6, “Problem diagnosis,” on page 517
Related reference:
“SQLGetDiagRec() - Get multiple field settings of diagnostic record” on page 244

Function return codes
Every ODBC function returns a return code that indicates whether the function
invocation succeeded or failed.

The following table lists all possible return codes for DB2 ODBC functions.

Table 3. DB2 ODBC function return codes

Return code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning or
other information. Call SQLGetDiagRec() to receive the
SQLSTATE and any other informational messages or
warnings. The SQLSTATE class is '01'.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant data
was found. When this is returned after the execution of
an SQL statement, additional information might be
available which can be obtained by calling
SQLGetDiagRec().

SQL_NEED_DATA The application tried to execute an SQL statement but
DB2 ODBC lacks parameter data that the application
had indicated would be passed at execute time..

SQL_ERROR The function failed. Call SQLGetDiagRec() to receive the
SQLSTATE and any other error information.

24 ODBC Guide and Reference

Table 3. DB2 ODBC function return codes (continued)

Return code Explanation

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection, or statement handle). This is
a programming error. No further information is
available.

Related concepts:
“Input and retrieval of long data in pieces” on page 452
Related reference:
“SQLSTATE cross reference” on page 537

SQLSTATEs for ODBC error reporting
DB2 ODBC provides a standard set of codes called SQLSTATEs because different
database servers often have different diagnostic message codes. Certain guidelines
apply to the use of SQLSTATEs within applications.

SQLSTATEs are defined by the X/Open SQL CAE specification. This allows
consistent message handling across different database servers.

SQLSTATEs are alphanumeric strings of five characters (bytes) with a format of
ccsss, where cc indicates class and sss indicates subclass. All SQLSTATEs use one of
the following classes:

'01' A warning.

'S1' Generated by the DB2 ODBC driver for ODBC 2.0 applications.

'HY' Which is generated by the DB2 ODBC driver for ODBC 3.0 applications.

Important: In ODBC 3.0, 'HY' classes map to 'S1' classes. 'HY' is a reserved
X/Open class for ODBC/CLI implementations. This class replaces the 'S1' class in
ODBC 3.0 to follow the X/Open and ISO CLI standard.

For some error conditions, DB2 ODBC returns SQLSTATEs that differ from those
states listed in Microsoft open database connectivity (ODBC). This inconsistency is
a result of DB2 ODBC following the X/Open SQL CAE and SQL92 specifications.

DB2 ODBC SQLSTATEs include both additional IBM-defined SQLSTATEs that are
returned by the database server, and DB2 ODBC-defined SQLSTATEs for
conditions that are not defined in the X/Open specification. This allows for the
maximum amount of diagnostic information to be returned.

Follow these guidelines for using SQLSTATEs within your application:
v Always check the function return code before calling SQLGetDiagRec() to

determine if diagnostic information is available.
v Use the SQLSTATEs rather than the native error code.
v To increase your application's portability, only build dependencies on the subset

of DB2 ODBC SQLSTATEs that are defined by the X/Open specification, and
return the additional ones as information only. (Dependencies refer to the
application that makes logic flow decisions based on specific SQLSTATEs.)

Tip: Consider building dependencies on the class (the first two characters) of
the SQLSTATEs.

Chapter 2. Conceptual view of a DB2 ODBC application 25

http://msdn.microsoft.com/en-us/library/windows/desktop/ms710252%28v=vs.85%29.aspx

v For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message also includes the IBM-defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

Related reference:
“SQLSTATE cross reference” on page 537
“SQLSTATE mappings” on page 569

SQLCA retrieval in an ODBC application
Embedded applications rely on the SQLCA data structure for all diagnostic
information. The SQLGetSQLCA() function is used to retrieve this data structure.

Although DB2 ODBC applications can retrieve much of the same information by
using SQLGetDiagRec(), the application might still need to access the SQLCA that is
related to the processing of a statement. (For example, after preparing a statement,
the SQLCA contains the relative cost of executing the statement.) The SQLCA
contains meaningful information only after interaction with the data source on the
previous request (for example: connect, prepare, execute, fetch, disconnect).
Related reference:
“SQLGetSQLCA() - Get SQLCA data structure” on page 284

Data types and data conversion
When you write a DB2 ODBC application, you must work with both SQL data
types and C data types. The database server uses SQL data types, and the
application uses C data types.

The application must therefore match C data types to SQL data types when
transferring data between the database server and the application (when calling
DB2 ODBC functions).

To help address this, DB2 ODBC provides symbolic names for the various data
types, and manages the transfer of data between the database server and the
application. It also performs data conversion (from a C character string to an SQL
INTEGER type, for example) if required. To accomplish this, DB2 ODBC needs to
know both the source and target data type. This requires the application to identify
both data types using symbolic names.

C and SQL data types
DB2 ODBC defines a set of SQL symbolic data types. Each SQL symbolic data type
has a corresponding default C data type.

These data types represent the combination of the ODBC 3.0 minimum, core, and
extended data types. DB2 ODBC supports the following additional data types:
v SQL_GRAPHIC
v SQL_VARGRAPHIC
v SQL_LONGVARGRAPHIC

Table 4 on page 27 lists each of the SQL data types, with its corresponding
symbolic name, and the default C symbolic name. The table contains the following
columns:

26 ODBC Guide and Reference

SQL data type
This column contains the SQL data types as they would appear in an SQL
CREATE DDL statement. The SQL data types are dependent on the
database server.

Symbolic SQL data type
This column contains SQL symbolic names that are defined (in sqlcli1.h) as
an integer value. These values are used by various functions to identify the
SQL data types listed in the first column.

Default C symbolic data type
This column contains C symbolic names, also defined as integer values.
These values are used in various function arguments to identify the C data
type as shown in Table 5 on page 28. The symbolic names are used by
various functions (such as SQLBindParameter(), SQLGetData(), and
SQLBindCol() calls) to indicate the C data types of the application
variables. Instead of explicitly identifying the C data type when calling
these functions, SQL_C_DEFAULT can be specified instead, and DB2
ODBC assumes a default C data type based on the SQL data type of the
parameter or column, as shown by this table. For example, the default C
data type of SQL_DECIMAL is SQL_C_CHAR.

Table 4. SQL symbolic and default data types

SQL data type Symbolic SQL data type Default symbolic C data type

BIGINT SQL_BIGINT SQL_C_BIGINT

BINARY SQL_BINARY SQL_C_BINARY

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR1 SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR

CHAR SQL_CHAR SQL_C_CHAR

CHAR FOR BIT DATA 6 on page 28 SQL_BINARY SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR SQL_CLOB_LOCATOR SQL_C_CLOB_LOCATOR

DATE SQL_TYPE_DATE2 SQL_C_TYPE_DATE

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR1 SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECFLOAT(16) or DECFLOAT(34) SQL_DECFLOAT SQL_C_CHAR

DECIMAL SQL_DECIMAL SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR5 SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR BIT DATA5,6 SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC5 SQL_LONGVARGRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

NUMERIC7 SQL_NUMERIC7 SQL_C_CHAR

REAL SQL_REAL SQL_C_FLOAT

ROWID SQL_ROWID SQL_C_CHAR

Chapter 2. Conceptual view of a DB2 ODBC application 27

Table 4. SQL symbolic and default data types (continued)

SQL data type Symbolic SQL data type Default symbolic C data type

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME2 SQL_C_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP2 SQL_C_TYPE_TIMESTAMP
SQL_C_TYPE_TIMESTAMP_EXT3

VARBINARY SQL_VARBINARY SQL_C_BINARY

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA6 SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

XML SQL_XML SQL_C_BINARY

Notes:

1. LOB locator types are not persistent SQL data types (columns cannot be defined by a locator type; instead, it
describes parameter markers, or represents a LOB value).

2. Changes to datetime data types have been made since previous releases.

3. SQL_TIMESTAMP_EXT and SQL_C_TYPE_TIMESTAMP_EXT are used for TIMESTAMP values in which the
fractional precision is 10 to 12 digits.

4. The default C data type conversion for this SQL data type depends upon the encoding scheme your application
uses. If your application uses UCS-2 Unicode encoding, the default conversion is to SQL_C_WCHAR. For all
other encoding schemes the default conversion is to SQL_C_DBCHAR.

5. Whenever possible, replace LONG data types with LOB types.

6. Whenever possible, replace FOR BIT DATA data types with BINARY or VARBINARY types.

7. NUMERIC is a synonym for DECIMAL on DB2 for z/OS, DB2 for VSE & VM and DB2 for Linux, UNIX, and
Windows.

Additional information:

v The data types, DATE, DECIMAL, NUMERIC, TIME, and TIMESTAMP cannot be transferred to their default C
buffer types without a conversion.

Table 5 shows the generic C type definitions for each symbolic C type. The table
contains the following columns:

C symbolic data type
This column contains C symbolic names, defined as integer values. These
values are used in various function arguments to identify the C data type
shown in the last column.

C type
This column contains C-defined types, which are defined in sqlcli1.h using
a C typedef statement. The values in this column should be used to declare
all DB2 ODBC related variables and arguments, in order to make the
application more portable.

Base C type
This column is shown for reference only. All variables and arguments
should be defined using the symbolic types in the previous column. Some
of the values are C structures that are described in Table 6 on page 30.

Table 5. C data types

C symbolic data type C type Base C type

SQL_C_BIGINT SQLBIGINT long long int

28 ODBC Guide and Reference

Table 5. C data types (continued)

C symbolic data type C type Base C type

SQL_C_CHAR SQLCHAR Unsigned char

SQL_C_BIT SQLCHAR Unsigned char or char (Value
1 or 0)

SQL_C_TINYINT SQLSCHAR Signed char (Range -128 to
127)

SQL_C_SHORT SQLSMALLINT Short int

SQL_C_LONG SQLINTEGER Long int (31-bit) or int
(64-bit)1

SQL_C_DOUBLE SQLDOUBLE Double

SQL_C_FLOAT SQLREAL Float

SQL_C_DECIMAL64 SQLDECIMAL64 See Table 6 on page 30

SQL_C_DECIMAL128 SQLDECIMAL128 See Table 6 on page 30

SQL_C_TYPE_DATE2 DATE_STRUCT See Table 6 on page 30

SQL_C_TYPE_TIMESTAMP2 TIMESTAMP_STRUCT See Table 6 on page 30

SQL_C_TYPE_
TIMESTAMP_EXT
2

TIMESTAMP_STRUCT_EXT See Table 6 on page 30

SQL_C_CLOB_LOCATOR SQLINTEGER Long int (31-bit) or int
(64-bit)1

SQL_C_BINARY SQLCHAR Unsigned char

SQL_C_BINARYXML SQLCHAR Unsigned char

SQL_C_BLOB_LOCATOR SQLINTEGER Long int (31-bit) or int
(64-bit)1

SQL_C_DBCHAR SQLDBCHAR Unsigned short

SQL_C_DBCLOB_LOCATOR SQLINTEGER Long int (31-bit) or int
(64-bit)1

SQL_C_WCHAR SQLWCHAR wchar_t (31-bit) or unsigned
short (64-bit)1

Note:

1. 31-bit is for 31-bit applications, and 64-bit is for 64 bit applications.

In the 31-bit environment, long int is 32 bits. In the 64-bit environment, int is also 32 bits.
Therefore, the C type SQLINTEGER is mapped to a 32-bit field regardless of the
environment.

In the 31-bit environment, wchar_t is 16 bits. In the 64-bit environment, unsigned short is
also 16 bits. Therefore, the C type SQLWCHAR is mapped to a 16-bit field regardless of
the environment.

2. Changes to datetime data types have been made since previous releases.

The following table lists the C data types with their associated structures for date,
time, timestamp, and decimal floating point.

Chapter 2. Conceptual view of a DB2 ODBC application 29

Table 6. C date, time, timestamp, and decimal floating point structures

C type Generic structure

DATE_STRUCT typedef struct DATE_STRUCT
{

SQLSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;

} DATE_STRUCT;

TIME_STRUCT typedef struct TIME_STRUCT
{

SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;

} TIME_STRUCT;

TIMESTAMP_STRUCT typedef struct TIMESTAMP_STRUCT
{

SQLUSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLINTEGER fraction;

} TIMESTAMP_STRUCT;

TIMESTAMP_STRUCT_EXT typedef struct TIMESTAMP_STRUCT_EXT
{

SQLUSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLINTEGER fraction;
SQLINTEGER fraction2;

} TIMESTAMP_STRUCT_EXT;

SQLDECIMAL64 typedef struct SQLDECIMAL64
{

union{
SQLDOUBLE dummy;
SQLCHAR dec64[8];

}dec64;
} SQLDECIMAL64;

SQLDECIMAL128 typedef struct SQLDECIMAL128
{

union{
SQLDOUBLE dummy;
SQLCHAR dec128[16];

}dec128;
} SQLDECIMAL128;

30 ODBC Guide and Reference

||
|
|
|
|
|
|
|
|
|
|

Related concepts:
“Using LOBs” on page 460
“Application encoding schemes and DB2 ODBC” on page 486
Related reference:
“Changes to datetime data types” on page 571
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLDescribeCol() - Describe column attributes” on page 163
“C data types that do not map to SQL data types”

C data types that do not map to SQL data types
In addition to the data types that map to SQL data types, other C symbolic types
are used for other function arguments, such as pointers and handles.

The following table shows both generic and ODBC data types used for these
arguments.

Table 7. C data types and base C data types

Defined C type Base C type Typical usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLHENV long int (31-bit)
or int (64-bit)1

Handle referencing environment information.

SQLHDBC long int (31-bit)
or int (64-bit)1

Handle referencing data source connection
information.

SQLHSTMT long int (31-bit)
or int (64-bit)1

Handle referencing statement information.

SQLUSMALLINT unsigned short
int

Function input argument for unsigned short integer
values.

SQLUINTEGER unsigned long int
(31-bit) or
unsigned int
(64-bit)1

Function input argument for unsigned long integer
values.

SQLLEN int Function input or output argument for 32-bit integer
values.

SQLULEN unsigned int Function input or output argument for unsigned
32-bit integer values.

SQLRETURN short int Return code from DB2 ODBC functions.

SQLWCHAR wchar_t (31-bit)
or unsigned short
(64-bit)1

Data type for a Unicode UCS-2 character.

SQLWCHAR * wchar_t * (31-bit)
or unsigned short
* (64-bit)1

Pointer to storage for Unicode UCS-2 data.

Chapter 2. Conceptual view of a DB2 ODBC application 31

Table 7. C data types and base C data types (continued)

Defined C type Base C type Typical usage

Note:

1. 31-bit is for 31-bit applications, and 64-bit is for 64 bit applications.

In the 31-bit environment, long int and unsigned long int are each 32 bits. In the 64-bit
environment, int and unsigned int are also each 32 bits. Therefore, the C types
SQLHENV, SQLHDBC, SQLHSTMT, and SQLUINTEGER are each mapped to 32-bit
fields regardless of the environment.

In the 31-bit environment, wchar_t is 16 bits. In the 64-bit environment, unsigned short is
also 16 bits. Therefore, the C type SQLWCHAR is mapped to a 16-bit field regardless of
the environment.

Pointers do not have the same size in a 64-bit environment as they do in a 31-bit
environment. In the 31-bit environment, SQLWCHAR * is 32 bits long, and in the 64-bit
environment, SQLWCHAR * is 64 bits long.

Data conversion
DB2 ODBC manages the transfer and any required conversion of data between the
application and the database server. However, not all data conversions are
supported.

Before the data transfer actually takes place, the source, target, or both data types
are indicated when calling SQLBindParameter(), SQLBindCol(), or SQLGetData().
These functions use symbolic type names shown to identify the data types
involved in the data transfer.

Example: The following SQLBindParameter() call binds a parameter marker that
corresponds to an SQL data type of DECIMAL(5,3) to an application's C buffer
type of double:
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,

SQL_DECIMAL, 5, 3, double_ptr, NULL);

The functions mentioned in the previous paragraph can be used to convert data to
other types, but not all data conversions are supported or make sense. Table 8 on
page 33 shows all the conversions that DB2 ODBC supports.

Table 8 on page 33 and Table 9 on page 36 list the data conversions DB2 ODBC
supports.

Table 8 on page 33 lists the conversions by SQL type. The first column of this table
contains the SQL types. The second column of this table contains the default C
type that the SQL type is converted to when you specify SQL_C_DEFAULT as the
target type. The last column lists all other C types that you can specify as a target
in a conversion from SQL data types to C data types.

32 ODBC Guide and Reference

Table 8. Supported data conversions by SQL data type

SQL symbolic data type Default C symbolic data type Additional C symbolic data types

SQL_BIGINT SQL_C_BIGINT SQL_C_CHAR
SQL_C_WCHAR
SQL_C_SHORT
SQL_C_LONG
SQL_C_TINYINT
SQL_C_BIT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128

SQL_BINARY SQL_C_BINARY SQL_C_CHAR
SQL_C_WCHAR

SQL_BLOB SQL_C_BINARY SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_BLOB_LOCATOR3

SQL_CHAR SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_BIGINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_TYPE_TIMESTAMP
SQL_C_BINARY
SQL_C_BIT

SQL_CLOB SQL_C_CHAR1 SQL_C_WCHAR2 SQL_C_BINARY
SQL_C_CLOB_LOCATOR3

SQL_DBCLOB SQL_C_DBCHAR SQL_C_WCHAR2

SQL_C_BINARY
SQL_C_DBCLOB_LOCATOR3

SQL_DECFLOAT SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_BIT
SQL_C_BIGINT
SQL_C_DECIMAL64
SQL_C_DECIMAL128

SQL_DECIMAL SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

Chapter 2. Conceptual view of a DB2 ODBC application 33

Table 8. Supported data conversions by SQL data type (continued)

SQL symbolic data type Default C symbolic data type Additional C symbolic data types

SQL_DOUBLE SQL_C_DOUBLE SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

SQL_FLOAT SQL_C_DOUBLE SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

SQL_GRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

SQL_C_CHAR1

SQL_INTEGER SQL_C_LONG SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

SQL_LONGVARBINARY SQL_C_BINARY SQL_C_CHAR SQL_C_WCHAR

SQL_LONGVARCHAR SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_BINARY
SQL_C_DECIMAL64
SQL_C_DECIMAL128

SQL_LONGVARGRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

SQL_C_CHAR1

SQL_NUMERIC5 SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_SHORT
SQL_C_LONG
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

SQL_REAL SQL_C_FLOAT SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_SHORT
SQL_C_LONG
SQL_C_TINYINT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BIT

34 ODBC Guide and Reference

Table 8. Supported data conversions by SQL data type (continued)

SQL symbolic data type Default C symbolic data type Additional C symbolic data types

SQL_ROWID SQL_C_CHAR SQL_C_WCHAR

SQL_SMALLINT SQL_C_SHORT SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_LONG
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BINARY
SQL_C_BIT

SQL_TYPE_DATE SQL_C_TYPE_DATE SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_TIMESTAMP

SQL_TYPE_TIME SQL_C_TYPE_TIME SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_TIMESTAMP

SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP
SQL_C_TYPE_TIMESTAMP_EXT

SQL_C_CHAR1

SQL_C_WCHAR2

SQL_C_TYPE_DATE
SQL_C_TYPE_TIME

SQL_VARBINARY SQL_C_BINARY SQL_C_CHAR SQL_C_WCHAR

SQL_VARCHAR SQL_C_CHAR1 SQL_C_WCHAR2

SQL_C_SHORT
SQL_C_LONG
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_DECIMAL64
SQL_C_DECIMAL128
SQL_C_BINARY
SQL_C_BIT
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_TYPE_TIMESTAMP

SQL_VARGRAPHIC SQL_C_DBCHAR or
SQL_C_WCHAR4

SQL_C_CHAR1

SQL_XML SQL_C_BINARY SQL_C_BINARYXML
SQL_C_CHAR
SQL_C_DBCHAR
SQL_C_WCHAR

Notes:

1. You must bind data to the SQL_C_CHAR data type for Unicode UTF-8 data

2. You must bind data with the SQL_C_WCHAR data type for Unicode UCS-2 data.

3. Data is not converted to LOB locator types; locators represent a data value.

4. The default C data type conversion for this SQL data type depends upon the encoding scheme your application
uses. If your application uses UCS-2 Unicode encoding, the default conversion is to SQL_C_WCHAR. For all
other encoding schemes the default conversion is to SQL_C_DBCHAR.

5. NUMERIC is a synonym for DECIMAL on DB2 for z/OS, DB2 for VSE & VM, and DB2 for Linux, UNIX, and
Windows.

Chapter 2. Conceptual view of a DB2 ODBC application 35

||
|
|
|
|
|

Table 9 lists the conversions by C type. The first column of this table contains these
C types. The second column of this table contains the SQL types that use the C
type in the first column for default conversions. The last column are all other SQL
types you can specify in a conversion from C data types to SQL data types.

Table 9. Supported data conversions by C data type

Symbolic C data type Symbolic SQL data types that use
this C data type as a default

Additional symbolic SQL data types

SQL_C_BIGINT SQL_BIGINT SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_NUMERIC
SQL_REAL
SQL_DECFLOAT
SQL_SMALLINT
SQL_VARCHAR

SQL_C_CHAR1
SQL_CHAR

SQL_CLOB

SQL_DECFLOAT

SQL_DECIMAL

SQL_LONGVARCHAR

SQL_NUMERIC2

SQL_VARCHAR

SQL_BLOB
SQL_DOUBLE
SQL_FLOAT
SQL_GRAPHIC
SQL_INTEGER
SQL_LONGVARGRAPHIC
SQL_REAL
SQL_ROWID
SQL_SMALLINT
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP
SQL_VARGRAPHIC
SQL_XML

SQL_C_WCHAR3
SQL_GRAPHIC5

SQL_LONGVARGRAPHIC5

SQL_VARGRAPHIC5

SQL_BLOB
SQL_CHAR
SQL_CLOB
SQL_DECIMAL
SQL_DECFLOAT
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARCHAR
SQL_NUMERIC2

SQL_REAL
SQL_ROWID
SQL_SMALLINT
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP
SQL_VARCHAR
SQL_XML

36 ODBC Guide and Reference

Table 9. Supported data conversions by C data type (continued)

Symbolic C data type Symbolic SQL data types that use
this C data type as a default

Additional symbolic SQL data types

SQL_C_LONG SQL_INTEGER SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_NUMERIC2

SQL_REAL
SQL_DECFLOAT
SQL_SMALLINT
SQL_VARCHAR

SQL_C_SHORT SQL_SMALLINT SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_NUMERIC2

SQL_REAL
SQL_DECFLOAT
SQL_VARCHAR

SQL_C_TINYINT No SQL data types use
SQL_C_TINYINT in a default
conversion.

SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_SMALLINT
SQL_INTEGER
SQL_NUMERIC2

SQL_REAL
SQL_DECFLOAT
SQL_VARCHAR

SQL_C_FLOAT SQL_REAL SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_SMALLINT
SQL_INTEGER
SQL_NUMERIC2

SQL_DECFLOAT
SQL_VARCHAR

SQL_C_DOUBLE SQL_DOUBLE SQL_FLOAT SQL_CHAR
SQL_DECIMAL
SQL_SMALLINT
SQL_INTEGER
SQL_NUMERIC2

SQL_REAL
SQL_DECFLOAT
SQL_VARCHAR

Chapter 2. Conceptual view of a DB2 ODBC application 37

Table 9. Supported data conversions by C data type (continued)

Symbolic C data type Symbolic SQL data types that use
this C data type as a default

Additional symbolic SQL data types

SQL_C_DECIMAL64 No SQL data types use
SQL_C_DECIMAL64 in a default
conversion.

SQL_CHAR
SQL_DECIMAL
SQL_FLOAT
SQL_DECFLOAT
SQL_DOUBLE
SQL_INTEGER
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_BIGINT
SQL_VARCHAR
SQL_LONGVARCHAR

SQL_C_DECIMAL128 No SQL data types use
SQL_C_DECIMAL128 in a default
conversion.

SQL_CHAR
SQL_DECIMAL
SQL_FLOAT
SQL_DECFLOAT
SQL_DOUBLE
SQL_INTEGER
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_BIGINT
SQL_VARCHAR
SQL_LONGVARCHAR

SQL_C_TYPE_DATE SQL_TYPE_DATE SQL_CHAR
SQL_TYPE_TIMESTAMP
SQL_VARCHAR

SQL_C_TYPE_TIME SQL_TYPE_TIME SQL_CHAR
SQL_TYPE_TIMESTAMP
SQL_VARCHAR

SQL_C_TYPE_TIMESTAMP SQL_TYPE_TIMESTAMP SQL_CHAR
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_VARCHAR

SQL_C_TYPE_
TIMESTAMP_EXT

SQL_TYPE_TIMESTAMP SQL_CHAR
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_VARCHAR

SQL_C_BINARY SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB
SQL_XML

SQL_CHAR
SQL_CLOB
SQL_LONGVARCHAR
SQL_LONGVARGRAPHIC
SQL_VARCHAR

SQL_C_BINARYXML No SQL types use
SQL_C_BINARYXML in a default
conversion

SQL_XML

38 ODBC Guide and Reference

|
|
||
|
|
|

Table 9. Supported data conversions by C data type (continued)

Symbolic C data type Symbolic SQL data types that use
this C data type as a default

Additional symbolic SQL data types

SQL_C_BIT No SQL types use SQL_C_BIT in a
default conversion.

SQL_CHAR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_SMALLINT
SQL_INTEGER
SQL_NUMERIC2

SQL_REAL
SQL_DECFLOAT
SQL_VARCHAR

SQL_C_DBCHAR SQL_DBCLOB SQL_GRAPHIC5

SQL_LONGVARGRAPHIC5

SQL_VARGRAPHIC5

SQL_XML

SQL_C_CLOB_LOCATOR No SQL data types use
SQL_C_CLOB_LOCATOR in a default
conversion.

SQL_CLOB

SQL_C_BLOB_LOCATOR No SQL data types use
SQL_C_BLOB_LOCATOR in a default
conversion.

SQL_BLOB

SQL_C_DBCLOB_LOCATOR No SQL data types use
SQL_C_DBCLOB_LOCATOR in a
default conversion.

SQL_DBCLOB

Notes:

1. You must bind data to the SQL_C_CHAR data type for Unicode UTF-8 data

2. NUMERIC is a synonym for DECIMAL on DB2 for z/OS, DB2 for VSE & VM, and DB2 for Linux, UNIX, and
Windows.

3. You must bind data with the SQL_C_WCHAR data type for Unicode UCS-2 data.

4. Data is not converted to LOB locator types; locators represent a data value.

5. The default C data type conversion for this SQL data type depends upon the encoding scheme your application
uses. If your application uses UCS-2 Unicode encoding, the default conversion is to SQL_C_WCHAR. For all
other encoding schemes the default conversion is to SQL_C_DBCHAR.

Limits on precision, and scale, as well as truncation and rounding rules are the
same as those for DB2 for z/OS, with the following exception; truncation of values
to the right of the decimal point for numeric values returns a truncation warning,
whereas truncation to the left of the decimal point returns an error. In cases of
error, the application should call SQLGetDiagRec() to obtain the SQLSTATE and
additional information about the failure. When moving and converting floating
point data values between the application and DB2 ODBC, no correspondence is
guaranteed to be exact as the values can change in precision and scale.

Chapter 2. Conceptual view of a DB2 ODBC application 39

Related concepts:
“Application encoding schemes and DB2 ODBC” on page 486
Related reference:
“C and SQL data types” on page 26
“Data conversion between the application and the database server” on page 548

Limits in DB2 for z/OS (DB2 SQL)

Characteristics of string arguments
String arguments in DB2 ODBC rely on conventions.

Length of string arguments
String arguments for both output and input have associated length arguments. You
should always use a valid output length argument.

For input string arguments, the associated length argument passes DB2 ODBC one
of the following types of information:
v The exact length of the string (not including the nul-terminator)
v The special value SQL_NTS to indicate a nul-terminated string
v SQL_NULL_DATA to pass a null value

If the length is set to SQL_NTS, DB2 ODBC determines the length of the string by
locating the nul-terminator. All length arguments for input/output strings are
passed as a count of characters. Length arguments that can refer to both string and
non-string data are passed as a count of bytes.

Output string arguments have two associated length arguments, an input length
argument to specify the length of the allocated output buffer, and an output length
argument to return the actual length of the string returned by DB2 ODBC. The
returned length value is the total length of the string available for return,
regardless of whether it fits in the buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned
in the length argument and the output buffer is untouched.

If a function is called with a null pointer for an output length argument, DB2
ODBC does not return a length, and assumes that the data buffer is large enough
to hold the data. When the output data is a null value, DB2 ODBC can not indicate
that the value is null. If it is possible that a column in a result set can contain a
null value, a valid pointer to the output length argument must always be
provided.

Recommendation: Always use a valid output length argument.

If the length argument (pcbValue) and the output buffer (rgbValue) are contiguous in
memory, DB2 ODBC can return both values more efficiently, improving application
performance. For example, if the following structure is defined and &buffer.pcbValue
and buffer.rgbValue are passed to SQLBindCol(), DB2 ODBC updates both values in
one operation.
struct
{ SQLINTEGER pcbValue;

SQLCHAR rgbValue [BUFFER_SIZE];
} buffer;

40 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_limits.htm#db2z_limits

Nul-termination of strings
By default, character strings that DB2 ODBC return are terminated with a
nul-terminator (hex 00), except for strings that are returned from the graphic and
DBCLOB data types into SQL_C_CHAR application variables.

Graphic and DBCLOB data types that are retrieved into SQL_C_DBCHAR and
SQL_C_WCHAR application variables are nul-terminated with a double-byte
nul-terminator (hex 0000). This requires that all buffers allocate enough space for
the maximum number of bytes expected, plus the nul-terminator.

You can also use SQLSetEnvAttr() and set an environment attribute to disable
nul-termination of varying-length output (character string) data. In this case, the
application allocates a buffer exactly as long as the longest string it expects. The
application must provide a valid pointer to storage for the output length argument
so that DB2 ODBC can indicate the actual length of data returned; otherwise, the
application has no means to determine this. The DB2 ODBC default is to always
write the nul-terminator.

String truncation
If an output string does not fit into the buffer, DB2 ODBC truncates the string to
the size of the buffer and writes the nul-terminator. The string data can be
truncated on input or output by using the appropriate SQLSTATE.

If truncation occurs, the function returns SQL_SUCCESS_WITH_INFO and
SQLSTATE 01004, which indicates data truncation. The application can then
compare the buffer length to the output length to determine which string was
truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an
SQLSTATE of 01004, at least one of the buffers bound to a column is too small to
hold the data. For each buffer that is bound to a column, the application can
compare the buffer length with the output length and determine which column
was truncated.

ODBC specifies that string data can be truncated on input or output with the
appropriate SQLSTATE. As the data source, DB2 does not truncate data on input,
but might truncate data on output to maintain data integrity. On input, DB2 rejects
string truncation with a negative SQLCODE (-302) and SQLSTATE 22001. On
output, DB2 truncates the data and issues SQL_SUCCESS_WITH_INFO and
SQLSTATE 01004.

Interpretation of strings
DB2 ODBC normally interprets string arguments in a case-sensitive manner and
does not trim any spaces from the values.

An exception is the cursor name input argument on the SQLSetCursorName()
function. In this case, if the cursor name is not delimited (enclosed by double
quotes) the leading and trailing blanks are removed and case is preserved.

Functions for querying environment and data source information
DB2 ODBC provides functions that let applications retrieve information about the
characteristics and capabilities of the current ODBC driver or the data source to
which it is connected.

Chapter 2. Conceptual view of a DB2 ODBC application 41

One of the most common situations in which functions are needed that provide
driver or data source information involves displaying information for the user.
Information such as the data source name and version, or the version of the DB2
ODBC driver might be displayed at connect time, or as part of the error reporting
process.

Example: The following code shows an application that queries an ODBC
environment for a data source, all supported functions, and a supported data type.
/***/
/* Querying environment and data source information */
/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlcli1.h>
void main()
{

SQLHENV hEnv; /* Environment handle */
SQLHDBC hDbc; /* Connection handle */
SQLRETURN rc; /* Return code for API calls */
SQLHSTMT hStmt; /* Statement handle */
SQLCHAR dsname[30]; /* Data source name */
SQLCHAR dsdescr[255]; /* Data source description */
SQLSMALLINT dslen; /* Length of data source */
SQLSMALLINT desclen; /* Length of dsdescr */
BOOL found = FALSE;
SQLSMALLINT funcs[100];
SQLINTEGER rgbValue;
/*
* Initialize environment - allocate environment handle.
*/
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
/*
* Use SQLDataSources to verify ZOSDB2 does exist.
*/
while((rc = SQLDataSources(hEnv,

SQL_FETCH_NEXT,
dsname,
SQL_MAX_DSN_LENGTH+1,
&dslen,
dsdescr,
&desclen)) != SQL_NO_DATA_FOUND)

{
if(!strcmp(dsname, "ZOSDB2")) /* data source exist */
{

found = TRUE;
break;

}
}
if(!found)
{

fprintf(stdout, "Data source
fprintf(stdout, "program aborted.\n");
exit(1);

}
if((rc = SQLConnect(hDbc, dsname, SQL_NTS, "myid", SQL_NTS,

"mypd", SQL_NTS))
== SQL_SUCCESS)

{
fprintf(stdout, "Connect to

}
SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
/*
* Use SQLGetFunctions to store all APIs status.

42 ODBC Guide and Reference

*/
rc = SQLGetFunctions(hDbc, SQL_API_ALL_FUNCTIONS, funcs);
/*
* Check whether SQLGetInfo is supported in this driver. If so,
* verify whether DATE is supported for this data source.
*/
if(funcs[SQL_API_SQLGETINFO] == 1)
{

SQLGetInfo(hDbc, SQL_CONVERT_DATE, (SQLPOINTER)&rgbValue, 255, &desclen);
if(rgbValue & SQL_CVT_DATE)
{

SQLGetTypeInfo(hStmt, SQL_DATE);
/* use SQLBindCol and SQLFetch to retrieve data*/

}
}

}

Related reference:
“SQLDataSources() - Get a list of data sources” on page 160
“SQLGetFunctions() - Get functions” on page 249
“SQLGetInfo() - Get general information” on page 254
“SQLGetTypeInfo() - Get data type information” on page 297

Figure 5. An application that queries environment information

Chapter 2. Conceptual view of a DB2 ODBC application 43

44 ODBC Guide and Reference

Chapter 3. Configuring DB2 ODBC and running sample
applications

Before you prepare and run ODBC applications, you need to install DB2 ODBC
and run the sample applications.

Running the SMP/E jobs for DB2 ODBC installation
To install DB2 ODBC, you must edit and run SMP/E jobs.

Procedure

To run the SMP/E jobs for DB2 ODBC installation:
1. Copy and edit the SMP/E jobs.

For sample JCL to invoke the z/OS utility IEBCOPY to copy the SMP/E jobs to
disk, see the DB2 Program Directory.

2. Run the receive job: DSNRECV3.
3. Run the apply job: DSNAPPLY.
4. Run the accept job: DSNACCEP.
5. Customize these jobs to specify data set names for your DB2 installation and

SMP/E data sets. See the header notes in each job for details.
Related tasks:

Editing the SMP/E jobs (DB2 Installation and Migration)

The DB2 ODBC run time environment
DB2 ODBC support is implemented as an IBM C/C++ Dynamic Load Library
(DLL). All API calls are routed through the single ODBC driver that is loaded at
run time into the application address space.

Because DB2 ODBC support is provided as a DLL, DB2 ODBC applications do not
need to link-edit any DB2 ODBC driver code with the application load module.
Instead, the linkage to the DB2 ODBC APIs is resolved dynamically at run time by
the IBM Language Environment® run time support.

The DB2 ODBC driver can use either the call attachment facility (CAF) or the
Resource Recovery Services attachment facility (RRSAF) to connect to the DB2 for
z/OS address space.
v If the DB2 ODBC application is not running as a DB2 for z/OS stored

procedure, the MVSATTACHTYPE keyword in the DB2 ODBC initialization file
determines the attachment facility that DB2 ODBC uses.

v If the DB2 ODBC application is running as a DB2 for z/OS stored procedure,
then DB2 ODBC uses the attachment facility that was specified for stored
procedures.

When the DB2 ODBC application invokes the first ODBC function,
SQLAllocHandle() (with HandleType set to SQL_HANDLE_ENV), the DB2 ODBC
driver DLL is loaded.

© Copyright IBM Corp. 1997, 2013 45

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_prgdr.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_editsmpejobs.htm#db2z_editsmpejobs

The following versions of the ODBC driver are available on DB2 for z/OS:
v the 31-bit XPLINK driver
v the 31-bit non-XPLINK driver
v the 64-bit driver

You specify which driver your application uses by which definition sidedeck you
include when you prelink and link-edit your application.

DB2 ODBC supports access to the local DB2 for z/OS subsystems and any remote
data source that is accessible using DB2 for z/OS Version 11. This includes:
v Remote DB2 subsystems using specification of an alias or three-part name
v Remote DRDA-1 and DRDA-2 servers using LU 6.2 or TCP/IP.

The relationship between the application, the DB2 for z/OS ODBC driver and the
DB2 for z/OS subsystem are illustrated in the following figure.

Related tasks:
“Prelinking and link-editing an ODBC application” on page 57

Connectivity requirements
You must run DB2 ODBC applications on a machine that has DB2 11 for z/OS
installed. Additional requirements also apply.

DB2 for z/OS ODBC has the following additional connectivity requirements:

LU 6.2 or
TCP/IP

Call Attach (CAF)
or

RRS Attach (RRSAF)

DRDA
application

server

Initilization
file

Trace
file

DSNAOINI DSNAOTRC

DB2 for z/OS
ODBC application

DB2 for z/OS
ODBC driver DLL

Local table, alias or
three-part name if
connected locally

DB2 for z/OS

Figure 6. Relationship between DB2 for z/OS ODBC components

46 ODBC Guide and Reference

v If the application is executing with MULTICONTEXT=1, it can make multiple
physical connections. Each connection corresponds to an independent
transaction and DB2 thread.

v If the application is executing CONNECT (type 1) and MULTICONTEXT=0, only
one current physical connection and one transaction on that connection occurs.
All transactions on logical connections (that is, with a valid connection handle)
are rolled back by the application or committed by DB2 ODBC. This is a
deviation from the ODBC connection model.

Related concepts:
“How to specify the connection type” on page 12

Extra performance linkage
The XPLINK DB2 ODBC driver enhances the performance of XPLINK ODBC
applications. The XPLINK DB2 ODBC driver is recommended to enhance
performance only if your ODBC application uses XPLINK code exclusively.

If you use any non-XPLINK code in your application, the XPLINK ODBC driver
might not increase performance. The non-XPLINK ODBC driver is recommended
for applications that include non-XPLINK code.
Related concepts:
“Overview of preparing and executing a DB2 ODBC application” on page 52
Related tasks:
“Compiling 31-bit XPLINK applications” on page 56
“Executing an ODBC application” on page 61
“Link-editing 31-bit XPLINK applications” on page 59

64-bit ODBC driver
For 64-bit applications, you must use the 64-bit ODBC driver. This driver enables
your application to access storage above the 2-GB bar.

The 64-bit driver is an XPLINK driver. A non-XPLINK driver does not exist for
64-bit applications.
Related concepts:
“Extra performance linkage”

DB2 ODBC run time environment setup
The steps in setting up the DB2 ODBC run time environment must be performed
once. These steps are performed as part of the installation process for DB2 for
z/OS.

The DB2 ODBC bind files must be bound to the data source. The following two
bind steps are required:
v Create packages at every data source
v Create at least one plan to name those packages

These steps are the same regardless of the version of the ODBC driver (31-bit
non-XPLINK, 31-bit XPLINK, or 64-bit) that you use.

The online bind sample is available in DSNB10.SDSNSAMP(DSNTIJCL). It is
recommended that you use this bind sample as a guide for binding DBRMs to
packages and binding an application plan.

Chapter 3. Configuring DB2 ODBC and running sample applications 47

Binding DBRMs to create packages
You can bind database request modules (DBRMs) to create packages that use
different isolation levels or default options.

About this task

Use the online bind sample, DSNB10.SDSNSAMP(DSNTIJCL), for guidance.

Before an application can access data sources using DB2 ODBC, you must bind all
required IBM DBRMs (which are shipped in DSNB10.SDSNDBRM) to all data
sources. These data sources include the local DB2 for z/OS subsystem and all
remote (DRDA) data sources.

To call stored procedures that run under DB2 ODBC, bind each of these procedures
into packages at the data sources that use them. You do not need to bind a stored
procedure that runs under DB2 ODBC into the DB2 ODBC plan.

Procedure

To bind the required DBRMs:
v Bind the following DBRMs to all data sources:

– DSNCLINF
– DSNCLICR
You do not need to specify the ISOLATION bind option for DSNCLINF or
DSNCLICR, because this option has no effect on the isolation level that the
ODBC driver uses for the application. Instead, specify the isolation level in the
ODBC initialization file with the keyword TXNISOLATION. The default value
for this keyword is 2 for cursor stability (CS). Alternatively, you can use
SQLSetConnectAttr() and SQLSetStmtAttr() to set the attribute
SQL_ATTR_TXN_ISOLATION at the connection or statement level. This attribute
overrides the keyword value.

v Bind the following DBRMs with default options to all z/OS servers:
– DSNCLIC1
– DSNCLIC2
– DSNCLIMS
– DSNCLIF4

v Bind DSNCLIVM with default options to DB2 for VSE & VM servers.
v Bind DSNCLIAS with default options to DB2 for i servers.
v Bind DSNCLIV1 and DSNCLIV2 with default options to all DB2 for Linux,

UNIX, and Windows servers.
v Bind DSNCLIQR to any site that supports DRDA query result sets.

48 ODBC Guide and Reference

Related concepts:
“Stored procedures” on page 471
Related tasks:
“Binding the application plan” on page 50
“Migrating to the current DB2 ODBC driver” on page 85
Related reference:

BIND and REBIND options (DB2 Commands)
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetStmtAttr() - Set statement attributes” on page 376
“DB2 ODBC initialization keywords” on page 65

Impact of package bind options
When you bind ODBC packages, you must specify certain values for several bind
options. You should also consider specific ODBC recommendations for several
other bind options.

The requirements and recommendations for the bind options are as follows:
v CURRENTDATA(NO)

Binding the ODBC packages with CURRENTDATA(NO) reduces lock contention
and processor utilization, which results in increased application concurrency and
improved performance. Use of CURRENTDATA(NO) also allows block fetching
for distributed, ambiguous cursors.

v DYNAMICRULES(BIND)
Binding the ODBC packages with this option offers encapsulation and security
similar to that of static SQL. The recommendations and consequences for using
this option are as follows:
1. Bind DB2 ODBC packages or plan with DYNAMICRULES(BIND) from a

'driver' authorization ID with table privileges.
2. Issue GRANT EXECUTE on each collection or plan name to individual users.

Packages are differentiated by collection; plans are differentiated by plan
name.

3. Select a plan or package by using the PLANNAME or COLLECTIONID
keywords in the DB2 ODBC initialization file.

4. When dynamic SQL is issued, the statement is processed with the 'driver'
authorization ID. Users need execute privileges; table privileges are not
required.

5. The CURRENTSQLID keyword cannot be used in the DB2 ODBC
initialization file. Use of this keyword results in an error at SQLConnect().

v ENCODING
The ENCODING bind option controls the application encoding scheme for all
static SQL statements in a plan or package.

Requirement: You must specify ENCODING(EBCDIC) when you bind packages
to the local DB2 for z/OS ODBC subsystem.

v SQLERROR(CONTINUE)

Important: The SQLERROR(CONTINUE) bind option bypasses every error that
occurs during the bind operation for the package. The recommendation is to
ensure that only expected SQLCODEs are bypassed.
Use SQLERROR(CONTINUE) for the following purposes:

Chapter 3. Configuring DB2 ODBC and running sample applications 49

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

– When you bind DSNCLIMS on a down-level server. The symptoms of
binding to a down-level server are:
- Binding DSNCLIMS results in SQLCODE -199 on the VALUES INTO

statement. Bind with the SQLERROR(CONTINUE) keyword to bypass this
error.

- Binding DSNCLIMS results in SQLCODE -199 on the DESCRIBE INPUT
statement. Apply APAR PQ24584 and try the bind again to bypass this
error. Alternatively, you can bind with the SQLERROR(CONTINUE)
keyword, however, the SQLDescribeParam() API will be unavailable to you
at the down-level server.

– When you bind DSNCLIMS on a DB2 subsystem with MIXED DATA=YES
Binding DSNCLIMS on any DB2 subsystem that is configured with MIXED
DATA=YES results in SQLCODE -130. Bind with SQLERROR(CONTINUE)
keyword to bypass this error.

– When you bind DSNCLIMS on a DB2 subsystem with MIXED DATA=NO
Binding DSNCLIMS on any DB2 subsystem that is configured with MIXED
DATA=NO results in SQLCODE -189. You can bind DSNCLIMS with
SQLERROR(CONTINUE) to bypass this error. However, if you do this you
cannot fetch from an ASCII DBCLOB column using the SQLGetData() API or
LOB LOCATORs. Before you can do that, you must:
- Define your DB2 subsystem with MIXED DATA=YES, with valid mixed

and graphic ASCII CCSIDs.
- Rebind DSNCLIMS.

Related concepts:
“DB2 ODBC run time environment setup” on page 47
Related tasks:
“Binding DBRMs to create packages” on page 48
“Binding the application plan”
“Migrating to the current DB2 ODBC driver” on page 85
Related reference:

BIND and REBIND options (DB2 Commands)

MIXED DATA field (MIXED DECP value) (DB2 Installation and Migration)

Return codes from ODBC package binding
A bind to DB2 for z/OS produces several warning messages.

The expected warnings are listed as follows:
v For all packages:

WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"

v For bind of package DSNCLINC to DB2 for z/OS:
BIND WARNING - ISOLATION NC NOT SUPPORTED CHANGED TO ISOLATION UR

v For bind of package DSNCLIF4 to DB2 for z/OS for SYSIBM.LOCATIONS due
to differences in catalog table names between releases.

Binding the application plan
When you bind the DB2 ODBC application plan, use the online bind sample,
DSNB10.SDSNSAMP (DSNTIJCL), for guidance.

50 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_mixed.htm#db2z_dsntipf06

Procedure

To create the DB2 ODBC plan:

Use the PKLIST keyword to name all ODBC packages. You can use any name for
the plan. The default name is DSNACLI. If you select a name other than the
default name, you must specify that name in the initialization file, by using the
PLANNAME keyword.
Do not specify the DISCONNECT or CURRENTSERVER bind options when you
bind the DB2 ODBC application plan. You must use the defaults.
Do not specify any PLAN bind options when you bind the application plan.
Related tasks:
“Binding DBRMs to create packages” on page 48

Setting up DB2 ODBC for the z/OS UNIX environment
You can compile, bind, and run ODBC applications in the z/OS UNIX
environment. However, you must first set up the environment. You need to
perform this setup task only once.

Procedure

To set up DB2 ODBC for the z/OS UNIX environment:

Make the DB2 ODBC definition sidedeck available to z/OS UNIX users by
performing one of the following actions:
v Define a data set alias for the ODBC sidedeck that uses .EXP as the last qualifier

in the name. This alias must relate to the prefix.SDSNMACS data set where the
DB2 ODBC definition sidedeck is installed.
The z/OS UNIX environment compiler determines the contents of an input file
based on the file extension. If a file resides in a partitioned data set (PDS), the
last qualifier in the PDS name is treated as the file extension.
The z/OS UNIX environment compiler recognizes the DB2 ODBC definition
sidedeck if it meets these conditions:
– It resides in a PDS.
– The last qualifier in the PDS name is .EXP.
For example, assume that DB2 is installed using DSNB10 as the high-level data
set qualifier. You can define the alias by using the following command:
DEFINE ALIAS(NAME(’DSNB10.SDSNC.EXP’) RELATE(’DSNB10.SDSNMACS’))

This alias allows z/OS UNIX environment users to directly reference the DB2
ODBC definition sidedeck by specifying the following input files as input to the
z/OS UNIX environment c89 command.
For the non-XPLINK ODBC driver:
"//’DSNB10.SDSNC.EXP(DSNAOCLI)’"

For the 31-bit XPLINK ODBC driver:
"//’DSNB10.SDSNC.EXP(DSNAOCLIX)’"

For the 64-bit XPLINK ODBC driver:
"//’DSNB10.SDSNC.EXP(DSNAO64C)’"

v Specify the z/OS data set suffix by using the _C89_XSUFFIX_HOST or
_CXX_XSUFFIX_HOST environment variable. The default value is EXP.
For example, changing the default from EXP to SDSNMACS allows the link to
work without a Define Alias.

Chapter 3. Configuring DB2 ODBC and running sample applications 51

For the c89 compiler, issue:
export _C89_XSUFFIX_HOST="SDSNMACS"

For the cxx compiler, issue:
export _CXX_XSUFFIX_HOST="SDSNMACS"

Overview of preparing and executing a DB2 ODBC application
To prepare and execute a DB2 ODBC application, you need to follow certain steps
and understand the DB2 ODBC components.

The following figure shows the DB2 ODBC configuration process.

The following figure shows the process you follow to prepare a DB2 ODBC
application.

DB2 packages (14)
(DSNCLIxx)

DB2 PLAN(DSNACLI)

Definition sidedeck
(DSNnn0.SDSNMACS(DSNAOCLI)
for non-XPLINK)

Definition sidedeck
(DSNnn0.SDSNMACS(DSNAOCLX)
for 31- bit XPLINK)
(DSNnn0.SDSNMACS(DSNAO64C)
for 64- bit XPLINK)

DB2 ODBC DLL

(DSNnn0.SDSNLOD2(DSNAOCLX) for 31-bit XPLINK)
(DSNnn0.SDSNLOD2(DSNAO64C) for 64-bit XPLINK)

(DSNnn0.SDSNLOAD(DSNAOCLI) for non-XPLINK)

DB2 ODBC base code

DBRMs
(DSNnn0.SDSNDBRM(DSNCLIxxx))

DB2 ODBC source code

compile

object decks (.obj)
for non-XPLINK

DB2 ODBC include file
(DSNnn0.SDSNC.H)

Install

DB2 install-linkedit

DB2 precompiler

DB2 install-BIND

object decks (.obj)
for XPLINK

prelink

Nonexecutable ODBC
load module for
non-XPLINK

Figure 7. DB2 ODBC customization

52 ODBC Guide and Reference

Related tasks:
“Preparing and executing an ODBC application” on page 54
Related reference:
“DB2 ODBC application requirements”

DB2 ODBC application requirements
To successfully build an ODBC application, you must ensure that the correct
compile, prelink, and link-edit options are used. In particular, your application
must generate the appropriate DLL linkage for the exported DB2 ODBC DLL
functions.

DB2 ODBC applications have the following requirements:
v You must use a C or C++ compiler to compile the application. If you use a C

compiler, you must specify the DLL compiler option.
The C++ compiler always generates DLL linkage. However, the C compiler
generates DLL linkage only if the DLL compile option is used. Failure to
generate the necessary DLL linkage can cause the prelinker and linkage editor to
issue warning messages for unresolved references to DB2 ODBC functions.

v Language Environment base services must be installed on the subsystem or data
sharing member.

v Applications must use the corresponding ODBC driver for the addressing mode
in which they are running.
DB2 ODBC applications can be written for either 31-bit addressing mode,
AMODE(31) or 64-bit addressing mode, AMODE(64). 31-bit applications must
use the 31-bit ODBC driver; they cannot use the 64-bit ODBC driver. Likewise,
64-bit applications must use the 64-bit driver; they cannot use the 31-bit ODBC
driver.

Definition sidedeck
(DSNnn0.SDSNMACS(DSNAOCLI)
for non-XPLINK or
DSNnn0.SDSNMACS(DSNAOCLX)
for 31-bit XPLINK or
DSNnn0.SDSNMACS(DSNAO64C)
for 64-bit XPLINK)

DB2 ODBC application preparation

User ODBC source code(.c)

Compile

object decks(.obj)

prelink

linkedit

User DLL application
(executable load module)

DB2 ODBC include files
(in DSNnn0.SDSNC.H)

SQL
SQLCA
SQLCLI
SQLCLI1
SQLEXT
SQLSYSTM
SQLWCLI

Figure 8. DB2 ODBC program preparation

Chapter 3. Configuring DB2 ODBC and running sample applications 53

Restriction: Although 64-bit mode provides larger addressable storage, the
amount of data that can be sent to or retrieved from DB2 by an ODBC
application is still limited by the amount of storage that is available below the
2-GB bar. Therefore, for example, an application cannot declare a 2 GB LOB
above the bar and insert the entire LOB value into a DB2 LOB column.

For ODBC applications that are built on z/OS UNIX, you do not need to copy the
DB2 ODBC product file to HFS. You can directly reference the non-HFS DB2 ODBC
data sets in the c89 compile command.
Related concepts:
“The DB2 ODBC run time environment” on page 45

Preparing and executing an ODBC application
You must compile, prelink, and link-edit an ODBC application before you can run
it. DB2 ODBC provides sample programs to help you with program preparation.

About this task

For guidance in how to prepare and execute an ODBC application, use the
following online samples, which are provided in DSNB10.SDSNSAMP:

DSN8O3VP
A sample C application. You can use this sample to verify that your DB2
ODBC 3.0 installation is correct.

DSN8OIVP
A sample C application. You can use this sample to verify that your DB2
ODBC 2.0 installation is correct.

DSNTEJ8
Sample JCL. You can use this sample to compile, prelink, link-edit, and
execute the sample application DSN8O3VP or DSN8OIVP to use the
non-XPLINK driver.

DSNTEJ8X
Sample JCL. You can use this sample to compile, link-edit, and execute the
sample applications DSN8O3VP or DSN8OIVP to use the 31-bit XPLINK
driver.

DSNTEJ8E
Sample JCL. You can use this sample to compile, link-edit, and execute the
sample applications DSN8O3VP or DSN8OIVP to use the 64-bit XPLINK
driver.

To use the DSN803VP or DSN8OIVP samples in z/OS UNIX, copy DSN803VP or
DSN8OIVP from the sample data set to HFS. user/db2 is considered the user's
directory. For example:
oput ’DSNB10.SDSNSAMP(dsn8o3vp)’ ’/usr/db2/dsn8o3vp.c’ TEXT

Related concepts:
“DSN8O3VP sample application” on page 572

Compiling an ODBC application
The first step in preparing an ODBC application is to compile it. the compiler
process is slightly different depending on whether the application is an XPLINK
application, a non-XPLINK application, or a 64-bit application.

54 ODBC Guide and Reference

Before you begin

Before you begin compiling a DB2 ODBC application, ensure that you include the
header file sqlcli1.h in your application. This header file contains all information
that is required to compile the application. To include this file, add the following
directive in the header of your DB2 ODBC application:
#include <sqlcli1.h>

Procedure

To compile an ODBC application:

Depending on whether the application is an XPLINK application, a non-XPLINK
application, or a 64-bit application, follow the appropriate instructions for
compiling it.
For all DB2 ODBC applications, when you compile the application, you must add
the DSNB10.SDSNC.H data set to the SYSPATH concatenation, the include path
that is specified by the SEARCH or LSEARCH compiler options or the -I option for
z/OS UNIX System Services. This data set includes all DB2 ODBC header files that
define the function prototypes, constants, and data structures that are needed for a
DB2 ODBC application.

Compiling non-XPLINK applications
If your application does not need to use z/OS XPLINK function linkage and is not
written for 64-bit addressing, use the ODBC non-XPLINK driver and compile your
application as a non-XPLINK application.

Procedure

To compile non-XPLINK applications:

Perform one of the following actions:
v To compile a non-XPLINK ODBC application in z/OS: Specify the NOXPLINK

compile option.
For an example of a non-XPLINK compile job, see the DSNTEJ8 online sample
in DSNB10.SDSNSAMP.

v To compile a non-XPLINK ODBC C application in z/OS UNIX System
Services: Use the c89 compile command and specify the -W ’c,dll’ compile
option. (The ’dll’ option enables the use of the DB2 ODBC driver for C
applications.)

Example: To compile a C application that is named dsn8o3vp.c that resides in
the current working directory, use the following c89 compile command:
c89 -c -W ’c,dll,long,source,list’ -
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.c

v To compile an ODBC C++ application in z/OS UNIX System Services: Use the
cxx compile command with the -W ’c’ compile option

Example: To compile a C++ application that is named dsn8o3vp.c that resides in
the current working directory, use the following cxx compile command:
cxx -c -W ’c,long,source,list’ -
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.c

Chapter 3. Configuring DB2 ODBC and running sample applications 55

Compiling 31-bit XPLINK applications
If your 31-bit application needs to use z/OS XPLINK function linkage, use the
ODBC 31-bit XPLINK driver and compile your application as an XPLINK
application.

Procedure

To compile 31-bit XPLINK applications:

Perform one of the following actions based on the compiler method:

Compile method
Application
language Action

Compile on z/OS All Specify the XPLINK compile option.
Example: See DSNTEJ8X in DSNB10.SDSNSAMP.

Compile in z/OS
UNIX System
Services

C Use the c89 command with the -W ’c,xplink,dll’ compile option. (The ’dll’
option enables the use of the DB2 ODBC driver for C applications.)
Example: To compile a C application that is named dsn8o3vp.c that resides in
the current working directory, use the following c89 compile command:

c89 -c -W ’c,xplink,dll,long,source,list’ -
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.c

C++ Use the cxx compile command with the -W ’c,xplink’ compile option.
Example: To compile a C++ application that is named dsn8o3vp.c that resides
in the current working directory, use the following cxx compile command:

cxx -c -W ’c,xplink,long,source,list’ -
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.C

Compile with the
xlc utility on z/OS
UNIX System
Services

C Specify the appropriate compiler options in the source program, a
configuration file, or on the command line.
Example: To compile a C application that is named dsn8o3vp.c, you can use
the following command:

xlc -c -qxplink dsn8o3vp.c -I"//’DSNA10.SDSNC.H’"

C++ Specify the appropriate compiler options in the source program, a
configuration file, or on the command line.
Example: To compile a C++ application that is named dsn8o3vp.c, you can use
the following command:

xlC -c -qxplink dsn8o3vp.C -I"//’DSNA10.SDSNC.H’"

Compiling 64-bit applications
If your application is written for 64-bit addressing, use the ODBC 64-bit driver to
compile your application.

Procedure

To compile 64-bit applications:

Perform one of the following actions based on the compiler method:

Compile method
Application
language Action

Compile on z/OS All Specify the LP64 compile option. Also consider specifying the FLOAT(HEX)
and WARN64 compile options. a b

Example: See DSNTEJ8E in DSNB10.SDSNSAMP.

56 ODBC Guide and Reference

Compile method
Application
language Action

Compile in z/OS
UNIX System
Services

C Use the c89 command with the -W ’c,lp64’ compile option. Also consider
specifying the float(hex) and warn64 compile options. a b

Example: To compile a 64-bit C application that is named dsn8o3vp.c that
resides in the current working directory, use the following c89 compile
command:

c89 -c -W ’c,lp64,float(hex),warn64,long,source,list’
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.c

C++ Use the cxx compile command with the -W ’c,lp64’ compile option. Also
consider specifying the float(hex) and warn64 compile options. a b

Example: To compile a 64-bit C++ application that is named dsn8o3vp.c that
resides in the current working directory, use the following cxx compile
command:

cxx -c -W ’c,lp64,float(hex),warn64,long,source,list’
-I"//’DSNB10.SDSNC.H’" \
dsn8o3vp.C

Compile with the
xlc utility on z/OS
UNIX System
Services

C Specify the appropriate compiler options in the source program, a
configuration file, or on the command line.
Example: The following example shows how to compile a 64-bit C application
by using the command line options:

xlc -c -q64 -qfloat=hex -qwarn64 dsn8o3vp.c
-I"//’DSNA10.SDSNC.H’"

C++ Specify the appropriate compiler options in the source program, a
configuration file, or on the command line.
Example: The following example shows how to compile a 64-bit C++
application by using the command line options:

xlC -c -q64 -qfloat=hex -qwarn64 dsn8o3vp.C
-I"//’DSNA10.SDSNC.H’"

Note:

1. Specify FLOAT(HEX) if you want the 64-bit application to generate floating-point data in hexadecimal format. By
default, specifying the LP64 compile option generates FLOAT(IEEE) code. This behavior is different from the
default setting of FLOAT(HEX) when compiling 31-bit applications. For applications that are compiled with
FLOAT(IEEE), you must convert floating-point data to hexadecimal format before it can be passed to ODBC for
processing.

2. Specify WARN64 when recompiling existing 31-bit ODBC applications into 64-bit code. This option detects
possible portability errors.

Related reference:

Building and using Dynamic Link Libraries (DLLs) (XL C/C++ Programming
Guide)

Prelinking and link-editing an ODBC application
After you compile your ODBC application, you must prelink and link-edit it before
you can run it. This process is slightly different depending on whether the
application is an XPLINK application, a non-XPLINK application, or a 64-bit
application.

Procedure

To prelink and link-edit an ODBC application:

Chapter 3. Configuring DB2 ODBC and running sample applications 57

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

Depending on whether the application is an XPLINK application, a non-XPLINK
application, or a 64-bit application, follow the appropriate instructions for
prelinking and link-editing.
You can prelink and link-edit XPLINK applications in one step. For non-XPLINK
applications, you must use two steps.
Ensure that you include the appropriate DB2 ODBC definition sidedeck as input to
the prelink or link-edit step of your application. DB2 for z/OS ODBC provides the
following definition sidedecks:
v Non-XPLINK definition sidedeck, which defines all of the exported functions to

use the non-XPLINK ODBC driver. This sidedeck resides in the
DSNB10.SDSNMACS data set as member DSNOCLI.

v 31-bit XPLINK definition sidedeck, which defines all of the exported functions to
use the 31-bit XPLINK ODBC driver. This sidedeck resides in the
DSNB10.SDSNMACS data set as member DSNAOCLX.

v 64-bit XPLINK definition sidedeck, which defines all of the exported functions to
use the 64-bit ODBC driver. This sidedeck resides in the DSNB10.SDSNMACS
data set as member DSNAO64C.

The definition sidedeck that you include in the prelink or link-edit step of your
application determines which DB2 ODBC dynamic load library is used.

Prelinking and link-editing non-XPLINK applications
Before you can link-edit a non-XPLINK application, you must prelink your
application with a DB2 ODBC definition sidedeck.

About this task

For non-XPLINK applications, you should use the non-XPLINK ODBC driver.
Although doing so is not recommended, you can link-edit your non-XPLINK
application as an XPLINK application.

Procedure

To prelink and link-edit non XPLINK applications:

Perform one of the following actions:
v To link-edit a non-XPLINK ODBC application in z/OS: Include the DSNAOCLI

member as input to the prelinker by specifying it in the prelink SYSIN data
definition statement concatenation.
For an example of z/OS prelink and link-edit jobs, use the DSNTEJ8 and
DSNTEJ8X sample jobs in DSNB10.SDSNSAMP.

v To link-edit a non-XPLINK ODBC application in z/OS UNIX System Services:
Use the c89 command to prelink and link-edit C applications and the cxx
command to prelink and link-edit C++ applications. Include the following items
in the command:
– The DB2 ODBC non-XPLINK definition sidedeck,

DSNB10.SDSNMACS(DSNOCLI), as one of the input data sets.
Before you can use a DB2 ODBC definition sidedeck for input to the c89 or
cxx command, you must either specify an alias that uses .EXP for the last
qualifier, or change the value of the _XSUFFIX_HOST z/OS UNIX
environment variable.

– The ’dll’ link-edit option.

58 ODBC Guide and Reference

Example: Assume that you have already compiled an application named
myapp.c to create a myapp.o file in the current working directory and that you
specified an alias that uses .EXP as the last qualifier for the DB2 ODBC
non-XPLINK definition sidedeck. You use the following c89 command to prelink
and link-edit a C application:
c89 -W l,p,map,noer -W l,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAOCLI)’"

You use the following cxx command to prelink and link-edit a C++ application:
cxx -W l,p,map,noer -W l,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAOCLI)’"

Example: Assume that you have already compiled an application named
myapp.c to create a myapp.o file in the current working directory and that you
changed the value of the _C89_XSUFFIX_HOST or _CXX_XSUFFIX_HOST
environment variable to SDSNMACS. You use the following c89 command to
prelink and link-edit a C application:
c89 -W l,p,map,noer -W l,dll,AMODE=31,map -o dsn8o3vp dsn8o3vp.o
"//’DSNB10.SDSNMACS(DSNAOCLI)’"

You use the following cxx command to prelink and link-edit a C++ application:
cxx -W l,p,map,noer -W l,dll,AMODE=31,map -o dsn8o3vp dsn8o3vp.o
"//’DSNB10.SDSNMACS(DSNAOCLI)’"

Link-editing 31-bit XPLINK applications
For applications that are compiled as 31-bit XPLINK applications, you must
link-edit your applications with the DFSMS binder.

About this task

For 31-bit XPLINK applications, you should use the 31-bit XPLINK ODBC driver.
Although doing so is not recommended, you can also use the non-XPLINK driver
with 31-bit XPLINK compiled applications.

Procedure

To link-edit 31-bit XPLINK applications:

Perform one of the following actions:
v To link-edit the application in z/OS: Include the member DSNAOCLX as input

to the binder by specifying it in the binder SYSIN data definition statement
concatenation.
For an example of z/OS XPLINK link-edit jobs, see the DSNTEJ8X sample job in
DSNB10.SDSNSAMP.

v To link-edit the application in z/OS UNIX System Services: Use the c89
command to prelink and link-edit C applications and the cxx command to
prelink and link-edit C++ applications. Include the following items in the
command:
– The DB2 ODBC definition sidedeck, DSNB10.SDSNMACS(DSNAOCLX), as

one of the input data sets.
Before you can use a DB2 ODBC definition sidedeck for input to the c89 or
cxx command, you must either specify an alias that uses .EXP for the last
qualifier, or change the value of the _XSUFFIX_HOST z/OS UNIX
environment variable.

– The ’dll’ link-edit option.

Chapter 3. Configuring DB2 ODBC and running sample applications 59

Alternatively, you can use the xlc utility on z/OS UNIX System Services to
link-edit the application. Follow the appropriate syntax for that utility.

Example of link-editing in z/OS UNIX when you specify an alias for the
ODBC definition sidedeck: Assume that you have already compiled an
application named myapp.c to create a myapp.o file in the current working
directory. Assume that you also specified an alias that uses .EXP as the last
qualifier for the DB2 ODBC definition sidedeck. You can use the following c89
command to prelink and link-edit an XPLINK 31-bit C application:
c89 -W l,xplink,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAOCLX)’"

You can use the following cxx command to prelink and link-edit an XPLINK
31-bit C++ application:
cxx -W l,xplink,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAOCLX)’"

Example of link-editing in z/OS UNIX when you change the value of the
XSUFFIX_HOST variable: Assume that you have already compiled an
application named myapp.c to create a myapp.o file in the current working
directory. Assume that you changed the value of the _C89_XSUFFIX_HOST or
_CXX_XSUFFIX_HOST environment variable to SDSNMACS. You can use the
following c89 command to prelink and link-edit an XPLINK 31-bit C application:
c89 -W l,xplink,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNMACS(DSNAOCLX)’"

You can use the following cxx command to prelink and link-edit an XPLINK
31-bit C++ application:
cxx -W l,xplink,dll,AMODE=31,map \
-o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNMACS(DSNAOCLX)’"

Related reference:

Building and using Dynamic Link Libraries (DLLs) (XL C/C++ Programming
Guide)

Link-editing 64-bit applications
For 64-bit applications, you must link-edit your applications with the DFSMS
binder. 64-bit applications are compiled as XPLINK applications.

About this task

For 64-bit applications, you must use the 64-bit ODBC driver.

Procedure

To link-edit 64-bit applications:

Perform one of the following actions:
v To link-edit the application in z/OS: Include the following items in your JCL:

– The z/OS Language Environment library SCEEBND2 in the application's
SYSLIB concatenation.

– The 64-bit definition sidedeck, DSNB10.SDSNMACS(DSNAO64C), in the
SYSLIN concatenation.

– The definition sidedecks for the LE run time library bindings in the SYSLIN
concatenation. For applications that are written in C, include the C RTL

60 ODBC Guide and Reference

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

sidedeck CELQS003 from the LE SCEELIB data set. For applications that are
written in C++, include both CELQS003 and the C++ sidedeck CELQSCPP.

For an example of a z/OS link-edit job for a 64-bit application, see the
DSNTEJ8E sample job in DSNB10.SDSNSAMP.

v To link-edit the application in z/OS UNIX System Services: Use the c89
command to prelink and link-edit C applications and the cxx command to
prelink and link-edit C++ applications. Include the following items in the
command:
– The DB2 ODBC definition sidedeck for 64-bit applications,

DSNB10.SDSNMACS(DSNAO64C), as one of the input data sets.
Before you can use a DB2 ODBC definition sidedeck for input to the c89 or
cxx command, you must either specify an alias that uses .EXP for the last
qualifier, or change the value of the _XSUFFIX_HOST z/OS UNIX
environment variable.

– The lp64 option
Alternatively, you can use the xlc utility on z/OS UNIX System Services to
link-edit the application. Follow the appropriate syntax for that utility.

Example of link-editing in z/OS UNIX when you specify an alias for the
ODBC definition sidedeck: Assume that you have already compiled an
application named myapp.c to create a myapp.o file in the current working
directory. Assume that you also specified an alias that uses .EXP as the last
qualifier for the DB2 ODBC definition sidedeck.

You use the following c89 command to prelink and link-edit a 64-bit C
application:
c89 -W l,lp64,map -o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAO64C)’"

You use the following cxx command to prelink and link-edit a 64-bit C++
application:
cxx -W l,lp64,map -o dsn8o3vp dsn8o3vp.o "//’DSNB10.SDSNC.EXP(DSNAO64C)’"

Related reference:

Building and using Dynamic Link Libraries (DLLs) (XL C/C++ Programming
Guide)

Executing an ODBC application
You can execute an ODBC application by using a z/OS job or by using z/OS
UNIX commands.

Procedure

To execute an ODBC application:

Perform the following actions, as applicable:
v For applications that you want to execute on z/OS: Use one of the execution

jobs in the following samples inDSNB10.SDSNSAMP as a model:

DSNTEJ8
Shows how to execute non-XPLINK applications

DSNTEJ8X
Shows how to execute 31-bit XPLINK applications.

Chapter 3. Configuring DB2 ODBC and running sample applications 61

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/4.1?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

DSNTEJ8E
Shows how to execute 64-bit XPLINK applications.

v For applications that you want to execute on z/OS UNIX System Services:
Include the DSNB10.SDSNEXIT and DSNB10.SDSNLOAD data sets in the data
set concatenation of your STEPLIB environment variable. You can set the
STEPLIB environment variable in your .profile with the following statement:
export STEPLIB=DSNB10.SDSNEXIT:DSNB10.SDSNLOAD

v For all ODBC applications: Ensure that your application can access the
following items:
– The DSNB10.SDSNLOAD data set

The SDSNLOAD data set contains both the DB2 ODBC dynamic load library
and the attachment facility module that is used to communicate with DB2.

– Any site-specific DSNHDECP
The DB2 for z/OS load module DSNHDECP contains, among other things,
the coded character set ID (CCSID) information that DB2 for z/OS uses.
A default DSNHDECP is shipped with DB2 for z/OS in the
DSNB10.SDSNLOAD data set. However, if the values that are provided in the
default DSNHDECP are not appropriate for your site, a new DSNHDECP can
be created during the installation of DB2 for z/OS. If a site-specific
DSNHDECP is created during installation, you should concatenate the data
set that contains the new DSNHDECP before the DSNB10.SDSNLOAD data
set in your STEPLIB or JOBLIB data definition statement.

v For 31-bit XPLINK applications and 64-bit applications: To use the 31-bit
XPLINK driver or the 64-bit driver, you must perform the following actions:
– Include z/OS Language Environment libraries SCEERUN and SCEERUN2

run time libraries in the application's STEPLIB, JOBLIB, LPALST, or LNKLST
concatenation. For z/OS UNIX, ensure that these run time libraries are
qualified with the prefix that the _C89_PLIB_PREFIX or _CXX_PLIB_PREFIX
environment variable specifies.

– Ensure that the application can access the XPLINK dynamic link library
DSNAOCLX in the DSNB10.SDSNLOD2 data set at execution time.

– For 31-bit applications, ensure that the application can access the XPLINK
dynamic link library DSNAOCLX in the DSNB10.SDSNLOD2 data set at
execution time.

– For 64-bit applications, ensure that the application can access the 64-bit
dynamic link library DSNAO64C in the DSNB10.SDSNLOD2 data set at
execution time.

– For non-XPLINK applications that use the XPLINK driver, specify the
XPLINK(ON) Language Environment run time option to allocate XPLINK
resources.

How to define a subsystem to DB2 ODBC
You can define a DB2 subsystem in two ways. You can use MVSDEFAULTSSID, or you
can use the default that is specified in the DSNHDECP load module.

You can identify the DB2 subsystem by specifying the MVSDEFAULTSSID keyword in
the common section of initialization file. If the MVSDEFAULTSSID keyword does not
exist in the initialization file, DB2 ODBC uses the default subsystem name
specified in the DSNHDECP load module that was created when DB2 was installed.

62 ODBC Guide and Reference

Therefore, you should ensure that DB2 ODBC can find the intended DSNHDECP
when your application issues the SQLAllocHandle() call (with HandleType set to
SQL_HANDLE_ENV).

The DSNHDECP load module is usually link-edited into the DSNB10.SDSNEXIT data set.
In this case, your STEPLIB DD card includes:

//STEPLIB DD DSN=DSNB10.SDSNEXIT,DISP=SHR
// DD DSN=DSNB10.SDSNLOAD,DISP=SHR
...

DB2 ODBC initialization file
A set of optional keywords can be specified in a DB2 ODBC initialization file. An
initialization file stores default values for various DB2 ODBC configuration
options. Because the initialization file has EBCDIC texts, you can use a file editor,
such as the TSO editor, to edit it.

For most applications, use of the DB2 ODBC initialization file is not necessary.
However, to make better use of IBM Rdatabase server features, the keywords can
be specified to:
v Help improve the performance or usability of an application.
v Provide support for applications written for a previous version of DB2 ODBC.
v Provide specific workarounds for existing ODBC applications.
Related concepts:
“How to use the initialization file”
Related reference:
“DB2 ODBC initialization keywords” on page 65

How to use the initialization file
The DB2 ODBC initialization file is read at application run time. You can specify
the file by using either a DSNAOINI data definition statement or by defining a
DSNAOINIz/OS UNIX environment variable.

DB2 ODBC opens the DSNAOINI data set allocated in your JCL first. If a
DSNAOINI data set is not allocated, then DB2 ODBC opens the environment
variable data set.

The initialization file specified can be either a traditional z/OS data set or an HFS
file under the z/OS UNIX environment. For z/OS data sets, the record format of
the initialization file can be either fixed or variable length.

The following examples use a DSNAOINI JCL data definition statement to specify
the DB2 ODBC initialization file types supported:

Sequential data set USER1.DB2ODBC.ODBCINI:
//DSNAOINI DD DSN=USER1.DB2ODBC.ODBCINI,DISP=SHR

Partitioned data set USER1.DB2ODBC.DATA, member ODBCINI:
//DSNAOINI DD DSN=USER1.DB2ODBC.DATA(ODBCINI),DISP=SHR

Inline JCL DSNAOINI DD specification:
//DSNAOINI DD *

[COMMON]
MVSDEFAULTSSID=VB1A

/*

Chapter 3. Configuring DB2 ODBC and running sample applications 63

HFS file /u/user1/db2odbc/odbcini:
//DSNAOINI DD PATH=’/u/user1/db2odbc/odbcini’

The following examples of z/OS UNIX export statements define the DB2 ODBC
DSNAOINI z/OS UNIX environment variable for the DB2 ODBC initialization file
types supported:

HFS fully qualified file /u/user1/db2odbc/odbcini:
export DSNAOINI="/u/user1/db2odbc/odbcini"

HFS file ./db2odbc/odbcini, relative to the present working directory of the
application:
export DSNAOINI="./db2odbc/odbcini"

Sequential data set USER1.ODBCINI:
export DSNAOINI="USER1.ODBCINI"

Redirecting to use a file that is specified by another previously allocated DD
statement, MYDD:
export DSNAOINI="//DD:MYDD"

Partitioned data set USER1.DB2ODBC.DATA, member ODBCINI:
export DSNAOINI="USER1.DB2ODBC.DATA(ODBCINI)"

When specifying an HFS file, the value of the DSNAOINI environment variable
must begin with either a single forward slash (/), or a period followed by a single
forward slash (./). If a setting starts with any other characters, DB2 ODBC assumes
that a z/OS data set name is specified.

Allocation precedence: DB2 ODBC opens the DSNAOINI data set allocated in your
JCL first. If a DSNAOINI data set is not allocated, then DB2 ODBC opens the
environment variable data set.

Structure of the initialization file
The initialization file consists of three types of section: common section, subsystem
section, and data source sections.

The three sections, which are also called stanzas, are described as follows:

Common section
Contains parameters that are global to all applications using this
initialization file.

Subsystem section
Contains parameter values unique to that subsystem.

Data source sections
Contain parameter values to be used only when connected to that data
source. You can specify zero or more data source sections.

Each section is identified by a syntactic identifier enclosed in square brackets.

The syntactic identifier is either the literal 'common', the subsystem ID or the data
source (location name). For example:
[data-source-name]

64 ODBC Guide and Reference

This is the section header.

The parameters are set by specifying a keyword with its associated keyword value
in the form:
KeywordName =keywordValue

v All the keywords and their associated values for each data source must be
located below the data source section header.

v The keyword settings in each section apply only to the data source name in that
section header.

v The keywords are not case sensitive; however, their values can be if the values
are character based.

v If a data source name is not found in the DB2 ODBC initialization file, the
default values for these keywords are in effect.

v Comment lines are introduced by having a semicolon in the first position of a
new line.

v Blank lines are also permitted. If duplicate entries for a keyword exist, the first
entry is used (and no warning is given).

Important: You can avoid common errors by ensuring that the following contents
of the initialization file are accurate:
v Square brackets: The square brackets in the initialization file must consist of the

correct EBCDIC characters. The open square bracket must use the hexadecimal
characters X'AD'. The close square bracket must use the hexadecimal characters
X'BD'. DB2 ODBC does not recognize brackets if coded differently.

v Sequence numbers: The initialization file cannot accept sequence numbers. All
sequence numbers must be removed.

The following sample is a DB2 ODBC initialization file with a common stanza, a
subsystem stanza, and two data source stanzas.
; This is a comment line...
; Example COMMON stanza
[COMMON]
MVSDEFAULTSSID=VB1A
CONNECTTYPE=2
; Example SUBSYSTEM stanza for VB1A subsystem
[V81A]
MVSATTACHTYPE=CAF
PLANNAME=DSNACLI
; Example DATA SOURCE stanza for STLEC1 data source
[STLEC1]
AUTOCOMMIT=0
; Example DATA SOURCE stanza for STLEC1B data source
[STLEC1B]
CURSORHOLD=0

Related reference:
“DB2 ODBC initialization keywords”

DB2 ODBC initialization keywords
DB2 ODBC initialization keywords control the run time environment for DB2
ODBC applications.

The section (common, subsystem, or data source) in the initialization file where
each keyword must be defined is identified.

Chapter 3. Configuring DB2 ODBC and running sample applications 65

ACCOUNTINGINTERVAL = COMMIT
This keyword is placed in the subsystem section.

Use the ACCOUNTINGINTERVAL keyword to specify whether DB2
accounting records are produced at commit points. When
ACCOUNTINGINTERNVAL is set to COMMIT, an accounting record is
produced each time a transaction is committed on a connection handle. When
ACCOUNTINGINTERVAL is not specified, or a keyword value other than
COMMIT is specified, accounting records are produced when the physical
connection on the connection handle is terminated.

DB2 ODBC ignores ACCOUNTINGINTERVAL if MVSATTACHTYPE=CAF is
specified, or if the DB2 ODBC application is running as a DB2 for z/OS stored
procedure.

APPLTRACE = 0 | 1
This keyword is placed in the common section.

The APPLTRACE keyword controls whether the DB2 ODBC application trace
is enabled. The application trace is designed for diagnosis of application errors.
If enabled, every call to any DB2 ODBC API from the application is traced,
including input parameters. The trace is written to the file specified on the
APPLTRACEFILENAME keyword.

0 Disabled (default)

1 Enabled

APPLTRACEFILENAME = dataset_name
This keyword is placed in the common section.

APPLTRACEFILENAME is only used if a trace is started by the APPLTRACE
keyword. When APPLTRACE is set to 1, use the APPLTRACEFILENAME
keyword to identify a z/OS data set name or z/OS UNIX environment HFS
file name that records the DB2 ODBC application trace.

AUTOCOMMIT = 1 | 0
This keyword is placed in the data source section.

To be consistent with ODBC, DB2 ODBC defaults with AUTOCOMMIT on,
which means each statement is treated as a single, complete transaction. This
keyword can provide an alternative default, but is only used if the application
does not specify a value for AUTOCOMMIT as part of the program.

1 on (default)

0 off

Most ODBC applications assume the default of AUTOCOMMIT is on. Extreme
care must be used when overriding this default during run time as the
application might depend on this default to operate properly.

Although you can specify only two different values for this keyword, you can
also specify whether AUTOCOMMIT is enabled in a distributed unit of work
(DUW) environment. If a connection is part of a coordinated DUW, and
AUTOCOMMIT is not set, the default does not apply; implicit commits arising
from autocommit processing are suppressed. If AUTOCOMMIT is set to 1, and
the connection is part of a coordinated DUW, the implicit commits are
processed. This can result in severe performance degradations, and possibly
other unexpected results elsewhere in the DUW system. However, some
applications might not work at all unless this is enabled.

66 ODBC Guide and Reference

A thorough understanding of the transaction processing of an application is
necessary, especially applications written by a third party, before applying it to
a DUW environment.

To enable global transaction processing in an application, specify
AUTOCOMMIT=0, MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF.

BITDATA = 1 | 0
This keyword is placed in the data source section.

The BITDATA keyword allows you to specify whether ODBC SQL_BINARY,
SQL_VARBINARY, SQL_LONGVARBINARY, and SQL_BLOB types are
reported as binary type data. IBM database servers support columns with
binary data types by defining CHAR, VARCHAR and LONG VARCHAR
columns with the FOR BIT DATA attribute, or by defining BINARY or
VARBINARY columns.

Set BITDATA = 0 only if you are sure that all columns defined as FOR BIT
DATA, BLOB, BINARY, or VARBINARY contain only character data, and the
application is incapable of displaying binary data columns.

1 Report FOR BIT DATA, BLOB, BINARY, or VARBINARY data types as
binary data. This is the default.

0 Report FOR BIT DATA, BLOB, BINARY, or VARBINARY data types as
character data.

CLISCHEMA = schema_name

This keyword is deprecated.

If you specify this keyword, the ODBC driver does not use the database
metadata stored procedures to retrieve catalog information.

COLLECTIONID = collection_id
This keyword is placed in the data source section.

The COLLECTIONID keyword allows you to specify the collection identifier
that is used to resolve the name of the package allocated at the server. This
package supports the execution of subsequent SQL statements.

The value is a character string and must not exceed 128 characters. It can be
overridden by executing the SET CURRENT PACKAGESET statement.

CONCURRENTACCESSRESOLUTION = 0 | 1 | 2| 3
The CONCURRENTACCESSRESOLUTION keyword controls how access to
uncommitted data is resolved when processing a read transaction.

0 No setting. This is the default value.

1 USE CURRENTLY COMMITTED. A read transaction can access the
currently committed version of the data when the data is being
updated or deleted. Rows in the process of being inserted are skipped.
After this value is set, all user SELECT statements are prepared with
the attribute USE CURRENTLY COMMITTED attribute. This option
applies only when cursor stability (CS) or read stability (RS) isolation
are in effect.

2 WAIT FOR OUTCOME. Read transactions that require access to data
that is being updated or deleted must wait for a COMMIT or
ROLLBACK operation to complete. Rows in the process of being
inserted are not skipped. After this value is set, all user SELECT
statements are prepared with the WAIT FOR COMMIT attribute.

Chapter 3. Configuring DB2 ODBC and running sample applications 67

3 SKIP LOCKED DATA. Read transactions can skip any rows that are
incompatibly locked by other transactions. After this value is set, all
user SELECT statements are prepared with the SKIP LOCKED
attribute. This option applies only when cursor stability (CS) or read
stability (RS) isolation are in effect.

When CONCURRENTACCESSRESOLUTION=1, the same rules and restrictions
that apply to DB2 currently committed semantics also apply to ODBC. Access
to currently committed data is supported for uncommitted INSERT and
DELETE operation only in Version 10 and newer. Read transactions must still
wait for uncommitted UPDATE operations to complete.

CONNECTTYPE = 1 | 2
This keyword is placed in the common section.

The CONNECTTYPE keyword allows you to specify the default connection
type for all connections to data sources.

1 Multiple concurrent connections, each with its own commit scope. If
MULTICONTEXT=0 is specified, a new connection might not be added
unless the current transaction on the current connection is on a
transaction boundary (either committed or rolled back). This is the
default.

2 Coordinated connections where multiple data sources participate under
the same distributed unit of work. CONNECTTYPE=2 is ignored if
MULTICONTEXT=1 is specified.

CURRENTAPPENSCH = EBCDIC | UNICODE | ASCII | ccsid
This keyword is placed in the common section.

Use the CURRENTAPPENSCH keyword to specify either of the following
items:
v The encoding scheme (UNICODE, EBCDIC, or ASCII) that the ODBC driver

uses for:
– Bound input or output host variables with the symbolic C data type

SQL_C_CHAR
– Character string arguments on a generic API call

v A CCSID value that provides the following information to the ODBC driver:
– The same information that an encoding scheme provides. The ODBC

driver derives the encoding scheme from the CCSID value.
– The default values for the statement attributes SQL_CCSID_CHAR and

SQL_CCSID_GRAPHIC. The CCSID value overrides the default CCSID
settings in the DSNHDECP load module for application data with the
SQL_C_CHAR data type.

The suffix-W APIs, which support UCS-2 string arguments, are not affected by
CURRENTAPPENSCH. ODBC assumes UCS-2 for bound input or output host
variables with the symbolic C data type SQL_C_WCHAR, regardless of the
value of CURRENTAPPENSCH.

Result of specifying an encoding scheme for CURRENTAPPENSCH: When
CURRENTAPPENSCH is set to EBCDIC, ASCII, or UNICODE, a SET
CURRENT APPLICATION ENCODING SCHEME statement is sent to the data
source following a successful connect. If this keyword is not present, the driver
assumes EBCDIC as the default application encoding scheme.

68 ODBC Guide and Reference

Result of specifying a CCSID for CURRENTAPPENSCH: When
CURRENTAPPENSCH is set to a CCSID value, the CCSID value provides
default values to the statement attributes SQL_CCSID_CHAR and
SQL_CCSID_GRAPHIC as follows:
v If ccsid is an SBCS CCSID, ccsid is the default value for SQL_CCSID_CHAR.

SQL_CCSID_DEFAULT is the default value for SQL_CCSID_GRAPHIC.
v If ccsid is a DBCS CCSID, ccsid is the default value for

SQL_CCSID_GRAPHIC. SQL_CCSID_DEFAULT is the default value for
SQL_CCSID_CHAR.
Specifying any of the UCS-2 CCSIDs (1200, 13488, or 17584) for ccsid is
equivalent to specifying CURRENTAPPENSCH=UNICODE. If ccsid has any
of those values, ccsid is not the default value for SQL_CCSID_GRAPHIC.

v If ccsid is a mixed CCSID, ccsid is the default value for SQL_CCSID_CHAR.
The DBCS CCSID that is derived from ccsid is the default value for
SQL_CCSID_GRAPHIC.
If ccsid is 1208, 1208 is the default value for SQL_CCSID_CHAR.
SQL_CCSID_DEFAULT is the default value for SQL_CCSID_GRAPHIC.

If an application calls SQLSetStmtAttr() to set the values for
SQL_CCSID_CHAR or SQL_CCSID_GRAPHIC, those values override the
default CCSID values that are set by CURRENTAPPENSCH.

Result of not specifying CURRENTAPPENSCH or specifying an invalid
value for CURRENTAPPENSCH: When CURRENTAPPENSCH is not
specified or the CURRENTAPPENSCH value is invalid, the ODBC driver uses
EBCDIC as the default application encoding scheme.

CURRENTFUNCTIONPATH = "'schema1', 'schema2' ,..."
This keyword is placed in the data source section.

Use the CURRENTFUNCTIONPATH keyword to define the path that resolves
unqualified user-defined functions, distinct types, and stored procedure
references that are used in dynamic SQL statements. It contains a list of one or
more schema names, which are used to set the CURRENT PATH special
register using the SET CURRENT PATH SQL statement upon connection to the
data source. Each schema name in the keyword string must be delimited with
single quotes and separated by commas. The entire keyword string must be
enclosed in double quotes and must not exceed 2048 characters.

The default value of the CURRENT PATH special register is:
"SYSIBM", "SYSFUN", "SYSPROC", X

X is the value of the USER special register as a delimited identifier. The
schemas SYSIBM, SYSFUN, and SYSPROC do not need to be specified. If any
of these schemas is not included in the current path, DB2 implicitly assumes
each schema name begins the path, in the order shown above. The order of the
schema names in the path determines the order in which the names are
resolved.

Unqualified user-defined functions, distinct types, and stored procedures are
searched from the list of schemas specified in the CURRENTFUNCTIONPATH
setting in the order specified. If the user-defined function, distinct type, or
stored procedures is not found in a specified schema, the search continues in
the schema specified next in the list. For example:
CURRENTFUNCTIONPATH="’USER01’, ’PAYROLL’, ’SYSIBM’, ’SYSFUN’, ’SYSPROC’"

Chapter 3. Configuring DB2 ODBC and running sample applications 69

This example of CURRENTFUNCTIONPATH settings searches schema
"USER01", followed by schema "PAYROLL", followed by schema "SYSIBM",
and so on.

Although the SQL statement CALL is a static statement, the
CURRENTFUNCTIONPATH setting affects a CALL statement if the stored
procedure name is specified with a host variable (making the CALL statement
a pseudo-dynamic SQL statement). This is always the case for a CALL
statement processed by DB2 ODBC.

CURRENTSQLID = current_sqlid
This keyword is placed in the data source section.

The CURRENTSQLID keyword is valid only for those DB2 database servers
that support SET CURRENT SQLID (such as DB2 for z/OS). If this keyword is
present, then a SET CURRENT SQLID statement is sent to the database server
after a successful connect. This allows users and the application to name SQL
objects without having to qualify by schema name. The value that you specify
for current_sqlid must be no more than 128 bytes.

Do not specify this keyword if you are binding the DB2 ODBC packages with
DYNAMICRULES(BIND).

CURSORHOLD = 1 | 0
This keyword is placed in the data source section.

The CURSORHOLD keyword controls the effect of a transaction completion on
open cursors.

1 Cursor hold. The cursors are not destroyed when the transaction is
committed. This is the default.

0 Cursor no hold. The cursors are destroyed when the transaction is
committed.

Cursors are always destroyed when transactions are rolled back.

Specify zero for this keyword to improve application performance when both
the following conditions are true:
v The application does not behave dependently on

SQL_CURSOR_COMMIT_BEHAVIOR or
SQL_CURSOR_ROLLBACK_BEHAVIOR information that SQLGetInfo()
returns.

v The application does not require cursors to be preserved from one
transaction to the next.

The database server operates more efficiently as resources no longer need to be
maintained after the end of a transaction.

DB2EXPLAIN = 0 | 1 | 2 | 3
This keyword is placed in the data source section.

The DB2EXPLAIN keyword sets the CURRENT EXPLAIN MODE special
register to either YES or NO. You can specify one of the following values:

0 Sets the CURRENT EXPLAIN MODE special register to NO, which
disables the EXPLAIN facility. In this case, DB2 does not capture any
EXPLAIN information when explainable dynamic statements are
executed. This value is the default.

1 Has the same effect as the value 0. This value is supported for DB2

70 ODBC Guide and Reference

family compatibility. For DB2 for Linux, UNIX, and Windows, the
value 1 has a different meaning, but on DB2 for z/OS, the value 1 has
the same meaning as the value 0.

2 Sets the CURRENT EXPLAIN MODE special register to YES, which
enables the EXPLAIN facility. In this case, DB2 inserts EXPLAIN
information into the EXPLAIN tables for explainable dynamic SQL
statements.

3 Has the same effect as the value 2. This value is supported for DB2
family compatibility. For DB2 for Linux, UNIX, and Windows, the
value 3 has a different meaning, but on DB2 for z/OS, the value 3 has
the same meaning as the value 2.

Alternatively, you can set the CURRENT EXPLAIN MODE special register for
ODBC applications by using the SQLSetConnectAttr() function with the
SQL_ATTR_DB2EXPLAIN attribute or the SET CURRENT EXPLAIN MODE
SQL statement.

If you want to set the CURRENT EXPLAIN MODE special register to
EXPLAIN, you must use the SET CURRENT EXPLAIN MODE statement.

To get the EXPLAIN behavior that you want, you should also consider how
you set the REOPT bind option.

DBNAME = dbname
This keyword is placed in the data source section.

The DBNAME keyword is only used when connecting to DB2 for z/OS, and
only if (base) table catalog information is requested by the application.

If a large number of tables exist in the DB2 for z/OS subsystem, a dbname can
be specified to reduce the time it takes for the database to process the catalog
query for table information, and reduce the number of tables returned to the
application.

The value of the dbname keyword maps to the DBNAME column in the DB2
for z/OS catalog tables. If no value is specified, or if views, synonyms, system
tables, or aliases are also specified using TABLETYPE, only table information is
restricted; views, aliases, and synonyms are not restricted with DBNAME. This
keyword can be used in conjunction with SCHEMALIST and TABLETYPE to
further limit the number of tables for which information is returned.

DECIMALFLOATROUNDINGMODE=0 | 1 | 2 | 3 | 4 | 5 | 6
This keyword is placed in the data source section.

DECIMALFLOATROUNDINGMODE specifies the rounding mode that is used
when DECFLOAT data values are manipulated. If
DECIMALFLOATROUNDINGMODE is present, DB2 ODBC sends a SET
CURRENT DECFLOAT ROUNDING MODE statement to the data source after
a successful connect. If DECIMALFLOATROUNDINGMODE is not present,
ROUND_HALF_EVEN is assumed at the data source. Possible values and the
corresponding CURRENT DECFLOAT ROUNDING MODE values are:

0 ROUND_HALF_EVEN

Round to the nearest integer. If the value is equidistant from two
integers, round so that the final digit is even.

1 ROUND_HALF_UP

Round to the nearest integer. If the value is equidistant from two
integers, round up.

Chapter 3. Configuring DB2 ODBC and running sample applications 71

2 ROUND_DOWN

Round toward 0. This is equivalent to truncation.

3 ROUND_CEILING

Round toward positive infinity.

4 ROUND_FLOOR

Round toward negative infinity.

5 ROUND_HALF_DOWN

Round to the nearest integer. If the value is equidistant from two
integers, round down.

6 ROUND_UP

Round away from zero.

DIAGTRACE = 0 | 1
This keyword is placed in the common section.

The DIAGTRACE keyword lets you enable the DB2 ODBC diagnostic trace.

0 The DB2 ODBC diagnostic trace is not enabled. No diagnostic data is
captured. This is the default.

You can enable the diagnostic trace by using the appropriate ODBC
diagnostic trace command when the DIAGTRACE keyword is set to 0.

1 The DB2 ODBC diagnostic trace is enabled. Diagnostic data is recorded
in the application address space. If you include a DSNAOTRC data
definition statement in your job or TSO logon procedure that identifies
a z/OS data set or a z/OS UNIX environment HFS file name, the trace
is externalized at normal program termination. You can format the
trace by using the appropriate ODBC diagnostic trace command.

DIAGTRACE_BUFFER_SIZE = buffer size
This keyword is placed in the common section.

The DIAGTRACE_BUFFER_SIZE keyword controls the size of the DB2 ODBC
diagnostic trace buffer. This keyword is only used if a trace is started by using
the DIAGTRACE keyword.

buffer size is an integer value that represents the number of bytes to allocate for
the trace buffer. The buffer size is rounded down to a multiple of 65536 (64K).
If the value specified is less than 65536, 65536 is used. The default value for
the trace buffer size is 65536. For 64-bit applications, specify a buffer size value
that is up to 10% bigger than what you would specify for 31-bit applications.

If a trace is active, this keyword is ignored.

DIAGTRACE_NO_WRAP = 0 | 1
This keyword is placed in the common section.

The DIAGTRACE_NO_WRAP keyword controls the behavior of the DB2
ODBC diagnostic trace when the DB2 ODBC diagnostic trace buffer fills up.
This keyword is only used if a trace is started by the DIAGTRACE keyword.

0 The trace table is a wraparound trace. In this case, the trace remains
active to capture the most current trace records. This is the default.

1 The trace stops capturing records when the trace buffer fills. The trace
captures the initial trace records that were written.

72 ODBC Guide and Reference

If a trace is active, this keyword is ignored.

DIAGTRACE = 0 | 1
This keyword is placed in the common section.

The DIAGTRACE keyword lets you enable the DB2 ODBC diagnostic trace.

0 The DB2 ODBC diagnostic trace is not enabled. No diagnostic data is
captured. This is the default.

You can enable the diagnostic trace by using the appropriate ODBC
diagnostic trace command when the DIAGTRACE keyword is set to 0.

1 The DB2 ODBC diagnostic trace is enabled. Diagnostic data is recorded
in the application address space. If you include a DSNAOTRC data
definition statement in your job or TSO logon procedure that identifies
a z/OS data set or a z/OS UNIX environment HFS file name, the trace
is externalized at normal program termination. You can format the
trace by using the appropriate ODBC diagnostic trace command.

DIAGTRACE_MASK = *.*.*.*.* | trace_mask
This keyword is placed in the common section.

The DIAGTRACE_MASK enables a trace mask which limits the trace records
collected by the DB2 ODBC diagnostic trace. Use this keyword only if a trace
is started by the DIAGTRACE keyword.

The track mask consists of five parts that are delimited by periods.
v Types
v Products
v Components
v Functions
v Categories

Each part can consist of comma separated lists, hyphen separated ranges, or
single entries. The default setting of DIAGTRACE_MASK=*.*.*.*.* captures all
trace records. To capture specific records, set the mask to the numbers that
correspond to specific types, products, components, functions, and/or
categories that you want to trace. If you want to trace all entry and exit records
for component 41, set DIAGTRACE_MASK=1,2.*.41.*.* where 41 specifies the
component, and 1 and 2 limit tracing to entry and exit records only.

The trace mask is intended for activating tracing for IBM debugging.

GRANTEELIST = userID1, userID2, ... userIDn

This keyword is placed in the data source section.

You can use the GRANTEELIST keyword to reduce the amount of information
that is returned when the application gets a list of privileges for tables, or
privileges for columns in a table. The list of authorization IDs specified is used
as a filter. If an application gets a list of privileges for a specific table, only the
columns that have a privilege granted to the specified user IDs are returned.

This keyword is applicable to the APIs SQLColumnPrivileges and
SQLTablePrivileges

GRANTORLIST = userID1, userID2, ... userIDn

This keyword is placed in the data source section.

You can use the GRANTORLIST keyword to reduce the amount of information
returned when the application gets a list of privileges for tables, or privileges

Chapter 3. Configuring DB2 ODBC and running sample applications 73

for columns in a table. The list of authorization IDs specified is used as a filter.
If the application gets a list of privileges for a specific table, only those
columns that have a privilege granted by the specified user IDs are returned.

This keyword is applicable to the APIs SQLColumnPrivileges and
SQLTablePrivileges

GRAPHIC =0 | 1 | 2 | 3
This keyword is placed in the data source section.

The GRAPHIC keyword controls whether DB2 ODBC reports IBM GRAPHIC
(double-byte character support) as one of the supported data types when
SQLGetTypeInfo() is called. SQLGetTypeInfo() lists the data types supported by
the data source for the current connection. These are not native ODBC types
but have been added to expose these types to an application connected to a
DB2 family product.

0 Disabled (default)

1 Enabled

2 report the length of graphic columns returned by DESCRIBE in
number of bytes rather than DBCS characters. This applies to all DB2
ODBC and ODBC functions that return length or precision either on
the output argument or as part of the result set.

3 Settings 1 and 2 combined; that is, GRAPHIC=3 achieves the combined
effect of 1 and 2.

The default is that GRAPHIC is not returned because many
applications do not recognize this data type and cannot provide proper
handling.

INTERRUPT = 0 | 1 | 2
The INTERRUPT keyword allows you to specify the interrupt processing mode
when SQLCancel() is called to cancel the processing on a statement.

0 Disable interrupt processing (SQLCancel() calls do not interrupt the
processing.)

1 Interrupts are supported (default). In this mode, if interrupt is
supported for the connection at the server, an interrupt will be sent.
Otherwise, the connection is dropped.

3 Interrupt drops the connection regardless of server's interrupt
capabilities (SQLCancel() drops the connection.)

This keyword is applicable only to applications that have
MVSATTACHTYPE=RRSAF specified in the initialization file. Only connections
that are attached through the RRSAF attachment facility can be dropped.

When INTERRUPT is set to 1, DB2 ODBC always drops the connection that is
associated with the statement.

LIMITEDBLOCKFETCH = 0 | 1
This keyword is placed in the data source section.

LIMITEDBLOCKFETCH specifies whether DB2 ODBC attempts to use limited
block fetch when it fetches result sets from the connected data source. Limited
block fetch can significantly reduce the number of trips to the DB2 server for
data retrieval by grouping the rows that are retrieved by an SQL query into a
block of rows in a query buffer. Limited block fetch benefits DB2 ODBC
applications that retrieve large read-only result sets with forward-only cursors
from a local DB2 server. LIMITEDBLOCKFETCH affects FETCH operations

74 ODBC Guide and Reference

that are performed by the SQLFetch(), SQLExtendedFetch(), and
SQLFetchScroll() functions. Possible values are:

0 Limited block fetch is not used.

1 DB2 ODBC attempts to use limited block fetch. If blocking is
supported at the server for the result set that is being fetched, DB2
ODBC retrieves as many rows as it can fit in a query data block in a
single fetch request. 1 is the default.

When you enable limited block fetch, you can also set the size of the
query data block by setting the QUERYDATASIZE initialization
parameter.

The specification of LIMITEDBLOCKFETCH=1 turns off any
alternative fetch optimization that DB2 ODBC might otherwise use,
such as DB2 multi-row fetch.

DB2 ODBC limited block fetch is not supported in the following cases:
v For connections to remote data sources
v For result sets other than read-only result sets
v For cursor types other than SQL_CURSOR_FORWARD_ONLY
v If any of the columns in the result set is a file reference variable
v If the application sets the statement attribute SQL_NODESCRIBE to

SQL_NODESCRIBE_ON and uses SQLSetColAttributes() to set the
data source result descriptor for result set columns

If you enable limited block fetch for situations in which it is not
supported, performance might be impacted.

Related information:

“ODBC limited block fetch” on page 433

LITERALREPLACEMENT = 0 | 1
This keyword is placed in the data source section.

The LITERALREPLACEMENT keyword specifies whether a dynamic SQL
statement that contains literals is cached with the literal constants or with
replacement markers for the literal constants. The default value is 0.

0 The statement is cached with the literal constants. If the statement
contains one or more constants that are different from the cached
version of the same dynamic statement, the statement is cached as a
unique statement entry.

1 The statement is cached with replacement markers for literal constants.
DB2 can share a cache entry for dynamic statements that are identical
except for the literal constants if those statements also satisfy the
following criteria:
v The statements do not contain parameter markers.
v The constants in the new statement can be reused in place of the

constants in the cached statement.
v The statements satisfy all other conditions for dynamic statement

cache sharing.

By sharing the dynamic cache entry, DB2 does not have to fully
prepare the new statement, and the application performance might
improve.

Chapter 3. Configuring DB2 ODBC and running sample applications 75

|

This keyword is equivalent to the CONCENTRATE STATEMENTS clause of
the SQL PREPARE statement.

MAXCONN = 0 | positive number
This keyword is placed in the common section.

The MAXCONN keyword is used to specify the maximum number of
connections allowed for each DB2 ODBC application program. This can be
used by an administrator as a governor for the maximum number of
connections established by each application.

0 Can be used to represent no limit; that is, an application is allowed to
open up as many connections as permitted by the system resources.
This is the default.

positive number
Set the keyword to any positive number to specify the maximum
number of connections each application can open.

This parameter limits the number of SQLConnect() statements that the
application can successfully issue. In addition, if the application is executing
with CONNECT (type 1) semantics, then this value specifies the number of
logical connections. Only one physical connection to either the local DB2
subsystem or a remote DB2 subsystem or remote DRDA-1 or DRDA-2 server is
made at one time.

MULTICONTEXT = 0 | 1
This keyword is placed in the common section.

The MULTICONTEXT keyword controls whether each connection in an
application can be treated as a separate unit of work with its own commit
scope that is independent of other connections.
v 0: The DB2 ODBC code does not create an independent context for a data

source connection. Connection switching among multiple data sources
governed by the CONNECTTYPE=1 rules is not allowed unless the current
transaction on the current connection is on a transaction boundary (either
committed or rolled back). This is the default.
Specify MULTICONTEXT=0 and MVSATTACHTYPE=RRSAF to allow an
ODBC application to create and manage its own contexts using the z/OS
Context Services. With these services, an application can manage its own
contexts outside of ODBC with each context operating as an independent
unit of work.
DB2 ODBC support for external contexts is disabled if the application is
running as DB2 ODBC stored procedure.
To enable global transaction processing in an application, specify
AUTOCOMMIT=0, MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF.

v 1: The DB2 ODBC code creates an independent context for a data source
connection at the connection handle level when SQLAllocHandle() is issued.
Each connection to multiple data sources is governed by CONNECTTYPE=1
rules and is associated with an independent DB2 thread. Connection
switching among multiple data sources is not prevented due to the commit
status of the transaction; an application can use multiple connection handles
without having to perform a commit or rollback on a connection before
switching to another connection handle.
MULTICONTEXT=1 is not supported for applications that contain DB2
ODBC and embedded SQL.

76 ODBC Guide and Reference

The application can use SQLGetInfo() with InfoType set to
SQL_MULTIPLE_ACTIVE_TXN to determine whether MULTICONTEXT=1 is
supported.

MULTICONTEXT=1 is ignored if any of these conditions are true:
v The application created a DB2 thread before invoking DB2 ODBC. This is

always the case for a stored procedure using DB2 ODBC.
v The application created and switched to a private context using z/OS

Context Services before invoking DB2 ODBC.
v The application started a unit of recovery with any RRS resource manager

(for example, IMS) before invoking DB2 ODBC.
v MVSATTACHTYPE=CAF is specified in the initialization file.
v The operating system level does not support Unauthorized Context Services.

MVSATTACHTYPE = CAF | RRSAF
This keyword is placed in the subsystem section.

The MVSATTACHTYPE keyword is used to specify the DB2 for z/OS
attachment type that DB2 ODBC uses to connect to the DB2 for z/OS address
space. This parameter is ignored if the DB2 ODBC application is running as a
DB2 for z/OS ODBC stored procedure. In that case, DB2 ODBC uses the
attachment type that was defined for the stored procedure.

CAF DB2 ODBC uses the DB2 for z/OS call attachment facility (CAF). This
is the default.

RRSAF
DB2 ODBC uses the DB2 for z/OS Resource Recovery Services
attachment facility (RRSAF).

Specify MVSATTACHTYPE=RRSAF and MULTICONTEXT=0 to allow an
ODBC application to create and manage its own contexts using the z/OS
Context Services. See MULTICONTEXT=0 for more information.

For transactions on a global connection, specify AUTOCOMMIT=0,
MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF to complete global
transaction processing.

To enable global transaction processing in an application, specify
MVSATTACHTYPE=RRSAF, AUTOCOMMIT=0, and MULTICONTEXT=0.

MVSDEFAULTSSID = ssid
This keyword is placed in the common section.

The MVSDEFAULTSSID keyword specifies the default DB2 subsystem to
which the application is connected when invoking the SQLAllocHandle()
function (with HandleType set to SQL_HANDLE_ENV). Specify the DB2
subsystem name, the subgroup attachment name, or group attachment name (if
used in a data sharing group) to which connections will be made.The default
subsystem is 'DSN'.

OPTIMIZEFORNROWS = integer
This keyword is placed in the data source section.

The OPTIMIZEFORNROWS keyword appends the "OPTIMIZE FOR n ROWS"
clause to every select statement, where n is an integer larger than 0. The
default action is not to append this clause.

PARAMOPTATOMIC = 0 | 1
This keyword is placed in the data source section.

Chapter 3. Configuring DB2 ODBC and running sample applications 77

The PARAMOPTATOMIC keyword determines whether the underlying
processing for multi-row inserts is done through atomic or non-atomic SQL.
The valid values for the PARAMOPTATOMIC are:

0 The underlying processing uses non-atomic SQL.

1 The underlying processing uses atomic SQL. This is the default.

PATCH2 = patch number
This keyword is placed in the data source section.

The PATCH2 keyword specifies a workaround for known problems with
ODBC applications. To set multiple PATCH2 values, list the values sequentially,
separated by commas. For example, if you want patches 300, 301, and 302,
specify PATCH2= "300,301,302" in the initialization file. The valid values for the
PATCH2 keyword are:

0 No workaround (default).

300 SQLExecute() and SQLExecDirect() returns SQL_NO_DATA_FOUND
instead of SQL_SUCCESS when SQLCODE=100. In this case, a delete
or update affected no rows, or the result of the subselect of an insert
statement is empty.

301 SQLError() and SQLGetDiagRec() returns additional diagnostic
information when a previous call to SQLExecute(), SQLExecDirect(),
SQLFetch(), SQLExtendedFetch(), or SQLFetchScroll() on the same
statement handle has returned SQL_NO_DATA_FOUND
(SQLCODE=100).

0: No workaround (default).
300

PATCH2=300 behavior: SQLExecute() and SQLExecDirect() will return
SQL_NO_DATA_FOUND instead of SQL_SUCCESS when SQLCODE=100. In
this case, a delete or update affected no rows, or the result of the subselect of
an insert statement is empty.

The following table explains how PATCH2 settings affect return codes.

Table 10. PATCH2 settings and SQL return codes

SQL statement SQLExecute() and SQLExecDirect() return value

A searched update or searched delete
and no rows satisfy the search
condition

v SQL_SUCCESS without a patch (PATCH2=0)
v SQL_NO_DATA_FOUND with a patch

(PATCH2=300)

A mass delete or update and no rows
satisfy the search condition

v SQL_SUCCESS_WITH_INFO without a patch
(PATCH2=0)

v SQL_NO_DATA_FOUND with a patch
(PATCH2=300)

A mass delete or update and one or
more rows satisfy the search condition

SQL_SUCCESS_WITH_INFO without a patch
(PATCH2=0) or with a patch (PATCH2=300)

In ODBC 3.0, applications do not need to set the patch on. ODBC 3.0 behavior
is equivalent to setting PATCH2=300.

PLANNAME = planname
This keyword is placed in the subsystem section.

The PLANNAME keyword specifies the name of the DB2 for z/OS PLAN that
was created during installation. A PLAN name is required when initializing the

78 ODBC Guide and Reference

||
|
|
|
|

application connection to the DB2 for z/OS subsystem which occurs during the
processing of the SQLAllocHandle() call (with HandleType set to
SQL_HANDLE_ENV).

If no PLANNAME is specified, the default value DSNACLI is used.

QUERYDATASIZE = integer
This keyword is placed in the data source section.

QUERYDATASIZE specifies the amount of query data, in bytes, that DB2
returns on each FETCH operation when limited block fetch is enabled. The
QUERYDATASIZE value can be used to optimize limited block fetch by
controlling the number of trips to the data source that are required to retrieve
data.

Using a larger value for QUERYDATASIZE can result in better performance.
For example, if the result set size is 50KB, and the value of QUERYDATASIZE
is 32767 (32KB), two trips to the data source are required to retrieve the result
set. However, if QUERYDATASIZE is 65535 (62KB), only one trip to the data
source is required to retrieve the result set.

integer The QUERYDATASIZE value. Possible values are:

32767
65535
98303
131071
163839
196607
229375
262143

294911
327679
360447
393215
425983
458751
491519
524287

557055
589823
622591
655359
688127
720895
753663
786431

819199
851967
884735
917503
950271
983039
1015807
1048575

The default is 32767.

If you specify a value that is not a valid value, DB2 ODBC sets
QUERYDATASIZE to the nearest valid value.

RETURNALIASES = 0 | 1

This keyword is placed in the data source section.

The RETURNALIASES keyword specifies whether aliases are included when
you qualify rows for metadata procedures. If you exclude aliases and do not
qualify them, you avoid costly joins with the base tables and improve
performance.

0 Aliases will not be considered when qualifying rows for metadata
procedures

1 Aliases will be considered when qualifying rows for metadata
procedures

This keyword affects the following ODBC APIs.
v SQLColumns()
v SQLColumnPrivileges()
v SQLTables()
v SQLTablePrivileges()
v SQLStatistics()
v SQLSpecialColumns()
v SQLForeignKeys()

Chapter 3. Configuring DB2 ODBC and running sample applications 79

v SQLPrimaryKeys()

RETCATALOGASCURRSERVER = 0 | 1

This keyword is placed in the data source section.

You can use the RETCATALOGASCURRSERVER keyword to instruct the
DBMS to return the CURRENT SERVER value instead of the null value for
catalog columns.

0 Catalog functions return the null value for the catalog columns.

1 Catalog functions return the CURRENT SERVER value, instead of the
null value, for the catalog columns.

This keyword affects the following ODBC APIs.
v SQLColumns()
v SQLColumnPrivileges()
v SQLTables()
v SQLTablePrivileges()
v SQLStatistics()
v SQLSpecialColumns()
v SQLForeignKeys()
v SQLPrimaryKeys()
v SQLProcedures()
v SQlProcedureColumns()

RETURNSYSNONYMSCHEMA = 0 | 1

This keyword is placed in the data source section.

The RETURNSYSNONYMSCHEMA controls whether the catalog APIs report
the schema name for synonyms in the TABLE_SCHEM columns.

0 Catalog functions return NULL for the schema columns.

1 Catalog functions return the creator of the synonym for the schema
columns.

This keyword affects the following ODBC APIs.
v SQLColumns()
v SQLColumnPrivileges()
v SQLTables()
v SQLTablePrivileges()
v SQLStatistics()
v SQLSpecialColumns()
v SQLForeignKeys()
v SQLPrimaryKeys()

SCHEMALIST = "'schema1', 'schema2' ,..."
This keyword is placed in the data source section.

The SCHEMALIST keyword specifies a list of schemas in the data source. If a
database contains a large number of tables, you can specify a schema list to
reduce the time it takes for the application to query table information and the
number of tables listed by the application. Each schema name is case sensitive,
must be delimited with single quotes and separated by commas. The entire
string must also be enclosed in double quotes, for example:

80 ODBC Guide and Reference

SCHEMALIST="’USER1’,’USER2’,USER3’"

For DB2 for z/OS ODBC, CURRENT SQLID can also be included in this list,
but without the single quotes, for example:
SCHEMALIST="’USER1’,CURRENT SQLID,’USER3’"

The maximum length of the keyword string is 2048 bytes.

This keyword can be used in conjunction with DBNAME and TABLETYPE to
further limit the number of tables for which information is returned.

SCHEMALIST is used to provide a more restrictive default in the case of those
applications that always give a list of every table in the database server. This
improves performance of the table list retrieval in cases where the user is only
interested in seeing the tables in a few schemas.

STREAMBUFFERSIZE
This keyword is placed in the data source section.

STREAMBUFFERSIZE is valid only when limited block fetch is enabled
(LIMITEDBLOCKFETCH = 1). STREAMBUFFERSIZE specifies the threshold
value, in bytes, that is used to determine whether LOB or XML data is
returned in its entirety as inline data or as an internal token called a
progressive reference:
v If the size of a LOB or XML object is less than or equal to the

STREAMBUFFERSIZE value, the data value is returned inline as part of the
row in the query block. The data value is cached on the ODBC driver for
subsequent processing.

v If the size of a LOB or XML objects is greater than STREAMBUFFERSIZE,
the data value is returned as a progressive reference.

The default value for STREAMBUFFERSIZE is 1,048,576 bytes, which is 1 MB.

SYSSCHEMA = sysschema
This keyword is placed in the data source section. The value that you specify
for sysschema must be no longer than 128 bytes.

The SYSSCHEMA keyword indicates an alternative schema to be searched in
place of the SYSIBM (or SYSTEM, QSYS2) schemas when the DB2 ODBC and
ODBC catalog function calls are issued to obtain catalog information.

Using this schema name, the system administrator can define a set of views
consisting of a subset of the rows for each of the following DB2 catalog tables:
v SYSCOLAUTH
v SYSCOLUMNS
v SYSDATABASE
v SYSFOREIGNKEYS
v SYSINDEXES
v SYSKEYS
v SYSPARMS
v SYSRELS
v SYSROUTINES
v SYSSYNONYMS
v SYSTABAUTH
v SYSTABLES

For example, if the set of views for the catalog tables are in the ACME schema,
the view for SYSIBM.SYSTABLES is ACME.SYSTABLES, and SYSSCHEMA
should then be set to ACME.

Chapter 3. Configuring DB2 ODBC and running sample applications 81

|
|

|
|
|
|
|

|
|
|
|

|
|

|

Defining and using limited views of the catalog tables reduces the number of
tables listed by the application, which reduces the time it takes for the
application to query table information.

If no value is specified, the default is:
v SYSIBM on DB2 for z/OS
v SYSTEM on DB2 for VSE & VM
v QSYS2 on DB2 for i

This keyword can be used in conjunction with SCHEMALIST, TABLETYPE
(and DBNAME on DB2 for z/OS) to further limit the number of tables for
which information is returned.

TABLETYPE="'TABLE' | ,'ALIAS' | ,'VIEW' | , 'SYSTEM TABLE' | ,'SYNONYM'"
This keyword is placed in the data source section.

The TABLETYPE keyword specifies a list of one or more table types. If a large
number of tables are defined in the data source, you can specify a table type
string to reduce the time it takes for the application to query table information
and the number of tables the application lists.

Any number of the values can be specified, but each type must be delimited
with single quotes, separated by commas, and in upper case. The entire string
must also be enclosed in double quotes, for example:
TABLETYPE="’TABLE’,’VIEW’"

This keyword can be used in conjunction with DBNAME and SCHEMALIST to
further limit the number of tables for which information is returned.

TABLETYPE is used to provide a default for the SQLTables() call, which
retrieves a list of tables, views, aliases, and synonyms in a data source. If the
application does not specify a table type on the function call, and this keyword
is not used, information about all table types is returned. If the application
does supply a value for the szTableType argument on the function call, that
argument value overrides this keyword value.

If TABLETYPE includes any value other than TABLE, then the DBNAME
keyword setting cannot be used to restrict information to a particular DB2 for
z/OS subsystem.

THREADSAFE= 1 | 0
This keyword is placed in the common section.

The THREADSAFE keyword controls whether DB2 ODBC uses POSIX mutexes
to make the DB2 ODBC code threadsafe for multiple concurrent or parallel
Language Environment threads.

1 The DB2 ODBC code is threadsafe if the application is executing in a
POSIX(ON) environment. Multiple Language Environment threads in
the process can use DB2 ODBC. The threadsafe capability cannot be
provided in a POSIX(OFF) environment. This is the default.

0 The DB2 ODBC code is not threadsafe. This reduces the overhead of
serialization code in DB2 ODBC for applications that are not
multithreaded, but provides no protection for concurrent Language
Environment threads in applications that are multithreaded.

THREADSAFE= 1 | 0
This keyword is placed in the common section.

82 ODBC Guide and Reference

The THREADSAFE keyword controls whether DB2 ODBC uses POSIX mutexes
to make the DB2 ODBC code threadsafe for multiple concurrent or parallel
Language Environment threads.

1 The DB2 ODBC code is threadsafe if the application is executing in a
POSIX(ON) environment. Multiple Language Environment threads in
the process can use DB2 ODBC. The threadsafe capability cannot be
provided in a POSIX(OFF) environment. This is the default.

0 The DB2 ODBC code is not threadsafe. This reduces the overhead of
serialization code in DB2 ODBC for applications that are not
multithreaded, but provides no protection for concurrent Language
Environment threads in applications that are multithreaded.

TRACEPIDTID = 0 | 1
This keyword is placed in the common section.

TRACEPIDTID is used only if a trace is started through the APPLTRACE
keyword. When TRACEPIDTID is set to 1, the process ID and thread ID are
added to the beginning of each line in the trace output. These IDs help you to
differentiate the recorded information by process and thread when the DB2
ODBC application is running multiple concurrent Language Environment
threads in a POSIX(ON) environment.

TRACECTXTOKEN = 0 | 1
This keyword is placed in the common section.

TRACECTXTOKEN is used only if a trace is started through the APPLTRACE
keyword. When TRACECTXTOKEN is set to 1, the RRS context tokens are
captured in the trace output. RSS context tokens help you to determine the
execution path for applications that execute under different RRS contexts.

This keyword is applicable only to applications that create and manage their
own RRS contexts with the z/OS Resource Recovery Services with keywords
MVSATTACHTYPE=RRSAF and MULTICONTEXT=0 specified in the
initialization file.

TRACETIMESTAMP = 0 | 3
This keyword is placed in the common section.

TRACETIMESTAMP is used only if a trace is started through the APPLTRACE
keyword. When APPLTRACE is set to 1, the TRACETIMESTAMP keyword is
used to capture different types of timestamp information in the DB2 ODBC
application trace.

0 No timestamp information is written to the trace output.

3 An ISO timestamp is added to the beginning of each line in the trace
output.

TXNISOLATION = 1 | 2 | 4 | 8 | 32
This keyword is placed in the data source section.

The TXNISOLATION keyword sets the isolation level to:

1 Read uncommitted (uncommitted read)

2 Read committed (cursor stability) (default)

4 Repeatable read (read stability)

8 Serializable (repeatable read)

32 (No commit, DB2 for i only)

Chapter 3. Configuring DB2 ODBC and running sample applications 83

The words in round brackets are the DB2 equivalents for SQL92 isolation
levels. Note that "no commit" is not an SQL92 isolation level and is supported
only on DB2 for i.

UNDERSCORE = 1 | 0
This keyword is placed in the data source section.

The UNDERSCORE keyword specifies whether the underscore character (_) is
to be used as a wildcard character (matching any one character, including no
character), or to be used as itself. This parameter only affects catalog function
calls that accept search pattern strings. You can set the UNDERSCORE
keyword to the following settings:

1 The underscore character (_) acts as a wildcard (default). The
underscore is treated as a wildcard matching any one character or
none. For example, two tables are defined as follows:
CREATE TABLE "OWNER"."KEY_WORDS" (COL1 INT)
CREATE TABLE "OWNER"."KEYWORDS" (COL1 INT)

In the example above, SQLTables() (the DB2 ODBC catalog function
call that returns table information) returns both the "KEY_WORDS"
and "KEYWORDS" entries if "KEY_WORDS" is specified in the table
name search pattern argument.

0 The underscore character (_) acts as itself. The underscore is treated
literally as an underscore character. If two tables are defined as shown
in the example above, SQLTables() returns only the "KEY_WORDS"
entry if "KEY_WORDS" is specified in the table name search pattern
argument. Setting this keyword to 0 can result in performance
improvement in those cases where object names (owner, table, column)
in the data source contain underscores.

Related concepts:
“Structure of the initialization file” on page 64
“Multithreaded and multiple-context applications in DB2 ODBC” on page 476
“Global transactions in ODBC programs” on page 415
“Impact of package bind options” on page 49
“ODBC trace types” on page 517

Conditions for statement sharing (DB2 Application programming and SQL)
Related tasks:

Accessing currently committed data to avoid lock contention (DB2
Performance)

Improving concurrency for applications that tolerate incomplete results (DB2
Performance)
Related reference:

PREPARE (DB2 SQL)

optimize-clause (DB2 SQL)

Database metadata stored procedures
When you install the ODBC drivers, you are required to enable the metadata
stored procedures fromz/OS.

84 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_conditionsstmtsharing.htm#db2z_conditionsstmtsharing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_accesscommitteddata.htm#db2z_accesscommitteddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_accesscommitteddata.htm#db2z_accesscommitteddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_optimizeforclause.htm#db2z_sql_optimizeforclause

The database metadata stored procedures must exist on every DB2 for z/OS data
server to which your DB2 ODBC application connects. DB2 ODBC uses the
database metadata stored procedures to retrieve catalog information and to
implement the SQLGetTypeInfo() function. The database metadata stored
procedures are installed as part of the DB2 for z/OS installation process.
Related tasks:

Installation step 20: Set up DB2-supplied routines (DB2 Installation and
Migration)
Related reference:

Database metadata routines panel: DSNTIPRK (DB2 Installation and Migration)

Migrating to the current DB2 ODBC driver
When you migrate from the DB2 for z/OS Version 10 ODBC driver to the DB2
Version 11 for z/OS ODBC driver, you must set up the DB2 ODBC run time
environment.

About this task

You must bind the Version 11 DB2 ODBC DBRMs to each data source you want to
migrate to the DB2 for z/OS Version 10 ODBC driver.

The online bind sample is available in DSNB10.SDSNSAMP(DSNTIJCL). You can
use this bind sample as a guide for binding DBRMs to packages and binding an
application plan.

Procedure

To migrate to the current ODBC driver:
1. Bind the DBRMs in DSNB10.SDSNDBRM to all data sources to which your

ODBC applications connect. You must specify ENCODING(EBCDIC) when you
bind the ODBC DBRMs to the local DB2 for z/OS subsystem.

2. Create at least one DB2 plan. Use the PKLIST keyword to specify all the
packages that you create from the DBRMs Specify an appropriate ACTION
parameter in the BIND PLAN statement:
v If the plan does not exist, specify ACTION(ADD).

If you specify ACTION(ADD), and the plan exists, the BIND command fails,
and DB2 does not create a plan.

v If the plan exists, and you want to retain the EXECUTE privilege on the plan
for all users who already have that privilege, specify ACTION(REPLACE)
RETAIN.

v If the plan exists, and you want to revoke the EXECUTE privilege for
everyone except the plan owner, specify ACTION(REPLACE). This is the
default.

Chapter 3. Configuring DB2 ODBC and running sample applications 85

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_setupdb2routinesinst.htm#db2z_setupdb2routinesinst
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_setupdb2routinesinst.htm#db2z_setupdb2routinesinst
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntiprk.htm#db2z_dsntiprk

Related concepts:
“Impact of package bind options” on page 49
“DB2 ODBC run time environment setup” on page 47
Related tasks:
“Binding DBRMs to create packages” on page 48
“Binding the application plan” on page 50
Related information:

-130 (DB2 Codes)

-189 (DB2 Codes)

-805 (DB2 Codes)

Migrating an ODBC 31-bit application to a 64-bit application
Consider migrating an application from 31-bit mode to 64-bit mode only if the
application can take advantage of more than 2 GB of memory. Most applications
run acceptably with the 31-bit addressing limitations.

About this task

Applications that are most likely to benefit from 64-bit addressing are those that
work with large amounts of data. For example, applications that work with large
data sets can preload data into direct addressable memory for rapid access.
Similarly, applications that work with large databases can cache more data in
memory, which reduces the number of database requests.

Although 64-bit mode provides larger addressable storage, the amount of data that
can be sent to and retrieved from DB2 by an ODBC application is still limited by
the amount of storage that is available below the 2-GB bar. For example, an
application cannot declare a 2-GB LOB above the bar and insert the entire LOB
value into a DB2 LOB column.

Procedure

To migrate an ODBC 31-bit application to a 64-bit application:
1. Modify your application as follows:

v If your application calls the SQLSetConnectOption function, change the
application to use the SQLSetConnectAttr function instead.
SQLSetConnectOption is not supported in the ODBC 64-bit driver.

v If your application calls the SQLSetStmtOption function, change the
application to use the SQLSetStmtAttr function instead. SQLSetStmtOption is
not supported in the ODBC 64-bit driver.

v Use the C-defined types SQLINTEGER and SQLUINTEGER to declare all
DB2 ODBC variables and arguments that contain 32-bit integer values.

Recommendation: If your application calls any ODBC functions that have
arguments of type SQLINTEGER or SQLUINTEGER, change those function
calls to pass and receive values of type SQLLEN instead of SQLINTEGER and
type SQLULEN instead of SQLUINTEGER.

2. Recompile the application with the LP64 compile option. If you want the
compiler to identify any potential portability errors, also specify the WARN64
compile option.

86 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n130.htm#n130
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n189.htm#n189
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n805.htm#n805

3. Link-edit the application with the definition sidedeck for the z/OS ODBC 64-bit
driver, DSNB10.SDSNMACS(DSNAO64C).

4. Execute the application.
Related tasks:
“Preparing and executing an ODBC application” on page 54

Example 64-bit ODBC application
Applications that deal with large amounts of data are good candidates for 64-bit
addressing.

The following example shows a 64-bit application that inserts a row into a table by
binding two application variables to INTEGER and CHAR(10) parameter markers
and then uses SQLFetch() to retrieve the row data from bound columns of the
result set. The DSNTEJ8E sample in the SDSNSAMP library shows the JCL for
compiling, binding, and executing a 64-bit ODBC application.
/* Declare local variables. When compiled in LP64 mode, variables are

allocated in stack storage above the 2G line */
SQLINTEGER H1INT;
SQLCHAR H1CHAR[10];
SQLINTEGER H2INT;
SQLCHAR H2CHAR[10];

SQLLEN LEN_H1INT;
SQLLEN LEN_H1CHAR;
SQLLEN LEN_H2INT;
SQLLEN LEN_H2CHAR;

strcpy((char *)sqlstmt, "INSERT INTO MYTABLE (INT4, CHAR10) VALUES(?, ?)");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

/* Bind to DB2 INTEGER with data located above the 2G line*/
rc = SQLBindParameter((SQLHSTMT) hstmt,

(SQLUSMALLINT) 1,
(SQLSMALLINT) SQL_PARAM_INPUT,
(SQLSMALLINT) SQL_C_LONG,
(SQLSMALLINT) SQL_INTEGER,
(SQLULEN) 0,
(SQLSMALLINT) 0,
(SQLPOINTER) &H1INT,
(SQLLEN) sizeof(H1INT),
(SQLLEN *) &LEN_H1INT);

/* Bind to DB2 CHAR(10) with data located above the 2G line*/
rc = SQLBindParameter((SQLHSTMT) hstmt,

(SQLUSMALLINT) 2,
(SQLSMALLINT) SQL_PARAM_INPUT,
(SQLSMALLINT) SQL_C_CHAR,
(SQLSMALLINT) SQL_CHAR,
(SQLULEN) 10,
(SQLSMALLINT) 0,
(SQLPOINTER) H1CHAR,
(SQLLEN) sizeof(H1CHAR),
(SQLLEN *) &LEN_H1CHAR);

rc = SQLExecute(hstmt);
.
.
.
strcpy((char *)sqlstmt, "SELECT INT4, CHAR10 FROM MYTABLE");

/* Bind DB2 INTEGER column */
rc = SQLBindCol((SQLHSTMT) hstmt,

Chapter 3. Configuring DB2 ODBC and running sample applications 87

(SQLUSMALLINT) 1,
(SQLSMALLINT) SQL_C_LONG,
(SQLPOINTER) &H2INT,
(SQLLEN) sizeof(H2INT),
(SQLLEN *) &LEN_H2INT);

/* Bind DB2 CHAR(10) column */
rc = SQLBindCol((SQLHSTMT) hstmt,

(SQLUSMALLINT) 2,
(SQLSMALLINT) SQL_C_CHAR,
(SQLPOINTER) H2CHAR,
(SQLLEN) sizeof(H2CHAR),
(SQLLEN *) &LEN_H2CHAR);

/* Fetch data into storage above the 2G line */
rc = SQLFetch(hstmt);
.
.
.

88 ODBC Guide and Reference

Chapter 4. ODBC Functions

DB2 ODBC provides various SQL-related functions with unique purposes,
diagnostics, and restrictions.

About these topics

These topics might contain any of the following sections, in addition to other
sections. Certain sections are omitted for deprecated functions.

Purpose
Contains a table that indicates the specifications and standards to which
the function conforms.

The first column indicates whether the function is included in the ODBC
specification and identifies the first ODBC version (1.0, 2.0, or 3.0) that
includes the specification for the function. The second column indicates
whether the function is included in the X/Open CLI CAE specification,
and the third column indicates if the function is included in the ISO CLI
standard. The following table is an example of the specifications table for
an ODBC 3.0 function that is included in both the X/Open CLI CAE
specification and the ISO CLI standard.

Table 11. Sample function specification table

ODBC X/OPEN CLI ISO CLI

3.0 Yes Yes

Syntax
Contains a generic C language prototype for the function.

All function arguments that are pointers are defined using the FAR macro.
This macro is defined out (set to a blank). This is consistent with the
ODBC specification.

Function arguments
Lists each function argument, along with its data type, a description and a
indication of whether it is an input or output argument.

Only SQLGetInfo() and SQLBindParameter() use parameters for both input
and output.

Some functions use input or output arguments that are known as deferred
or bound arguments. These arguments are pointers to buffers that you
allocate in your application and associate with (or bind to) either a
parameter in an SQL statement or a column in a result set. DB2 ODBC
accesses these buffers when you execute the SQL statement or retrieve the
result set to which the deferred arguments are bound.

Important: For input arguments, ensure that deferred data areas contain
valid data when you execute a statement that requires these values. For
output arguments, ensure that deferred data areas remain allocated until
you finish retrieving results.

© Copyright IBM Corp. 1997, 2013 89

Return codes
Lists all the possible function return codes. When SQL_ERROR or
SQL_SUCCESS_WITH_INFO is returned, you can obtain error information
by calling SQLGetDiagRec()

Diagnostics
Contains SQLSTATEs that are explicitly returned by DB2 ODBC and
indicates the cause of the error. (DB2 ODBC can also return SQLSTATEs
that the database management system generates.) To obtain these
SQLSTATE values, call SQLGetDiagRec() on a function that returns
SQL_ERROR or SQL_SUCCESS_WITH_INFO.

Related concepts:
“Diagnostics” on page 24
“The DB2 ODBC run time environment” on page 45
Related reference:
“Deprecated functions” on page 566
Related information:

Microsoft open database connectivity (ODBC)

Status of support for ODBC functions
Each function has its own ODBC 3.0 conformance level, and DB2 ODBC support
level, and certain functions are deprecated.

Each of the following tables provides a list of functions that support a particular
task. The tables indicate the level of DB2 ODBC support and and Microsoft ODBC
3.0 conformance level for each function.

The table contains the following values, by column:

ODBC 3.0 level
The values of this column have the following meanings:

No Indicates that the function is not supported by ODBC 3.0.

Deprecated
Indicates that the function is supported but deprecated in ODBC
3.0.

Core Indicates that the function is part of the ODBC 3.0 Core
conformance level.

Level 1
Indicates that the function is part of the ODBC 3.0 Level 1
conformance level.

Level 2
Indicates that the function is part of the ODBC 3.0 Level 2
conformance level.

DB2 ODBC support
The values of this column have the following meanings:

No Indicates that the function is not supported by DB2 ODBC.

Deprecated
Indicates that the function is supported but deprecated in DB2
ODBC.

90 ODBC Guide and Reference

http://msdn.microsoft.com/en-us/library/windows/desktop/ms710252%28v=vs.85%29.aspx

Current
Indicates that the function is current for DB2 ODBC. A current
function is supported by DB2 ODBC and is not deprecated by
another DB2 ODBC function.

Connecting to a data source

Table 12. Functions for connecting to a data source

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLAllocConnect() Deprecated Deprecated Obtains a connection handle.

SQLAllocEnv() Deprecated Deprecated Obtains an environment handle. One
environment handle is used for one or more
connections.

SQLAllocHandle() Core Current Obtains a handle.

SQLBrowseConnect() Level 1 No Returns successive levels of connection attributes
and valid attribute values. When a value is
specified for each connection attribute, this
function connects to the data source.

SQLConnect() Core Current Connects to a specific driver by data source
name, user ID, and password.

SQLDriverConnect() Core Current
Connects to a specific driver with a connection
string.

IBM specific: This function is also extended with
the additional IBM keywords that are supported
in the ODBC.INI file in the DB2 for Linux, UNIX,
and Windows CLI environment. Within the DB2
for z/OS ODBC environment, the ODBC.INI file
has no equivalent.

SQLSetConnection() No Current Connects to a specific data source by connection
string.

Obtaining information about a driver and data source

Table 13. Functions for obtaining information about a driver and data source

Function name
ODBC 3.0
level

Status in DB2
ODBC Purpose

SQLDataSources() Core Current Returns the list of available data sources.

SQLDrivers() Core No Returns the list of installed drivers and their
attributes (ODBC 2.0). This function is
implemented within the ODBC driver manager
and is therefore not applicable within the DB2
for z/OS ODBC environment.

SQLGetFunctions() Core Current Returns supported driver functions.

SQLGetInfo() Core Current Returns information about a specific driver and
data source.

SQLGetTypeInfo() Core Current Returns information about supported data types.

Chapter 4. ODBC Functions 91

Setting and retrieving driver attributes

Table 14. Functions for setting and retrieving driver attributes

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLGetConnectAttr() Core Current Returns the value of a connection attribute.

SQLGetConnectOption() Deprecated Deprecated Returns the value of a connection attribute.

SQLGetEnvAttr() Core Current Returns the value of an environment attribute.

SQLGetStmtAttr() Core Current Returns the value of a statement attribute.

SQLGetStmtOption() Deprecated Deprecated Returns the value of a statement attribute.

SQLSetConnectAttr() Core Current Sets a connection attribute.

SQLSetConnectOption() Deprecated Deprecated Sets a connection attribute.

SQLSetEnvAttr() Core Current Sets an environment attribute.

SQLSetStmtAttr() Core Current Sets a statement attribute.

SQLSetStmtOption() Deprecated Deprecated Sets a statement attribute.

Setting and retrieving descriptor fields

Table 15. Functions for setting and retrieving descriptor fields

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLCopyDesc() Core No Copies descriptor fields.

SQLGetDescField() Core No Returns the value or current setting of a single
descriptor field.

SQLGetDescRec() Core No Returns the values or current settings of multiple
descriptor fields.

SQLSetDescField() Core No Sets the value or setting for a single descriptor
field.

SQLSetDescRec() Core No Sets the values or settings for multiple descriptor
fields.

Preparing SQL requests

Table 16. Functions for preparing SQL requests

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLAllocStmt() Deprecated Deprecated Allocates a statement handle.

SQLBindFileToParam() No Current Associates a parameter marker in an SQL
statement with a file reference or an array of file
references.

SQLBindParameter() Core Current Assigns storage for a parameter in an SQL
statement (ODBC 2.0).

SQLGetCursorName() Core Current Returns the cursor name that is associated with a
statement handle.

SQLParamOptions() Deprecated Current Specifies the use of multiple values for
parameters. In ODBC 3.0, SQLSetStmtAttr()
replaces this function.

92 ODBC Guide and Reference

Table 16. Functions for preparing SQL requests (continued)

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLPrepare() Core Current Prepares an SQL statement for subsequent
execution.

SQLSetCursorName() Core Current Specifies a cursor name.

SQLSetParam() Deprecated Deprecated Assigns storage for a parameter in an SQL
statement (ODBC 2.0). In ODBC 3.0,
SQLBindParameter() replaces this function.

SQLSetScrollOptions() Deprecated No Sets attributes that control cursor behavior. In
ODBC 3.0, SQLGetInfo() and SQLSetStmtAttr()
replace this function.

Submitting requests

Table 17. Functions for submitting requests

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLDescribeParam() 1 Core Current Returns the description for a specific input
parameter in a statement.

SQLExecDirect() Core Current Executes a statement.

SQLExecute() Core Current Executes a prepared statement.

SQLNativeSql() Core Current Returns the text of an SQL statement as
translated by the driver.

SQLNumParams() Core Current Returns the number of parameters in a
statement.

SQLParamData() Core Current Used with SQLPutData(). Supplies parameter
data at execution time. (Useful for long data
values.)

SQLPutData() Core Current Sends part or all of a data value for a parameter.
(This function is useful for long data values.)

Retrieving results and information about results

Table 18. Functions for retrieving results and information about results

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLBindCol() Core Current Assigns storage for a result column and specifies
the data type.

SQLBindFileToCol() No Current Associates a LOB column in a result set to a file
reference or an array of file references.

SQLBulkOperations() Level 1 Current Performs bulk inserts operations.

SQLColAttribute() Core Current Describes attributes of a column in the result set.

SQLColAttributes() Deprecated Deprecated Describes attributes of a column in the result set.

SQLDescribeCol() Core Current Describes a column in the result set.

SQLError() Deprecated Deprecated Returns additional error or status information.

SQLExtendedFetch() Deprecated Current Returns multiple result rows.

SQLFetch() Core Current Returns a result row.

Chapter 4. ODBC Functions 93

Table 18. Functions for retrieving results and information about results (continued)

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLFetchScroll() Core Current Returns row sets that are specified by absolute or
relative position.

SQLGetData() Core Current Returns part or all of one column of one row of a
result set. (This function is useful for long data
values.)

SQLGetDiagRec() Core Current Returns additional diagnostic information.

SQLGetSQLCA() No Current Returns the SQLCA that is associated with a
statement handle.

SQLMoreResults() Level 1 Current Determines whether more result sets are
available and, if so, initializes processing for the
next result set.

SQLNumResultCols() Core Current Returns the number of columns in the result set.

SQLRowCount() Core Current Returns the number of rows that are affected by
an insert, update, delete, or merge request.

SQLSetColAttributes() No Current Sets attributes of a column in the result set.

SQLSetPos() Level 1 Current Allows an application to refresh, update, delete,
and insert rows in the rowset

Handling large objects

Table 19. Functions for handling large objects

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLGetLength() No Current Gets the length, in bytes, of a string that is
referenced by a LOB locator.

SQLGetPosition() No Current Gets the position of a string within a source
string that is referenced by a LOB locator.

SQLGetSubString() No Current Creates a new LOB locator that references a
substring within a source string. (The source
string is also represented by a LOB locator.)

Obtaining information from the catalog

Table 20. Functions for obtaining catalog information

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLColumnPrivileges() Level 2 Current Returns a list of columns and associated
privileges for a table.

SQLColumns() Core Current Returns the list of column names in specified
tables.

SQLForeignKeys() Level 2 Current Returns a list of column names that comprise
foreign keys, if they exist, for a specified table.

SQLPrimaryKeys() Level 1 Current Returns the list of column names that comprise
the primary key for a table.

SQLProcedureColumns() Level 1 Current Returns the list of input and output parameters,
as well as the columns that make up the result
set for the specified procedures.

94 ODBC Guide and Reference

Table 20. Functions for obtaining catalog information (continued)

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLProcedures() Level 1 Current Returns the list of procedure names that are
stored in a specific data source.

SQLSpecialColumns() Core Current Returns information about the optimal set of
columns that uniquely identifies a row in a
specified table, or identifies the columns that are
automatically updated when any value in the
row is updated by a transaction.

SQLStatistics() Core Current Returns statistics about a single table and the list
of indexes that are associated with the table.

SQLTablePrivileges() Level 2 Current Returns a list of tables and the privileges that are
associated with each table.

SQLTables() Core Current Returns the list of table names that are stored in
a specific data source.

Terminating a statement

Table 21. Functions for terminating a statement

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLCancel() Core Current Cancels an SQL statement.

SQLCloseCursor() Core Current Closes a cursor that has been opened on a
statement handle.

SQLEndTran() Core Current Commits or rolls back a transaction.

SQLFreeStmt() Core Current Ends statement processing, closes the associated
cursor, discards pending results, and, optionally,
frees all resources that are associated with the
statement handle.

SQLTransact() Deprecated Deprecated Commits or rolls back a transaction.

Terminating a connection

Table 22. Functions for terminating a connection

Function name
ODBC 3.0
level

DB2 ODBC
support Purpose

SQLDisconnect() Core Current Closes the connection.

SQLFreeConnect() Deprecated Deprecated Releases the connection handle.

SQLFreeEnv() Deprecated Deprecated Releases the environment handle.

SQLFreeHandle() Core Current Releases an environment, connection, statement,
or descriptor handle.

ODBC 3.0 functions that are not supported by DB2 ODBC

The following ODBC 3.0 functions are not supported by DB2 ODBC:
v SQLBrowseConnect().
v SQLCopyDesc(). DB2 ODBC does not support descriptor fields.

Chapter 4. ODBC Functions 95

v SQLDrivers(). This function is implemented by the ODBC driver manager which
does not apply to DB2 ODBC.

v SQLGetDescField(). DB2 ODBC does not support descriptor fields.
v SQLGetDescRec(). DB2 ODBC does not support descriptor fields.
v SQLSetDescField(). DB2 ODBC does not support descriptor fields.
v SQLSetDescRec(). DB2 ODBC does not support descriptor fields.
v SQLSetScrollOptions(). This function is superseded by the following statement

attributes:
– SQL_ATTR_CURSOR_TYPE
– SQL_ATTR_CONCURRENCY
– SQL_KEYSET_SIZE
– SQL_ATTR_ROWSET_SIZE

Related reference:
“Deprecated functions” on page 566

SQLAllocConnect() - Allocate a connection handle
SQLAllocConnect() is a deprecated function and is replaced by SQLAllocHandle().

ODBC specifications for SQLAllocConnect()

Table 23. SQLAllocConnect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLAllocConnect (SQLHENV henv,

SQLHDBC FAR *phdbc);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 24. SQLAllocConnect() arguments

Data type Argument Use Description

SQLHENV henv input Environment handle

SQLHDBC * phdbc output Pointer to a connection handle

Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97

SQLAllocEnv() - Allocate an environment handle
SQLAllocEnv() is a deprecated function and is replaced by SQLAllocHandle().

96 ODBC Guide and Reference

ODBC specifications for SQLAllocEnv()

Table 25. SQLAllocEnv() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLAllocEnv (SQLHENV FAR *phenv);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 26. SQLAllocEnv() arguments

Data type Argument Use Description

SQLHENV * phenv output Points to the environment handle that you allocate.

Related reference:
“SQLAllocHandle() - Allocate a handle”

SQLAllocHandle() - Allocate a handle
SQLAllocHandle() allocates an environment handle, a connection handle, or a
statement handle.

ODBC specifications for SQLAllocHandle()

Table 27. SQLAllocHandle() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLAllocHandle (SQLSMALLINT HandleType,

SQLHANDLE InputHandle,
SQLHANDLE *OutputHandlePtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 28. SQLAllocHandle() arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Specifies the type of handle that you want to allocate. Set this
argument to one of the following values:
v SQL_HANDLE_ENV for an environment handle
v SQL_HANDLE_DBC for a connection handle
v SQL_HANDLE_STMT for a statement handle

Chapter 4. ODBC Functions 97

Table 28. SQLAllocHandle() arguments (continued)

Data type Argument Use Description

SQLHANDLE InputHandle input Specifies the handle from which you allocate the new handle.
You set a different value for this argument depending on
what type of handle you allocate. Set the InputHandle
argument to one of the following values:

v SQL_NULL_HANDLE (or ignore this argument) if you are
allocating an environment handle

v To the environment handle if you are allocating a
connection handle

v To a connection handle if you are allocating a statement
handle

SQLHANDLE * OutputHandlePtr output Points to the buffer in which SQLAllocHandle() returns the
newly allocated handle.

Usage

Use SQLAllocHandle() to allocate an environment handle, connection handles, and
statement handles.
v Allocating an environment handle

An environment handle provides access to global information. To request an
environment handle in your application, call SQLAllocHandle()with the
HandleType argument set to SQL_HANDLE_ENV and the InputHandle argument
set to SQL_NULL_HANDLE. (InputHandle is ignored when you allocate an
environment handle.) DB2 ODBC allocates the environment handle and passes
the value of the associated handle to the *OutputHandlePtr argument. Your
application passes the *OutputHandle value in all subsequent calls that require an
environment handle argument.
When you call SQLAllocHandle()to request an environment handle, the DB2
ODBC 3.0 driver implicitly sets SQL_ATTR_ODBC_VERSION =
SQL_OV_ODBC3.
When you allocate an environment handle, the DB2 ODBC 3.0 driver checks the
trace keywords in the common section of the DB2 ODBC initialization file. If
these keywords are set, DB2 ODBC enables tracing. DB2 ODBC ends tracing
when you free the environment handle.
The DB2 ODBC 3.0 driver does not support multiple environments.

v Allocating a connection handle

A connection handle provides access to information such as the valid statement
handles on the connection and an indication of whether a transaction is
currently open. To request a connection handle, call SQLAllocHandle()with the
HandleType argument set to SQL_HANDLE_DBC. Set the InputHandle argument
to the current environment handle. DB2 ODBC allocates the connection handle
and returns the value of the associated handle in *OutputHandlePtr. Pass the
*OutputHandlePtr in all subsequent function calls that require this connection
handle as an argument.
You can allocate multiple connection handles from the context of a single
environment handle.

v Allocating a statement handle

A statement handle provides access to statement information, such as messages,
the cursor name, and status information about SQL statement processing. To
request a statement handle, connect to a data source and then call
SQLAllocHandle(). You must allocate a statement handle before you submit SQL

98 ODBC Guide and Reference

statements. In this call, set the HandleType argument to SQL_HANDLE_STMT.
Set the InputHandle argument to the connection handle that is associated with
the connection on which you want to execute SQL. DB2 ODBC allocates the
statement handle, associates the statement handle with the connection specified,
and returns the value of the associated handle in *OutputHandlePtr. Pass the
*OutputHandlePtr value in all subsequent function calls that require this
statement handle as an argument.
You can allocate multiple statement handles from the context of a single
connection handle.

v Managing handles

Your DB2 ODBC applications can allocate multiple connection handles and
multiple statement handles at the same time. You can allocate multiple
connection handles and make multiple connections only when one or more of
the following conditions are true:
– The connection type is set to coordinated
– Multiple contexts are enabled
– You use multiple Language Environment threads

If you attempt to allocate multiple connection handles when none of these
conditions are true, the DB2 ODBC driver will return SQLSTATE 08001.
DB2 ODBC 3.0 driver applications can also use the same environment handle,
connection handle, or statement handle on multiple threads. DB2 ODBC
provides threadsafe access for all handles and function calls. Each connection
within a single Language Environment thread maintains its own unit of
recovery.
For applications that use more than one Language Environment thread, you
must coordinate units of recovery and manage DB2 ODBC resources among
Language Environment threads. Your application might behave unpredictably if
your application does not perform this task. For example, if you call ODBC
functions on different threads for the same connection simultaneously, the order
in which these functions are executed at the database is unpredictable.
Attention: If you call SQLAllocHandle()with *OutputHandlePtr set to a
connection or statement handle that you previously allocated, DB2 ODBC
overwrites all information that is associated with that handle. DB2 ODBC does
not check whether the handle that is entered in *OutputHandlePtr is in use, nor
does DB2 ODBC check the previous contents of a handle before it overwrites the
contents of that handle.

Return codes

After you call SQLAllocHandle(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The way that you retrieve diagnostic information from SQLAllocHandle() depends
on what type of handle you allocate. To retrieve diagnostic information from
SQLAllocHandle(), you need to consider the following types of errors when you
attempt to allocate a handle:

Chapter 4. ODBC Functions 99

Environment handle allocation errors: When you receive an error while allocating
an environment handle, the value to which the OutputHandlePtr argument points
determines if you can use SQLGetDiagRec() to retrieve diagnostic information. One
of the following cases occurs when you fail to allocate an environment handle:
v The OutputHandlePtr argument points to SQL_NULL_HENV when

SQLAllocHandle() returns SQL_ERROR. In this case, you cannot call
SQLGetDiagRec() to retrieve information about this error. Because no handle is
associated with the error, you cannot retrieve information about that error.

v The OutputHandlePtr argument points to a value other than SQL_NULL_HENV
when SQLAllocHandle() returns SQL_ERROR. In this case, the value to which
the OutputHandlePtr argument points becomes a restricted environment handle.
You can use a handle in this restricted state only to call SQLGetDiagRec() to
obtain more error information or to call SQLFreeHandle() to free the restricted
handle.

Connection or statement handle allocation errors: When you allocate a connection
or statement handle, you can retrieve the following types of information:
v When SQLAllocHandle() returns SQL_ERROR, it sets OutputHandlePtr to

SQL_NULL_HDBC for connection handles or SQL_NULL_HSTMT for statement
handles (unless the output argument is a null pointer). Call SQLGetDiagRec() on
the environment handle to obtain information about a failed connection handle
allocation. Call SQLGetDiagRec() on a connection handle to obtain information
about a failed statement handle allocation.

v When SQLAllocHandle() returns SQL_SUCCESS_WITH_INFO, it returns the
allocated handle to OutputHandlePtr. To obtain additional information about the
allocation, call SQLGetDiagRec() on the handle that you specified in the
InputHandle argument of SQLAllocHandle().

The following table lists each SQLSTATE that this function generates with a
description and explanation for each value.

Table 29. SQLAllocHandle() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLAllocHandle() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

08003 Connection is closed. The HandleType argument specifies SQL_HANDLE_STMT, but the
connection that is specified in the InputHandle argument is not
open. The connection process must be completed successfully (and
the connection must be open) for DB2 ODBC to allocate a
statement handle.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. This could be a failure to establish the association with the DB2 for
z/OS subsystem or any other system-related error.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message that SQLGetDiagRec() returns in the buffer that the
MessageText argument describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC is unable to allocate memory for the specified handle.

HY009 Invalid use of a null pointer. The OutputHandlePtr argument specifies a null pointer

HY013 Unexpected memory handling
error.

The HandleType argument specifies SQL_HANDLE_DBC or
SQL_HANDLE_STMT, and the function call could not be processed
because the underlying memory objects could not be accessed,
possibly because of low-memory conditions.

100 ODBC Guide and Reference

Table 29. SQLAllocHandle() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY014 No more handles. The limit for the number of handles that can be allocated for the
type of handle that is indicated by the HandleType argument has
been reached.

HY092 Option type out of range. The HandleType argument does not specify one of the following
values:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT

Restrictions

The DB2 ODBC 3.0 driver does not support multiple environments; you can
allocate only one active environment at any time. If you call SQLAllocHandle() to
allocate more environment handles, this function returns the original environment
handle and SQL_SUCCESS. The DB2 ODBC driver keeps an internal count of these
environment requests. You must call SQLFreeHandle() on the environment handle
for each time that you successfully request an environment handle. The last
successful SQLFreeHandle() call that you make on the environment handle frees the
DB2 ODBC 3.0 driver environment. This behavior ensures that an ODBC
application does not prematurely deallocate the driver environment. The DB2
ODBC 2.0 driver and DB2 ODBC 3.0 driver behave consistently in this situation.

Example

Refer to the DSN803VP sample application or DSN8O3VP in the
DSNB10.SDSNSAMP data set.
Related concepts:
“ODBC 3.0 driver behavior” on page 568
“DB2 ODBC initialization file” on page 63
“DSN8O3VP sample application” on page 572
“Multithreaded and multiple-context applications in DB2 ODBC” on page 476
Chapter 6, “Problem diagnosis,” on page 517
Related reference:
“Function return codes” on page 24
“SQLFreeHandle() - Free a handle” on page 219
“SQLGetDiagRec() - Get multiple field settings of diagnostic record” on page 244

SQLAllocStmt() - Allocate a statement handle
SQLAllocStmt() is a deprecated function and is replaced by SQLAllocHandle().

ODBC specifications for SQLAllocStmt()

Table 30. SQLAllocStmt() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Chapter 4. ODBC Functions 101

Syntax
SQLRETURN SQLAllocStmt (SQLHDBC hdbc,

SQLHSTMT FAR *phstmt);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 31. SQLAllocStmt() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies the connection handle

SQLHSTMT * phstmt output Points to the newly allocated statement handle

Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97

SQLBindCol() - Bind a column to an application variable
SQLBindCol() binds a column to an application variable. You can call SQLBindCol()
once for each column in a result set from which you want to retrieve data or LOB
locators.

ODBC specifications for SQLBindCol()

Table 32. SQLBindCol() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLBindCol (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *pcbValue);

For 64-bit applications, use the following syntax:
SQLRETURN SQLBindCol (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLLEN cbValueMax,
SQLLEN FAR *pcbValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

102 ODBC Guide and Reference

Table 33. SQLBindCol() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which results are returned.

SQLUSMALLINT icol input Specifies the number that identifies the column you bind.
Columns are numbered sequentially, from left to right,
starting at 1.

SQLSMALLINT fCType input The C data type for column number icol in the result set. The
following types are supported:
v SQL_C_BIGINT
v SQL_C_BINARY
v SQL_C_BINARYXML
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL64
v SQL_C_DECIMAL128
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TINYINT
v SQL_C_WCHAR

The supported data types are based on the data source to
which you are connected. Specifying SQL_C_DEFAULT
causes data to be transferred to its default C data type.

SQLPOINTER rgbValue output
(deferred)

Points to a buffer (or an array of buffers when you use the
SQLExtendedFetch() function) where DB2 ODBC stores the
column data or the LOB locator when you fetch data from the
bound column.

If the rgbValue argument is null, the column is unbound.

SQLINTEGER (31-bit)
or SQLLEN (64-bit) 1

cbValueMax input Specifies the size of the rgbValue buffer in bytes that are
available to store the column data or the LOB locator.

If the fCType argument denotes a binary or character string
(either single-byte or double-byte) or is SQL_C_DEFAULT,
cbValueMax must be greater than 0, or an error occurs. If the
fCType argument denotes other data types, the cbValueMax
argument is ignored.

SQLINTEGER *
(31-bit) or SQLLEN *
(64-bit) 1

pcbValue output
(deferred)

Pointer to a value (or array of values) that indicates the
number of bytes that DB2 ODBC has available to return in the
rgbValue buffer. If fCType is a LOB locator, the size of the
locator, not the size of the LOB data, is returned.

SQLFetch() returns SQL_NULL_DATA in this argument if the
data value of the column is null.

This pointer value can be null. If this pointer is not null, it
must be unique for each bound column.

SQL_NO_LENGTH can also be returned. See “Usage” on
page 104 for more details.

Chapter 4. ODBC Functions 103

Table 33. SQLBindCol() arguments (continued)

Data type Argument Use Description

Notes:

1. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

Important: You must ensure the locations that the pointers rgbValue and pcbValue
reference are valid until you call SQLFetch() or SQLExtendedFetch(). For
SQLBindCol(), the pointers rgbValue and pcbValue are deferred outputs, which
means that the storage locations to which they point are not updated until you
fetch a row from the result set. For example, if you call SQLBindCol() within a local
function, you must call SQLFetch() from within the same scope of the function, or
you must allocate the rgbValue buffer as static or global.

Tip: Place the buffer that the rgbValue argument specifies consecutively in memory
after the buffer that the pcbValue argument specifies for better DB2 ODBC
performance for all varying-length data types. See “Usage” for more details.

Usage

Use SQLBindCol() to associate, or bind, columns in a result set with the following
elements of your application:
v Application variables or arrays of application variables (storage buffers) for all C

data types. When you bind columns to application variables, data is transferred
from the database management system to the application when you call
SQLFetch() or SQLExtendedFetch(). This transfer converts data from an SQL type
to any supported C type variable that you specify in the SQLBindCol() call.

v A LOB locator, for LOB columns. When you bind to LOB locators, the locator,
not the data itself, is transferred from the database management system to the
application when you call SQLFetch(). A LOB locator can represent the entire
data or a portion of the data.

Call SQLBindCol() once for each column in a result set from which you want to
retrieve data or LOB locators. You generate result sets when you call SQLPrepare(),
SQLExecDirect(), SQLGetTypeInfo(), or one of the catalog functions. After you bind
columns to a result set, call SQLFetch() to place data from these columns into
application storage locations (the locations to which the rgbValue and cbValue
arguments point). If the fCType argument specifies a LOB locator, a locator value
(not the LOB data itself) is placed in these locations. This locator value references
the entire data value in the LOB column at the server. You might need to obtain
column attributes before you call SQLBindCol(). To obtain these attributes, call
SQLDescribeCol() or SQLColAttribute().

You can use SQLExtendedFetch() in place of SQLFetch() to retrieve multiple rows
from the result set into an array. In this case, the rgbValue argument references an
array. You cannot mix calls to SQLExtendedFetch() with calls to SQLFetch() on the
same result set.

Obtaining information about the result set: Columns are identified by a number,
assigned sequentially from left to right, starting at 1. To determine the number of
columns in a result set, call SQLNumResultCols(), or call SQLColAttribute() with
the FieldIdentifier argument set to SQL_DESC_COUNT.

104 ODBC Guide and Reference

Call SQLDescribeCol() or SQLColAttribute() to query the attributes (such as data
type and length) of a column. You can then use this information to allocate a
storage location with a C data type and length that match the SQL data type an
length of the result set column. In the case of LOB data types, you can retrieve a
locator instead of the entire LOB value.

You can choose which, if any, columns that you want to bind from a result set. For
unbound columns, use SQLGetData() instead of, or in conjunction with,
SQLBindCol() to retrieve data. Generally, SQLBindCol() is more efficient than
SQLGetData().

During subsequent fetches, you can use SQLBindCol() to change which columns
are bound to application variables or to bind previously unbound columns. New
binds do not apply to data that you have fetched; these binds are used for the next
fetch. To unbind a single column, call SQLBindCol() with the rgbValue pointer set to
NULL. To unbind all the columns, call SQLFreeStmt() with the fOption input set to
SQL_UNBIND.

Allocating buffers: Ensure that you allocate enough storage to hold the data that
you retrieve. When you allocate a buffer to hold varying-length data, allocate an
amount of storage that is equal to the maximum length of data that the column
that is bound to this buffer can produce. If you allocate less storage than this
maximum, SQLFetch() or SQLExtendedFetch() truncates any data that is larger than
the space that you allocated. When you allocate a buffer that holds fixed-length
data, DB2 ODBC assumes that the size of the buffer is the length of the C data
type. If you specify data conversion, the amount of space that the data requires
might change.

When you bind a column that is defined as SQL_GRAPHIC, SQL_VARGRAPHIC,
or SQL_LONGVARGRAPHIC, you can set the fCType argument to
SQL_C_DBCHAR, SQL_C_WCHAR, or SQL_C_CHAR. If you set the fCType
argument to SQL_C_DBCHAR or SQL_C_WCHAR, the data that you fetch into the
rgbValue buffer is nul-terminated by a double-byte nul-terminator. If you set the
fCType argument to SQL_C_CHAR, the data that you fetch is not always
nul-terminated. In both cases, the length of the rgbValue buffer (cbValueMax) is in
units of bytes, and the value is always a multiple of 2.

When you bind a varying-length column, DB2 ODBC can write to both of the
buffers that specified by the pcbValue and rgbValue arguments in one operation if
you allocate these buffers contiguously. The following example illustrates how to
allocate these buffers contiguously:
struct { SQLINTEGER pcbValue;

SQLCHAR rgbValue[MAX_BUFFER];
} column;

When the pcbValue and rgbValue arguments are contiguous, SQL_NO_TOTAL is
returned in the pcbValue argument if your bind meets all of the following
conditions:
v The SQL type is a varying-length type.
v The column type is NOT NULLABLE.
v String truncation occurred.

Handling data truncation: If SQLFetch() or SQLExtendedFetch() truncates data, it
returns SQL_SUCCESS_WITH_INFO and set the pcbValue argument to a value that
represents the amount of space (in bytes) that the full data requires.

Chapter 4. ODBC Functions 105

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute
(which is used to limit the amount of data that your application returns). You can
disable truncation warnings with the following procedure:
1. Call SQLSetStmtAttr().

v Set the Attribute argument to SQL_ATTR_MAX_LENGTH.
v Point the ValuePtr argument to a buffer that contains the value for the

maximum length, in bytes, of varying-length columns that you want to
receive.

2. Allocate the rgbValue argument on your SQLBindCol() call as a buffer that is the
same size (plus the nul-terminator) as you set for the value of the
SQL_ATTR_MAX_LENGTH statement attribute.

If the column data is larger than the maximum length that you specified, the
maximum length, not the actual length, is returned in the buffer to which the
pcbValue argument points. If data is truncated because it exceeds the maximum
length that the SQL_ATTR_MAX_LENGTH statement attribute specifies, you
receive no warning of this truncation. SQLFetch() and SQLExtendedFetch() return
SQL_SUCCESS for data that is truncated in this way.

When you bind a column that holds SQL_ROWID data, you can set the fCType
argument to SQL_C_CHAR or SQL_C_DEFAULT. The data that you fetch into the
buffer that the rgbValue argument specifies is nul-terminated. The maximum length
of a ROWID column in the database management system is 40 bytes. Therefore, to
retrieve this type of data without truncation, you must allocate an rgbValue buffer
of at least 40 bytes in your application.

Handling encoding schemes: The DB2 ODBC driver determines one of the
following encoding schemes for character and graphic data through the settings of
the CURRENTAPPENSCH keyword (which appears in the initialization file) and
the fCType argument (which you specify in SQLBindCol() calls).
v The ODBC driver places EBCDIC data into application variables when both of

the following conditions are true:
– CURRENTAPPENSCH = EBCDIC is specified in the initialization file, the

CCSID that is specified for the CURRENTAPPENSCH keyword is an EBCDIC
CCSID, or the CURRENTAPPENSCH keyword is not specified in the
initialization file.

– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the
SQLBindCol() call.

v The ODBC driver places Unicode UCS-2 data into application variables when
the fCType argument specifies SQL_C_WCHAR in the SQLBindCol() call.

v The ODBC driver places Unicode UTF-8 data into application variables when
both of the following conditions are true:
– CURRENTAPPENSCH = UNICODE is specified in the initialization file, or

the CCSID that is specified for the CURRENTAPPENSCH keyword is a
Unicode CCSID (1200, 1208, 13488 or 17584).

– The fCType argument specifies SQL_C_CHAR in the SQLBindCol() call.
v The ODBC driver places ASCII data into application variables when both of the

following conditions are true:
– CURRENTAPPENSCH = ASCII is specified in the initialization file, or the

CCSID that is specified for the CURRENTAPPENSCH keyword is an ASCII
CCSID.

– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the
SQLBindCol() call.

106 ODBC Guide and Reference

Retrieved UTF-8 data is terminated by a single-byte nul-terminator, where as
retrieved UCS-2 data is terminated by a double-byte nul-terminator.

Binding LOB columns: You generally treat LOB locators like any other data type,
but when you use LOB locators the following differences apply:
v The server generates locator values when you fetch from a column that is bound

to the LOB locator C data type and passes only the locator, not the data, to the
application.

v When you call SQLGetSubString() to define a locator on a portion of another
LOB, the server generates a new locator and transfers only the locator to the
application.

v The value of a locator is valid only within the current transaction. You cannot
store a locator value and use it beyond the current transaction, even if you
specify the WITH HOLD attribute when you define the cursor that you use to
fetch the locator.

v You can use the FREE LOCATOR statement to free a locator before the end of a
transaction.

v When your application receives a locator, you can use SQLGetSubString() to
either receive a portion of the LOB value or to generate another locator that
represents a portion of the LOB value. You can also use locator values as input
for a parameter marker (with the SQLBindParameter() function).
A LOB locator is not a pointer to a database position; rather, it is a reference to a
LOB value, a snapshot of that LOB value. The current position of the cursor and
the row from which the LOB value is extracted are not associated. Therefore,
even after the cursor moves to a different row, the LOB locator (and thus the
value that it represents) can still be referenced.

v With locators, you can use SQLGetPosition() and SQLGetLength() with
SQLGetSubString() to define a substring of a LOB value.

You can bind a LOB column to one of the following data types:
v A storage buffer (to hold the entire LOB data value)
v A LOB locator (to hold the locator value only)

The most recent bind column function call determines the type of binding that is in
effect.

Return codes

After you call SQLBindCol(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 34. SQLBindCol() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

Chapter 4. ODBC Functions 107

Table 34. SQLBindCol() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY002 Invalid column number. The specified value for the icol argument is less than 0 or greater
than the number of columns in the result set.

HY003 Program type out of range. The fCType argument is not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.DB2 ODBC is not
able to access the memory that is required to support execution or
completion of the function.

HY090 Invalid string or buffer length. The specified value for the cbValueMax argument is less than 0.

HYC00 Driver not capable. DB2 ODBC does not support the value that the fCType argument
specifies.

Important: Additional diagnostic messages that relate to the bound columns might be reported at fetch time.

Example

Refer to SQLExtendedFetch() for more details. This function returns a block of data
containing multiple rows for each bound column.
Related concepts:
“ODBC programming hints and tips” on page 509
“Data types and data conversion” on page 26
“Application encoding schemes and DB2 ODBC” on page 486
“Retrieval of a result set into an array” on page 427
“Code ODBC functions for efficient data retrieval” on page 512
“Example of binding result set columns to retrieve UCS-2 data” on page 492
Related reference:
“C and SQL data types” on page 26
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“Function return codes” on page 24

SQLBindFileToCol() - Associate a column with a file reference
SQLBindFileToCol() associates a LOB column in a result set to a file reference or an
array of file references. This association enables data in that column to be
transferred directly into a file when each row is fetched for the statement handle.

ODBC specifications for SQLBindFileToCol()

Table 35. SQLBindFileToCol() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

108 ODBC Guide and Reference

Syntax
SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

Function arguments

The data type, use, and description for each argument in this function are similar
to those of SQLBindCol() arguments.

Table 36. SQLBindFileToCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT icol input Number that identifies the column. Columns are
numbered sequentially, from left to right, starting at
1.

SQLCHAR * FileName input
(deferred)

Pointer to the location that will contain the file name
or an array of file names at the time of the next fetch
using StatementHandle. The name is the absolute path
name of each file.

This pointer cannot be NULL.

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that will contain the length of
the file name or an array of lengths at the time of the
next fetch using StatementHandle. If this pointer is
NULL, ODBC treats FileName as a null-terminated
string. The result is the same as if a length of
SQL_NTS is passed.

The maximum value of the file name length is 255.

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that will contain the file
option or an array of file options to be used when
data is written to the file at the time of the next fetch
using StatementHandle. The following FileOptions
values are supported:

SQL_FILE_CREATE
Create a new file. If a file with this name
already exists, SQL_ERROR is returned.

SQL_FILE_OVERWRITE
If the file already exists, overwrite it.
Otherwise, create a new file.

SQL_FILE_APPEND
If the file already exists, append the data to
it. Otherwise, create a new file.

Only one option can be specified for a file. There is
no default.

Chapter 4. ODBC Functions 109

Table 36. SQLBindFileToCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT MaxFileNameLength input Specifies the length of the FileName buffer. If the
application uses SQLExtendedFetch() to retrieve
multiple rows for the LOB column, specifies the
length of each element in the FileName array.

SQLINTEGER * StringLength output
(deferred)

Pointer to the location that contains the length or
array of lengths of the LOB data that is returned. If
this pointer is NULL, nothing is returned.

SQLINTEGER * IndicatorValue output
(deferred)

Pointer to the location that contains an indicator
value or array of values that indicate if the fetched
LOB value is NULL.

Usage

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file in the application's environment (on the client). Before
fetching each row, the application must ensure that these variables contain the
name of a file, the length of the file name, and a file option (create, overwrite, or
append). These values can be changed between row fetch operations.

The application calls SQLBindFileToCol() once for each column that should be
transferred directly to a file when a row is fetched. LOB data is written directly to
the file without any data conversion, and without appending null-terminators.

FileName, FileNameLength, and FileOptions must be set before each fetch. When
SQLFetch() or SQLExtendedFetch() is called, the data for any column that has been
bound to a LOB file reference is written to the file or files that are pointed to by
that file reference. Errors associated with the deferred input argument values of
SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the
deferred StringLength and IndicatorValue output arguments are updated between
fetch operations.

If SQLExtendedFetch() is used to retrieve multiple rows for the LOB column,
FileName, FileNameLength, and FileOptions point to arrays of LOB file reference
variables. In this case, MaxFileNameLength specifies the length of each element in
the FileName array and is used by DB2 ODBC to determine the location of each
element in the FileName array. The contents of the array of file references must be
valid at the time of the SQLExtendedFetch() call. The StringLength and
IndicatorValue pointers each point to an array whose elements are updated when
SQLExtendedFetch() is called.

With SQLExtendedFetch(), multiple LOB values can be written to multiple files, or
to the same file depending on the file names specified. If writing to the same file,
the SQL_FILE_APPEND file option should be specified for each file name entry.

Return codes

After you call SQLBindFileToCol(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

110 ODBC Guide and Reference

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 37. SQLBindFileToCol SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY002 Invalid column number. The value specified for the argument icol was less than 1.

HY001 Memory allocation failure. DB2 ODBC is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. FileName or FileOptions is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 ODBC was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument MaxFileNameLength was less
than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Example
/* Bind a file to a BLOB column */
rc = SQLBindFileToCol(hstmt,

1,
fileName,
&fileNameLength,
&fileOption,
14,
NULL,
&fileInd);

Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“Function return codes” on page 24

SQLBindFileToParam() - Bind a parameter marker to a file reference
SQLBindFileToParam() associates a parameter marker in an SQL statement to a file
reference or to an array of file references. This association enables data from the
file to be transferred directly into a LOB column when the statement is executed
later.

Chapter 4. ODBC Functions 111

ODBC specifications for SQLBindFileToParam()

Table 38. SQLBindFileToParam() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLBindFileToParam (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT TargetType, /* ipar */
SQLSMALLINT DataType, /* fSqlType */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *IndicatorValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 39. SQLBindFileToParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT TargetType input Parameter marker number. Parameters are numbered
sequentially, from left to right, starting at 1.

SQLSMALLINT DataType input SQL data type of the column. The data type must be
one of these types:
v SQL_BLOB
v SQL_CLOB
v SQL_DBCLOB

SQLCHAR * FileName input
(deferred)

Pointer to the location that contains the file name or
an array of file names when the statement
(StatementHandle) is executed. This is the absolute
path name of the file.

This argument cannot be NULL.

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that contains the length of the
file name (or an array of lengths) at the time of the
next SQLExec() or SQLExecDirect() using
StatementHandle. If this pointer is NULL, ODBC
treats FileName as a null-terminated string. The result
is the same as if a length of SQL_NTS is passed.

The maximum value of the file name length is 255.

112 ODBC Guide and Reference

Table 39. SQLBindFileToParam arguments (continued)

Data type Argument Use Description

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that contains the file option
(or an array of file options) to be used when the file
is read. The location is accessed when the statement
(StatementHandle) is executed. Only one option is
supported, and it must be specified:

SQL_FILE_READ
A regular file that can be opened, read, and
closed. The length is computed when the
file is opened.

This pointer cannot be NULL.

SQLSMALLINT MaxFileNameLength input The length of the FileName buffer. If the application
calls SQLSetStmtAttr() to specify multiple values for
each parameter, this is the length of each element in
the FileName array.

SQLINTEGER * IndicatorValue input
(deferred)

The pointer to the location that contains an indicator
value or array of values, which are set to
SQL_NULL_DATA if the LOB data value is to be
null. The value at the location must be set to 0 or the
pointer must be set to null when the data value is
not null.

Usage

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file within the application's environment (on the client). Before
calling SQLExecute() or SQLExecDirect(), the application must ensure that this
information is available in the deferred input buffers. These values can be changed
between SQLExecute() calls.

The application calls SQLBindFileToParam() once for each parameter marker whose
valueis obtained directly from a file when a statement is executed. Before the
statement is executed, the FileName, FileNameLength, and FileOptions values must be
set. When the statement is executed, the data for any parameter that has been
bound using SQLBindFileToParam() is read from the referenced file and passed to
the server.

If the application uses SQLSetStmtAttr() to specify multiple values for each
parameter, FileName, FileNameLength, and FileOptions point to an array of LOB file
reference variables. In this case, MaxFileNameLength specifies the length of each
element in the FileName array and is used by DB2 ODBC to determine the location
of each element in the FileName array.

A LOB parameter marker can be associated with an input file using
SQLBindFileToParam(), or with a stored buffer using SQLBindParameter(). The most
recent bind parameter function call determines the type of binding that is in effect.

Return codes

After you call SQLBindFileToParam(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR

Chapter 4. ODBC Functions 113

v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 40. SQLBindFileToParam SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is unable to allocate the memory that is required to
support execution or completion of the function.

HY004 SQL data type out of range. The value specified for DataType was not a valid SQL type for this
function call.

HY009 Invalid argument value. FileName or FileOptions is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamdata(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 ODBC was unable to access memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the input argument MaxFileNameLength
was less than 0.

HY093 Invalid parameter number. The value specified for TargetType was less than 1.

HYC00 Driver not capable. DB2 ODBC does not support "catalog" as a qualifier for table
name.

Example
/* Bind a file reference to a parameter */
rc = SQLBindFileToParam(hstmt,

3,
SQL_BLOB,
fileName,
&fileNameLength,
&fileOption,
14,
&fileInd);

Related reference:
“Function return codes” on page 24

SQLBindParameter() - Bind a parameter marker to a buffer or LOB
locator

SQLBindParameter() binds parameter markers to application variables and extends
the capability of the SQLSetParam() function.

114 ODBC Guide and Reference

ODBC specifications for SQLBindParameter()

Table 41. SQLBindParameter() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

2.0 No No

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQL_API SQLBindParameter(

SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT fParamType,
SQLSMALLINT fCType,
SQLSMALLINT fSqlType,
SQLUINTEGER cbColDef,
SQLSMALLINT ibScale,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *pcbValue);

For 64-bit applications, use the following syntax:
SQLRETURN SQL_API SQLBindParameter(

SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT fParamType,
SQLSMALLINT fCType,
SQLSMALLINT fSqlType,
SQLULEN cbColDef,
SQLSMALLINT ibScale,
SQLPOINTER rgbValue,
SQLLEN cbValueMax,
SQLLEN FAR *pcbValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 42. SQLBindParameter() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle of the statement you bind.

SQLUSMALLINT ipar input Specifies the parameter marker number, which are ordered
sequentially left to right, starting at 1.

Chapter 4. ODBC Functions 115

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

SQLSMALLINT fParamType input Specifies the type of parameter. You can specify the following types of
parameters:

v SQL_PARAM_INPUT: The parameter marker is associated with an
SQL statement that is not a stored procedure CALL; or, it marks an
input parameter of the called stored procedure.

When the statement is executed, actual data value for the parameter
is sent to the server: the rgbValue buffer must contain valid input
data values; the pcbValue buffer must contain the corresponding
length value, in bytes, or SQL_NTS, SQL_NULL_DATA, or (if the
value should be sent using the SQLParamData() and SQLPutData()
functions) SQL_DATA_AT_EXEC.

v SQL_PARAM_INPUT_OUTPUT: The parameter marker is associated
with an input/output parameter of the called stored procedure.

When the statement is executed, actual data value for the parameter
is sent to the server: the rgbValue buffer must contain valid input
data values; the pcbValue buffer must contain the corresponding
length value, in bytes, or SQL_NTS, SQL_NULL_DATA, or, if the
value should be sent using SQLParamData() and SQLPutData(),
SQL_DATA_AT_EXEC.

v SQL_PARAM_OUTPUT: The parameter marker is associated with
an output parameter of the called stored procedure or the return
value of the stored procedure.

After the statement is executed, data for the output parameter is
returned to the application buffer specified by rgbValue and
pcbValue, unless both are null pointers, in which case the output
data is discarded.

SQLSMALLINT fCType input Specifies the C data type of the parameter. The following types are
supported:
v SQL_C_BIGINT
v SQL_C_BINARY
v SQL_C_BINARYXML
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL64
v SQL_C_DECIMAL128
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TYPE_TIMESTAMP_EXT
v SQL_C_TINYINT
v SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be transferred from its
default C data type to the type indicated in fSqlType.

116 ODBC Guide and Reference

|

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

SQLSMALLINT fSqlType input Specifies the SQL data type of the parameter. The supported types are:
v SQL_BIGINT
v SQL_BINARY
v SQL_BLOB
v SQL_BLOB_LOCATOR
v SQL_CHAR
v SQL_CLOB
v SQL_CLOB_LOCATOR
v SQL_DBCLOB
v SQL_DBCLOB_LOCATOR
v SQL_DECFLOAT
v SQL_DECIMAL
v SQL_DOUBLE
v SQL_FLOAT
v SQL_GRAPHIC
v SQL_INTEGER
v SQL_LONGVARBINARY
v SQL_LONGVARCHAR
v SQL_LONGVARGRAPHIC
v SQL_NUMERIC
v SQL_REAL
v SQL_ROWID
v SQL_SMALLINT
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_VARBINARY
v SQL_VARCHAR
v SQL_VARGRAPHIC
v SQL_XML

Restriction: SQL_BLOB_LOCATOR, SQL_CLOB_LOCATOR, and
SQL_DBCLOB_LOCATOR are application related concepts and do not
map to a data type for column definition during a CREATE TABLE.

SQLUINTEGER
(31-bit) or
SQLULEN (64-bit)
1

cbColDef input Specifies the precision of the corresponding parameter marker. The
meaning of this precision depends on what data type the fSqlType
argument denotes:
v For a binary or single-byte character string (for example,

SQL_CHAR, SQL_BINARY), this is the maximum length in bytes
for this parameter marker.

v For a double-byte character string (for example, SQL_GRAPHIC),
this is the maximum length in double-byte characters for this
parameter.

v For SQL_DECIMAL, SQL_NUMERIC, this is the maximum decimal
precision.

v For SQL_DECFLOAT, the cbColDef argument must specify the
precision of the parameter marker, which is 16 if the column is
DECFLOAT(16) or 34 if the column is DECFLOAT(34).

v For SQL_ROWID, this must be set to 40, the maximum length in
bytes for this data type. Otherwise, an error is returned.

v Otherwise, this argument is ignored.

Chapter 4. ODBC Functions 117

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

SQLSMALLINT ibScale input Specifies the scale of the corresponding parameter if the fSqlType
argument is SQL_DECIMAL or SQL_NUMERIC. If the fSqlType
argument specifies SQL_TYPE_TIMESTAMP, this is the number of
digits to the right of the decimal point in the character representation
of a timestamp (for example, the scale of yyyy-mm-dd hh:mm:ss.fff is
3).

Other than the values for the fSqlType argument that are mentioned
here, the ibScale argument is ignored.

SQLPOINTER rgbValue input
(deferred),
output
(deferred),
or input
(deferred)
and output
(deferred)

The following characteristics apply to the rgbValue argument
depending on whether it is an input argument, an output argument,
or both:

v As an input argument (when the fParamType argument specifies
SQL_PARAM_INPUT, or SQL_PARAM_INPUT_OUTPUT), rgbValue
exhibits the following behavior:

At execution time, if the pcbValue argument does not contain
SQL_NULL_DATA or SQL_DATA_AT_EXEC, then rgbValue points
to a buffer that contains the actual data for the parameter.

If thepcbValue argument contains SQL_DATA_AT_EXEC, rgbValue is
an application-defined 32-bit value that is associated with this
parameter. This 32-bit value is returned to the application using a
subsequent SQLParamData() call.

If SQLSetStmtAttr() is called to specify multiple values for the
parameter, then rgbValue is a pointer to an input buffer array of
cbValueMax bytes.

v As an output argument (when the fParamType argument specifies
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT), the
rgbValue argument points to the buffer where the output parameter
value of the stored procedure is stored.

If the fParamType argument is set to SQL_PARAM_OUTPUT, and
both the rgbValue argument and the pcbValue argument specify null
pointers, then the output parameter value or the return value from
the stored procedure call is discarded.

118 ODBC Guide and Reference

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

SQLINTEGER
(31-bit) or
SQLLEN (64-bit) 2

cbValueMax input For character and binary data, the cbValueMax argument specifies the
size, in bytes, of the buffer that the rgbValue argument indicates. If this
buffer is a single element, this value specifies the size of that element.

If this buffer is an array, the value specifies the size of each element in
that array. Call SQLSetStmtAttr() to specify multiple values for each
parameter. For non-character and non-binary data, this argument is
ignored.

This length is assumed to be the length that is associated with the C
data type in these cases.

For output parameters, the cbValueMax argument is used to determine
whether to truncate character or binary output data. Data is truncated
in the following manner:

v For character data, if the number of bytes available to return is
greater than or equal to the value that the cbValueMax argument
specifies, the data in the buffer to which the rgbValue argument
points is truncated. This data is truncated to a length, in bytes, that
is equivalent to the value that the cbValueMax argument specifies
minus one byte. Truncated character data is nul-terminated (unless
nul-termination has been turned off).

v For binary data, if the number of bytes available to return is greater
than the value that the cbValueMax argument specifies, the data to
which the rgbValue argument points is truncated. This data is
truncated to a length, in bytes, that is equivalent to the value that
the cbValueMax argument specifies.

Chapter 4. ODBC Functions 119

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

SQLINTEGER *
(31-bit) SQLLEN *
(64-bit)2

pcbValue input
(deferred),
output
(deferred),
or input
(deferred)
and output
(deferred)

The following characteristics apply to the pcbValue argument
depending on whether it is an input argument, an output argument,
or both:

v As an input argument (when the fParamType argument specifies
SQL_PARAM_INPUT, or SQL_PARAM_INPUT_OUTPUT), the
pcbValue argument points to the buffer that contains the length, in
bytes, of the parameter marker value (when the statement is
executed) to which the rgbValue argument points.

To specify a null value for a parameter marker, this storage location
must contain SQL_NULL_DATA.

If the fCType argument specifies SQL_C_CHAR or SQL_C_WCHAR,
the buffer to which the pcbValue argument points must contain
either the exact length (in bytes) of the data or SQL_NTS for
nul-terminated strings.

If the fCType argument indicates character data (explicitly, or
implicitly with SQL_C_DEFAULT), and the pcbValue argument is set
to NULL, it is assumed that the application always provides a
nul-terminated string in the buffer to which the rgbValue argument
points. This null setting also implies that the parameter marker
never uses null values.

If the fSqlType argument indicates a graphic data type and the
fCType argument is set to SQL_C_CHAR, you cannot set the
pcbValue argument to NULL or point the pcbValue argument to a
buffer that holds the value SQL_NTS. In general, for graphic data
types, the value this buffer holds is the number of bytes that the
double-byte data occupies. Always specify a multiple of 2 for the
length of double-byte data. If you specify a value that is odd, an
error occurs when the statement is executed.

When SQLExecute() or SQLExecDirect() is called, and the pcbValue
argument points to a value of SQL_DATA_AT_EXEC, the data for
the parameter is sent with SQLPutData(). This parameter is referred
to as a data-at-execution parameter.

120 ODBC Guide and Reference

Table 42. SQLBindParameter() arguments (continued)

Data type Argument Use Description

Continued
SQLINTEGER *
(31-bit) SQLLEN *
(64-bit)2

pcbValue input
(deferred),
output
(deferred),
or input
(deferred)
and output
(deferred)

v If you use SQLSetStmtAttr() to specify multiple values for each
parameter, the pcbValue argument points to an array of
SQLINTEGER values. Each element in this array specifies the
number of bytes (excluding the nul-terminator) that correspond to
elements in the array that the rgbValue specifies, or the value
SQL_NULL_DATA.

If you use SQLBindParameter(), you can specify values for
SQL_UNASSIGNED and SQL_DEFAULT_PARAM in the pcbValue
argument. These values require that you enable extended indicator
support with the INI keyword EXTENDEDINDICATOR or the
SQL_ATTR_EXTENDED_INDICATORS connection variable. If you
specify SQL_UNASSIGNED or SQL_DEFAULT PARAM when
extended indicator support is disabled, the results are the same as
specifying SQL_NULL_DATA.

SQL_DEFAULT_PARAM
The target column of the bound parameter is set to its
defined DEFAULT value.

SQL_UNASSIGNED
The target column of the bound parameter is ignored for
UPDATE, and MERGE UPDATE operations. The parameter
is handled the same way as the DEFAULT keyword for
INSERT, and MERGE INSERT operations.

v As an output argument (when the fParamType argument is set to
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT), the
pcbValue argument points to one of the following values, after the
execution of the stored procedure:
– number of bytes available to return in rgbValue, excluding the

nul-termination character.
– SQL_NULL_DATA
– SQL_NO_TOTAL if the number of bytes available to return

cannot be determined.

Notes:

1. For 64-bit applications, the data type SQLUINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLULEN is recommended.

2. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

Usage

SQLBindParameter() associates, or binds, parameter markers in an SQL statement to
the following objects:
v All C type application variables or arrays of C type application variables

(storage buffers). For application variables, data is transferred from your
application to the database management system when you call SQLExecute() or
SQLExecDirect(). This transfer converts data from the C type of the application
variable to the SQL type that you specify in the SQLBindParameter() call.

v SQL LOB type LOB locators. For LOB data types, you transfer a LOB locator
value (not the LOB data itself) to the server when you execute an SQL
statement.

Chapter 4. ODBC Functions 121

SQLBindParameter() also binds application storage to a parameter in a stored
procedure CALL statement. In this type of bind, parameters can be input, output,
or both input and output parameters.

Call SQLBindParameter() to bind parameter markers to application variables.
Parameter markers are question mark characters (?) that you place in an SQL
statement. When you execute a statement that contains parameter markers, each of
these markers is replaced with the contents of a host variable.

SQLBindParameter() essentially extends the capability of the SQLSetParam()
function by providing the following functionality:
v Can specify whether a parameter is input, output, or both input and output,

which is necessary to handle parameters for stored procedures properly.
v Can specify an array of input parameter values when SQLSetStmtAttr() is used

in conjunction with SQLBindParameter(). SQLSetParam() can still be used to bind
single element application variables to parameter markers that are not part of a
stored procedure CALL statement.

Use SQLBindParameter() to bind a parameter marker to one of the following
sources:
v An application variable.
v A LOB value from the database server (by specifying a LOB locator).

Binding a parameter marker to an application variable: You must bind a variable
to each parameter marker in an SQL statement before you execute that statement.
In SQLBindParameter(), the rgbValue argument and the pcbValue argument are
deferred arguments. The storage locations you provide for these arguments must
be valid and contain input data values when you execute the bound statement.
This requirement means that you must follow one of the following guidelines:
v Keep calls to SQLExecDirect() or SQLExecute() in the same procedure scope as

calls to SQLBindParameter().
v Dynamically allocate storage locations that you use for input or output

parameters.
v Statically declare storage locations that you use for input or output parameters.
v Globally declare storage locations that you use for input or output parameters.

Binding a parameter marker to a LOB locator: When you bind LOB locators to
parameter markers the database server supplies the LOB value. Your application
transfers only the LOB locator value across the network.

With LOB locators, you can use SQLGetSubString(), SQLGetPosition(), or
SQLGetLength(). SQLGetSubString() can return either another locator or the data
itself. All locators remain valid until the end of the transaction in which you create
them (even when the cursor moves to another row), or until you issue the FREE
LOCATOR statement.

Obtaining information about the result set: You can call SQLBindParameter()
before SQLPrepare() if you know what columns appear in the result set. Otherwise,
if you do not know what columns appear in the result set, you must obtain
column attributes after you prepare your query statement.

You reference parameter markers by number, which the ipar argument in
SQLBindParameter() represents. Parameter markers are numbered sequentially from
left to right, starting at 1.

122 ODBC Guide and Reference

Specifying the parameter type: The fParamType argument specifies the type of the
parameter. All parameters in the SQL statements that do not call procedures are
input parameters. Parameters in stored procedure calls can be input, input/output,
or output parameters. Even though the DB2 stored procedure argument convention
typically implies that all procedure arguments are input/output, the application
programmer can still choose to specify the nature of input or output more exactly
on the SQLBindParameter() to follow a more rigorous coding style. When you set
the fParamType argument, consider the following DB2 ODBC behaviors:
v If an application cannot determine the type of a parameter in a procedure call,

set the fParamType argument to SQL_PARAM_INPUT; if the data source returns
a value for the parameter, DB2 ODBC discards it.

v If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, DB2 ODBC
sets the buffer that the pcbValue argument specifies to SQL_NULL_DATA.

v If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement is processed.
If the rgbValue and pcbValue arguments are both null pointers, DB2 ODBC
discards the output value. If the data source does not return a value for an
output parameter, DB2 ODBC sets the pcbValue buffer to SQL_NULL_DATA.

v When the fParamType argument is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain
input data values when the statement is executed. Because the rgbValue and
pcbValue arguments are deferred arguments, you must keep either the
SQLExecDirect() or the SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or the argument values for rgbValue and pcbValue must
be dynamically allocated or statically or globally declared.
Similarly, if the fParamType argument is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the buffers that the rgbValue and pcbValue
arguments specify must remain valid until the CALL statement is executed.

Unbinding parameter markers: All parameters that SQLBindParameter() binds
remain bound until you perform one of the following actions:
v Call SQLFreeHandle() with the HandleType argument set to

SQL_HANDLE_STMT.
v Call SQLFreeStmt() with the fOption argument set to SQL_RESET_PARAMS.
v Call SQLBindParameter() again for the same parameter ipar number.

After an SQL statement is executed, and the results processed, you might want to
reuse the statement handle to execute a different SQL statement. If the parameter
marker specifications are different (number of parameters, length, or type), you
should call SQLFreeStmt() with SQL_RESET_PARAMS to reset or clear the
parameter bindings.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqlType, or an error occurs.

Specifying data-at-execution parameters: An application can pass the value for a
parameter either in the rgbValue buffer or with one or more calls to SQLPutData().
In calls to SQLPutData(), these parameters are data-at-execution parameters. The
application informs DB2 ODBC of a data-at-execution parameter by placing the
SQL_DATA_AT_EXEC value in the pcbValue buffer. It sets the rgbValue input
argument to a 32-bit value which is returned on a subsequent SQLParamData() call
and can be used to identify the parameter position.

Chapter 4. ODBC Functions 123

Because the data in the variables referenced by rgbValue and pcbValue is not
verified until the statement is executed, data content or format errors are not
detected or reported until SQLExecute() orSQLExecDirect() is called.

Allocating buffers: For character and binary C data, the cbValueMax argument
specifies the length (in bytes) of the rgbValue buffer if it is a single element; or, if
the application calls SQLSetStmtAttr() to specify multiple values for each
parameter, the cbValueMax argument specifies the length (in bytes) of each element
in the rgbValue array, including the nul-terminator. If the application specifies
multiple values, cbValueMax is used to determine the location of values in the
rgbValue array. For all other types of C data, the cbValueMax argument is ignored.

You can pass the value for a parameter with either the buffer that the rgbValue
argument specifies or one or more calls to SQLPutData(). In calls to SQLPutData(),
these parameters are data-at-execution parameters. The application informs DB2
ODBC of a data-at-execution parameter by placing the SQL_DATA_AT_EXEC
value in the pcbValue buffer. It sets the rgbValue input argument to a 32-bit value
which is returned on a subsequent SQLParamData() call and can be used to identify
the parameter position.

If the fSqlType argument is SQL_ROWID, the value for the cbColDef argument must
be set to 40, which is the maximum length (in bytes) for a ROWID data type. If the
cbColDef argument is not set to 40, you will receive one of the following
SQLSTATEs:
v SQLSTATE 22001 when the cbColDef argument is less than 40
v SQLSTATE HY104 when the cbColDef argument is greater than 40

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, DB2 ODBC can provide some performance
enhancement if the rgbValue buffer is placed consecutively in memory after the
pcbValue buffer. For example:
struct { SQLINTEGER pcbValue;

SQLCHAR rgbValue[MAX_BUFFER];
} column;

Handling encoding schemes: The DB2 ODBC driver determines one of the
following encoding schemes for character and graphic data through the settings of
the CURRENTAPPENSCH keyword (which appears in the initialization file) and
the fCType argument (which you specify in SQLBindParameter() calls):
v The ODBC driver places EBCDIC data into application variables when both of

the following conditions are true:
– CURRENTAPPENSCH = EBCDIC is specified in the initialization file, the

CCSID that is specified for the CURRENTAPPENSCH keyword is an EBCDIC
CCSID, or the CURRENTAPPENSCH keyword is not specified in the
initialization file.

– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the
SQLBindParameter() call.

v The ODBC driver places Unicode UCS-2 data into application variables when
the fCType argument specifies SQL_C_WCHAR in the SQLBindParameter() call.

v The ODBC driver places Unicode UTF-8 data into application variables when
both of the following conditions are true:
– CURRENTAPPENSCH = UNICODE is specified in the initialization file, or

the CCSID that is specified for CURRENTAPPENSCH is a Unicode CCSID
(1200, 1208, 13488 or 17584).

124 ODBC Guide and Reference

– The fCType argument specifies SQL_C_CHAR in the SQLBindParameter() call.
v The ODBC driver places ASCII data into application variables when both of the

following conditions are true:
– CURRENTAPPENSCH = ASCII is specified in the initialization file, or the

CCSID that is specified for CURRENTAPPENSCH is an ASCII CCSID.
– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the

SQLBindParameter() call.

Return codes

After you call SQLBindParameter(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 43. SQLBindParameter() SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the fCType
argument to the data type that is identified by the fSqlType
argument, is not a meaningful conversion. (For example, a
conversion from SQL_C_TYPE_DATE to SQL_DOUBLE is not
meaningful.)

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. An unrecoverable system error occurs.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY003 Program type out of range. The fCType argument is not a valid data type or SQL_C_DEFAULT.

HY004 Invalid SQL data type. The specified value for the fSqlType argument is not a valid SQL
data type.

HY009 Invalid use of a null pointer. The argument OutputHandlePtr is a null pointer.

HY010 Function sequence error. The function is called after SQLExecute() or SQLExecDirect() return
SQL_NEED_DATA, but data is not sent for all data-at-execution
parameters.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The specified value for the cbValueMax argument is less than 0.

HY093 Invalid parameter number. The specified value for the ipar argument is less than 1.

HY094 Invalid scale value. HY094 is returned when the specified value for the fSqlType is
SQL_TYPE_TIMESTAMP and the value for the ibScale argument is
less than 0 or greater than 12.

Chapter 4. ODBC Functions 125

|
|
|

Table 43. SQLBindParameter() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY104 Invalid precision value. This SQLSTATE is returned because the specified value for the
fSqlType argument is either SQL_DECIMAL or SQL_NUMERIC,
and the specified value for the cbColDef argument is less than 1.

This SQLSTATE is returned for the following reason:

v The specified value for the fCType argument is
SQL_C_TYPE_TIMESTAMP_EXT, the value for the fSqlType
argument is either SQL_CHAR or SQL_VARCHAR, and the
value for the ibScale argument is less than 0 or greater than 12.

HY105 Invalid parameter type. The fParamType argument does not specify one of the following
values:
v SQL_PARAM_INPUT
v SQL_PARAM_OUTPUT
v SQL_PARAM_INPUT_OUTPUT

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC or the data source does not support the conversion
that is specified by the combination of the specified value for the
fCType argument and the specified value for the fSqlType
argument.

v The specified value for the fSqlType argument is not supported
by either DB2 ODBC or the data source.

Restrictions

A new value for the pcbValue argument, SQL_DEFAULT_PARAM, was introduced
in ODBC 2.0 to indicate that the procedure should use the default value of a
parameter, rather than a value sent from the application. Because DB2 stored
procedure arguments do not use default values, specification of
SQL_DEFAULT_PARAM for the pcbValue argument results in an error when the
CALL statement is executed. This error occurs because the
SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the pcbValue argument. The macro specifies the sum total length of all
character C data or all binary C data that is sent with the subsequent SQLPutData()
calls. Because the DB2 ODBC driver does not need this information, the macro is
not needed. To check if the driver needs this information, call SQLGetInfo() with
the InfoType argument set to SQL_NEED_LONG_DATA_LEN. The DB2 ODBC
driver returns 'N' to indicate that this information is not needed by SQLPutData().

Example

The following example shows an application that binds a variety of data types to a
set of parameters.
/* ... */

SQLCHAR stmt[] =
"INSERT INTO PRODUCT VALUES (?, ?, ?, ?, ?)";
SQLINTEGER Prod_Num[NUM_PRODS] = {

100110, 100120, 100210, 100220, 100510, 100520, 200110,
200120, 200210, 200220, 200510, 200610, 990110, 990120,
500110, 500210, 300100

};
SQLCHAR Description[NUM_PRODS][257] = {

126 ODBC Guide and Reference

|
|
|
|

"Aquarium-Glass-25 litres", "Aquarium-Glass-50 litres",
"Aquarium-Acrylic-25 litres", "Aquarium-Acrylic-50 litres",
"Aquarium-Stand-Small", "Aquarium-Stand-Large",
"Pump-Basic-25 litre", "Pump-Basic-50 litre",
"Pump-Deluxe-25 litre", "Pump-Deluxe-50 litre",
"Pump-Filter-(for Basic Pump)",
"Pump-Filter-(for Deluxe Pump)",
"Aquarium-Kit-Small", "Aquarium-Kit-Large",
"Gravel-Colored", "Fish-Food-Deluxe-Bulk",
"Plastic-Tubing"

};
SQLDOUBLE UPrice[NUM_PRODS] = {

110.00, 190.00, 100.00, 150.00, 60.00, 90.00, 30.00,
45.00, 55.00, 75.00, 4.75, 5.25, 160.00, 240.00,
2.50, 35.00, 5.50

};
SQLCHAR Units[NUM_PRODS][3] = {

" ", " ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", "kg", "kg", "m"

};
SQLCHAR Combo[NUM_PRODS][2] = {

"N", "N", "N", "N", "N", "N", "N", "N", "N",
"N", "N", "N", "Y", "Y", "N", "N", "N"

};
SQLUINTEGER pirow = 0;

/* ... */

/* Prepare the statement */
rc = SQLPrepare(hstmt, stmt, SQL_NTS);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

0, 0, Prod_Num, 0, NULL);
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

257, 0, Description, 257, NULL);
rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DOUBLE, SQL_DECIMAL,

10, 2, UPrice, 0, NULL);
rc = SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

3, 0, Units, 3, NULL);
rc = SQLBindParameter(hstmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

2, 0, Combo, 2, NULL);
rc = SQLParamOptions(hstmt, NUM_PRODS, &pirow);
rc = SQLExecute(hstmt);
printf("Inserted

/* ... */

Figure 9. An application that binds data types to parameters

Chapter 4. ODBC Functions 127

Related concepts:
“Using arrays to pass parameter values” on page 422
“Example of binding UTF-8 data to parameter markers” on page 493
“Data types and data conversion” on page 26
“Application encoding schemes and DB2 ODBC” on page 486
Related reference:
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLParamData() - Get next parameter for which a data value is needed” on page
313
“SQLPutData() - Pass a data value for a parameter” on page 340
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLBulkOperations() - Add, update, delete or fetch a set of rows
SQLBulkOperations() adds new rows to the base table or view that is associated
with a dynamic cursor for the current query.

ODBC specifications for SQLBulkOperations()

Table 44. SQLBulkOperations() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLBulkOperations (

SQLHSTMT StatementHandle,
SQLSMALLINT Operation);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 45. SQLBulkOperations arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT Operation Input Operation to perform: SQL_ADD.

DB2 ODBC does not support the following
operations:
v SQL_UPDATE_BY_BOOKMARK
v SQL_DELETE_BY_BOOKMARK
v SQL_FETCH_BY_BOOKMARK

Usage

Before calling SQLBulkOperations(), you need to ensure that the required bulk
operation is supported. To check for support, call SQLGetInfo() with an InfoType of

128 ODBC Guide and Reference

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 or
SQL_DYNAMIC_CURSOR_ATTRIBUTES2. Check the following attributes to verify
that support is available:
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

A column can be ignored when bulk operations are performed with
SQLBulkOperations(). To ignore a column, call SQLBindCol(), and set the column
length and indicator buffer (pcbValue) to SQL_COLUMN_IGNORE.

After a call to SQLBulkOperations():
v The buffer to which the SQL_ATTR_ROWS_FETCHED_PTR statement attribute

points contains the number of rows that are affected by the call.
v The row status array, to which the SQL_ATTR_ROW_STATUS_PTR statement

attribute points, contains the result of the operation.
v The block cursor position is undefined. The application must call

SQLFetchScroll() to set the cursor position. The application needs to call
SQLFetchScroll() with a FetchOrientation argument of SQL_FETCH_FIRST,
SQL_FETCH_LAST, or SQL_FETCH_ABSOLUTE. The cursor position is
undefined if the application calls SQLFetch(), or calls SQLFetchScroll() with a
FetchOrientation argument of SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or
SQL_FETCH_RELATIVE.

The application does not need to:
v Call SQLFetch() or SQLFetchScroll() before calling SQLBulkOperations().
v Set the SQL_ATTR_ROW_OPERATION_PTR statement attribute for

SQLBulkOperations() calls. Rows cannot be ignored when bulk operations are
performed with SQLBulkOperations().

When the Operation argument is SQL_ADD, and the select list of the query that is
associated with the cursor contains more than one reference to the same column,
an error is generated.

Row status array: The row status array contains status values for each row of data
in the rowset after a call to SQLBulkOperations(). This array is initially populated
by a call to SQLBulkOperations() if SQLFetch() or SQLFetchScroll() has not been
called before SQLBulkOperations() is called. The SQL_ATTR_ROW_STATUS_PTR
statement attribute points to the row status array. The number of elements in the
row status array should equal the number of rows in the rowset, as defined by the
SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Chapter 4. ODBC Functions 129

Diagnostics

Table 46. SQLBulkOperations SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Invalid conversion. The Operation argument was SQL_ADD, and the data value in the
application buffers could not be converted to the data type of a
column in the result set.

22001 String data right truncation. The assignment of a character or binary value to a column
resulted in the truncation of non-blank (for characters) or non-null
(for binary) characters or bytes.

22003 Numeric value out of range. The Operation argument was SQL_ADD. The assignment of a
numeric value to a column in the result set caused the whole (as
opposed to fractional) part of the number to be truncated.

22008 Invalid datetime format or
datetime field overflow.

One of the following conditions occurred:

v The Operation argument was SQL_ADD. The assignment of a
date or timestamp value to a column in a result set caused the
year, month, or day field to be out of range.

v The Operation argument was SQL_ADD. A datetime arithmetic
operation on data that was sent to a column in the result set
resulted in a datetime field (the year, month, day, hour, minute,
or second field) of the result that was outside the permissible
range of values for the field, or was invalid based on the
natural rules for datetime values for the Gregorian calendar.

22018 Error in assignment. The argument Operation was SQL_ADD. The data value that was
assigned to a column was incompatible with the data type of the
associated column in the result set.

23000 Integrity constraint violation. An integrity constraint was violated. One of the following
conditions occurred:

v The Operation argument was SQL_ADD. A column that was not
bound is defined as NOT NULL and has no default.

v The Operation argument was SQL_ADD. The length that was
specified in the bound pcbValue was SQL_COLUMN_IGNORE,
and the column did not have a default value.

24000 Invalid cursor state. The StatementHandle was in an executed state, but no result set
was associated with the StatementHandle.

40001 Transaction rollback. The transaction in which the fetch was executed was terminated
to prevent deadlock.

40003 Statement completion unknown. The associated connection failed during the execution of this
function. The state of the transaction cannot be determined.

42xxx1 Syntax error or access rule
violation.

These SQLSTATEs indicate one of the following errors:

v For 425xx, the authorization ID does not have permission to
perform the operation that was requested in the Operation
argument.

v For 42xxx, a variety of syntax or access problems with the
statement occur.

44000 WITH CHECK OPTION
violation.

The Operation argument was SQL_ADD. An insert or update was
performed on a viewed table or a table that was derived from the
viewed table. The viewed table was created by specifying WITH
CHECK OPTION. One or more rows that were affected by the
insert are no longer present in the viewed table.

130 ODBC Guide and Reference

Table 46. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message that was returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation error. DB2 ODBC was unable to allocate memory required to support
execution or completion of the function. Process-level memory
might have been exhausted for the application process. Consult
the operating system configuration for information on
process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData() or SQLPutData()) operation.

HY011 Operation invalid at this time. The SQL_ATTR_ROW_STATUS_PTR statement attribute was set
between calls to SQLFetch() or SQLFetchScroll(), and
SQLBulkOperations.

HY013 Unexpected memory handling
error.

DB2 ODBC was unable to access memory that was required to
support execution or completion of this function.

HY090 Invalid string or buffer length. One of the following conditions occurred:

v The Operation argument was SQL_ADD. A data value was a
null pointer, and the column length value was not 0,
SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

v The Operation argument was SQL_ADD. A data value was not a
null pointer. The C data type was SQL_C_BINARY or
SQL_C_CHAR. The column length value was less than 0, but
not equal to SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,
SQL_NTS, or SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

HY092 Invalid attribute identifier. The Operation argument was SQL_ADD. The
SQL_ATTR_CONCURRENCY statement attribute was set to
SQL_CONCUR_READ_ONLY.

HYC00 Driver not capable. DB2 ODBC or the data source does not support the operation that
was requested in the Operation argument.

Note:

1. xxx refers to any SQLSTATE with that class code. For example, 37xxx refers to any SQLSTATE with class code '37'.

Related concepts:
“The ODBC row status array” on page 431
Related tasks:
“Performing bulk inserts with SQLBulkOperations()” on page 447
“Providing long data for bulk inserts and positioned updates” on page 454
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLFetch() - Fetch the next row” on page 197
“SQLFetchScroll() - Fetch the next row” on page 203

SQLCancel() - Cancel statement
SQLCancel() terminates an SQLExecDirect() or SQLExecute() sequence prematurely.

Chapter 4. ODBC Functions 131

ODBC specifications for SQLCancel()

Table 47. SQLCancel() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLCancel (SQLHSTMT hstmt);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 48. SQLCancel() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

Usage

Use SQLCancel() to cancel the following types of processing on a statement:
v Data-at-execution sequences on the current thread.
v Functions running on the statement on another thread.

Canceling a data-at-execution sequence

After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit values
for data-at-execution parameters, you can use SQLCancel() to cancel the
data-at-execution sequence. You can call SQLCancel() any time before the final
SQLParamData() in the sequence. After you cancel this sequence, you can call
SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If you call SQLCancel() on an statement handle that is not associated with a
data-at-execution sequence, SQLCancel() has the same effect as SQLFreeHandle()
with the HandleType set to SQL_HANDLE_STMT. You should not call SQLCancel()
to close a cursor; instead, use SQLCloseCursor() to close cursors.

Canceling functions in multithreaded applications

When you execute a multithreaded application, you can cancel a function that is
running synchronously on another thread. To cancel the function, you must call
SQLCancel() on a different thread with the same statement handle as that used by
the target function, and set the INTERRUPT keyword in the ODBC initialization
file to either INTERRUPT=1 (the default setting) or INTERRUPT=2. In DB2 ODBC,
INTERRUPT=1 and INTERRUPT=2 exhibit the same behavior, which is set to always
drop the connection on a SQLCancel(). After you call SQLCancel(), DB2 ODBC sets
the return code to either SQL_SUCCESS or SQL_ERROR (no SQLSTATE) to
indicate whether the cancel request was processed successfully. If the request was
successful, the connection associated with the statement handle is dropped and
the canceled function returns SQLCODE -924 and SQLSTATE 58006. In order for
the statement handle to process additional database requests, you must establish a
new connection with the database server.

132 ODBC Guide and Reference

If an SQL statement is being executed when SQLCancel() is called on another
thread to cancel the statement execution, it is possible for the execution to succeed
and return SQL_SUCCESS while the cancel is also successful. In this case, the
connection associated with the statement is dropped regardless of the return code,
so you will not be able to process additional database requests on that statement
until you re-establish the connection.

Return codes

After you call SQLCancel(), it returns one of the following values:
v SQL_SUCCESS
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 49. SQLCancel() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Restrictions

DB2 ODBC does not support asynchronous statement execution.
Related concepts:
“Input and retrieval of long data in pieces” on page 452
Related reference:
“SQLParamData() - Get next parameter for which a data value is needed” on page
313
“SQLPutData() - Pass a data value for a parameter” on page 340
“Function return codes” on page 24
“DB2 ODBC initialization keywords” on page 65
Related information:

-924 (DB2 Codes)

SQLCloseCursor() - Close a cursor and discard pending results
SQLCloseCursor() closes a cursor that has been opened on a statement and
discards pending results.

Chapter 4. ODBC Functions 133

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n924.htm#n924

ODBC specifications for SQLCloseCursor()

Table 50. SQLCloseCursor() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLCloseCursor (SQLHSTMT StatementHandle);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 51. SQLCloseCursor() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

Usage

SQLCloseCursor() closes a cursor that has been opened on a statement and
discards pending results. After an application calls SQLCloseCursor(), the
application can reopen the cursor by executing a SELECT statement again with the
same or different parameter values. When the cursor is reopened, the application
uses the same statement handle.

SQLCloseCursor() returns SQLSTATE 24000 (invalid cursor state) if no cursor is
open. Calling SQLCloseCursor() is equivalent to calling the ODBC 2.0 function
SQLFreeStmt() with fOption argument set to SQL_CLOSE. An exception is that
SQLFreeStmt() with SQL_CLOSE has no effect on the application if no cursor is
open on the statement, whereas SQLCloseCursor() returns SQLSTATE 24000
(invalid cursor state).

Return codes

After you call SQLCloseCursor(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 52. SQLCloseCursor() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLCloseCursor() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

24000 Invalid cursor state. No cursor is open on the statement handle.

134 ODBC Guide and Reference

Table 52. SQLCloseCursor() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which no specific SQLSTATE applies. The
error message that SQLGetDiagRec() returns in the buffer that the
MessageText argument specifies, describes this error and its cause.

HY001 Memory allocation failure. DB2 ODBC is unable to allocate memory that is required execute or
complete the function.

HY010 Function sequence error. SQLExecute() or SQLExecDirect() are called on the statement
handle and return SQL_NEED_DATA. SQLCloseCursor() is called
before data was sent for all data-at-execution parameters or
columns. Invoke SQLCancel() to cancel the data-at-execution
condition.

HY013 Unexpected memory handling
error.

DB2 ODBC is unable to access memory that is required to support
execution or completion of the function.

Example

The following lines of code close the cursor on statement handle hstmt:
rc=SQLCloseCursor(hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

Related reference:
“SQLGetConnectAttr() - Get current attribute setting” on page 224
“Function return codes” on page 24
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLColAttribute() - Get column attributes
SQLColAttribute() returns descriptor information about a column in a result set.
Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

ODBC specifications for SQLColAttribute()

Table 53. SQLColAttribute() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLColAttribute (SQLHSTMT StatementHandle,

SQLSMALLINT ColumnNumber,
SQLSMALLINT FieldIdentifier,
SQLPOINTER CharacterAttributePtr,
SQLSMALLINT BufferLength,
SQLSMALLINT *StringLengthPtr,
SQLPOINTER NumericAttributePtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Chapter 4. ODBC Functions 135

Table 54. SQLColAttribute() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ColumnNumber input Number of the column you want to be described. Columns
are numbered sequentially from left to right, starting at 1.
Column zero might not be defined. The DB2 ODBC 3.0 driver
does not support bookmarks. See Restrictions.

SQLSMALLINT FieldIdentifier input The field in row ColumnNumber that is to be returned. See
Table 55 on page 137.

SQLPOINTER CharacterAttributePtr output Pointer to a buffer in which to return the value in the
FieldIdentifier field of the ColumnNumber row if the field is a
character string. Otherwise, this field is ignored.

SQLSMALLINT BufferLength input The length, in bytes, of the buffer you specified for the
*CharacterAttributePtr argument, if the field is a character
string. Otherwise, this field is ignored.

SQLSMALLINT * StringLengthPtr output Pointer to a buffer in which to return the total number of
bytes (excluding the nul-termination character) that are
available to return in *CharacterAttributePtr.

For character data, if the number of bytes that are available to
return is greater than or equal to BufferLength, the descriptor
information in *CharacterAttributePtr is truncated to
BufferLength minus the length (in bytes) of a nul-termination
character. DB2 ODBC then nul-terminates the value.

For all other types of data, the value of BufferLength is
ignored, and DB2 ODBC assumes that the size of
*CharacterAttributePtr is 32 bits.

SQLPOINTER NumericAttributePtr output Pointer to an integer buffer in which to return the value in
the FieldIdentifier field of the ColumnNumber row, if the field is
a numeric descriptor type, such as SQL_DESC_LENGTH.
Otherwise, this field is ignored.

Usage

SQLColAttribute() returns information in either *NumericAttributePtr or
*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a
32-bit, signed value; all other formats of information are returned in
*CharacterAttributePtr. When information is returned in *NumericAttributePtr, DB2
ODBC ignores CharacterAttributePtr, BufferLength, and StringLengthPtr. When
information is returned in *CharacterAttributePtr, DB2 ODBC ignores
NumericAttributePtr.

SQLColAttribute() allows access to the more extensive set of descriptor
information that is available in ANSI ANSI/ISO SQL standard of 1992 and
database management system vendor extensions. SQLColAttribute() is a more
extensible alternative to the SQLDescribeCol() function, but that function can
return only one attribute per call.

DB2 ODBC must return a value for each of the descriptor types. If a descriptor
type does not apply to a data source, DB2 ODBC returns 0 in *StringLengthPtr or
an empty string in *CharacterAttributePtr unless otherwise stated.

136 ODBC Guide and Reference

The following table lists the descriptor types that are returned by ODBC 3.0
SQLColAttribute(), along with the ODBC 2.0 SQLColAttributes() attribute values
(in parentheses) that were replaced or renamed.

Table 55. SQLColAttribute() field identifiers

Field identifier
Information returned in
arguments Description

SQL_DESC_AUTO_UNIQUE_VALUE
(SQL_COLUMN_AUTO_INCREMENT)1

NumericAttributePtr Indicates whether the column data type
automatically increments. SQL_FALSE is
returned in NumericAttributePtr for all DB2
SQL data types.

SQL_DESC_BASE_COLUMN_NAME CharacterAttributePtr The base column name for the set column.
If a base column name does not exist (for
example, columns that are expressions), this
variable contains an empty string.

SQL_DESC_BASE_TABLE_NAME CharacterAttributePtr The name of the base table that contains
the column. If the base table name cannot
be defined or is not applicable, this variable
contains an empty string.

SQL_DESC_CASE_SENSITIVE
(SQL_COLUMN_CASE_SENSITIVE1

NumericAttributePtr Indicates if the column data type is case
sensitive. Either SQL_TRUE or SQL_FALSE
is returned in NumericAttributePtr,
depending on the data type. Case
sensitivity does not apply to graphic data
types. SQL_FALSE is returned for
non-character data types and for the XML
data type.

SQL_DESC_CATALOG_NAME
(SQL_COLUMN_CATALOG_NAME)1

(SQL_COLUMN_QUALIFIER_NAME)1

CharacterAttributePtr The name of the catalog table that contains
the column. An empty string is returned
because DB2 ODBC supports two-part
naming for a table.

SQL_DESC_CONCISE_TYPE CharacterAttributePtr The concise data type. For datetime data
types, this field returns the concise data
type, such as SQL_TYPE_TIME.

SQL_DESC_COUNT
(SQL_COLUMN_COUNT)1

NumericAttributePtr The number of columns in the result set.

SQL_DESC_DISPLAY_SIZE
(SQL_COLUMN_DISPLAY_SIZE)1

NumericAttributePtr The maximum number of bytes that are
needed to display the data in character
form.

SQL_DESC_DISTINCT_TYPE
(SQL_COLUMN_DISTINCT_TYPE)1

CharacterAttributePtr
The distinct type name that is used for a
column. If the column is a built-in SQL
type and not a distinct type, an empty
string is returned.

IBM specific: This is an IBM-defined
extension to the list of descriptor attributes
as defined by ODBC.

Chapter 4. ODBC Functions 137

Table 55. SQLColAttribute() field identifiers (continued)

Field identifier
Information returned in
arguments Description

SQL_DESC_FIXED_PREC_SCALE
(SQL_COLUMN_MONEY)1

NumericAttributePtr SQL_TRUE if the column has a fixed
precision and nonzero scale that are
data-source-specific. This value is
SQL_FALSE if the column does not have a
fixed precision and nonzero scale that are
data-source-specific.

SQL_FALSE is returned in
NumericAttributePtr for all DB2 SQL data
types.

SQL_DESC_LABEL
(SQL_COLUMN_LABEL)1

CharacterAttributePtr The column label. If the column does not
have a label, the column name or the
column expression is returned. If the
column is not labeled or named, an empty
string is returned.

SQL_DESC_LENGTH NumericAttributePtr A numeric value that is either the
maximum or actual length, in bytes, of a
character string or binary data type. This
value is the maximum length for a
fixed-length data type, or the actual length
for a varying-length data type. This value
always excludes the nul-termination
character that ends the character string.
This value is 0 for the XML data type.

SQL_DESC_LITERAL_PREFIX CharacterAttributePtr A VARCHAR(128) record field that contains
the character or characters that DB2 ODBC
recognizes as a prefix for a literal of this
data type. This field contains an empty
string if a literal prefix is not applicable to
this data type.

SQL_DESC_LITERAL_SUFFIX CharacterAttributePtr A VARCHAR(128) record field that contains
the character or characters that DB2 ODBC
recognizes as a suffix for a literal of this
data type. This field contains an empty
string if a literal suffix is not applicable to
this data type.

SQL_DESC_LOCAL_TYPE_NAME CharacterAttributePtr A VARCHAR(128) record field that contains
any localized (native language) name for
the data type that might be different from
the regular name of the data type. If a
localized name does not exist, an empty
string is returned. This field is for display
purposes only. The character set of the
string is location dependent; it is typically
the default character set of the server.

SQL_DESC_NAME
(SQL_COLUMN_NAME)1

CharacterAttributePtr The name of the column specified with
ColumnNumber. If the column is an
expression, the column number is returned.

In either case, SQL_DESC_UNNAMED is
set to SQL_NAMED. If the column is
unnamed or has no alias, an empty string is
returned and SQL_DESC_UNNAMED is set
to SQL_UNNAMED.

138 ODBC Guide and Reference

Table 55. SQLColAttribute() field identifiers (continued)

Field identifier
Information returned in
arguments Description

SQL_DESC_NULLABLE
(SQL_COLUMN_NULLABLE)1

NumericAttributePtr If the column that is identified by
ColumnNumber can contain null values,
SQL_NULLABLE is returned. If the column
cannot accept null values, SQL_NO_NULLS
is returned.

SQL_DESC_NUM_PREC_RADIX NumericAttributePtr The precision of each digit in a numeric
value. The following values are commonly
returned:

v If the data type in the SQL_DESC_TYPE
field is an approximate data type, this
SQLINTEGER field contains a value of 2
because the SQL_DESC_PRECISION field
contains the number of bits.

v If the data type in the SQL_DESC_TYPE
field is an exact numeric data type, this
field contains a value of 10 because the
SQL_DESC_PRECISION field contains
the number of decimal digits.

v This field is set to 0 for all nonnumeric
data types.

SQL_DESC_OCTET_LENGTH
(SQL_COLUMN_LENGTH)1

NumericAttributePtr The number of bytes of data that is
associated with the column. This is the
length in bytes of data that is transferred
on the fetch or SQLGetData() for this
column if SQL_C_DEFAULT is specified as
the C data type.

If the column that is identified in
ColumnNumber is a fixed-length character or
binary string, (for example, SQL_CHAR or
SQL_BINARY), the actual length is
returned.

If the column that is identified in
ColumnNumber is a varying-length character
or binary string, (for example,
SQL_VARCHAR or SQL_BLOB), the
maximum length is returned.

Chapter 4. ODBC Functions 139

Table 55. SQLColAttribute() field identifiers (continued)

Field identifier
Information returned in
arguments Description

SQL_DESC_PRECISION
(SQL_COLUMN_PRECISION)1

NumericAttributePtr The precision in units of digits if the
column is:
v SQL_BIGINT
v SQL_DECIMAL
v SQL_NUMERIC
v SQL_DOUBLE
v SQL_FLOAT
v SQL_DECFLOAT
v SQL_INTEGER
v SQL_REAL
v SQL_SMALLINT

If the column is a character SQL data type,
the precision that is returned indicates the
maximum number of characters that the
column can hold.

If the column is a graphic SQL data type,
the precision indicates the maximum
number of double-byte characters that the
column can hold.

If the column is the XML data type, the
precision is 0.

SQL_DESC_SCALE
(SQL_COLUMN_SCALE)1

NumericAttributePtr The scale attribute of the column.

SQL_DESC_SCHEMA_NAME
(SQL_COLUMN_OWNER_NAME)1

CharacterAttributePtr The schema of the table that contains the
column. An empty string is returned; DB2
is not able to determine this attribute.

SQL_DESC_SEARCHABLE
(SQL_COLUMN_SEARCHABLE)1

NumericAttributePtr Indicates if the column data type is
searchable:

v SQL_PRED_NONE
(SQL_UNSEARCHABLE in ODBC 2.0) if
the column cannot be used in a WHERE
clause.

v SQL_PRED_CHAR (SQL_LIKE_ONLY in
ODBC 2.0) if the column can be used in a
WHERE clause only with the LIKE
predicate.

v SQL_PRED_BASIC
(SQL_ALL_EXCEPT_LIKE in ODBC 2.0)
if the column can be used in a WHERE
clause with all comparison operators
except LIKE.

v SQL_SEARCHABLE if the column can be
used in a WHERE clause with any
comparison operator.

SQL_DESC_TABLE_NAME
(SQL_COLUMN_TABLE_NAME)1

CharacterAttributePtr The name of the table that contains the
column. An empty string is returned; DB2
ODBC cannot determine this attribute.

SQL_DESC_TYPE
(SQL_COLUMN_TYPE)1

NumericAttributePtr The SQL data type of the column. For the
datetime data types, this field returns the
verbose data type, such as
SQL_DATETIME.

140 ODBC Guide and Reference

Table 55. SQLColAttribute() field identifiers (continued)

Field identifier
Information returned in
arguments Description

SQL_DESC_TYPE_NAME
(SQL_COLUMN_TYPE_NAME)1

CharacterAttributePtr The type of the column (specified in an
SQL statement).

SQL_DESC_UNNAMED NumericAttributePtr Returns SQL_NAMED or
SQL_UNNAMED. If the
SQL_DESC_NAME contains a column
name, SQL_NAMED is returned. If the
column is unnamed, SQL_UNNAMED is
returned.

SQL_DESC_UNSIGNED
(SQL_COLUMN_UNSIGNED)1

NumericAttributePtr Indicates if the column data type is an
unsigned type. SQL_TRUE is returned in
NumericAttributePtr for all nonnumeric data
types. SQL_FALSE is returned for all
numeric data types.

SQL_DESC_UPDATABLE
(SQL_COLUMN_UPDATABLE)1

NumericAttributePtr Indicates if the column data type is a data
type that can be updated:

v SQL_ATTR_READWRITE_UNKNOWN
is returned in NumericAttributePtr for all
DB2 SQL data types.

v SQL_ATTR_READONLY is returned if
the column is obtained from a catalog
function call. ODBC also defines the
following values, however DB2 ODBC
does not return these values:
– SQL_DESC_UPDATABLE
– SQL_UPDT_WRITE

Note:

1. These descriptor values (values for argument fDescType) are for the deprecated ODBC 2.0 SQLColAttributes()
API. Both SQLColAttribute() and SQLColAttributes() support these values.

Return codes

After you call SQLColAttribute(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 56. SQLColAttribute() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLColAttribute() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

Chapter 4. ODBC Functions 141

Table 56. SQLColAttribute() SQLSTATEs (continued)

SQLSTATE Description Explanation

01004 Data truncated. The buffer to which the CharacterAttributePtr argument points is not
large enough to return the entire string value, so the string value
was truncated. The length, in bytes, of the untruncated string value
is returned in the buffer to which the StringLengthPtr argument
points. (SQLColumnAttribute() returns SQL_SUCCESS_WITH_INFO
for this SQLSTATE.)

07005 The statement did not return a
result set.

The statement that is associated with the StatementHandle argument
did not return a result set. There are no columns to describe.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The
error message that is returned by SQLGetDiagRec() in the buffer to
which the MessageText argument points, describes the error and its
cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory that is required to
support execution or completion of the function.

HY002 Invalid column number. The value that is specified for the ColumnNumber argument is less
than 0, or greater than the number of columns in the result set.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v The function is called prior to SQLPrepare() or SQLExecDirect()
for the statement handle that the StatementHandle argument
specifies.

v SQLExecute() or SQLExecDirect() is called for the statement
handle that the StatementHandle argument specifies and returns
SQL_NEED_DATA. SQLColAttribute() is called before data is
sent for all data-at-execution parameters or columns.

HY090 Invalid string or buffer length. The value that is specified for the BufferLength argument is less
than 0.

HY091 Descriptor type out of range. The value that is specified for the FieldIdentifier argument is neither
one of the defined values nor an implementation-defined value.

HYC00 Driver not capable. DB2 ODBC does not support the specified value for the
FieldIdentifier argument.

Restrictions

ColumnNumber zero might not be defined. The DB2 ODBC 3.0 driver does not
support bookmarks.

Example

Refer to SQLColAttribute() for a related example. In this example,
SQLColAttribute() retrieves the display length for a column.

142 ODBC Guide and Reference

Related reference:
“C and SQL data types” on page 26
“Display size of SQL data types” on page 551
“Length of SQL data types” on page 550
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“Function return codes” on page 24

SQLColAttributes() - Get column attributes
SQLColAttributes() is a deprecated function and is replaced by
SQLColAttribute().

ODBC specifications for SQLColAttributes()

Table 57. SQLColAttributes() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) No No

Syntax
SQLRETURN SQLColAttributes (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLUSMALLINT fDescType,
SQLPOINTER rgbDesc,
SQLSMALLINT cbDescMax,
SQLSMALLINT FAR *pcbDesc,
SQLINTEGER FAR *pfDesc);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 58. SQLColAttributes() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number in the result set (must be between 1 and the
number of columns in the result set, inclusive). This argument
is ignored when SQL_COLUMN_COUNT is specified.

SQLUSMALLINT fDescType input The supported values are described in the SQLColAttribute()
function description.

SQLCHAR * rgbDesc output Pointer to buffer for string column attributes.

SQLSMALLINT cbDescMax input Specifies the length, in bytes, of rgbDesc descriptor buffer.

Chapter 4. ODBC Functions 143

Table 58. SQLColAttributes() arguments (continued)

Data type Argument Use Description

SQLSMALLINT * pcbDesc output Actual number of bytes that are returned in rgbDesc buffer. If
this argument contains a value equal to or greater than the
length that is specified in cbDescMax, truncation occurred. The
column attribute value is then truncated to cbDescMax bytes,
minus the size of the nul-terminator (or to cbDescMax bytes if
nul-termination is off).

SQLINTEGER * pfDesc output Pointer to an integer that holds the value of numeric column
attributes.

Related reference:
“SQLColAttribute() - Get column attributes” on page 135

SQLColumnPrivileges() - Get column privileges
SQLColumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set. You can retrieve
the result set by using the same functions that you use to process a result set that a
query generates.

ODBC specifications for SQLColumnPrivileges()

Table 59. SQLColumnPrivileges() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLColumnPrivileges (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName);

Function arguments

Table 60 lists the data type, use, and description for each argument in this function.

Table 60. SQLColumnPrivileges() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Catalog qualifier of a three-part table name. This must be a
null pointer or a zero-length string.

SQLSMALLINT cbCatalogName input Specifies the length, in bytes, of szCatalogName. This must be
set to 0.

SQLCHAR * szSchemaName input Schema qualifier of table name.

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

144 ODBC Guide and Reference

Table 60. SQLColumnPrivileges() arguments (continued)

Data type Argument Use Description

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input The length, in bytes, of szTableName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result
set by column name.

SQLSMALLINT cbColumnName input The length, in bytes, of szColumnName.

Usage

The results are returned as a standard result set that contains the columns listed in
Table 61. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, COLUMN_NAME, and PRIVILEGE. If multiple privileges are
associated with any given column, each privilege is returned as a separate row.
Typically, you call this function after a call to SQLColumns() to determine column
privilege information. The application should use the character strings that are
returned in the TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
of the SQLColumns() result set as input arguments to this function.

Because calls to SQLColumnPrivileges() frequently result in a complex and thus
expensive query to the catalog, used these calls sparingly, and save the results
rather than repeat the calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes (which is consistent with ANSI/ISO SQL
standard of 1992 limits). Because DB2 names are shorter than 128 characters, the
application can choose to always set aside 128 characters (plus the nul-terminator)
for the output buffer. You can alternatively call SQLGetInfo() with the InfoType
argument set to each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Note that the szColumnName argument accepts a search pattern.

Although new columns might be added and the names of the existing columns
might change in future releases, the position of the current columns will remain
unchanged. The following table lists the columns in the result set that
SQLColumnPrivileges() currently returns.

Table 61. Columns returned by SQLColumnPrivileges()

Column
number Column name Data type Description

1 TABLE_CAT VARCHAR(128) Always null.

2 TABLE_SCHEM VARCHAR(128) Indicates the name of the schema that contains
TABLE_NAME.

Chapter 4. ODBC Functions 145

Table 61. Columns returned by SQLColumnPrivileges() (continued)

Column
number Column name Data type Description

3 TABLE_NAME VARCHAR(128) not NULL Indicates the name of the table or view.

4 COLUMN_NAME VARCHAR(128) not NULL Indicates the name of the column of the specified
table or view.

5 GRANTOR VARCHAR(128) Indicates the authorization ID of the user who
granted the privilege.

6 GRANTEE VARCHAR(128) Indicates the authorization ID of the user to whom
the privilege is granted.

7 PRIVILEGE VARCHAR(128) Indicates the column privilege. This can be:
v ALTER
v CONTROL
v DELETE
v INDEX
v INSERT
v REFERENCES
v SELECT
v UPDATE

Supported privileges are based on the data source to
which you are connected.

Most IBM relational database management systems do
not offer column-level privileges at the column level.
DB2 for z/OS and DB2 for VSE & VM support the
UPDATE column privilege; each updatable column
receives one row in this result set. For all other
privileges for DB2 for z/OS and DB2 for VSE & VM,
and for all privileges for other IBM relational database
management systems, if a privilege has been granted
at the table level, a row is present in this result set.

8 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant
the privilege to other users.

Either "YES" or "NO".

The column names that DB2 ODBC uses follow the X/Open CLI CAE specification
style. The column types, contents, and order are identical to those that are defined
for the SQLColumnPrivileges() result set in ODBC.

If more than one privilege is associated with a column, each privilege is returned
as a separate row in the result set.

Return codes

After you call SQLColumnPrivileges(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

146 ODBC Guide and Reference

Diagnostics

Table 62 lists each SQLSTATE that this function generates, with a description and
explanation for each value.

Table 62. SQLColumnPrivileges() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The szTableName argument is null.

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0 and
not equal to SQL_NTS.

HYC00 Driver not capable. DB2 ODBC does not support "catalog" as a qualifier for table name.

Example

The following example shows an application that prints a list of column privileges
for a table.

Chapter 4. ODBC Functions 147

Related concepts:
“Input arguments on catalog functions” on page 418
Related reference:
“SQLColumns() - Get column information”
“Function return codes” on page 24
“SQLTables() - Get table information” on page 401

SQLColumns() - Get column information
SQLColumns() returns a list of columns in the specified tables. The information is
returned in an SQL result set, which can be retrieved by using the same functions
that fetch a result set that a query generates.

ODBC specifications for SQLColumns()

Table 63. SQLColumns() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes No

/* ... */
SQLRETURN
list_column_privileges(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR *tablename)
{
/* ... */

rc = SQLColumnPrivileges(hstmt, NULL, 0, schema, SQL_NTS,
tablename, SQL_NTS, columnname.s, SQL_NTS);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) columnname.s, 129,
&columnname.ind);

rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,
&grantor.ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) grantee.s, 129,
&grantee.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) privilege.s, 129,
&privilege.ind);

rc = SQLBindCol(hstmt, 8, SQL_C_CHAR, (SQLPOINTER) is_grantable.s, 4,
&is_grantable.ind);

printf("Column Privileges for
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

sprintf(cur_name, " Column:
if (strcmp(cur_name, pre_name) != 0) {

printf("\nname);
printf(" Grantor Grantee Privilege Grantable\n");
printf(" --------------- --------------- ---------- ---\n");

}
strcpy(pre_name, cur_name);
printf("
printf("
printf("
printf(" grantable.s);

} /* endwhile */
/* ... */

Figure 10. An application that retrieves user privileges on table columns

148 ODBC Guide and Reference

Syntax
SQLRETURN SQLColumns (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 64. SQLColumns() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Identifies the statement handle.

SQLCHAR * szCatalogName input Identifies the buffer that can contain a pattern-value to
qualify the result set. Catalog is the first part of a three-part
table name.

This must be a null pointer or a zero length string.

SQLSMALLINT cbCatalogName input Specifies the length, in bytes, of szCatalogName. This must
be set to 0.

SQLCHAR * szSchemaName input Identifies the buffer that can contain a pattern-value to
qualify the result set by schema name.

SQLSMALLINT cbSchemaName input Specifies the length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Identifies the buffer that can contain a pattern-value to
qualify the result set by table name.

SQLSMALLINT cbTableName input Specifies the length, in bytes, of szTableName.

SQLCHAR * szColumnName input Identifies the buffer that can contain a pattern-value to
qualify the result set by column name.

SQLSMALLINT cbColumnName input Specifies the length, in bytes, of szColumnName.

Usage

This function retrieves information about the columns of a table or a set of tables.
Typically, you call this function after you call SQLTables() to determine the
columns of a table. Use the character strings that are returned in the
TABLE_SCHEM and TABLE_NAME columns of the SQLTables() result set as input
to this function.

SQLColumns() returns a standard result set, ordered by TABLE_CAT,
TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION. Table 65 on page 150
lists the columns in the result set.

The szSchemaName, szTableName, and szColumnName arguments accept search
patterns.

Because calls to SQLColumns() frequently result in a complex and expensive query
to the catalog, use these calls sparingly, and save the results rather than repeat the
calls.

Chapter 4. ODBC Functions 149

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes (which is consistent with ANSI/ISO SQL
standard of 1992 limits). Because DB2 names are less than 128 characters, the
application can choose to always set aside 128 characters (plus the nul-terminator)
for the output buffer. You can alternatively call SQLGetInfo() with the InfoType
argument set to each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
might change in future releases, the position of the current columns will remain
unchanged. The following table lists the columns in the result set that
SQLColumns() currently returns.

Table 65. Columns returned by SQLColumns()

Column
number Column name Data type Description

1 TABLE_CAT VARCHAR(128) Always null.

2 TABLE_SCHEM VARCHAR(128) Identifies the name of the schema that contains
TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT
NULL

Identifies the name of the table, view, alias, or
synonym.

4 COLUMN_NAME VARCHAR(128) NOT
NULL

Identifies the column that is described. This
column contains the name of the column of the
specified table, view, alias, or synonym.

5 DATA_TYPE SMALLINT NOT NULL Identifies the SQL data type of the column that
COLUMN_NAME indicates.

6 TYPE_NAME VARCHAR(128) NOT
NULL

Identifies the character string that represents
the name of the data type that corresponds to
the DATA_TYPE result set column.

7 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a
character or binary string, this column contains
the maximum length in characters for the
column.

For date, time, timestamp data types, this is
the total number of characters that are
required to display the value when it is
converted to character.

For numeric data types, this is either the total
number of digits, or the total number of bits
that are allowed in the column, depending on
the value in the NUM_PREC_RADIX column
in the result set.

For the XML data type, the length of zero is
returned.

150 ODBC Guide and Reference

Table 65. Columns returned by SQLColumns() (continued)

Column
number Column name Data type Description

8 BUFFER_LENGTH INTEGER Indicates the maximum number of bytes for
the associated C buffer to store data from this
column if SQL_C_DEFAULT is specified on the
SQLBindCol(), SQLGetData(), and
SQLBindParameter() calls. This length does not
include any nul-terminator. For exact numeric
data types, the length accounts for the decimal
and the sign.

9 DECIMAL_DIGITS SMALLINT Indicates the scale of the column. NULL is
returned for data types where scale is not
applicable.

10 NUM_PREC_RADIX SMALLINT Specifies 10, 2, or NULL.

If DATA_TYPE is an approximate numeric
data type, this column contains the value 2,
and the COLUMN_SIZE column contains the
number of bits that are allowed in the column.

If DATA_TYPE is an exact numeric data type,
this column contains the value 10, and the
COLUMN_SIZE contains the number of
decimal digits that are allowed for the column.

For numeric data types, the database
management system can return a
NUM_PREC_RADIX value of either 10 or 2.

NULL is returned for data types where the
NUM_PREC_RADIX column does not apply.

11 NULLABLE SMALLINT NOT NULL Contains SQL_NO_NULLS if the column does
not accept null values.

Contains SQL_NULLABLE if the column
accepts null values.

12 REMARKS VARCHAR(762) Contains any descriptive information about the
column.

Chapter 4. ODBC Functions 151

Table 65. Columns returned by SQLColumns() (continued)

Column
number Column name Data type Description

13 COLUMN_DEF VARCHAR(254) Identifies the default value for the column.

If the default value is a numeric literal, this
column contains the character representation of
the numeric literal with no enclosing single
quotes.

If the default value is a character string, this
column is that string, enclosed in single
quotes.

If the default value is a pseudo-literal, such as
for DATE, TIME, and TIMESTAMP columns,
this column contains the keyword of the
pseudo-literal (for example, CURRENT DATE)
with no enclosing quotes.

If NULL was specified as the default value,
this column returns the word NULL, with no
enclosing single quotes.

If the default value cannot be represented
without truncation, this column contains the
value TRUNCATED with no enclosing single
quotes.

If no default value was specified, this column
is null.

14 SQL_DATA_TYPE SMALLINT NOT NULL Indicates the SQL data type. This column is
the same as the DATA_TYPE column.

For datetime data types, the SQL_DATA_TYPE
field in the result set is SQL_DATETIME, and
the SQL_DATETIME_SUB field returns the
subcode for the specific datetime data type
(SQL_CODE_DATE, SQL_CODE_TIME, or
SQL_CODE_TIMESTAMP).

15 SQL_DATETIME_SUB SMALLINT The subtype code for datetime data types can
be one of the following values:
v SQL_CODE_DATE
v SQL_CODE_TIME
v SQL_CODE_TIMESTAMP

For all other data types, this column returns
NULL.

16 CHAR_OCTET_LENGTH INTEGER Contains the maximum length in bytes for a
character data column. For single-byte
character sets, this is the same as
COLUMN_SIZE. For the XML type, zero is
returned. For data types other than character
data types or XML data type, it is null.

17 ORDINAL_POSITION INTEGER NOT NULL The ordinal position of the column in the table.
The first column in the table is number 1.

18 IS_NULLABLE VARCHAR(254) Contains the string 'NO' if the column is
known to be not nullable; and 'YES' otherwise.

152 ODBC Guide and Reference

The result set that the preceding table describes is identical to the X/Open CLI
Columns() result set specification, which is an extended version of the
SQLColumns() result set that ODBC 2.0 specifies. The ODBC SQLColumns() result set
includes every column in the same position up to the REMARKS column.

DB2 ODBC applications that issue SQLColumns() against a DB2 for z/OS server
should expect the result set columns that are listed in Table 65 on page 150.

Return codes

After you call SQLColumns(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 66. SQLColumns() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error.
The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length argument is less than 0 and
not equal to SQL_NTS.

HYC00 Driver not capable. DB2 ODBC does not support "catalog" as a qualifier for table name.

Example

The following example shows an application that queries the system catalog for
information about columns in a table.

Chapter 4. ODBC Functions 153

/* ... */
SQLRETURN
list_columns(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR *tablename)
{
/* ... */

rc = SQLColumns(hstmt, NULL, 0, schema, SQL_NTS,
tablename, SQL_NTS, "NTS);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,
&column_name.ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,
&type_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_LONG, (SQLPOINTER) &length,
sizeof(length), &length_ind);

rc = SQLBindCol(hstmt, 9, SQL_C_SHORT, (SQLPOINTER) &scale,
sizeof(scale), &scale_ind);

rc = SQLBindCol(hstmt, 12, SQL_C_CHAR, (SQLPOINTER) remarks.s, 129,
&remarks.ind);

rc = SQLBindCol(hstmt, 11, SQL_C_SHORT, (SQLPOINTER) & nullable,
sizeof(nullable), &nullable_ind);

printf("Schema:
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(" name.s);
if (nullable == SQL_NULLABLE) {

printf(", NULLABLE");
} else {

printf(", NOT NULLABLE");
}
printf(", name.s);
if (length_ind != SQL_NULL_DATA) {

printf(" (
} else {

printf("(\n");
}
if (scale_ind != SQL_NULL_DATA) {

printf(",
} else {

printf(")\n");
}

} /* endwhile */
/* ... */

Figure 11. An application that returns information about table columns

154 ODBC Guide and Reference

Related concepts:
“Input arguments on catalog functions” on page 418
Related reference:
“C and SQL data types” on page 26
“Length of SQL data types” on page 550
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLColumnPrivileges() - Get column privileges” on page 144
“Function return codes” on page 24
“SQLSpecialColumns() - Get special (row identifier) columns” on page 388
“SQLTables() - Get table information” on page 401

SQLConnect() - Connect to a data source
SQLConnect() establishes a connection to the target database. The application must
supply a target SQL database. You must use SQLAllocHandle() to allocate a
connection handle before you can call SQLConnect(). Subsequently, you must call
SQLConnect() before you allocate a statement handle.

ODBC specifications for SQLConnect()

Table 67. SQLConnect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLConnect (SQLHDBC hdbc,

SQLCHAR FAR *szDSN,
SQLSMALLINT cbDSN,
SQLCHAR FAR *szUID,
SQLSMALLINT cbUID,
SQLCHAR FAR *szAuthStr,
SQLSMALLINT cbAuthStr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 68. SQLConnect() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies the connection handle for the connection.

SQLCHAR * szDSN input Specifies the data source: the name or alias name of the
database to which you are connecting.

SQLSMALLINT cbDSN input Specifies the length , in bytes, of the contents of the szDSN
argument.

SQLCHAR * szUID input Specifies an authorization name (user identifier). This
parameter is validated and authenticated.

SQLSMALLINT cbUID input Specifies the length, in bytes, of the contents of the szUID
argument. This parameter is validated and authenticated.

Chapter 4. ODBC Functions 155

Table 68. SQLConnect() arguments (continued)

Data type Argument Use Description

SQLCHAR * szAuthStr input Specifies an authentication string (password). This parameter
is validated and authenticated.

SQLSMALLINT cbAuthStr input Specifies the length, in bytes, of the contents of the szAuthStr
argument. This parameter is validated and authenticated.

Usage

The target database (also known as a data source) for IBM relational database
management systems is the location name that is defined in SYSIBM.LOCATIONS
when DDF is configured in the DB2 subsystem. Call SQLDataSources() to obtain a
list of databases that are available for connections.

In many applications, a local database is accessed (DDF is not being used). In these
cases, the local database name is the name that was set during DB2 installation as
'DB2 LOCATION NAME' on the DSNTIPR installation panel for the DB2
subsystem. Your local DB2 administration staff can provide you with this name, or
you can use a null connect.

A connection that is established by SQLConnect() recognizes externally created
contexts and allows multiple connections to the same data source from different
contexts.

Specifying a null connect: With a null connect, you connect to the default local
database without supplying a database name.

For a null SQLConnect(), the default connection type is the value of the
CONNECTTYPE keyword, which is specified in the common section of the
initialization file. To override this default value, specify the
SQL_ATTR_CONNECTTYPE attribute by using one of the following functions
before you issue the null SQLConnect():
v SQLSetConnectAttr()

v SQLSetEnvAttr()

Use the szDSN argument for SQLConnect() as follows:
v If the szDSN argument pointer is null or the cbDSN argument value is 0, you

perform a null connect.
A null connect, like any connection, requires you to allocate both an
environment handle and a connection handle before you make the connection.
The reasons you might code a null connect include:
– Your DB2 ODBC application needs to connect to the default data source. (The

default data source is the DB2 subsystem that is specified by the
MVSDEFAULTSSID initialization file setting.)

– Your DB2 ODBC application is mixing embedded SQL and DB2 ODBC calls,
and the application connected to a data source before invoking DB2 ODBC.

– Your DB2 ODBC application runs as a stored procedure. DB2 ODBC
applications that run as stored procedures must issue a null connect.

v If the szDSN argument pointer is not null and the cbDSN argument value is not
0, DB2 ODBC issues a CONNECT statement to the data source.

156 ODBC Guide and Reference

Specifying length arguments: You can set the input length arguments of
SQLConnect() (cbDSN, cbUID, cbAuthStr) either to the actual length (in bytes) of
their associated data (which does not include nul-terminating characters), or to
SQL_NTS to indicate that the associated data is nul-terminated.

Authenticating a user: To authenticate a user, you must pass SQLConnect() both a
user ID (which you specify in the szUID argument) and a password (which you
specify in the szAuthStr argument). If you specify a null or empty user ID for the
szUID argument, SQLConnect() ignores the szAuthStr argument and uses the
primary authorization ID that is associated with the application for authentication.
SQLConnect() does not accept the space character in either the szUID or szAuthStr
arguments.

Using SQLDriverConnect(): Use the more extensible SQLDriverConnect() function
to connect when the application needs to override any or all of the keyword values
specified for this data source in the initialization file.

Users can specify various connection characteristics (attributes) in the section of the
initialization file associated with the szDSN data source argument. Your application
should set connection attributes with SQLSetConnectAttr(). To set additional
attributes, call the extended connect function, SQLDriverConnect(). You can also
perform a null connect with SQLDriverConnect().

Return codes

After you call SQLConnect(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 69. SQLConnect() SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data
source.

This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC is not able to establish a connection with the data
source.

v The connection request is rejected because a connection that was
established with embedded SQL already exists.

08002 Connection in use. The specified connection handle is being used to establish a
connection with a data source, and that connection is still open.

08004 The application server rejected
establishment of the
connection.

This SQLSTATE is returned for one or more of the following
reasons:

v The data source rejects the establishment of the connection.

v The number of connections that are specified by the MAXCONN
keyword has been reached.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

Chapter 4. ODBC Functions 157

Table 69. SQLConnect() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY024 Invalid argument value. A nonmatching double quotation mark (") is found in the szDSN,
szUID, or szAuthStr arguments.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The specified value for the cbDSN argument is less than 0 and is
not equal to SQL_NTS, and the szDSN argument is not a null
pointer.

v The specified value for the cbUID argument is less than 0 and is
not equal to SQL_NTS, and the szUID argument is not a null
pointer.

v The specified value for the cbAuthStr argument is less than 0 and
is not equal to SQL_NTS, and the szAuthStr argument is not a
null pointer.

HY501 Invalid data source name. An invalid data source name is specified in the szDSN argument.

Restrictions

The implicit connection (or default database) option for IBM relational database
management systems is not supported. SQLConnect() must be called before any
SQL statements can be executed.

Example

The following example shows an application that makes a connection to a data
source with SQLConnect().
/* ... */
/* Global variables for user id and password, defined in main module.

To keep samples simple, not a recommended practice.
The INIT_UID_PWD macro is used to initialize these variables.

*/
extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];
/**/
SQLRETURN
DBconnect(SQLHENV henv,

SQLHDBC * hdbc)
{

SQLRETURN rc;
SQLSMALLINT outlen;
/* Allocate a connection handle */
if (SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");
return (SQL_ERROR);

}
/* Set AUTOCOMMIT OFF */
rc = SQLSetConnectAttr(*hdbc, SQL_ATTR_AUTOCOMMIT,(void*)

SQL_AUTOCOMMIT_OFF,SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n");
return (SQL_ERROR);

}
rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database:
SQLDisconnect(*hdbc);

158 ODBC Guide and Reference

SQLFreeHandle (SQL_HANDLE_DBC, *hdbc);
return (SQL_ERROR);

} else { /* Print connection information */
printf(">Connected to

}
return (SQL_SUCCESS);

}
/**/
/* DBconnect2 - Connect with connection type */
/* Valid connection types SQL_CONCURRENT_TRANS, SQL_COORDINATED_TRANS */
/**/
SQLRETURN DBconnect2(SQLHENV henv,

SQLHDBC * hdbc, SQLINTEGER contype)
SQLHDBC * hdbc, SQLINTEGER contype, SQLINTEGER conphase)

{
SQLRETURN rc;
SQLSMALLINT outlen;
/* Allocate a connection handle */
if (SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");
return (SQL_ERROR);

}
/* Set AUTOCOMMIT OFF */
rc = SQLSetConnectAttr(*hdbc, SQL_ATTR_AUTOCOMMIT,(void*)

SQL_AUTOCOMMIT_OFF,SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n");
return (SQL_ERROR);

}
rc = SQLSetConnectAttr(hdbc[0], SQL_ATTR_CONNECTTYPE,(void*)contype,SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting Connect Type -------------\n");
return (SQL_ERROR);

}
if (contype == SQL_COORDINATED_TRANS) {
rc=SQLSetConnectAttr(hdbc[0],SQL_ATTR_SYNC_POINT,(void*)conphase,

SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">---ERROR while setting Syncpoint Phase --------\n");
return (SQL_ERROR);

}
}
rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database:
SQLDisconnect(*hdbc);
SQLFreeHandle(SQL_HANDLE_DBC, *hdbc);
return (SQL_ERROR);

} else { /* Print connection information */
printf(">Connected to

}
return (SQL_SUCCESS);

}
/* ... */

Figure 12. An application that connects to a data source

Chapter 4. ODBC Functions 159

Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLDataSources() - Get a list of data sources”
“SQLDisconnect() - Disconnect from a data source” on page 170
“SQLDriverConnect() - Use a connection string to connect to a data source” on
page 172
“SQLGetConnectOption() - Return current setting of a connect option” on page 227
“Function return codes” on page 24
“SQLSetConnectOption() - Set connection option” on page 362

SQLDataSources() - Get a list of data sources
SQLDataSources() returns a list of available target databases, one at a time. Before
you make a connection, you can call SQLDataSources() to determine which
databases are available.

ODBC specifications for SQLDataSources()

Table 70. SQLDataSources() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLDataSources (SQLHENV henv,

SQLUSMALLINT fDirection,
SQLCHAR FAR *szDSN,
SQLSMALLINT cbDSNMax,
SQLSMALLINT FAR *pcbDSN,
SQLCHAR FAR *szDescription,
SQLSMALLINT cbDescriptionMax,
SQLSMALLINT FAR *pcbDescription);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 71. SQLDataSources() arguments

Data type Argument Use Description

SQLHENV henv input Specifies the environment handle.

SQLUSMALLINT fDirection input Requests either the first data source name in the list or the
next data source name in the list. fDirection can contain only
the following values:
v SQL_FETCH_FIRST
v SQL_FETCH_NEXT

SQLCHAR * szDSN output Specifies the pointer to the buffer that holds the retrieved
data source name.

SQLSMALLINT cbDSNMax input Specifies the maximum length, in bytes, of the buffer to which
the szDSN argument points. This should be less than or equal
to SQL_MAX_DSN_LENGTH + 1.

160 ODBC Guide and Reference

Table 71. SQLDataSources() arguments (continued)

Data type Argument Use Description

SQLSMALLINT * pcbDSN output Specifies the pointer to the location where the value of the
maximum number of bytes that are available to return in the
szDSN is stored.

SQLCHAR * szDescription output
Specifies the pointer to the buffer where the description of the
data source is returned. DB2 ODBC returns the comment field
that is associated with the database cataloged to the database
management system.

IBM specific: IBM relational database management systems
always return a blank description that is padded to 30 bytes.

SQLSMALLINT cbDescriptionMax input Specifies the maximum length, in bytes, of the szDescription
buffer.

IBM specific: DB2 for z/OS ODBC always returns NULL.

SQLSMALLINT * pcbDescription output Specifies the pointer to the location where this function
returns the actual number of bytes that the full description of
the data source requires.

IBM specific: DB2 for z/OS always returns zero.

Usage

You can call this function any time with the fDirection argument set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If you specify SQL_FETCH_FIRST, the first database in the list is always returned.

If you specify SQL_FETCH_NEXT, the database that is returned depends on when
you call SQLDataSources(). At the following points in your application,
SQLDataSources() returns a different database name:
v Directly following a SQL_FETCH_FIRST call, the second database in the list is

returned.
v Before any other SQLDataSources() call, the first database in the list is returned.
v When no more databases are in the list, SQL_NO_DATA_FOUND is returned. If

the function is called again, the first database is returned.
v Any other time, the next database in the list is returned.

Return codes

After you call SQLDataSources(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Chapter 4. ODBC Functions 161

Table 72. SQLDataSources() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. This SQLSTATE is returned for one or more of the following
reasons:

v The data source name that is returned in the argument szDSN is
longer than the specified value in the cbDSNMax argument. The
pcbDSN argument contains the length, in bytes, of the full data
source name.

v The data source name that is returned in the argument
szDescription is longer than the value specified in the
cbDescriptionMax argument. The pcbDescription argument contains
the length, in bytes, of the full data source description.

(SQLDataSources() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

58004 Unexpected system failure. Unrecoverable system error.

HY000 General error. An error occurred for which no specific SQLSTATE is defined. The
error message that is returned by SQLGetDiagRec() in the
MessageText argument describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The specified value for either the cbDSNMaxargument or the
cbDescriptionMax argument is less than 0.

HY103 Direction option out of range. The fDirection argument is not set to SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

Example

The following example shows an application that prints a list of available data
sources with SQLDataSources().

162 ODBC Guide and Reference

Related reference:
“Function return codes” on page 24

SQLDescribeCol() - Describe column attributes
SQLDescribeCol() returns commonly used descriptor information about a column
in a result set that a query generates. Before you call this function, you must call
either SQLPrepare() or SQLExecDirect().

ODBC specifications for SQLDescribeCol()

Table 73. SQLDescribeCol() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLCHAR FAR *szColName,

/* ... */
/***
** - Demonstrate SQLDataSource function
** - List available servers
** (error checking has been ignored for simplicity)
**
** Functions used:
**
** SQLAllocHandle SQLFreeHandle
** SQLDataSources
**/
#include <stdio.h>
#include <stdlib.h>
#include "sqlcli1.h"
int
main()
{

SQLRETURN rc;
SQLHENV henv;
SQLCHAR source[SQL_MAX_DSN_LENGTH + 1], description[255];
SQLSMALLINT buffl, desl;
/* Allocate an environment handle */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* List the available data sources (servers) */
printf("The following data sources are available:\n");
printf("ALIAS NAME Comment(Description)\n");
printf("--\n");
while ((rc = SQLDataSources(henv, SQL_FETCH_NEXT, source,

SQL_MAX_DSN_LENGTH + 1, &buffl, description, 255, &desl))
!= SQL_NO_DATA_FOUND) {

printf("%-30s %s\n", source, description);
}
SQLFreeHandle(SQL_HANDLE_ENV, henv);
return (SQL_SUCCESS);

}
/* ... */

Figure 13. An application that lists available data sources

Chapter 4. ODBC Functions 163

SQLSMALLINT cbColNameMax,
SQLSMALLINT FAR *pcbColName,
SQLSMALLINT FAR *pfSqlType,
SQLUINTEGER FAR *pcbColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

For 64-bit applications, use the following syntax:
SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLCHAR FAR *szColName,
SQLSMALLINT cbColNameMax,
SQLSMALLINT FAR *pcbColName,
SQLSMALLINT FAR *pfSqlType,
SQLULEN FAR *pcbColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 74. SQLDescribeCol() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLUSMALLINT icol input Specifies the column number to be described. Columns are
numbered sequentially from left to right, starting at 1.

SQLCHAR * szColName output Specifies the pointer to the buffer that is to hold the name of
the column. Set this to a null pointer if you do not need to
receive the name of the column.

SQLSMALLINT cbColNameMax input Specifies the size of the buffer to which the szColName
argument points.

SQLSMALLINT * pcbColName output Returns the number of bytes that the complete column name
requires. Truncation of column name (szColName) to
cbColNameMax - 1 bytes occurs if pcbColName is greater than
or equal to cbColNameMax.

SQLSMALLINT * pfSqlType output Returns the base SQL data type of column. To determine if a
distinct type is associated with the column, call
SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE.

SQLUINTEGER
*(31-bit) or SQLULEN
* (64-bit) 1

pcbColDef output Returns the precision of the column as defined in the
database.

SQLSMALLINT * pibScale output Scale of column as defined in the database (applies only to
SQL_DECIMAL, SQL_NUMERIC, and
SQL_TYPE_TIMESTAMP).

SQLSMALLINT * pfNullable output Indicates whether null values are allowed for the column
with the following values:
v SQL_NO_NULLS
v SQL_NULLABLE

Notes:

1. For 64-bit applications, the data type SQLUINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLULEN is recommended.

164 ODBC Guide and Reference

Usage

If you need only one attribute of the descriptor information (column name, type,
precision, scale, nullability), or if you need an attribute that SQLDescribeCol() does
not return, use SQLColAttribute() in place of SQLDescribeCol().

Usually, you call this function (or the SQLColAttribute() function) before you bind
a column to an application variable.

Columns are identified by a number, are numbered sequentially from left to right
starting with 1, and can be described in any order.

If a null pointer is specified for any of the pointer arguments, DB2 ODBC assumes
that the information is not needed by the application, and nothing is returned.

If the column is a distinct type, SQLDescribeCol() returns only the built-in type in
the pfSqlType argument. Call SQLColAttribute() with the fDescType argument set to
SQL_COLUMN_DISTINCT_TYPE to obtain the distinct type.

Return codes

After you call SQLDescribeCol(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO,
you can call SQLGetDiagRec() to obtain one of the SQLSTATEs that are listed in the
following table.

Table 75. SQLDescribeCol() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name that is returned in the szColName argument is
longer than the specified value in the cbColNameMax argument. The
argument pcbColName contains the length, in bytes, of the full
column name. (SQLDescribeCol() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE)

07005 The statement did not return a
result set.

The statement that is associated with the statement handle did not
return a result set. No columns exist to describe. (Call
SQLNumResultCols() first to determine if any rows are in the result
set.)

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

Chapter 4. ODBC Functions 165

Table 75. SQLDescribeCol() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v The function is called prior to SQLPrepare() or SQLExecDirect()
on the statement handle.

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The length that is specified in the cbColNameMax argument is less
than 1.

HYC00 Driver not capable. DB2 ODBC does not recognize the SQL data type of column that
the icol argument specifies.

HY002 Invalid column number. The value that the icol argument specifies is less than 1, or it is
greater than the number of columns in the result set.

Example

The following example shows an application that uses SQLDescribeCol() to
retrieve descriptor information about table columns.
/* ... */
/***
** process_stmt
** - allocates a statement handle
** - executes the statement
** - determines the type of statement
** - if no result columns exist, therefore non-select statement
** - if rowcount > 0, assume statement was UPDATE, INSERT, DELETE
** else
** - assume a DDL, or Grant/Revoke statement
** else
** - must be a select statement.
** - display results
** - frees the statement handle
***/
int
process_stmt(SQLHENV henv,

SQLHDBC hdbc,
SQLCHAR * sqlstr)

{
SQLHSTMT hstmt;
SQLSMALLINT nresultcols;
SQLINTEGER rowcount;
SQLRETURN rc;
/* Allocate a statement handle */
SQLAllocHandle(SQL_ HANDLE_STMT, hdbc, &hstmt);
/* Execute the SQL statement in "sqlstr" */
rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);
if (rc != SQL_SUCCESS)

if (rc == SQL_NO_DATA_FOUND) {
printf("\nStatement executed without error, however,\n");
printf("no data was found or modified\n");
return (SQL_SUCCESS);

} else
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

rc = SQLNumResultCols(hstmt, &nresultcols);
/* Determine statement type */

166 ODBC Guide and Reference

if (nresultcols == 0) { /* statement is not a select statement */
rc = SQLRowCount(hstmt, &rowcount);
if (rowcount > 0) { /* assume statement is UPDATE, INSERT, DELETE */

printf("Statement executed,
} else { /* assume statement is GRANT, REVOKE or a DLL

* statement */
printf("Statement completed successful\n");

}
} else { /* display the result set */

display_results(hstmt, nresultcols);
} /* end determine statement type */
rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt); /* Free statement handle */
return (0);

} /* end process_stmt */
/***
** display_results
** - for each column
** - get column name
** - bind column
** - display column headings
** - fetch each row
** - if value truncated, build error message
** - if column null, set value to "NULL"
** - display row
** - print truncation message
** - free local storage
***/
display_results(SQLHSTMT hstmt,

SQLSMALLINT nresultcols)
{

SQLCHAR colname[32];
SQLSMALLINT coltype;
SQLSMALLINT colnamelen;
SQLSMALLINT nullable;
SQLINTEGER collen[MAXCOLS];
SQLUINTEGER precision;
SQLSMALLINT scale;
SQLINTEGER outlen[MAXCOLS];
SQLCHAR *data[MAXCOLS];
SQLCHAR errmsg[256];
SQLRETURN rc;
SQLINTEGER i;
SQLINTEGER x;
SQLINTEGER displaysize;
for (i = 0; i < nresultcols; i++) {

SQLDescribeCol(hstmt, i + 1, colname, sizeof(colname),
&colnamelen, &coltype, &precision, &scale, NULL);

collen[i] = precision; /* Note, assignment of unsigned int to signed */
/* Get display length for column */
SQLColAttribute(hstmt, i + 1, SQL_COLUMN_DISPLAY_SIZE, NULL, 0,

NULL, &displaysize);
/*
* Set column length to max of display length, and column name
* length. Plus one byte for null terminator
*/
collen[i] = max(displaysize, strlen((char *) colname)) + 1;
printf("i], collen[i], colname);
/* Allocate memory to bind column */
data[i] = (SQLCHAR *) malloc(collen[i]);
/* Bind columns to program vars, converting all types to CHAR */
rc = SQLBindCol(hstmt, i + 1, SQL_C_CHAR, data[i], collen[i], &outlen[i]);

}
printf("\n");
/* Display result rows */
while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA_FOUND) {

errmsg[0] = ’\0’;
for (i = 0; i < nresultcols; i++) {

Chapter 4. ODBC Functions 167

/* Build a truncation message for any columns truncated */
if (outlen[i] >= collen[i]) {

sprintf((char *) errmsg + strlen((char *) errmsg),
"%ld chars truncated, col %d\n",
outlen[i] - collen[i] + 1, i + 1);

sprintf((char *) errmsg + strlen((char *) errmsg),
"Bytes to return = %ld size of buffer\n",
outlen[i], collen[i]);

}
if (outlen[i] == SQL_NULL_DATA)

printf("i], collen[i], "NULL");
else

printf("i], collen[i], data[i]);
} /* for all columns in this row */
printf("\n /* print any truncation messages */

} /* while rows to fetch */
/* Free data buffers */
for (i = 0; i < nresultcols; i++) {

free(data[i]);
}

} /* end display_results */
/* ... */

Related reference:
“C and SQL data types” on page 26
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLColAttribute() - Get column attributes” on page 135
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLNumResultCols() - Get number of result columns” on page 312
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLDescribeParam() - Describe parameter marker
SQLDescribeParam() retrieves the description of a parameter marker that is
associated with a prepared statement. This function is supported only for DB2 for
z/OS data sources. Before you call this function, you must call either SQLPrepare()
or SQLExecDirect().

ODBC specifications for SQLDescribeParam()

Table 76. SQLDescribeParam() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:

Figure 14. An application that retrieves column descriptor information

168 ODBC Guide and Reference

SQLRETURN SQLDescribeParam (SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT FAR *pfSqlType,
SQLUINTEGER FAR *pcbColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

For 64-bit applications, use the following syntax:
SQLRETURN SQLDescribeParam (SQLHSTMT hstmt,

SQLUSMALLINT ipar,
SQLSMALLINT FAR *pfSqlType,
SQLULEN FAR *pcbColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 77. SQLDescribeParam() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLUSMALLINT ipar input Specifies the parameter marker number. (Parameters are
ordered sequentially from left to right in a prepared SQL
statement, starting at 1.)

SQLSMALLINT * pfSqlType output Specifies the base SQL data type.

SQLUINTEGER *
(31-bit) or SQLULEN
*(64-bit) 1

pcbColDef output Returns the precision of the parameter marker.

SQLSMALLINT * pibScale output Returns the scale of the parameter marker.

SQLSMALLINT * pfNullable output Indicates whether the parameter allows null values. This
argument returns one of the following values:

v SQL_NO_NULLS: The parameter does not allow null
values; this is the default.

v SQL_NULLABLE: The parameter allows null values.

v SQL_NULLABLE_UNKNOWN: The driver cannot
determine whether the parameter allows null values.

Notes:

1. For 64-bit applications, the data type SQLUINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLULEN is recommended.

Usage

For distinct types, SQLDescribeParam() returns both base data types for the input
parameter.

SQLDescribeParam() does not return an indication of whether a parameter in an
SQL statement is for input, input/output, or output. Except in calls to stored
procedures, all parameters in SQL statements are input parameters. To determine
the type of each parameter in a call to a stored procedure, call
SQLProcedureColumns().

Chapter 4. ODBC Functions 169

Return codes

After you call SQLDescribeParam(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 78. SQLDescribeParam() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message that indicates an internal commit is issued
on behalf of the application as part of the processing that sets the
specified connection attribute.

HY000 General error. An error occurred for which no specific SQLSTATE is defined. The
error message that is returned by SQLGetDiagRec() in the argument
MessageText describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY093 Invalid parameter number. The specified value for the ipar argument is less than 1 or it is
greater than the number of parameters that the associated SQL
statement requires.

HYC00 Driver not capable. The data source is not DB2 for z/OS or DB2 for Linux, UNIX, and
Windows.

Related reference:
“C and SQL data types” on page 26
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLCancel() - Cancel statement” on page 131
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLDisconnect() - Disconnect from a data source
SQLDisconnect() closes the connection that is associated with the database
connection handle. Before you call SQLDisconnect(), you must call SQLEndTran() if
an outstanding transaction exists on this connection. After you call this function,
either call SQLConnect() to connect to another database, or callSQLFreeHandle().

170 ODBC Guide and Reference

ODBC specifications for SQLDisconnect()

Table 79. SQLDisconnect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLDisconnect (SQLHDBC hdbc);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 80. SQLDisconnect() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies the connection handle of the connection to close.

Usage

If you call SQLDisconnect() before you free all the statement handles associated
with the connection, DB2 ODBC frees them after it successfully disconnects from
the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the
disconnect from the database is successful, additional error or
implementation-specific information is available. For example, if a problem was
encountered during the cleanup processing, subsequent to the disconnect, or if an
event occurred independently of the application (such as communication failure)
that caused the current connection to be lost, SQLDisconnect() issues
SQL_SUCCESS_WITH_INFO.

After a successful SQLDisconnect() call, you can reuse the connection handle you
specified in the hdbc argument to make another SQLConnect() or
SQLDriverConnect() request.

Return codes

After you call SQLDisconnect(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Chapter 4. ODBC Functions 171

Table 81. SQLDisconnect() SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurs during the disconnect. However, the disconnect
succeeds. SQLDisconnect returns SQL_SUCCESS_WITH_INFO for
this SQLSTATE.)

08003 Connection is closed. The specified connection in the hdbc argument is not open.

25000 or 25501 Invalid transaction state. A transaction is in process for the connection that the hdbc
argument specifies. The transaction remains active, and the
connection cannot be disconnected.

This error does not apply to stored procedures that are written in
DB2 ODBC.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Example

Refer to SQLDriverConnect() for a related example.
Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLConnect() - Connect to a data source” on page 155
“SQLDriverConnect() - Use a connection string to connect to a data source”
“Function return codes” on page 24
“SQLTransact() - Transaction management” on page 405

SQLDriverConnect() - Use a connection string to connect to a data
source

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a
connection to the target database, but SQLDriverConnect() supports additional
connection parameters.

ODBC specifications for SQLDriverConnect()

Table 82. SQLDriverConnect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLDriverConnect (SQLHDBC hdbc,

SQLHWND hwnd,
SQLCHAR FAR *szConnStrIn,
SQLSMALLINT cbConnStrIn,

172 ODBC Guide and Reference

SQLCHAR FAR *szConnStrOut,
SQLSMALLINT cbConnStrOutMax,
SQLSMALLINT FAR *pcbConnStrOut,
SQLUSMALLINT fDriverCompletion);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 83. SQLDriverConnect() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies the connection handle to use for the connection.

SQLHWND hwindow input Always specify the value NULL. This argument is not used.

SQLCHAR * szConnStrIn input A complete, partial, or empty (null pointer) connection string.
See “Usage” for a description and the syntax of this string.

SQLSMALLINT cbConnStrIn input Specifies the length, in bytes, of the connection string to
which the szConnStrIn argument points.

SQLCHAR * szConnStrOut output Points to a buffer where the complete connection string is
returned.

If the connection is established successfully, this buffer
contains the completed connection string. Applications
should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for this buffer.

SQLSMALLINT cbConnStrOutMax input Specifies the maximum size, in bytes, of the buffer to which
the szConnStrOut argument points.

SQLSMALLINT* pcbConnStrOut output Points to a buffer that contains the total number of available
bytes for the complete connection string.

If the value of pcbConnStrOut is greater than or equal to
cbConnStrOutMax, the completed connection string in
szConnStrOut is truncated to cbConnStrOutMax - 1 bytes.

SQLUSMALLINT fDriverCompletion input Indicates when DB2 ODBC should prompt the user for more
information.

IBM specific: DB2 for z/OS supports only the value of
SQL_DRIVER_NOPROMPT for this argument. The following
values are not supported:
v SQL_DRIVER_PROMPT
v SQL_DRIVER_COMPLETE
v SQL_DRIVER_COMPLETE_REQUIRED

Usage

Use SQLDriverConnect() when you want to specify any or all keyword values that
are defined in the DB2 ODBC initialization file when you connect to a data source.

When a connection is established, the complete connection string is returned.
Applications can store this string for future connection requests, which allows you
to override any or all keyword values in the DB2 ODBC initialization file.

Use the connection string to pass one or more values that are needed to complete a
connection. You must write the connection string to which the szConnStrln
argument points with the following syntax:

Chapter 4. ODBC Functions 173

Connection string syntax

��

�

;

DSN = attribute
UID
PWD
DB2 ODBC-defined-keyword

��

The connection string contains the following keywords:

DSN Data source name. The name or alias name of the database.

IBM specific: This is a required value because DB2 for z/OS supports only
SQL_DRIVER_NOPROMPT for the fDriverCompletion argument.

UID Authorization name (user identifier). This value is validated and
authenticated.

IBM specific: DB2 for z/OS supports only SQL_DRIVER_NOPROMPT for
the fDriverCompletion argument. If you do not specify a value for UID, DB2
uses the primary authorization ID of your application and the PWD
keyword is ignored if it is specified.

PWD The password corresponding to the authorization name. If the user ID has
no password, pass an empty string (PWD=;). This value is validated and
authenticated.

IBM specific: DB2 for z/OS supports only SQL_DRIVER_NOPROMPT for
the fDriverCompletion argument. The value you specify for PWD is ignored
if you do not specify UID in the connection string.

Any one of the initialization keywords can be specified on the connection string. If
any keywords are repeated in the connection string, the value that is associated
with the first occurrence of the keyword is used.

If any keywords exist in the DB2 ODBC initialization file, the keywords and their
respective values are used to augment the information that is passed to DB2 ODBC
in the connection string. If the information in the DB2 ODBC initialization file
contradicts information in the connection string, the values in the connection string
take precedence.

The application receives an error on any value of fDriverCompletion as follows:

SQL_DRIVER_PROMPT:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_COMPLETE:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_COMPLETE_REQUIRED:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information that the connection string contains. If this information
is inadequate to make a connection, SQL_ERROR is returned.

When a connection is established, the complete connection string is returned.

174 ODBC Guide and Reference

Return codes

After you call SQLDriverConnect(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA_FOUND
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

This function generates similar diagnostics as the function SQLConnect(). The
following table shows the additional SQLSTATEs that SQLDriverConnect() returns.

Table 84. SQLDriverConnect() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer that theszConnstrOut argument specifies is not large
enough to hold the complete connection string. The pcbConnStrOut
argument contains the actual length, in bytes, of the connection
string that is available for return. (SQLDriverConnect() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

01S00 Invalid connection string
attribute.

An invalid keyword or attribute value is specified in the input
connection string, but the connection to the data source is
successful because one of the following events occur:
v The unrecognized keyword is ignored.
v The invalid attribute value is ignored and the default value is

used instead.

(SQLDriverConnect() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

01S02 Option value changed. SQL_CONNECTTYPE changes to SQL_CONCURRENT_TRANS
while MULTICONTEXT=1 is in use.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The specified value for the cbConnStrIn argument is less than 0
and not equal to SQL_NTS.

v The specified value for the cbConnStrOutMax argument is less
than 0.

HY110 Invalid driver completion. The specified value for the fDriverCompletion argument is not equal
to a valid value.

Restrictions

DB2 ODBC does not support the hwindow argument. Window handles do not
apply in the z/OS environment.

DB2 ODBC does not support the following ODBC-defined values for the
fDriverCompletion argument:
v SQL_DRIVER_PROMPT
v SQL_DRIVER_COMPLETE
v SQL_DRIVER_COMPLETE_REQUIRED

Chapter 4. ODBC Functions 175

Example

The following example shows an application that uses SQLDriverConnect()instead
of SQLConnect() to pass keyword values to the connection.
/**/
/* Issue SQLDriverConnect to pass a string of initialization */
/* parameters to compliment the connection to the data source. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sqlcli1.h"

/**/
/* SQLDriverConnect ----------- */
/**/

int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *ConnStrIn =

"dsn=STLEC1;connecttype=2;bitdata=2;optimizefornrows=30";
char ConnStrOut [200];
SQLSMALLINT cbConnStrOut;
int i;
char *token;
(void) printf ("**** Entering CLIP10.\n\n");

/***/
/* CONNECT to DB2 */
/***/
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if(rc != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;
/***/
/* Invoke SQLDriverConnect ----------- */
/***/
RETCODE = SQLDriverConnect (hDbc ,

NULL ,
(SQLCHAR *)ConnStrIn ,
strlen(ConnStrIn) ,
(SQLCHAR *)ConnStrOut,
sizeof(ConnStrOut) ,
&cbConnStrOut ,
SQL_DRIVER_NOPROMPT);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
{

(void) printf ("**** Driver Connect Failed. rc =
goto dberror;

}
/***/
/* Enumerate keywords and values returned from SQLDriverConnect */
/***/
(void) printf ("**** ConnStrOut =
for (i = 1, token = strtok (ConnStrOut, ";");

(token != NULL);
token = strtok (NULL, ";"), i++)

(void) printf ("**** Keyword #
/***/

176 ODBC Guide and Reference

/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle (SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/

/* Disconnect from data sources in connection table */
/***/
SQLFreeHandle(SQL_HANDLE_ENV, hEnv); /* Free environment handle */
goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP10.\n\n");
return(RETCODE);

}

Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLConnect() - Connect to a data source” on page 155
“Function return codes” on page 24
“DB2 ODBC initialization keywords” on page 65

SQLEndTran() - End transaction of a connection
SQLEndTran() requests a commit or rollback operation for all active transactions on
all statements that are associated with a connection. SQLEndTran() can also request
that a commit or rollback operation be performed for all connections that are
associated with an environment.

ODBC specifications for SQLEndTran()

Table 85. SQLEndTran() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLEndTran (SQLSMALLINT HandleType,

SQLHANDLE Handle,
SQLSMALLINT CompletionType);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Figure 15. An application that passes keyword values as it connects

Chapter 4. ODBC Functions 177

Table 86. SQLEndTran() arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Identifies the handle type. Contains either
SQL_HANDLE_ENV if Handle is an environment handle or
SQL_HANDLE_DBC if Handle is a connection handle.

SQLHANDLE Handle input Specifies the handle, of the type indicated by HandleType, that
indicates the scope of the transaction. See “Usage” for more
information.

SQLSMALLINT CompletionType input Specifies whether to perform a commit or a rollback. Use one
of the following values:
v SQL_COMMIT
v SQL_ROLLBACK

Usage

A new transaction is implicitly started when an SQL statement that can be
contained within a transaction is executed against the current data source. The
application might need to commit or roll back based on execution status.

If you set the HandleType argument to SQL_HANDLE_ENV and set the Handle
argument to a valid environment handle, DB2 ODBC attempts to commit or roll
back transactions one at a time on all connections that are in a connected state.
Transactions are committed or rolled back depending on the value of the
CompletionType argument.

If you set the CompletionType argument to SQL_COMMIT, SQLEndTran() issues a
commit request for all statements on the connection. If CompletionType is
SQL_ROLLBACK, SQLEndTran() issues a rollback request for all statements on the
connection.

SQLEndTran() returns SQL_SUCCESS if it receives SQL_SUCCESS for each
connection. If it receives SQL_ERROR on one or more connections, SQLEndTran()
returns SQL_ERROR to the application, and the diagnostic information is placed in
the diagnostic data structure of the environment. To determine which connections
failed during the commit or rollback operation, call SQLGetDiagRec() for each
connection.

Important: You must set the connection attribute SQL_ATTR_CONNECTTYPE to
SQL_COORDINATED_TRANS (to indicate coordinated distributed transactions),
for DB2 ODBC to provide coordinated global transactions with one-phase or
two-phase commit protocols is made.

Completing a transaction has the following effects:
v Prepared SQL statements (which SQLPrepare() creates) survive transactions; they

can be executed again without first calling SQLPrepare().
v Cursor positions are maintained after a commit unless one or more of the

following conditions are true:
– The server is DB2 Server for VSE and VM.
– The SQL_ATTR_CURSOR_HOLD statement attribute for this handle is set to

SQL_CURSOR_HOLD_OFF.
– The CURSORHOLD keyword in the DB2 ODBC initialization file is set so that

cursor with hold is not in effect and this setting has not been overridden by
resetting the SQL_ATTR_CURSOR_HOLD statement attribute.

178 ODBC Guide and Reference

– The CURSORHOLD keyword is present in the SQLDriverConnect()
connection string specifying that cursor-with-hold behavior is not in effect.
Also you must not override this setting by resetting the
SQL_ATTR_CURSOR_HOLD statement attribute.

If the cursor position is not maintained due to any one of the above
circumstances, the cursor is closed and all pending results are discarded.
If the cursor position is maintained after a commit, the application must fetch to
reposition the cursor (to the next row) before continuing to process the
remaining result set.
To determine how transaction operations affect cursors, call SQLGetInfo() with
the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR attributes.

v Cursors are closed after a rollback, and all pending results are discarded.
v Statement handles are still valid after a call to SQLEndTran(), and they can be

reused for subsequent SQL statements or deallocated by calling SQLFreeStmt()
or SQLFreeHandle() with HandleType set to SQL_HANDLE_STMT.

v Cursor names, bound parameters, and column bindings survive transactions.

Regardless of whether DB2 ODBC is in autocommit mode or manual-commit
mode, SQLEndTran() always sends the request to the database for execution.

Return codes

After you call SQLGetDiagRec(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 87. SQLEndTran() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. An informational message was generated. (SQLEndTran() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

08003 Connection is closed. The connection handle is not in a connected state.

08007 Connection failure during
transaction.

The connection that is associated with the Handle argument failed
during the execution of the function. No indication of whether the
requested commit or rollback occurred before the failure is issued.

40001 Transaction rollback. The transaction is rolled back due to a resource deadlock with
another transaction.

HY000 General error. An error occurred for which no specific SQLSTATE exists. The
error message that is returned by SQLGetDiagRec() in the buffer
that the MessageText argument specifies, describes the error and its
cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the memory that is required to
support the execution or completion of the function.

Chapter 4. ODBC Functions 179

Table 87. SQLEndTran() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. SQLExecute() or SQLExecDirect() is called for the statement handle
and return SQL_NEED_DATA. This function is called before data
was sent for all data-at-execution parameters or columns. Invoke
SQLCancel() to cancel the data-at-execution condition.

HY012 Invalid transaction code. The specified value for the CompletionType argument was neither
SQL_COMMIT nor SQL_ROLLBACK.

HY092 Option type out of range. The specified value for the HandleType argument was neither
SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

Restrictions

SQLEndTran() cannot be used if the ODBC application is executing as a stored
procedure.

Example

Refer to the DSN8P3VP sample application or online in the DSNB10.SDSNSAMP
data set
Related concepts:
“DSN8O3VP sample application” on page 572
“When to call SQLEndTran()” on page 22
Related reference:
“SQLFreeHandle() - Free a handle” on page 219
“SQLFreeStmt() - Free (or reset) a statement handle” on page 222
“SQLGetInfo() - Get general information” on page 254
“Function return codes” on page 24

SQLError() - Retrieve error information
SQLError() is a deprecated function and is replaced by SQLGetRiagRec().

ODBC Specifications for SQLError()

Table 88. SQLError() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLError (SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLCHAR FAR *szSqlState,
SQLINTEGER FAR *pfNativeError,
SQLCHAR FAR *szErrorMsg,
SQLSMALLINT cbErrorMsgMax,
SQLSMALLINT FAR *pcbErrorMsg);

180 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 89. SQLError() arguments

Data type Argument Use Description

SQLHENV henv input Environment handle. To obtain diagnostic information
associated with an environment, pass a valid environment
handle. Set hdbc and hstmt to SQL_NULL_HDBC and
SQL_NULL_HSTMT respectively.

SQLHDBC hdbc input Database connection handle. To obtain diagnostic information
associated with a connection, pass a valid database connection
handle, and set hstmt to SQL_NULL_HSTMT. The henv
argument is ignored.

SQLHSTMT hstmt input Statement handle. To obtain diagnostic information associated
with a statement, pass a valid statement handle. The henv and
hdbc arguments are ignored.

SQLCHAR * szSqlState output SQLSTATE as a string of 5 characters terminated by a null
character. The first 2 characters indicate error class; the next 3
indicate subclass. The values correspond directly to
SQLSTATE values defined in the X/Open SQL CAE
specification and the ODBC specification, augmented with
IBM specific and product specific SQLSTATE values.

SQLINTEGER * pfNativeError output Native error code. In DB2 ODBC, the pfNativeError argument
contains the SQLCODE value returned by the database
management system. If the error is generated by DB2 ODBC
and not the database management system, then this field is
set to -99999.

Chapter 4. ODBC Functions 181

Table 89. SQLError() arguments (continued)

Data type Argument Use Description

SQLCHAR * szErrorMsg output Pointer to buffer to contain the implementation defined
message text. If the error is detected by DB2 ODBC, then the
error message is prefaced by:

[DB2 for z/OS][CLI Driver]

This preface indicates that DB2 ODBC detected the error and
a connection to a database has not yet been made.

The error location, ERRLOC x:y:z, keyword value is
embedded in the buffer also. This is an internal error code for
diagnostics.

If the error is detected during a database connection, then the
error message returned from the database management
system is prefaced by:

[DB2 for z/OS][CLI Driver][database server-name]

database management system-name is the name that is returned
by SQLGetInfo() with SQL_database management
system_NAME information type.

For example,
DB2
DB2/6000
Vendor

Vendor indicates a non-IBM DRDA database management
system.

If the error is generated by the database management system,
the IBM-defined SQLSTATE is appended to the text string.

SQLSMALLINT cbErrorMsgMax input The maximum (that is, the allocated) length, in bytes, of the
buffer szErrorMsg. The recommended length to allocate is
SQL_MAX_MESSAGE_LENGTH + 1.

SQLSMALLINT * pcbErrorMsg output Pointer to total number of bytes available to return to the
szErrorMsg buffer. This does not include the nul-terminator.

Related reference:
“SQLGetDiagRec() - Get multiple field settings of diagnostic record” on page 244

SQLExecDirect() - Execute a statement directly
SQLExecDirect() prepares and executes an SQL statement in one step.

SQLExecDirect() uses the current values of the parameter marker variables, if any
parameters exist in the statement. The statement can only be executed once.

ODBC specifications for SQLExecDirect()

Table 90. SQLExecDirect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

182 ODBC Guide and Reference

Syntax
SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

SQLCHAR FAR *szSqlStr,
SQLINTEGER cbSqlStr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 91. SQLExecDirect() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which you execute the SQL
statement. No open cursor can be associated with the
statement handle you use for this argument. Refer to
SQLFreeStmt() for more information about how to free or
reset a statement handle.

SQLCHAR * szSqlStr input Specifies the string that contains the SQL statement. The
connected database server must be able to prepare the
statement.

SQLINTEGER cbSqlStr input Specifies the length, in bytes, of the contents of the szSqlStr
argument. The length must be set to either the exact length of
the statement, or if the statement is nul-terminated, set to
SQL_NTS.

Usage

If you plan to execute an SQL statement more than once, or if you need to obtain
information about columns in the result set before you execute a query, use
SQLPrepare() and SQLExecute() instead of SQLExecDirect().

To use SQLExecDirect(), the connected database server must be able to
dynamically prepare statement.

If the SQL statement text contains vendor escape clause sequences, DB2 ODBC first
modifies the SQL statement text to the appropriate DB2-specific format before
submitting it for preparation and execution. If your application does not generate
SQL statements that contain vendor escape clause sequences, set the
SQL_ATTR_NOSCAN statement attribute to SQL_NOSCAN_ON at the connection
level. When you set this attribute to SQL_NOSCAN_ON, you avoid the
performance impact that statement scanning causes.

The SQL statement cannot be COMMIT or ROLLBACK. Instead, You must call
SQLEndTran() to issue COMMIT or ROLLBACK statements.

The SQL statement string can contain parameter markers. A parameter marker is
represented by a question mark (?) character, and it is used to indicate a position
in the statement where an application-supplied value is to be substituted when
SQLExecDirect() is called. You can obtain values for parameter markers from the
following sources:
v An application variable.

SQLBindParameter() is used to bind the application storage area to the parameter
marker.

v A LOB value residing at the server that is referenced by a LOB locator.

Chapter 4. ODBC Functions 183

SQLBindParameter() is used to bind a LOB locator to a parameter marker. The
actual value of the LOB is kept at the server and does not need to be transferred
to the application before being used as the input parameter value for another
SQL statement.

You must bind all parameters before you call SQLExecDirect().

If the SQL statement is a query, SQLExecDirect() generates a cursor name and
opens a cursor. If the application has used SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 ODBC associates the
application-generated cursor name with the internally generated one.

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row or rows of data into bound variables. Data can also be retrieved by calling
SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

No open cursor can exist on the statement handle before you execute an SQL
statement on that handle.

If you call SQLSetStmtAttr() to specify that an array of input parameter values is
bound to each parameter marker, you need to call SQLExecDirect() only once to
process the entire array of input parameter values.

You cannot specify the FOR n ROWS clause in a MERGE statement that you
execute with SQLExecDirect(). Use SQLSetStmtAttr() with the
SQL_ATTR_PARAMSET_SIZE statement attribute to specify the number of rows to
merge.

Return codes

After you call SQLExecDirect(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests data-at-execution
parameter values. You call SQLParamData() and SQLPutData() to supply these
values to SQLExecDirect().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or searched
DELETE and no rows satisfy the search condition. Use SQLRowCount() to determine
the number of rows in a table that were affected by an UPDATE, INSERT, or
DELETE statement that was executed on the table, or on a view of the table.

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

184 ODBC Guide and Reference

Table 92. SQLExecDirect() SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

The szSqlStr argument contains an UPDATE or DELETE statement
but no WHERE clause. (The function returns
SQL_SUCCESS_WITH_INFO or SQL_NO_DATA_FOUND if no
rows are in the table.)

07001 Wrong number of parameters. The number of parameters that are bound to application variables
with SQLBindParameter() is less than the number of parameter
markers in the SQL statement that the szSqlStr argument specifies.

07006 Invalid conversion. Transfer of data between DB2 ODBC and the application variables
would result in incompatible data conversion.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

21S01 Insert value list does not
match column list.

The szSqlStr argument contains an INSERT statement and the
number of values that are to be inserted do not match the degree
of the derived table.

21S02 Degrees of derived table does
not match column list.

The szSqlStr argument contains a CREATE VIEW statement, and
the number of specified names is not the same degree as the
derived table that is defined by the query specification.

22001 String data right truncation. A character string that is assigned to a character type column
exceeds the maximum length of the column.

22008 Invalid datetime format or
datetime field overflow.

This SQLSTATE is returned for one or more of the following
reasons:

v The szSqlStr argument contains an SQL statement with an
invalid datetime format. (That is, an invalid string representation
or value is specified, or the value is an invalid date.)

v Datetime field overflow occurred.

Example: An arithmetic operation on a date or timestamp has a
result that is not within the valid range of dates, or a datetime
value cannot be assigned to a bound variable because it is too
small.

22012 Division by zero is invalid. The szSqlStr argument contains an SQL statement with an
arithmetic expression that caused division by zero.

22018 Error in assignment. This SQLSTATE is returned for one or more of the following
reasons:

v The szSqlStr argument contains an SQL statement with a
parameter or literal, and the value or LOB locator was
incompatible with the data type of the associated table column.

v The length that is associated with a parameter value (the
contents of the pcbValue buffer that is specified with the
SQLBindParameter() function) is not valid.

v The fSqlType argument that is used in SQLBindParameter()
denoted an SQL graphic data type, but the deferred length
argument (pcbValue) contains an odd length value. The length
value must be even for graphic data types.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause an integrity constraint violation in the
database management system.

24000 Invalid cursor state. A cursor is open on the statement handle.

Chapter 4. ODBC Functions 185

Table 92. SQLExecDirect() SQLSTATEs (continued)

SQLSTATE Description Explanation

24504 The cursor identified in the
UPDATE, DELETE, SET, or
GET statement is not
positioned on a row.

Results are pending on the statement handle from a previous
query, or a cursor that is associated with the statement handle had
not been closed.

34000 Invalid cursor name. The szSqlStr argument contains a positioned DELETE or a
positioned UPDATE statement, and the cursor that the statement
references is not open.

37xxx1 Invalid SQL syntax. The szSqlStr argument contains one or more of the following
statement types:
v A COMMIT
v A ROLLBACK
v An SQL statement that the connected database server could not

prepare
v A statement containing a syntax error

40001 Transaction rollback. The transaction to which the SQL statement belongs is rolled back
due to a deadlock or timeout.

42xxx1 Syntax error or access rule
violation

These SQLSTATEs indicate one of the following errors:

v For 425xx, the authorization ID does not have permission to
execute the SQL statement that the szSqlStr argument contains.

v For 42xxx, a variety of syntax or access problems with the
statement occur.

42895 The value of a host variable in
the EXECUTE or OPEN
statement cannot be used
because of its data type

This SQLSTATE is returned for one or more of the following
reasons:

v The LOB locator type that is specified on the bind parameter
function call does not match the LOB data type of the parameter
marker.

v The fSqlType argument, which is used on the bind parameter
function, specifies a LOB locator type, but the corresponding
parameter marker is not a LOB.

42S01 Database object already exists. The szSqlStr argument contains a CREATE TABLE or CREATE
VIEW statement, and the specified table name or view name
already exists.

42S02 Database object does not exist. The szSqlStr argument contains an SQL statement that references a
table name or view name that does not exist.

42S11 Index already exists. The szSqlStr argument contains a CREATE INDEX statement, and
the specified index name already exists.

42S12 Index not found. The szSqlStr argument contains a DROP INDEX statement, and the
specified index name does not exist.

42S21 Column already exists. The szSqlStr argument contains an ALTER TABLE statement, and
the column that is specified in the ADD clause is not unique or
identifies an existing column in the base table.

42S22 Column not found. The szSqlStr argument contains an SQL statement that references a
column name that does not exist.

44000 Integrity constraint violation. When the szSqlStr argument contains an SQL statement with a
parameter or literal, one of the following violations occur:

v The parameter value is NULL for a column that is defined as
NOT NULL in the associated table column.

v A duplicate value is supplied for a column that is constrained to
contain only unique values.

v An integrity constraint is violated.

186 ODBC Guide and Reference

Table 92. SQLExecDirect() SQLSTATEs (continued)

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The szSqlStr argument specifies a null pointer.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY019 Numeric value out of range. This SQLSTATE is returned for one or more of the following
reasons:

v A numeric value that is assigned to a numeric type column
caused truncation of the whole part of the number, either at the
time of assignment or in computing an intermediate result.

v The szSqlStr argument contains an SQL statement with an
arithmetic expression that causes division by zero.

HY090 Invalid string or buffer length. The argument cbSqlStr is less than 1 but not equal to SQL_NTS.

Note:

1. xxx refers to any SQLSTATE with that class code. For example, 37xxx refers to any SQLSTATE with class code '37'.

Example

Refer to SQLFetch() for a related example.
Related concepts:
“Differences between DB2 ODBC and embedded SQL” on page 4
“Vendor escape clauses” on page 504
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLExecute() - Execute a statement”
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“SQLFreeStmt() - Free (or reset) a statement handle” on page 222
“SQLParamData() - Get next parameter for which a data value is needed” on page
313
“SQLPrepare() - Prepare a statement” on page 317
“SQLPutData() - Pass a data value for a parameter” on page 340
“Function return codes” on page 24
“SQLSetParam() - Bind a parameter marker to a buffer” on page 369

SQLExecute() - Execute a statement
SQLExecute() executes a statement, which you successfully prepared with
SQLPrepare(), once or multiple times. When you execute a statement with
SQLExecute(), the current value of any application variables that are bound to
parameter markers in that statement are used.

Chapter 4. ODBC Functions 187

ODBC specifications for SQLExecute()

Table 93. SQLExecute() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLExecute (SQLHSTMT hstmt);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 94. SQLExecute() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle. No open cursor can be
associated with the statement handle; seeSQLFreeStmt() for
more information.

Usage

Use SQLExecute() to execute an SQL statement that you prepared with
SQLPrepare(). You can include parameter markers in this SQL statement.
Parameter markers are question mark characters (?) that you place in the SQL
statement string. When you call SQLExecute() to execute a statement that contains
parameter markers, each of these markers is replaced with the contents of a host
variable.

You must use SQLBindParameter() to associate all parameter markers in the
statement string to an application-supplied values before you call SQLExecute().
This value can be obtained from one of the following sources:
v An application variable.

SQLBindParameter() is used to bind the application storage area to the parameter
marker.

v A LOB value residing at the server that is referenced by a LOB locator.
SQLBindParameter() is used to bind a LOB locator to a parameter marker. The
actual value of the LOB is kept at the server and does not need to be transferred
to the application before being used as the input parameter value for another
SQL statement.

You must bind all parameters before you call SQLExecute().

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement that is executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(); you must call SQLPrepare() before executing a statement with
SQLExecute().

188 ODBC Guide and Reference

If the prepared SQL statement is a query, SQLExecute() generates a cursor name,
and opens the cursor. If the application uses SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 ODBC associates the
application-generated cursor name with the internally generated one.

To execute a query more than once, you must close the cursor by calling
SQLFreeStmt() with thefOption argument set to SQL_CLOSE. No open cursor can
exist on the statement handle when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row or rows of data into bound variables or LOB locators. You can also retrieve
data by calling SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, you must
position the cursor that the statement references on a row at the time SQLExecute()
is called, and define the cursor on a separate statement handle under the same
connection handle.

If you call SQLSetStmtAttr() to specify that an array of input parameter values is
bound to each parameter marker, you need to call SQLExecDirect() only once to
process the entire array of input parameter values. If the executed statement
returns multiple result sets (one for each set of input parameters), call
SQLMoreResults() to advance to the next result set when processing on the current
result set is complete.

Return codes

After you call SQLExecute(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests data-at-execution
parameter values. You call SQLParamData() and SQLPutData() to supply these
values to SQLExecute().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or searched
DELETE and no rows satisfy the search condition. Use SQLRowCount() to determine
the number of rows in a table that were affected by an UPDATE, INSERT,
DELETE, or MERGE statement executed on the table, or on a view of the table.

Diagnostics

The SQLSTATEs that SQLExecute() returns include all the SQLSTATEs that
SQLExecDirect() can generate, except for HY009, HY014, and HY090, and with the
addition of HY010.

The following table lists and describes the additional SQLSTATE that SQLExecute()
can return.

Chapter 4. ODBC Functions 189

Table 95. SQLExecute() SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. SQLExecute() is called on a statement prior to SQLPrepare().

Example

Refer to SQLPrepare() for a related example.
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExtendedFetch() - Fetch an array of rows”
“SQLFetch() - Fetch the next row” on page 197
“SQLFreeStmt() - Free (or reset) a statement handle” on page 222
“SQLMoreResults() - Check for more result sets” on page 304
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24
“SQLSetParam() - Bind a parameter marker to a buffer” on page 369
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLExtendedFetch() - Fetch an array of rows
SQLExtendedFetch() extends the function of SQLFetch() by returning a row set
array for each bound column. The value the SQL_ATTR_ROWSET_SIZE statement
attribute determines the size of the row set that SQLExtendedFetch() returns.

ODBC specifications for SQLExtendedFetch()

Table 96. SQLExtendedFetch() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) No No

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLExtendedFetch (SQLHSTMT hstmt,

SQLUSMALLINT fFetchType,
SQLINTEGER irow,
SQLUINTEGER FAR *pcrow,
SQLUSMALLINT FAR *rgfRowStatus);

For 64-bit applications, use the following syntax:
SQLRETURN SQLExtendedFetch (SQLHSTMT hstmt,

SQLUSMALLINT fFetchType,
SQLLEN irow,
SQLULEN FAR *pcrow,
SQLUSMALLINT FAR *rgfRowStatus);

190 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 97. SQLExtendedFetch() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle from which you retrieve an
array data.

SQLUSMALLINT fFetchType input Specifies the direction and type of fetch. DB2 ODBC supports
only the fetch direction SQL_FETCH_NEXT (that is,
forward-only cursor direction). The next array (row set) of
data is always retrieved.

SQLINTEGER (31-bit)
or SQLLEN (64-bit) 1

irow input Reserved for future use. Use any integer for this argument.

SQLUINTEGER
*(31-bit) or SQLULEN
* (64-bit)2

pcrow output Returns the number of the rows that are actually fetched. If
an error occurs during processing, the pcrow argument points
to the ordinal position of the row (in the row set) that
precedes the row where the error occurred. If an error occurs
retrieving the first row, the pcrow argument points to the
value 0.

SQLUSMALLINT * rgfRowStatus output Returns an array of status values. The number of elements
must equal the number of rows in the row set (as defined by
the SQL_ATTR_ROWSET_SIZE attribute). A status value for
each row that is fetched is returned:

v SQL_ROW_SUCCESS

If the number of rows fetched is less than the number of
elements in the status array (that is, less than the row set
size), the remaining status elements are set to
SQL_ROW_NOROW.

DB2 ODBC cannot detect whether a row has been updated or
deleted since the start of the fetch. Therefore, the following
ODBC-defined status values are not reported:

v SQL_ROW_DELETED

v SQL_ROW_UPDATED

Notes:

1. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

2. For 64-bit applications, the data type SQLUINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLULEN is recommended.

Usage

SQLExtendedFetch() performs an array fetch of a set of rows. An application
specifies the size of the array by calling SQLSetStmtAttr() with the
SQL_ROWSET_SIZE attribute.

You cannot mix SQLExtendedFetch() with SQLFetch() when you retrieve results.

Before SQLExtendedFetch() is called the first time, the cursor is positioned before
the first row. After SQLExtendedFetch() is called, the cursor is positioned on the
row in the result set corresponding to the last row element in the row set that was
just retrieved.

Chapter 4. ODBC Functions 191

To fetch one row of data at a time, call SQLFetch() instead of SQLExtendedFetch().

The number of elements in the rgfRowStatus array output buffer must equal the
number of rows in the row set (as defined by the SQL_ROWSET_SIZE statement
attribute). If the number of rows fetched is less than the number of elements in the
status array, the remaining status elements are set to SQL_ROW_NOROW.

For any columns in the result set that are bound using the SQLBindCol() function,
DB2 ODBC converts the data for the bound columns as necessary and stores it in
the locations that are bound to these columns. The result set can be bound in a
column-wise or row-wise fashion.

Column-wise binding: To bind a result set in column-wise fashion, an application
specifies SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement attribute.
(This is the default value.) Then the application calls the SQLBindCol() function. To
bind LOB column values to files, the application can call the SQLBindFileToCol()
function.

When you call SQLExtendedFetch(), data for the first row is stored at the start of
the buffer. Each subsequent row of data is stored at an offset of the number of
bytes that you specify with the cbValueMax argument in the SQLBindCol() call. If,
however, the associated C buffer type is fixed-width (such as SQL_C_LONG), the
data is stored at an offset corresponding to that fixed-length from the data for the
previous row.

For each bound column, the number of bytes that are available to return for each
element is stored in the array buffer that the pcbValue argument on SQLBindCol()
specifies. The number of bytes that are available to return for the first row of that
column is stored at the start of the buffer. The number of bytes available to return
for each subsequent row is stored at an offset equal to the value that the following
C function returns:
sizeof(SQLINTEGER)

If the data in the column is null for a particular row, the associated element in the
array that the pcbValue argument in SQLBindCol() points to is set to
SQL_NULL_DATA.

Row-wise binding: The application needs to first call SQLSetStmtAttr() with the
SQL_BIND_TYPE attribute, with the vParam argument set to the size of the
structure capable of holding a single row of retrieved data and the associated data
lengths for each column data value.

For each bound column, the first row of data is stored at the address given by the
rgbValue argument in SQLBindCol(). Each subsequent row of data is separated by
an offset equal to the number of bytes that you specify in the vParam argument in
SQLSetStmtAttr() from the data for the previous row.

For each bound column, the number of bytes that are available to return for the
first row is stored at the address given by the pcbValue argument in SQLBindCol().
Each subsequent value is separated by an offset equal to the number of bytes you
specify in the vParam argument in SQLBindCol().

Error handling: SQLExtendedFetch() returns errors in the same manner as
SQLFetch() with the following exceptions:

192 ODBC Guide and Reference

v When a warning occurs that applies to a particular row in the rowset,
SQLExtendedFetch() sets the corresponding entry in the row status array to
SQL_ROW_SUCCESS, not SQL_ROW_SUCCESS_WITH_INFO.

v If errors occur in every row in the rowset, SQLExtendedFetch() returns
SQL_SUCCESS_WITH_INFO, and not SQL_ERROR.

v In each group of status records that applies to an individual row, the first status
record that is returned by SQLExtendedFetch() contains SQLSTATE 01S01 (error
in row). If SQLExtendedFetch() cannot return additional SQLSTATEs, it returns
only SQLSTATE 01S01.

Handling encoding schemes: The CURRENTAPPENSCH keyword in the
initialization file and the fCType argument in SQLBindCol() or SQLGetData()
determine the encoding scheme of any character or graphic data in the result set.

Return codes

After you call SQLExtendedFetch(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 98. SQLExtendedFetch() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data that is returned for one or more columns is truncated.
(SQLExtendedFetch() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

01S01 Error in row. An error occurs while fetching one or more rows.
(SQLExtendedFetch() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

07002 Too many columns. This SQLSTATE is returned for one or more of the following
reasons:

v A column number that is specified in the bind of one or more
columns is greater than the number of columns that are in the
result set.

v The application uses SQLSetColAttributes() to inform DB2
ODBC of the descriptor information of the result set, but it does
not provide this information for every column that is in the
result set.

07006 Invalid conversion. The data value can not be converted in a meaningful manner to the
data type that the fCType argument in SQLBindCol() specifies.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

22002 Invalid output or indicator
buffer specified.

The pcbValue argument in SQLBindCol() specifies a null pointer and
the value of the corresponding column is null. The function can not
report SQL_NULL_DATA.

Chapter 4. ODBC Functions 193

Table 98. SQLExtendedFetch() SQLSTATEs (continued)

SQLSTATE Description Explanation

22008 Invalid datetime format or
datetime field overflow.

This SQLSTATE is returned for one or more of the following
reasons:

v Conversion from character string to datetime format is indicated,
but an invalid string representation or value is specified, or the
value is an invalid date.

v The value of a date, time, or timestamp does not conform to the
syntax for the data type that is specified.

v Datetime field overflow occurred.

Example: An arithmetic operation on a date or timestamp
produces a result that is not within the valid range of dates, or a
datetime value cannot be assigned to a bound variable because it
is too small.

22012 Division by zero is invalid. A value from an arithmetic expression is returned that results in
division by zero.

22018 Error in assignment. This SQLSTATE is returned for one or more of the following
reasons:

v A returned value is incompatible with the data type of the
bound column.

v A returned LOB locator was incompatible with the data type of
the bound column.

24000 Invalid cursor state. The SQL statement that is executed on the statement handle is not
a query.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v SQLExtendedFetch() is called on a statement handle after a
SQLFetch() call, and before the SQLFreeStmt() (with the fOption
argument set to SQL_CLOSE) call.

v The function is called prior to calling SQLPrepare() or
SQLExecDirect() on the statement handle.

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY019 Numeric value out of range. This SQLSTATE is returned for one or more of the following
reasons:

v A numeric value (as numeric or string) that is returned for one
or more columns causes the whole part of a number to be
truncated either at the time of assignment or in computing an
intermediate result.

v A value from an arithmetic expression is returned that results in
division by zero.

HY106 Fetch type out of range. The value that thefFetchType argument specifies is not recognized.

194 ODBC Guide and Reference

Table 98. SQLExtendedFetch() SQLSTATEs (continued)

SQLSTATE Description Explanation

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC or the data source does not support the conversion
that the fCTypeargument in SQLBindCol() and the SQL data type
of the corresponding column require.

v A call to SQLBindCol() is made for a column data type that DB2
ODBC does not support.

v The specified fetch type is recognized, but it is not supported.

Usage

Although this function is deprecated in ODBC 3.0, this function is not deprecated
in DB2 ODBC. However, ODBC applications should use SQLFetchScroll(), rather
than SQLExtendedFetch().

Example

The following example shows an application that uses SQLExtendedFetch() to
perform an array fetch.
/* ... */

"SELECT deptnumb, deptname, id, name FROM staff, org \
WHERE dept=deptnumb AND job = ’Mgr’";

/* Column-wise */
SQLINTEGER deptnumb[ROWSET_SIZE];
SQLCHAR deptname[ROWSET_SIZE][15];
SQLINTEGER deptname_l[ROWSET_SIZE];
SQLSMALLINT id[ROWSET_SIZE];
SQLCHAR name[ROWSET_SIZE][10];
SQLINTEGER name_l[ROWSET_SIZE];
/* Row-wise (Includes buffer for both column data and length) */
struct {

SQLINTEGER deptnumb_l; /* length */
SQLINTEGER deptnumb; /* value */
SQLINTEGER deptname_l;
SQLCHAR deptname[15];
SQLINTEGER id_l;
SQLSMALLINT id;
SQLINTEGER name_l;
SQLCHAR name[10];

} R[ROWSET_SIZE];
SQLUSMALLINT Row_Stat[ROWSET_SIZE];
SQLUINTEGER pcrow;
int i;

/* ... */
/***/
/* Column-wise binding */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET_SIZE, (void*) ROWSET_SIZE, 0);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) deptnumb, 0, NULL);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) deptname,

15, deptname_l);
rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) id, 0, NULL);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) name, 10, name_l);
/* Fetch ROWSET_SIZE rows ast a time, and display */
printf("\nDEPTNUMB DEPTNAME ID NAME\n");
printf("-------- -------------- -------- ---------\n");

Chapter 4. ODBC Functions 195

while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0,
&pcrow, Row_Stat)) == SQL_SUCCESS) {

for (i = 0; i < pcrow; i++) {
printf("i], deptname[i],

id[i], name[i]);
}
if (pcrow < ROWSET_SIZE)

break;
} /* endwhile */
if (rc != SQL_NO_DATA_FOUND && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
/***/
/* Row-wise binding */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
/* Set maximum number of rows to receive with each extended fetch */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET_SIZE, (void*) ROWSET_SIZE, 0);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
/*
* Set vparam to size of one row, used as offset for each bindcol
* rgbValue
*/
/* ie. &(R[0].deptnumb) + vparam = &(R[1].deptnum) */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_BIND_TYPE,

(void*) (sizeof(R) / ROWSET_SIZE), 0);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) &R[0].deptnumb, 0,

&R[0].deptnumb_l);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) R[0].deptname, 15,

&R[0].deptname_l);
rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) &R[0].id, 0,

&R[0].id_l);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) R[0].name, 10, &R[0].name_l);
/* Fetch ROWSET_SIZE rows at a time, and display */
printf("\nDEPTNUMB DEPTNAME ID NAME\n");
printf("-------- -------------- -------- ---------\n");
while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, Row_Stat))

== SQL_SUCCESS) {
for (i = 0; i < pcrow; i++) {

printf("i].deptnumb, R[i].deptname,
R[i].id, R[i].name);

}
if (pcrow < ROWSET_SIZE)

break;
} /* endwhile */
if (rc != SQL_NO_DATA_FOUND && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
/* Free handles, commit, exit */

/* ... */

Figure 16. An application that performs an array fetch

196 ODBC Guide and Reference

Related concepts:
“Retrieval of a result set into an array” on page 427
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLFetch() - Fetch the next row”
“SQLGetData() - Get data from a column” on page 232
“Function return codes” on page 24
“DB2 ODBC initialization keywords” on page 65

SQLFetch() - Fetch the next row
SQLFetch() advances the cursor to the next row of the result set and retrieves any
bound columns. Columns can be bound to either the application storage or LOB
locators.

ODBC specifications for SQLFetch()

Table 99. SQLFetch() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLFetch (SQLHSTMT hstmt);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 100. SQLFetch() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle from which to fetch data.

Usage

When you call SQLFetch(), DB2 ODBC performs the appropriate data transfer,
along with any data conversion that was indicated when you bound the column.
You can call SQLGetData() to retrieve the columns individually after the fetch.

You can call SQLFetch() only after you generate a result set. Any of the following
actions generate a result set:
v Executing a query
v Calling SQLGetTypeInfo()
v Calling a catalog function

To retrieve multiple rows at a time, use SQLExtendedFetch().

Chapter 4. ODBC Functions 197

Call SQLFetch() to retrieve results into bound application variables and to advance
the position of the cursor in a result set. You can call SQLFetch() only after a result
set is generated on the statement handle. Before you call SQLFetch() for the first
time, the cursor is positioned before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the
number of columns in the result set or SQLFetch() fails.

When you retrieve all the rows from the result set, or do not need the remaining
rows, call SQLFreeStmt() or SQLCloseCursor() to close the cursor and discard the
remaining data and associated resources.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not
return data to the application, but just advances the cursor. In this case,
SQLGetData() can be called to obtain all of the columns individually. Data in
unbound columns is discarded when SQLFetch() advances the cursor to the next
row. For fixed-length data types, or small varying-length data types, binding
columns provides better performance than using SQLGetData().

Columns can be bound to application storage or you can use LOB locators.

Fetching into application storage: SQLBindCol() binds application storage to the
column. You transfer data from the server to the application when you call
SQLFetch(). The length of the data that is available to return is also set.

If LOB values are too large to retrieve in one fetch, retrieve these values in pieces
either by using SQLGetData() (which can be used for any column type), or by
binding a LOB locator and using SQLGetSubString().

Fetching into LOB locators: SQLBindCol() is used to bind LOB locators to the
column. Only the LOB locator (4 bytes) is transferred from the server to the
application at fetch time.

When your application receives a locator, it can use the locator in
SQLGetSubString(), SQLGetPosition(), SQLGetLength(), or as the value of a
parameter marker in another SQL statement. SQLGetSubString() can either return
another locator, or the data itself. All locators remain valid until the end of the
transaction in which they are created (even when the cursor moves to another
row), or until they are freed using the FREE LOCATOR statement.

Handling data truncation: If any bound storage buffers are not large enough to
hold the data returned by SQLFetch(), the data is truncated. If character data is
truncated, SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is
generated indicating truncation. The SQLBindCol() deferred output argument
pcbValue contains the actual length, in bytes, of the column data retrieved from the
server. The application should compare the actual output length to the input buffer
length (pcbValue and cbValueMax arguments from SQLBindCol()) to determine
which character columns are truncated.

Truncation of numeric data types is reported as a warning if the truncation
involves digits to the right of the decimal point. If truncation occurs to the left of
the decimal point, an error is returned (see “Diagnostics” on page 199).

Truncation of graphic data types is treated the same as character data types, except
that the buffer you specify in the rgbValue argument for SQLBindCol(). This buffer
is filled to the nearest multiple of two bytes that is less than or equal to the value

198 ODBC Guide and Reference

you specify in the cbValueMax argument for SQLBindCol(). Graphic (DBCS) data
transferred between DB2 ODBC and the application is not nul-terminated if the C
buffer type is SQL_C_CHAR. If the buffer type is SQL_C_DBCHAR, then
nul-termination of graphic data does occur.

To eliminate warnings when data is truncated, call SQLSetStmtAttr() with the
SQL_ATTR_MAX_LENGTH attribute set to a maximum length value. Then allocate
a buffer for the rgbValue argument that is the same number of bytes (plus the
nul-terminator) as the value you specified for SQL_ATTR_MAX_LENGTH. If the
column data is larger than the maximum length that you specified for
SQL_ATTR_MAX_LENGTH, SQL_SUCCESS is returned. When you specify a
maximum length, the length you specify, not the actual length, is returned in the
pcbValue argument.

To retrieve multiple rows at a time, use SQLExtendedFetch(). You cannot mix
SQLFetch() calls with SQLExtendedFetch() calls on the same statement handle.

Return codes

After you call SQLFetch(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if no rows are in the result set, or previous
SQLFetch() calls have fetched all the rows from the result set. If all the rows are
fetched, the cursor is positioned after the end of the result set.

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 101. SQLFetch() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data that is returned for one or more columns is truncated.
String values or numeric values are truncated on the right.
(SQLFetch() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

07002 Too many columns. This SQLSTATE is returned for one or more of the following
reasons:

v A column number that is specified in the bind for one or more
columns is greater than the number of columns in the result set.

v The application uses SQLSetColAttributes() to inform DB2
ODBC of the descriptor information of the result set, but does
not provide this information for every column in the result set.

07006 Invalid conversion. The data value cannot be converted in a meaningful manner to the
data type that the fCType argument in SQLBindCol() specifies.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

22002 Invalid output or indicator
buffer specified.

The pcbValue argument in SQLBindCol() specifies a null pointer, and
the value of the corresponding column is null. The function can not
report SQL_NULL_DATA.

Chapter 4. ODBC Functions 199

Table 101. SQLFetch() SQLSTATEs (continued)

SQLSTATE Description Explanation

22008 Invalid datetime format or
datetime field overflow.

This SQLSTATE is returned for one or more of the following
reasons:

v Conversion from character string to datetime format is indicated,
but an invalid string representation or value is specified, or the
value is an invalid date.

v The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

v Datetime field overflow occurred.

Example: An arithmetic operation on a date or timestamp has a
result that is not within the valid range of dates, or a datetime
value cannot be assigned to a bound variable because it is too
small.

22012 Division by zero is invalid. A value from an arithmetic expression is returned that results in
division by zero.

22018 Error in assignment. This SQLSTATE is returned for one or more of the following
reasons:

v A returned value is incompatible with the data type of binding.

v A returned LOB locator is incompatible with the data type of the
bound column.

24000 Invalid cursor state. The previous SQL statement that is executed on the statement
handle is not a query.

54028 Maximum LOB locator
assigned. The maximum number of concurrent LOB locators has been

reached. A new locator can not be assigned.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY002 Invalid column number. This SQLSTATE is returned for one or more of the following
reasons:

v The specified column is less than 0 or greater than the number of
result columns.

v The specified column is 0, but DB2 ODBC does not support
ODBC bookmarks (icol = 0).

v SQLExtendedFetch() is called for this result set.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v SQLFetch() is called for a statement handle after
SQLExtendedFetch() and before SQLCloseCursor().

v The function is called prior to SQLPrepare() or SQLExecDirect().

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

200 ODBC Guide and Reference

Table 101. SQLFetch() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY019 Numeric value out of range. This SQLSTATE is returned for one or more of the following
reasons:

v Returning the numeric value (as numeric or string) for one or
more columns causes the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

v A value from an arithmetic expression is returned that results in
division by zero.

Important: The associated cursor is undefined if this error is
detected by DB2 for z/OS. If the error is detected by DB2 for
Linux, UNIX, and Windows or by other IBM relational database
management systems, the cursor remains open and continues to
advance on subsequent fetch calls.

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC or the data source does not support the conversion
that the fCType argument in SQLBindCol() and the SQL data type
of the corresponding column require.

v A call to SQLBindCol() was made for a column data type that is
not supported by DB2 ODBC.

Example

The following example shows an application that uses SQLFetch() to retrieve data
from bound columns of a result set.

Chapter 4. ODBC Functions 201

/* ... */
/***
** main
***/
int
main(int argc, char * argv[])
{

SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;
SQLCHAR sqlstmt[] = "SELECT deptname, location from org where

division = ’Eastern’";
struct { SQLINTEGER ind;

SQLCHAR s[15];
} deptname, location;

/* Macro to initialize server, uid and pwd */
INIT_UID_PWD;
/* Allocate an environment handle */
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
rc = DBconnect(henv, &hdbc);/* allocate a connect handle, and connect */
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,

&deptname.ind);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location.s, 15,

&location.ind);
printf("Departments in Eastern division:\n");

printf("DEPTNAME Location\n");
printf("-------------- -------------\n");
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("
}
if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, RETCODE);
rc = SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
printf("Disconnecting\n");
rc = SQLDisconnect(hdbc);
rc = SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
rc = SQLFreeHandle (SQL_HANDLE_DBC, henv);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
} /* end main */
/* ... */

Figure 17. An application that retrieves data from bound columns

202 ODBC Guide and Reference

Related concepts:
“The ODBC row status array” on page 431
Related reference:
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLGetData() - Get data from a column” on page 232
“Function return codes” on page 24

SQLFetchScroll() - Fetch the next row
SQLFetchScroll() fetches the specified rowset of data from the result set of a query
and returns data for all bound columns. Rowsets can be specified at an absolute
position or a relative position.

ODBC specifications for SQLFetchScroll()

Table 102. SQLFetchScroll() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLFetchScroll (

SQLHSTMT StatementHandle,
SQLUSMALLINT FetchOrientation,
SQLINTEGER FetchOffset);

For 64-bit applications, use the following syntax:
SQLRETURN SQLFetchScroll (

SQLHSTMT StatementHandle,
SQLUSMALLINT FetchOrientation,
SQLLEN FetchOffset);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 103. SQLFetchScroll() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle from which to fetch data.

Chapter 4. ODBC Functions 203

Table 103. SQLFetchScroll() arguments (continued)

Data type Argument Use Description

SQLUSMALLINT FetchOrientation input Type of fetch:
v SQL_FETCH_NEXT
v SQL_FETCH_PRIOR
v SQL_FETCH_FIRST
v SQL_FETCH_LAST
v SQL_FETCH_ABSOLUTE
v SQL_FETCH_RELATIVE

DB2 ODBC does not support SQL_FETCH_BOOKMARK.

See “Usage” for more information.

SQLINTEGER (31-bit)
or SQLLEN (64-bit) 1

FetchOffset input Number of the row to fetch. The interpretation of this
argument depends on the value of the FetchOrientation
argument.

See “Usage” for more information.

Notes:

1. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

Usage

SQLFetchScroll() returns a specified rowset from a result set. Rowsets can be
specified by absolute or relative position. SQLFetchScroll() can be called only after
a call that creates a result set and before the cursor over that result set is closed. If
any columns are bound, SQLFetchScroll() returns the data in those columns. If the
application specifies a pointer to a row status array or a buffer in which to return
the number of rows that were fetched, SQLFetchScroll() returns this information .
Calls to SQLFetchScroll() can be mixed with calls to SQLFetch(). An SQLFetch()
call is equivalent to SQLFetchScroll() with a FetchOrientation value of
SQL_FETCH_NEXT. SQLFetchScroll() calls cannot be mixed with
SQLExtendedFetch() calls.

How to position the cursor: When a result set is created, the cursor is positioned
before the start of the result set. SQLFetchScroll() positions the block cursor based
on the values of the FetchOrientation and FetchOffset arguments. The rules for
determining the start of the new rowset are shown in the next section.

The following table defines the FetchOrientation values.

Table 104. Meanings of FetchOrientation values

FetchOrientation value Meaning

SQL_FETCH_NEXT Return the next rowset. This is equivalent to
calling SQLFetch(). SQLFetchScroll() ignores
the value of FetchOffset.

SQL_FETCH_PRIOR Return the prior rowset. SQLFetchScroll()
ignores the value of FetchOffset.

SQL_FETCH_RELATIVE Return the rowset that is FetchOffset from the
start of the current rowset.

SQL_FETCH_ABSOLUTE Return the rowset that starts at row
FetchOffset.

204 ODBC Guide and Reference

Table 104. Meanings of FetchOrientation values (continued)

FetchOrientation value Meaning

SQL_FETCH_FIRST Return the first rowset in the result set.
SQLFetchScroll() ignores the value of
FetchOffset.

SQL_FETCH_LAST Return the last complete rowset in the result
set. SQLFetchScroll() ignores the value of
FetchOffset.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of
rows in the rowset. If the rowset that is being fetched by SQLFetchScroll() goes
beyond the end of the result set, SQLFetchScroll() returns a partial rowset. That is,
if S is the starting row of the rowset, R is the rowset size, and L is the length of the
result set, and S+R-1 is greater than L, only the first L-S+1 rows of the rowset are
valid. The remaining rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() completes, the rowset cursor is positioned on the first row
of the rowset.

Cursor positioning rules: The following information describes the rules for
determining the start of the new rowset for each value of FetchOrientation. These
rules use the following notation:

Fetch orientation notation Meaning

BeforeStart The block cursor is positioned before the
start of the result set. If the first row of the
rowset is before the start of the result set,
SQLFetchScroll() returns SQL_NO_DATA.

AfterEnd The block cursor is positioned after the end
of the result set. If the first row of the rowset
is after the end of the result set,
SQLFetchScroll() returns SQL_NO_DATA.

CurrRowsetStart The number of the first row in the current
rowset.

LastResultRow The number of the last row in the result set.

RowsetSize The rowset size.

FetchOffset The value of the FetchOffset argument in the
SQLFetchScroll() call.

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_NEXT.

Table 105. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_NEXT

Condition First row of the new rowset

BeforeStart 1

CurrRowsetStart + RowsetSize <=
LastResultRow

CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow AfterEnd

AfterEnd AfterEnd

Chapter 4. ODBC Functions 205

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_PRIOR.

Table 106. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_PRIOR

Condition First row of the new rowset

BeforeStart BeforeStart

CurrRowsetStart =1 BeforeStart

1<CurrRowsetStart<=RowsetSize 11

CurrRowsetStart>RowsetSize CurrRowsetStart-RowsetSize

AfterEnd and LastResultRow<RowsetSize 11

AfterEnd and LastResultRow>=RowsetSize LastResultRow-RowsetSize+1

Note:

1. SQLFetchScroll() returns SQLSTATE 01S06 (attempt to fetch before the result set
returned the first rowset) and SQL_SUCCESS_WITH_INFO.

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_RELATIVE.

Table 107. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_RELATIVE

Condition First row of the new rowset

BeforeStart AND FetchOffset>0 1

AfterEnd ANDFetchOffset<0 1

BeforeStart ANDFetchOffset<=0 BeforeStart

CurrRowsetStart=1 ANDFetchOffset< 0 BeforeStart

CurrRowsetStart>1
ANDCurrRowsetStart+FetchOffset< 1 AND
ABS(FetchOffset)>RowsetSize

BeforeStart

CurrRowsetStart>1
ANDCurrRowsetStart+FetchOffset< 1 AND
ABS(FetchOffset)<=RowsetSize

12

1<=(CurrRowsetStart +
FetchOffset)<=LastResultRow

CurrRowsetStart+FetchOffset

(CurrRowsetStart + FetchOffset)>LastResultRow AfterEnd

AfterEnd AND FetchOffset>=0 AfterEnd

FetchOffset=0 Unchanged3

Note:

1. SQLFetchScroll() returns the same rowset that is returned when it is called with
FetchOrientation set to SQL_FETCH_ABSOLUTE.

2. SQLFetchScroll() returns SQLSTATE 01S06 (attempt to fetch before the result set
returned the first rowset) and SQL_SUCCESS_WITH_INFO.

3. This is a special command to fetch data again. If the cursor is a sensitive cursor, data is
refetched from the base table. If the cursor is an insensitive cursor, the buffer remains
unchanged. A cursor is insensitive for one of the following reasons:

v The statement attribute for the associated statement is
SQL_ATTR_CURSOR_SENSITIVITY or SQL_INSENSITIVE.

v The query is read-only.

206 ODBC Guide and Reference

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_ABSOLUTE.

Table 108. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_ABSOLUTE

Condition First row of the new rowset

FetchOffset<0 AND
ABS(FetchOffset)<=LastResultRow

LastResultRow+FetchOffset+1

FetchOffset<0 AND
ABS(FetchOffset)>LastResultRow AND
ABS(FetchOffset)>RowSetSize

BeforeStart

FetchOffset<0 AND
ABS(FetchOffset)>LastResultRow AND
ABS(FetchOffset)<=RowSetSize

11

FetchOffset=0 BeforeStart

1<=FetchOffset<=LastResultRow FetchOffset

FetchOffset>LastResultRow AfterEnd

Note:

1. SQLFetchScroll() returns SQLSTATE 01S06 (attempt to fetch before the result set
returned the first rowset) and SQL_SUCCESS_WITH_INFO.

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_FIRST.

Table 109. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_FIRST

Condition First row of the new rowset

Any 1

The following table describes the rules for determining the start of the new rowset
when the FetchOrientation value is SQL_FETCH_LAST.

Table 110. Cursor position when SQLFetchScroll() parameter FetchOrientation is
SQL_FETCH_LAST

Condition First row of the new rowset

RowsetSize<=LastResultRow LastResultRow-RowsetSize+1

RowsetSize>LastResultRow 1

Data in bound columns: SQLFetchScroll() returns data in bound columns in the
same way as SQLFetch(). If no columns are bound, SQLFetchScroll() does not
return data, but moves the block cursor to the specified position. As with
SQLFetch(), you can use SQLGetData() to retrieve the values for each column.

Buffer addresses: SQLFetchScroll() uses the same formula to determine the
address of data and length and indicator buffers as SQLFetch().

Error handling: SQLFetchScroll() returns errors and warnings in the same manner
as SQLFetch().

Chapter 4. ODBC Functions 207

Return codes

After you call SQLFetchScroll(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

The return code that is associated with each SQLSTATE value is SQL_ERROR,
unless noted otherwise.

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 111. SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. String or binary data that was returned for a column resulted in
the truncation of non-blank character data or non-NULL binary
data. String values are right truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S06 Attempt to fetch before the result
set returned the first rowset.

The requested rowset overlapped the start of the result set when
the current position was beyond the first row, and either of the
following conditions was true:

v FetchOrientation was SQL_PRIOR

v FetchOrientation was SQL_RELATIVE with a negative FetchOffset
whose absolute value was less than or equal to the current
SQL_ATTR_ROW_ARRAY_SIZE.

(Function returns SQL_SUCCESS_WITH_INFO.)

01S07 Fractional truncation. The data that was returned for a column was truncated. For
numeric data types, the fractional part of the number was
truncated. For time or timestamp data types, or interval data
types with a time component, the fractional portion of the time
was truncated.

07002 Too many columns. A column number that was specified in the binding of one or
more columns was greater than the number of columns in the
result set.

07006 Invalid conversion. A data value of a column in the result set could not be converted
to the C data type that was specified by TargetType in
SQLBindCol().

08S01 Communication link failure. The communication link between DB2 ODBC and the data source
to which it was connected failed before the function completed
processing.

22001 String data right truncation. A variable-length bookmark that was returned for a row was
truncated.

22002 Invalid output or indicator
buffer specified.

NULL data was fetched into a column whose pcbValue, which was
set by SQLBindCol(), was a null pointer.

208 ODBC Guide and Reference

Table 111. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

22003 Numeric value out of range. Data was not returned because returning the numeric value (as
numeric or string) for one or more bound columns would have
caused the whole (as opposed to fractional) part of the number to
be truncated.

22007 Invalid datetime format. A character column in the result set was bound to a date, time, or
timestamp C structure, and a value in the column was an invalid
date, time, or timestamp.

22012 Division by zero is invalid. An arithmetic expression resulted in division by zero.

22018 Invalid character value for cast
specification.

One of the following conditions occurred:

v A character column in the result set was bound to a character C
buffer, and the column contained a character for which there
was no representation in the character set of the buffer.

v A character column in the result set was bound to an
approximate numeric C buffer, and a value in the column could
not be cast to a valid approximate numeric value.

v A character column in the result set was bound to an exact
numeric C buffer and a value in the column could not be cast
to a valid exact numeric value.

v A character column in the result set was bound to a datetime C
buffer and a value in the column could not be cast to a valid
datetime value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set was
associated with the StatementHandle.

40001 Transaction rollback. The transaction in which the fetch was executed was terminated
to prevent deadlock.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message that was returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC was unable to allocate memory required to support
execution or completion of the function. Process-level memory
might have been exhausted for the application process. Consult
the operating system configuration for information on
process-level memory limitations.

HY008 Operation was canceled. Before the function completed execution, SQLCancel() was called
on StatementHandle from a different thread in a multithreaded
application.

HY010 Function sequence error. One of the following conditions occurred:

v The specified StatementHandle was not in an executed state. The
function was called without a previous call of SQLExecDirect(),
SQLExecute(), or a catalog function.

v SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA.
SQLFetchScroll() was called before data was sent for all
data-at-execution parameters or columns.

v SQLFetchScroll() was called for a StatementHandle after
SQLFetch() was called, and before SQLFreeStmt() was called
with the SQL_CLOSE option, or before SQLMoreResults() was
called. The connection was to a down-level server.

v SQLFetchScroll() was called for a StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() with
SQL_CLOSE was called.

Chapter 4. ODBC Functions 209

Table 111. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

HY106 Fetch type out of range. The value that was specified for the argument FetchOrientation
was invalid. The value of the SQL_CURSOR_TYPE statement
attribute was SQL_CURSOR_FORWARD_ONLY, and the value of
argument FetchOrientation was not SQL_FETCH_NEXT.

HYC00 Driver not capable. The specified fetch type is not supported. The conversion that is
specified by the combination of TargetType in SQLBindCol() and
the SQL data type of the corresponding column is not supported.

Related concepts:
“The ODBC row status array” on page 431
“Scrollable cursors in DB2 ODBC” on page 434
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLCancel() - Cancel statement” on page 131
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLFetch() - Fetch the next row” on page 197
“SQLNumResultCols() - Get number of result columns” on page 312
“SQLSetPos - Set the cursor position in a rowset” on page 369
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLForeignKeys() - Get a list of foreign key columns
SQLForeignKeys() returns information about foreign keys for the specified table.
The information is returned in an SQL result set, which can be processed using the
same functions that are used to retrieve a result that is generated by a query.

ODBC specifications for SQLForeignKeys()

Table 112. SQLForeignKeys() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLForeignKeys (SQLHSTMT hstmt,

SQLCHAR FAR *szPkCatalogName,
SQLSMALLINT cbPkCatalogName,
SQLCHAR FAR *szPkSchemaName,
SQLSMALLINT cbPkSchemaName,
SQLCHAR FAR *szPkTableName,
SQLSMALLINT cbPkTableName,
SQLCHAR FAR *szFkCatalogName,
SQLSMALLINT cbFkCatalogName,
SQLCHAR FAR *szFkSchemaName,
SQLSMALLINT cbFkSchemaName,
SQLCHAR FAR *szFkTableName,
SQLSMALLINT cbFkTableName);

210 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 113. SQLForeignKeys() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which to return results.

SQLCHAR * szPkCatalogName input Specifies the catalog qualifier of the primary key table. This
must be a null pointer or a zero length string.

SQLSMALLINT cbPkCatalogName input Specifies the length, in bytes, of the szPkCatalogName
argument. This must be set to 0.

SQLCHAR * szPkSchemaName input Specifies the schema qualifier of the primary key table.

SQLSMALLINT cbPkSchemaName input Specifies the length, in bytes, of the szPkSchemaName
argument.

SQLCHAR * szPkTableName input Specifies the name of the table that contains the primary key.

SQLSMALLINT cbPkTableName input Specifies the length, in bytes, of the szPkTableName argument.

SQLCHAR * szFkCatalogName input Specifies the catalog qualifier of the table that contains the
foreign key. This must be a null pointer or a zero length
string.

SQLSMALLINT cbFkCatalogName input Specifies the length, in bytes, of the szFkCatalogName
argument. This must be set to 0.

SQLCHAR * szFkSchemaName input Specifies the schema qualifier of the table that contains the
foreign key.

SQLSMALLINT cbFkSchemaName input Specifies the length, in bytes, of the szFkSchemaName
argument.

SQLCHAR * szFkTableName input Specifies the name of the table that contains the foreign key.

SQLSMALLINT cbFkTableName input Specifies the length, in bytes, of the szFkTableName argument.

Usage

If the szPkTableName argument contains a table name and the szFkTableName
argument is an empty string, SQLForeignKeys() returns a result set containing the
primary key of the specified table and all of the foreign keys (in other tables) that
refer to it.

If the szFkTableName argument contains a table name and the szPkTableName
argument is an empty string, SQLForeignKeys() returns a result set that contains all
of the foreign keys in the table that you specify in the szFkTableName argument and
the all the primary keys (on other tables) to which they refer.

If both of the szPkTableName argument and the szFkTableName argument contain
table names, SQLForeignKeys() returns foreign keys that refer to the primary key of
the table that you specify in the szPkTableName argument from the table that you
specify in the szFkTableName argument. All foreign keys that this type of
SQLForeignKeys() call returns refer to a single primary key.

If you do not specify a schema qualifier argument that is associated with a table
name, DB2 ODBC uses the schema name that is currently in effect for the current
connection.

Chapter 4. ODBC Functions 211

The following table lists each column in the result set that SQLForeignKeys()
currently returns.

Table 114. Columns returned by SQLForeignKeys()

Column
number Column name Data type Description

1 PKTABLE_CAT VARCHAR(128) This is always NULL.

2 PKTABLE_SCHEM VARCHAR(128) Contains the name of the schema to which the
table in PKTABLE_NAME belongs.

3 PKTABLE_NAME VARCHAR(128) NOT
NULL

Contains the name of the table on which the
primary key is defined.

4 PKCOLUMN_NAME VARCHAR(128) NOT
NULL

Contains the name of the column on which the
primary key is defined.

5 FKTABLE_CAT VARCHAR(128) This is always NULL.

6 FKTABLE_SCHEM VARCHAR(128) Contains the name of the schema to which the
table in FKTABLE_NAME belongs.

7 FKTABLE_NAME VARCHAR(128) NOT
NULL

Contains the name of the table that on which the
foreign key is defined.

8 FKCOLUMN_NAME VARCHAR(128) NOT
NULL

Contains the name of the column on which the
foreign key is defined.

9 KEY_SEQ SMALLINT NOT NULL Contains the ordinal position of the column in the
key. The first position is 1.

10 UPDATE_RULE SMALLINT Identifies the action that is applied to the foreign
key when the SQL operation is UPDATE.

IBM DB2 database management systems always
return one of the following values:
v SQL_RESTRICT
v SQL_NO_ACTION

Both of these values indicate that an update is
rejected if it removes a primary key row that a
foreign key references, or adds a value in a foreign
key that is not present in the primary key.

You might encounter the following
UPDATE_RULE values when connected to
non-IBM relational database management systems:
v SQL_CASCADE
v SQL_SET_NULL

212 ODBC Guide and Reference

Table 114. Columns returned by SQLForeignKeys() (continued)

Column
number Column name Data type Description

11 DELETE_RULE SMALLINT Identifies the action that is applied to the foreign
key when the SQL operation is DELETE.

The following values indicate the action that is
applied:
v SQL_CASCADE: when a primary key value is

deleted, that value in related foreign keys is also
deleted.

v SQL_NO_ACTION: the delete is rejected if it
removes values from a primary key that a
foreign key references.

v SQL_RESTRICT: the delete is rejected if it
removes values from a primary key that a
foreign key references.

v SQL_SET_DEFAULT: when a primary key value
is deleted, that value is replaced with a default
value in related foreign keys.

v SQL_SET_NULL: when a primary key value is
deleted, that value is replaced with a null value
in related foreign keys.

12 FK_NAME VARCHAR(128) Contains the name of the foreign key. This column
contains a null value if it is not applicable to the
data source.

13 PK_NAME VARCHAR(128) Contains the name of the primary key. This
column contains a null value if it is not applicable
to the data source.

14 DEFERRABILITY SMALLINT DB2 ODBC always returns a value of NULL.

Other database management systems support the
following values:
v SQL_INITIALLY_DEFERRED
v SQL_INITIALLY_IMMEDIATE
v SQL_NOT_DEFERRABLE

If you request foreign keys that are associated with a primary key, the returned
rows in the result set are sorted by the values that the following columns contain:
1. FKTABLE_CAT
2. FKTABLE_SCHEM
3. FKTABLE_NAME
4. KEY_SEQ

If you request the primary keys that are associated with a foreign key, the returned
rows in the result set are sorted by the values that the following columns contain:
1. PKTABLE_CAT
2. PKTABLE_SCHEM
3. PKTABLE_NAME
4. KEY_SEQ

The column names used by DB2 ODBC follow the X/Open CLI CAE specification
style. The column types, contents and order are identical to those defined for the
SQLForeignKeys() result set in ODBC.

Chapter 4. ODBC Functions 213

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will remain
unchanged.

DB2 ODBC applications that issue SQLForeignKeys() against a DB2 for z/OS server
should expect the result set columns listed in Table 114 on page 212.

For consistency with ANSI/ISO SQL standard of 1992 limits, the VARCHAR
columns of the result set are declared with a maximum length attribute of 128
bytes. Because DB2 names are smaller than 128 characters, you can always use a
128-character (plus the nul-terminator) output buffer to handle table names. Call
SQLGetInfo() with each of the following attributes to determine the actual amount
of space that you need to allocate when you connect to another database
management system:
v SQL_MAX_CATALOG_NAME_LEN to determine the length that the

PKTABLE_CAT and FKTABLE_CAT columns support
v SQL_MAX_SCHEMA_NAME_LEN to determine the length that the

PKTABLE_SCHEM and FKTABLE_SCHEM columns support
v SQL_MAX_TABLE_NAME_LEN to determine the length that the

PKTABLE_NAME and FKTABLE_NAME columns support
v SQL_MAX_COLUMN_NAME_LEN to determine the length that the

PKCOLUMN_NAME and FKCOLUMN_NAME columns support

Return codes

After you call SQLForeignKeys(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 115. SQLForeignKeys() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The arguments szPkTableName and szFkTableName are both null
pointers.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

214 ODBC Guide and Reference

Table 115. SQLForeignKeys() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The value of one of the name length arguments is less than 0
and not equal SQL_NTS.

v The length of the table or owner name is greater than the
maximum length that is supported by the server.

HYC00 Driver not capable. DB2 ODBC does not support "catalog" as a qualifier for table name.

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

Example

The following example shows an application that uses SQLForeignKeys() to
retrieve foreign key information about a table.
/**/
/* Invoke SQLForeignKeys against PARENT Table. Find all */
/* tables that contain foreign keys on PARENT. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "cli.h"
#include "sqlcli1.h"
#include "sqlcli1.h"
int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char pTable [200];
char *pDSN = "STLEC1";
SQLSMALLINT update_rule;
SQLSMALLINT delete_rule;
SQLINTEGER update_rule_ind;
SQLINTEGER delete_rule_ind;
char update [25];
char delet [25];
typedef struct varchar // define VARCHAR type
{

SQLSMALLINT length;
SQLCHAR name [128];
SQLINTEGER ind;

} VARCHAR;
VARCHAR pktable_schem;
VARCHAR pktable_name;
VARCHAR pkcolumn_name;
VARCHAR fktable_schem;
VARCHAR fktable_name;
VARCHAR fkcolumn_name;
(void) printf ("**** Entering CLIP02.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;

Chapter 4. ODBC Functions 215

/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a connect handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handle */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

goto exit;
/***/
/* Invoke SQLForeignKeys against PARENT Table, specifying NULL */
/* for table with foreign key. */
/***/
rc = SQLForeignKeys (hStmt,

NULL,
0,
(SQLCHAR *) "ADMF001",
SQL_NTS,
(SQLCHAR *) "PARENT",
SQL_NTS,
NULL,
0,
NULL,
SQL_NTS,
NULL,
SQL_NTS);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** SQLForeignKeys Failed.\n");
goto dberror;

}
/***/
/* Bind following columns of answer set: */
/* */
/* 2) pktable_schem */
/* 3) pktable_name */
/* 4) pkcolumn_name */
/* 6) fktable_schem */
/* 7) fktable_name */
/* 8) fkcolumn_name */
/* 10) update_rule */
/* 11) delete_rule */
/* */
/***/
rc = SQLBindCol (hStmt, // bind pktable_schem

2,
SQL_C_CHAR,
(SQLPOINTER) pktable_schem.name,
128,
&pktable_schem.ind);

rc = SQLBindCol (hStmt, // bind pktable_name
3,

216 ODBC Guide and Reference

SQL_C_CHAR,
(SQLPOINTER) pktable_name.name,
128,
&pktable_name.ind);

rc = SQLBindCol (hStmt, // bind pkcolumn_name
4,
SQL_C_CHAR,
(SQLPOINTER) pkcolumn_name.name,
128,
&pkcolumn_name.ind);

rc = SQLBindCol (hStmt, // bind fktable_schem
6,
SQL_C_CHAR,
(SQLPOINTER) fktable_schem.name,
128,
&fktable_schem.ind);

rc = SQLBindCol (hStmt, // bind fktable_name
7,
SQL_C_CHAR,
(SQLPOINTER) fktable_name.name,
128,
&fktable_name.ind);

rc = SQLBindCol (hStmt, // bind fkcolumn_name
8,
SQL_C_CHAR,
(SQLPOINTER) fkcolumn_name.name,
128,
&fkcolumn_name.ind);

rc = SQLBindCol (hStmt, // bind update_rule
10,
SQL_C_SHORT,
(SQLPOINTER) &update_rule;
0,
&update_rule_ind);

rc = SQLBindCol (hStmt, // bind delete_rule
11,
SQL_C_SHORT,
(SQLPOINTER) &delete_rule,
0,
&delete_rule_ind);

/***/
/* Retrieve all tables with foreign keys defined on PARENT */
/***/
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Primary Table Schema is %s. Primary Table Name is %s.\n",
pktable_schem.name, pktable_name.name);

(void) printf ("**** Primary Table Key Column is %s.\n",
pkcolumn_name.name);

(void) printf ("**** Foreign Table Schema is %s. Foreign Table Name is %s.\n",
fktable_schem.name, fktable_name.name);

(void) printf ("**** Foreign Table Key Column is %s.\n",
fkcolumn_name.name);

if (update_rule == SQL_RESTRICT) // isolate update rule
strcpy (update, "RESTRICT");

else
if (update_rule == SQL_CASCADE)

strcpy (update, "CASCADE");
else

strcpy (update, "SET NULL");
if (delete_rule == SQL_RESTRICT) // isolate delete rule

strcpy (delet, "RESTRICT");
else
if (delete_rule == SQL_CASCADE)

strcpy (delet, "CASCADE");
else
if (delete_rule == SQL_NO_ACTION)

Chapter 4. ODBC Functions 217

strcpy (delet, "NO ACTION");
else

strcpy (delet, "SET NULL");
(void) printf ("**** Update Rule is %s. Delete Rule is %s.\n",

update, delet);
}
/***/
/* Deallocate statement handle */
/***/
rc = SQLFreeHandle (SQL_HANDLE_STMT, hStmt);
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle (SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
RETCODE = SQLFreeHandle (SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP02.\n\n");
return RETCODE;

}

Related reference:
“SQLGetInfo() - Get general information” on page 254
“SQLPrimaryKeys() - Get primary key columns of a table” on page 324
“Function return codes” on page 24
“SQLStatistics() - Get index and statistics information for a base table” on page
392

SQLFreeConnect() - Free a connection handle
SQLFreeConnect() is a deprecated function and is replaced by SQLFreeHandle().

ODBC specifications for SQLFreeConnect()

Table 116. SQLFreeConnect() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

Figure 18. An application that retrieves foreign key information about a table

218 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 117. SQLFreeConnect() arguments

Data type Argument Use Description

SQLHDBC hdbc input Connection handle

Related reference:
“SQLFreeHandle() - Free a handle”

SQLFreeEnv() - Free an environment handle
SQLFreeEnv() is a deprecated function and is replaced by SQLFreeHandle().

ODBC specifications for SQLFreeEnv()

Table 118. SQLFreeEnv() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLFreeEnv (SQLHENV henv);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 119. SQLFreeEnv arguments

Data type Argument Use Description

SQLHENV henv input Environment handle

Related reference:
“SQLFreeHandle() - Free a handle”

SQLFreeHandle() - Free a handle
SQLFreeHandle() frees an environment handle, a connection handle, or a statement
handle.

ODBC specifications for SQLFreeHandle()

Table 120. SQLFreeHandle() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Chapter 4. ODBC Functions 219

Syntax
SQLRETURN SQLFreeHandle (SQLSMALLINT HandleType,

SQLHANDLE Handle);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 121. SQLFreeHandle() arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Specifies the type of handle to be freed by SQLFreeHandle().
You must specify one of the following values:
v SQL_HANDLE_ENV to free the environment handle
v SQL_HANDLE_DBC to free a connection handle
v SQL_HANDLE_STMT to free a statement handle

SQLHANDLE Handle input Specifies the name of the handle to be freed.

Usage

Use SQLFreeHandle() to free handles for environments, connections, and
statements. After you free a handle, you no longer use that handle in your
application.
v Freeing an environment handle

You must free all connection handles before you free the environment handle. If
you attempt to free the environment handle while connection handles remain,
SQLFreeHandle() returns SQL_ERROR and the environment and any active
connection remains valid.

v Freeing a connection handle

You must both free all statement handles and call SQLDisconnect() on a
connection before you free the handle for that connection. If you attempt to free
a connection handle while statement handles remain for that connection,
SQLFreeHandle() returns SQL_ERROR and the connection remains valid.

v Freeing a statement handle

When you call SQLFreeHandle() to free a statement handle, all resources that a
call to SQLAllocHandle() with a HandleType of SQL_HANDLE_STMT allocates
are freed. When you call SQLFreeHandle() to free a statement with pending
results, those results are deleted.

SQLDisconnect() automatically drops any statements open on the connection.

Return codes

After you call SQLFreeHandle(), it returns one of the following values:
v SQL_SUCCESS
v SQL_INVALID_HANDLE
v SQL_ERROR

If the HandleType is not a valid type, SQLFreeHandle() returns
SQL_INVALID_HANDLE. If SQLFreeHandle() returns SQL_ERROR, the handle is
still valid.

220 ODBC Guide and Reference

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 122. SQLFreeHandle() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLFreeHandle() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

08003 Connection is closed. The HandleType argument specifies SQL_HANDLE_DBC, but the
communication link between DB2 ODBC and the data source failed
before the function completed processing.

HY000 General error. An error occurred for which no specific SQLSTATE exists. The
error message that is returned by SQLGetDiagRec() in the buffer
that the MessageText argument specifies, describes the error and its
cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory that is required to
support execution or completion of the function.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v If the HandleType argument is SQL_HANDLE_ENV, and at least
one connection is in an allocated or connected state, you must
call SQLDisconnect() and SQLFreeHandle() to disconnect and free
each connection before you can free the environment handle. If
the HandleType argument is SQL_HANDLE_DBC you must free
all statement handles on the connection, and disconnect before
you can free the connection handle.

v If the HandleType argument specifies SQL_HANDLE_STMT,
SQLExecute() or SQLExecDirect() is called with the statement
handle, and return SQL_NEED_DATA. This function is called
before data is sent for all data-at-execution parameters or
columns. You must issue SQLCancel() to free the statement
handle.

HY013 Unexpected memory handling
error.

The HandleType argument is SQL_HANDLE_STMT and the
function call can not be processed because the underlying memory
objects can not be accessed. This error can result from low memory
conditions.

HY506 Error closing a file. An error is encountered when trying to close a temporary file.

Example

Refer to the DSN8O3VP sample application or online in the DSNB10.SDSNSAMP
data set.

Chapter 4. ODBC Functions 221

Related concepts:
“DSN8O3VP sample application” on page 572
Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLCancel() - Cancel statement” on page 131
“SQLDisconnect() - Disconnect from a data source” on page 170
“SQLGetDiagRec() - Get multiple field settings of diagnostic record” on page 244
“Function return codes” on page 24

SQLFreeStmt() - Free (or reset) a statement handle
SQLFreeStmt() ends processing for a statement, to which a statement handle refers.
You can use it to close a cursor or drop the statement handle to free the DB2
ODBC resources that are associated with the statement handle. Call SQLFreeStmt()
after you execute an SQL statement and process the results.

ODBC specifications for SQLFreeStmt()

Table 123. SQLFreeStmt() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,

SQLUSMALLINT fOption);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 124. SQLFreeStmt() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle that refers to the statement to
be stopped.

SQLUSMALLINT fOption input The following values specify the manner in which you free
the statement handle:
v SQL_UNBIND
v SQL_RESET_PARAMS
v SQL_CLOSE
v SQL_DROP (Deprecated)

See “Usage” for details about these values.

Usage

When you call SQLFreeStmt(), you set the fOption argument to one of the following
options. SQLFreeStmt() performs different actions based upon which one of these
options you specify.

222 ODBC Guide and Reference

SQL_UNBIND
All the columns that are bound by previous SQLBindCol() calls on this
statement handle are released (the association between application
variables or file references and result set columns is broken).

SQL_RESET_PARAMS
All the parameters that are set by previous SQLBindParameter() calls on
this statement handle are released. (The association between application
variables, or file references, and parameter markers in the SQL statement
for the statement handle is broken.)

SQL_CLOSE
The cursor (if any) that is associated with the statement handle is closed
and all pending results are discarded. You can reopen the cursor by calling
SQLExecute() or SQLExecDirect() with the same or different values in the
application variables (if any) that are bound to the statement handle. The
cursor name is retained until the statement handle is dropped or the next
successful SQLSetCursorName() call. If a cursor is not associated with the
statement handle, this option has no effect. (In the case where no cursors
exist, a warning or an error is not generated.)

You can also call the ODBC 3.0 API SQLCloseCursor() to close the cursor.

SQL_DROP (Deprecated)
In ODBC 3.0, SQLFreeHandle() with HandleType set to
SQL_HANDLE_STMT replaces the SQL_DROP option of SQLFreeStmt().

Although DB2 ODBC supports the SQL_DROP option for backward
compatibility, you should use current ODBC 3.0 functions in your
applications.

SQLFreeStmt() does not affect LOB locators. To free a locator, call SQLExecDirect()
with the FREE LOCATOR statement.

After you execute a statement on a statement handle, you can reuse that handle to
execute a different statement. The following situations require you to take
additional action before you reuse a statement handle:
v When the statement handle that you want to reuse is associated with a catalog

function or SQLGetTypeInfo(), you must close the cursor on that handle.
v When you want to reuse a statement handle for a different number or different

types of parameters than you originally bound, you must reset the parameters
on that handle.

v When you want to reuse a statement handle for a different number or different
types of columns than you originally bound, you must unbind the original
columns.

Alternatively, you can drop the statement handle and allocate a new one.

Return codes

After you call SQLFreeStmt(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if fOption is set to SQL_DROP,
because no statement handle is available to use when SQLGetDiagRec() is called.

Chapter 4. ODBC Functions 223

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 125. SQLFreeStmt() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY092 Option type out of range. The specified value for the fOption argument is not one of the
following values:
v SQL_CLOSE
v SQL_DROP
v SQL_UNBIND
v SQL_RESET_PARAMS

Example

Refer to SQLFetch() for a related example.
Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLCloseCursor() - Close a cursor and discard pending results” on page 133
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“SQLFreeHandle() - Free a handle” on page 219
“Function return codes” on page 24
“SQLSetParam() - Bind a parameter marker to a buffer” on page 369

SQLGetConnectAttr() - Get current attribute setting
SQLGetConnectAttr() returns the current setting of a connection attribute and also
allows you to set these attributes.

ODBC specifications for SQLGetConnectAttr()

Table 126. SQLGetConnectAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

224 ODBC Guide and Reference

Syntax
SQLRETURN SQLGetConnectAttr (SQLHDBC ConnectionHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 127. SQLGetConnectAttr() arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Specifies the connection handle from which you retrieve the
attribute value.

SQLINTEGER Attribute input Specifies the connection attribute to retrieve. Refer to
SQLSetConnectAttr() for a complete list of attributes.

SQLPOINTER ValuePtr input Specifies the pointer to the memory in which to return the
current value of the attribute that the Attribute argument
indicates.

*ValuePtr will be a 32-bit unsigned integer value or point to a
nul-terminated character string. If the Attribute argument is a
driver-specific value, the value in *ValuePtr might be a signed
integer.

SQLINTEGER BufferLength input Specifies the size, in bytes, of the buffer to which the
*ValuePtr argument points. This argument behaves differently
according to the following types of attributes:

v For ODBC-defined attributes:

– If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

– If ValuePtr points to an integer, BufferLength is ignored.

v For driver-defined attributes (IBM extension):

– If ValuePtr points to a character string, this argument
should be the length, in bytes, of *ValuePtr or SQL_NTS.
If SQL_NTS, the driver assumes that the length of
*ValuePtr is SQL_MAX_OPTIONS_STRING_LENGTH
bytes (excluding the nul-terminator).

– If ValuePtr points to an integer, BufferLength is ignored.

SQLINTEGER * StringLengthPtr output Specifies a pointer to the buffer in which to return the total
number of bytes (excluding the nul-termination character)
that the ValuePtr argument requires. The following conditions
apply to the StringLengthPtr argument:

v If ValuePtr is a null pointer, no length is returned.

v If the attribute value is a character string, and the number
of bytes available to return is greater than or equal to the
value that is specified for the BufferLength argument, the
data in ValuePtr is truncated to that specified value minus
the length of a nul-termination character. DB2 ODBC
nul-terminates the truncated data.

v If the Attribute argument does not denote a string, DB2
ODBC ignores the BufferLength argument, and it does not
return a value into the buffer to which the StringLengthPtr
argument points.

Chapter 4. ODBC Functions 225

Usage

Use SQLGetConnectAttr() to retrieve the value of a connection attribute that is set
on a connection handle.

Although you can use SQLSetConnectAttr() to set attribute values for a statement
handle, you cannot use SQLGetConnectAttr() to retrieve current attribute values for
a statement handle. To retrieve statement attribute values, call SQLGetStmtAttr().

Return codes

After you call SQLGetConnectAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 128. SQLGetConnectAttr() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. An informational message. (SQLGetConnectAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

01004 Data truncated. The data that is returned in the buffer that the ValuePtr argument
specifies is truncated. The length to which the data is truncated is
equal to the value that is specified in the BufferLength argument,
minus the length of a nul-termination character. The
StringLengthPtr argument specifies a buffer that receives the size of
the non-truncated string. (SQLGetConnectAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

08003 Connection is closed. The Attribute argument specifies a value that requires an open
connection, but the connection handle was not in a connected state.

HY000 General error. An error occurred for which no specific SQLSTATE exists. The
error message that SQLGetDiagRec() returns in the buffer that the
MessageText argument specifies, describes this error and its cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the BufferLength argument is less than 0.

HY092 Option type out of range. The specified value for the Attribute argument is not valid for this
version of DB2 ODBC.

HYC00 Driver not capable. The specified value for the Attribute argument is a valid connection
or statement attribute for this version of the DB2 ODBC driver, but
it is not supported by the data source.

Example

The following example prints the current setting of a connection attribute.
SQLGetConnectAttr() retrieves the current value of the SQL_ATTR_AUTOCOMMIT
statement attribute.

226 ODBC Guide and Reference

SQLINTEGER output_nts,autocommit;
rc = SQLGetConnectAttr(hdbc, SQL_AUTOCOMMIT,

&autocommit, 0, NULL) ;
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;
printf("\nAutocommit is: ") ;
if (autocommit == SQL_AUTOCOMMIT_ON)
printf("ON\n") ;
else
printf("OFF\n") ;

Related reference:
“SQLGetStmtAttr() - Get current setting of a statement attribute” on page 290
“Function return codes” on page 24
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLGetConnectOption() - Return current setting of a connect option
SQLGetConnectOption() is a deprecated function and is replaced by
SQLGetConnectAttr().

ODBC specifications for SQLGetConnectOption()

Table 129. SQLGetConnectOption() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes No

Syntax
SQLRETURN SQLGetConnectOption (

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 130. SQLGetConnectOption() arguments

Data type Argument Use Description

HDBC hdbc input Connection handle.

SQLUSMALLINT fOption input Attribute to set. SeeSQLSetConnectAttr() for the complete list
of connection attributes and their descriptions.

SQLPOINTER pvParam input,
output, or
input and
output

Value that is associated with the fOption argument.
Depending on the value of the fOption argument, this can be a
32-bit integer value, or a pointer to a nul-terminated character
string. The maximum length of any character string returned
is SQL_MAX_OPTION_STRING_LENGTH bytes (which
excludes the nul-terminator).

Chapter 4. ODBC Functions 227

Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350

SQLGetCursorName() - Get cursor name
SQLGetCursorName() returns the name of the cursor that is associated with a
statement handle. If you explicitly set a cursor name with SQLSetCursorName(), the
name that you specified in a call to SQLSetCursorName() is returned. If you do not
explicitly set a name, SQLGetCursorName() returns the implicitly generated name for
that cursor.

ODBC specifications for SQLGetCursorName()

Table 131. SQLGetCursorName() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,

SQLCHAR FAR *szCursor,
SQLSMALLINT cbCursorMax,
SQLSMALLINT FAR *pcbCursor);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 132. SQLGetCursorName() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which the cursor you want
to identify is open.

SQLCHAR * szCursor output Specifies the buffer in which the cursor name is returned.

SQLSMALLINT cbCursorMax input Specifies the size of the buffer to which the szCursor argument
points.

SQLSMALLINT * pcbCursor output Points to the buffer that receives the number of bytes that the
cursor name requires.

Usage

SQLGetCursorName() returns the name that you set explicitly on a cursor with
SQLSetCursorName(). If you do not set a name for a cursor, you can use this
function to retrieve the name that DB2 ODBC internally generates.

SQLGetCursorName() returns the same cursor name (which can be explicit or
implicit) on a statement until you drop that statement, or until you set another
explicit name for that cursor. Cursor names are always 18 characters or less, and
are always unique within a connection.

Cursor names that DB2 ODBC generates internally always begin with SQLCUR or
SQL_CUR. For query result sets, DB2 ODBC also reserves SQLCURQRS as a cursor

228 ODBC Guide and Reference

name prefix. (See “Restrictions” for more details about this naming convention.)

Return codes

After you call SQLGetCursorName(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 133. SQLGetCursorName() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name that is returned in the buffer that the szCursor
argument specifies is longer than the value in the cbCursorMax
argument. Data in this buffer is truncated to the one byte less than
the value that the cbCursorMax argument specifies. The pcbCursor
argument contains the length, in bytes, that the full cursor name
requires. (SQLGetCursorName() returns SQL_SUCCESS_WITH_INFO
for this SQLSTATE.)

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY015 No cursor name available. No cursor is open on the statement handle that the hstmt argument
specifies, and no cursor name is set with SQLSetCursorName().

HY090 Invalid string or buffer length. The value specified for the cbCursorMaxargument is less than 0.

HY092 Option type out of range. The statement handle specified for the hstmt argument is not valid.

Restrictions

ODBC generates cursor names that begin with SQL_CUR. X/Open CLI generates
cursor names that begin with either SQLCUR or SQL_CUR.

DB2 ODBC is inconsistent with the ODBC specification for naming cursors. DB2
ODBC generates cursor names that begin with SQLCUR or SQL_CUR, which is
consistent with the X/Open CLI standard.

Example

The following example shows an application that uses SQLGetCursorName() to
extract the name of a cursor needed that the proceeding update statement requires.

Chapter 4. ODBC Functions 229

/**/
/* Perform a positioned update on a column of a cursor. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS, rc2 = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";
SWORD cbCursor;
SDWORD cbValue1;
SDWORD cbValue2;
char employee [30];
int salary = 0;
char cursor_name [20];
char update [200];
char *stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE

SALARY > 100000 FOR UPDATE OF SALARY";
(void) printf ("**** Entering CLIP04.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handles */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

goto exit;
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt2);
if (rc != SQL_SUCCESS)

goto exit;
/***/
/* Execute query to retrieve employee names */
/***/
rc = SQLExecDirect (hStmt,

(SQLCHAR *) stmt,
strlen(stmt));

if (rc != SQL_SUCCESS)
{

230 ODBC Guide and Reference

(void) printf ("**** EMPLOYEE QUERY FAILED.\n");
goto dberror;

}
/***/
/* Extract cursor name -- required to build UPDATE statement. */
/***/
rc = SQLGetCursorName (hStmt,

(SQLCHAR *) cursor_name,
sizeof(cursor_name),
&cbCursor);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** GET CURSOR NAME FAILED.\n");
goto dberror;

}
(void) printf ("**** Cursor name is
rc = SQLBindCol (hStmt, // bind employee name

1,
SQL_C_CHAR,
employee,
sizeof(employee),
&cbValue1);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF NAME FAILED.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind employee salary

2,
SQL_C_LONG,
&salary,
0,
&cbValue2);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF SALARY FAILED.\n");
goto dberror;

}
/***/
/* Answer set is available -- Fetch rows and update salary */
/***/
while (((rc = SQLFetch (hStmt)) == SQL_SUCCESS) &&;

(rc2 == SQL_SUCCESS))
{

int new_salary = salary*1.1;
(void) printf ("**** Employee Name %s with salary %d. New salary = %d.\n",

employee,
salary,
new_salary);

sprintf (update,
"UPDATE EMPLOYEE SET SALARY = %d WHERE CURRENT OF %s",
new_salary,
cursor_name);

(void) printf ("***** Update statement is :
rc2 = SQLExecDirect (hStmt2,

(SQLCHAR *) update,
SQL_NTS);

}
if (rc2 != SQL_SUCCESS)
{

(void) printf ("**** EMPLOYEE UPDATE FAILED.\n");
goto dberror;

}
/***/
/* Reexecute query to validate that salary was updated */
/***/
rc = SQLCloseCursor(hStmt);

Chapter 4. ODBC Functions 231

rc = SQLExecDirect (hStmt,
(SQLCHAR *) stmt,
strlen(stmt));

if (rc != SQL_SUCCESS)
{

(void) printf ("**** EMPLOYEE QUERY FAILED.\n");
goto dberror;

}
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Employee Name %s has salary %d.\n",
employee,
salary);

}
/***/
/* Deallocate statement handles */
/***/
rc = SQLFreeHandle (SQL_HANDLE_STMT, hStmt);
rc = SQLFreeHandle (SQL_HANDLE_STMT, hStmt2);
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle (SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
RETCODE = SQLFreeHandle (SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP04.\n\n");
return RETCODE;

}

Related reference:
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24
“SQLSetCursorName() - Set cursor name” on page 362

SQLGetData() - Get data from a column
SQLGetData() retrieves data for a single column in the current row of the result set.
You can also use SQLGetData() to retrieve large data values in pieces. After you call
SQLGetData() for each column, call SQLFetch() or SQLExtendedFetch() for each row
that you want to retrieve.

Figure 19. An application that extracts a cursor name

232 ODBC Guide and Reference

You must call SQLFetch() before SQLGetData(). Using this function is an alternative
to using SQLBindCol(), which transfers data directly into application variables or
LOB locators on each SQLFetch() or SQLExtendedFetch() call.

ODBC specifications for SQLGetData()

Table 134. SQLGetData() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLGetData (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *pcbValue);

For 64-bit applications, use the following syntax:
SQLRETURN SQLGetData (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLLEN cbValueMax,
SQLLEN FAR *pcbValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 135. SQLGetData() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which the result set is
generated.

SQLUSMALLINT icol input Specifies the column number of the result set for which the
data retrieval is requested.

Chapter 4. ODBC Functions 233

Table 135. SQLGetData() arguments (continued)

Data type Argument Use Description

SQLSMALLINT fCType input Specifies the C data type of the column that icol indicates. You
can specify the following types for the fCType argument:
v SQL_C_BIGINT
v SQL_C_BINARY
v SQL_C_BINARYXML
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_DECIMAL64
v SQL_C_DECIMAL128
v SQL_C_LONG
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TYPE_TIMESTAMP_EXT
v SQL_C_TINYINT
v SQL_C_WCHAR

When you specify SQL_C_DEFAULT, data is converted to its
default C data type.

SQLPOINTER rgbValue1 output Points to a buffer where the retrieved column data is stored.

SQLINTEGER (31-bit)
or SQLLEN (64-bit)2

cbValueMax input Specifies the maximum size of the buffer to which the
rgbValue argument points.

SQLINTEGER *
(31-bit) or SQLLEN *
(64-bit)2

pcbValue1 output Points to the value that indicates the amount of space that the
data you are retrieving requires. If the data is retrieved in
pieces, this contains the number of bytes still remaining.

The value is SQL_NULL_DATA if the data value of the
column is null. If this pointer is null and SQLFetch() has
obtained a column containing null data, this function fails
because it has no way to report that the data is null.

If SQLFetch() fetches a column that contains binary data, then
the pointer that the pcbValue argument specifies must not be
null. SQLGetData() fails in this case because it cannot inform
the application about the length of the data that is returned to
the buffer that the rgbValue argument specifies.

Notes:

1. DB2 ODBC provides some performance enhancement if the buffer that the rgbValue argument specifies is placed
consecutively in memory after the value to which the pcbValue. argument points.

2. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

Usage

You can use SQLGetData() in combination with SQLBindCol() on the same result
set, if you use SQLFetch(). Do not use SQLExtendedFetch(). Use the following
procedure to retrieve data with SQLGetData():

234 ODBC Guide and Reference

|

1. Call SQLFetch(), which advances cursor to first row, retrieves first row, and
transfers data for bound columns.

2. Call SQLGetData(), which transfers data for the specified column.
3. Repeat step 2 for each column needed.
4. Call SQLFetch(), which advances the cursor to the next row, retrieves the next

row, and transfers data for bound columns.
5. Repeat steps 2, 3 and 4 for each row that is in the result set, or until the result

set is no longer needed.

You can also use SQLGetData() to retrieve long columns if the C data type (which
you specify with the fCType argument) is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR, or if fCType is SQL_C_DEFAULT and the column type denotes a
binary or character string.

Handling encoding schemes: The CURRENTAPPENSCH keyword in the DB2
ODBC initialization file and the fCType argument in SQLGetData() determines
which one of the following encoding schemes is used for character and graphic
data.
v The ODBC driver places EBCDIC data into application variables when both of

the following conditions are true:
– CURRENTAPPENSCH = EBCDIC is specified in the initialization file, the

CCSID that is specified for the CURRENTAPPENSCH keyword is an EBCDIC
CCSID, or the CURRENTAPPENSCH keyword is not specified in the
initialization file.

– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the
SQLGetData() call.

v The ODBC driver places Unicode UCS-2 data into application variables when
the fCType argument specifies SQL_C_WCHAR in the SQLGetData() call.

v The ODBC driver places Unicode UTF-8 data into application variables when
both of the following conditions are true:
– CURRENTAPPENSCH = UNICODE is specified in the initialization file, or

the CCSID that is specified for the CURRENTAPPENSCH keyword is a
Unicode CCSID (1200, 1208, 13488 or 17584).

– The fCType argument specifies SQL_C_CHAR in the SQLGetData() call.
v The ODBC driver places ASCII data into application variables when both of the

following conditions are true:
– CURRENTAPPENSCH = ASCII is specified in the initialization file, or the

CCSID that is specified for the CURRENTAPPENSCH keyword is an ASCII
CCSID.

– The fCType argument specifies SQL_C_CHAR or SQL_C_DBCHAR in the
SQLGetData() call.

Handling data truncation: After each SQLGetData() call, if the data available for
return is greater than or equal to cbValueMax, the data is truncated. Truncation is
indicated by a function return code of SQL_SUCCESS_WITH_INFO coupled with a
SQLSTATE denoting data truncation. You can call SQLGetData() again, on the same
column, to subsequently retrieve the truncated data. To obtain the entire column,
repeat these calls until SQLGetData() returns SQL_SUCCESS. If you call
SQLGetData() after it returns SQL_SUCCESS, it returns SQL_NO_DATA_FOUND.

Chapter 4. ODBC Functions 235

When DB2 ODBC truncates digits to the right of the decimal point from numeric
data types, DB2 ODBC issues a warning. When DB2 ODBC truncates digits to the
left of the decimal point, however, DB2 ODBC returns an error. (See “Diagnostics”
on page 237 for more information.)

To eliminate warnings when data is truncated, call SQLSetStmtAttr() with the
SQL_ATTR_MAX_LENGTH attribute set to a maximum length value. Then allocate
a buffer for the rgbValue argument that is the same size (plus the nul-terminator) as
the value that you specified for SQL_ATTR_MAX_LENGTH. If the column data is
larger than the maximum number of bytes that you specified for
SQL_ATTR_MAX_LENGTH, SQL_SUCCESS is returned. When you specify a
maximum length, DB2 ODBC returns the length you specify, not the actual length,
for the pcbValue argument.

Using LOB locators: Although you can use SQLGetData() to retrieve LOB column
data sequentially, use the DB2 ODBC LOB functions when you need a only portion
or a few sections of LOB data. Use the following procedure instead of
SQLGetData() if you want to retrieve portions of LOB values:
1. Bind the column to a LOB locator.
2. Fetch the row.
3. Use the locator in a SQLGetSubString() call to retrieve the data in pieces.

(SQLGetLength() and SQLGetPosition() might also be required for determining
the values of some of the arguments).

4. Repeat step 2 and 3 for each row in the result set.

Discarding data from an active retrieval: To discard data from a retrieval that is
currently active, call SQLGetData() with the icol argument set to the next column
position from which you want to retrieve data. To discard data that you have not
retrieved, call SQLFetch() to advance the cursor to the next row. Call
SQLFreeStmt() or SQLCloseCursor() if you have finished retrieving data from the
result set.

Allocating buffers: The fCType input argument determines the type of data
conversion (if any) that occurs before the column data is placed into the buffer to
which the rgbValue argument points.

For SQL graphic column data, the following conditions apply:
v The size of the buffer that the rgbValue argument specifies must be a multiple of

2 bytes. (The cbValueMax value must specify this value as a multiple of 2 bytes
also.) Before you call SQLGetData(), call SQLDescribeCol() or SQLColAttribute()
to determine the SQL data type and the length, in bytes, of data in the result set.

v The pcbValue argument must not specify a null pointer. DB2 ODBC stores the
number of octets that are stored in the buffer to which the rgbValue argument
points.

v If you retrieve data in pieces, DB2 ODBC attempts to fill rgbValue to the nearest
multiple of two octets that is less than or equal to the value the cbValueMax
argument specifies. If cbValueMax is not a multiple of two, the last byte in that
buffer is never used. DB2 ODBC does not split a double-byte character.

The buffer that the rgbValue argument specifies contains nul-terminated values,
unless you retrieve binary data, or the SQL data type of the column is graphic
(DBCS) and the C buffer type is SQL_C_CHAR. If you retrieve data in pieces, you
must perform the proper adjustments to the nul-terminator when you reassemble
these pieces. (That is, you must remove nul-terminators before concatenating the
pieces of data.)

236 ODBC Guide and Reference

Return codes

After you call SQLGetData(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

SQL_SUCCESS is returned if SQLGetData() retrieves a zero-length string. For
zero-length strings, pcbValue contains 0, and rgbValue contains a nul-terminator.

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

If the preceding call to SQLFetch() failed, do not call SQLGetData(). In this case,
SQLGetData() retrieves undefined data.

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 136. SQLGetData() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data that is returned for the column that the icol argument specifies
is truncated. String or numeric values are right truncated.
(SQLGetData() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

07006 Invalid conversion. This SQLSTATE is returned for one or more of the following
reasons:

v The data value cannot be converted to the C data type specified
by the fCType argument.

v The function is called with a value for the icol argument that was
specified in a previous SQLGetData() call, but the value for the
fCType argument differs in each of these calls.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

22002 Invalid output or indicator
buffer specified.

The pointer that is specified in the pcbValue argument is a null
pointer, and the value of the column is also null. The function
cannot report SQL_NULL_DATA.

22008 Invalid datetime format or
datetime field overflow.

Datetime field overflow occurred.

Example: An arithmetic operation on a date or timestamp results in
a value that is not within the valid range of dates, or a datetime
value cannot be assigned to a bound variable because the variable
is too small.

22018 Error in assignment. A returned value is incompatible with the data type that the fCType
argument denotes.

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on
a row.

58004 Unexpected system failure. Unrecoverable system error.

Chapter 4. ODBC Functions 237

Table 136. SQLGetData() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY002 Invalid column number. This SQLSTATE is returned for one or more of the following
reasons:

v The specified column is less than 0 or greater than the number of
result columns.

v The specified column is 0 (the icol argument is set to 0), but DB2
ODBC does not support ODBC bookmarks.

v SQLExtendedFetch() is called for this result set.

HY003 Program type out of range. The fCTypeargument specifies an invalid data type or
SQL_C_DEFAULT.

HY009 Invalid use of a null pointer. This SQLSTATE is returned for one or more of the following
reasons:

v The rgbValue argument specifies a null pointer.

v The pcbValue argument specifies a null pointer but the SQL data
type of the column is graphic (DBCS).

v The pcbValue argument specifies a null pointer but the fCType
argument specifies SQL_C_CHAR.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v The statement handle does not contain a cursor in a positioned
state. SQLGetData() is called without first calling SQLFetch().

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY019 Numeric value out of range. When the numeric value (as numeric or string) for the column is
returned, the whole part of the number is truncated.

HY090 Invalid string or buffer length. The value of the cbValueMax argument is less than 0 and thefCType
argument specifies one of the following values:
v SQL_C_CHAR
v SQL_C_BINARY
v SQL_C_DBCHAR
v SQL_C_DEFAULT (for the default types of SQL_C_CHAR,

SQL_C_BINARY, or SQL_C_DBCHAR)

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v The SQL data type for the specified data type is recognized but
DB2 ODBC does not support this data type.

v DB2 ODBC cannot perform the conversion between the SQL data
type and application data type that is specified in the fCType
argument.

v SQLExtendedFetch() is called on the statement handle that is
specified in the hstmt argument.

Restrictions

ODBC has defined column 0 for bookmarks. DB2 ODBC does not support
bookmarks.

238 ODBC Guide and Reference

Example

The following example shows an application that uses SQLGetData() to retrieve
data. You can compare this example with the one in SQLFetch() for a comparison
in using bound columns.
/**/
/* Populate BIOGRAPHY table from flat file text. Insert */
/* VITAE in 80-byte pieces via SQLPutData. Also retrieve */
/* NAME, UNIT and VITAE for all members. VITAE is retrieved*/
/* via SQLGetData. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
#define TEXT_SIZE 80
int insert_bio (SQLHSTMT hStmt, // insert_bio prototype

char *bio,
int bcount);

int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
FILE *fp;
SQLINTEGER RETCODE = 0;
char pTable [200];
char *pDSN = "STLEC1";
UDWORD pirow;
SDWORD cbValue;
char *i_stmt = "INSERT INTO BIOGRAPHY VALUES (?, ?, ?)";
char *query = "SELECT NAME, UNIT, VITAE FROM BIOGRAPHY";
char text [TEXT_SIZE]; // file text
char vitae [3200]; // biography text
char Narrative [TEXT_SIZE];
SQLINTEGER vitae_ind = SQL_DATA_AT_EXEC; // bio data is

// passed at execute time
// via SQLPutData

SQLINTEGER vitae_cbValue = TEXT_SIZE;
char *t = NULL;
char *c = NULL;
char name [21];
SQLINTEGER name_ind = SQL_NTS;
SQLINTEGER name_cbValue = sizeof(name);
char unit [31];
SQLINTEGER unit_ind = SQL_NTS;
SQLINTEGER unit_cbValue = sizeof(unit);
char tmp [80];
char *token = NULL, *pbio = vitae;
char insert = SQL_FALSE;
int i, bcount = 0;
(void) printf ("**** Entering CLIP09.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, hEnv, &hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;

Chapter 4. ODBC Functions 239

/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handles */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** Allocate statement handle failed.\n");
goto dberror;

}
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt2);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** Allocate statement handle failed.\n");
goto dberror;

}
/***/
/* Prepare INSERT statement. */
/***/
rc = SQLPrepare (hStmt,

(SQLCHAR *) i_stmt,
SQL_NTS);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Prepare of INSERT failed.\n");
goto dberror;

}
/***/
/* Bind NAME and UNIT. Bind VITAE so that data can be passed */
/* via SQLPutData. */
/***/
rc = SQLBindParameter (hStmt, // bind NAME

1,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
sizeof(name),
0,
name,
sizeof(name),
&name_ind);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of NAME failed.\n");
goto dberror;

}
rc = SQLBindParameter (hStmt, // bind Branch

2,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
sizeof(unit),
0,
unit,
sizeof(unit),
&unit_ind);

240 ODBC Guide and Reference

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of UNIT failed.\n");
goto dberror;

}
rc = SQLBindParameter (hStmt, // bind Rank

3,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_LONGVARCHAR,
3200,
0,
(SQLPOINTER) 3,
0,
&vitae_ind);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of VITAE failed.\n");
goto dberror;

}
/***/
/* Read biographical text from flat file */
/***/
if ((fp = fopen ("DD:BIOGRAF", "r")) == NULL) // open command file
{

rc = SQL_ERROR; // open failed
goto exit;

}
/***/
/* Process file and insert biographical text */
/***/

while (((t = fgets (text, sizeof(text), fp)) != NULL) &&;
(rc == SQL_SUCCESS))

{
if (text[0] == #’) // if commander data
{

if (insert) // if BIO data to be inserted
{

rc = insert_bio (hStmt,
vitae,
bcount); // insert row into BIOGRAPHY Table

bcount = 0; // reset text line count
pbio = vitae; // reset text pointer

}
token = strtok (text+1, ","); // get member NAME
(void) strcpy (name, token);
token = strtok (NULL, "#"); // extract UNIT
(void) strcpy (unit, token); // copy to local variable

// SQLPutData
insert = SQL_TRUE; // have row to insert

}
else
{

memset (pbio, ’ ’, sizeof(text));
strcpy (pbio, text); // populate text
i = strlen (pbio); // remove ’\n’ and ’\0’
pbio [i--] =’ ’;
pbio [i] =’ ’;
pbio += sizeof (text); // advance pbio
bcount++; // one more text line

}
}
if (insert) // if BIO data to be inserted
{

rc = insert_bio (hStmt,
vitae,
bcount); // insert row into BIOGRAPHY Table

Chapter 4. ODBC Functions 241

}
fclose (fp); // close text flat file
/***/
/* Commit insert of rows */
/***/
rc =SQLEndTran(SQL_HANDLE_DBC, hDbc, SQL_COMMIT);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** COMMIT FAILED.\n");
goto dberror;

}
/***/
/* Open query to retrieve NAME, UNIT and VITAE. Bind NAME and */
/* UNIT but leave VITAE unbound. Retrieved using SQLGetData. */
/***/
RETCODE = SQLPrepare (hStmt2,

(SQLCHAR *)query,
strlen(query));

if (RETCODE != SQL_SUCCESS)
{

(void) printf ("**** Prepare of Query Failed.\n");
goto dberror;

}
RETCODE = SQLExecute (hStmt2);
if (RETCODE != SQL_SUCCESS)
{

(void) printf ("**** Query Failed.\n");
goto dberror;

}
RETCODE = SQLBindCol (hStmt2, // bind NAME

1,
SQL_C_DEFAULT,
name,
sizeof(name),
&name_cbValue);

if (RETCODE != SQL_SUCCESS)
{

(void) printf ("**** Bind of NAME Failed.\n");
goto dberror;

}
RETCODE = SQLBindCol (hStmt2, // bind UNIT

2,
SQL_C_DEFAULT,
unit,
sizeof(unit),
&unit_cbValue);

if (RETCODE != SQL_SUCCESS)
{

(void) printf ("**** Bind of UNIT Failed.\n");
goto dberror;

}
while ((RETCODE = SQLFetch (hStmt2)) != SQL_NO_DATA_FOUND)
{

(void) printf ("**** Name is
(void) printf ("**** Vitae follows:\n\n");
for (i = 0; (i < 3200 && RETCODE != SQL_NO_DATA_FOUND); i += TEXT_SIZE)
{

RETCODE = SQLGetData (hStmt2,
3,
SQL_C_CHAR,
Narrative,
sizeof(Narrative) + 1,
&vitae_cbValue);

if (RETCODE != SQL_NO_DATA_FOUND)
(void) printf ("

}
}

242 ODBC Guide and Reference

/***/
/* Deallocate statement handles */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, hStmt);
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, hStmt2);
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
rc = SQLFreeHandle (SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP09.\n\n");
return RETCODE;

}
/***/
/* Function insert_bio is invoked to insert one row into the */
/* BIOGRAPHY Table. The biography text is inserted in sets of */
/* 80 bytes via SQLPutData. */
/***/
int insert_bio (SQLHSTMT hStmt,

char *vitae,
int bcount)

{
SQLINTEGER rc = SQL_SUCCESS;
SQLPOINTER prgbValue;
int i;
char *text;
/***/
/* NAME and UNIT are bound... VITAE is provided after execution */
/* of the INSERT using SQLPutData. */
/***/
rc = SQLExecute (hStmt);
if (rc != SQL_NEED_DATA) // expect SQL_NEED_DATA
{

rc = 12;
(void) printf ("**** NEED DATA not returned.\n");
goto exit;

}
/***/
/* Invoke SQLParamData to position ODBC driver on input parameter*/
/***/
if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_NEED_DATA)
{

rc = 12;
(void) printf ("**** NEED DATA not returned.\n");
goto exit;

}
/***/
/* Iterate through VITAE in 80 byte increments.... pass to */
/* ODBC Driver via SQLPutData. */
/***/

Chapter 4. ODBC Functions 243

for (i = 0, text = vitae, rc = SQL_SUCCESS;
(i < bcount) && (rc == SQL_SUCCESS);
i++, text += TEXT_SIZE)

{
rc = SQLPutData (hStmt,

text,
TEXT_SIZE);

}
/***/
/* Invoke SQLParamData to trigger ODBC driver to execute the */
/* statement. */
/***/
if ((rc = SQLParamData (hStmt,

&prgbValue)) != SQL_SUCCESS)
{

rc = 12;
(void) printf ("**** INSERT Failed.\n");

}
exit:
return (rc);

}

Related concepts:
“Application encoding schemes and DB2 ODBC” on page 486
Related reference:
“C and SQL data types” on page 26
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“Function return codes” on page 24

SQLGetDiagRec() - Get multiple field settings of diagnostic record
SQLGetDiagRec() returns the current values of multiple fields of a diagnostic record
that contains error, warning, and status information. SQLGetDiagRec() also returns
several commonly used fields of a diagnostic record, including the SQLSTATE, the
native error code, and the error message text.

ODBC specifications for SQLGetDiagRec()

Table 137. SQLGetDiagRec() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLGetDiagRec (SQLSMALLINT HandleType,

SQLHANDLE Handle,
SQLSMALLINT RecNumber,
SQLCHAR *SQLState,
SQLINTEGER *NativeErrorPtr,
SQLCHAR *MessageText,
SQLSMALLINT BufferLength,
SQLSMALLINT *TextLengthPtr);

Figure 20. An application that retrieves data using SQLGetData()

244 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 138. SQLGetDiagRec() arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Specifies a handle type identifier that describes the type of
handle that you diagnose. This argument must specify one of
the following values:
v SQL_HANDLE_ENV for environment handles
v SQL_HANDLE_DBC for connection handles
v SQL_HANDLE_STMT for statement handles

SQLHANDLE Handle input Specifies a handle for the diagnostic data structure. This
handle must be the type of handle that the HandleType
argument indicates.

SQLSMALLINT RecNumber input Indicates the status record from which the application seeks
information. Status records are numbered from 1.

SQLCHAR * SQLState output Points to a buffer in which the five-character SQLSTATE,
which corresponds to the diagnostic record that is specified in
the RecNumber argument, is returned. The first two characters
of this SQLSTATE indicate the class; the next three characters
indicate the subclass.

SQLINTEGER * NativeErrorPtr output Points to a buffer in the native error code, which is specific to
the data source, is returned.

SQLCHAR * MessageText output Points to a buffer in which the error message text is returned.
The fields returned by SQLGetDiagRec() are contained in a
text string.

SQLSMALLINT BufferLength input Length (in bytes) of the buffer that the MessageText argument
specifies.

SQLSMALLINT * TextLengthPtr output Pointer to a buffer that contains the total number of bytes that
are available in the buffer that the MessageText argument
points to. The total number of available bytes does not
include the number of bytes for nul-termination characters. If
the number of bytes available to return is greater than the
value that the BufferLength argument specifies, the error
message text in the buffer is truncated to the value specified
for the BufferLength argument minus the length of a
nul-termination character.

Usage

An application typically calls SQLGetDiagRec() when a previous call to a DB2
ODBC function has returned anything other than SQL_SUCCESS. However,
because any function can post zero or more errors each time it is called, an
application can call SQLGetDiagRec() after any function call. An application can call
SQLGetDiagRec() multiple times to return some or all of the records in the
diagnostic data structure.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated
with the handle specified in the Handle argument. If the application calls any other
function, except SQLGetDiagRec() (or the ODBC 2.0 SQLGetDiagRec() function), any
diagnostic information from the previous calls on the same handle is lost.

Chapter 4. ODBC Functions 245

An application can scan all diagnostic records by looping while it increments
RecNumber as long as SQLGetDiagRec() returns SQL_SUCCESS.

Calls to SQLGetDiagRec() are nondestructive to the diagnostic record fields. The
application can call SQLGetDiagRec() again at a later time to retrieve a field from a
record, as long as no other function, except SQLGetDiagRec() (or the ODBC 2.0
SQLGetDiagRec() function), has been called in the interim.

Return codes

After you call SQLGetDiagRec(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

For a description of each of these return code values, see the “Diagnostics.”

Diagnostics

SQLGetDiagRec() does not post error values. It uses the function return codes to
report diagnostic information. When you call SQLGetDiagRec(), these return codes
represent the diagnostic information:
v SQL_SUCCESS: The function successfully returned diagnostic information.
v SQL_SUCCESS_WITH_INFO: The buffer that to which the MessageText argument

points is too small to hold the requested diagnostic message. No diagnostic
records are generated. To determine whether truncation occurred, compare the
value specified for the BufferLength argument to the actual number of bytes
available, which is written to the buffer to which the TextLengthPtr argument
points.

v SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle is not
a valid handle.

v SQL_ERROR: One of the following occurred:
– The RecNumber argument is negative or 0.
– The BufferLength argument is less than zero.

v SQL_NO_DATA: The RecNumber argument is greater than the number of
diagnostic records that exist for the handle that is specified in the Handle
argument. The function also returns SQL_NO_DATA for any positive value for
the RecNumber argument if no diagnostic records are produced for the handle
that theHandle argument specifies.

Example

Refer to the DSN8O3VP sample application or online in the data set
DSNB10.SDSNSAMP

246 ODBC Guide and Reference

Related concepts:
“DSN8O3VP sample application” on page 572
Related reference:
“SQLFreeHandle() - Free a handle” on page 219
“SQLFreeStmt() - Free (or reset) a statement handle” on page 222
“SQLGetInfo() - Get general information” on page 254

SQLGetEnvAttr() - Return current setting of an environment attribute
SQLGetEnvAttr() returns the current setting for an environment attribute. You can
also use the SQLSetEnvAttr() function to set these attributes.

ODBC specifications for SQLGetEnvAttr()

Table 139. SQLGetEnvAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLGetEnvAttr (SQLHENV EnvironmentHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 140. SQLGetEnvAttr() arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Specifies the environment handle.

SQLINTEGER Attribute input Specifies the attribute to retrieve. The list of environment
attributes and their descriptions are described under the
function SQLSetEnvAttr().

SQLPOINTER ValuePtr output Points to the buffer in which the current value associated
with the Attribute argument is returned. The type of value
that is returned depends on what the Attribute argument
specifies.

SQLINTEGER BufferLength input Specifies the maximum size of buffer to which the ValuePtr
argument points. The following conditions apply to this
argument:

v If ValuePtr points to a character string, this argument
should specify the length, in bytes, of the buffer or the
value SQL_NTS for nul-terminated strings. If you specify
SQL_NTS, the driver assumes that the length of the string
that is returned is SQL_MAX_OPTIONS_STRING_LENGTH
bytes (excluding the nul-terminator).

v If ValuePtr points to an integer, the BufferLength argument is
ignored.

Chapter 4. ODBC Functions 247

Table 140. SQLGetEnvAttr() arguments (continued)

Data type Argument Use Description

SQLINTEGER * StringLengthPtr output Points to a buffer that contains the total number of bytes that
are associated with the ValuePtr argument. This number does
not include the number of bytes for nul-termination
characters. If ValuePtr is a null pointer, no length is returned.
If the attribute value is a character string, and the number of
bytes available to return is greater than or equal to
BufferLength, the data in ValuePtr is truncated to BufferLength
minus the length of a nul-termination character. DB2 ODBC
then nul-terminates this value.

If the Attribute argument does not denote a string, then DB2
ODBC ignores the BufferLength argument and does not set a
value in the buffer to which StringLengthPtr points.

Usage

SQLGetEnvAttr() can be called at any time between the allocation and freeing of
the environment handle. It obtains the current value of the environment attribute.

Return codes

After you call SQLGetEnvAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 141. SQLGetEnvAttr() SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory that is required to
support execution or completion of the function.

HY092 Option type out of range. An invalid value for the Attribute argument is specified.

Example

The following example prints the current value of an environment attribute.
SQLGetEnvAttr() retrieves the current value of the attribute
SQL_ATTR_OUTPUT_NTS.
SQLINTEGER output_nts,autocommit;
rc = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, 0, 0);
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
printf("\nNull Termination of Output strings is: ");
if (output_nts == SQL_TRUE)
printf("True\n");
else
printf("False\n");

248 ODBC Guide and Reference

Related reference:
“SQLAllocHandle() - Allocate a handle” on page 97
“Function return codes” on page 24
“SQLSetEnvAttr() - Set environment attributes” on page 365

SQLGetFunctions() - Get functions
SQLGetFunctions() indicates if a specific function is supported.

SQLGetFunctions() allows applications to adapt to different levels of support when
they connect to different database servers. A connection to a database server must
exist before SQLGetFunctions() is called.

ODBC specifications for SQLGetFunctions()

Table 142. SQLGetFunctions() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLGetFunctions (SQLHDBC hdbc,

SQLUSMALLINT fFunction,
SQLUSMALLINT FAR *pfExists);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 143. SQLGetFunctions() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies a database connection handle.

SQLUSMALLINT fFunction input Specifies which function is queried. Table 144 on page 250
shows valid fFunction values.

SQLUSMALLINT * pfExists output Points to the buffer where this function returns SQL_TRUE or
SQL_FALSE. If the function that is queried is supported,
SQL_TRUE is returned into the buffer. If the function is not
supported, SQL_FALSE is returned into the buffer.

Usage

Table 144 on page 250 shows the valid values for the fFunction argument and
whether the corresponding function is supported.

If the fFunction argument is set to SQL_API_ALL_FUNCTIONS, then the pfExists
argument must point to an SQLSMALLINT array of 100 elements. The array is
indexed by the values in the fFunction argument that are used to identify many of
the functions. Some elements of the array are unused and reserved. Because some
values for the fFunction argument are greater than 100, the array method can not
be used to obtain a list of all functions. The SQLGetFunctions() call must be

Chapter 4. ODBC Functions 249

explicitly issued for all values equal to or above 100 for the fFunction argument.
The complete set of fFunction values is defined in sqlcli1.h.

Table 144. SQLGetFunctions() functions and values

fFunction Value DB2 ODBC returns

SQL_API_SQLALLOCCONNECT SQL_TRUE

SQL_API_SQLALLOCENV SQL_TRUE

SQL_API_SQLALLOCHANDLE SQL_TRUE

SQL_API_SQLALLOCSTMT SQL_TRUE

SQL_API_SQLBINDCOL SQL_TRUE

SQL_API_SQLBINDFILETOCOL SQL_TRUE1

SQL_API_SQLBINDFILETOPARAM SQL_TRUE1

SQL_API_SQLBINDPARAMETER SQL_TRUE

SQL_API_SQLBROWSECONNECT SQL_FALSE

SQL_API_SQLBULKOPERATIONS SQL_TRUE

SQL_API_SQLCANCEL SQL_TRUE

SQL_API_SQLCLOSECURSOR SQL_TRUE

SQL_API_SQLCOLATTRIBUTE SQL_TRUE

SQL_API_SQLCOLATTRIBUTES SQL_TRUE

SQL_API_SQLCOLUMNPRIVILEGES SQL_TRUE

SQL_API_SQLCOLUMNS SQL_TRUE

SQL_API_SQLCONNECT SQL_TRUE

SQL_API_SQLDATASOURCES SQL_TRUE

SQL_API_SQLDESCRIBECOL SQL_TRUE

SQL_API_SQLDESCRIBEPARAM SQL_TRUE

SQL_API_SQLDISCONNECT SQL_TRUE

SQL_API_SQLDRIVERCONNECT SQL_TRUE

SQL_API_SQLENDTRAN SQL_TRUE

SQL_API_SQLERROR SQL_TRUE

SQL_API_SQLEXECDIRECT SQL_TRUE

SQL_API_SQLEXECUTE SQL_TRUE

SQL_API_SQLEXTENDEDFETCH SQL_TRUE

SQL_API_SQLFETCH SQL_TRUE

SQL_API_SQLFETCHSCROLL SQL_TRUE

SQL_API_SQLFOREIGNKEYS SQL_TRUE

SQL_API_SQLFREECONNECT SQL_TRUE

SQL_API_SQLFREEENV SQL_TRUE

SQL_API_SQLFREEHANDLE SQL_TRUE

SQL_API_SQLFREESTMT SQL_TRUE

SQL_API_SQLGETCONNECTATTR SQL_TRUE

SQL_API_SQLGETCONNECTOPTION SQL_TRUE

SQL_API_SQLGETCURSORNAME SQL_TRUE

SQL_API_SQLGETDATA SQL_TRUE

250 ODBC Guide and Reference

Table 144. SQLGetFunctions() functions and values (continued)

fFunction Value DB2 ODBC returns

SQL_API_SQLGETDIAGREC SQL_TRUE

SQL_API_SQLGETENVATTR SQL_TRUE

SQL_API_SQLGETFUNCTIONS SQL_TRUE

SQL_API_SQLGETINFO SQL_TRUE

SQL_API_SQLGETLENGTH SQL_TRUE

SQL_API_SQLGETPOSITION SQL_TRUE

SQL_API_SQLGETSQLCA SQL_TRUE

SQL_API_SQLGETSTMTATTR SQL_TRUE

SQL_API_SQLGETSTMTOPTION SQL_TRUE

SQL_API_SQLGETSUBSTRING SQL_TRUE

SQL_API_SQLGETTYPEINFO SQL_TRUE

SQL_API_SQLMORERESULTS SQL_TRUE

SQL_API_SQLNATIVESQL SQL_TRUE

SQL_API_SQLNUMPARAMS SQL_TRUE

SQL_API_SQLNUMRESULTCOLS SQL_TRUE

SQL_API_SQLPARAMDATA SQL_TRUE

SQL_API_SQLPARAMOPTIONS SQL_TRUE

SQL_API_SQLPREPARE SQL_TRUE

SQL_API_SQLPRIMARYKEYS SQL_TRUE

SQL_API_SQLPROCEDURECOLUMNS SQL_TRUE

SQL_API_SQLPROCEDURES SQL_TRUE

SQL_API_SQLPUTDATA SQL_TRUE

SQL_API_SQLROWCOUNT SQL_TRUE

SQL_API_SQLSETCOLATTRIBUTES SQL_TRUE

SQL_API_SQLSETCONNECTATTR SQL_TRUE

SQL_API_SQLSETCONNECTION SQL_TRUE

SQL_API_SQLSETCONNECTOPTION SQL_TRUE

SQL_API_SQLSETCURSORNAME SQL_TRUE

SQL_API_SQLSETENVATTR SQL_TRUE

SQL_API_SQLSETPARAM SQL_TRUE

SQL_API_SQLSETPOS SQL_TRUE

SQL_API_SQLSETSCROLLOPTIONS SQL_FALSE

SQL_API_SQLSETSTMTATTR SQL_TRUE

SQL_API_SQLSETSTMTOPTION SQL_TRUE

SQL_API_SQLSPECIALCOLUMNS SQL_TRUE

SQL_API_SQLSTATISTICS SQL_TRUE

SQL_API_SQLTABLEPRIVILEGES SQL_TRUE

SQL_API_SQLTABLES SQL_TRUE

SQL_API_SQLTRANSACT SQL_TRUE

Chapter 4. ODBC Functions 251

Table 144. SQLGetFunctions() functions and values (continued)

fFunction Value DB2 ODBC returns

Note:

1. SQL_API_SQLBINDFILETOCOL and SQL_API_SQLBINDFILETOPARAM return SQL_TRUE only if the local DB2
for z/OS subsystem is in new-function mode.

Return codes

After you call SQLGetFunctions(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 145. SQLGetFunctions() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The argument pfExists specifies a null pointer.

HY010 Function sequence error. SQLGetFunctions() is called before a database connection is
established.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Example

The following example shows an application that connects to a database server
and checks for API support using SQLGetFunctions().
/**/
/* Execute SQLGetFunctions to verify that APIs required */
/* by application are supported. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
typedef struct odbc_api
{

SQLUSMALLINT api;
char api_name _40];

} ODBC_API;
/**/
/* CLI APIs required by application */
/**/
ODBC_API o_api [7] = {

{ SQL_API_SQLBINDPARAMETER, "SQLBindParameter" } ,
{ SQL_API_SQLDISCONNECT , "SQLDisconnect" } ,

252 ODBC Guide and Reference

{ SQL_API_SQLGETTYPEINFO , "SQLGetTypeInfo" } ,
{ SQL_API_SQLFETCH , "SQLFetch" } ,
{ SQL_API_SQLTRANSACT , "SQLTransact" } ,
{ SQL_API_SQLBINDCOL , "SQLBindCol" } ,
{ SQL_API_SQLEXECDIRECT , "SQLExecDirect" }

} ;

/**/
/* Validate that required APIs are supported. */
/**/

int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
int i;
// SQLGetFunctions parameters
SQLUSMALLINT fExists = SQL_TRUE;
SQLUSMALLINT *pfExists = &fExists;
(void) printf ("**** Entering CLIP05.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a connect handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) "STLEC1", // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* See if DSN supports required ODBC APIs */
/***/
for (i = 0, (*pfExists = SQL_TRUE);

(i < (sizeof(o_api)/sizeof(ODBC_API)) && (*pfExists) == SQL_TRUE);
i++)

{
RETCODE = SQLGetFunctions (hDbc,

o_api[i].api,
pfExists);

if (*pfExists == SQL_TRUE) // if api is supported then print
{

(void) printf ("**** ODBC api %s IS supported.\n",
o_api[i].api_name);

}
}
if (*pfExists == SQL_FALSE) // a required api is not supported
{

(void) printf ("**** ODBC api %s not supported.\n",
o_api[i].api_name);

}
/***/

Chapter 4. ODBC Functions 253

/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf("\n\n**** Exiting CLIP05.\n\n ");
return(RETCODE);

}

Related reference:
“Function return codes” on page 24

SQLGetInfo() - Get general information
SQLGetInfo() returns general information about the database management systems
to which the application is currently connected. For example, SQLGetInfo()
indicates which data conversions are supported.

ODBC specifications for SQLGetInfo()

Table 146. SQLGetInfo() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLGetInfo (SQLHDBC ConnectionHandle,

SQLUSMALLINT InfoType,
SQLPOINTER InfoValuePtr,
SQLSMALLINT BufferLength,
SQLSMALLINT *FAR StringLengthPtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Figure 21. An application that checks the database server for API support

254 ODBC Guide and Reference

Table 147. SQLGetInfo() arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Specifies a connection handle

SQLUSMALLINT InfoType input Specifies the type of information to request. This argument
must be one of the values in the first column of Table 148.

SQLPOINTER InfoValuePtr output
(and
input)

Points to a buffer where this function stores the retrieved
information. Depending on the type of information that is
retrieved, one of the following 5 types of information is
returned:
v 16-bit integer value
v 32-bit integer value
v 32-bit binary value
v 32-bit mask
v Nul-terminated character string

SQLSMALLINT BufferLength input Specifies the maximum length, in bytes, of the buffer to which
the InfoValuePtr argument points.

SQLSMALLINT * StringLengthPtr output Points to the buffer where this function returns the number of
bytes that are required to avoid truncation of the output
information. In the case of string output, this size does not
include the nul-terminator.

If the value in the location pointed to by StringLengthPtr is
greater than the size of the InfoValuePtr buffer as specified in
BufferLength, the string output information is truncated to
BufferLength - 1 bytes and the function returns with
SQL_SUCCESS_WITH_INFO.

Usage

Table 148 lists the possible values for the InfoType argument and a description of
the information that SQLGetInfo() returns for each value. This table indicates
which InfoType argument values were renamed in ODBC 3.0.

Important: If the value that is specified for the InfoType argument does not apply
or is not supported, the result is dependent on the return type. The following
values are returned for each type of unsupported value in the InfoType argument:
v Character string containing 'Y' or 'N', 'N' is returned.
v Character string containing a value other than just 'Y' or 'N', an empty string is

returned.
v 16-bit integer, 0 (zero).
v 32-bit integer, 0 (zero).
v 32-bit mask, 0 (zero).

The following table specifies each value that you can specify for the InfoType
argument and describes the information that each of these values will return.

Table 148. Information returned by SQLGetInfo()

InfoType Format Description and notes

SQL_ACCESSIBLE_PROCEDURES string A character string of 'Y' indicates that the user can execute
all procedures returned by the function SQLProcedures(). 'N'
indicates that procedures can be returned that the user
cannot execute.

Chapter 4. ODBC Functions 255

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_ACCESSIBLE_TABLES string A character string of 'Y' indicates that the user is guaranteed
SELECT privilege to all tables returned by the function
SQLTables(). 'N' indicates that tables can be returned that
the user cannot access.

SQL_ACTIVE_ENVIRONMENTS 16-bit integer The maximum number of active environments that the DB2
ODBC driver can support. If the limit is unspecified or
unknown, this value is set to zero.

SQL_AGGREGATE_FUNCTIONS 32-bit mask A bit mask enumerating support for aggregation functions:
v SQL_AF_ALL
v SQL_AF_AVG
v SQL_AF_COUNT
v SQL_AF_DISTINCT
v SQL_AF_MAX
v SQL_AF_MIN
v SQL_AF_SUM

SQL_ALTER_DOMAIN 32-bit mask DB2 ODBC returns 0 indicating that the ALTER DOMAIN
statement is not supported. ODBC also defines the
following values that DB2 ODBC does not return:

v SQL_AD_ADD_CONSTRAINT_DEFERRABLE

v SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

v SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

v SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_AD_ADD_DOMAIN_CONSTRAINT

v SQL_AD_ADD_DOMAIN_DEFAULT

v SQL_AD_CONSTRAINT_NAME_DEFINITION

v SQL_AD_DROP_DOMAIN_CONSTRAINT

v SQL_AD_DROP_DOMAIN_DEFAULT

SQL_ALTER_TABLE 32-bit mask Indicates which clauses in ALTER TABLE are supported by
the database management system.
v SQL_AT_ADD_COLUMN
v SQL_AT_DROP_COLUMN

SQL_ASCII_GCCSID 32-bit integer Specifies the ASCII GCCSID value currently set in the
AGCCSID field of DB2 DSNHDECP.

SQL_ASCII_MCCSID 32-bit integer Specifies the ASCII MCCSID value currently set in the
AMCCSID field of DB2 DSNHDECP.

SQL_ASCII_SCCSID 32-bit integer Specifies the ASCII SCCSID value currently set in the
ASCCSID field of DB2 DSNHDECP.

SQL_BATCH_ROW_COUNT 32-bit mask Indicates the availability of row counts. DB2 ODBC always
returns SQL_BRC_ROLLED_UP indicating that row counts
for consecutive INSERT, DELETE, or UPDATE statements
are rolled up into one. ODBC also defines the following
values that DB2 ODBC does not return:
v SQL_BRC_PROCEDURES
v SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT 32-bit mask Indicates which level of batches are supported:

v SQL_BS_SELECT_EXPLICIT, supports explicit batches
that can have result-set generating statements.

v SQL_BS_ROW_COUNT_EXPLICIT, supports explicit
batches that can have row-count generating statements.

v SQL_BS_SELECT_PROC, supports explicit procedures
that can have result-set generating statements.

v SQL_BS_ROW_COUNT_PROC, supports explicit
procedures that can have row-count generating
statements.

SQL_BOOKMARK_PERSISTENCE 32-bit mask Reserved attribute, zero is returned for the bit-mask.

256 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_CATALOG_LOCATION

(In previous versions of DB2 ODBC, this InfoType is
SQL_QUALIFIER_LOCATION.)

16-bit integer A 16-bit integer value indicated the position of the qualifier
in a qualified table name. Zero indicates that qualified
names are not supported.

SQL_CATALOG_NAME string A character string of 'Y' indicates that the server supports
catalog names. 'N' indicates that catalog names are not
supported.

SQL_CATALOG_NAME_SEPARATOR

(In previous versions of DB2 ODBC, this InfoType is
SQL_QUALIFIER_NAME_SEPARATOR.)

string The characters used as a separator between a catalog name
and the qualified name element that follows it.

SQL_CATALOG_TERM

(In previous versions of DB2 ODBC, this InfoType is
SQL_QUALIFIER_TERM.)

string The database vendor's terminology for a qualifier.

The name that the vendor uses for the high order part of a
three part name.

Because DB2 ODBC does not support three part names, a
zero-length string is returned.

For non-ODBC applications, the SQL_CATALOG_TERM
symbolic name should be used instead of
SQL_QUALIFIER_NAME.

SQL_CATALOG_USAGE (In previous versions of
DB2 ODBC, this InfoType is
SQL_QUALIFIER_USAGE.)

32-bit mask This is similar to SQL_OWNER_USAGE except that this is
used for catalog.

SQL_COLLATION_SEQ string The name of the collation sequence. This is a character
string that indicates the name of the default collation for the
default character set for this server (for example, EBCDIC).
If this is unknown, an empty string is returned.

SQL_COLUMN_ALIAS string Returns 'Y' if column aliases are supported, or 'N' if they are
not.

SQL_CONCAT_NULL_BEHAVIOR 16-bit integer Indicates how the concatenation of null valued character
data type columns with non-null valued character data type
columns is handled.
v SQL_CB_NULL - indicates the result is a null value (this

is the case for IBM relational database management
systems).

v SQL_CB_NON_NULL - indicates the result is a
concatenation of non-null column values.

Chapter 4. ODBC Functions 257

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_CONVERT_BIGINT
SQL_CONVERT_BINARY
SQL_CONVERT_BIT
SQL_CONVERT_CHAR
SQL_CONVERT_DATE
SQL_CONVERT_DECIMAL
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT
SQL_CONVERT_INTEGER
SQL_CONVERT_INTERVAL_DAY_TIME
SQL_CONVERT_INTERVAL_YEAR_MONTH
SQL_CONVERT_LONGVARBINARY
SQL_CONVERT_LONGVARCHAR
SQL_CONVERT_NUMERIC
SQL_CONVERT_REAL
SQL_CONVERT_ROWID
SQL_CONVERT_SMALLINT
SQL_CONVERT_TIME
SQL_CONVERT_TIMESTAMP
SQL_CONVERT_TINYINT
SQL_CONVERT_VARBINARY
SQL_CONVERT_VARCHAR

32-bit mask Indicates the conversions supported by the data source with
the CONVERT scalar function for data of the type named in
the InfoType. If the bit mask equals zero, the data source
does not support any conversions for the data of the named
type, including conversions to the same data type.

For example, to find out if a data source supports the
conversion of SQL_INTEGER data to the SQL_DECIMAL
data type, an application calls SQLGetInfo() with InfoType of
SQL_CONVERT_INTEGER. The application then ANDs the
returned bit mask with SQL_CVT_DECIMAL. If the
resulting value is nonzero then the conversion is supported.

The following bit masks are used to determine which
conversions are supported:
v SQL_CVT_BIGINT
v SQL_CVT_BINARY
v SQL_CVT_BIT
v SQL_CVT_CHAR
v SQL_CVT_DATE
v SQL_CVT_DECIMAL
v SQL_CVT_DOUBLE
v SQL_CVT_FLOAT
v SQL_CVT_INTEGER
v SQL_CVT_LONGVARBINARY
v SQL_CVT_LONGVARCHAR
v SQL_CVT_NUMERIC
v SQL_CVT_REAL
v SQL_CVT_ROWID
v SQL_CVT_SMALLINT
v SQL_CVT_TIME
v SQL_CVT_TIMESTAMP
v SQL_CVT_TINYINT
v SQL_CVT_VARBINARY
v SQL_CVT_VARCHAR

SQL_CONVERT_FUNCTIONS 32-bit mask Indicates the scalar conversion functions supported by the
driver and associated data source.

v SQL_FN_CVT_CONVERT - used to determine which
conversion functions are supported.

v SQL_FN_CVT_CAST - used to determine which cast
functions are supported.

SQL_CORRELATION_NAME 16-bit integer Indicates the degree of correlation name support by the
server:
v SQL_CN_ANY, supported and can be any valid

user-defined name.
v SQL_CN_NONE, correlation name not supported.
v SQL_CN_DIFFERENT, correlation name supported but it

must be different than the name of the table that it
represents.

SQL_CLOSE_BEHAVIOR 32-bit integer Indicates whether locks are released when the cursor is
closed. The possible values are:
v SQL_CC_NO_RELEASE: locks are not released when the

cursor on this statement handle is closed. This is the
default.

v SQL_CC_RELEASE: locks are released when the cursor
on this statement handle is closed.

Typically cursors are explicitly closed when the function
SQLFreeStmt() is called with fOption set to SQL_CLOSE or
the statement handle is freed with SQLFreeHandle(). In
addition, the end of the transaction (when a commit or
rollback is issued) can also cause the closing of the cursor
(depending on the WITH HOLD attribute currently in use).

258 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_CREATE_ASSERTION 32-bit mask Indicates which clauses in the CREATE ASSERTION
statement are supported by the database management
system. DB2 ODBC always returns zero; the CREATE
ASSERTION statement is not supported. ODBC also defines
the following values that DB2 ODBC does not return:
v SQL_CA_CREATE_ASSERTION
v SQL_CA_CONSTRAINT_INITIALLY_DEFERRED
v SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_CA_CONSTRAINT_DEFERRABLE
v SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET 32-bit mask Indicates which clauses in the CREATE CHARACTER SET
statement are supported by the database management
system. DB2 ODBC always returns zero; the CREATE
CHARACTER SET statement is not supported. ODBC also
defines the following values that DB2 ODBC does not
return:
v SQL_CCS_CREATE_CHARACTER_SET
v SQL_CCS_COLLATE_CLAUSE
v SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION 32-bit mask Indicates which clauses in the CREATE COLLATION
statement are supported by the database management
system. DB2 ODBC always returns zero; the CREATE
COLLATION statement is not supported. ODBC also
defines the following values that DB2 ODBC does not
return:

v SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN 32-bit mask Indicates which clauses in the CREATE DOMAIN statement
are supported by the database management system. DB2
ODBC always returns zero; the CREATE DOMAIN
statement is not supported. ODBC also defines the
following values that DB2 ODBC does not return:
v SQL_CDO_CREATE_DOMAIN
v SQL_CDO_CONSTRAINT_NAME_DEFINITION
v SQL_CDO_DEFAULT
v SQL_CDO_CONSTRAINT
v SQL_CDO_COLLATION
v SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED
v SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_CDO_CONSTRAINT_DEFERRABLE
v SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_SCHEMA 32-bit mask Indicates which clauses in the CREATE SCHEMA statement
are supported by the database management system:
v SQL_CS_CREATE_SCHEMA
v SQL_CS_AUTHORIZATION
v SQL_CS_DEFAULT_CHARACTER_SET

Chapter 4. ODBC Functions 259

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_CREATE_TABLE 32-bit mask Indicates which clauses in the CREATE TABLE statement
are supported by the database management system. The
following bit masks are used to determine which clauses are
supported:
v SQL_CT_CREATE_TABLE
v SQL_CT_TABLE_CONSTRAINT
v SQL_CT_CONSTRAINT_NAME_DEFINITION

The following bits specify the ability to create temporary
tables:

v SQL_CT_COMMIT_PRESERVE, deleted rows are
preserved on commit.

v SQL_CT_COMMIT_DELETE, deleted rows are deleted on
commit.

v SQL_CT_GLOBAL_TEMPORARY, global temporary tables
can be created.

v SQL_CT_LOCAL_TEMPORARY, local temporary tables
can be created.

The following bits specify the ability to create column
constraints:

v SQL_CT_COLUMN_CONSTRAINT, specifying column
constraints is supported.

v SQL_CT_COLUMN_DEFAULT, specifying column
defaults is supported.

v SQL_CT_COLUMN_COLLATION, specifying column
collation is supported.

The following bits specify the supported constraint
attributes if specifying column or table constraints is
supported:

v SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

v SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_CT_CONSTRAINT_DEFERRABLE

v SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION 32-bit mask Indicates which clauses in the CREATE TRANSLATION
statement are supported by the database management
system. DB2 ODBC always returns zero; the CREATE
TRANSLATION statement is not supported. ODBC also
defines the following value that DB2 ODBC does not return:

v SQL_CTR_CREATE_TRANSLATION

SQL_CURSOR_COMMIT_BEHAVIOR 16-bit integer Indicates how a COMMIT operation affects cursors. A value
of:
v SQL_CB_DELETE, destroys cursors and drops access

plans for dynamic SQL statements.
v SQL_CB_CLOSE, destroys cursors, but retains access

plans for dynamic SQL statements (including non-query
statements)

v SQL_CB_PRESERVE, retains cursors and access plans for
dynamic statements (including non-query statements).
Applications can continue to fetch data, or close the
cursor and re-execute the query without re-preparing the
statement.

After COMMIT, a FETCH must be issued to reposition the
cursor before actions such as positioned updates or deletes
can be taken.

260 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_CURSOR_ROLLBACK_BEHAVIOR 16-bit integer Indicates how a ROLLBACK operation affects cursors. A
value of:
v SQL_CB_DELETE, destroys cursors and drops access

plans for dynamic SQL statements.
v SQL_CB_CLOSE, destroys cursors, but retains access

plans for dynamic SQL statements (including non-query
statements)

v SQL_CB_PRESERVE, retains cursors and access plans for
dynamic statements (including non-query statements).
Applications can continue to fetch data, or close the
cursor and re-execute the query without re-preparing the
statement.

DB2 servers do not have the SQL_CB_PRESERVE property.

SQL_CURSOR_SENSITIVITY 32-bit unsigned
integer

Indicates support for cursor sensitivity:

v SQL_INSENSITIVE

All cursors on the statement handle show the result set
without reflecting any changes made to the result set by
any other cursor within the same transaction.

v SQL_UNSPECIFIED

It is unspecified whether cursors on the statement handle
make visible the changes made to a result set by another
cursor within the same transaction. Cursors on the
statement handle may make visible none, some, or all
such changes.

v SQL_SENSITIVE

Cursors are sensitive to changes made by other cursors
within the same transaction.

SQL_DATA_SOURCE_NAME string The name used as data source on the input to SQLConnect(),
or the DSN keyword value in the SQLDriverConnect()
connection string.

SQL_DATA_SOURCE_READ_ONLY string A character string of "Y" indicates that the database is set to
READ ONLY mode; an "N" indicates that it is not set to
READ ONLY mode.

SQL_DATABASE_NAME string The name of the current database in use. Also, this
information returned by SELECT CURRENT SERVER on
IBM database management systems.

SQL_database server_NAME string The name of the database management system product
being accessed.

SQL_database server_VER string The version of the database management system product
being accessed. A string of the form 'mm.vv.rrrr' where mm
is the major version, vv is the minor version and rrrr is the
release. For example, "02.01.0000" translates to major version
2, minor version 1, release 0.

SQL_DDL_INDEX 32-bit unsigned
integer

Indicates support for the creation and dropping of indexes:
v SQL_DI_CREATE_INDEX
v SQL_DI_DROP_INDEX

Chapter 4. ODBC Functions 261

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_DEFAULT_TXN_ISOLATION 32-bit mask The default transaction isolation level supported.

One of the following masks are returned:
v SQL_TXN_READ_UNCOMMITTED = Changes are

immediately perceived by all transactions (dirty read,
non-repeatable read, and phantoms are possible).

This is equivalent to the IBM UR level.
v SQL_TXN_READ_COMMITTED = Row read by

transaction 1 can be altered and committed by transaction
2 (non-repeatable read and phantoms are possible)

This is equivalent to the IBM CS level.
v SQL_TXN_REPEATABLE_READ = A transaction can add

or remove rows matching the search condition or a
pending transaction (repeatable read, but phantoms are
possible)

This is equivalent to the IBM RS level.
v SQL_TXN_SERIALIZABLE = Data affected by pending

transaction is not available to other transactions
(repeatable read, phantoms are not possible)

This is equivalent to the IBM RR level.
v SQL_TXN_VERSIONING = Not applicable to IBM

database management systems.
v SQL_TXN_NOCOMMIT = Any changes are effectively

committed at the end of a successful operation; no
explicit commit or rollback is allowed.

This is a DB2 for i isolation level.

In IBM terminology,
v SQL_TXN_READ_UNCOMMITTED is uncommitted read;
v SQL_TXN_READ_COMMITTED is cursor stability;
v SQL_TXN_REPEATABLE_READ is read stability;
v SQL_TXN_SERIALIZABLE is repeatable read.

SQL_DESCRIBE_PARAMETER STRING 'Y' if parameters can be described; 'N' if not.

SQL_DRIVER_HDBC 32 bits DB2 ODBC's current database handle.

SQL_DRIVER_HENV 32 bits DB2 ODBC's environment handle.

SQL_DRIVER_HLIB 32 bits Reserved.

SQL_DRIVER_HSTMT 32 bits DB2 ODBC's current statement handle for the current
connection.

SQL_DRIVER_NAME string The file name of the DB2 ODBC implementation. DB2
ODBC returns NULL.

SQL_DRIVER_ODBC_VER string The version number of ODBC that the driver supports. DB2
ODBC returns "3.00".

SQL_DRIVER_VER string The version of the CLI driver. A string of the form
'mm.vv.rrrr'
mm The major version.
vv The minor version.
rrrr The release.
For example, '08.01.0000' means, “ major version 3, minor
version 1, release 0.”

SQL_DROP_ASSERTION 32-bit mask Indicates which clause in the DROP ASSERTION statement
is supported by the database management system. DB2
ODBC always returns zero; the DROP ASSERTION
statement is not supported. ODBC also defines the
following value that DB2 ODBC does not return:

v SQL_DA_DROP_ASSERTION

262 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_DROP_CHARACTER_SET 32-bit mask Indicates which clause in the DROP CHARACTER SET
statement is supported by the database management system.
DB2 ODBC always returns zero; the DROP CHARACTER
SET statement is not supported. ODBC also defines the
following value that DB2 ODBC does not return.

v SQL_DCS_DROP_CHARACTER_SET

SQL_DROP_COLLATION 32-bit mask Indicates which clause in the DROP COLLATION statement
is supported by the database management system. DB2
ODBC always returns zero; the DROP COLLATION
statement is not supported. ODBC also defines the
following value that DB2 ODBC does not return:

v SQL_DC_DROP_COLLATION

SQL_DROP_DOMAIN 32-bit mask Indicates which clauses in the DROP DOMAIN statement
are supported by the database management system. DB2
ODBC always returns zero; the DROP DOMAIN statement
is not supported. ODBC also defines the following values
that DB2 ODBC does not return:
v SQL_DD_DROP_DOMAIN
v SQL_DD_CASCADE
v SQL_DD_RESTRICT

SQL_DROP_SCHEMA 32-bit mask Indicates which clauses in the DROP SCHEMA statement
are supported by the database management system.

v SQL_DS_DROP_SCHEMA

v SQL_DS_CASCADE

v SQL_DS_RESTRICT

SQL_DROP_TABLE 32-bit mask Indicates which clauses in the DROP TABLE statement are
supported by the database management system:
v SQL_DT_DROP_TABLE
v SQL_DT_CASCADE
v SQL_DT_RESTRICT

SQL_DROP_TRANSLATION 32-bit mask Indicates which clauses in the DROP TRANSLATION
statement are supported by the database management
system. DB2 ODBC always returns zero; the DROP
TRANSLATION statement is not supported. ODBC also
defines the following value that DB2 ODBC does not return:

v SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW 32-bit mask Indicates which clauses in the DROP VIEW statement are
supported by the database management system.
v SQL_DV_DROP_VIEW
v SQL_DV_CASCADE
v SQL_DV_RESTRICT

Chapter 4. ODBC Functions 263

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a dynamic cursor that DB2 ODBC
supports (subset 1 of 2).
v SQL_CA1_NEXT
v SQL_CA1_ABSOLUTE
v SQL_CA1_RELATIVE
v SQL_CA1_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_NOLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a dynamic cursor that DB2 ODBC
supports (subset 2 of 2).
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_EBCDIC_GCCSID 32-bit integer Specifies the EBCDIC GCCSID value currently set in the
AGCCSID field of DB2 DSNHDECP.

SQL_EBCDIC_MCCSID 32-bit integer Specifies the EBCDIC MCCSID value currently set in the
AMCCSID field of DB2 DSNHDECP.

SQL_EBCDIC_SCCSID 32-bit integer Specifies the EBCDIC SCCSID value currently set in the
ASCCSID field of DB2 DSNHDECP.

SQL_EXPRESSIONS_IN_ORDERBY string The character string 'Y' indicates the database server
supports the DIRECT specification of expressions in the
ORDER BY list, 'N' indicates that is does not.

SQL_FETCH_DIRECTION 32-bit mask The supported fetch directions.

The following bit-masks are used in conjunction with the
flag to determine which attribute values are supported.
v SQL_FD_FETCH_NEXT
v SQL_FD_FETCH_FIRST
v SQL_FD_FETCH_LAST
v SQL_FD_FETCH_PREV
v SQL_FD_FETCH_ABSOLUTE
v SQL_FD_FETCH_RELATIVE
v SQL_FD_FETCH_RESUME

SQL_FILE_USAGE 16-bit integer Reserved. Zero is returned.

264 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a forward-only cursor that DB2
ODBC supports (subset 1 of 2).
v SQL_CA1_NEXT
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_NOLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a forward-only cursor that DB2
ODBC supports (subset 2 of 2).
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS 32-bit mask Indicates whether extensions to the SQLGetData() function
are supported. The following extensions are currently
identified and supported by DB2 ODBC:

v SQL_GD_ANY_COLUMN

SQLGetData() can be called for unbound columns that
precede the last bound column.

v SQL_GD_ANY_ORDER

SQLGetData() can be called for columns in any order.

ODBC also defines the following extensions, which are not
returned by DB2 ODBC:
v SQL_GD_BLOCK
v SQL_GD_BOUND

SQL_GROUP_BY 16-bit integer Indicates the degree of support for the GROUP BY clause by
the server:
v SQL_GB_NO_RELATION, the columns in the GROUP BY

and in the SELECT list are not related
v SQL_GB_NOT_SUPPORTED, GROUP BY not supported
v SQL_GB_GROUP_BY_EQUALS_SELECT, GROUP BY

must include all non-aggregated columns in the select list
v SQL_GB_GROUP_BY_CONTAINS_SELECT, the GROUP

BY clause must contain all non-aggregated columns in the
SELECT list

Chapter 4. ODBC Functions 265

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_IDENTIFIER_CASE 16-bit integer Indicates case sensitivity of object names (such as
table-name).

A value of:
v SQL_IC_UPPER = identifier names are stored in upper

case in the system catalog.
v SQL_IC_LOWER = identifier names are stored in lower

case in the system catalog.
v SQL_IC_SENSITIVE = identifier names are case sensitive,

and are stored in mixed case in the system catalog.
v SQL_IC_MIXED = identifier names are not case sensitive,

and are stored in mixed case in the system catalog.

IBM specific: Identifier names in IBM database
management systems are not case sensitive.

SQL_IDENTIFIER_QUOTE_CHAR string Indicates the character used to surround a delimited
identifier.

SQL_INFO_SCHEMA_VIEWS 32-bit mask Indicates the views in the INFORMATIONAL_SCHEMA
that are supported. DB2 ODBC always returns zero; no
views in the INFORMATIONAL_SCHEMA are supported.
ODBC also defines the following values that DB2 ODBC
does not return:
v SQL_ISV_ASSERTIONS
v SQL_ISV_CHARACTER_SETS
v SQL_ISV_CHECK_CONSTRAINTS
v SQL_ISV_COLLATIONS
v SQL_ISV_COLUMN_DOMAIN_USAGE
v SQL_ISV_COLUMN_PRIVILEGES
v SQL_ISV_COLUMNS
v SQL_ISV_CONSTRAINT_COLUMN_USAGE
v SQL_ISV_CONSTRAINT_TABLE_USAGE
v SQL_ISV_DOMAIN_CONSTRAINTS
v SQL_ISV_DOMAINS
v SQL_ISV_KEY_COLUMN_USAGE
v SQL_ISV_REFERENTIAL_CONSTRAINTS
v SQL_ISV_SCHEMATA
v SQL_ISV_SQL_LANGUAGES
v SQL_ISV_TABLE_CONSTRAINTS
v SQL_ISV_TABLE_PRIVILEGES
v SQL_ISV_TABLES
v SQL_ISV_TRANSLATIONS
v SQL_ISV_USAGE_PRIVILEGES
v SQL_ISV_VIEW_COLUMN_USAGE
v SQL_ISV_VIEW_TABLE_USAGE
v SQL_ISV_VIEWS

SQL_INSERT_STATEMENT 32-bit mask Indicates support for INSERT statements:
v SQL_IS_INSERT_LITERALS
v SQL_IS_INSERT_SEARCHED
v SQL_IS_SELECT_INTO

SQL_INTEGRITY (In previous versions of DB2
ODBC, this InfoType is SQL_ODBC_SQL_OPT_IEF.)

string A 'Y' indicates that the data source supports Integrity
Enhanced Facility (IEF) in SQL89 and in X/Open XPG4
Embedded SQL; an 'N' indicates that it does not.

266 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_KEYSET_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a keyset cursor that DB2 ODBC
supports (subset 1 of 2).
v SQL_CA1_NEXT
v SQL_CA1_ABSOLUTE
v SQL_CA1_RELATIVE
v SQL_CA1_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_NOLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a keyset cursor that DB2 ODBC
supports (subset 2 of 2).
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS string A string of all the keywords at the database management
system that are not in the ODBC's list of reserved words.

SQL_LIKE_ESCAPE_CLAUSE string A character string that indicates if an escape character is
supported for the metacharacters percent and underscore in
a LIKE predicate.

SQL_LOCK_TYPES 32-bit mask Reserved attribute, zero is returned for the bit mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS 32-bit unsigned
integer

The maximum number of active concurrent statements in
asynchronous mode that DB2 ODBC can support on a given
connection. This value is zero if this number has no specific
limit, or the limit is unknown.

SQL_MAX_BINARY_LITERAL_LEN 32-bit integer A 32-bit integer value specifying the maximum length of a
hexadecimal literal in a SQL statement.

SQL_MAX_CATALOG_NAME_LEN (In previous
versions of DB2 ODBC, this InfoType is
SQL_MAX_QUALIFIER_NAME_LEN.)

16-bit integer The maximum length of a catalog qualifier name; first part
of a three-part table name (in bytes).

SQL_MAX_CHAR_LITERAL_LEN 32-bit integer The maximum length of a character literal in an SQL
statement (in bytes).

SQL_MAX_COLUMN_NAME_LEN 16-bit integer The maximum length of a column name (in bytes).

SQL_MAX_COLUMNS_IN_GROUP_BY 16-bit integer Indicates the maximum number of columns that the server
supports in a GROUP BY clause. Zero if no limit.

Chapter 4. ODBC Functions 267

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_MAX_COLUMNS_IN_INDEX 16-bit integer Indicates the maximum number of columns that the server
supports in an index. Zero if no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY 16-bit integer Indicates the maximum number of columns that the server
supports in an ORDER BY clause. Zero if no limit.

SQL_MAX_COLUMNS_IN_SELECT 16-bit integer Indicates the maximum number of columns that the server
supports in a select list. Zero if no limit.

SQL_MAX_COLUMNS_IN_TABLE 16-bit integer Indicates the maximum number of columns that the server
supports in a base table. Zero if no limit.

SQL_MAX_CONCURRENT_ACTIVITIES (In
previous versions of DB2 ODBC, this InfoType is
SQL_ACTIVE_STATEMENTS.)

16-bit integer The maximum number of active statements per connection.

Zero is returned, indicating that the limit is dependent on
database system and DB2 ODBC resources, and limits.

SQL_MAX_CURSOR_NAME_LEN 16-bit integer The maximum length of a cursor name (in bytes).

SQL_MAX_DRIVER_CONNECTIONS (In previous
versions of DB2 ODBC, this InfoType is
SQL_ACTIVE_CONNECTIONS.)

16-bit integer The maximum number of active connections supported per
application.

Zero is returned, indicating that the limit is dependent on
system resources.

The MAXCONN keyword in the initialization file or the
SQL_MAX_CONNECTIONS environment and connection
attribute can be used to impose a limit on the number of
connections. This limit is returned if it is set to any value
other than zero.

SQL_MAX_IDENTIFIER_LEN 16-bit integer The maximum size (in characters) that the data source
supports for user-defined names.

SQL_MAX_INDEX_SIZE 32-bit integer Indicates the maximum size in bytes that the server
supports for the combined columns in an index. Zero if no
limit.

SQL_MAX_PROCEDURE_NAME_LEN 16-bit integer The maximum length of a procedure name (in bytes).

SQL_MAX_ROW_SIZE 32-bit integer Specifies the maximum length, in bytes, that the server
supports in single row of a base table. Zero if no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG string Returns 'Y' if SQLGetInfo() with InfoType set to
SQL_MAX_ROW_SIZE includes the length of
product-specific long string data types. Otherwise, returns
'N'.

SQL_MAX_SCHEMA_NAME_LEN (In previous
versions of DB2 ODBC, this InfoType is
SQL_MAX_OWNER_NAME_LEN.)

16-bit integer The maximum length of a schema qualifier name (in bytes).

SQL_MAX_STATEMENT_LEN 32-bit integer Indicates the maximum length, in bytes, of an SQL
statement string, which includes the number of white spaces
in the statement.

SQL_MAX_TABLE_NAME_LEN 16-bit integer The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT 16-bit integer Indicates the maximum number of table names allowed in a
FROM clause in a <query specification>.

SQL_MAX_USER_NAME_LEN 16-bit integer Indicates the maximum size allowed for a <user identifier>
(in bytes).

SQL_MULT_RESULT_SETS string The character string 'Y' indicates that the database supports
multiple result sets, 'N' indicates that it does not.

SQL_MULTIPLE_ACTIVE_TXN string The character string 'Y' indicates that active transactions on
multiple connections are allowed. 'N' indicates that only one
connection at a time can have an active transaction.

SQL_NEED_LONG_DATA_LEN string A character string reserved for the use of ODBC. 'N' is
always returned.

268 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_NON_NULLABLE_COLUMNS 16-bit integer Indicates whether non-nullable columns are supported:
v SQL_NNC_NON_NULL, columns can be defined as NOT

NULL.
v SQL_NNC_NULL, columns can not be defined as NOT

NULL.

SQL_NULL_COLLATION 16-bit integer Indicates where null values are sorted in a list:
v SQL_NC_HIGH, null values sort high
v SQL_NC_LOW, to indicate that null values sort low

SQL_NUMERIC_FUNCTIONS 32-bit mask Indicates the ODBC scalar numeric functions supported.
These functions are intended to be used with the ODBC
vendor escape sequence.

The following bit masks are used to determine which
numeric functions are supported:
v SQL_FN_NUM_ABS
v SQL_FN_NUM_ACOS
v SQL_FN_NUM_ASIN
v SQL_FN_NUM_ATAN
v SQL_FN_NUM_ATAN2
v SQL_FN_NUM_CEILING
v SQL_FN_NUM_COS
v SQL_FN_NUM_COT
v SQL_FN_NUM_DEGREES
v SQL_FN_NUM_EXP
v SQL_FN_NUM_FLOOR
v SQL_FN_NUM_LOG
v SQL_FN_NUM_LOG10
v SQL_FN_NUM_MOD
v SQL_FN_NUM_PI
v SQL_FN_NUM_POWER
v SQL_FN_NUM_RADIANS
v SQL_FN_NUM_RAND
v SQL_FN_NUM_ROUND
v SQL_FN_NUM_SIGN
v SQL_FN_NUM_SIN
v SQL_FN_NUM_SQRT
v SQL_FN_NUM_TAN
v SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE 16-bit integer The level of ODBC conformance.
v SQL_OAC_NONE
v SQL_OAC_LEVEL1
v SQL_OAC_LEVEL2

SQL_ODBC_SAG_CLI_CONFORMANCE 16-bit integer The compliance to the functions of the SQL Access Group
(SAG) CLI specification.

A value of:
v SQL_OSCC_NOT_COMPLIANT - the driver is not

SAG-compliant.
v SQL_OSCC_COMPLIANT - the driver is SAG-compliant.

Chapter 4. ODBC Functions 269

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_ODBC_SQL_CONFORMANCE 16-bit integer A value of:
v SQL_OSC_MINIMUM - means that the current database

management system supports minimum ODBC SQL
grammar. Minimum SQL grammar must include the
following elements:
– CREATE TABLE and DROP TABLE data definitions
– Simple SELECT, INSERT, UPDATE, and DELETE data

manipulation
– Simple expressions
– CHAR, VARCHAR, and LONG VARCHAR data types

v SQL_OSC_CORE - means that the current database
management system supports ODBC SQL core grammar.
Core ODBC SQL grammar must include the following
elements:
– Minimum ODBC SQL grammar
– ALTER TABLE, CREATE INDEX, DROP INDEX,

CREATE VIEW, DROP VIEW, GRANT, and REVOKE
data definitions

– Full SELECT data manipulation
– Subquery and function expressions
– DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL,

FLOAT, DOUBLE PRECISION data types
v SQL_OSC_EXTENDED - means the current database

management system supports extended ODBC SQL
grammar. Extended ODBC SQL grammar must include
the following elements:
– Core ODBC SQL grammar
– Positioned UPDATE, positioned DELETE, SELECT

FOR UPDATE, and UNION data definitions
– Scalar functions, literal date, literal time, and literal

timestamp expressions
– BIT, TINYINT, BIGINT, BINARY, VARBINARY, LONG

VARBINARY, DATE, TIME, TIMESTAMP, and XML
data types

– Batch SQL statements
– Procedure calls

SQL_ODBC_VER string The version number of ODBC that the driver manager
supports.

DB2 ODBC returns the string "03.01.0000".

SQL_OJ_CAPABILITIES 32-bit mask A 32-bit bit mask enumerating the types of outer join
supported.

The bit masks are:

v SQL_OJ_LEFT: Left outer join is supported.

v SQL_OJ_RIGHT: Right outer join is supported.

v SQL_OJ_FULL: Full outer join is supported.

v SQL_OJ_NESTED: Nested outer join is supported.

v SQL_OJ_NOT_ORDERED: The order of the tables
underlying the columns in the outer join ON clause need
not be in the same order as the tables in the JOIN clause.

v SQL_OJ_INNER: The inner table of an outer join can also
be an inner join.

v SQL_OJ_ALL_COMPARISONS_OPS: Any predicate can
be used in the outer join ON clause. If this bit is not set,
the equality (=) operator is the only valid comparison
operator in the ON clause.

SQL_ORDER_BY_COLUMNS_IN_SELECT string Set to 'Y' if columns in the ORDER BY clauses must be in
the select list; otherwise set to 'N'.

270 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_OUTER_JOINS string The character string:
v 'Y' indicates that outer joins are supported, and DB2

ODBC supports the ODBC outer join request syntax.
v 'N' indicates that it is not supported.

SQL_OWNER_TERM (In previous versions of DB2
ODBC, this InfoType is SQL_SCHEMA_TERM.)

string The database vendor's (owner's) terminology for a schema

SQL_PARAM_ARRAY_ROW_COUNTS 32-bit unsigned
integer

Indicates the availability of row counts in a parameterized
execution:

v SQL_PARC_BATCH: Individual row counts are available
for each set of parameters. This is conceptually equivalent
to the driver generating a batch of SQL statements, one
for each parameter set in the array. Extended error
information can be retrieved by using the
SQL_PARAM_STATUS_PTR descriptor field.

v SQL_PARC_NO_BATCH: Only one row count is
available, which is the cumulative row count resulting
from the execution of the statement for the entire array of
parameters. This is conceptually equivalent to treating the
statement along with the entire parameter array as one
atomic unit. Errors are handled the same as if one
statement were executed.

SQL_PARAM_ARRAY_SELECTS 32-bit unsigned
integer

Indicates the availability of result sets in a parameterized
execution:

v SQL_PAS_BATCH: One result set is available per set of
parameters. This is conceptually equivalent to the driver
generating a batch of SQL statements, one for each
parameter set in the array.

v SQL_PAS_NO_BATCH: Only one result set is available,
which represents the cumulative result set resulting from
the execution of the statement for the entire array of
parameters. This is conceptually equivalent to treating the
statement along with the entire parameter array as one
atomic unit.

v SQL_PAS_NO_SELECT: A driver does not allow a
result-set generating statement to be executed with an
array of parameters.

SQL_POS_OPERATIONS 32-bit mask Reserved attribute, zero is returned for the bit mask.

SQL_POSITIONED_STATEMENTS 32-bit mask Indicates the degree of support for positioned UPDATE and
positioned DELETE statements:
v SQL_PS_POSITIONED_DELETE
v SQL_PS_POSITIONED_UPDATE
v SQL_PS_SELECT_FOR_UPDATE, indicates whether the

server requires the FOR UPDATE clause to be specified
on a <query expression> in order for a column to be
updatable using the cursor.

SQL_PROCEDURE_TERM string The name a database vendor uses for a procedure

SQL_PROCEDURES string 'Y' indicates that the data source supports procedures and
DB2 ODBC supports the ODBC procedure invocation
syntax. 'N' indicates that it does not.

Chapter 4. ODBC Functions 271

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_QUOTED_IDENTIFIER_CASE 16-bit integer Returns:
v SQL_IC_UPPER - quoted identifiers in SQL are case

insensitive and stored in upper case in the system catalog.
v SQL_IC_LOWER - quoted identifiers in SQL are case

insensitive and are stored in lower case in the system
catalog.

v SQL_IC_SENSITIVE - quoted identifiers (delimited
identifiers) in SQL are case sensitive and are stored in
mixed case in the system catalog.

v SQL_IC_MIXED - quoted identifiers in SQL are case
insensitive and are stored in mixed case in the system
catalog.

This should be contrasted with the SQL_IDENTIFIER_CASE
InfoType, which is used to determine how (unquoted)
identifiers are stored in the system catalog.

SQL_ROW_UPDATES string A character string of "Y" indicates changes are detected in
rows between multiple fetches of the same rows, "N"
indicates that changes are not detected.

SQL_SCHEMA_USAGE (In previous versions of
DB2 ODBC, this InfoType is SQL_OWNER_USAGE.)

32-bit mask Indicates the type of SQL statements that have schema
(owners) associated with them when these statements are
executed. Schema qualifiers (owners) are:
v SQL_OU_DML_STATEMENTS - supported in all Data

Manipulation Language statements.
v SQL_OU_PROCEDURE_INVOCATION - supported in the

procedure invocation statement.
v SQL_OU_TABLE_DEFINITION - supported in all table

definition statements.
v SQL_OU_INDEX_DEFINITION - supported in all index

definition statements.
v SQL_OU_PRIVILEGE_DEFINITION - supported in all

privilege definition statements (for example, grant and
revoke statements).

SQL_SCROLL_CONCURRENCY 32-bit mask Indicates the concurrency options that are supported for the
cursor.

The following bit-masks are used in conjunction with the
flag to determine which attribute values are supported:
v SQL_SCCO_READ_ONLY
v SQL_SCCO_LOCK
v SQL_SCCO_OPT_TIMESTAMP
v SQL_SCCO_OPT_VALUES

DB2 ODBC returns SQL_SCCO_LOCK, indicating that the
level of locking that is used is the lowest level of locking
that is sufficient to ensure the row can be updated is used.

SQL_SCROLL_OPTIONS 32-bit mask The scroll options that are supported for scrollable cursors.

The following bit masks are used in conjunction with the
flag to determine which attribute values are supported:
v SQL_SO_FORWARD_ONLY
v SQL_SO_KEYSET_DRIVEN
v SQL_SO_STATIC
v SQL_SO_DYNAMIC
v SQL_SO_MIXED

SQL_SEARCH_PATTERN_ESCAPE string Used to specify what the driver supports as an escape
character for catalog functions such as (SQLTables(),
SQLColumns()).

SQL_SERVER_NAME string The name of the DB2 subsystem to which the application is
connected.

272 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_SPECIAL_CHARACTERS string Contains all the characters that the server allows in
non-delimited identifiers. This includes a...z, A...Z, 0...9, and
_.

SQL_SQL92_PREDICATES 32-bit mask Indicates those predicates that are defined by ANSI/ISO
SQL standard of 1992 and that are supported in a SELECT
statement.
v SQL_SP_BETWEEN
v SQL_SP_COMPARISON
v SQL_SP_EXISTS
v SQL_SP_IN
v SQL_SP_ISNOTNULL
v SQL_SP_ISNULL
v SQL_SP_LIKE
v SQL_SP_MATCH_FULL
v SQL_SP_MATCH_PARTIAL
v SQL_SP_MATCH_UNIQUE_FULL
v SQL_SP_MATCH_UNIQUE_PARTIAL
v SQL_SP_OVERLAPS
v SQL_SP_QUANTIFIED_COMPARISON
v SQL_SP_UNIQUE

SQL_SQL92_VALUE_EXPRESSIONS 32-bit mask Indicates those value expressions that are defined by SQL92
and that are supported.
v SQL_SVE_CASE
v SQL_SVE_CAST
v SQL_SVE_COALESCE
v SQL_SVE_NULLIF

SQL_STATIC_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a static cursor that DB2 ODBC
supports (subset 1 of 2).
v SQL_CA1_NEXT
v SQL_CA1_ABSOLUTE
v SQL_CA1_RELATIVE
v SQL_CA1_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_NOLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

Chapter 4. ODBC Functions 273

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_STATIC_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a static cursor that DB2 ODBC
supports (subset 2 of 2).
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY 32-bit mask Indicates whether changes made by an application with a
positioned UPDATE or DELETE statement can be detected
by that application:
v SQL_SS_ADDITIONS: Added rows are visible to the

cursor; the cursor can scroll to these rows. All DB2
servers see added rows.

v SQL_SS_DELETIONS: Deleted rows are no longer
available to the cursor and do not leave a hole in the
result set; after the cursor scrolls from a deleted row, it
cannot return to that row.

v SQL_SS_UPDATES: Updates to rows are visible to the
cursor; if the cursor scrolls from and returns to an
updated row, the data returned by the cursor is the
updated data, not the original data.

274 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_STRING_FUNCTIONS 32-bit mask Indicates which string functions are supported.

The following bit masks are used to determine which string
functions are supported:
v SQL_FN_STR_ASCII
v SQL_FN_STR_CHAR
v SQL_FN_STR_CONCAT
v SQL_FN_STR_DIFFERENCE
v SQL_FN_STR_INSERT
v SQL_FN_STR_LCASE
v SQL_FN_STR_LEFT
v SQL_FN_STR_LENGTH
v SQL_FN_STR_LOCATE
v SQL_FN_STR_LOCATE_2
v SQL_FN_STR_LTRIM
v SQL_FN_STR_REPEAT
v SQL_FN_STR_REPLACE
v SQL_FN_STR_RIGHT
v SQL_FN_STR_RTRIM
v SQL_FN_STR_SOUNDEX
v SQL_FN_STR_SPACE
v SQL_FN_STR_SUBSTRING
v SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function with
the string1, string2, and start arguments, the
SQL_FN_STR_LOCATE bit mask is returned. If an
application can only call the LOCATE scalar function with
the string1 and string2, the SQL_FN_STR_LOCATE_2 bit
mask is returned. If the LOCATE scalar function is fully
supported, both bit masks are returned.

SQL_SUBQUERIES 32-bit mask Indicates which predicates support subqueries:
v SQL_SQ_COMPARISON - the comparison predicate
v SQL_SQ_CORRELATE_SUBQUERIES - all predicates
v SQL_SQ_EXISTS - the exists predicate
v SQL_SQ_IN - the in predicate
v SQL_SQ_QUANTIFIED - the predicates containing a

quantification scalar function.

SQL_SYSTEM_FUNCTIONS 32-bit mask Indicates which scalar system functions are supported.

The following bit masks are used to determine which scalar
system functions are supported:
v SQL_FN_SYS_DBNAME
v SQL_FN_SYS_IFNULL
v SQL_FN_SYS_USERNAME

Tip: These functions are intended to be used with the
escape sequence in ODBC.

SQL_TABLE_TERM string The database vendor's terminology for a table.

Chapter 4. ODBC Functions 275

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_TIMEDATE_ADD_INTERVALS 32-bit mask Indicates whether the special ODBC system function
TIMESTAMPADD is supported, and, if it is, which intervals
are supported.

The following bit masks are used to determine which
intervals are supported:
v SQL_FN_TSI_FRAC_SECOND
v SQL_FN_TSI_SECOND
v SQL_FN_TSI_MINUTE
v SQL_FN_TSI_HOUR
v SQL_FN_TSI_DAY
v SQL_FN_TSI_WEEK
v SQL_FN_TSI_MONTH
v SQL_FN_TSI_QUARTER
v SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS 32-bit mask Indicates whether the special ODBC system function
TIMESTAMPDIFF is supported, and, if it is, which intervals
are supported.

The following bit masks are used to determine which
intervals are supported:
v SQL_FN_TSI_FRAC_SECOND
v SQL_FN_TSI_SECOND
v SQL_FN_TSI_MINUTE
v SQL_FN_TSI_HOUR
v SQL_FN_TSI_DAY
v SQL_FN_TSI_WEEK
v SQL_FN_TSI_MONTH
v SQL_FN_TSI_QUARTER
v SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS 32-bit mask Indicates which time and date functions are supported.

The following bit masks are used to determine which date
functions are supported:
v SQL_FN_TD_CURDATE
v SQL_FN_TD_CURTIME
v SQL_FN_TD_DAYNAME
v SQL_FN_TD_DAYOFMONTH
v SQL_FN_TD_DAYOFWEEK
v SQL_FN_TD_DAYOFYEAR
v SQL_FN_TD_HOUR
v SQL_FN_TD_JULIAN_DAY
v SQL_FN_TD_MINUTE
v SQL_FN_TD_MONTH
v SQL_FN_TD_MONTHNAME
v SQL_FN_TD_NOW
v SQL_FN_TD_QUARTER
v SQL_FN_TD_SECOND
v SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
v SQL_FN_TD_TIMESTAMPADD
v SQL_FN_TD_TIMESTAMPDIFF
v SQL_FN_TD_WEEK
v SQL_FN_TD_YEAR

Tip: These functions are intended to be used with the
escape sequence in ODBC.

276 ODBC Guide and Reference

Table 148. Information returned by SQLGetInfo() (continued)

InfoType Format Description and notes

SQL_TXN_CAPABLE 16-bit integer Indicates whether transactions can contain Data Definition
Language, or Data Manipulation Language, or both.
v SQL_TC_NONE - transactions not supported.
v SQL_TC_DML - transactions can only contain Data

Manipulation Language statements (SELECT, INSERT,
UPDATE, DELETE, and so on) Data Definition Language
statements (CREATE TABLE, DROP INDEX, and so on)
encountered in a transaction cause an error.

v SQL_TC_DDL_COMMIT - transactions can only contain
Data Manipulation Language statements. Data Definition
Language statements encountered in a transaction cause
the transaction to be committed.

v SQL_TC_DDL_IGNORE - transactions can only contain
Data Manipulation Language statements. Data Definition
Language statements encountered in a transaction are
ignored.

v SQL_TC_ALL - transactions can contain Data Definition
Language and Data Manipulation Language statements in
any order.

SQL_TXN_ISOLATION_OPTION 32-bit mask The transaction isolation levels available at the currently
connected database server.

The following bit masks are used in conjunction with the
flag to determine which attribute values are supported:
v SQL_TXN_READ_UNCOMMITTED
v SQL_TXN_READ_COMMITTED
v SQL_TXN_REPEATABLE_READ
v SQL_TXN_SERIALIZABLE
v SQL_TXN_NOCOMMIT
v SQL_TXN_VERSIONING

For descriptions of each level, see
SQL_DEFAULT_TXN_ISOLATION.

SQL_UNICODE_GCCSID 32-bit integer Specifies the UNICODE GCCSID value currently set in the
UGCCSID field of DB2 DSNHDECP.

SQL_UNICODE_MCCSID 32-bit integer Specifies the UNICODE MCCSID value currently set in the
UMCCSID field of DB2 DSNHDECP.

SQL_UNICODE_SCCSID 32-bit integer Specifies the UNICODE SCCSID value currently set in the
USCCSID field of DB2 DSNHDECP.

SQL_UNION 32-bit mask Indicates whether the server supports the UNION operator:
v SQL_U_UNION - supports the UNION clause
v SQL_U_UNION_ALL - supports the ALL keyword in the

UNION clause

If SQL_U_UNION_ALL is set, SQL_U_UNION is set as
well.

SQL_USER_NAME string The user name that is used in a particular database. This is
the identifier specified on the SQLConnect() call.

SQL_XOPEN_CLI_YEAR string Indicates the year of publication of the X/Open specification
with which the version of the driver fully complies.

Return codes

After you call SQLGetInfo(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Chapter 4. ODBC Functions 277

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 149. SQLGetInfo() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information is returned as a string and its length
exceeds the length of the application buffer as specified in the
BufferLength argument. The StringLengthPtr argument contains the
actual (not truncated) length, in bytes, of the requested
information. (SQLGetInfo() returns SQL_SUCCESS_WITH_INFO
for this SQLSTATE.)

08003 Connection is closed. The type of information that the InfoType argument requests
requires an open connection. Only the value SQL_ODBC_VER does
not require an open connection.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.

HY096 Invalid information type. An invalid value is specified for the InfoType argument.

HYC00 Driver not capable. The value specified in the argument InfoType is not supported by
DB2 ODBC or is not supported by the data source.

Example

The following lines of code use SQLGetInfo() to retrieve the current data source
name:
SQLCHAR buffer[255];
SQLSMALLINT outlen;
rc = SQLGetInfo(hdbc, SQL_DATA_SOURCE_NAME, buffer, 255, &outlen);
printf("\nServer Name: %s\n", buffer);

Related concepts:
“Stored procedures” on page 471
“Vendor escape clauses” on page 504
Related reference:
“Changes to SQLGetInfo() InfoType argument values” on page 567
“SQLGetConnectAttr() - Get current attribute setting” on page 224
“SQLGetTypeInfo() - Get data type information” on page 297
“Function return codes” on page 24

SQLGetLength() - Retrieve length of a string value
SQLGetLength() retrieves the length (in bytes) of a large object value. The large
object value is referenced by a large object locator that the server returns. The
locator can be the result of a fetch, or an SQLGetSubString() call during the current
transaction.

278 ODBC Guide and Reference

ODBC specifications for SQLGetLength()

Table 150. SQLGetLength() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLGetLength (SQLHSTMT hstmt,

SQLSMALLINT LocatorCType,
SQLINTEGER Locator,
SQLINTEGER FAR *StringLength,
SQLINTEGER FAR *IndicatorValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 151. SQLGetLength() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle. This can be any statement
handle that is allocated but does not currently have a
prepared statement assigned to it.

SQLSMALLINT LocatorCType input Specifies the C type of the source LOB locator. This must be
one of the following values:
v SQL_C_BLOB_LOCATOR for BLOB data
v SQL_C_CLOB_LOCATOR for CLOB data
v SQL_C_DBCLOB_LOCATOR for DBCLOB data

SQLINTEGER Locator input Specifies the LOB locator value. This argument specifies a
LOB locator value not the LOB value itself.

SQLINTEGER * StringLength output Points to a buffer that receives the length (in bytes1) of the
LOB to which the locator argument refers.

SQLINTEGER * IndicatorValue output This argument is always returns zero.

Note:

1. This is in bytes even for DBCLOB data.

Usage

SQLGetLength() can determine the length of the data value represented by a LOB
locator. Applications use it to determine the overall length of the referenced LOB
value so that the appropriate strategy for obtaining some or all of that value can be
chosen.

The Locator argument can contain any valid LOB locator that is not explicitly freed
using a FREE LOCATOR statement and that is not implicitly freed because the
transaction during which it was created has terminated.

The statement handle must not be associated with any prepared statements or
catalog function calls.

Chapter 4. ODBC Functions 279

Return codes

After you call SQLGetLength(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

40

Table 152. SQLGetLength() SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of the values that the LocatorCType and Locator
arguments specify is not valid.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

0F001 The LOB token variable does
not currently represent any
value.

The value that the Locator argument specifies is not associated with
a LOB locator.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY003 Program type out of range. The LocatorCType argument does not specify one of the following
values:
v SQL_C_CLOB_LOCATOR
v SQL_C_BLOB_LOCATOR
v SQL_C_DBCLOB_LOCATOR

HY009 Invalid use of a null pointer. The StringLength argument specifies a null pointer.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Restrictions

This function is not available when you connect to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the fFunction argument set to
SQL_API_SQLGETLENGTH and check the fExists output argument to determine if
the function is supported for the current connection.

Example

Refer to the function SQLGetPosition() for a related example.

280 ODBC Guide and Reference

Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“SQLGetPosition() - Find the starting position of a string”
“SQLGetSubString() - Retrieve a portion of a string value” on page 293
“Function return codes” on page 24

SQLGetPosition() - Find the starting position of a string
SQLGetPosition() returns the starting position of one string within a LOB value
(the source). The source value must be a LOB locator; the search string can be a
LOB locator or a literal string.

The source and search LOB locators can be any value that is returned from the
database from a fetch or a SQLGetSubString() call during the current transaction.

ODBC specifications for SQLGetPosition()

Table 153. SQLGetPosition() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLGetPosition (SQLHSTMT hstmt,

SQLSMALLINT LocatorCType,
SQLINTEGER SourceLocator,
SQLINTEGER SearchLocator,
SQLCHAR FAR *SearchLiteral,
SQLINTEGER SearchLiteralLength,
SQLUINTEGER FromPosition,
SQLUINTEGER FAR *LocatedAt,
SQLINTEGER FAR *IndicatorValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 154. SQLGetPosition() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle. This can be any statement
handle that is allocated but does not currently have a
prepared statement assigned to it.

SQLSMALLINT LocatorCType input Specifies the C type of the source LOB locator. This argument
must specify one of the following values:
v SQL_C_BLOB_LOCATOR for BLOB data
v SQL_C_CLOB_LOCATOR for CLOB data
v SQL_C_DBCLOB_LOCATOR for DBCLOB data

SQLINTEGER Locator input Specifies the source LOB locator.

Chapter 4. ODBC Functions 281

Table 154. SQLGetPosition() arguments (continued)

Data type Argument Use Description

SQLINTEGER SearchLocator input Specifies a LOB locator that refers to a search string.

This argument is ignored unless both the following conditions
are met:

v The SearchLiteral argument specifies a null pointer.

v The SearchLiteralLength argument is set to 0.

SQLCHAR * SearchLiteral input This argument points to the area of storage that contains the
search string literal.

If SearchLiteralLength is 0, this pointer must be null.

SQLINTEGER SearchLiteralLength input The length of the string in SearchLiteral (in bytes).1

If this argument value is 0, you specify the search string with
a LOB locator. (The SearchLocator argument specifies the
search string when it is represented by a LOB locator.)

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this argument specifies the position of
the byte within the source string at which the search is to
start. For DBCLOBs, this argument specifies the character at
which the search is to start. The start-byte or start-character is
numbered 1.

SQLUINTEGER * LocatedAt output Specifies the position at which the search string was located.
For BLOBs and CLOBs, this location is the byte position. For
DBCLOBs, this location is the character position. If the search
string is not located this argument returns zero.

If the length of the source string is zero, the value 1 is
returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

1. This is in bytes even for DBCLOB data.

Usage

Use SQLGetPosition() in conjunction with SQLGetSubString() to obtain a portion
of a string in a random manner. To use SQLGetSubString(), you must know the
location of the substring within the overall string in advance. In situations in
which you want to use a search string to find the start of a substring, use
SQLGetPosition().

The Locator and SearchLocator arguments (if they are used) can contain any valid
LOB locator that is not explicitly freed using a FREE LOCATOR statement or that
is not implicitly freed because the transaction during which it was created has
terminated.

The Locator and SearchLocator arguments must specify LOB locators of the same
type.

The statement handle must not be associated with any prepared statements or
catalog function calls.

282 ODBC Guide and Reference

Return codes

After you call SQLGetPosition(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 155. SQLGetPosition() SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of the value that the LocatorCType argument
specifies with either of the LOB locator values is not valid.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

0F001 The LOB token variable does
not currently represent any
value.

A value specified for the Locator or SearchLocator arguments is
currently not a LOB locator.

42818 The operands of an operator
or function are not compatible.

The length of the search pattern is longer than 4000 bytes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. This SQLSTATE is returned for one or more of the following
reasons:

v The pointer that the LocatedAt argument specifies is null.

v The argument value for the FromPosition argument is not greater
than 0.

v The LocatorCType argument is not one of the following values:
– SQL_C_CLOB_LOCATOR
– SQL_C_BLOB_LOCATOR
– SQL_C_DBCLOB_LOCATOR

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The value of SearchLiteralLength is less than 1, and not SQL_NTS.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Restrictions

This function is available only when you connect to a DB2 server that supports
large objects. Call SQLGetFunctions() with the fFunction argument set to
SQL_API_SQLGETPOSITION and check the fExists output argument to determine
if the function is supported for the current connection.

Chapter 4. ODBC Functions 283

Example

The following example shows an application that retrieves a substring from a large
object. To find where in a large object this substring begins, the application calls
SQLGetPosition().

Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“SQLGetFunctions() - Get functions” on page 249
“SQLGetLength() - Retrieve length of a string value” on page 278
“SQLGetSubString() - Retrieve a portion of a string value” on page 293
“Function return codes” on page 24

SQLGetSQLCA() - Get SQLCA data structure
SQLGetSQLCA() returns the SQLCA (SQL communication area) that is associated
with preparing and executing an SQL statement, fetching data, or closing a cursor.
The SQLCA can return supplemental information about the data that is obtained
by SQLGetDiagRec().

/* ... */
SQLCHAR stmt2[] =

"SELECT resume FROM emp_resume "
"WHERE empno = ? AND resume_format = ’ascii’";

/* ... */
/**
** Get CLOB locator to selected resume **
***/

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
7, 0, Empno.s, sizeof(Empno.s), &Empno.ind);

printf("\n>Enter an employee number:\n");
gets(Empno.s);
rc = SQLExecDirect(hstmt, stmt2, SQL_NTS);
rc = SQLBindCol(hstmt, 1, SQL_C_CLOB_LOCATOR, &ClobLoc1, 0,

&pcbValue);
rc = SQLFetch(hstmt);

/**
Search CLOB locator to find "Interests"
Get substring of resume (from position of interests to end)

***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &lhstmt);
/* Get total length */
rc = SQLGetLength(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, &SLength, &Ind);
/* Get Starting position */
rc = SQLGetPosition(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, 0,

"Interests", 9, 1, &Pos1, &Ind);
buffer = (SQLCHAR *)malloc(SLength - Pos1 + 1);
/* Get just the "Interests" section of the Resume CLOB */
/* (From Pos1 to end of CLOB) */
rc = SQLGetSubString(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, Pos1,

SLength - Pos1, SQL_C_CHAR, buffer, SLength - Pos1 +1,
&OutLength, &Ind);

/* Print Interest section of Employee’s resume */
printf("\nEmployee #:

/* ... */

Figure 22. An application that retrieves a substring from a large object

284 ODBC Guide and Reference

An SQLCA is not available if a function is processed strictly on the application
side, such as allocating a statement handle. In this case, an empty SQLCA is
returned with all values set to zero.

ODBC specifications for SQLGetSQLCA()

Table 156. SQLGetSQLCA specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLGetSQLCA (SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
struct sqlca FAR *pSqlca);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 157. SQLGetSQLCA() arguments

Data type Argument Use Description

SQLHENV henv input Specifies the environment handle.

SQLHDBC hdbc input Specifies a connection handle.

SQLHSTMT hstmt input Specifies a statement handle.

SQLCA * pqlCA output Points to a buffer to receive the SQL communication area.

Usage

The handles are used in the same way as for the SQLGetDiagRec() function. To
obtain the SQLCA associated with different handle types, use the following
argument values:
v For an environment handle: specify a valid environment handle, set hdbc to

SQL_NULL_HDBC and set hstmt and SQL_NULL_HSTMT.
v For a connection handle: specify a valid database connection handle and set

hstmt to SQL_NULL_HSTMT. The henv argument is ignored.
v For a statement handle: specify a valid statement handle. The henv and hdbc

arguments are ignored.

If diagnostic information that one DB2 ODBC function generates is not retrieved
before a function other than SQLGetDiagRec() is called on the same handle, the
diagnostic information for the previous function call is lost. This information is lost
regardless of whether the second DB2 ODBC function call generates diagnostic
information.

If a DB2 ODBC function is called that does not result in interaction with the
database management system, then the SQLCA contains all zeros. Meaningful
information is returned in the SQLCA for the following functions:
v SQLCancel()
v SQLConnect(), SQLDisconnect()

Chapter 4. ODBC Functions 285

v SQLExecDirect(), SQLExecute()
v SQLFetch()
v SQLPrepare()
v SQLEndTran()
v SQLColumns()
v SQLConnect()
v SQLGetData (if a LOB column is involved)
v SQLSetConnectAttr() (for SQL_ATTR_AUTOCOMMIT)
v SQLStatistics()
v SQLTables()
v SQLColumnPrivileges()
v SQLExtendedFetch()
v SQLForeignKeys()
v SQLMoreResults()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLTablePrivileges()

Return codes

After you call SQLGetSQLCA(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Example

The following example shows an application that uses SQLGetSQLCA() to retrieve
diagnostic information from the SQLCA.
/**/
/* Prepare a query and execute that query against a non-existent */
/* table. Then invoke SQLGetSQLCA to extract */
/* native SQLCA data structure. Note that this API is NOT */
/* defined within ODBC; it is unique to IBM CLI. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
void print_sqlca (SQLHENV, // prototype for print_sqlca

SQLHDBC,
SQLHSTMT);

int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";
SWORD cbCursor;
SDWORD cbValue1;
SDWORD cbValue2;
char employee [30];
int salary = 0;
int param_salary = 30000;
char *stmt = "SELECT NAME, SALARY FROM EMPLOYEES WHERE SALARY > ?";
(void) printf ("**** Entering CLIP11.\n\n");
/***/

286 ODBC Guide and Reference

/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handles */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, SQL_NULL_HANDLE, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

goto exit;
/***/
/* Prepare the query for multiple execution within current */
/* transaction. Note that query is collapsed when transaction */
/* is committed or rolled back. */
/***/
rc = SQLPrepare (hStmt,

(SQLCHAR *) stmt,
strlen(stmt));

if (rc != SQL_SUCCESS)
{

(void) printf ("**** PREPARE OF QUERY FAILED.\n");
(void) print_sqlca (hStmt,

hDbc,
hEnv);

goto dberror;
}
rc = SQLBindCol (hStmt, // bind employee name

1,
SQL_C_CHAR,
employee,
sizeof(employee),
&cbValue1);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF NAME FAILED.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind employee salary

2,
SQL_C_LONG,
&salary,
0,
&cbValue2);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF SALARY FAILED.\n");
goto dberror;

}

Chapter 4. ODBC Functions 287

/***/
/* Bind parameter to replace ’?’ in query. This has an initial */
/* value of 30000. */
/***/
rc = SQLBindParameter (hStmt,

1,
SQL_PARAM_INPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
¶m_salary,
0,
NULL);

/***/
/* Execute prepared statement to generate answer set. */
/***/
rc = SQLExecute (hStmt);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** EXECUTE OF QUERY FAILED.\n");
(void) print_sqlca (hStmt,

hDbc,
hEnv);

goto dberror;
}
/***/
/* Answer set is available -- Fetch rows and print employees */
/* and salary. */
/***/
(void) printf ("**** Employees whose salary exceeds %d follow.\n\n",

param_salary);
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Employee Name %s with salary %d.\n",
employee,
salary);

}
/***/
/* Deallocate statement handles -- statement is no longer in a */
/* Prepared state. */
/***/
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP11.\n\n");
return RETCODE;

}

288 ODBC Guide and Reference

/***/
/* print_sqlca invokes SQLGetSQLCA and prints the native SQLCA. */
/***/
void print_sqlca (SQLHENV hEnv ,

SQLHDBC hDbc ,
SQLHSTMT hStmt)

{
SQLRETURN rc = SQL_SUCCESS;
struct sqlca sqlca;
struct sqlca *pSQLCA = &sqlca;
int code ;
char state [6];
char errp [9];
char tok [40];
int count, len, start, end, i;
if ((rc = SQLGetSQLCA (hEnv ,

hDbc ,
hStmt,
pSQLCA)) != SQL_SUCCESS)

{
(void) printf ("**** SQLGetSQLCA failed Return Code =
goto exit;

}
code = (int) pSQLCA->sqlcode;
memcpy (state, pSQLCA->sqlstate, 5);
state [5] = ’\0’;
(void) printf ("**** sqlcode =
memcpy (errp, pSQLCA->sqlerrp, 8);
errp [8] = ’\0’;
(void) printf ("**** sqlerrp =
if (pSQLCA->sqlerrml == 0)

(void) printf ("**** No tokens.\n");
else
{

for (len = 0, count = 0; len < pSQLCA->sqlerrml; len = ++end)
{

start = end = len;
while ((pSQLCA->sqlerrmc [end] != 0XFF) &&;

(end < pSQLCA->sqlerrml))
end++;

if (start != end)
{

memcpy (tok, &pSQLCA->sqlerrmc[start],
(end-start));

tok [end-start+1] = ’\0’;
(void) printf ("**** Token #

}
}

}
for (i = 0; i <= 5; i++)

(void) printf ("**** sqlerrd #
for (i = 0; i <= 10; i++)

(void) printf ("**** sqlwarn #
exit:
return;

}

Figure 23. An application that retrieves diagnostic information

Chapter 4. ODBC Functions 289

Related reference:
“SQLGetDiagRec() - Get multiple field settings of diagnostic record” on page 244
“Function return codes” on page 24

Description of SQLCA fields (DB2 SQL)

SQLGetStmtAttr() - Get current setting of a statement attribute
SQLGetStmtAttr() returns the current setting of a statement attribute. To set these
statement attributes, use SQLSetStmtAttr().

ODBC specifications for SQLGetStmtAttr()

Table 158. SQLGetStmtAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLGetStmtAttr (SQLHSTMT StatementHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 159. SQLGetStmtAttr() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Specifies a connection handle.

SQLINTEGER Attribute input Specifies the statement attribute to retrieve. For a complete
list of these attributes, refer to the function SQLSetStmtAttr().

SQLPOINTER ValuePtr output Points to a buffer in which to return the current value of the
attribute specified by the Attribute argument. The value that is
returned into this buffer is a 32-bit unsigned integer value or
a nul-terminated character string. If the a driver-specific value
is specified for the Attribute argument, a signed integer might
be returned.

290 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields

Table 159. SQLGetStmtAttr() arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input The value that you specify for this argument depends which
of the following types of attributes you query:

v For ODBC-defined attributes:

– If the ValuePtr argument points to a character string, the
BufferLength argument specifies the length (in bytes) of
the buffer to which the ValuePtr argument points.

– If the ValuePtr argument points to an integer, the
BufferLength argument is ignored.

v For driver-defined attributes (IBM extension):

– If the ValuePtr argument points to a character string, the
BufferLength argument specifies the length (in bytes) of
the buffer to which the ValuePtr argument points, or
specifies SQL_NTS for nul-terminated strings. If
SQL_NTS is specified, the driver assumes the length of
buffer to which the ValuePtr argument points to be
SQL_MAX_OPTIONS_STRING_LENGTH bytes (which
excludes the nul-terminator).

– If the ValuePtr argument points to an integer, the
BufferLength argument is ignored.

SQLINTEGER * StringLengthPtr output Points to a buffer in which to return the total number of bytes
(excluding the number of bytes returned for the
nul-termination character) available to return in the buffer to
which the ValuePtr argument points.

v If the ValuePtr argument specifies a null pointer, no length
is returned.

v If the attribute value to which ValuePtr points is a character
string, and the number of bytes available to return is
greater than or equal to BufferLength, the data in ValuePtr is
truncated to BufferLength minus the length of a
nul-termination character and is nul-terminated by DB2
ODBC.

v If the Attribute argument does not denote a string, DB2
ODBC ignores the BufferLength argument and does not
return a value in the buffer to which the StringLengthPtr
argument points.

Usage

SQLGetStmtAttr() returns the current setting of a statement attribute. You set these
attributes using the SQLSetStmtAttr() function.

Return codes

After you call SQLGetStmtAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Chapter 4. ODBC Functions 291

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 160. SQLGetStmtAttr() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLGetStmtAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

01004 Data truncated. The data that is returned in the buffer to which the ValuePtr
argument points is truncated to be the length (in bytes) of the
value that the BufferLength argument specifies, minus the length of
a nul-terminator. The length (in bytes) of the untruncated string
value is returned in the buffer to which the StringLengthPtr
argument points. (SQLGetStmtAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

HY000 General error. An error occurred for which no specific SQLSTATE exists. The
error message that SQLGetDiagRec() returns describes the specific
error and the cause of that error.

HY001 Memory allocation failure. DB2 ODBC can not allocate memory that is required to support
execution or completion of the function.

HY010 Function sequence error. SQLExecute() or SQLExecDirect() is called on the statement handle
and returns SQL_NEED_DATA. This function is called before data
is sent for all data-at-execution parameters or columns. Invoke
SQLCancel() to cancel the data-at-execution condition.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access memory that is required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the BufferLength argument is less than 0.

HY092 Option type out of range. The value specified for the Attribute argument is not valid for this
version of DB2 ODBC.

HYC00 Driver not capable. The value specified for the Attribute argument is a valid connection
or statement attribute for the version of the DB2 ODBC driver, but
is not supported by the data source.

Example

The following example uses SQLGetStmtAttr() to retrieve the current value of a
statement attribute:
SQLINTEGER cursor_hold;
rc = SQLGetStmtAttr(hstmt, SQL_ATTR_CURSOR_HOLD,

&cursor_hold, 0, NULL) ;
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;
printf("\nCursor With Hold is: ") ;
if (cursor_hold == SQL_CURSOR_HOLD_ON)

printf("ON\n") ;
else

printf("OFF\n") ;

292 ODBC Guide and Reference

Related reference:
“SQLGetConnectAttr() - Get current attribute setting” on page 224
“Function return codes” on page 24
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLGetStmtOption() - Return current setting of a statement option
SQLGetStmtOption() is a deprecated function and is replaced by SQLGetStmtAttr().

ODBC specifications for SQLGetStmtOption()

Table 161. SQLGetStmtOption() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes No

Syntax
SQLRETURN SQLGetStmtOption (SQLHSTMT hstmt,

SQLUSMALLINT fOption,
SQLPOINTER pvParam);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 162. SQLGetStmtOption() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLUSMALLINT fOption input Specifies the attribute to set.

SQLPOINTER pvParam output Specifies the value of the attribute. Depending on the value of
fOption this can be a 32-bit integer value, or a pointer to a
nul-terminated character string. The maximum length of any
character string returned is
SQL_MAX_OPTION_STRING_LENGTH bytes (which
excludes the nul-terminator).

Related reference:
“SQLGetStmtAttr() - Get current setting of a statement attribute” on page 290

SQLGetSubString() - Retrieve a portion of a string value
SQLGetSubString() retrieves a portion of a large object value that is referenced by a
LOB locator.

Chapter 4. ODBC Functions 293

ODBC specifications for SQLGetSubString()

Table 163. SQLGetSubString() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLGetSubString (SQLHSTMT hstmt,

SQLSMALLINT LocatorCType,
SQLINTEGER SourceLocator,
SQLUINTEGER FromPosition,
SQLUINTEGER ForLength,
SQLSMALLINT TargetCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *StringLength,
SQLINTEGER FAR *IndicatorValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 164. SQLGetSubString() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle. This can be any statement
handle that is allocated but does not currently have a
prepared statement assigned to it.

SQLSMALLINT LocatorCType input Specifies the C type of the source LOB locator with one of the
following values:
v SQL_C_BLOB_LOCATOR for BLOB data
v SQL_C_CLOB_LOCATOR for CLOB data
v SQL_C_DBCLOB_LOCATOR for DBCLOB data

SQLINTEGER Locator input Specifies the source LOB locator value.

SQLUINTEGER FromPosition input Specifies the position at which the string that is retrieved
begins. For BLOBs and CLOBs, this is the position of the first
byte the function returns. For DBCLOBs, this is the first
character. The start-byte or start-character is numbered 1.

SQLUINTEGER ForLength input Specifies the length of the string that SQLGetSubString()
retrieves. For BLOBs and CLOBs, this is the length in bytes.
For DBCLOBs, this is the length in characters.

If the value that the FromPosition argument specifies is less
than the length of the source string, but FromPosition +
ForLength -1 extends beyond the position of the end of the
source string, the result is padded on the right with the
necessary number of characters (X'00' for BLOBs, single-byte
blank character for CLOBs, and double-byte blank character
for DBCLOBs).

294 ODBC Guide and Reference

Table 164. SQLGetSubString() arguments (continued)

Data type Argument Use Description

SQLSMALLINT TargetCType input Specifies the target C data type for the string that is retrieved
into the buffer to which the rgbValue argument points. This
target can be a LOB locator C buffer of one of the following
types:
v SQL_C_CLOB_LOCATOR
v SQL_C_BLOB_LOCATOR
v SQL_C_DBCLOB_LOCATOR

Or, the target can be a C string variable of one of the
following types:
v SQL_C_CHAR for CLOB data
v SQL_C_BINARY for BLOB data
v SQL_C_DBCHAR for DBCLOB data

SQLPOINTER rgbValue output Pointer to the buffer where the retrieved string value or a
LOB locator is stored.

SQLINTEGER cbValueMax input Specifies the maximum size (in bytes) of the buffer to which
the rgbValue argument points.

SQLINTEGER * StringLength output If the target C buffer type is intended for a binary or
character string variable, not a locator value, this argument
points to the length (in bytes1) of the substring that is
retrieved.

If a null pointer is specified, no value is returned.

SQLINTEGER * IndicatorValue output Always returns zero.

Note:

1. This is in bytes even for DBCLOB data.

Usage

Use SQLGetSubString() to obtain any portion of the string that a LOB locator
represents. The target for this substring can be one of the following objects:
v An appropriate C string variable.
v A new LOB value that is created on the server. The LOB locator for this value

can be assigned to a target application variable on the client.

You can use SQLGetSubString() as an alternative to SQLGetData() for retrieving
data in pieces. To use SQLGetSubString() to retrieve data in pieces, you first bind a
column to a LOB locator. You then use this LOB locator to fetch the LOB value as a
whole or in pieces.

The Locator argument can contain any valid LOB locator that was returned by a
fetch or a previous SQLGetSubString() call during the current transaction. Do not
free the LOB locator through a FREE LOCATOR statement, or execute
SQLGetSubString() in a different transaction from the one in which the locator is
created.

The statement handle must not be associated with any prepared statements or
catalog function calls.

Chapter 4. ODBC Functions 295

Return codes

After you call SQLGetSubString(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

40

Table 165. SQLGetSubString() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of returned data is longer than cbValueMax. Actual
length, in bytes, that is available for return is stored in StringLength.

07006 Invalid conversion. This SQLSTATE is returned for one or more of the following
reasons:

v The value specified for TargetCType is not SQL_C_CHAR,
SQL_C_BINARY, SQL_C_DBCHAR or a LOB locator.

v The value specified for TargetCType is inappropriate for the
source (for example SQL_C_DBCHAR for a BLOB column).

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

0F001 The LOB token variable does
not currently represent any
value.

The value specified for Locator or SearchLocator is not currently a
LOB locator.

22011 A substring error occurred. FromPosition is greater than the length of the source string.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY003 Program type out of range. LocatorCType is not one of the following:
v SQL_C_CLOB_LOCATOR
v SQL_C_BLOB_LOCATOR
v SQL_C_DBCLOB_LOCATOR

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY024 Invalid argument value. The value specified for FromPosition or for ForLength is not a
positive integer.

HY090 Invalid string or buffer length. The value of cbValueMax is less than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Restrictions

This function is not available when connected to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETSUBSTRING, and check the fExists output argument to
determine if the function is supported for the current connection.

296 ODBC Guide and Reference

Example

Refer to the function SQLGetPosition() for a related example.
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLFetch() - Fetch the next row” on page 197
“SQLGetLength() - Retrieve length of a string value” on page 278
“SQLGetPosition() - Find the starting position of a string” on page 281
“Function return codes” on page 24

SQLGetTypeInfo() - Get data type information
SQLGetTypeInfo() returns information about the data types that are supported by
the database management systems that are associated with DB2 ODBC. This
information is returned in an SQL result set. The columns of this result set can be
received by using the same functions that you use to process a query.

ODBC specifications for SQLGetTypeInfo()

Table 166. SQLGetTypeInfo() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLGetTypeInfo (SQLHSTMT hstmt,

SQLSMALLINT fSqlType);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 167. SQLGetTypeInfo() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

Chapter 4. ODBC Functions 297

Table 167. SQLGetTypeInfo() arguments (continued)

Data type Argument Use Description

SQLSMALLINT fSqlType input Specifies the SQL data type that is queried. The following
values that specify data types are supported:
v SQL_ALL_TYPES
v SQL_BIGINT
v SQL_BINARY
v SQL_BLOB
v SQL_CHAR
v SQL_CLOB
v SQL_DBCLOB
v SQL_DECFLOAT
v SQL_DECIMAL
v SQL_DOUBLE
v SQL_FLOAT
v SQL_GRAPHIC
v SQL_INTEGER
v SQL_LONGVARBINARY
v SQL_LONGVARCHAR
v SQL_LONGVARGRAPHIC
v SQL_NUMERIC
v SQL_REAL
v SQL_ROWID
v SQL_SMALLINT
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_VARBINARY
v SQL_VARCHAR
v SQL_VARGRAPHIC
v SQL_XML

If the value SQL_ALL_TYPES is specified, information about
all supported data types is returned in ascending order by
TYPE_NAME. All unsupported data types are absent from the
result set.

Usage

Because SQLGetTypeInfo() generates a result set it is essentially equivalent to
executing a query. Like a query, calling SQLGetTypeInfo() generates a cursor and
begins a transaction. To prepare and execute another statement on this statement
handle, the cursor must be closed.

If you call SQLGetTypeInfo() with an invalid value in the fSqlType argument, an
empty result set is returned.

Table 168 on page 299 describes each column in the result set that this function
generates.

Although new columns might be added and the names of the existing columns
might be changed in future releases, the position of the current columns does not
change. The data types that are returned are those that can be used in a CREATE
TABLE or ALTER TABLE, statement. Nonpersistent data types such as the locator
data types are not part of the returned result set. User-defined data types are not
returned either.

298 ODBC Guide and Reference

Table 168. Columns returned by SQLGetTypeInfo()

Position Column name Data type Description

1 TYPE_NAME VARCHAR(128) NOT
NULL

Contains a character representation of the SQL Data
Definition Language data type name. For example,
VARCHAR, BLOB, DATE, INTEGER.

2 DATA_TYPE SMALLINT NOT NULL Contains the SQL data type definition values. For
example, SQL_VARCHAR, SQL_BLOB,
SQL_TYPE_DATE, SQL_INTEGER.

3 COLUMN_SIZE INTEGER If the data type is a character or binary string, this
column contains the maximum length in bytes. If
this data type is a graphic (DBCS) string, this
column contains the number of double-byte
characters for the column. If the data type is XML,
zero is returned.

For date, time, timestamp data types, this is the
total number of characters required to display the
value when converted to characters.

For numeric data types, this column contains the
total number of digits.

4 LITERAL_PREFIX VARCHAR(128) Contains the character that DB2 recognizes as a
prefix for a literal of this data type. This column is
null for data types where a literal prefix is not
applicable.

5 LITERAL_SUFFIX VARCHAR(128) Contains the character that DB2 recognizes as a
suffix for a literal of this data type. This column is
null for data types where a literal suffix is not
applicable.

6 CREATE_PARAMS VARCHAR(128) Contains a list of values, that are separated by
commas. These values correspond to each
parameter that you can specify for a data type in a
CREATE TABLE or an ALTER TABLE SQL
statement. One or more of the following values
appear in this result-set column:

v LENGTH, which indicates you can specify a
length for the data type in the TYPE_NAME
column

v PRECISION, which indicates you can specify the
precision for the data type in the TYPE_NAME
column

v SCALE, which indicates you can specify a scale
for the data type in the TYPE_NAME column

v A null indicator, which indicates you cannot
specify any parameters for the data type in the
TYPE_NAME column

Usage: The CREATE_PARAMS column enables you
to customize the interface of Data Definition
Language builders in your applications. A Data
Definition Language builder is a piece of your
application that creates database objects, such as
tables. Use the CREATE_PARAMS to determine the
number of arguments that are required to define a
data type, then use localized text to label the
controls on the Data Definition Language builder.

Chapter 4. ODBC Functions 299

Table 168. Columns returned by SQLGetTypeInfo() (continued)

Position Column name Data type Description

7 NULLABLE SMALLINT NOT NULL Indicates whether the data type accepts a null
value. This column contains one of the following
values:
v SQL_NO_NULLS, which indicates that null

values are disallowed
v SQL_NULLABLE, which indicates that null

values are allowed

8 CASE_SENSITIVE SMALLINT NOT NULL Indicates whether the data type can be treated as
case sensitive for collation purposes. This column
contains one of the following values:

v SQL_TRUE, which indicates case sensitivity

v SQL_FALSE, which indicates no case sensitivity

9 SEARCHABLE SMALLINT NOT NULL Indicates how the data type is used in a WHERE
clause. This column contains one of the following
values:
v SQL_UNSEARCHABLE, which indicates that you

cannot use the data type in a WHERE clause
v SQL_LIKE_ONLY, which indicates that you can

use the data type in a WHERE clause, but only
with the LIKE predicate.

v SQL_ALL_EXCEPT_LIKE, which indicates that
you can use the data type in a WHERE clause
with all comparison operators except LIKE.

v SQL_SEARCHABLE, which indicates that you
can use the data type in a WHERE clause with
any comparison operator.

10 UNSIGNED_ATTRIBUTE SMALLINT Indicates whether the data type is unsigned. This
column contains one of the following values:

v SQL_TRUE, which indicates that the data type is
unsigned

v SQL_FALSE, which indicates the data type is
signed

v NULL, which indicates this attribute does not
apply to the data type

11 FIXED_PREC_SCALE SMALLINT NOT NULL Contains the value SQL_TRUE if the data type is
exact numeric and always has the same precision
and scale; otherwise, it contains SQL_FALSE.

12 AUTO_INCREMENT SMALLINT Contains SQL_TRUE if a column of this data type
is automatically set to a unique value when a row
is inserted; otherwise, contains SQL_FALSE.

13 LOCAL_TYPE_NAME VARCHAR(128) Contains any localized (native language) name for
the data type that is different from the regular
name of the data type. If there is no localized name,
this column contains a null indicator.

This column is intended for display only. The
character set of the string is locale-dependent and is
typically the default character set of the database.

14 MINIMUM_SCALE SMALLINT Contains the minimum scale of the SQL data type.
If a data type has a fixed scale, the
MINIMUM_SCALE and MAXIMUM_SCALE
columns both contain the same value. NULL is
returned where scale is not applicable.

300 ODBC Guide and Reference

Table 168. Columns returned by SQLGetTypeInfo() (continued)

Position Column name Data type Description

15 MAXIMUM_SCALE SMALLINT Contains the maximum scale of the SQL data type.
NULL is returned where scale is not applicable. If
the maximum scale is not defined separately in the
database management system, but is defined
instead to be the same as the maximum length of
the column, then this column contains the same
value as the COLUMN_SIZE column.

Return codes

After you call SQLGetTypeInfo(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 169. SQLGetTypeInfo() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY004 Invalid SQL data type. An invalid value for the fSqlType argument is specified.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

Restrictions

The following ODBC specified SQL data types (and their corresponding fSqlType
define values) are not supported by any IBM relational database management
system:

Data type
fSqlType

TINYINT
SQL_TINYINT

BIT SQL_BIT

Example

The following example shows an application that uses SQLGetTypeInfo() to check
which ODBC data types the database management system supports.
/**/
/* Invoke SQLGetTypeInfo to retrieve SQL data types supported. */
/**/
#include <stdio.h>

Chapter 4. ODBC Functions 301

#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"

/**/
/* Invoke SQLGetTypeInfo to retrieve all SQL data types supported */
/* by data source. */
/**/

int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
(void) printf ("**** Entering CLIP06.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) "STLEC1", // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Retrieve SQL data types from DSN */
/***/
// local variables to Bind to retrieve TYPE_NAME, DATA_TYPE,
// COLUMN_SIZE and NULLABLE
struct // TYPE_NAME is VARCHAR(128)
{

SQLSMALLINT length;
SQLCHAR name [128];
SQLINTEGER ind;

} typename;
SQLSMALLINT data_type; // DATA_TYPE is SMALLINT
SQLINTEGER data_type_ind;
SQLINTEGER column_size; // COLUMN_SIZE is integer
SQLINTEGER column_size_ind;
SQLSMALLINT nullable; // NULLABLE is SMALLINT
SQLINTEGER nullable_ind;
/***/
/* Allocate statement handle */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

goto exit;
/***/
/* */
/* Retrieve native SQL types from DSN ------------> */
/* */

302 ODBC Guide and Reference

/* The result set consists of 15 columns. We only bind */
/* TYPE_NAME, DATA_TYPE, COLUMN_SIZE and NULLABLE. Note: Need */
/* not bind all columns of result set -- only those required. */
/* */
/***/
rc = SQLGetTypeInfo (hStmt,

SQL_ALL_TYPES);
if (rc != SQL_SUCCESS)

goto exit;
rc = SQLBindCol (hStmt, // bind TYPE_NAME

1,
SQL_CHAR,
(SQLPOINTER) typename.name,
128,
&typename.ind);

if (rc != SQL_SUCCESS)
goto exit;

rc = SQLBindCol (hStmt, // bind DATA_NAME
2,
SQL_C_DEFAULT,
(SQLPOINTER) &data_type,
sizeof(data_type),
&data_type_ind);

if (rc != SQL_SUCCESS)
goto exit;rc = SQLBindCol (hStmt, // bind COLUMN_SIZE

3,
SQL_C_DEFAULT,
(SQLPOINTER) &column_size,
sizeof(column_size),
&column_size_ind);

if (rc != SQL_SUCCESS)
goto exit;

rc = SQLBindCol (hStmt, // bind NULLABLE
7,
SQL_C_DEFAULT,
(SQLPOINTER) &nullable,
sizeof(nullable),
&nullable_ind);

if (rc != SQL_SUCCESS)
goto exit;

/***/
/* Fetch all native DSN SQL Types and print Type Name, Type, */
/* Precision and nullability. */
/***/
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Type Name is %s. Type is %d. Precision is %d.",
typename.name,
data_type,
column_size);

if (nullable == SQL_NULLABLE)
(void) printf (" Type is nullable.\n");

else
(void) printf (" Type is not nullable.\n");

}
if (rc == SQL_NO_DATA_FOUND) // if result set exhausted reset

rc = SQL_SUCCESS; // rc to OK
/***/
/* Free statement handle */
/***/
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
if (RETCODE != SQL_SUCCESS) // An advertised API failed

goto dberror;
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);

Chapter 4. ODBC Functions 303

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP06.\n\n");
return(RETCODE);

}

Related reference:
“SQLColAttribute() - Get column attributes” on page 135
“SQLExtendedFetch() - Fetch an array of rows” on page 190
“SQLGetInfo() - Get general information” on page 254
“Function return codes” on page 24

SQLMoreResults() - Check for more result sets
SQLMoreResults() returns more information about a statement handle. The
information can be associated with an array of input parameter values for a query,
or a stored procedure that returns results sets.

ODBC specifications for SQLMoreResults()

Table 170. SQLMoreResults() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLMoreResults (SQLHSTMT hstmt);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 171. SQLMoreResults() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle on which results are returned.

Figure 24. An application that checks data types that the current server supports

304 ODBC Guide and Reference

Usage

Use this function to return a sequence of result sets after you execute of one of the
following actions:
v A parameterized query with an array of input parameter values that

SQLSetStmtAttr() and SQLBindParameter() specify
v A stored procedure that contains SQL queries that leaves open cursors on the

result sets that it generates (result sets are accessible when a stored procedure
has finished execution if cursors on these result sets remain open)

After you completely process a result set, call SQLMoreResults() to determine if
another result set is available. When you call SQLMoreResults(), this function
discards rows that were not fetched in the current result set by closing the cursor.
If another result set is available SQLMoreResults() returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns
SQL_NO_DATA_FOUND.

If you call SQLFreeStmt() with the fOption argument set to SQL_CLOSE or you call
SQLFreeHandle() is called with the HandleType argument set to
SQL_HANDLE_STMT, these functions discard all pending result sets for the
statement handle on which they are called.

Return codes

After you call SQLMoreResults(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 172. SQLMoreResults() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Additionally, SQLMoreResults() can return all SQLSTATEs that are associated with
SQLExecDirect() except for HY009, HY014, and HY090.

Chapter 4. ODBC Functions 305

Restrictions

The ODBC specification of SQLMoreResults() allows row-counts that are associated
with the execution of parameterized INSERT, UPDATE, and DELETE statements
with arrays of input parameter values to be returned. However, DB2 ODBC does
not support the return of this count information.

Example

The following example shows an application that uses SQLMoreResults() to check
for additional result sets.
/* ... */
#define NUM_CUSTOMERS 25

SQLCHAR stmt[] =
{ "WITH " /* Common Table expression (or Define Inline View) */

"order (ord_num, cust_num, prod_num, quantity, amount) AS "
"("
"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, ’.’), p.units, char(l.quantity, ’.’)) "
"FROM ord_cust c, ord_line l, product p "
"WHERE c.ord_num = l.ord_num AND l.prod_num = p.prod_num "
"AND cust_num = CNUM(cast (? as integer)) "

"), "
"totals (ord_num, total) AS "
"("
"SELECT ord_num, sum(decimal(amount, 10, 2)) "
"FROM order GROUP BY ord_num "
") "

/* The ’actual’ SELECT from the inline view */
"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,10,2) amount, total "
"FROM order, totals "
"WHERE order.ord_num = totals.ord_num "

};
/* Array of customers to get list of all orders for */
SQLINTEGER Cust[]=
{

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250

};
#define NUM_CUSTOMERS sizeof(Cust)/sizeof(SQLINTEGER)

/* Row-wise (Includes buffer for both column data and length) */
struct {

SQLINTEGER Ord_Num_L;
SQLINTEGER Ord_Num;
SQLINTEGER Cust_Num_L;
SQLINTEGER Cust_Num;
SQLINTEGER Prod_Num_L;
SQLINTEGER Prod_Num;
SQLINTEGER Quant_L;
SQLDOUBLE Quant;
SQLINTEGER Amount_L;
SQLDOUBLE Amount;
SQLINTEGER Total_L;
SQLDOUBLE Total;

} Ord[ROWSET_SIZE];
SQLUINTEGER pirow = 0;
SQLUINTEGER pcrow;
SQLINTEGER i;
SQLINTEGER j;

/* ... */
/* Get details and total for each order row-wise */
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
rc = SQLParamOptions(hstmt, NUM_CUSTOMERS, &pirow);

306 ODBC Guide and Reference

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,
0, 0, Cust, 0, NULL);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);
/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET_SIZE, ROWSET_SIZE, 0);
/* Set size of one row, used for row-wise binding only */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_BIND_TYPE, (void*)sizeof(Ord)/ROW_SIZE, 0);
/* Bind column 1 to the Ord_num Field of the first row in the array*/
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) &Ord[0].Ord_Num, 0,

&Ord[0].Ord_Num_L);
/* Bind remaining columns ... */

/* ... */
/* NOTE: This sample assumes that an order never has more

rows than ROWSET_SIZE. A check should be added below to call
SQLExtendedFetch multiple times for each result set.

*/
do /* for each result set */
{ rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, NULL);

if (pcrow > 0) /* if 1 or more rows in the result set */
{

i = j = 0;
printf("**************************************\n");
printf("Orders for Customer: 0].Cust_Num);
printf("**************************************\n");
while (i < pcrow)
{ printf("\nOrder #: i].Ord_Num);

printf(" Product Quantity Price\n");
printf(" -------- ---------------- ------------\n");
j = i;
while (Ord[j].Ord_Num == Ord[i].Ord_Num)
{ printf(" %8ld %16.7lf %12.2lf\n",

Ord[i].Prod_Num, Ord[i].Quant, Ord[i].Amount);
i++;

}
printf(" ============\n");
printf(" j].Total);

} /* end while */
} /* end if */

}
while (SQLMoreResults(hstmt) == SQL_SUCCESS);

/* ... */

Figure 25. An application that checks for additional result sets

Chapter 4. ODBC Functions 307

Related concepts:
“Using arrays to pass parameter values” on page 422
“Result sets from stored procedures” on page 473
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLCloseCursor() - Close a cursor and discard pending results” on page 133
“SQLExecDirect() - Execute a statement directly” on page 182
“Function return codes” on page 24
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLNativeSql() - Get native SQL text
SQLNativeSql() indicates how DB2 ODBC interprets vendor escape clauses. If the
original SQL string that the application passes contains vendor escape clause
sequences, DB2 ODBC passes a transformed SQL string to the data source. The
SQL string is passed with vendor escape clauses that are either converted or
discarded.

ODBC specifications for SQLNativeSql()

Table 173. SQLNativeSql() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLNativeSql (SQLHDBC hdbc,

SQLCHAR FAR *szSqlStrIn,
SQLINTEGER cbSqlStrIn,
SQLCHAR FAR *szSqlStr,
SQLINTEGER cbSqlStrMax,
SQLINTEGER FAR *pcbSqlStr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 174. SQLNativeSql() arguments

Data type Argument Use Description

SQLHDBC hdbc input Specifies the connection handle.

SQLCHAR * szSqlStrIn input Points to a buffer that contains the input SQL string.

SQLINTEGER cbSqlStrIn input Specifies the length, in bytes, of the buffer to which the
szSqlStrIn argument points.

SQLCHAR * szSqlStr output Points to buffer that returns the transformed output string.

SQLINTEGER cbSqlStrMax input Specifies the size of the buffer to which the szSqlStr argument
points.

308 ODBC Guide and Reference

Table 174. SQLNativeSql() arguments (continued)

Data type Argument Use Description

SQLINTEGER * pcbSqlStr output Points to a buffer that returns the total number of bytes
(excluding the nul-terminator) that the complete output string
requires. If this string requires a number of bytes that is
greater than or equal to the value in the cbSqlStrMax
argument, the output string is truncated to cbSqlStrMax - 1
bytes.

Usage

Call this function when you want to examine or display a transformed SQL string
that is passed to the data source by DB2 ODBC. Translation (mapping) only occurs
if the input SQL statement string contains vendor escape clause sequences.

DB2 ODBC can only detect vendor escape clause syntax errors; because DB2 ODBC
does not pass the transformed SQL string to the data source for preparation, syntax
errors that are detected by the database management system are not generated for
the input SQL string at this time. (The statement is not passed to the data source
for preparation because the preparation can potentially cause the initiation of a
transaction.)

Return codes

After you call SQLNativeSql(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 175. SQLNativeSql() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The output string is truncated because the buffer to which the
szSqlStr argument points is not large enough to contain the entire
SQL string. The argument pcbSqlStr contains the total length, in
bytes, of the untruncated SQL string. (SQLNativeSql() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

08003 Connection is closed. The hdbc argument does not reference an open database connection.

37000 Invalid SQL syntax. The input SQL string that the szSqlStrIn argument specifies
contains a syntax error in the escape sequence.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. This SQLSTATE is returned for one or more of the following
reasons:

v The argument szSqlStrIn is a null pointer.

v The argument szSqlStr is a null pointer.

Chapter 4. ODBC Functions 309

Table 175. SQLNativeSql() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The argument cbSqlStrIn specifies a value that is less than 0 and
not equal to SQL_NTS.

v The argument cbSqlStrMax specifies a value that is less than 0.

Example

The following example shows an application that uses SQLNativeSql() to print the
final version of an SQL statement that contains vendor escape clauses.

Related concepts:
“Vendor escape clauses” on page 504
Related reference:
“Function return codes” on page 24

SQLNumParams() - Get number of parameters in an SQL statement
SQLNumParams() returns the number of parameter markers that are in an SQL
statement.

ODBC specifications for SQLNumParams()

Table 176. SQLNumParams() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

/* ... */
SQLCHAR in_stmt[1024];
SQLCHAR out_stmt[1024];
SQLSMALLINT pcPar;
SQLINTEGER indicator;

/* ... */
/* Prompt for a statement to prepare */
printf("Enter an SQL statement: \n");
gets(in_stmt);
/* prepare the statement */
rc = SQLPrepare(hstmt, in_stmt, SQL_NTS);
SQLNumParams(hstmt, &pcPar);
SQLNativeSql(hstmt, in_stmt, SQL_NTS, out_stmt, 1024, &indicator);
if (indicator == SQL_NULL_DATA)
{ printf("Invalid statement\n"); }
else
{ printf(" Input Statement: \n stmt);

printf("Output Statement: \n stmt);
printf("Number of Parameter Markers =

}
rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

/* ... */

Figure 26. An application that prints a translated vendor escape clause

310 ODBC Guide and Reference

Syntax
SQLRETURN SQLNumParams (SQLHSTMT hstmt,

SQLSMALLINT FAR *pcpar);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 177. SQLNumParams() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLSMALLINT * pcpar output Points to a buffer that returns the number of parameters in
the statement.

Usage

You call this function to determine how many SQLBindParameter() calls are
necessary for the SQL statement that is associated with a statement handle.

You can call this function only after you prepare the statement associated with the
hstmt argument. If the statement does not contain any parameter markers, the
buffer to which the pcpar argument points is set to 0.

Return codes

After you call SQLNumParams(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 178. SQLNumParams() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The pcpar argument specifies a null pointer.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v SQLNumParams() is called before SQLPrepare() for the statement
to which the hstmt argument refers.

v SQLNumParams() is called during a data-at-execute operation.
(That is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Chapter 4. ODBC Functions 311

Example

Refer to the function SQLNativeSql() for a related example on an application that
prints a translated vendor escape clause.
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLNativeSql() - Get native SQL text” on page 308
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLNumResultCols() - Get number of result columns
SQLNumResultCols() returns the number of columns in the result set that is
associated with the input statement handle. SQLPrepare() or SQLExecDirect() must
be called before you call SQLNumResultCols(). After you call SQLNumResultCols(),
you can call SQLColAttribute() or one of the bind column functions.

ODBC specifications for SQLNumResultCols()

Table 179. SQLNumResultCols() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,

SQLSMALLINT FAR *pccol);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 180. SQLNumResultCols() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLSMALLINT * pccol output Points to a buffer that returns the number of columns in the
result set.

Usage

You call this function to determine how many SQLBindCol() or SQLGetData() calls
are necessary for the SQL result set that is associated with a statement handle.

The function sets the output argument to zero if the last statement or function
executed on the input statement handle did not generate a result set.

Return codes

After you call SQLNumResultCols(), it returns one of the following values:
v SQL_SUCCESS

312 ODBC Guide and Reference

v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 181. SQLNumResultCols() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. pccol is a null pointer.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Example

Refer to the function SQLDescribeCol() for a related example.
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLColAttribute() - Get column attributes” on page 135
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLGetData() - Get data from a column” on page 232
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLParamData() - Get next parameter for which a data value is needed
SQLParamData() is used in conjunction with SQLPutData() to send long data in
pieces. You can also use this function to send fixed-length data.

ODBC specifications for SQLParamData()

Table 182. SQLParamData() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Chapter 4. ODBC Functions 313

Syntax
SQLRETURN SQLParamData (SQLHSTMT hstmt,

SQLPOINTER FAR *prgbValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 183. SQLParamData() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies the statement handle.

SQLPOINTER * prgbValue output Points to the buffer that the rgbValue argument in the
SQLBindParameter() call indicates.

Usage

SQLParamData() returns SQL_NEED_DATA if there is at least one
SQL_DATA_AT_EXEC parameter for which data is not assigned. This function
returns an application provided value in prgbValue, which a previous
SQLBindParameter() call supplies. When you send long data in pieces, you call
SQLPutData() one or more times. After the SQLPutData() calls, you call
SQLParamData() to signal all data for the current parameter is sent and to advance
to the next SQL_DATA_AT_EXEC parameter.

SQLParamData() returns SQL_SUCCESS when all the parameters have been
assigned data values and the associated statement has been executed successfully.
If any errors occur during or before actual statement execution, SQLParamData()
returns SQL_ERROR.

SQLParamData() returns SQL_NEED_DATA when you advance to the next
SQL_DATA_AT_EXEC parameter. You can call only SQLPutData() or SQLCancel()
at this point in the transaction; all other function calls that use the same statement
handle that the hstmt argument specifies will fail. Additionally, all functions that
reference the parent connection handle of the statement that the hstmt argument
references fail if they change any attribute or state of that connection. Because
functions that reference the parent connection handle fail, do not use the following
functions on the parent connection handle during an SQL_NEED_DATA sequence:
v SQLAllocHandle()
v SQLSetConnectAttr()
v SQLNativeSql()
v SQLEndTran()

These functions return SQL_ERROR with SQLSTATE HY010 and the processing of
the SQL_DATA_AT_EXEC parameters is not affected if these functions are called
during an SQL_NEED_DATA sequence.

Return codes

After you call SQLParamData(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA

314 ODBC Guide and Reference

Diagnostics

SQLParamData() can return any SQLSTATE that SQLExecDirect() and SQLExecute()
generate. The following table lists the additional SQLSTATEs that SQLParamData()
can generate with a description and explanation for each value.

Table 184. SQLParamData() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled back
due to a deadlock or timeout.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v SQLParamData() is called out of sequence. This call is only valid
after an SQLExecDirect() or an SQLExecute(), or after an
SQLPutData() call.

v SQLParamData() is called after an SQLExecDirect() or an
SQLExecute() call, but no SQL_DATA_AT_EXEC parameters
require processing.

Example

Refer to the function SQLGetData() for a related example.
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLColAttribute() - Get column attributes” on page 135
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLGetData() - Get data from a column” on page 232
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLParamOptions() - Specify an input array for a parameter
SQLParamOptions() is a deprecated function and is replaced by SQLSetStmtAttr().

ODBC specifications for SQLParamOptions()

Table 185. SQLParamOptions() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) No No

Syntax
SQLRETURN SQLParamOptions (SQLHSTMT hstmt,

SQLUINTEGER crow,
SQLUINTEGER FAR *pirow);

Chapter 4. ODBC Functions 315

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 186. SQLParamOptions() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Specifies a statement handle.

SQLUINTEGER crow input Specifies the number of values for each parameter. If this
value is greater than 1, then the rgbValue argument in
SQLBindParameter() points to an array of parameter values,
and the pcbValue argument points to an array of lengths.

SQLUINTEGER * pirow output
(deferred)

Points to a buffer for the current parameter array index. As
each set of parameter values is processed, this argument is set
to the array index of that set. If a statement fails, this value
can be used to determine how many statements were
successfully processed. No value is returned if the pirow
argument specifies a null pointer.

Usage

Use SQLParamOptions() to prepare a statement, and to execute that statement
repeatedly for an array of parameter markers.

As a statement executes, the buffer to which the pirow argument points is set to the
index of the current array of parameter values. If an error occurs during execution
for a particular element in the array, execution halts and SQLExecute(),
SQLExecDirect(), or SQLParamData() returns SQL_ERROR.

The output argument pirow points to a buffer that returns how many sets of
parameters were successfully processed. If the statement that is processed is a
query, pirow points to a buffer that returns the array index that is associated with
the current result set, which returned by SQLMoreResults(). This value increments
each time SQLMoreResults() is called.

Use the value in the buffer to which the pirow argument points for the following
cases:
v When SQLParamData() returns SQL_NEED_DATA, use the value to determine

which set of parameters need data.
v When SQLExecute() or SQLExecDirect() returns an error, use the value to

determine which element in the parameter value array failed.
v When SQLExecute(), SQLExecDirect(), SQLParamData(), or SQLPutData()

succeeds, the value is set to the value that the crow argument specifies to
indicate that all elements of the array have been processed successfully.

If the statement to which SQLParamOptions() refers is a MERGE statement:
v Use SQLParamOptions() to set the number of rows in the source data to be

merged into the target table or view.
v If a MERGE statement contains an UPDATE or INSERT clause with parameter

markers, SQLParamOptions() has no effect on the parameter markers in the
UPDATE or INSERT clause.

v The buffer to which pirow points contains the number of rows that are affected
by the MERGE.

316 ODBC Guide and Reference

Return codes

After you call SQLParamOptions(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 187. SQLParamOptions() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY107 Row value out of range. The value in the crow argument is less than 1.

Example

In ODBC 3.0, the call to SQLParamOptions() is replaced with two calls to
SQLSetStmtAttr():
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMSET_SIZE, crow, 0);
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, piRow, 0);

Related concepts:
“Using arrays to pass parameter values” on page 422
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLMoreResults() - Check for more result sets” on page 304
“Function return codes” on page 24
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLPrepare() - Prepare a statement
SQLPrepare() associates an SQL statement with the input statement handle and
sends the statement to the database management system where it is prepared. The
application can reference this prepared statement by passing the statement handle
to other functions.

If the statement handle has been previously used with a query statement (or any
function that returns a result set), SQLCloseCursor() must be called to close the
cursor, before SQLPrepare() is called.

Chapter 4. ODBC Functions 317

ODBC specifications for SQLPrepare()

Table 188. SQLPrepare() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLPrepare (SQLHSTMT hstmt,

SQLCHAR FAR *szSqlStr,
SQLINTEGER cbSqlStr);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 189. SQLPrepare() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

SQLCHAR * szSqlStr input SQL statement string.

SQLINTEGER cbSqlStr input The length, in bytes, of the contents of the szSqlStr argument.

This must be set to either the exact length of the SQL
statement in szSqlstr, or to SQL_NTS if the statement text is
nul-terminated.

Usage

If the SQL statement text contains vendor escape clause sequences, DB2 ODBC first
modifies the SQL statement text to the appropriate DB2 specific format before
submitting it to the database for preparation. If the application does not generate
SQL statements that contain vendor escape clause sequences, then the
SQL_NOSCAN statement attribute should be set to SQL_NOSCAN_ON at the
statement level so that DB2 ODBC does not perform a scan for any vendor escape
clauses.

When a statement is prepared using SQLPrepare(), the application can request
information about the format of the result set (if the statement is a query) by
calling:
v SQLNumResultCols()
v SQLDescribeCol()
v SQLColAttribute()

The SQL statement string can contain parameter markers and SQLNumParams() can
be called to determine the number of parameter markers in the statement. A
parameter marker is represented by a question mark character (?) that indicates a
position in the statement where an application supplied value is to be substituted
when SQLExecute() is called. The bind parameter functions, SQLBindParameter() is
used to bind (associate) application values with each parameter marker and to
indicate if any data conversion should be performed at the time the data is
transferred.

318 ODBC Guide and Reference

All parameters must be bound before calling SQLExecute().

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

The SQL statement cannot be a COMMIT or ROLLBACK. SQLEndTran() must be
called to issue COMMIT or ROLLBACK. For more information about SQL
statements, that DB2 for z/OS supports, see the topic Differences between DB2
ODBC and embedded SQL.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be defined on a separate statement handle under
the same connection handle and same isolation level.

If the statement that is being prepared is a MERGE statement, the statement text
cannot include the FOR n ROWS clause. To specify the number of rows to be
merged, use the SQLSetStmtAttr() function.

Return codes

After you call SQLPrepare(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 190. SQLPrepare() SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

szSqlStr contains an UPDATE or DELETE statement which did not
contain a WHERE clause.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

21S01 Insert value list does not
match column list.

szSqlStr contains an INSERT or MERGE statement and the number
of values to be inserted did not match the degree of the derived
table.

21S02 Degrees of derived table does
not match column list.

szSqlStr contains a CREATE VIEW statement and the number of
names specified is not the same degree as the derived table defined
by the query specification.

24000 Invalid cursor state. A cursor is already opened on the statement handle.

34000 Invalid cursor name. szSqlStr contains a positioned DELETE or a positioned UPDATE
and the cursor referenced by the statement being executed is not
open.

37xxx1 Invalid SQL syntax. szSqlStr contains one or more of the following:
v A COMMIT
v A ROLLBACK
v An SQL statement that the connected database server cannot

prepare
v A statement containing a syntax error

Chapter 4. ODBC Functions 319

Table 190. SQLPrepare() SQLSTATEs (continued)

SQLSTATE Description Explanation

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled back
due to deadlock or timeout.

42xxx 1 Syntax error or access rule
violation

These SQLSTATEs indicate one of the following errors:

v For 425xx, the authorization ID does not have permission to
execute the SQL statement that the szSqlStr argument contains.

v For 42xxx, a variety of syntax or access problems with the
statement occur.

42S01 Database object already exists. szSqlStr contains a CREATE TABLE or CREATE VIEW statement
and the table name or view name specified already exists.

42S02 Database object does not exist. szSqlStr contains an SQL statement that references a table name or
a view name that does not exist.

42S11 Index already exists. szSqlStr contains a CREATE INDEX statement and the specified
index name already exists.

42S12 Index not found. szSqlStr contains a DROP INDEX statement and the specified index
name does not exist.

42S21 Column already exists. szSqlStr contains an ALTER TABLE statement and the column
specified in the ADD clause is not unique or identifies an existing
column in the base table.

42S22 Column not found. szSqlStr contains an SQL statement that references a column name
that does not exist.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. szSqlStr is a null pointer.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. The argument cbSqlStr is less than 1, but not equal to SQL_NTS.

Note:

1. xxx refers to any SQLSTATE with that class code. For example, 37xxx refers to any SQLSTATE with a class code of
'37'.

Not all database management systems report all of the above diagnostic messages
at prepare time. Therefore, an application must also be able to handle these
conditions when calling SQLExecute().

Restrictions

If the statement that is being prepared is a MERGE statement, the statement text
cannot include the FOR n ROWS clause. To specify the number of rows to be
merged, use the SQLSetStmtAttr() function with the SQL_ATTR_PARAMSET_SIZE
statement attribute.

320 ODBC Guide and Reference

Example

The following example shows an application that uses SQLPrepare() to prepare an
SQL statement. This same SQL statement is then executed twice, each time with
different parameter values.
/**/
/* Prepare a query and execute that query twice */
/* specifying a unique value for the parameter marker. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";
SWORD cbCursor;
SDWORD cbValue1;
SDWORD cbValue2;
char employee [30];
int salary = 0;
int param_salary = 30000;
char *stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE SALARY > ?";
(void) printf ("**** Entering CLIP07.\n\n");
/***/
/* Allocate environment handle */
/***/
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (rc != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if (rc != SQL_SUCCESS) // Could not get a connect handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
rc = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if (rc != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handles */
/***/
rc = SQLAllocHandle (SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

goto dberror;
/***/
/* Prepare the query for multiple execution within current */
/* transaction. Note that query is collapsed when transaction */
/* is committed or rolled back. */
/***/
rc = SQLPrepare (hStmt,

Chapter 4. ODBC Functions 321

(SQLCHAR *) stmt,
strlen(stmt));

if (rc != SQL_SUCCESS)
{

(void) printf ("**** PREPARE OF QUERY FAILED.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind employee name

1,
SQL_C_CHAR,
employee,
sizeof(employee),
&cbValue1);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF NAME FAILED.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind employee salary

2,
SQL_C_LONG,
&salary,
0,
&cbValue2);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** BIND OF SALARY FAILED.\n");
goto dberror;

}
/***/
/* Bind parameter to replace ’?’ in query. This has an initial */
/* value of 30000. */
/***/
rc = SQLBindParameter (hStmt,

1,
SQL_PARAM_INPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
¶m_salary,
0,
NULL);

/***/
/* Execute prepared statement to generate answer set. */
/***/
rc = SQLExecute (hStmt);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** EXECUTE OF QUERY FAILED.\n");
goto dberror;

}
/***/
/* Answer set is available -- Fetch rows and print employees */
/* and salary. */
/***/
(void) printf ("**** Employees whose salary exceeds %d follow.\n\n",

param_salary);
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Employee Name %s with salary %d.\n",
employee,
salary);

}
/***/
/* Close query --- note that query is still prepared. Then change*/
/* bound parameter value to 100000. Then re-execute query. */

322 ODBC Guide and Reference

/***/
rc = SQLCloseCursor(hStmt);
param_salary = 100000;
rc = SQLExecute (hStmt);
if (rc != SQL_SUCCESS)
{

(void) printf ("**** EXECUTE OF QUERY FAILED.\n");
goto dberror;

}
/***/
/* Answer set is available -- Fetch rows and print employees */
/* and salary. */
/***/
(void) printf ("**** Employees whose salary exceeds %d follow.\n\n",

param_salary);
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Employee Name %s with salary %d.\n",
employee,
salary);

}
/***/
/* Deallocate statement handles -- statement is no longer in a */
/* prepared state. */
/***/
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
/***/
/* DISCONNECT from data source */
/***/
rc = SQLDisconnect(hDbc);
if (rc != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
rc = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (rc != SQL_SUCCESS)

goto dberror;
/***/
/* Free environment handle */
/***/
rc = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
if (rc == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP07.\n\n");
return RETCODE;

}

Figure 27. An application that prepares an SQL statement before execution

Chapter 4. ODBC Functions 323

Related concepts:
“Differences between DB2 ODBC and embedded SQL” on page 4
“Vendor escape clauses” on page 504
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLColAttribute() - Get column attributes” on page 135
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLNumParams() - Get number of parameters in an SQL statement” on page 310
“SQLNumResultCols() - Get number of result columns” on page 312
“Function return codes” on page 24
“SQLSetParam() - Bind a parameter marker to a buffer” on page 369

SQLPrimaryKeys() - Get primary key columns of a table
SQLPrimaryKeys() returns a list of column names that comprise the primary key for
a table. The information is returned in an SQL result set. This result set can be
retrieved by using the same functions that process a result set that is generated by
a query.

ODBC specifications for SQLPrimaryKeys()

Table 191. SQLPrimaryKeys() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLPrimaryKeys (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 192. SQLPrimaryKeys() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Catalog qualifier of a three-part table name.

This must be a null pointer or a zero length string.

SQLSMALLINT cbCatalogName input The length, in bytes, of szCatalogName.

SQLCHAR * szSchemaName input Schema qualifier of table name.

324 ODBC Guide and Reference

Table 192. SQLPrimaryKeys() arguments (continued)

Data type Argument Use Description

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input The length, in bytes, of szTableName.

Usage

SQLPrimaryKeys() returns the primary key columns from a single table. Search
patterns cannot be used to specify the schema qualifier or the table name.

The result set contains the columns listed in Table 193, ordered by TABLE_CAT,
TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION.

Because calls to SQLPrimaryKeys() in many cases map to a complex and, thus,
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared
with a maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because DB2 names are less than 128, you can always
choose to set aside 128 characters (plus the nul-terminator) for the output buffer.
Alternatively, you can call SQLGetInfo() with the InfoType argument set to each of
the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.
The following table lists each column in the result set this function generates.

Table 193. Columns returned by SQLPrimaryKeys()

Column number Column name Data type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing
TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT
NULL

Name of the specified table.

4 COLUMN_NAME VARCHAR(128) NOT
NULL

Primary key column name.

5 KEY_SEQ SMALLINT NOT
NULL

Column sequence number in the primary
key, starting with 1.

6 PK_NAME VARCHAR(128) Primary key identifier. Contains a null value
if not applicable to the data source.

Chapter 4. ODBC Functions 325

The column names used by DB2 ODBC follow the X/Open CLI CAE specification
style. The column types, contents and order are identical to those defined for the
SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is
returned.

Return codes

After you call SQLPrimaryKeys(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 194. SQLPrimaryKeys() SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already open on the statement handle.

40003 or 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

HYC00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Example

The following example shows an application that uses SQLPrimaryKeys() to locate
a primary key for a table, and calls SQLColAttribute() to find the data type of the
key.
/* ... */
#include <sqlcli1.h>
void main()
{

SQLCHAR rgbDesc_20];
SQLCHAR szTableName_20];
SQLCHAR szSchemaName_20];
SQLCHAR rgbValue_20];
SQLINTEGER pcbValue;
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;

326 ODBC Guide and Reference

SQLSMALLINT pscDesc;
SQLINTEGER pdDesc;
SQLRETURN rc;
/***/
/* Initialization... */
/***/
if(SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv)!= SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");
exit(1);

}
if(SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc)!= SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");
exit(1);

}
if(SQLConnect(hdbc,

NULL, SQL_NTS,
NULL, SQL_NTS,
NULL, SQL_NTS) != SQL_SUCCESS)

{
fprintf(stdout, "Error in SQLConnect\n");
exit(1);

}
if(SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt)!= SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");
exit(1);

}

/***/
/* Get primary key for table ’myTable’ by using SQLPrimaryKeys */
/***/
rc = SQLPrimaryKeys(hstmt,

NULL, SQL_NTS,
(SQLCHAR*)szSchemaName, SQL_NTS,
(SQLCHAR*)szTableName, SQL_NTS);

if(rc != SQL_SUCCESS)
{

goto exit;
}
/*
* Because all we need is the ordinal position, we’ll bind column 5 from
* the result set.
*/
rc = SQLBindCol(hstmt,

5,
SQL_C_CHAR,
(SQLPOINTER)rgbValue,
20,
&pcbValue);

if(rc != SQL_SUCCESS)
{

goto exit;
}
/*
* Fetch data...
*/
if(SQLFetch(hstmt) != SQL_SUCCESS)
{

goto exit;
}
/***/
/* Get data type for that column by calling SQLColAttribute(). */
/***/
rc = SQLColAttribute(hstmt,

pcbValue,

Chapter 4. ODBC Functions 327

SQL_COLUMN_TYPE,
rgbDesc,
20,
&pcbDesc,
&pfDesc);

if(rc != SQL_SUCCESS)
{

goto exit;
}
/*
* Display the data type.
*/
fprintf(stdout, "Data type ==>

exit:
/***/
/* Clean up the environment... */
/***/
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
SQLDisconnect(hdbc);
SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
SQLFreeHandle(SQL_HANDLE_ENV, henv);

}

Related reference:
“SQLForeignKeys() - Get a list of foreign key columns” on page 210
“Function return codes” on page 24
“SQLStatistics() - Get index and statistics information for a base table” on page
392

SQLProcedureColumns() - Get procedure input/output parameter
information

SQLProcedureColumns() returns a list of input and output parameters that are
associated with a procedure. The information is returned in an SQL result set. This
result set is retrieved by the same functions that process a result set that is
generated by a query.

ODBC specifications for SQLProcedureColumns()

Table 195. SQLProcedureColumns() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLProcedureColumns (

SQLHSTMT hstmt,
SQLCHAR FAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLCHAR FAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR FAR *szProcName,
SQLSMALLINT cbProcName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName);

Figure 28. An application that locates a table's primary key

328 ODBC Guide and Reference

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 196. SQLProcedureColumns() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szProcCatalog input Catalog qualifier of a three-part procedure name.

This must be a null pointer or a zero length string.

SQLSMALLINT cbProcCatalog input The length, in bytes, of szProcCatalog. This must be set to 0.

SQLCHAR * szProcSchema input Buffer that can contain a pattern-value to qualify the result set
by schema name.

If you do not want to qualify the result set by schema name,
use a null pointer or a zero length string for this argument.

SQLSMALLINT cbProcSchema input The length, in bytes, of szProcSchema.

SQLCHAR * szProcName input Buffer that can contain a pattern-value to qualify the result set
by procedure name.

If you do not want to qualify the result set by procedure
name, use a null pointer or a zero length string for this
argument.

SQLSMALLINT cbProcName input The length, in bytes, of szProcName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result set
by parameter name. This argument is to be used to further
qualify the result set already restricted by specifying a
non-empty value for szProcName and/or szProcSchema.

If you do not want to qualify the result set by parameter
name, use a null pointer or a zero length string for this
argument.

SQLSMALLINT cbColumnName input The length, in bytes, of szColumnName.

Usage

Registered stored procedures are defined in the SYSIBM.SYSROUTINES catalog
table. For servers that do not provide facilities for a stored procedure catalog, this
function returns an empty result set.

DB2 ODBC returns information on the input, input/output, and output parameters
associated with the stored procedure, but cannot return information on the
descriptor information for any result sets returned.

SQLProcedureColumns() returns the information in a result set, ordered by
PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and
COLUMN_TYPE. Table 197 on page 330 lists the columns in the result set.

Because calls to SQLProcedureColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

Chapter 4. ODBC Functions 329

The VARCHAR columns of the catalog functions result set have been declared
with a maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because DB2 names are less than 128 bytes, the application
can choose to always set aside 128 bytes (plus the nul-terminator) for the output
buffer. Alternatively, you can call SQLGetInfo() with the InfoType argument set to
each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Applications should be aware that columns beyond the last column might be
defined in future releases. Although new columns might be added and the names
of the existing columns changed in future releases, the position of the current
columns does not change. The following table lists these columns.

Table 197. Columns returned by SQLProcedureColumns()

Column
number Column name Data type Description

1 PROCEDURE_CAT VARCHAR(128) This field is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing
PROCEDURE_NAME. (This is also NULL for DB2 for
z/OS SQLProcedureColumns() result sets.)

3 PROCEDURE_NAME VARCHAR(128) Name of the procedure.

4 COLUMN_NAME VARCHAR(128) Name of the parameter.

5 COLUMN_TYPE SMALLINT NOT
NULL

Identifies the type information associated with this
row. The values can be:

v SQL_PARAM_TYPE_UNKNOWN: the parameter
type is unknown.1

v SQL_PARAM_INPUT: this parameter is an input
parameter.

v SQL_PARAM_INPUT_OUTPUT: this parameter is an
input/output parameter.

v SQL_PARAM_OUTPUT: this parameter is an output
parameter.

v SQL_RETURN_VALUE: the procedure column is the
return value of the procedure.1

v SQL_RESULT_COL: this parameter is actually a
column in the result set.1

Requirement: For SQL_PARAM_OUTPUT and
SQL_RETURN_VALUE support, you must have
ODBC 2.0 or higher.

6 DATA_TYPE SMALLINT NOT
NULL

SQL data type.

7 TYPE_NAME VARCHAR(128)
NOT NULL

Character string representing the name of the data
type corresponding to DATA_TYPE.

330 ODBC Guide and Reference

Table 197. Columns returned by SQLProcedureColumns() (continued)

Column
number Column name Data type Description

8 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character
or binary string, then this column contains the
maximum length in bytes; if it is a graphic (DBCS)
string, this is the number of double-byte characters for
the parameter.

For date, time, timestamp data types, this is the total
number of bytes required to display the value when
converted to character.

For numeric data types, this is either the total number
of digits, or the total number of bits allowed in the
column, depending on the value in the
NUM_PREC_RADIX column in the result set.

For the XML data type in native SQL procedures, zero
is returned (the XML data type has no length).

9 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C
buffer to store data from this parameter if
SQL_C_DEFAULT is specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This
length excludes any nul-terminator. For exact numeric
data types, the length accounts for the decimal and the
sign.

For the XML data type in native SQL procedures, zero
is returned (the XML data type has no length).

10 DECIMAL_DIGITS SMALLINT The scale of the parameter. NULL is returned for data
types where scale is not applicable.

11 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an
approximate numeric data type, this column contains
the value 2, then the COLUMN_SIZE column contains
the number of bits allowed in the parameter.

If DATA_TYPE is an exact numeric data type, this
column contains the value 10 and the COLUMN_SIZE
and DECIMAL_DIGITS columns contain the number
of decimal digits allowed for the parameter.

For numeric data types, the database management
system can return a NUM_PREC_RADIX of either 10
or 2.

NULL is returned for data types where radix is not
applicable.

12 NULLABLE SMALLINT NOT
NULL

SQL_NO_NULLS if the parameter does not accept
NULL values.

SQL_NULLABLE if the parameter accepts NULL
values.

13 REMARKS VARCHAR(254) Might contain descriptive information about the
parameter.

Chapter 4. ODBC Functions 331

Table 197. Columns returned by SQLProcedureColumns() (continued)

Column
number Column name Data type Description

14 COLUMN_DEF VARCHAR(254) The default value for the column. If the default value
is:

v A numeric literal, this column contains the character
representation of the numeric literal with no
enclosing single quotes.

v A character string, this column is that string
enclosed in single quotes.

v A pseudo-literal, such as for DATE, TIME, and
TIMESTAMP columns, this column contains the
keyword of the pseudo-literal (for example,
CURRENT DATE) with no enclosing single quotes.

v NULL, this column returns the word NULL, with no
enclosing single quotes.

If the default value cannot be represented without
truncation, this column contains TRUNCATED with no
enclosing single quotes. If no default value is specified,
this column is NULL.

15 SQL_DATA_TYPE SMALLINT NOT
NULL

The SQL data type. This columns is the same as the
DATA_TYPE column. For datetime data types, the
SQL_DATA_TYPE field in the result set is
SQL_DATETIME, and the SQL_DATETIME_SUB field
returns the subcode for the specific datetime data type
(SQL_CODE_DATE, SQL_CODE_TIME or
SQL_CODE_TIMESTAMP).

16 SQL_DATETIME_SUB SMALLINT The subtype code for datetime data types:
v SQL_CODE_DATE
v SQL_CODE_TIME
v SQL_CODE_TIMESTAMP

For all other data types, this column returns a null
value.

17 CHAR_OCTET_LENGTH INTEGER The maximum length in bytes of a character data type
column. For the XML data type in native SQL
procedures, zero is returned (the XML data type has no
length). For all other data types, this column returns
null value.

18 ORDINAL_POSITION INTEGER NOT
NULL

Contains the ordinal position of the parameter given
by COLUMN_NAME in this result set. This is the
ordinal position of the argument provided on the
CALL statement. The leftmost argument has an ordinal
position of 1.

19 IS_NULLABLE VARCHAR(128) One of the following:

v "NO", if the column does not include null values

v "YES", if the column can include null values

v Zero-length string if nullability is unknown.

The value returned for this column is different than the
value returned for the NULLABLE column. (See the
description of the NULLABLE column.)

Note:

1. These values are not returned.

332 ODBC Guide and Reference

The column names used by DB2 ODBC follow the X/Open CLI CAE specification
style. The column types, contents and order are identical to those defined for the
SQLProcedureColumns() result set in ODBC.

Return codes

After you call SQLProcedureColumns(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 198. SQLProcedureColumns() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is opened on the statement handle.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table
contains a syntax error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC does not support catalog as a qualifier for procedure
name.

v The connected server does not support schema as a qualifier for
procedure name.

Restrictions

SQLProcedureColumns() does not return information about the attributes of result
sets that stored procedures can return.

If an application is connected to a DB2 server that does not provide support for
stored procedures, or for a stored procedure catalog, SQLProcedureColumns()
returns an empty result set.

Example

The following example shows an application that retrieves input, input/output,
and output parameters associated with a procedure.

Chapter 4. ODBC Functions 333

/**/
/* Invoke SQLProcedureColumns and enumerate all rows retrieved. */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlcli1.h"
int main()
{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";
char procedure_name [20];
char parameter_name [20];
char ptype [20];
SQLSMALLINT parameter_type = 0;
SQLSMALLINT data_type = 0;
char type_name [20];
SWORD cbCursor;
SDWORD cbValue3;
SDWORD cbValue4;
SDWORD cbValue5;
SDWORD cbValue6;
SDWORD cbValue7;
char ProcCatalog [20] = {0};
char ProcSchema [20] = {0};
char ProcName [20] = {"DOIT
char ColumnName [20] = {"P
SQLSMALLINT cbProcCatalog = 0;
SQLSMALLINT cbProcSchema = 0;
SQLSMALLINT cbProcName = strlen(ProcName);
SQLSMALLINT cbColumnName = strlen(ColumnName);

(void) printf ("**** Entering CLIP12.\n\n");
/***/
/* Allocate environment handle */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Allocate connection handle to DSN */
/***/
RETCODE = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if(RETCODE != SQL_SUCCESS) // Could not get a connect handle

goto dberror;
/***/
/* CONNECT TO data source (STLEC1) */
/***/
RETCODE = SQLConnect(hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 ,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;

/***/
/* Allocate statement handles */
/***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)

334 ODBC Guide and Reference

goto exit;
/***/
/* Invoke SQLProcedureColumns and retrieve all rows within */
/* answer set. */
/***/
rc = SQLProcedureColumns (hStmt ,

(SQLCHAR *) ProcCatalog,
cbProcCatalog ,
(SQLCHAR *) ProcSchema ,
cbProcSchema ,
(SQLCHAR *) ProcName ,
cbProcName ,
(SQLCHAR *) ColumnName ,
cbColumnName);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** SQLProcedureColumns Failed.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind procedure_name

3,
SQL_C_CHAR,
procedure_name,
sizeof(procedure_name),
&cbValue3);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of procedure_name Failed.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind parameter_name

4,
SQL_C_CHAR,
parameter_name,
sizeof(parameter_name),
&cbValue4);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of parameter_name Failed.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind parameter_type

5,
SQL_C_SHORT,
¶meter_type,
0,
&cbValue5);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of parameter_type Failed.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind SQL data type

6,
SQL_C_SHORT,
&data_type,
0,
&cbValue6);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of data_type Failed.\n");
goto dberror;

}
rc = SQLBindCol (hStmt, // bind type_name

7,
SQL_C_CHAR,

Chapter 4. ODBC Functions 335

type_name,
sizeof(type_name),
&cbValue7);

if (rc != SQL_SUCCESS)
{

(void) printf ("**** Bind of type_name Failed.\n");
goto dberror;

}
/***/
/* Answer set is available - Fetch rows and print parameters for */
/* all procedures. */
/***/
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("**** Procedure Name = %s. Parameter %s",
procedure_name,
parameter_name);

switch (parameter_type)
{

case SQL_PARAM_INPUT :
(void) strcpy (ptype, "INPUT");
break;

case SQL_PARAM_OUTPUT :
(void) strcpy (ptype, "OUTPUT");
break;

case SQL_PARAM_INPUT_OUTPUT :
(void) strcpy (ptype, "INPUT/OUTPUT");
break;

default :
(void) strcpy (ptype, "UNKNOWN");
break;

}
(void) printf (" is %s. Data Type is %d. Type Name is %s.\n",

ptype ,
data_type ,
type_name);

}
/***/
/* Deallocate statement handles -- statement is no longer in a */
/* prepared state. */
/***/
rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
/***/
/* DISCONNECT from data source */
/***/
RETCODE = SQLDisconnect(hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Deallocate connection handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
if (RETCODE != SQL_SUCCESS)

goto dberror;
/***/
/* Free Environment Handle */
/***/
RETCODE = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
if (RETCODE == SQL_SUCCESS)

goto exit;
dberror:
RETCODE=12;
exit:
(void) printf ("**** Exiting CLIP12.\n\n");
return RETCODE;

}

336 ODBC Guide and Reference

Related concepts:
“Use of ODBC for querying the DB2 catalog” on page 417
Related reference:
“Length of SQL data types” on page 550
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLProcedures() - Get a list of procedure names”
“Function return codes” on page 24

SQLProcedures() - Get a list of procedure names
SQLProcedures() returns a list of procedure names that have been registered at the
server, and that match the specified search pattern. The information is returned in
an SQL result set. This result set is retrieved by the same functions that process a
result set that is generated by a query.

ODBC specifications for SQLProcedures()

Table 199. SQLProcedures() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLProcedures (SQLHSTMT hstmt,

SQLCHAR FAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLCHAR FAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR FAR *szProcName,
SQLSMALLINT cbProcName);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 200. SQLProcedures() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szProcCatalog input Catalog qualifier of a three-part procedure name.

This must be a null pointer or a zero length string.

SQLSMALLINT cbProcCatalog input The length, in bytes, of szProcCatalog. This must be set to 0.

SQLCHAR * szProcSchema input Buffer that can contain a pattern-value to qualify the result set
by schema name.

If you do not want to qualify the result set by schema name,
use a null pointer or a zero length string for this argument.

Figure 29. An application that retrieves parameters associated with a procedure

Chapter 4. ODBC Functions 337

Table 200. SQLProcedures() arguments (continued)

Data type Argument Use Description

SQLSMALLINT cbProcSchema input The length, in bytes, of szProcSchema.

SQLCHAR * szProcName input Buffer that can contain a pattern-value to qualify the result set
by table name.

If you do not want to qualify the result set by table name, use
a null pointer or a zero length string for this argument.

SQLSMALLINT cbProcName input The length, in bytes, of szProcName.

Usage

Registered stored procedures are defined in the SYSIBM.SYSROUTINES catalog
table. For servers that do not provide facilities for a stored procedure catalog, this
function returns an empty result set.

The result set returned by SQLProcedures() contains the columns that are listed in
Table 201 in the order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEM, and PROCEDURE_NAME.

Because calls to SQLProcedures() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared
with a maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because DB2 names are less than 128 bytes, the application
can choose to always set aside 128 bytes (plus the nul-terminator) for the output
buffer. Alternatively, you can call SQLGetInfo() with the InfoType argument set to
each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.
Table 202 on page 339 lists these columns.

Table 201. Columns returned by SQLProcedures()

Column
number Column name Data type Description

1 PROCEDURE_CAT VARCHAR(128) This is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing
PROCEDURE_NAME.

3 PROCEDURE_NAME VARCHAR(128) NOT
NULL

The name of the procedure.

338 ODBC Guide and Reference

Table 201. Columns returned by SQLProcedures() (continued)

Column
number Column name Data type Description

4 NUM_INPUT_PARAMS INTEGER not NULL Number of input parameters.

5 NUM_OUTPUT_PARAMS INTEGER not NULL Number of output parameters.

6 NUM_RESULT_SETS INTEGER not NULL Number of result sets returned by the procedure.

7 REMARKS VARCHAR(254) Contains the descriptive information about the
procedure.

8 PROCEDURE_TYPE SMALLINT Defines the procedure type:
v SQL_PT_UNKNOWN: It cannot be determined

whether the procedure returns a value.
v SQL_PT_PROCEDURE: The returned object is a

procedure; that is, it does not have a return
value.

v SQL_PT_FUNCTION: The returned object is a
function; that is, it has a return value.

DB2 ODBC always returns SQL_PT_PROCEDURE.

The column names used by DB2 ODBC follow the X/Open CLI CAE specification
style. The column types, contents and order are identical to those defined for the
SQLProcedures() result set in ODBC.

Return codes

After you call SQLProcedures(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 202. SQLProcedures() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is opened on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

Chapter 4. ODBC Functions 339

Table 202. SQLProcedures() SQLSTATEs (continued)

SQLSTATE Description Explanation

HYC00 Driver not capable. This SQLSTATE is returned for one or more of the following
reasons:

v DB2 ODBC does not support catalog as a qualifier for procedure
name.

v The connected server does not supported schema as a qualifier
for procedure name.

Restrictions

If an application is connected to a DB2 server that does not provide support for
stored procedures, or for a stored procedure catalog, SQLProcedureColumns()
returns an empty result set.

Example

The following example shows an application that prints a list of procedures
registered at the server. The application uses SQLProcedures() to retrieve these
procedures and to establish a search pattern.

Related concepts:
“Use of ODBC for querying the DB2 catalog” on page 417
Related reference:
“SQLProcedureColumns() - Get procedure input/output parameter information” on
page 328
“Function return codes” on page 24

SQLPutData() - Pass a data value for a parameter
SQLPutData() supplies a parameter data value. This function can be used to send
large parameter values in pieces. The information is returned in an SQL result set.
This result set is retrieved by the same functions that process a result set that is
generated by a query.

/* ... */
printf("Enter Procedure Schema Name Search Pattern:\n");
gets(proc_schem.s);
rc = SQLProcedures(hstmt, NULL, 0, proc_schem.s, SQL_NTS, "NTS);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

&proc_schem.ind);
rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

&proc_name.ind);
rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

&remarks.ind);
printf("PROCEDURE SCHEMA PROCEDURE NAME \n");
printf("------------------------- ------------------------- \n");
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("schem.s, proc_name.s);
if (remarks.ind != SQL_NULL_DATA) {

printf(" (Remarks)
}

} /* endwhile */
/* ... */

Figure 30. An application that prints a list of registered procedures

340 ODBC Guide and Reference

ODBC specifications for SQLPutData()

Table 203. SQLPutData() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLPutData (SQLHSTMT hstmt,

SQLPOINTER rgbValue,
SQLINTEGER cbValue);

For 64-bit applications, use the following syntax:
SQLRETURN SQLPutData (SQLHSTMT hstmt,

SQLPOINTER rgbValue,
SQLLEN cbValue);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 204. SQLPutData() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLPOINTER rgbValue input Pointer to the actual data, or portion of data, for a parameter.
The data must be in the form specified in the
SQLBindParameter() call that the application used when
specifying the parameter.

SQLINTEGER (31-bit)
or SQLLEN (64-bit) 1

cbValue input The length, in bytes, of rgbValue. Specifies the amount of data
sent in a call to SQLPutData().

The amount of data can vary with each call for a given
parameter. The application can also specify SQL_NTS or
SQL_NULL_DATA for cbValue.

cbValue is ignored for all fixed-length C buffer types, such as
date, time, timestamp, and all numeric C buffer types.

For cases where the C buffer type is SQL_C_CHAR or
SQL_C_BINARY, or if SQL_C_DEFAULT is specified as the C
buffer type and the C buffer type default is SQL_C_CHAR or
SQL_C_BINARY, this is the number of bytes of data in the
rgbValue buffer.

Notes:

1. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

Usage

The application calls SQLPutData() after calling SQLParamData() on a statement in
the SQL_NEED_DATA state to supply the data values for an

Chapter 4. ODBC Functions 341

SQL_DATA_AT_EXEC parameter. Long data can be sent in pieces using repeated
calls to SQLPutData(). After all the pieces of data for the parameter have been sent,
the application calls SQLParamData() again to proceed to the next
SQL_DATA_AT_EXEC parameter, or, if all parameters have data values, to execute
the statement.

SQLPutData() cannot be called more than once for a fixed-length C buffer type,
such as SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),
SQLCancel(), or another SQLPutData() if the input data is character or binary data.
As with SQLParamData(), all other function calls using this statement handle fail. In
addition, all function calls referencing the parent hdbc of hstmt fail if they involve
changing any attribute or state of that connection; that is, the following function
calls on the parent hdbc are also not permitted:
v SQLAllocHandle()
v SQLSetConnectAttr()
v SQLNativeSql()
v SQLEndTran()

If they are invoked during an SQL_NEED_DATA sequence, these functions return
SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters is not affected.

If one or more calls to SQLPutData() for a single parameter results in
SQL_SUCCESS, attempting to call SQLPutData() with cbValue set to
SQL_NULL_DATA for the same parameter results in an error with SQLSTATE of
22005. This error does not result in a change of state; the statement handle is still
in a Need Data state and the application can continue sending parameter data.

Return codes

After you call SQLPutData(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Some of the following diagnostic conditions are also reported on the final
SQLParamData() call rather than at the time the SQLPutData() is called. The
following table lists each SQLSTATE with a description and explanation for each
value.

Table 205. SQLPutData() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. This SQLSTATE is returned for one or more of the following
reasons:

v The data sent for a numeric parameter is truncated without the
loss of significant digits.

v Timestamp data sent for a date or time column is truncated.

(SQLPutData() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

342 ODBC Guide and Reference

Table 205. SQLPutData() SQLSTATEs (continued)

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

22001 String data right truncation. More data is sent for a binary or char data than the data source can
support for that column.

22008 Invalid datetime format or
datetime field overflow.

The data value sent for a date, time, or timestamp parameters is
invalid.

22018 Error in assignment. The data sent for a parameter is incompatible with the data type of
the associated table column.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. The argument rgbValue is a NULL pointer, and the argument
cbValue is neither 0 nor SQL_NULL_DATA.

HY010 Function sequence error. The statement handle hstmt must be in a need data state and must
have been positioned on an SQL_DATA_AT_EXEC parameter using
a previous SQLParamData() call.

HY019 Numeric value out of range. This SQLSTATE is returned for one or more of the following
reasons:

v The data sent for a numeric parameter causes the whole part of
the number to be truncated when it is assigned to the associated
column.

v SQLPutData() is called more than once for a fixed-length
parameter.

HY090 Invalid string or buffer length. The argument rgbValue is not a null pointer, and the argument
cbValue is less than 0, but not equal to SQL_NTS or
SQL_NULL_DATA.

Restrictions

A new value for pcbValue, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0,
to indicate that the procedure is to use the default value of a parameter, rather
than a value sent from the application. Because the concept of default values does
not apply to DB2 stored procedure arguments, specification of this value for the
pcbValue argument results in an error when the CALL statement is executed
because the SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the pcbValue argument. The macro is used to specify the sum total
length, in bytes, of the entire data that would be sent for character or binary C
data using the subsequent SQLPutData() calls. Because the DB2 ODBC driver does
not need this information, the macro is not needed. To check if the driver needs
this information, call SQLGetInfo() with the InfoType argument set to
SQL_NEED_LONG_DATA_LEN. The DB2 ODBC driver returns 'N' to indicate that
this information is not needed by SQLPutData().

Example

Refer to the function SQLGetData() for a related example.

Chapter 4. ODBC Functions 343

Related concepts:
“Input and retrieval of long data in pieces” on page 452
Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114
“SQLCancel() - Cancel statement” on page 131
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLGetData() - Get data from a column” on page 232
“SQLParamData() - Get next parameter for which a data value is needed” on page
313
“Function return codes” on page 24

SQLRowCount() - Get row count
SQLRowCount() returns the number of rows in a table that were affected by an
UPDATE, INSERT, DELETE, or MERGE statement. You can call SQLRowCount()
against a table or against a view that is based on the table. SQLExecute() or
SQLExecDirect() must be called before SQLRowCount() is called.

ODBC specifications for SQLRowCount()

Table 206. SQLRowCount() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax

For 31-bit applications, use the following syntax:
SQLRETURN SQLRowCount (SQLHSTMT hstmt,

SQLINTEGER FAR *pcrow);

For 64-bit applications, use the following syntax:
SQLRETURN SQLRowCount (SQLHSTMT hstmt,

SQLLEN FAR *pcrow);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 207. SQLRowCount() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLINTEGER *(31-bit)
or SQLLEN * (64-bit)1

pcrow output Pointer to location where the number of rows affected is
stored.

Notes:

1. For 64-bit applications, the data type SQLINTEGER, which was used in previous versions of DB2, is still valid.
However, for maximum application portability, using SQLLEN is recommended.

344 ODBC Guide and Reference

Usage

If the last executed statement referenced by the input statement handle is not an
UPDATE, INSERT, DELETE, or MERGE statement, or if it did not execute
successfully, then the function sets the contents of pcrow to -1.

If SQLRowCount() is executed after the SQLExecDirect() or SQLExecute() of an SQL
statement other than INSERT, UPDATE, DELETE, or MERGE, it results in return
code 0 and pcrow is set to -1.

Any rows in other tables that might be affected by the statement (for example,
cascading deletes) are not included in the count.

If SQLRowCount() is executed after a built-in function (for example, SQLTables()), it
results in return code -1 and SQLSTATE HY010.

Return codes

After you call SQLRowCount(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 208. SQLRowCount() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called prior to calling SQLExecute() or
SQLExecDirect() for the hstmt.

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

Example

Refer to the function SQLDescribeCol() for a related example.

Chapter 4. ODBC Functions 345

Related reference:
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLNumResultCols() - Get number of result columns” on page 312
“Function return codes” on page 24

SQLSetColAttributes() - Set column attributes
SQLSetColAttributes() sets the data source result descriptor (column name, type,
precision, scale, and nullability) for one column in the result set. If you set the data
source result descriptor, DB2 ODBC does not need to obtain the descriptor
information from the database management system server.

ODBC specifications for SQLSetColAttributes()

Table 209. SQLSetColAttributes() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLSetColAttributes (SQLHSTMT hstmt,

SQLUSMALLINT icol,
SQLCHAR FAR *pszColName,
SQLSMALLINT cbColName,
SQLSMALLINT fSqlType,
SQLUINTEGER cbColDef,
SQLSMALLINT ibScale,
SQLSMALLINT fNullable);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 210. SQLSetColAttributes() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number of result data, ordered sequentially left to
right, starting at 1.

SQLCHAR * szColName input Pointer to the column name. If the column is unnamed or is
an expression, this pointer can be set to NULL, or an empty
string can be used.

SQLSMALLINT cbColName input The length, in bytes, of szColName buffer.

346 ODBC Guide and Reference

Table 210. SQLSetColAttributes() arguments (continued)

Data type Argument Use Description

SQLSMALLINT fSqlType input The SQL data type of the column. The following values are
recognized:
v SQL_BIGINT
v SQL_BINARY
v SQL_BLOB
v SQL_CHAR
v SQL_CLOB
v SQL_DBCLOB
v SQL_DECFLOAT
v SQL_DECIMAL
v SQL_DOUBLE
v SQL_FLOAT
v SQL_GRAPHIC
v SQL_INTEGER
v SQL_LONGVARBINARY
v SQL_LONGVARCHAR
v SQL_LONGVARGRAPHIC
v SQL_NUMERIC
v SQL_REAL
v SQL_ROWID
v SQL_SMALLINT
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_VARBINARY
v SQL_VARCHAR
v SQL_VARGRAPHIC
v SQL_XML

SQLUINTEGER cbColDef input The precision of the column on the data source. If fSqlType is
SQL_XML, ODBC ignores cbColDef.

SQLSMALLINT ibScale input The scale of the column on the data source. This is ignored
for all data types except SQL_DECIMAL, SQL_NUMERIC,
SQL_TYPE_TIMESTAMP.

SQLSMALLINT fNullable input Indicates whether the column allows null values. This must of
one of the following values:
v SQL_NO_NULLS - the column does not allow null values.
v SQL_NULLABLE - the column allows null values.

Usage

This function is designed to help reduce the amount of network traffic that can
result when an application is fetching result sets that contain an extremely large
number of columns. If the application has advanced knowledge of the
characteristics of the descriptor information of a result set (that is, the exact
number of columns, column name, data type, nullability, precision, or scale), then
it can inform DB2 ODBC rather than having DB2 ODBC obtain this information
from the database, thus reducing the quantity of network traffic.

An application typically calls SQLSetColAttributes() after a call to SQLPrepare()
and before the associated call to SQLExecute(). An application can also call
SQLSetColAttributes() before a call to SQLExecDirect(). This function is valid
only after the statement attribute SQL_NODESCRIBE has been set to
SQL_NODESCRIBE_ON for this statement handle.

Chapter 4. ODBC Functions 347

SQLSetColAttributes() informs DB2 ODBC of the column name, type, and length
that would be generated by the subsequent execution of the query. This
information allows DB2 ODBC to determine whether any data conversion is
necessary when the result is returned to the application.

Recommendation: Use this function only if you know the exact nature of the result
set.

The application must provide the result descriptor information for every column in
the result set or an error occurs on the subsequent fetch (SQLSTATE 07002). Using
this function only benefits those applications that handle an extremely large
number (hundreds) of columns in a result set. Otherwise the effect is minimal.

Return codes

After you call SQLSetColAttributes(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 211. SQLSetColAttributes() SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The szColName argument contains a column name that is too long.
To obtain the maximum length of the column name, call
SQLGetInfo with the InfoType SQL_MAX_COLUMN_NAME_LEN.

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY000 General error. An error occurred for which there is no specific SQLSTATE and for
which no implementation defined SQLSTATE is defined. The error
message returned by SQLGetDiagRec() in the argument szErrorMsg
describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY004 Invalid SQL data type. The value specified for the argument fSqlType is not a valid SQL
data type.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument cbColName is less than 0 and
not equal to SQL_NTS.

HY099 Nullable type out of range. The value specified for fNullable is invalid.

348 ODBC Guide and Reference

Table 211. SQLSetColAttributes() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY104 Invalid precision value. This SQLSTATE is returned for one or more of the following
reasons:

v The value specified for fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for cbColDef is less than
1, or the value specified for ibScale is less than 0 or greater than
the value for the argument cbColDef (precision).

v The value specified for fSqlType is SQL_TYPE_TIMESTAMP and
the value for ibScale is less than 0 or greater than 12.

HY002 Invalid column number. The value specified for the argument icol is less than 1 or greater
than the maximum number of columns supported by the server.

Example

The following example shows an application that uses SQLSetColAttributes() to
set the data source results descriptor.

/* ... */
SQLCHAR stmt[] =
{ "Select id, name from staff" };

/* ... */
/* Tell DB2 ODBC not to get column attribute from the server for this hstmt */

rc = SQLSetStmtAttr(hstmt,SQL_ATTR,NODESCRIBE,(void *)SQL_NODESCRIBE_ON, 0);
rc = SQLPrepare(hstmt, stmt, SQL_NTS);

/* Provide the columns attributes to DB2 ODBC for this hstmt */
rc = SQLSetColAttributes(hstmt, 1, "-ID-", SQL_NTS, SQL_SMALLINT,

5, 0, SQL_NO_NULLS);
rc = SQLSetColAttributes(hstmt, 2, "-NAME-", SQL_NTS, SQL_CHAR,

9, 0, SQL_NULLABLE);
rc = SQLExecute(hstmt);
print_results(hstmt); /* Call sample function to print column attributes

and fetch and print rows. */
rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
rc = SQLEndTran(SQL_HANDLE, DBC, hdbc, SQL_COMMIT);
printf("Disconnecting\n");
rc = SQLDisconnect(hdbc);
rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
rc = SQLFreeHandle(SQL_HANDLE_ENV, henv);
if (rc != SQL_SUCCESS)

return (terminate(henv, rc));
return (SQL_SUCCESS);

} /* end main */

Figure 31. An application that sets the data source results descriptor

Chapter 4. ODBC Functions 349

|
|

Related reference:
“SQLColAttribute() - Get column attributes” on page 135
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLPrepare() - Prepare a statement” on page 317
“Function return codes” on page 24

SQLSetConnectAttr() - Set connection attributes
SQLSetConnectAttr() sets attributes that govern aspects of connections.

ODBC specifications for SQLSetConnectAttr()

Table 212. SQLSetConnectAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLSetConnectAttr (SQLHDBC ConnectionHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringLength);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 213. SQLSetConnectAttr() arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Connection attribute to set. Refer to Table 215 on page 352 for
a complete list of attributes.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, *ValuePtr will be a 32-bit
unsigned integer value or point to a nul-terminated character
string. If the Attribute argument is a driver-specific value, the
value in *ValuePtr might be a signed integer.

SQLINTEGER StringLength input Information about the *ValuePtr argument.

v For ODBC-defined attributes:

– If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

– If ValuePtr points to an integer, BufferLength is ignored.

v For driver-defined attributes (IBM extension):

– If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS if it is a
nul-terminated string.

– If ValuePtr points to an integer, BufferLength is ignored.

350 ODBC Guide and Reference

Usage

An application can call SQLSetConnectAttr() at any time between the time the
connection is allocated or freed. All connection and statement attributes
successfully set by the application for the connection persist until SQLFreeHandle()
is called on the connection.

Some connection attributes can be set only before or after a connection is made.
Other attributes cannot be set after a statement is allocated. The following table
indicates when each of the connection attributes can be set.

Table 214. When connection attributes can be set

Attribute
Before
connection After connection

After statements are
allocated

SQL_ATTR_ACCESS_MODE Yes Yes Yes1

SQL_ATTR_AUTOCOMMIT Yes Yes Yes2

SQL_ATTR_CONCURRENT_
ACCESS_RESOLUTION

Yes Yes Yes

SQL_ATTR_CONNECTTYPE Yes No No

SQL_ATTR_CURRENT_SCHEMA Yes Yes Yes

SQL_ATTR_DB2EXPLAIN Yes Yes Yes

SQL_ATTR_DECFLOAT_
ROUNDING_MODE

Yes Yes Yes

SQL_ATTR_EXTENDED_INDICATORS Yes Yes Yes

SQL_ATTR_MAXCONN Yes No No

SQL_ATTR_SYNC_POINT Yes No No

SQL_ATTR_TXN_ISOLATION No Yes Yes

Notes:

1. Attribute only affects subsequently allocated statements.

2. Attribute can be set only if all transactions on the connections are closed.

Table 215 on page 352 lists the SQLSetConnectAttr() Attribute values. Values shown
in bold are default values unless they are otherwise specified in the ODBC
initialization file. DB2 ODBC supports all of the ODBC 2.0 Attribute values that are
renamed in ODBC 3.0.

For a summary of the Attribute values renamed in ODBC 3.0, refer to "Changes to
SQLSetConnectAttr() attributes".

ODBC applications that need to set statement attributes should use
SQLSetStmtAttr(). The ability to set statement attributes on the connect level is
supported, but it is not recommended.

Chapter 4. ODBC Functions 351

Table 215. Connection attributes

Attribute ValuePtr

SQL_ATTR_ACCESS_MODE A 32-bit integer value which can be either:

SQL_MODE_READ_ONLY
Indicates that the application is not performing any updates on
data from this point on. Therefore, a less restrictive isolation
level and locking can be used on transactions; that is,
uncommitted read (SQL_TXN_READ_UNCOMMITTED).

DB2 ODBC does not ensure that requests to the database are
read-only. If an update request is issued, DB2 ODBC processes it
using the transaction isolation level it selected as a result of the
SQL_MODE_READ_ONLY setting.

QL_MODE_READ_WRITE
ndicates that the application is making updates on data from
this point on. DB2 ODBC goes back to using the default
transaction isolation level for this connection.

SQL_MODE_READ_WRITE is the default.

This connection must have no outstanding transactions.

SQL_ATTR_AUTOCOMMIT1 A 32-bit integer value that specifies whether to use autocommit or
manual commit mode:

SQL_AUTOCOMMIT_OFF
The application must manually, explicitly commit or rollback
transactions with SQLEndTran() calls.

SQL_AUTOCOMMIT_ON
DB2 ODBC operates in autocommit mode. Each statement is
implicitly committed. Each statement, that is not a query, is
committed immediately after it has been executed. Each query
is committed immediately after the associated cursor is closed.
This is the default value.

Exception: If the connection is a coordinated distributed unit of
work connection, the default is SQL_AUTOCOMMIT_OFF.

When specifying autocommit, the application can have only one
outstanding statement per connection. For example, two cursors
cannot be open, otherwise unpredictable results can occur. An
open cursor must be closed before another query is executed.

Because in many DB2 environments the execution of the SQL statements
and the commit can be flowed separately to the database server,
autocommit can be expensive. The application developer should take this
into consideration when selecting the autocommit mode.

Changing from manual-commit to autocommit mode commits any open
transaction on the connection. For information about setting this attribute
see the topic Disable autocommit to reduce network flow.

352 ODBC Guide and Reference

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_CONCURRENT_
ACCESS_RESOLUTION

A 32-bit integer value that specifies how the application resolves
concurrent access to locked data:

0 No setting. This is the default value.

1 USE CURRENTLY COMMITTED. Read transactions can access
the currently committed version of the data when the data is in
the process of being updated or deleted. Rows that are in the
process of being inserted are skipped. After this value is set
through SQLSetConnectAttr(), all user SELECT statements for
that connection are prepared with the USE CURRENTLY
COMMITTED attribute. This option applies only when cursor
stability (CS) isolation is in effect.

2 WAIT FOR OUTCOME. Read transactions that require access to
data that is in the process of being updated or deleted must
wait for a COMMIT or ROLLBACK operation to complete.
Rows in the process of being inserted are not skipped. After this
value is set through SQLSetConnectAttr(), all user SELECT
statements for that connection are prepared with the WAIT FOR
OUTCOME attribute.

3 SKIP LOCKED DATA. Read transactions can skip any rows that
are incompatibly locked by other transactions. After this value
is set through SQLSetConnectAttr(), all user SELECT statements
for that connection are prepared with the SKIP LOCKED DATA
attribute. This option applies only when cursor stability or read
stability (RS) or cursor stability (CS) isolation are in effect.

SQL_ATTR_CONCURRENT_ACCESS_RESOLUTION can be set before
or after a connection is made. It can also be set after statements are
allocated, however it will only affect subsequently allocated statements.

Chapter 4. ODBC Functions 353

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_CONNECTTYPE2 A 32-bit integer value that specifies whether this application is to operate
in a coordinated or uncoordinated distributed environment. If the
processing needs to be coordinated, then this attribute must be
considered in conjunction with the SQL_ATTR_SYNC_POINT connection
attribute. The possible values are:

SQL_CONCURRENT_TRANS
The application can have concurrent multiple connections to
any one database or to multiple databases. This attribute value
corresponds to the specification of the type 1 CONNECT in
embedded SQL. Each connection has its own commit scope. No
effort is made to enforce coordination of transaction.

The current setting of the SQL_ATTR_SYNC_POINT attribute is
ignored.

This is the default.

SQL_COORDINATED_TRANS
The application wants to have commit and rollbacks
coordinated among multiple database connections. This
attribute value corresponds to the specification of the type 2
CONNECT in embedded SQL and must be considered in
conjunction with the SQL_ATTR_SYNC_POINT connection
attribute. In contrast to the SQL_CONCURRENT_TRANS
setting described above, the application is permitted only one
open connection per database.

Important: This connection type results in the default for
SQL_ATTR_AUTOCOMMIT connection attribute to be
SQL_AUTOCOMMIT_OFF.

This attribute must be set before making a connect request; otherwise,
the SQLSetConnectAttr() call is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. The
first connection determines the acceptable attributes for the subsequent
connections.

IBM specific: This attribute is an IBM-defined extension.

Recommendation: Have the application set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather
than on a per connection basis. ODBC applications written to take
advantage of coordinated DB2 transactions must set these attributes at
the connection level for each connection as SQLSetEnvAttr() is not
supported in ODBC.

354 ODBC Guide and Reference

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_CURRENT_SCHEMA A nul-terminated character string containing the name of the schema to
be used by DB2 ODBC for the SQLColumns() call if the szSchemaName
pointer is set to null.

To reset this attribute, specify this attribute with a zero length or a null
pointer for the vParam argument.

This attribute is useful when the application developer has coded a
generic call to SQLColumns() that does not restrict the result set by
schema name, but needs to constrain the result set at isolated places in
the code.

This attribute can be set at any time and is effective on the next
SQLColumns() call where the szSchemaName pointer is null.

IBM specific: This attribute is an IBM-defined extension.

SQL_ATTR_DB2EXPLAIN A 32-bit integer value that specifies whether EXPLAIN information
should be gathered. This attribute sets the CURRENT EXPLAIN MODE
special register. You can specify one of the following values:

SQL_DB2EXPLAIN_OFF
Sets the CURRENT EXPLAIN MODE special register to NO,
which disables the EXPLAIN facility.

SQL_DB2EXPLAIN_MODE_ON
Sets the CURRENT EXPLAIN MODE special register to YES,
which enables the EXPLAIN facility.

If you enable the EXPLAIN facility, you must meet the
following requirements:

v The EXPLAIN tables must exist.

v The current authorization ID must have INSERT privilege for
the EXPLAIN tables.

The new SQL_ATTR_DB2EXPLAIN setting is effective on the next
statement preparation for this connection.

Alternatively, you can set the CURRENT EXPLAIN MODE special
register for ODBC applications by using the DB2EXPLAIN initialization
keyword or the SET CURRENT EXPLAIN MODE SQL statement. If you
want to set the CURRENT EXPLAIN MODE special register to
EXPLAIN, you must use the SET CURRENT EXPLAIN MODE SQL
statement.

IBM specific: This attribute is an IBM-defined extension.

Chapter 4. ODBC Functions 355

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_DECFLOAT_
ROUNDING_MODE

A 32-bit integer value that lets an application control the rounding mode
for DECFLOAT data type values. Possible values are:

ROUND_HALF_EVEN
Round to the nearest integer. If the value is equidistant from
two integers, round so that the final digit is even.

ROUND_HALF_UP
Round to the nearest integer. If the value is equidistant from
two integers, round up.

ROUND_DOWN
Round toward 0. This is equivalent to truncation.

ROUND_CEILING
Round toward positive infinity.

ROUND_FLOOR
Round toward negative infinity.

ROUND_HALF_DOWN
Round to the nearest integer. If the value is equidistant from
two integers, round down.

ROUND_UP
Round away from zero.

SQL_ATTR_EXTENDED_INDICATORS A 32-bit integer value that overrides the EXTENDEDINDICATOR
initialization keyword value.

SQL_TRUE
Extended indicator support will be enabled.

SQL_FALSE
Extended indicator support is not enabled. SQL_FALSE is the
default value.

SQL_ATTR_MAXCONN3 A 32-bit integer value corresponding to the number of maximum
concurrent connections that an application wants to set up. The default
value is 0, which means no maximum - the application is allowed to set
up as many connections as the system resources permit. The integer
value must be 0 or a positive number.

This can be used as a governor for the maximum number of connections
on a per application basis.

The value that is in effect when the first connection is established is the
value that is used. When the first connection is established, attempts to
change this value are rejected.

IBM specific: This attribute is an IBM-defined extension.

Recommendation: Have the application set SQL_ATTR_MAXCONN at
the environment level rather then on a connection basis. ODBC
applications must set this attribute at the connection level because
SQLSetEnvAttr() is not supported in ODBC.

356 ODBC Guide and Reference

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_SYNC_POINT A 32-bit integer value that allows the application to choose between
one-phase coordinated transactions and two-phase coordinated
transactions. The possible values are:

SQL_ONEPHASE
The DB2 ODBC 3.0 driver does not support SQL_ONEPHASE.

SQL_TWOPHASE
Two-phase commit is used to commit the work done by each
database in a multiple database transaction. This requires the
use of a transaction manager to coordinate two-phase commits
among the databases that support this protocol. Multiple
readers and multiple updaters are allowed within a transaction.
This attribute is only used when SQL_ATTR_CONNECTTYPE
attribute is SQL_COORDINATED_TRANS. Then
SQL_TWOPHASE is the default. This attribute is ignored when
SQL_ATTR_CONNECTTYPE is set to
SQL_CONCURRENT_TRANS.

This attribute must be set before a connect request. Otherwise the
attribute set request is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. The
first connection determines the acceptable attributes for the subsequent
connections.

Recommendation: Ensure that your application sets the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather
than at a connection level.

Chapter 4. ODBC Functions 357

Table 215. Connection attributes (continued)

Attribute ValuePtr

SQL_ATTR_TXN_ISOLATION4 A 32-bit bit mask that sets the transaction isolation level for the current
connection referenced by hdbc. The valid values for vParam can be
determined at run time by calling SQLGetInfo() with InfoType set to
SQL_TXN_ISOLATION_OPTION. The following values are accepted by
DB2 ODBC, but each server might only support a subset of these
isolation levels:

SQL_TXN_READ_UNCOMMITTED
Dirty reads, reads that cannot be repeated, and phantoms are
possible.

SQL_TXN_READ_COMMITTED
Dirty reads are not possible. Reads that cannot be repeated, and
phantoms are possible.

This is the default.

SQL_TXN_REPEATABLE_READ
Dirty reads and reads that cannot be repeated are not possible.
Phantoms are possible.

SQL_TXN_SERIALIZABLE
Transactions can be serialized. Dirty reads, non-repeatable reads,
and phantoms are not possible.

SQL_TXN_NOCOMMIT
Any changes are effectively committed at the end of a
successful operation; no explicit commit or rollback is allowed.
This is analogous to autocommit. This is not an ANSI/ISO SQL
standard of 1992 isolation level, but an IBM defined extension,
supported only by DB2 for i.

In IBM terminology,
v SQL_TXN_READ_UNCOMMITTED is “uncommitted read.”
v SQL_TXN_READ_COMMITTED is “cursor stability.”
v SQL_TXN_REPEATABLE_READ is “read stability.”
v SQL_TXN_SERIALIZABLE is “repeatable read.”

This attribute cannot be specified while there is an open cursor on any
statement handle, or an outstanding transaction for this connection;
otherwise, SQL_ERROR is returned on the function call (SQLSTATE
HY011).

Tip: An IBM extension enables you to set transaction isolation levels on
each individual statement handle. See the
SQL_ATTR_STMTTXN_ISOLATION attribute in the function description
for SQLSetStmtAttr().

Notes:

1. You can change the default value for this attribute with the AUTOCOMMIT keyword in the ODBC initialization
file.

2. You can change the default value for this attribute with the CONNECTTYPE keyword in the ODBC initialization
file.

3. You can change the default value for this attribute with the MAXCONN keyword in the ODBC initialization file.

4. You can change the default value for this attribute with the TXNISOLATION keyword in the ODBC initialization
file.

358 ODBC Guide and Reference

Return codes

After you call SQLSetConnectAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 216. SQLSetConnectAttr() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLSetConnectAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

01S02 Option value changed. SQL_ATTR_SYNC_POINT changed to SQL_TWOPHASE.
SQL_ONEPHASE is not supported.

08S01 Unable to connect to data
source.

The communication link between the application and the data
source failed before the function completed.

08003 Connection is closed. An Attribute value is specified that requires an open connection,
but the ConnectionHandle is not in a connected state.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory for the specified handle.

HY009 Invalid use of a null pointer. A null pointer is passed for ValuePtr and the value in *ValuePtr is a
string value.

HY010 Function sequence error. SQLExecute() or SQLExecDirect() is called with the statement
handle, and returned SQL_NEED_DATA. This function is called
before data is sent for all data-at-execution parameters or columns.
Invoke SQLCancel() to cancel the data-at-execution condition.

HY011 Operation invalid at this time. The argument Attribute is SQL_ATTR_TXN_ISOLATION and a
transaction is open.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value is specified in
*ValuePtr.

HY090 Invalid string or buffer length. The StringLength argument is less than 0, but is not SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute is not valid for this
version of DB2 ODBC.

HYC00 Driver not capable. The value specified for the argument Attribute is a valid connection
or statement attribute for this version of the DB2 ODBC driver, but
is not supported by the data source.

Example

The following example uses SQLConnectAttr() to set statement attribute values:
rc=SQLSetConnectAttr(hdbc,SQL_ATTR_AUTOCOMMIT,

(void*) SQL_AUTOCOMMIT_OFF, SQL_NTS);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

Chapter 4. ODBC Functions 359

Related concepts:
“Extended indicators in ODBC applications” on page 509
“Disable autocommit to reduce network flow” on page 514
“Set isolation levels for maximum concurrency and data consistency” on page 511

Distributed unit of work (DB2 SQL)
Related tasks:

Improving concurrency for applications that tolerate incomplete results (DB2
Performance)

Accessing currently committed data to avoid lock contention (DB2
Performance)
Related reference:
“Changes to SQLSetConnectAttr() attributes” on page 567
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLGetConnectAttr() - Get current attribute setting” on page 224
“Function return codes” on page 24
“SQLSetStmtAttr() - Set statement attributes” on page 376
“DB2 ODBC initialization keywords” on page 65

isolation-clause (DB2 SQL)

SQLSetConnection() - Set connection handle
SQLSetConnection() is needed if the application needs to deterministically switch
to a particular connection before continuing execution. Use this function only when
your application mixes DB2 ODBC function calls with embedded SQL function
calls and makes multiple database connections.

ODBC specifications for SQLSetConnection()

Table 217. SQLSetConnection() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No No No

Syntax
SQLRETURN SQLSetConnection (SQLHDBC hdbc);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 218. SQLSetConnection() arguments

Data type Argument Use Description

SQLHDBC hdbc input The connection handle associated with the connection to
which the application wants to switch.

360 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_distributedunitofwork.htm#db2z_distributedunitofwork
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useskiplockeddata.htm#db2z_useskiplockeddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_accesscommitteddata.htm#db2z_accesscommitteddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_accesscommitteddata.htm#db2z_accesscommitteddata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_isolationclause.htm#db2z_sql_isolationclause

Usage

ODBC allows multiple concurrent connections. It is not clear which connection an
embedded SQL routine uses when invoked. In practice, the embedded routine uses
the connection associated with the most recent network activity. However, from the
application's perspective, this is not always easy to determine and it is difficult to
keep track of this information. SQLSetConnection() is used to allow the application
to explicitly specify which connection is active. The application can then call the
embedded SQL routine.

SQLSetConnection() is not needed at all if the application makes purely DB2
ODBC calls. This is because each statement handle is implicitly associated with a
connection handle and there is never any confusion as to which connection a
particular DB2 ODBC function applies.

Important: To mix DB2 ODBC with embedded SQL, you must not enable DB2
ODBC support for multiple contexts. The initialization file for mixed applications
must specify MULTICONTEXT=0 or exclude MULTICONTEXT keyword.

Return codes

After you call SQLSetConnection(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 219. SQLSetConnection() SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with an
open connection to a database server.

HY000 General error. An error occurred for which there is no specific SQLSTATE and for
which the implementation does not define an SQLSTATE.
SQLGetDiagRec() returns an error message in the argument
szErrorMsg that describes the error and its cause.

Example

The topic Using arrays to pass parameter values contains an example that
demonstrates how to invoke SQLSetConnection().

Chapter 4. ODBC Functions 361

Related concepts:
“Using arrays to pass parameter values” on page 422
“Embedded SQL and DB2 ODBC in the same program” on page 502
Related reference:
“SQLConnect() - Connect to a data source” on page 155
“SQLDriverConnect() - Use a connection string to connect to a data source” on
page 172
“Function return codes” on page 24

SQLSetConnectOption() - Set connection option
This function is deprecated and is replaced by SQLSetConnectAttr(). You cannot
use SQLSetConnectOption() for 64-bit applications.

ODBC specifications for SQLSetConnectOption()

Table 220. SQLSetConnectOption() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes No

Syntax
SQLRETURN SQLSetConnectOption(

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLUINTEGER vParam);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 221. SQLSetConnectOption arguments

Data type Argument Use Description

HDBC hdbc input Connection handle.

SQLUSMALLINT fOption input Connect attribute to set.

SQLUINTEGER vParam input Value associated with fOption. Depending on the attribute,
this can be a 32-bit integer value, or a pointer to a
nul-terminated string.

Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350

SQLSetCursorName() - Set cursor name
SQLSetCursorName() associates a cursor name with the statement handle. This
function is optional because DB2 ODBC implicitly generates a cursor name when
each statement handle is allocated.

362 ODBC Guide and Reference

ODBC specifications for SQLSetCursorName()

Table 222. SQLSetCursorName() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLSetCursorName (SQLHSTMT hstmt,

SQLCHAR FAR *szCursor,
SQLSMALLINT cbCursor);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 223. SQLSetCursorName() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor input Cursor name

SQLSMALLINT cbCursor input The length, in bytes, of contents of szCursor argument

Usage

DB2 ODBC always generates and uses an internally generated cursor name when a
query is prepared or executed directly. SQLSetCursorName() allows an application
defined cursor name to be used in an SQL statement (a positioned UPDATE or
DELETE). DB2 ODBC maps this name to the internal name. The name remains
associated with the statement handle, until the handle is dropped, or another
SQLSetCursorName() is called on this statement handle.

Although SQLGetCursorName() returns the name set by the application (if one is
set), error messages that are associated with positioned UPDATE and DELETE
statements refer to the internal name.

Recommendation: Do not use SQLSetCursorName(). Instead, use the internal name,
which you can obtain by calling SQLGetCursorName().

Cursor names must follow these rules:
v All cursor names within the connection must be unique.
v Each cursor name must be less than or equal to 18 bytes in length. Any attempt

to set a cursor name longer than 18 bytes results in truncation of that cursor
name to 18 bytes. (No warning is generated.)

v Because internally generated names begin with SQLCUR, SQL_CUR, or
SQLCURQRS, the application must not input a cursor name starting with either
SQLCUR or SQL_CUR in order to avoid conflicts with internal names.

v Because a cursor name is considered an identifier in SQL, it must begin with an
English letter (a-z, A-Z) followed by any combination of digits (0-9), English
letters or the underscore character (_).

Chapter 4. ODBC Functions 363

v To permit cursor names containing characters other than those listed above (such
as National Language Set or Double-Byte Character Set characters), the
application must enclose the cursor name in double quotes (").

v Unless the input cursor name is enclosed in double quotes, all leading and
trailing blanks from the input cursor name string are removed.

For efficient processing, applications should not include any leading or trailing
spaces in the szCursor buffer. If the szCursor buffer contains a delimited identifier,
applications should position the first double quote as the first character in the
szCursor buffer.

Return codes

After you call SQLSetCursorName(), it returns one of the following values:
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 224. SQLSetCursorName() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

34000 Invalid cursor name. This SQLSTATE is returned for one or more of the following
reasons:

v The cursor name specified by the argument szCursor is invalid.
The cursor name either begins with SQLCUR, SQL_CUR, or
SQLCURQRS or violates the cursor naming rules (Must begin
with a-z or A-Z followed by any combination of English letters,
digits, or the '_' character.

v The cursor name specified by the argument szCursor already
exists.

v The cursor name length is greater than the value returned by
SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN
argument.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY009 Invalid use of a null pointer. szCursor is a null pointer.

HY010 Function sequence error. This SQLSTATE is returned for one or more of the following
reasons:

v There is an open or positioned cursor on the statement handle.

v The function is called during a data-at-execute operation. (That
is, the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY013 Unexpected memory handling
error.

DB2 ODBC is not able to access the memory that is required to
support execution or completion of the function.

HY090 Invalid string or buffer length. The argument cbCursor is less than 0, but not equal to SQL_NTS.

364 ODBC Guide and Reference

Example

The following example shows an application that uses SQLSetCursorName() to set a
cursor name.

Related reference:
“SQLGetCursorName() - Get cursor name” on page 228
“Function return codes” on page 24

SQLSetEnvAttr() - Set environment attributes
SQLSetEnvAttr() sets attributes that affects all connections in an environment.

ODBC specifications for SQLSetEnvAttr()

Table 225. SQLSetEnvAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

No Yes Yes

Syntax
SQLRETURN SQLSetEnvAttr (SQLHENV EnvironmentHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringLength);

/* ... */
SQLCHAR sqlstmt[] =

"SELECT name, job FROM staff "
"WHERE job=’Clerk’ FOR UPDATE OF job";

/* ... */
/* Allocate second statement handle for update statement */
rc2 = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt2);
/* Set Cursor for the SELECT statement handle */
rc = SQLSetCursorName(hstmt1, "JOBCURS", SQL_NTS);
rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS);
/* bind name to first column in the result set */
rc = SQLBindCol(hstmt1, 1, SQL_C_CHAR, (SQLPOINTER) name.s, 10,

&name.ind);
/* bind job to second column in the result set */
rc = SQLBindCol(hstmt1, 2, SQL_C_CHAR, (SQLPOINTER) job.s, 6,

&job.ind);
printf("Job change for all clerks\n");
while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS) {

printf("Name:
printf("Enter new job or return to continue\n");
gets(newjob);
if (newjob[0] != ’\0’) {

sprintf(updstmt,
"UPDATE staff set job = ’%s’ where current of JOBCURS",
newjob);

rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);
}

}
if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt1, rc, __LINE__, __FILE__);
/* ... */

Figure 32. An application that sets a cursor name

Chapter 4. ODBC Functions 365

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 226. SQLSetEnvAttr() arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Environment attribute to set. See Table 227 for the list of
attributes and their descriptions.

SQLPOINTER ValuePtr input The value for Attribute.

SQLINTEGER StringLength input The length of ValuePtr in bytes if the attribute value is a
character string. If Attribute does not denote a string, DB2
ODBC ignores StringLength.

Usage

When set, the attribute value affects all connections in this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

Table 227 lists the SQLSetEnvAttr() Attribute values. The values that are shown in
bold are default values.

Attribute values were renamed in ODBC 3.0. For a summary of the Attributes
renamed in ODBC 3.0, refer to "Changes to SQLSetEnvAttr() attributes".

Table 227. Environment attributes

Attribute Contents

SQL_ATTR_ODBC_VERSION A 32-bit integer that determines whether certain functionality exhibits ODBC
2.0 behavior or ODBC 3.0 behavior. This value cannot be changed while any
connection handles are allocated.

The following values are used to set the value of this attribute:

v SQL_OV_ODBC3: Causes the following ODBC 3.0 behavior:

– DB2 ODBC returns and expects ODBC 3.0 data type codes for date,
time, and timestamp.

– DB2 ODBC returns ODBC 3.0 SQLSTATE codes when SQLGetDiagRec()
is called.

– The CatalogName argument in a call to SQLTables() accepts a search
pattern.

v SQL_OV_ODBC2 causes the following ODBC 2.x behavior:

– DB2 ODBC returns and expects ODBC 2.x data type codes for date,
time, and timestamp.

– DB2 ODBC returns ODBC 2.0 SQLSTATE codes when SQLGetDiagRec()
or SQLError() are called.

– The CatalogName argument in a call to SQLTables() does not accept a
search pattern.

366 ODBC Guide and Reference

Table 227. Environment attributes (continued)

Attribute Contents

SQL_ATTR_OUTPUT_NTS A 32-bit integer value which controls the use of nul-termination in output
arguments. The possible values are:

v SQL_TRUE: DB2 ODBC uses nul-termination to indicate the length of
output character strings.

This is the default.

v SQL_FALSE: DB2 ODBC does not use nul-termination in output character
strings.

The CLI functions affected by this attribute are all functions called for the
environment (and for any connections and statements allocated under the
environment) that have character string parameters.

This attribute can only be set when no connection handles are allocated
under the environment handle.

SQL_ATTR_CONNECTTYPE1 A 32-bit integer value that specifies whether this application is to operate in a
coordinated or uncoordinated distributed environment. The possible values
are:

v SQL_CONCURRENT_TRANS: Each connection has its own commit
scope. No effort is made to enforce coordination of transaction. If an
application issues a commit using the environment handle on SQLEndTran()
and not all of the connections commit successfully, the application is
responsible for recovery. This corresponds to CONNECT (type 1) semantics
subject to the restrictions described in DB2 ODBC restrictions on the ODBC
connection model.

This is the default.

v SQL_COORDINATED_TRANS: The application wants to have commit and
rollbacks coordinated among multiple database connections. In contrast to
the SQL_CONCURRENT_TRANS setting described above, the application
is permitted only one open connection per database.

This attribute must be set before allocating any connection handles,
otherwise, the SQLSetEnvAttr() call is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. This
attribute can also be set using the SQLSetConnectAttr() function.

IBM specific: This attribute is an IBM-defined extension.

Recommendation: Have the application set the SQL_ATTR_CONNECTTYPE
attribute at the environment level rather than on a per connection basis.
ODBC applications written to take advantage of coordinated DB2 transactions
must set these attributes at the connection level for each connection using
SQLSetConnectAttr() as SQLSetEnvAttr() is not supported in ODBC.

Chapter 4. ODBC Functions 367

Table 227. Environment attributes (continued)

Attribute Contents

SQL_ATTR_MAXCONN2 A 32-bit integer value corresponding to the number that maximum
concurrent connections that an application wants to set up. The default value
is 0, which means no maximum - the application is allowed to set up as
many connections as the system resources permit. The integer value must be
0 or a positive number.

This can be used as a governor for the maximum number of connections on a
per application basis.

The value that is in effect when the first connection is established is the value
that is used. When the first connection is established, attempts to change this
value are rejected.

IBM specific: This attribute is an IBM-defined extension.

Recommendation: Have the application set SQL_ATTR_MAXCONN at the
environment level rather then on a connection basis. ODBC applications must
set this attribute at the connection level because this attribute is not
supported in ODBC.

Notes:

1. You can change the default value for this attribute with the CONNECTTYPE keyword in the ODBC initialization
file.

2. You can change the default value for this attribute with the MAXCONN keyword in the ODBC initialization file.

Return codes

After you call SQLSetEnvAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 228. SQLSetEnvAttr() SQLSTATEs

SQLSTATE Description Explanation

HY009 Invalid use of a null pointer. A null pointer is passed for ValuePtr and the value in *ValuePtr is a
string value.

HY011 Operation invalid at this time. Applications cannot set environment attributes while connection
handles are allocated on the environment handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value is specified in
*ValuePtr.

HY090 Invalid string or buffer length. The StringLength argument is less than 0, but is not SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute is not valid for this
version of DB2 ODBC.

HYC00 Driver not capable. The specified Attribute is not supported by DB2 ODBC. Given
specified Attribute value, the value specified for the argument
ValuePtr is not supported.

368 ODBC Guide and Reference

Example

The following example uses SQLSetEnvAttr() to set an environment attribute. Also,
see the topic Functions for establishing a distributed unit-of-work connection.
SQLINTEGER output_nts,autocommit;
rc = SQLSetEnvAttr(henv,

SQL_ATTR_OUTPUT_NTS,
(SQLPOINTER) output_nts,
0
) ;

CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);

Related concepts:
“Functions for establishing a distributed unit-of-work connection” on page 410
“DB2 ODBC restrictions on the ODBC connection model” on page 12
Related reference:
“Changes to SQLSetEnvAttr() attributes” on page 568
“SQLAllocHandle() - Allocate a handle” on page 97
“SQLGetEnvAttr() - Return current setting of an environment attribute” on page
247
“Function return codes” on page 24
“SQLSetStmtAttr() - Set statement attributes” on page 376
“DB2 ODBC initialization keywords” on page 65

SQLSetParam() - Bind a parameter marker to a buffer
SQLSetParam() is a deprecated function and is replaced with SQLBindParameter().

ODBC specifications for SQLSetParam()

Table 229. SQLSetParam() specifications

ODBC X/OPEN CLI ISO CLI

1.0 (Deprecated) Yes No

Example

Suppose that a program contains the following statement:
rc = SQLSetParam(hstmt, 1, SQL_C_LONG, SQL_INTEGER,

0, 0, Prod_Num, NULL);

To get the same result with SQLBindParameter(), use this code:
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, Prod_Num, 0, NULL);

Related reference:
“SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator” on
page 114

SQLSetPos - Set the cursor position in a rowset
SQLSetPos() sets the cursor position in a rowset. Once the cursor is set, the
application can refresh, update, and delete data in the rows.

Chapter 4. ODBC Functions 369

ODBC specifications for SQLSetPos()

Table 230. SQLSetPos() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes Yes

Syntax
SQLRETURN SQLSetPos (

SQLHSTMT StatementHandle,
SQLSETPOSIROW RowNumber,
SQLUSMALLINT Operation,
SQLUSMALLINT LockType);

Function arguments

Table 231. SQLSetPos arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT RowNumber input Position in the rowset of the row on which the
operation that is specified by Operation is performed.
If RowNumber is 0, the operation applies to every
row in the rowset.

SQLUSMALLINT Operation input Operation to perform:
v SQL_POSITION
v SQL_REFRESH
v SQL_UPDATE
v SQL_DELETE
v SQL_ADD

ODBC also specifies the following operations for
backwards compatibility only, which DB2 ODBC also
supports:
v SQL_ADD

Although DB2 ODBC supports SQL_ADD in
SQLSetPos() calls, this function is deprecated. Use
SQLBulkOperations() with an Operation value of
SQL_ADD instead.

SQLUSMALLINT LockType input Specifies how to lock the row after performing the
operation that is specified in the Operation argument.
DB2 ODBC supports SQL_LOCK_NO_CHANGE.

ODBC also specifies the following operations, which
DB2 ODBC does not support:
v SQL_LOCK_EXCLUSIVE
v SQL_LOCK_UNLOCK

Usage

RowNumber argument: The RowNumber argument specifies the number of the row
in the rowset on which to perform the operation that is specified by the Operation
argument. If RowNumber is 0, the operation applies to every row in the rowset.
RowNumber must be a value between 0 and the number of rows in the rowset,
inclusive.

370 ODBC Guide and Reference

In the C language, arrays are 0-based, but the RowNumber argument 1-based. For
example, to update the fifth row of the rowset, an application modifies the rowset
buffers at array index 4, but specifies a RowNumber of 5.

An application can specify a cursor position when it calls SQLSetPos(). Generally,
the application calls SQLSetPos() with the SQL_POSITION or SQL_REFRESH
operation to position the cursor before executing a positioned update or delete
statement or calling SQLGetData().

Operation argument: To determine which options are supported by a data source,
an application calls SQLGetInfo() with one of the following information types,
depending on the type of cursor:
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1
v SQL_DYNAMIC_CURSOR_ATTRIBUTES1
v SQL_STATIC_CURSOR_ATTRIBUTES1

Operation can have one of the following values:

SQL_POSITION

DB2 ODBC positions the cursor on the row specified by RowNumber.

The contents of the row status array that is pointed to by the
SQL_ATTR_ROW_STATUS_PTR statement attribute are unchanged. The
contents of the row operation array that is pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored.

SQL_REFRESH

DB2 ODBC positions the cursor on the row that is specified by RowNumber,
and refreshes data in the rowset buffers for that row. For more information
about how DB2 ODBC returns data in the rowset buffers, see the
descriptions of row-wise and column-wise binding. DB2 ODBC supports
only static cursors on SQL_REFRESH.

SQLSetPos() with an Operation value of SQL_REFRESH updates the status
and content of the rows within the current fetched rowset. The data in the
buffers is refreshed, but not refetched, so the membership in the rowset is
fixed.

The contents of the row status array that is pointed to by the
SQL_ATTR_ROW_STATUS_PTR statement attribute are also refreshed.

SQL_UPDATE

DB2 ODBC positions the cursor on the row that is specified by RowNumber,
and updates the underlying row of data with the values in the rowset
buffers (the rgbValue argument in SQLBindCol()). SQLSetPos() retrieves the
lengths of the data from the length or indicator buffers (the pcbValue
argument in SQLBindCol()). If the length of any column is
SQL_COLUMN_IGNORE, the column is not updated.

After the row is updated, the corresponding element of the row status
array is updated to SQL_ROW_UPDATED or
SQL_ROW_SUCCESS_WITH_INFO, if the row status array exists.

The row operation array that is pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to
indicate that a row in the current rowset should be ignored during a bulk
update.

Chapter 4. ODBC Functions 371

SQL_DELETE

DB2 ODBC positions the cursor on the row that is specified by RowNumber,
and deletes the underlying row of data.

The corresponding element of the row status array, which is pointed to by
the SQL_ATTR_ROW_STATUS_PTR statement attribute, is changed to
SQL_ROW_DELETED.

The row operation array that is pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to
indicate that a row in the current rowset should be ignored during a bulk
delete.

SQL_ADD

DB2 ODBC specifies the SQL_ADD value for backward compatibility only.

Recommendation: Instead of calling SQLPos() with the SQL_ADD value,
use the ODBC 3.0 function SQLBulkOperations(), with the Operation
argument set to SQL_ADD.

LockType argument

The LockType argument provides a way for applications to control concurrency.
Generally, data sources that support concurrency levels and transactions support
only the SQL_LOCK_NO_CHANGE value of the LockType argument.

Although the LockType argument is specified for a single statement, the lock
accords the same privileges to all statements on the connection. In particular, a lock
that is acquired by one statement on a connection can be unlocked by a different
statement on the same connection.

ODBC defines the following LockType arguments. DB2 ODBC supports only
SQL_LOCK_NO_CHANGE. To determine which locks are supported by a data
source, an application calls SQLGetInfo() with the SQL_LOCK_TYPES information
type.

Table 232. Operation values

LockType argument Lock type

SQL_LOCK_NO_CHANGE Ensures that the row is in the same locked or unlocked state
as it was before SQLSetPos() was called. This value of
LockType allows data sources that do not support explicit
row-level locking to use the locking that is required by the
current concurrency and transaction isolation levels.

SQL_LOCK_EXCLUSIVE Not supported by DB2 ODBC. Locks the row exclusively.

SQL_LOCK_UNLOCK Not supported by DB2 ODBC. Unlocks the row.

Status and operation arrays

The following status and operation arrays are used with SQLSetPos():
v The row status array contains status values for each row of data in the rowset.

Status values are set in this array after a call to SQLFetch(), SQLFetchScroll(), or
SQLSetPos().

v The row operation array contains a value for each row in the rowset, which
indicates whether a call to SQLSetPos() for a bulk operation is ignored or
performed. Each element in the array is SQL_ROW_PROCEED (the default) or

372 ODBC Guide and Reference

SQL_ROW_IGNORE. The SQL_ATTR_ROW_OPERATION_PTR statement
attribute points to the row operation array.

The number of elements in the status and operation arrays should be equal to the
number of rows in the rowset, as defined by the SQL_ATTR_ROW_ARRAY_SIZE
statement attribute.

Return codes

After you call SQLPos(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 233. SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_REFRESH, and string or binary
data that was returned for a column or columns with a data type
of SQL_C_CHAR or SQL_C_BINARY resulted in the truncation of
non-blank character or non-NULL binary data.

01S01 Error in row. The RowNumber argument was 0, and an error occurred in one or
more rows when the operation that is specified with the Operation
argument was performed.

SQL_SUCCESS_WITH_INFO is returned if an error occurs at least
one, but not all, rows of a multirow operation. SQL_ERROR is
returned if an error occurs on a single-row operation.

01S07 Fractional truncation. The Operation argument was SQL_REFRESH, the data type of the
application buffer was not SQL_C_CHAR or SQL_C_BINARY, and
the data that was returned to application buffers for one or more
columns was truncated. For numeric data types, the fractional part
of the number was truncated. For time and timestamp data types,
the fractional portion of the time was truncated.

07006 Invalid conversion. The data value of a column in the result set could not be
converted to the data type that was specified by fCType in the call
to SQLBindCol().

21S02 Degrees of derived table does
not match column list.

The argument Operation was SQL_UPDATE, and no columns
could be updated because all columns were either unbound,
read-only, or the value in the bound length or indicator buffer was
SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column
resulted in the truncation of non-blank (for characters) or non-null
(for binary) characters or bytes.

Chapter 4. ODBC Functions 373

Table 233. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

22003 Numeric value out of range. One of the following conditions occurred:

v The argument Operation was SQL_UPDATE. The assignment of
a numeric value to a column in the result set caused the whole
(as opposed to fractional) part of the number to be truncated.

v The argument Operation was SQL_REFRESH. The numeric value
for one or more bound columns could not be returned because
significant digits were lost.

22008 Invalid datetime format or
datetime field overflow.

One of the following conditions occurred:

v The Operation argument was SQL_UPDATE. A datetime
arithmetic operation on data that was sent to a column in the
result set resulted in a datetime field (the year, month, day,
hour, minute, or second field) of the result that was outside the
permissible range of values for the field, or was invalid based
on the natural rules for datetime values for the Gregorian
calendar. Alternatively, the assignment of a numeric value to a
column in the result set caused the whole part of the number to
be truncated.

v The Operation argument was SQL_REFRESH. A datetime
arithmetic operation on data that was retrieved from the result
set resulted in a datetime field (the year, month, day, hour,
minute, or second field) of the result that was outside the
permissible range of values for the field, or was invalid based
on the natural rules for datetime values for the Gregorian
calendar.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message that was returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC was unable to allocate memory required to support
execution or completion of the function. Process-level memory
might have been exhausted for the application process. Consult
the operating system configuration for information on
process-level memory limitations.

HY010 Function sequence error. One of the following conditions occurred:

v The specified StatementHandle was not in an executed state. The
function was called without a previous call of SQLExecDirect(),
SQLExecute(), or a catalog function.

v SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for
the StatementHandle, and returned SQL_NEED_DATA. This
function was called before data was sent for all
data-at-execution parameters or columns.

v SQLSetPos() was called for a StatementHandle before
SQLFetchScroll() was called, or after SQLFetch() was called,
and before SQLFreeStmt() was called with the SQL_CLOSE
option.

HY011 Operation invalid at this time. The application set the SQL_ATTR_ROW_STATUS_PTR statement
attribute. Then SQLSetPos() was called before SQLFetch(),
SQLFetchScroll(), or SQLExtendedFetch() was called.

374 ODBC Guide and Reference

Table 233. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. One of the following conditions occurred:

v The Operation argument was SQL_ADD or SQL_UPDATE, a
data value was a null pointer, and the column length value was
not 0, SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

v The Operation argument was SQL_ADD or SQL_UPDATE, a
data value was not a null pointer, and the column length value
was less than 0, but not equal to SQL_DATA_AT_EXEC,
SQL_COLUMN_IGNORE, SQL_NTS, or SQL_NULL_DATA, or
less than or equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

HY107 Row value out of range. One of the following conditions occurred:

v The cursor that was associated with the StatementHandle was
defined as forward only, so the cursor could not be positioned
within the rowset. See the description for the
SQL_ATTR_CURSOR_TYPE attribute in SQLSetStmtAttr().

v The Operation argument was SQL_UPDATE, SQL_DELETE, or
SQL_REFRESH, and the row that was identified by the
RowNumber argument was deleted or had not been fetched.

v The Operation argument was SQL_POSITION, and the
RowNumber argument was 0.

HYC00 Driver not capable. DB2 ODBC or the data source does not support the operation that
was requested in the Operation argument or the LockType
argument.

Restrictions

SQL_REFRESH for dynamic scrollable cursors is not supported by DB2 ODBC.

Example
rc = SQLSetPos(

hstmt,
1, /* Position at the first row of the rowset. */
SQL_POSITION,
SQL_LOCK_NO_CHANGE); /* Do not change the lock state. */

Chapter 4. ODBC Functions 375

Related concepts:
“The ODBC row status array” on page 431
Related tasks:
“Providing long data for bulk inserts and positioned updates” on page 454
Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLCancel() - Cancel statement” on page 131
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLFetch() - Fetch the next row” on page 197
“SQLNumResultCols() - Get number of result columns” on page 312

SQLSetStmtAttr() - Set statement attributes
SQLSetStmtAttr() sets attributes that are related to a statement. To set an attribute
for all statements that are associated with a specific connection, an application can
call SQLSetConnectAttr().

ODBC specifications for SQLSetStmtAttr()

Table 234. SQLSetStmtAttr() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

3.0 Yes Yes

Syntax
SQLRETURN SQLSetStmtAttr (SQLHSTMT StatementHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringLength);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 235. SQLSetStmtAttr() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Statement attribute to set. Refer to Table 236 on page 378 for a
complete list of attributes.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, ValuePtr will be a 32-bit
unsigned integer value or point to a nul-terminated character
string. If the Attribute argument is a driver-specific value, the
value in ValuePtr might be a signed integer.

376 ODBC Guide and Reference

Table 235. SQLSetStmtAttr() arguments (continued)

Data type Argument Use Description

SQLINTEGER StringLength input Information about the *ValuePtr argument.

v For ODBC-defined attributes:

– If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

– If ValuePtr points to an integer, BufferLength is ignored.

v For driver-defined attributes (IBM extension):

– If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS if it is a
nul-terminated string.

– If ValuePtr points to an integer, BufferLength is ignored.

Usage

Statement attributes for a statement remain in effect until they are changed by
another call to SQLSetStmtAttr() or until the statement is dropped by calling
SQLFreeHandle(). Calling SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND or
the SQL_RESET_PARAMS attribute does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source
does not support the value specified in *ValuePtr. In such cases, DB2 ODBC returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (attribute value changed). To
determine the substituted value, an application calls SQLGetStmtAttr().

The format of the information set with ValuePtr depends on the specified Attribute.
SQLSetStmtAttr() accepts attribute information either in the format of a
nul-terminated character string or a 32-bit integer value. The format of each
ValuePtr value is noted in the attribute descriptions shown in Table 236 on page
378. This format applies to the information returned for each attribute in
SQLGetStmtAttr(). Character strings that the ValuePtr argument of
SQLSetStmtAttr() point to have a length of StringLength.

DB2 ODBC supports all of the ODBC 2.0 Attribute values that are renamed in
ODBC 3.0. For a summary of the Attribute values renamed in ODBC 3.0, refer to
"Changes to SQLSetStmtAttr() attributes".

Overriding DB2 CCSIDs from DSNHDECP: DB2 ODBC extensions to
SQLSetStmtAttr() allow an application to override the Unicode, EBCDIC, or ASCII
CCSID settings of the DB2 subsystem to which they are currently attached, using
the statement attributes SQL_CCSID_CHAR and SQL_CCSID_GRAPHIC. This
extension is intended for applications that are attempting to send and receive data
to and from DB2 in a CCSID that differs from the default settings in the DB2
DSNHDECP.

The CCSID override applies only to input data bound to parameter markers
through SQLBindParameter() or SQLBindFileToParam(), output data that is bound
to columns through SQLBindCol() or SQLBindFileToCol(), and output data that is
retrieved through SQLGetData().

The CCSID override applies on a statement level only. DB2 will continue to use the
default CCSID settings in the DB2 DSNHDECP after the statement is dropped or if
SQL_CCSID_DEFAULT is specified.

Chapter 4. ODBC Functions 377

You can use SQLGetStmtAttr() to query the settings of the current statement
handle CCSID override.

The following table lists each Attribute value SQLSetStmtAttr() can set. Values
shown in bold are default values.

Table 236. Statement attributes

Attribute ValuePtr contents

SQL_ATTR_BIND_TYPE or
SQL_ATTR_ROW_BIND_TYPE

A 32-bit integer value that sets the binding orientation to be used when
SQLExtendedFetch() is called with this statement handle. Column-wise
binding is selected by supplying the value SQL_BIND_BY_COLUMN
for the argument vParam. Row-wise binding is selected by supplying a
value for vParam specifying the length (in bytes) of the structure or an
instance of a buffer into which result columns are bound.

For row-wise binding, the length (in bytes) specified in vParam must
include space for all of the bound columns and any padding of the
structure or buffer to ensure that when the address of a bound column
is incremented with the specified length, the result points to the
beginning of the same column in the next row. (When using the sizeof
operator with structures or unions in ANSI C, this behavior is
guaranteed.)

SQL_CCSID_CHAR A 32-bit integer value that specifies the CCSID of:

v Data that is bound to parameter markers with SQLBindParameter() or
SQLBindFileToParam()

v Data that is bound to columns of a result set with SQLBindCol() or
SQLBindFileToCol()

v Data that is retrieved with SQLGetData()

The CCSID applies to data for which the C symbolic data type is
SQL_C_CHAR and the SQL data type is one of the following types:
v SQL_CHAR
v SQL_VARCHAR
v SQL_LONGVARCHAR
v SQL_CLOB
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP

SQL_CCSID_GRAPHIC A 32-bit integer value that specifies the CCSID of:

v Data that is bound to parameter markers with SQLBindParameter() or
SQLBindFileToParam()

v Data that is bound to columns of a result set with SQLBindCol() or
SQLBindFileToCol()

v Data that is retrieved with SQLGetData()

The CCSID applies to data for which the C symbolic data type is
SQL_C_DBCHAR and the SQL data type is one of the following types:
v SQL_GRAPHIC
v SQL_VARGRAPHIC
v SQL_LONGVARGRAPHIC
v SQL_DBCLOB
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP

378 ODBC Guide and Reference

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_CLOSE_BEHAVIOR A 32-bit integer value that forces the release of locks upon an
underlying CLOSE CURSOR operation. The possible values are:

v SQL_CC_NO_RELEASE: locks are not released when the cursor on
this statement handle is closed.

v SQL_CC_RELEASE: locks are released when the cursor on this
statement handle is closed.

Typically cursors are explicitly closed when the function SQLFreeStmt()
is called with the fOption argument set to SQL_CLOSE or
SQLCloseCursor() is called. In addition, the end of the transaction
(when a commit or rollback is issued) can also close the cursor
(depending on the WITH HOLD attribute currently in use).

Chapter 4. ODBC Functions 379

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_CONCURRENCY A 32-bit integer value that specifies the cursor concurrency:

v SQL_CONCUR_READ_ONLY - Cursor is read-only. No updates are
allowed. Supported for forward-only and static cursors.

v SQL_CONCUR_LOCK - Cursor uses the lowest level of locking
sufficient to ensure that the row can be updated. Supported for
forward-only and dynamic cursors.

The default value for SQL_ATTR_CONCURRENCY is
SQL_CONCUR_READ_ONLY for static and forward-only cursors. The
default for dynamic cursors is SQL_CONCUR_LOCK.

If the SQL_ATTR_CURSOR_TYPE attribute is changed to a type that
does not support the current value of SQL_ATTR_CONCURRENCY, the
value of SQL_ATTR_CONCURRENCY is changed at execution time,
and a warning is issued when SQLExecDirect() or SQLPrepare() is
called.

If a SELECT FOR UPDATE statement is executed when the value of
SQL_ATTR_CONCURRENCY is set to SQL_CONCUR_READ_ONLY, an
error is returned.

If the value of SQL_ATTR_CONCURRENCY is changed to a value that
is supported for some value of SQL_ATTR_CURSOR_TYPE, but not for
the current value of SQL_ATTR_CURSOR_TYPE, the value of
SQL_ATTR_CURSOR_TYPE is changed at execution time, and a
warning is issued when SQLExecDirect() or SQLPrepare() is called.

If the specified concurrency is not supported by the data source, DB2
ODBC substitutes a different concurrency and returns a warning. The
order of substitution depends on the cursor type:

v Forward-only: SQL_CONCUR_LOCK is substituted for
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

v Static: SQL_CONCUR_READ_ONLY is substituted for
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

v Dynamic: SQL_CONCUR_LOCK is substituted for
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

Unsupported attribute values: ODBC architecture defines the following
values, which are not supported by DB2 ODBC:

v SQL_CONCUR_VALUES - Cursor uses optimistic concurrency
control, comparing values.

v SQL_CONCUR_ROWVER - Cursor uses optimistic concurrency
control.

If one of these values is used, SQL_SUCCESS_WITH_INFO (SQLSTATE
01S02) is returned and the option value is changed.

380 ODBC Guide and Reference

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_CURSOR_HOLD1 A 32-bit integer which specifies whether the cursor associated with this
statement handle is preserved in the same position as before the
COMMIT operation, and whether the application can fetch without
executing the statement again.
v SQL_CURSOR_HOLD_ON
v SQL_CURSOR_HOLD_OFF

The default value when a statement handle is first allocated is
SQL_CURSOR_HOLD_ON.

This attribute cannot be specified while there is an open cursor on this
statement handle.

SQL_ATTR_CURSOR_SCROLLABLE A 32-bit integer that specifies the level of support that the application
requires. Setting this attribute affects subsequent calls to
SQLExecDirect() and SQLExecute(). The supported values are:

v SQL_NONSCROLLABLE - Scrollable cursors are not required on the
statement handle. If the application calls SQLFetchScroll() on this
handle, the only valid value of FetchOrientation is
SQL_FETCH_NEXT.

v SQL_SCROLLABLE - Scrollable cursors are required on the statement
handle. When the application calls SQLFetchScroll(), it can specify
any valid value of FetchOrientation, for cursor positioning in modes
other than the sequential mode.

SQL_ATTR_CURSOR_SENSITIVITY A 32-bit integer that specifies whether changes that are made by other
cursors are visible to the cursors on the statement handle. Setting this
attribute affects subsequent calls to SQLExecDirect() and SQLExecute().
The supported values are:

v SQL_UNSPECIFIED - The cursor type, and whether changes that are
made by other cursors are visible to the cursors on the statement
handle, are unspecified. Cursors on the statement handle can make
visible none, some or all such changes.

v SQL_INSENSITIVE - All cursors on the statement handle show the
result set without reflecting any changes that are made to it by any
other cursor. Insensitive cursors are read-only. This attribute
corresponds to a static cursor that has a concurrency that is read-only.

v SQL_SENSITIVE - Corresponds to a static cursor that has a read-only
concurrency.

Chapter 4. ODBC Functions 381

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_CURSOR_TYPE A 32-bit integer value that specifies the cursor type. The supported
values are:

v SQL_CURSOR_FORWARD_ONLY - Cursor behaves as a forward
only scrolling cursor.

v SQL_CURSOR_STATIC - The data in the result set is static.

v SQL_CURSOR_DYNAMIC - The cursor detects all changes in the
result set.

These options cannot be set if there is an open cursor on the associated
statement handle.

If the specified cursor type is not supported by the data source, DB2
ODBC substitutes a different cursor type and returns a warning. For a
dynamic cursor, DB2 ODBC substitutes a different cursor type, in the
following order: a static cursor or a forward-only cursor.

Unsupported attribute values: ODBC architecture defines the
SQL_CURSOR_KEYSET_DRIVEN value, which is not supported by DB2
ODBC. If this value is specified, DB2 ODBC sets the statement attribute
to SQL_CURSOR_STATIC or SQL_CURSOR_FORWARD_ONLY, and
returns SQLSTATE 01S02 (Option value changed). In this case the
application needs to call SQLGetStmtAttr() to query the value that is
set.

SQL_ATTR_MAX_LENGTH A 32-bit integer value corresponding to the maximum amount of data
that can be retrieved from a single character or binary column. If data is
truncated because the value specified for SQL_ATTR_MAX_LENGTH is
less than the amount of data available, an SQLGetData() call or fetch
returns SQL_SUCCESS instead of returning
SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (data truncated).
The default value for vParam is 0; 0 means that DB2 ODBC attempts to
return all available data for character or binary type data.

SQL_ATTR_MAX_ROWS A 32-bit integer value corresponding to the maximum number of rows
to return to the application from a query. The default value for vParam
is 0; 0 means all rows are returned.

SQL_ATTR_NODESCRIBE
A 32-bit integer which specifies whether DB2 ODBC should
automatically describe the column attributes of the result set or wait to
be informed by the application using SQLSetColAttributes().
v SQL_NODESCRIBE_OFF
v SQL_NODESCRIBE_ON

This attribute cannot be specified while there is an open cursor on this
statement handle.

This attribute is used in conjunction with the function
SQLSetColAttributes() by an application which has prior knowledge of
the exact nature of the result set to be returned and which does not
want to incur the extra network traffic associated with the descriptor
information needed by DB2 ODBC to provide client side processing.

IBM specific: This attribute is an IBM-defined extension.

382 ODBC Guide and Reference

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_NOSCAN A 32-bit integer value that specifies whether DB2 ODBC will scan SQL
strings for escape clauses. The two permitted values are:
v SQL_NOSCAN_OFF - SQL strings are scanned for escape clause

sequences.
v SQL_NOSCAN_ON - SQL strings are not scanned for escape clauses.

Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never uses
vendor escape sequences in the SQL strings that it sends. This
eliminates some of the overhead processing associated with scanning.

SQL_ATTR_PARAMOPT_ATOMIC A 32-bit integer value that determines whether the application uses
atomic or non-atomic SQL for the underlying processing of multi-row
insert operations. The attribute value takes effect after SQLSetStmtAttr()
is used to specify multiple values for parameter markers for an SQL
INSERT statement. Possible values are:

SQL_ATOMIC_YES
The application uses atomic SQL for the underlying processing
of multi-row insert operations. This is the default.

Specification of SQL_ATOMIC_YES for a connection to a server
that does not support multi-row inserts results in SQLSTATE
01S02 (option value changed). The attribute value is set to
SQL_ATOMIC_NO.

SQL_ATOMIC_NO
The application uses non-atomic SQL for the underlying
processing of multi-row insert operations.

SQL_ATTR_PARAMSET_SIZE A 32-bit unsigned integer value that specifies the number of values for
each parameter. If SQL_ATTR_PARAMSET_SIZE is greater than 1, the
rgbValue argument in SQLBindParameter() points to an array of
parameter values and pcbValue argument points to an array of lengths.
The cardinality of each array is equal to the value of this field.

SQL_ATTR_PARAMS_PROCESSED_PTR A 32-bit unsigned integer * field that points to a buffer in which to
return the current row number. As each row of parameters is processed,
this is set to the number of that row. No row number is returned if this
is a null pointer.

If the call to SQLExecDirect() or SQLExecute() that fills in the buffer
pointed to by this attribute does not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

SQL_ATTR_RETRIEVE_DATA A 32-bit integer value that indicates whether DB2 ODBC should retrieve
data from the database when SQLFetchScroll() or SQLExtendedFetch()
is called. The possible values are:

v SQL_RD_ON: SQLFetchScroll() or SQLExtendedFetch() retrieves
data after it positions the cursor to the specified location.

v SQL_RD_OFF: SQLFetchScroll() or SQLExtendedFetch() does not
retrieve data after it positions the cursor. By setting
SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can verify
whether a row exists, or retrieve a bookmark for the row without
incurring the overhead of retrieving rows.

This attribute cannot be set if the cursor is open.

Chapter 4. ODBC Functions 383

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_ROW_ARRAY_SIZE A 32-bit integer value that specifies the number of rows in the row set.
This is the number of rows that are returned by each call
toSQLFetchScroll(). The default value is 1.

If the specified rowset size exceeds the maximum rowset size that is
supported by the data source, DB2 ODBC substitutes the maximum
supported value and returns SQLSTATE 01S02 (Option value changed).

SQL_ATTR_ROW_NUMBER A 32-bit integer value that is the number of the current row in the entire
result set. If the number of the current row cannot be determined, or
there is no current row, DB2 ODBC returns 0. This attribute can be
retrieved by a call to SQLGetStmtAttr(), but not set by a call to
SQLSetStmtAttr().

SQL_ATTR_ROW_OPERATION_POINTER A 16-bit unsigned integer * value that points to an array of UDWORD
values that are used to ignore a row when SQLSetPos() is used to
perform a bulk operation. Each value is set to SQL_ROW_PROCEED
(for the row to be included in the bulk operation) or
SQL_ROW_IGNORE (for the row to be excluded from the bulk
operation). During calls to SQLBulkOperations(), rows cannot be
ignored by using this array.

If SQL_ATTR_ROW_OPERATION_POINTER is set to a null pointer,
DB2 ODBC does not return row status values. This attribute can be set
at any time, but the new value is not used until the next time
SQLFetchScroll() or SQLSetPos() is called.

SQL_ATTR_ROW_STATUS_PTR A 16-bit unsigned integer * value that points to an array of UWORD
values that contain row status values after a call to SQLFetch() or
SQLFetchScroll(). The array has as many elements as there are rows in
the rowset.

If SQL_ATTR_ROW_STATUS_PTR is set to a null pointer, DB2 ODBC
does not return row status values. This attribute can be set at any time,
but the new value is not used until the next time SQLFetch(),
SQLFetchScroll(),or SQLSetPos() is called.

SQL_ATTR_ROW_FETCHED_PTR A 32-bit unsigned integer * value that points to a buffer that contains
the number of rows that were fetched after a call to SQLFetch() or
SQLFetchScroll(). The array has as many elements as there are rows in
the rowset.

DB2 ODBC maps SQL_ATTR_ROW_FETCHED_PTR to the RowCountPtr
array in a call to SQLExtendedFetch().

SQL_ATTR_ROWSET_SIZE A 32-bit integer value that specifies the number of rows in the row set.
A row set is the array of rows that is returned by each call to
SQLExtendedFetch(). The default value is 1, which is equivalent to
making a single SQLFetch() call. This attribute can be specified even
when the cursor is open and becomes effective on the next
SQLExtendedFetch() call.

Recommendation: Use SQLFetchScroll() rather than
SQLExtendedFetch(). Use the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE rather than SQL_ATTR_ROWSET_SIZE
to set the number of rows in the rowset.

384 ODBC Guide and Reference

Table 236. Statement attributes (continued)

Attribute ValuePtr contents

SQL_ATTR_STMTTXN_ISOLATION or
SQL_ATTR_TXN_ISOLATION2

A 32-bit integer value that sets the transaction isolation level for the
current statement handle. This overrides the default value set at the
connection level. For the permitted values, refer to the function
SQLSetConnectOption()

This attribute cannot be set if there is an open cursor on this statement
handle (SQLSTATE 24000).

IBM specific: The value SQL_ATTR_STMTTXN_ISOLATION is
synonymous with SQL_ATTR_TXN_ISOLATION.
SQL_ATTR_STMTTXN_ISOLATION is an IBM extension to allow
setting this attribute at the statement level.

For more information about setting this attribute, refer to Isolation levels
for maximum concurrency and data consistency.

SQL_ATTR_USE_BOOKMARKS A 32-bit integer value that specifies whether an application uses
bookmarks with a cursor. The only supported attribute value is
SQL_UB_OFF, which indicates that an application does not use
bookmarks with a cursor.

Unsupported attribute value: ODBC architecture defines the
SQL_UB_VARIABLE value, which is not supported by DB2 ODBC.
SQL_UB_VARIABLE indicates that an application uses bookmarks with
a cursor, and that the ODBC driver provides variable-length bookmarks,
if they are supported.

Notes:

1. You can change the default value for this attribute with the CURSORHOLD keyword in the ODBC initialization
file.

2. You can change the default value for this attribute with the TXNISOLATION keyword in the ODBC initialization
file.

Return codes

After you call SQLSetStmtAttr(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 237. SQLSetStmtAttr() SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (SQLSetStmtAttr() returns
SQL_SUCCESS_WITH_INFO for this SQLSTATE.)

01S02 Option value changed. DB2 did not support the value specified in *ValuePtr, or the value
specified in *ValuePtr is invalid due to SQL constraints or
requirements. Therefore, DB2 ODBC substituted a similar value.
(SQLSetStmtAttr() returns SQL_SUCCESS_WITH_INFO for this
SQLSTATE.)

Chapter 4. ODBC Functions 385

Table 237. SQLSetStmtAttr() SQLSTATEs (continued)

SQLSTATE Description Explanation

08S01 Unable to connect to data
source.

The communication link between the application and the data
source failed before the function completed.

24000 Invalid cursor state. The Attribute is SQL_ATTR_CONCURRENCY and the cursor is
open.

HY000 General error. An error occurred for which no specific SQLSTATE exists. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate memory for the specified handle.

HY009 Invalid use of a null pointer. A null pointer is passed for ValuePtr and the value in *ValuePtr is a
string value.

HY010 Function sequence error. SQLExecute() or SQLExecDirect() is called with the statement
handle, and returns SQL_NEED_DATA. This function is called
before data is sent for all data-at-execution parameters or columns.
Invoke SQLCancel() to cancel the data-at-execution condition.

HY011 Operation invalid at this time. The Attribute is SQL_ATTR_CONCURRENCY and the statement is
prepared.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value is specified in
*ValuePtr.

HY090 Invalid string or buffer length. The StringLength argument is less than 0, but is not SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute is not valid for this
version of DB2 ODBC.

HYC00 Driver not capable. The value specified for the argument Attribute is a valid connection
or statement attribute for the version of the DB2 ODBC driver, but
is not supported by the data source.

Example

The following example uses SQLSetStmtAttr() to set statement attributes:
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_HOLD,
(void *) SQL_CURSOR_HOLD_OFF,
0) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

386 ODBC Guide and Reference

Related concepts:
“Disable cursor hold behavior for more efficient resource use” on page 511
“Limit the number of rows that an application can fetch” on page 510
“Set isolation levels for maximum concurrency and data consistency” on page 511
Related reference:
“Changes to SQLSetStmtAttr() attributes” on page 568
“SQLCancel() - Cancel statement” on page 131
“SQLGetConnectAttr() - Get current attribute setting” on page 224
“SQLGetStmtAttr() - Get current setting of a statement attribute” on page 290
“Function return codes” on page 24
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetConnectOption() - Set connection option” on page 362
“DB2 ODBC initialization keywords” on page 65

SQLSetStmtOption() - Set statement attribute
This function is deprecated and is replaced by SQLSetStmtAttr(). You cannot use
SQLSetStmtOption() for 64-bit applications.

ODBC specifications for SQLSetStmtOption()

Table 238. SQLSetStmtOption() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes No

Syntax
SQLRETURN SQLSetStmtOption (SQLHSTMT hstmt,

SQLUSMALLINT fOption,
SQLUINTEGER vParam);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 239. SQLSetStmtOption() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fOption input Attribute to set.

SQLUINTEGER vParam input Value that is associated with fOption. vParam can be a 32-bit
integer value or a pointer to a nul-terminated string.

Chapter 4. ODBC Functions 387

Related reference:
“SQLSetStmtAttr() - Set statement attributes” on page 376

SQLSpecialColumns() - Get special (row identifier) columns
SQLSpecialColumns() returns unique row identifier information (primary key or
unique index) for a table. The information is returned in an SQL result set. You can
retrieve this result set with the same functions that process a result set that is
generated by a query.

ODBC specifications for SQLSpecialColumns()

Table 240. SQLSpecialColumns() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes No

Syntax
SQLRETURN SQLSpecialColumns(SQLHSTMT hstmt,

SQLUSMALLINT fColType,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fScope,
SQLUSMALLINT fNullable);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 241. SQLSpecialColumns() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fColType input Type of unique row identifier to return. Only the following
type is supported:
v SQL_BEST_ROWID, which returns the optimal set of

columns that can uniquely identify any row in the specified
table.

Exception: For compatibility with ODBC applications,
SQL_ROWVER is also recognized, but not supported; therefore,
if SQL_ROWVER is specified, an empty result is returned.

SQLCHAR * szCatalogName input Catalog qualifier of a three-part table name. This must be a
null pointer or a zero-length string.

SQLSMALLINT cbCatalogName input The length, in bytes, of szCatalogName. This must be a set to 0.

SQLCHAR * szSchemaName input Schema qualifier of the specified table.

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input The length, in bytes, of cbTableName.

388 ODBC Guide and Reference

Table 241. SQLSpecialColumns() arguments (continued)

Data type Argument Use Description

SQLUSMALLINT fScope input Minimum required duration for which the unique row
identifier is valid.

fScope must be one of the following:
v SQL_SCOPE_CURROW: The row identifier is guaranteed to

be valid only while positioned on that row. A later re-select
using the same row identifier values might not return a row
if the row is updated or deleted by another transaction.

v SQL_SCOPE_TRANSACTION: The row identifier is
guaranteed to be valid for the duration of the current
transaction. This attribute is only valid if
SQL_TXN_SERIALIZABLE and
SQL_TXN_REPEATABLE_READ isolation attributes are set.

v SQL_SCOPE_SESSION: The row identifier is guaranteed to
be valid for the duration of the connection.

Important: This attribute is not supported by DB2 for z/OS.

The duration over which a row identifier value is guaranteed
to be valid depends on the current transaction isolation level.

SQLUSMALLINT fNullable input Determines whether to return special columns that can have a
null value.

Must be one of the following:
v SQL_NO_NULLS - The row identifier column set returned

cannot have any null values.
v SQL_NULLABLE - The row identifier column set returned

can include columns where null values are permitted.

Usage

If multiple ways exist to uniquely identify any row in a table (that is, if the
specified table is indexed with multiple unique indexes), DB2 ODBC returns the
best set of row identifier column sets based on its internal criterion.

If no column set allows any row in the table to be uniquely identified, an empty
result set is returned.

The unique row identifier information is returned in the form of a result set where
each column of the row identifier is represented by one row in the result set.
Table 242 on page 390 shows the order of the columns in the result set returned by
SQLSpecialColumns(), sorted by SCOPE.

Because calls to SQLSpecialColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because DB2 names are less than 128 bytes, the application
can choose to always set aside 128 bytes (plus the nul-terminator) for the output
buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_COLUMN_NAME_LEN to determine the actual length of the
COLUMN_NAME column supported by the connected database management
system.

Chapter 4. ODBC Functions 389

Although new columns might be added and the names of the columns changed in
future releases, the position of the current columns does not change. The following
table lists these columns.

Table 242. Columns returned by SQLSpecialColumns()

Column
number Column name Data type Description

1 SCOPE SMALLINT The duration for which the name in
COLUMN_NAME is guaranteed to point to the same
row. Valid values are the same as for the fScope
argument: Actual scope of the row identifier. Contains
one of the following values:
v SQL_SCOPE_CURROW
v SQL_SCOPE_TRANSACTION
v SQL_SCOPE_SESSION

See fScope in Table 241 on page 388 for a description
of each value.

2 COLUMN_NAME VARCHAR(128) NOT
NULL

Name of the column that is (or part of) the table's
primary key.

3 DATA_TYPE SMALLINT NOT NULL SQL data type of the column.

4 TYPE_NAME VARCHAR(128) NOT
NULL

database management system character string
represented of the name associated with DATA_TYPE
column value.

5 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character
or binary string, then this column contains the
maximum length in bytes; if it is a graphic (DBCS)
string, this is the number of double-byte characters
for the parameter.

For date, time, timestamp data types, this is the total
number of bytes required to display the value when
converted to character.

For numeric data types, this is either the total number
of digits, or the total number of bits allowed in the
column, depending on the value in the
NUM_PREC_RADIX column in the result set.

6 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C
buffer to store data from this column if
SQL_C_DEFAULT is specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This
length does not include any nul-terminator. For exact
numeric data types, the length accounts for the
decimal and the sign.

7 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data
types where scale is not applicable.

8 PSEUDO_COLUMN SMALLINT Indicates whether the column is a pseudo-column.
DB2 ODBC only returns:

v SQL_PC_NOT_PSEUDO

DB2 database management systems do not support
pseudo columns. ODBC applications can receive the
following values from other non-IBM relational
database management system servers:
v SQL_PC_UNKNOWN
v SQL_PC_PSEUDO

390 ODBC Guide and Reference

Return codes

After you call SQLSpecialColumns(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 243. SQLSpecialColumns() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is opened on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The value of one of the length arguments is less than 0, but not
equal to SQL_NTS.

v The value of one of the length arguments exceeded the
maximum length supported by the database management system
for that qualifier or name.

HY097 Column type out of range. An invalid fColType value is specified.

HY098 Scope type out of range. An invalid fScope value is specified.

HY099 Nullable type out of range. An invalid fNullable values is specified.

HYC00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Example

The following example shows an application that prints a list of columns that
uniquely define rows in a table. This application uses SQLSpecialColumns() to find
these columns.

Chapter 4. ODBC Functions 391

Related reference:
“C and SQL data types” on page 26
“Length of SQL data types” on page 550
“Precision of SQL data types” on page 548
“Scale of SQL data types” on page 549
“SQLColumns() - Get column information” on page 148
“Function return codes” on page 24
“SQLStatistics() - Get index and statistics information for a base table”
“SQLTables() - Get table information” on page 401

isolation-clause (DB2 SQL)

SQLStatistics() - Get index and statistics information for a base table
SQLStatistics() retrieves index information for a specific table. It also returns the
cardinality and the number of pages that are associated with the table and the
indexes on the table. The information is returned in a result set. You can retrieve
the result set with the same functions that process a result set that is generated by
a query.

/* ... */
SQLRETURN
list_index_columns(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR *tablename)
{
/* ... */

rc = SQLSpecialColumns(hstmt, SQL_BEST_ROWID, NULL, 0, schema, SQL_NTS,
tablename, SQL_NTS, SQL_SCOPE_CURROW, SQL_NULLABLE);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,
&column_name.ind);

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,
&type_name.ind);

rc = SQLBindCol(hstmt, 5, SQL_C_LONG, (SQLPOINTER) & precision,
sizeof(precision), &precision_ind);

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT, (SQLPOINTER) & scale,
sizeof(scale), &scale_ind);

printf("Primary key or unique index for
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(" name.s, type_name.s);
if (precision_ind != SQL_NULL_DATA) {

printf(" (
} else {

printf("(\n");
}
if (scale_ind != SQL_NULL_DATA) {

printf(",
} else {

printf(")\n");
}

}
/* ... */

Figure 33. An application that prints the column set for a unique index of a table

392 ODBC Guide and Reference

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_isolationclause.htm#db2z_sql_isolationclause

ODBC specifications for SQLStatistics()

Table 244. SQLStatistics() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes No

Syntax
SQLRETURN SQLStatistics (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fUnique,
SQLUSMALLINT fAccuracy);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 245. SQLStatistics() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Catalog qualifier of a three-part table name. This must be a
null pointer or a zero length string.

SQLSMALLINT cbCatalogName input The length, in bytes, of cbCatalogName. This must be set to 0.

SQLCHAR * szSchemaName input Schema qualifier of the specified table.

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input The length, in bytes, of cbTableName.

SQLUSMALLINT fUnique input Type of index information to return:
v SQL_INDEX_UNIQUE

Only unique indexes are returned.
v SQL_INDEX_ALL

All indexes are returned.

SQLUSMALLINT fAccuracy input Indicate whether the CARDINALITY and PAGES columns in
the result set contain the most current information:
v SQL_ENSURE : This value is reserved for future use,

when the application requests the most up to date
statistics information. Existing applications that specify
this value receive the same results as SQL_QUICK.
Recommendation: Do not use this value with new
applications.

v SQL_QUICK: Statistics which are readily available at the
server are returned. The values might not be current, and
no attempt is made to ensure that they be up to date.

Chapter 4. ODBC Functions 393

Usage

SQLStatistics() returns two types of information:
v Statistics information for the table (if statistics are available):

– When the TYPE column in the table below is set to SQL_TABLE_STAT, the
number of rows in the table and the number of pages used to store the table.

– When the TYPE column indicates an index, the number of unique values in
the index, and the number of pages used to store the indexes.

v Information about each index, where each index column is represented by one
row of the result set. The result set columns are given in Table 246 in the order
shown; the rows in the result set are ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME and ORDINAL_POSITION.

Because calls to SQLStatistics() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because the length of DB2 names are less than 128 bytes,
the application can choose to always set aside 128 bytes (plus the nul-terminator)
for the output buffer. Alternatively, you can call SQLGetInfo() with the InfoType
argument set to each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.
The following table lists the columns in the result set SQLStatistics() currently
returns.

Table 246. Columns returned by SQLStatistics()

Column
number Column name Data type Description

1 TABLE_CAT VARCHAR(128) The is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT
NULL

Name of the table.

4 NON_UNIQUE SMALLINT Indicates whether the index prohibits duplicate
values:
v SQL_TRUE if the index allows duplicate values.
v SQL_FALSE if the index values must be unique.
v NULL is returned if the TYPE column indicates

that this row is SQL_TABLE_STAT (statistics
information on the table itself).

394 ODBC Guide and Reference

Table 246. Columns returned by SQLStatistics() (continued)

Column
number Column name Data type Description

5 INDEX_QUALIFIER VARCHAR(128) The string is used to qualify the index name in the
DROP INDEX statement. Appending a period (.)
plus the INDEX_NAME results in a full
specification of the index.

6 INDEX_NAME VARCHAR(128) The name of the index. If the TYPE column has the
value SQL_TABLE_STAT, this column has the value
NULL.

7 TYPE SMALLINT NOT NULL Indicates the type of information contained in this
row of the result set:
v SQL_TABLE_STAT - Indicates this row contains

statistics information on the table itself.
v SQL_INDEX_CLUSTERED - Indicates this row

contains information on an index, and the index
type is a clustered index.

v SQL_INDEX_HASHED - Indicates this row
contains information on an index, and the index
type is a hashed index.

v SQL_INDEX_OTHER - Indicates this row
contains information on an index, and the index
type is other than clustered or hashed.

8 ORDINAL_POSITION SMALLINT Ordinal position of the column within the index
whose name is given in the INDEX_NAME
column. A null value is returned for this column if
the TYPE column has the value of
SQL_TABLE_STAT.

9 COLUMN_NAME VARCHAR(128) Name of the column in the index. A null value is
returned for this column if the TYPE column has
the value of SQL_TABLE_STAT.

10 ASC_OR_DESC CHAR(1) Sort sequence for the column; A for ascending, D
for descending. A null value is returned if the value
in the TYPE column is SQL_TABLE_STAT.

11 CARDINALITY INTEGER v If the TYPE column contains the value
SQL_TABLE_STAT, this column contains the
number of rows in the table.

v If the TYPE column value is not
SQL_TABLE_STAT, this column contains the
number of unique values in the index.

v A null value is returned if information is not
available from the database management system.

12 PAGES INTEGER v If the TYPE column contains the value
SQL_TABLE_STAT, this column contains the
number of pages used to store the table.

v If the TYPE column value is not
SQL_TABLE_STAT, this column contains the
number of pages used to store the indexes.

v A null value is returned if information is not
available from the database management system.

13 FILTER_CONDITION VARCHAR(128) If the index is a filtered index, this is the filter
condition. Because DB2 servers do not support
filtered indexes, NULL is always returned. NULL is
also returned if TYPE is SQL_TABLE_STAT.

Chapter 4. ODBC Functions 395

For the row in the result set that contains table statistics (TYPE is set to
SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,
INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC
are set to NULL. If the CARDINALITY or PAGES information cannot be
determined, then NULL is returned for those columns.

Important: The accuracy of the information returned in the SQLERRD(3) and
SQLERRD(4) fields is dependent on many factors such as the use of parameter
markers and expressions within the statement. The main factor which can be
controlled is the accuracy of the database statistics. That is, when the statistics were
last updated, (for example, for DB2 for z/OS ODBC, the last time the RUNSTATS
utility was run.)

Return codes

After you call SQLStatistics(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 247. SQLStatistics() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is opened on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The value of one of the name length arguments is less than 0,
but not equal to SQL_NTS.

v The valid of one of the name length arguments exceeds the
maximum value supported for that data source. You can obtain
this maximum value with SQLGetInfo().

HY100 Uniqueness option type out of
range.

An invalid fUnique value is specified.

HY101 Accuracy option type out of
range.

An invalid fAccuracy value is specified.

HYC00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

396 ODBC Guide and Reference

Example

The following example shows an application that prints the cardinality and the
number of pages associated with a table. This application retrieves this information
with SQLStatistics().

Related reference:
“SQLColumns() - Get column information” on page 148
“Function return codes” on page 24
“SQLSpecialColumns() - Get special (row identifier) columns” on page 388

SQLTablePrivileges() - Get table privileges
SQLTablePrivileges() returns a list of tables and associated privileges for each
table. The information is returned in an SQL result set. You can retrieve this result
set with the same functions that you use to process a result set that is generated by
a query.

/* ... */
SQLRETURN
list_stats(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR *tablename)
{
/* ... */

rc = SQLStatistics(hstmt, NULL, 0, schema, SQL_NTS,
tablename, SQL_NTS, SQL_INDEX_UNIQUE, SQL_QUICK);

rc = SQLBindCol(hstmt, 4, SQL_C_SHORT,
&non_unique, 2, &non_unique_ind);

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR,
index_name.s, 129, &index_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT,
&type, 2, &type_ind);

rc = SQLBindCol(hstmt, 9, SQL_C_CHAR,
column_name.s, 129, &column_name.ind);

rc = SQLBindCol(hstmt, 11, SQL_C_LONG,
&cardinality, 4, &card_ind);

rc = SQLBindCol(hstmt, 12, SQL_C_LONG,
&pages, 4, &pages_ind);

printf("Statistics for
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)
{ if (type != SQL_TABLE_STAT)

{ printf(" Column: %-18s Index Name: %-18s\n",
column_name.s, index_name.s);

}
else
{ printf(" Table Statistics:\n");
}
if (card_ind != SQL_NULL_DATA)

printf(" Cardinality =
else

printf(" Cardinality = (Unavailable)");
if (pages_ind != SQL_NULL_DATA)

printf(" Pages =
else

printf(" Pages = (Unavailable)\n");
}

/* ... */

Figure 34. An application that prints page and cardinality information about a table

Chapter 4. ODBC Functions 397

ODBC specifications for SQLTablePrivileges()

Table 248. SQLTablePrivileges() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 No No

Syntax
SQLRETURN SQLTablePrivileges (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName);

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 249. SQLTablePrivileges() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szTableQualifier input Catalog qualifier of a three-part table name. This must
be a null pointer or a zero length string.

SQLSMALLINT cbTableQualifier input The length, in bytes, of szCatalogName. This must be
set to 0.

SQLCHAR * szSchemaName input Buffer that can contain a pattern-value to qualify the
result set by schema name.

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Buffer that can contain a pattern-value to qualify the
result set by table name.

SQLSMALLINT cbTableName input The length, in bytes, of szTableName.

The szSchemaName and szTableName arguments accept search patterns.

Usage

The results are returned as a standard result set containing the columns listed in
the following table. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and PRIVILEGE. If multiple privileges are associated with any
given table, each privilege is returned as a separate row.

Because calls to SQLTablePrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. Because DB2 names are less than 128 bytes, the application

398 ODBC Guide and Reference

can choose to always set aside 128 bytes (plus the nul-terminator) for the output
buffer. Alternatively, you can call SQLGetInfo() with the InfoType argument set to
each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns remains unchanged.
The following table lists the columns in the result set SQLTablePrivileges()
currently returns.

Table 250. Columns returned by SQLTablePrivileges()

Column number Column name Data type Description

1 TABLE_CAT VARCHAR(128) The is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema contain
TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT
NULL

The name of the table.

4 GRANTOR VARCHAR(128) Authorization ID of the user who granted
the privilege.

5 GRANTEE VARCHAR(128) Authorization ID of the user to whom the
privilege is granted.

6 PRIVILEGE VARCHAR(128) The table privilege. This can be one of the
following strings:
v ALTER
v CONTROL
v DELETE
v INDEX
v INSERT
v REFERENCES
v SELECT
v UPDATE

7 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to
grant the privilege to other users.

This can be "YES", "NO" or NULL.

The column names used by DB2 ODBC follow the X/Open CLI CAE specification
style. The column types, contents and order are identical to those defined for the
SQLProcedures() result set in ODBC.

Return codes

After you call SQLTablePrivileges(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Chapter 4. ODBC Functions 399

v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 251. SQLTablePrivileges() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is opened on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The value of one of the name length arguments is less than 0,
but not equal to SQL_NTS.

v The value of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HYC00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Example

The following example shows an application that uses SQLTablePrivileges() to
generate a result set of privileges on tables.

400 ODBC Guide and Reference

Related concepts:
“Input arguments on catalog functions” on page 418
Related reference:
“Function return codes” on page 24
“SQLTables() - Get table information”

SQLTables() - Get table information
SQLTables() returns a list of table names and associated information that is stored
in the system catalog of the connected data source. The list of table names is
returned as a result set. You can retrieve this result set with the same functions that
process a result set generated by a query.

ODBC specifications for SQLTables()

Table 252. SQLTables() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 Yes No

Syntax
SQLRETURN SQLTables (SQLHSTMT hstmt,

SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szTableType,
SQLSMALLINT cbTableType);

/* ... */
SQLRETURN
list_table_privileges(SQLHDBC hdbc, SQLCHAR *schema,

SQLCHAR *tablename)
{

SQLHSTMT hstmt;
SQLRETURN rc;
struct { SQLINTEGER ind; /* Length & Indicator variable */

SQLCHAR s[129]; /* String variable */
} grantor, grantee, privilege;

struct { SQLINTEGER ind;
SQLCHAR s[4];
}is_grantable;

SQLCHAR cur_name[512] = ""; /* Used when printing the */
SQLCHAR pre_name[512] = ""; /* Result set */
/* Allocate a statement handle to reference the result set */
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
/* Create table privileges result set */
rc = SQLTablePrivileges(hstmt, NULL, 0, schema, SQL_NTS,

tablename, SQL_NTS);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,

&grantor.ind);
/* Continue Binding, then fetch and display result set */
/* ... */

Figure 35. An application that generates a result set containing privileges on tables

Chapter 4. ODBC Functions 401

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 253. SQLTables() arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLCHAR * szCatalogName input Buffer that can contain a pattern-value to qualify the result set.
Catalog is the first part of a three-part table name.

This must be a null pointer or a zero length string.

SQLSMALLINT cbCatalogName input The length, in bytes, of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName input Buffer that can contain a pattern-value to qualify the result set by
schema name.

SQLSMALLINT cbSchemaName input The length, in bytes, of szSchemaName.

SQLCHAR * szTableName input Buffer that can contain a pattern-value to qualify the result set by
table name.

SQLSMALLINT cbTableName input The length, in bytes, of szTableName.

SQLCHAR * szTableType input Buffer that can contain a value list to qualify the result set by table
type.

The value list is a list of uppercase comma-separated single quoted
values for the table types of interest. Valid table type identifiers can
include: TABLE, VIEW, SYSTEM TABLE, ALIAS, SYNONYM. If
szTableType argument is a null pointer or a zero-length string, then
this is equivalent to specifying all of the possibilities for the table
type identifier.

If SYSTEM TABLE is specified, then both system tables and system
views (if any) are returned.

SQLSMALLINT cbTableType input Size of szTableType

Note that the szCatalogName, szSchemaName, and szTableName arguments accept
search patterns.

Usage

Table information is returned in a result set where each table is represented by one
row of the result set. To determine the type of access permitted on any given table
in the list, the application can call SQLTablePrivileges(). Otherwise, the
application must be able to handle a situation where the user selects a table for
which SELECT privileges are not granted.

To support obtaining just a list of schemas, the following special semantics for the
szSchemaName argument can be applied: if szSchemaName is a string containing a
single percent (%) character, and szCatalogName and szTableName are empty strings,
then the result set contains a list of valid schemas in the data source.

If szTableType is a single percent character (%) and szCatalogName, szSchemaName,
and szTableName are empty strings, then the result set contains a list of valid table
types for the data source. (All columns except the TABLE_TYPE column contain
null values.)

402 ODBC Guide and Reference

If szTableType is not an empty string, it must contain a list of uppercase,
comma-separated values for the types of interest; each value can be enclosed in
single quotes or without single quotes. For example, "'TABLE','VIEW'" or
"TABLE,VIEW". If the data source does not support or does not recognize a
specified table type, nothing is returned for that type.

Sometimes, an application calls SQLTables() with null pointers for some or all of
the szSchemaName, szTableName, and szTableType arguments so that no attempt is
made to restrict the result set returned. For some data sources that contain a large
quantity of tables, views, or aliases, this scenario maps to an extremely large result
set and very long retrieval times. Three mechanisms are introduced to help the
user reduce the long retrieval times: three keywords (SCHEMALIST, SYSSCHEMA,
TABLETYPE) can be specified in the DB2 ODBC initialization file to help restrict
the result set when the application has supplied null pointers for either or both of
szSchemaName and szTableType. If the application did not specify a null pointer for
szSchemaName or szTableType then the associated keyword specification in the DB2
ODBC initialization file is ignored.

The result set returned by SQLTables() contains the columns listed in Table 254 in
the order given. The rows are ordered by TABLE_TYPE, TABLE_CAT,
TABLE_SCHEM, and TABLE_NAME.

Because calls to SQLTables() in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results
saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 bytes to be consistent with ANSI/ISO SQL
standard of 1992 limits. BecauseDB2 names are less than 128 bytes, the application
can choose to always set aside 128 bytes (plus the nul-terminator) for the output
buffer. Alternatively, you can call SQLGetInfo() with the InfoType argument set to
each of the following values:
v SQL_MAX_CATALOG_NAME_LEN, to determine the length of TABLE_CAT

columns that the connected database management system supports
v SQL_MAX_SCHEMA_NAME_LEN, to determine the length of TABLE_SCHEM

columns that the connected database management system supports
v SQL_MAX_TABLE_NAME_LEN, to determine the length of TABLE_NAME

columns that the connected database management system supports
v SQL_MAX_COLUMN_NAME_LEN, to determine the length of

COLUMN_NAME columns that the connected database management system
supports

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns remains unchanged.
The following table lists the columns in the result set SQLTables() currently
returns.

Table 254. Columns returned by SQLTables()

Column Name Data type Description

TABLE_CAT VARCHAR(128) The name of the catalog containing TABLE_SCHEM.
This column contains a null value.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, or view, or alias, or synonym.

Chapter 4. ODBC Functions 403

Table 254. Columns returned by SQLTables() (continued)

Column Name Data type Description

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the
TABLE_NAME column. It can have the string values
'TABLE', 'VIEW', 'INOPERATIVE VIEW', 'SYSTEM
TABLE', 'ALIAS', or 'SYNONYM'.

REMARKS VARCHAR(762) Contains the descriptive information about the table.

Return codes

After you call SQLTables(), it returns one of the following values:
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

The following table lists each SQLSTATE that this function generates, with a
description and explanation for each value.

Table 255. SQLTables() SQLSTATEs

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

24000 Invalid cursor state. A cursor is open on the statement handle.

HY001 Memory allocation failure. DB2 ODBC is not able to allocate the required memory to support
the execution or the completion of the function.

HY010 Function sequence error. The function is called during a data-at-execute operation. (That is,
the function is called during a procedure that uses the
SQLParamData() or SQLPutData() functions.)

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to low internal
resources.

HY090 Invalid string or buffer length. This SQLSTATE is returned for one or more of the following
reasons:

v The value of one of the name length arguments is less than 0,
but not equal to SQL_NTS.

v The value of one of the name length arguments exceeds the
maximum value supported for that data source. You can obtain
this maximum value with SQLGetInfo().

HYC00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Example

The following example shows an application that uses SQLTables() to generate a
result set of table name information that matches a search pattern. For another
example, see Functions for querying environment and data source information.

404 ODBC Guide and Reference

Related concepts:
“Functions for querying environment and data source information” on page 41
“Input arguments on catalog functions” on page 418
Related reference:
“SQLColumns() - Get column information” on page 148
“Function return codes” on page 24
“SQLTablePrivileges() - Get table privileges” on page 397
“DB2 ODBC initialization keywords” on page 65

SQLTransact() - Transaction management
SQLTransact() is a deprecated function and is replaced by SQLEndTran().

ODBC specifications for SQLTransact()

Table 256. SQLTransact() specifications

ODBC specification level
In X/Open CLI CAE

specification? In ISO CLI specification?

1.0 (Deprecated) Yes Yes

Syntax
SQLRETURN SQLTransact (SQLHENV henv,

SQLHDBC hdbc,
SQLUSMALLINT fType);

/* ... */
SQLRETURN init_tables(SQLHDBC hdbc)
{

SQLHSTMT hstmt;
SQLRETURN rc;
SQLUSMALLINT rowstat[MAX_TABLES];
SQLUINTEGER pcrow;
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET_SIZE, (void*)MAX_TABLES, 0);
/* Set size of one row, used for row-wise binding only */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_BIND_TYPE,

(void *)sizeof(table) / MAX_TABLES, 0);
printf("Enter Search Pattern for Table Schema Name:\n");
gets(table->schem);
printf("Enter Search Pattern for Table Name:\n");
gets(table->name);
rc = SQLTables(hstmt, NULL, 0, table->schem, SQL_NTS,

table->name, SQL_NTS, NULL, 0);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) &table->schem, 129,

&table->schem_l);
rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) &table->name, 129,

&table->name_l);
rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) &table->type, 129,

&table->type_l);
rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) &table->remarks, 255,

&table->remarks_l);
/* Now fetch the result set */

/* ... */

Figure 36. An application that returns a result set of table name information

Chapter 4. ODBC Functions 405

Function arguments

The following table lists the data type, use, and description for each argument in
this function.

Table 257. SQLTransact() arguments

Data type Argument Use Description

SQLHENV henv input Environment handle.

If hdbc is a valid connection handle, henv is ignored.

SQLHDBC hdbc input Database connection handle.

If hdbc is set to SQL_NULL_HDBC, then henv must contain
the environment handle that the connection is associated
with.

SQLUSMALLINT fType input The action for the transaction. The value for this argument
must be one of:
v SQL_COMMIT
v SQL_ROLLBACK

Related reference:
“SQLEndTran() - End transaction of a connection” on page 177

406 ODBC Guide and Reference

Chapter 5. Advanced features

DB2 ODBC provides advanced features for performing setting and retrieving
attributes, working with global transactions, querying the catalog, and using LOBs,
XML documents, and distinct types.

Functions for setting and retrieving environment, connection, and
statement attributes

DB2 ODBC provides functions that let you set or retrieve a subset of environment,
connection, and statement attributes.

Environments, connections, and statements each have a defined set of attributes (or
options). You can query all these attributes, but you can change only some of these
attributes from their default values. When you change attribute values, you change
the behavior of DB2 ODBC.

The attributes that you can change are listed in the detailed descriptions of the
set-attribute functions listed below:
v SQLSetEnvAttr() - Set environment attributes
v SQLSetConnectAttr() - Set connection attributes
v SQLSetStmtAttr() - Set statement attributes
v SQLSetColAttr() - Set column attributes

Read-only attributes (if any exist) are listed with the detailed function descriptions
of the get-attribute functions.

Usually you write applications that use default attribute settings; however, these
defaults are not always suitable for particular users of your application. DB2
ODBC provides two points at which users of your application can change default
values of attributes at run time. Users specify attribute values either from an
interface that uses the SQLDriverConnect() connection string or they can specify
values in the DB2 ODBC initialization file.

The DB2 ODBC initialization file specifies the default attribute values for all DB2
ODBC applications. If an application does not provide users with an interface to
the SQLDriverConnect() connection string, users can change default attribute
values through the initialization file only. Attribute values that are specified with
SQLDriverConnect() override the values that are set in the DB2 ODBC initialization
file for any particular connection.

Important: The initialization file and connection string are intended for user
tuning. Application developers should use the appropriate set-attribute functions to
change attribute values. When you use set-attribute functions to set attribute
values, the value that you specify overrides the initialization file value and the
SQLDriverConnect() connection string value for that attribute.

The following figure shows how you set and retrieve attribute values within a
basic connect scenario.

© Copyright IBM Corp. 1997, 2013 407

Related concepts:
“ODBC programming hints and tips” on page 509
“DB2 ODBC initialization file” on page 63
Related reference:
“SQLDriverConnect() - Use a connection string to connect to a data source” on
page 172
“SQLSetColAttributes() - Set column attributes” on page 346
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetEnvAttr() - Set environment attributes” on page 365
“SQLSetStmtAttr() - Set statement attributes” on page 376

Functions for setting and retrieving environment attributes
To specify a new value for an environment attribute, call SQLSetEnvAttr(). To
obtain the current value of an environment attribute, call SQLGetEnvAttr().

SQLAllocHandle()
(statement)

SQLDriverConnect()SQLConnect()

Some attributes can
be set only after the
connection is establishled.

Optionally set
keyword values

Environment attributes can be set only
before a connection handle is allocated.

SQLAllocHandle()
(connection)

SQLAllocHandle()
(environment)

SQLGetStmtAttr()
(optional)

SQLSetStmtAttr()

Default
statement
attributes

SQLSetConnectAttr()

SQLGetConnectAttr()
(optional)

SQLGetEnvAttr()
(optional)

SQLSetConnectAttr()

SQLSetEnvAttr()

Figure 37. Setting and retrieving attributes

408 ODBC Guide and Reference

Attributes on an environment handle affect the behavior of all DB2 ODBC
functions within that environment. You must set environment attributes before you
allocate a connection handle. Because DB2 ODBC allows you to allocate only one
environment handle, environment attributes affect all DB2 ODBC functions that
your application calls.
Related reference:
“SQLGetEnvAttr() - Return current setting of an environment attribute” on page
247
“SQLSetEnvAttr() - Set environment attributes” on page 365

Functions for setting and retrieving connection attributes
To specify a new value for a connection attribute, call SQLSetConnectAttr(). To
obtain the current value of a connection attribute, call SQLGetConnectAttr().

You can set a connection attribute only within one of the following periods of time.
This period differs for each specific connection attribute.
v Any time after the connection handle is allocated
v Only before the actual connection is established
v Only after the connection is established
v After the connection is established only if that connection has no outstanding

transactions or open cursors

To obtain the current value of a connection attribute, call SQLGetConnectAttr().
Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350

Functions for setting and retrieving statement attributes
To specify a new value for a statement attribute, call SQLSetStmtAttr(). To obtain
the current value of a statement attribute, call SQLGetStmtAttr().

You can set a statement attribute only after you have allocated a statement handle.
Statement attributes are one of the following types:
v Attributes that you can set, but currently only to one specific value
v Attributes that you can set any time after the statement handle is allocated
v Attributes that you can set only if no cursor is open on the statement handle

Although you can use the SQLSetConnectAttr() function to set ODBC 2.0
statement attributes, setting statement attributes at the connection level is not
recommended.

SQLGetConnectAttr() retrieves only connection attribute values; to retrieve the
current value of a statement attribute you must call SQLGetStmtAttr().
Related reference:
“SQLSetStmtAttr() - Set statement attributes” on page 376

ODBC and distributed units of work
You can write DB2 ODBC applications to use distributed units of work.

The transaction scenario that appears in How to connect to one or more data sources,
portrays an application that can interact with only one data source in a transaction
and perform only one transaction at a given time.

Chapter 5. Advanced features 409

With a distributed unit of work (which is also called a coordinated distributed
transaction), your application can access multiple database servers from within the
same coordinated transaction.

The environment and connection attribute SQL_ATTR_CONNECTTYPE controls
whether your application operates in a coordinated or uncoordinated distributed
environment. To change the distributed environment in which your application
operates, you set this attribute to one of the following values:
v SQL_CONCURRENT_TRANS

With this attribute value, the distributed environment is uncoordinated. Your
application uses the semantics for a single data source for each transaction, as
described in Conceptual view of a DB2 ODBC application. This value permits
multiple (logical) concurrent connections to different data sources.
SQL_CONCURRENT_TRANS is the default value for the
SQL_ATTR_CONNECTTYPE environment attribute.

v SQL_COORDINATED_TRANS
With this attribute value, the distributed environment is coordinated. Your
application uses semantics for multiple data sources per transaction, as this
section describes.

To use distributed units of work in your application, call SQLSetEnvAttr() or
SQLSetConnectAttr() with the attribute SQL_ATTR_CONNECTTYPE set to
SQL_COORDINATED_TRANS. You must set this attribute before you make a
connection request.

All connections within an application must use the same connection type. You can
set the connection type by using SQLSetEnvAttr(), SQLSetConnectAttr(), or the
CONNECTTYPE keyword in the DB2 ODBC initialization file.

Recommendation: Set this environment attribute as soon as you successfully
allocate an environment handle.
Related concepts:
“How to connect to one or more data sources” on page 13
Chapter 2, “Conceptual view of a DB2 ODBC application,” on page 9
Related reference:
“DB2 ODBC initialization keywords” on page 65

Functions for establishing a distributed unit-of-work
connection

You establish distributed unit of work connections when you call SQLSetEnvAttr()
or SQLSetConnectAttr() with SQL_ATTR_CONNECTTYPE set to
SQL_COORDINATED_TRANS.

You cannot specify MULTICONTEXT=1 in the initialization file if you want to use
coordinated distributed transactions. Users of your application can specify
CONNECTTYPE=2 in the DB2 ODBC initialization file or in the
SQLDriverConnect() connection string to enable coordinated transactions.

You cannot mix concurrent connections with coordinated connections in your
application. The connection type that you specify for the first connection
determines the connection type of all subsequent connections. SQLSetEnvAttr() and
SQLSetConnectAttr() return an error if your application attempts to change the
connection type while any connection is active. After you establish a connection

410 ODBC Guide and Reference

type, it persists until you free all connection handles and change the value of the
CONNECTTYPE keyword or the SQL_ATTR_CONNECTTYPE attribute.

The following example shows an example of an application that sets
SQL_ATTR_CONNECTTYPE to SQL_COORDINATED_TRANS and performs a
coordinated transaction on two data sources within the distributed environment.
/* ... */
#define MAX_CONNECTIONS 2
int
DBconnect(SQLHENV henv,

SQLHDBC * hdbc,
char * server);

int
main()
{

SQLHENV henv;
SQLHDBC hdbc[MAX_CONNECTIONS];
SQLRETURN rc;
char * svr[MAX_CONNECTIONS] =

{
"KARACHI" ,
"DAMASCUS"

}
/* Allocate an environment handle */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* Before allocating any connection handles, set Environment wide

Connect Attributes */
/* Set to CONNECT(type 2)*/
rc = SQLSetEnvAttr(henv, SQL_CONNECTTYPE,

(SQLPOINTER) SQL_COORDINATED_TRANS, 0);
/* ... */

/* Connect to first data source */
/* Allocate a connection handle */
if (SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc[0]) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");
return (SQL_ERROR);

}
/* Connect to first data source (Type-II) */
DBconnect (henv,

&hdbc[0],
svr[0]);

/* Allocate a second connection handle */
if (SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc[1]) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n");
return (SQL_ERROR);

}
/* Connect to second data source (Type-II) */
DBconnect (henv,

&hdbc[1],
svr[1]);

/********* Start processing step *************************/
/* Allocate statement handle, execute statement, and so on */
/* Note that both connections participate in the disposition*/
/* of the transaction. Note that a NULL connection handle */
/* is passed as all work is committed on all connections. */
/********* End processing step ***************************/
(void)SQLEndTran(SQL_HANDLE_HENV, henv, SQL_COMMIT);
/* Disconnect, free handles and exit */

}
/**
** Server is passed as a parameter. Note that USERID and PASSWORD**
** are always NULL. **
**/
int
DBconnect(SQLHENV henv,

SQLHDBC * hdbc,

Chapter 5. Advanced features 411

char * server)
{

SQLRETURN rc;
SQLCHAR buffer[255];
SQLSMALLINT outlen;
/* Allocate a connection handle */
SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc);
rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database:
return (SQL_ERROR);

} else {
printf(">Connected to
return (SQL_SUCCESS);

}
}
/* ... */

Related concepts:
“DB2 ODBC initialization file” on page 63

Coordinated connections in a DB2 ODBC application
In distributed units of work, commits and rollbacks among multiple data source
connections are coordinated. To establish coordinated connections in a DB2 ODBC
application, set the SQL_ATTR_CONNECTTYPE attribute to
SQL_COORDINATED_TRANS or set the CONNECTTYPE keyword to 2.

Coordinated connections are equivalent to connections that are established as
CONNECT (type 2) in IBM embedded SQL. All the connections within an
application must have the same connection type. In a distributed unit of work, you
must establish all connections as coordinated. The default commit mode for
coordinated connections is manual-commit mode.

The following figure shows the logical flow of an application that executes
statements on two SQL_CONCURRENT_TRANS connections ('A' and 'B') and
indicates the scope of the transactions. (This figure shows the logical flow and
transaction scope of an application that executes the same statements on two
SQL_COORDINATED_TRANS connections.)

Figure 38. An application that connects to two data sources for a coordinated transaction

412 ODBC Guide and Reference

In Figure 39, the third and fourth transactions are interleaved on multiple
concurrent connections. If an application specifies SQL_CONCURRENT_TRANS,
the ODBC model supports one transaction for each active connection. In Figure 39,
the third transaction and the fourth transaction are managed and committed
independently. (The third transaction consists of statements A1 and A2 at data
source A and the fourth transaction consists of statements B2, B2 again, and B1 at
data source B.) The transactions at A and B are independent and exist concurrently.

If you set the SQL_ATTR_CONNECTTYPE attribute to
SQL_CONCURRENT_TRANS and specify MULTICONTEXT=0 in the initialization
file, you can allocate any number of concurrent connection handles. However, only
one physical connection to DB2 can exist at any given time with these settings.
This behavior precludes support for the ODBC connection model. Consequently,
applications that specify MULTICONTEXT=0 differ substantially from the ODBC
execution model was previously described.

If an application specifies MULTICONTEXT=0 in the concurrent environment that
Figure 39 portrays, the DB2 ODBC driver executes the third transaction as three
separate implicit transactions. The DB2 ODBC driver performs these three implicit
transactions with the following actions. (You do not issue these actions explicitly in
your application).
v First transaction

1. Executes statement B2
2. Commits1

v Second transaction

1. Reconnects to data source B (after committing a transaction on data source
A)

2. Executes statement B2
3. Commits1

Allocate connection " "
Connect " "
Allocate statement " "
Allocate statement " "

Allocate connection " "
Connect " "
Allocate statement " "
Allocate statement "

A
A

A1
A2

B

B

B1

B2

Execute statement " "
Execute statement " "
Commit " "

A1
A2

A

Execute statement " "
Execute statement " "
Commit " "

B2

B1

B

Transaction 1

Initialize two connections.
Allocate two statement handles
for each connection.

Transaction 2

Execute statement " "A1

Execute statement " "
Commit " "

A2
A

Transaction 4
Execute statement " "B2

Execute statement " "B2

Execute statement " "
Commit "

B1

B"

Transaction 3

Figure 39. Multiple connections with concurrent transactions

Chapter 5. Advanced features 413

v Third transaction

1. Reconnects to data source B (after committing a transaction on data source
A)

2. Executes statement B1
3. Commits1

Note:

1. In applications that run with MULTICONTEXT=0, you must always commit
before changing data sources. You can specify AUTOCOMMIT=1 in the
initialization file or call SQLSetConnectAttr() with SQL_ATTR_AUTOCOMMIT
set to SQL_AUTOCOMMIT_ON to include these commit statements implicitly
in your application. You can also explicitly include commits by using
SQLEndTran() calls or SQL commit statements in your application.

From an application point of view, the transaction at data source B, which consists
of statements B2, B2, and B1, becomes three independent transactions. The
statements B2, B2, and B1 are each executed as independent transactions. Similarly,
the fourth transaction at data source A, which consists of statements A1 and A2
becomes two independent transactions: A1 and A2.

The following figure shows how the statements that Figure 39 on page 413 depicts
are executed in a coordinated distributed environment. This figure shows
statements on two SQL_COORDINATED_TRANS connections ('A' and 'B') and the
scope of a coordinated distributed transaction.

414 ODBC Guide and Reference

Related concepts:
“Commit and rollback in DB2 ODBC” on page 22
“DB2 ODBC support of multiple contexts” on page 478

Global transactions in ODBC programs
A global transaction is a recoverable unit of work, or transaction, that is made up of
changes to a collection of resources. You include global transactions in your
application to access multiple recoverable resources in the context of a single
transaction.

Global transactions enable you to write applications that participate in two-phase
commit processing. All resources that participate in a global transaction are
guaranteed to be committed or rolled back as an atomic unit. z/OS Transaction
Management and Resource Recovery Services (RRS) coordinate the updates that
occur within a global transaction by using a two-phase commit protocol.

To enable global transactions, specify the keywords AUTOCOMMIT=0,
MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF in the initialization file.

Coordinated
transaction 1

Coordinated
transaction 2

Allocate environment
Set environment attributes
(SQL_ATTR_CONNECTTYPE)

Allocate connection " "
Connect " "
(SQL_CONCURRENT_TRANS)

Allocate statement " "
Allocate statement " "

Allocate connection " "
Connect " "
(SQL_CONCURRENT_TRANS)

Allocate statement " "
Allocate statement " "

A
A

A1
A2

B

B

B1

B2

Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "

A1
A2
B2

B1

Commit

Commit

Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "
Execute statement " "

B2

B2

B1

A1

A2

Initialize two connections.
Allocate two statement handles
for each connection.

Figure 40. Multiple connections with coordinated transactions

Chapter 5. Advanced features 415

To use global transactions, perform the following actions, which include RRS APIs,
in your application:
1. Call ATRSENV() to provide environmental settings for RRS before you allocate

connection handles.
2. Call ATRBEG() to mark the beginning of the global transaction.
3. Update the resources that are part of the global transaction.
4. Call SRRCMIT(), SRRBACK(), or the RRS service ATREND() to mark the end of the

global transaction.
5. Repeat steps 2 and 4 for each global transaction that you include in your

application.

SQLEndTran() is disabled within each global transaction, but you can still use this
function to commit or rollback local transactions that are outside of the boundaries
of the global transactions.

DB2 ODBC does not support global transaction processing for applications that run
under a stored procedure.

The following example shows an application that uses global transaction
processing. This application uses both ODBC and RRS APIs to make global
transactions on two resources.
/* Provide environmental settings for RRS */
ATRSENV();
/* Get an environment handle (henv) */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* Get a connection handle (hdbc1) */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc1);
/* Get a connection handle (hdbc2) */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc2);
/* Start a global transaction */
ATRBEG(... , ATR_GLOBAL_MODE , ...);
/* Connect to STLEC1 */
SQLConnect(hdbc1, "STLEC1", ...);
/* Execute some SQL with hdbc1 */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1);
SQLExecDirect(hstmt1, ...);
SQLExecDirect(hstmt1, ...);

.

.
/* Connect to STLEC1B */
SQLConnect(hdbc2, "STLEC1B", ...);
/* Execute some SQL with hdbc2 */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc2, &hstmt2);
SQLExecDirect(hstmt2, ...);
SQLExecDirect(hstmt2, ...);

.

.
/* Free statement handles */
SQLFreeHandle(SQL_HANDLE_STMT, hstmt1);
SQLFreeHandle(SQL_HANDLE_STMT, hstmt2);
/* Commit global transaction */
SRRCMIT();
/* Start a global transaction */
ATRBEG(... , ATR_GLOBAL_MODE , ...);
/* Execute some SQL with hdbc1 */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1);
SQLExecDirect(hstmt1, ...);
SQLExecDirect(hstmt1, ...);

.

.
/* Execute some SQL with hdbc2 */

416 ODBC Guide and Reference

SQLAllocHandle(SQL_HANDLE_STMT, hdbc2, &hstmt2);
SQLExecDirect(hstmt2, ...);
SQLExecDirect(hstmt2, ...);

.

.
/* Commit global transaction */
ATREND(ATR_COMMIT_ACTION);
/* Disconnect hdbc1 and hdbc2 */
SQLDisconnect(hdbc1);
SQLDisconnect(hdbc2);

Related reference:

z/OS MVS Programming: Resource Recovery

Use of ODBC for querying the DB2 catalog
You can use DB2 ODBC catalog query functions and direct catalog queries to the
DB2 ODBC shadow catalog to obtain catalog information.

Often, an application must obtain information from the catalog of the database
management system. For example, many applications use catalog information to
display a list of current tables for users to choose and manipulate. Although you
can write your application to obtain this information with direct queries to the
database management catalog, this approach is not advised.

When you use catalog query functions in your application, queries to the catalog
are independent of the way that any single database server implements catalogs.
As a result of this independence, applications that use these functions are more
portable and require less maintenance.

You can also direct catalog query functions to the DB2 ODBC shadow catalog for
improved performance.
Related concepts:
“Catalog query functions”
“The DB2 ODBC shadow catalog” on page 420

Catalog query functions
Catalog functions provide a generic interface for issuing queries and returning
consistent result sets across the DB2 servers on different operating systems. In most
cases, this consistency allows you to avoid server-specific and release-specific
catalog queries in your applications.

A catalog function is conceptually equivalent to an SQLExecDirect() function that
executes a SELECT statement against a catalog table. Catalog functions return
standard result sets through the statement handle on which you call them. Use
SQLFetch() to retrieve individual rows from this result set as you would with any
standard result set.

The following functions query the catalog and return a result set each:
v “SQLColumnPrivileges() - Get column privileges” on page 144
v “SQLColumns() - Get column information” on page 148
v “SQLForeignKeys() - Get a list of foreign key columns” on page 210

Figure 41. An application that performs ODBC global transactions

Chapter 5. Advanced features 417

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2n1b0/8.6?DN=SA22-7616-11&DT=20110610092026&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/

v “SQLPrimaryKeys() - Get primary key columns of a table” on page 324
v “SQLProcedureColumns() - Get procedure input/output parameter information”

on page 328
v “SQLProcedures() - Get a list of procedure names” on page 337
v “SQLSpecialColumns() - Get special (row identifier) columns” on page 388
v “SQLStatistics() - Get index and statistics information for a base table” on

page 392
v “SQLTablePrivileges() - Get table privileges” on page 397
v “SQLTables() - Get table information” on page 401

Each of these functions return a result set with columns that are positioned in a
specific order. Unlike column names, which can change as X/Open and ISO
standards evolve, the positions of these columns are static among ODBC drivers.
When, in future releases, columns are added to these result sets, they will be
added at the end position.

To make your application more portable, refer to columns by position when you
handle result sets that catalog functions generate. Also, write your applications in
such a way that additional columns do not adversely affect your application.

The CURRENTAPPENSCH keyword in the DB2 ODBC initialization file
determines the encoding scheme for character data from catalog queries, as it does
with all other result sets.

Some catalog functions execute fairly complex queries. For this reason, call these
functions only when you need catalog information. Saving this information is
better than making repeated queries to the catalog.
Related concepts:
“Application encoding schemes and DB2 ODBC” on page 486
Related reference:
“DB2 ODBC initialization keywords” on page 65

Input arguments on catalog functions
Input arguments identify or constrain the amount of information that a catalog
function returns.

All of the catalog functions include the input arguments CatalogName and
SchemaName (and their associated lengths). Catalog functions can also include the
input arguments TableName, ProcedureName, and ColumnName (and their associated
lengths). CatalogName, however, must always be a null pointer (with its length set
to 0) because DB2 ODBC does not support three-part naming.

Each input argument is described either as a pattern-value argument or an
ordinary argument. Argument descriptions vary between catalog functions. For
example, SQLColumnPrivileges() treats SchemaName and TableName as ordinary
arguments, whereas SQLTables() treats these arguments as pattern-value
arguments.

Ordinary arguments are inputs that are taken literally. These arguments are
case-sensitive. Ordinary arguments do not qualify a query, but rather they
explicitly identify the input information. If you pass a null pointer to this type of
argument, the results are unpredictable.

418 ODBC Guide and Reference

Pattern-value arguments constrain the size of the result set as though the
underlying query were qualified by a WHERE clause. If you pass a null pointer to
a pattern-value input, that argument is not used to restrict the result set (that is, no
WHERE clause restricts the query). If a catalog function has more than one
pattern-value input argument, these arguments are treated as though the WHERE
clauses in the underlying query were joined by AND. A row appears in the result
set only if it meets the conditions of all pattern-value arguments that the catalog
function specifies.

Each pattern-value argument can contain:
v The underscore (_) character, which stands for any single character.
v The percent (%) character, which stands for any sequence of zero or more

characters.
v Characters that stand for themselves. The case of a letter is significant.

These argument values are used on conceptual LIKE predicates in the WHERE
clause. To treat metadata characters (_ and %) literally, you must include an escape
character immediately before the _ or % character. To use the escape character itself
as a literal part of a pattern-value argument, include the escape character twice in
succession. You can determine the escape character that an ODBC driver uses by
calling SQLGetInfo() with the InfoType argument set to
SQL_SEARCH_PATTERN_ESCAPE.

You can use catalog functions with EBCDIC, Unicode, and ASCII encoding
schemes. The CURRENTAPPENSCH keyword in the initialization file determines
which one of these encoding schemes you use. For EBCDIC, Unicode UTF-8, and
ASCII input strings use generic catalog functions. For UCS-2 input strings, use
suffix-W catalog functions. For each generic catalog function, a corresponding
suffix-W API provides UCS-2 support.
Related concepts:
“DB2 ODBC API entry points” on page 487
Related information:
Chapter 4, “ODBC Functions,” on page 89

Catalog functions example
You can write an application that uses catalog functions to obtain information. For
example, you can obtain a list of all tables that have a specified schema name.

The following output shows the information:
v A list of all tables for the specified schema (qualifier) name or search pattern
v Column, special column, foreign key, and statistics information for a selected

table

Chapter 5. Advanced features 419

Related information:
Chapter 4, “ODBC Functions,” on page 89

The DB2 ODBC shadow catalog
The DB2 ODBC shadow catalog provides increased performance when you need
catalog information. To increase the performance of an application that frequently
queries the catalog, implement the DB2 ODBC shadow catalog. Redirect catalog
functions to the shadow catalog instead of to the native DB2 catalog.

The shadow catalog consists of a set of pseudo-catalog tables that contain rows
that represent objects that are defined in the DB2 catalog. These tables are
pre-joined and indexed to provide faster catalog access for ODBC applications.
Tables in the shadow catalog contain only the columns that are necessary for
supporting ODBC operations.

Enter Search Pattern for Table Schema Name:
STUDENT
Enter Search Pattern for Table Name:
%
TABLE SCHEMA TABLE_NAME TABLE_TYPE

------------------------- ------------------------- ----------

1 STUDENT CUSTOMER TABLE
2 STUDENT DEPARTMENT TABLE
3 STUDENT EMP_ACT TABLE
4 STUDENT EMP_PHOTO TABLE
5 STUDENT EMP_RESUME TABLE
6 STUDENT EMPLOYEE TABLE
7 STUDENT NAMEID TABLE
8 STUDENT ORD_CUST TABLE
9 STUDENT ORD_LINE TABLE
10 STUDENT ORG TABLE
11 STUDENT PROD_PARTS TABLE
12 STUDENT PRODUCT TABLE
13 STUDENT PROJECT TABLE
14 STUDENT STAFF TABLE
Enter a table Number and an action:(n [Q | C | P | I | F | T |O | L])
|Q=Quit C=cols P=Primary Key I=Index F=Foreign Key |
|T=Tab Priv O=Col Priv S=Stats L=List Tables |
1c
Schema: STUDENT Table Name: CUSTOMER

CUST_NUM, NOT NULLABLE, INTeger (10)
FIRST_NAME, NOT NULLABLE, CHARacter (30)
LAST_NAME, NOT NULLABLE, CHARacter (30)
STREET, NULLABLE, CHARacter (128)
CITY, NULLABLE, CHARacter (30)
PROV_STATE, NULLABLE, CHARacter (30)
PZ_CODE, NULLABLE, CHARacter (9)
COUNTRY, NULLABLE, CHARacter (30)
PHONE_NUM, NULLABLE, CHARacter (20)

>> Hit Enter to Continue<<
1p
Primary Keys for STUDENT.CUSTOMER
1 Column: CUST_NUM Primary Key Name: = NULL
>> Hit Enter to Continue<<
1f
Primary Key and Foreign Keys for STUDENT.CUSTOMER

CUST_NUM STUDENT.ORD_CUST.CUST_NUM
Update Rule SET NULL , Delete Rule: NO ACTION

>> Hit Enter to Continue<<

Figure 42. Sample output from an application that uses catalog functions

420 ODBC Guide and Reference

DB2 DataPropagator populates and maintains the DB2 ODBC shadow catalog. DB2
for z/OS supports the DATA CAPTURE CHANGE clause of the ALTER TABLE
SQL statement. This support allows DB2 to mark log records that are associated
with any statements that change the DB2 catalog.

Additionally, the DB2 DataPropagator Capture and Apply process identifies and
propagates the DB2 catalog changes to the DB2 ODBC shadow, based on marked
log records.

CLISCHEM is the default schema name for tables that make up the DB2 ODBC
shadow catalog. To redirect catalog functions to access these base DB2 ODBC
shadow catalog tables, add the entry CLISCHEMA=CLISCHEM to the data source
section of the DB2 ODBC initialization file as follows:
[DATASOURCE]
MVSDEFAULTSSID=V61A
CLISCHEMA=CLISCHEM

Optionally, you can create views for the DB2 ODBC shadow catalog tables that are
qualified with your own schema name, and redirect the ODBC catalog functions to
access these views instead of the base DB2 ODBC shadow catalog tables. To
redirect the catalog functions to access your own set of views, add the entry
CLISCHEMA=myschema (where myschema is the schema name of the set of views
that you create) to the data source section of the DB2 ODBC initialization file as
follows:
[DATASOURCE]
MVSDEFAULTSSID=V61A
CLISCHEMA=PAYROLL
APPLTRACE=1
APPLTRACEFILENAME="DD:APPLTRC"

You can use the CREATE VIEW SQL statement to create views of the DB2 ODBC
shadow catalog tables. To use your own set of views, you must create a view for
each DB2 ODBC shadow catalog table.

Example: Execute the following SQL statement to create a view, where table_name
is the name of a DB2 ODBC shadow catalog table:
CREATE VIEW PAYROLL.table_name AS

SELECT * FROM PAYROLL.table_name WHERE TABLE_SCHEM=’USER01’;

The following table lists the base DB2 ODBC shadow catalog tables and the catalog
functions that access these tables.

Table 258. Shadow catalog tables and DB2 ODBC APIs

Shadow catalog table DB2 ODBC catalog function

CLISCHEM.COLUMNPRIVILEGES SQLColumnPrivileges()

CLISCHEM.COLUMNS SQLColumns()

CLISCHEM.FOREIGNKEYS SQLForeignKeys()

CLISCHEM.PRIMARYKEYS SQLPrimaryKeys()

CLISCHEM.PROCEDURECOLUMNS SQLProcedureColumns()

CLISCHEM.PROCEDURES SQLProcedures()

CLISCHEM.SPECIALCOLUMNS SQLSpecialColumns()

CLISCHEM.TSTATISTICS SQLStatistics()

CLISCHEM.TABLEPRIVILEGES SQLTablePrivileges()

Chapter 5. Advanced features 421

Table 258. Shadow catalog tables and DB2 ODBC APIs (continued)

Shadow catalog table DB2 ODBC catalog function

CLISCHEM.TABLE SQLTables()

Example: If you specify CLISCHEMA=PAYROLL in the data source section of the
DB2 ODBC initialization file, the ODBC catalog functions that normally query the
DB2 catalog tables (SYSIBM schema) reference a set of views of the ODBC shadow
catalog base tables.

The following views access the ODBC shadow catalog base tables:
v PAYROLL.COLUMNS
v PAYROLL.TABLES
v PAYROLL.COLUMNPRIVILEGES
v PAYROLL.TABLEPRIVILEGES
v PAYROLL.SPECIALCOLUMNS
v PAYROLL.PRIMARYKEYS
v PAYROLL.FOREIGNKEYS
v PAYROLL.TSTATISTICS
v PAYROLL.PROCEDURES
v PAYROLL.PROCEDURECOLUMNS

Using arrays to pass parameter values
DB2 ODBC provides an array input method for updating DB2 tables.

In data entry and update applications, users might often insert, delete, or alter
many cells in a data entry form before they send these changes to the database.
For these situations, DB2 ODBC provides an array input method that eliminates
the need for you to call SQLExecute() repeatedly on the same INSERT, DELETE,
UPDATE, or MERGE statement. In addition, the use of arrays to pass parameter
values can reduce network flows.

You pass arrays to parameter markers with the following method:
1. Call SQLBindParameter() for each parameter marker that you bind to an input

array in memory. Use the following argument values in this function call:
v Set the fParamType argument value to SQL_PARAM_INPUT.
v Point the rgbValue argument to the array that contains input data for the

parameter marker.
v For character data and binary input data, specify the length, in bytes, of each

element in the input array with the input argument cbValueMax. (For other
input data types, this argument is ignored.)

v Optionally, point the pcbValue argument to an array that contains the lengths,
in bytes, of each value in the input array. Specify each length value in the
pcbValue array to be the length of the corresponding value in the rgbValue
array.

For LOB data in files, you can use SQLBindFileToParam().
2. Call SQLSetStmtAttr() and specify, in the crow argument, the number of rows

that the input array contains. This value indicates the number of different
values for each parameter.

3. Call SQLExecute() to send all the parameter values to the database.

422 ODBC Guide and Reference

When you insert, update, or merge rows with arrays, use SQLRowCount() to verify
the number of rows you changed.

Queries with parameter markers that are bound to arrays on the WHERE clause
generate multiple sequential result sets. You process each result set that such a
query returns individually. After you process the initial result set, call
SQLMoreResults() to retrieve each additional result set.

INSERT example: Consider an application that performs an array insert, as the
right side of Figure 43 illustrates. Suppose that this application enables users to
change values in the OVERTIME_WORKED and OVERTIME_PAID columns of a
time sheet data entry form. Also, suppose that the primary key of the underlying
EMPLOYEE table is EMPLOY_ID. This application can then request to prepare the
following SQL statement:
UPDATE EMPLOYEE SET OVERTIME_WORKED= ? and OVERTIME_PAID= ?
WHERE EMPLOY_ID=?

Because this statement contains three parameter markers, the application uses three
arrays to store input data. When the user makes changes to n rows, the application
places n values in each array. When the user decides to send these changes to the
database, the application binds the parameter markers in the prepared SQL
statement to the arrays. The application then calls SQLSetStmtAttr() with the crow
argument set to n. This value specifies the number of elements in each array.

The following figure shows the two methods of executing a statement with m
parameters n times. Both methods must call SQLBindParameter() once for each
parameter.

The left side of the preceding figure illustrates a method of bulk operations that
does not use arrays to pass parameter values. SQLBindParameter() binds each
parameter marker to a host variable that contains a single value. Because this
method does not perform array inserts, SQLExecute() is called repeatedly. Before

SQLFreeHandle()
(statement)

If statement is not executed again:

SQLPrepare()

SQLAllocHandle()
(statement)

SQLBindParameter() SQLBindParameter()

SQLSetStmtAttr()

SQLExecute()

SQLExecute()

SQL_ATTR_PARAMSET_SIZE

n iterations

1
2

n

1 2 3 m
...
...

...

...

1 2 3 m
...

{

Figure 43. Array insert

Chapter 5. Advanced features 423

each SQLExecute() call, the application updates the variables that are bound to the
input parameters. This method calls SQLExecute() to execute every operation.

The right side of Figure 43 on page 423 illustrates a method of bulk operations that
uses arrays to pass parameter values. SQLExecute() is called only once for any
number of bulk operations. The array method calls SQLSetStmtAttr() with the
statement attribute SQL_ATTR_PARAMSET_SIZE, and then it calls SQLExecute().

The following example shows an array INSERT statement.
/* ... */

SQLUINTEGER pirow = 0;
SQLCHAR stmt[] =
"INSERT INTO CUSTOMER (Cust_Num, First_Name, Last_Name) "

"VALUES (?, ?, ?)";
SQLINTEGER Cust_Num[25] = {

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250

};
SQLCHAR First_Name[25][31] = {

"EVA", "EILEEN", "THEODORE", "VINCENZO", "SEAN",
"DOLORES", "HEATHER", "BRUCE", "ELIZABETH", "MASATOSHI",
"MARILYN", "JAMES", "DAVID", "WILLIAM", "JENNIFER",
"JAMES", "SALVATORE", "DANIEL", "SYBIL", "MARIA",
"ETHEL", "JOHN", "PHILIP", "MAUDE", "BILL"

};

SQLCHAR Last_Name[25][31] = {
"SPENSER", "LUCCHESI", "O’CONNELL", "QUINTANA",
"NICHOLLS", "ADAMSON", "PIANKA", "YOSHIMURA",
"SCOUTTEN", "WALKER", "BROWN", "JONES",
"LUTZ", "JEFFERSON", "MARINO", "SMITH",
"JOHNSON", "PEREZ", "SCHNEIDER", "PARKER",
"SMITH", "SETRIGHT", "MEHTA", "LEE",
"GOUNOT"

};
/* ... */

/* Prepare the statement */
rc = SQLPrepare(hstmt, stmt, SQL_NTS);
rc = SQLParamOptions(hstmt, 25, &pirow);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

0, 0, Cust_Num, 0, NULL);
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

31, 0, First_Name, 31, NULL);
rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

31, 0, Last_Name, 31, NULL);
rc = SQLExecute(hstmt);
printf("Inserted

/* ... */

MERGE example: Consider an application that performs an array merge, as
Figure 44 on page 425 illustrates. This application merges an array of EMPNO,
FIRSTNME, MIDINIT, LASTNAME, and SALARY values into the DSN8B10.EMP
sample table. For each row of values that is to be merged:
v If the EMPNO value for the row that is to be merged matches an EMPNO value

in the DSN8B10.EMP table, the SALARY value for the existing table row is
updated.

v If the EMPNO value for the row that is to be merged does not match an
EMPNO value in the DSN8B10.EMP table, the row is inserted into the
DSN8B10.EMP table.

The MERGE statement that accomplishes this is:

424 ODBC Guide and Reference

MERGE INTO DSN8B10.EMP AS t
USING VALUES
(CAST (? AS CHAR(6)),
CAST (? AS VARCHAR(12)),
CAST (? AS CHAR(1)),
CAST (? AS VARCHAR(15)),
CAST (? AS INTEGER))
AS s (EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY)
ON t.EMPNO = s.EMPNO
WHEN MATCHED THEN UPDATE SET SALARY = s.SALARY
WHEN NOT MATCHED THEN INSERT
(EMPNO, s.FIRSTNME, s.MIDINIT, s.LASTNAME, s.SALARY)
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Because this statement contains five parameter markers, the application uses five
arrays to store input data. When you make changes to n rows, the application
places n values in each array. When you decide to send these changes to the
database, the application binds the parameter markers in the prepared SQL
statement to the arrays. The application then calls SQLSetStmtAttr() with the crow
argument set to n. This value specifies the number of elements in each array.

The following figure shows the two methods of executing a MERGE statement
with m+p parameters. m is the number of parameters that have one or more values
for each parameter. p is the number of parameters in the UPDATE and INSERT
parts of the MERGE statement, which have a single value for each parameter.

The left side of the preceding figure illustrates a method of merging you can use
when the MERGE statement needs to be executed more than once. The statement

SQL_ATTR_PARAMSET_SIZE

SQLFreeHandle()
(statement)

SQLExecDirect()SQLExecute()

...
m+1

1
2

n

1 2 3
...
...

...

m+p

...

m ...
SQLPrepare()

SQLAllocHandle()
(statement)

SQLBindParameter() SQLBindParameter()

SQLSetStmtAttr()

Figure 44. Array merge

Chapter 5. Advanced features 425

is prepared and executed in two separate steps so that the prepared statement can
be used if DB2 is set up for prepared statement caching.

The right side of Figure 44 on page 425 illustrates a method of bulk operations that
you can use when the MERGE statement needs to be executed only once. The
statement is prepared and executed in a single step.

The following figure shows code for an array MERGE.

/* declare and initialize local variables */
SQLUINTEGER cRow = 10;
SQLUINTEGER
piRow = 0;
SQLCHAR sqlStmt[] =

"MERGE INTO DSN8B10.EMP AS t"
" USING VALUES"
" (CAST (? AS CHAR(6)),"
" CAST (? AS VARCHAR(12)),"
" CAST (? AS CHAR(1)),"
" CAST (? AS VARCHAR(15)),"
" CAST (? AS INTEGER))"
" AS s (EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY)"
" ON t.EMPNO = s.EMPNO"
" WHEN MATCHED THEN UPDATE SET SALARY = s.SALARY"
" WHEN NOT MATCHED THEN INSERT"
" (EMPNO, s.FIRSTNME, s.MIDINIT, s.LASTNAME, s.SALARY)"
" NOT ATOMIC CONTINUE ON SQLEXCEPTION";

SQLCHAR empno[10][7];
SQLCHAR firstname[10][13];
SQLCHAR middlename[10][2];
SQLCHAR lastname[10][16];
SQLINTEGER salary[10];
/* set up data for empno, firstname, middlename, lastname and salary */
/* ... */
/* prepare the statement */
rc = SQLPrepare(hstmt, sqlStmt, SQL_NTS);
/* specify the number of rows to be merged */
rc = SQLParamOptions(hstmt, cRow, &piRow);
/* bind the parameters to input arrays */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

6, 0, empno, 7, NULL);
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

12, 0, firstname, 13, NULL);
rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

1, 0, middlename, 2, NULL);
rc = SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

15, 0, lastname, 16, NULL);
rc = SQLBindParameter(hstmt, 5, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, salary, 0, NULL);
/* execute the statement */
rc = SQLExecute(hstmt);
/* display the total number of rows either updated or inserted by MERGE */
printf("MERGEd

Figure 45. An application that performs an array merge

426 ODBC Guide and Reference

Related concepts:
“Extended indicators in ODBC applications” on page 509
Related reference:
“SQLMoreResults() - Check for more result sets” on page 304

Retrieval of a result set into an array
An application can issue a query statement and fetch rows from the result set that
the query generates.

To fetch rows, you typically bind application variables to columns in the result set
with SQLBindCol(). Then you individually fetch each row into these application
variables. If you want to store more than one row from the result set in your
application, you can follow each fetch with an additional operation. You can save
previously fetched values in your application by using one of the following
operations before you fetch additional data:
v Copy fetched values to application variables that are not bound to a result set
v Call a new set of SQLBindCol() functions to assign new application variables to

the next fetch

If you do not use one of these operations, each fetch replaces the values that you
previously retrieved.

Alternatively, you can retrieve multiple rows of data (called a row set)
simultaneously into an array. This method eliminates the overhead of extra data
copies or SQLBindCol() calls. SQLBindCol() can bind an array of application
variables. By default, SQLBindCol() binds rows in column-wise fashion: this type of
bind is similar to using SQLBindParameter() to bind arrays of input parameter
values, as described in the previous section. You can also bind data in a row-wise
fashion to retrieve data into an array.

Column-wise binding for array data
When you retrieve a result set into an array, you can call SQLBindCol() to bind
application variables to columns in the result set. Before calling this function, you
need to call SQLSetStmtAttr() to set the number of rows that you want to retrieve.

The following figure is a logical view of column-wise binding.

Chapter 5. Advanced features 427

To perform column-wise array retrieval, include the following procedure in your
application:
1. Call SQLSetStmtAttr() to set the rowset size.

If you plan to fetch rows with SQLExtendedFetch(), set the
SQL_ATTR_ROWSET_SIZE attribute set to the number of rows that you want
to retrieve with each fetch.
If you plan to fetch rows with SQLFetchScroll(), set the
SQL_ATTR_ROW_ARRAY_SIZE attribute set to the number of rows that you
want to retrieve with each fetch.
When the value of the SQL_ATTR_ROWSET_SIZE or
SQL_ATTR_ROW_ARRAY_SIZE attribute is greater than 1 on a statement
handle, DB2 ODBC treats deferred output data pointers and length pointers of
that handle as pointers to arrays.

2. Call SQLBindCol() for each column in the result set. In this call, include the
following argument values:
v Point the rgbValue argument to an array that is to receive data from the

column that you specify with the icol argument.
v For character and binary input data, specify the maximum size of the

elements in the array with the input argument cbValueMax. (For other input
data types, this argument is ignored.)

v Optionally, you can retrieve the number of bytes that each complete value
requires in the array that is to receive the column data. To retrieve length
data, point the pcbValue argument to an array that is to hold the number of
bytes that DB2 ODBC will return for each retrieved value. Otherwise, you
must set this value to NULL.

3. Call SQLExtendedFetch() or SQLFetchScroll() to retrieve the result data into
the array.
For an SQLExtendedFetch() call, if the number of rows in the result set is
greater than the SQL_ATTR_ROWSET_SIZE attribute value, you must call
SQLExtendedFetch() multiple times to retrieve all the rows.
For an SQLExtendedScroll() call, if the number of rows in the result set is
greater than the SQL_ATTR_ROW_ARRAY_SIZE attribute value, you must call
SQLFetchScroll() multiple times to retrieve all the rows.

DB2 ODBC uses the value of the maximum buffer size argument to determine
where to store each successive result value in the array. You specify this value in

SQLCHAR B[][4]n
SQLINTEGER Lb[]n

SQLCHAR C[][11]n
SQLINTEGER Lc[]n

SQLINTEGER A[]n
SQLINTEGER La[]n

Column
Length

A
Data

Column
Length

B
Data

Column
Length

C
Data

..
.

Result set

Extended fetch, column-wise binding

Column:
A
B
C

Data type:
INTEGER
CHAR(3)
CHAR(10) ..

.

..
.

..
.

..
.

..
.

..
.

1

2

3

10 XYZ Abcde

n
1

2

3

10 4

n

1

2

3

XYZ 3

n

1

2

3

Abcde 5

n

..
.

..
.

..
.

..
.

A B C

..
.

..
.

Figure 46. Column-wise binding

428 ODBC Guide and Reference

the cbValueMax argument in SQLBindCol(). DB2 ODBC optionally stores the
number of bytes that each element contains in a deferred length array. You specify
this deferred array in the pcbValue argument in SQLBindCol().
Related concepts:
“Row-wise binding for array data”

Row-wise binding for array data
Row-wise binding associates an entire row of the result set with a structure. You
retrieve a rowset that is bound in this manner into an array of structures. Each
structure holds the data and associated length fields from an entire row. You use
row-wise binding only to retrieve data, and not to send it.

The following figure gives a pictorial view of row-wise binding.

You must call SQLSetStmtAttr() to set the number of rows that you want to
retrieve before you can call SQLBindCol().

To perform row-wise array retrieval, include the following procedure in your
application:
1. Call SQLSetStmtAttr() to indicate how many rows to retrieve at a time.

If you plan to fetch rows with SQLExtendedFetch(), set the
SQL_ATTR_ROWSET_SIZE attribute set to the number of rows that you want
to retrieve with each fetch.
If you plan to fetch rows with SQLFetchScroll(), set the
SQL_ATTR_ROW_ARRAY_SIZE attribute set to the number of rows that you
want to retrieve with each fetch.

2. Call SQLSetStmtAttr() again with the SQL_ATTR_BIND_TYPE attribute value
set to the size of the structure to which the result columns are bound. When
DB2 ODBC returns data, it uses the value of the SQL_ATTR_BIND_TYPE
attribute to determine where to store successive rows in the array of structures.

3. Call SQLBindCol() to bind the array of structures to the result set. In this call,
include the following argument values:
v Point the rgbValue argument to the address of the element of the first

structure in an array that is to receive data from the column that you specify
with the icol argument.

..
.

Result set

Extended fetch, row-wise binding

Column:
A
B
C

Data type:
INTEGER
CHAR(3)
CHAR(10)

Column
A

struct { SQLINTEGER A,
SQLINTEGER Lb, SQLCHAR B[4],
SQLINTEGER Lc, SQLCHAR C[11];

} buffer[];

SQLINTEGER La,

n

Column
B

Column
C

..
.

..
.

..
.

..
.

1

2

3

10 XYZ Abcde

n
1

2

3

4 10 3 XYZ 5 Abcde

n

..
.

..
.

..
.

..
.

A B C

..
.

..
.

Figure 47. Row-wise binding

Chapter 5. Advanced features 429

v For character and binary input data, specify the length, in bytes, of each
element in the array that receives data in the input argument cbValueMax.
(For other input data types, this argument is ignored.)

v Optionally, point the pcbValue argument to the address of the element of the
first structure in an array that is to receive the number of bytes that the
column value for this bind occupies. Otherwise, set this value to NULL.

4. Call SQLExtendedFetch() or SQLFetchScroll() to retrieve the result data into
the array.

The following figure shows the required functions to return column-wise and
row-wise bound data with SQLExtendedFetch(). In this figure, n is the value of the
SQL_ATTR_ROWSET_SIZE attribute, and m is the number of columns in the result
set. The left side of the figure shows how n rows are selected and retrieved one
row at a time into m application variables where The right side of the figure shows
how the same n rows are selected and retrieved directly into an array.

When you perform array retrieval:
v If you specify the value n for SQL_ATTR_ROWSET_SIZE (or

SQL_ATTR_ROW_ARRAY_SIZE, for SQLFetchScroll()), you must retrieve the
result set into an array of at least n elements. Otherwise, a memory overlay
might occur.

v To bind m columns to application variables or an array, you must always make
m calls to SQLBindCol().

v If the result set contains more rows than SQL_ATTR_ROWSET_SIZE or
SQL_ATTR_ROW_ARRAY_SIZE specifies, you must make multiple calls to
SQLExtendedFetch() or SQLFetchScroll() to retrieve all the rows in the result
set. When you make multiple calls to SQLExtendedFetch() or SQLFetchScroll(),
you must perform an operation between these calls to save the previously
fetched data. These operations are listed in Retrieving a result set into an array.

SQLFreeHandle()
(statement)

SQLBindCol()SQLBindCol()

SQLExtendedFetch()

If statement is not executed again:

SQLFetch()
1 1
2 2

n n

Select
columns
rows

m
n

Select
columns
rows

m
n

n iterations
1 2 3 m

...

1 1

1

2 2

2

3 3

3

m m

m

...

...

...

...

...

...

...
...

.........

...

SQLSetStmtAttr()

struct {

} R[];n

SQLAllocHandle()
(statement)

Column-wise binding Row-wise binding

SQLPrepare() &

or
SQLExecDirect()

SQLExecute()
SQLPrepare() &

or
SQLExecDirect()

SQLExecute()

SQL_ATTR_BIND_TYPE =
SQL_BIND_BY_COLUMN

SQL_ATTR_BIND_TYPE =
size of(struct R)

m iterationsm iterations

SQL_ATTR_ROWSET_SIZE = n SQL_ATTR_ROWSET_SIZE = n

Figure 48. Array retrieval

430 ODBC Guide and Reference

Related concepts:
“Retrieval of a result set into an array” on page 427

The ODBC row status array
The row status array returns the status of each row in the rowset.

You allocate the row status array in your application. Then you specify the address
of this array with the SQL_ATTR_ROW_STATUS_PTR statement attribute. The
array must have as many elements as are specified by the
SQL_ATTR_ROW_ARRAY_SIZE statement attribute. SQLExtendedFetch(),
SQLFetchScroll(), or SQLSetPos() set the values of the row status array, unless
those methods are called after the cursor has been positioned by
SQLExtendedFetch(). If the value of the SQL_ATTR_ROW_STATUS_PTR statement
attribute is a null pointer, SQLExtendedFetch(), SQLFetchScroll(), and SQLSetPos()
do not return the row status.

The contents of the row status array buffer are undefined if SQLExtendedFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

Table 259. Values returned in a row status array

Row status array value Description

SQL_ROW_SUCCESS The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO The row was successfully fetched, but a warning was
returned about the row.

SQL_ROW_ERROR An error occurred when the row was fetched.

SQL_ROW_ADDED The row was inserted by SQLBulkOperations(). If the row
is fetched again, or is refreshed by SQLSetPos(), its status
is SQL_ROW_SUCCESS.

This value is not set by SQLExtendedFetch() or
SQLFetchScroll().

DB2 ODBC does not make inserted rows visible to a
scrollable cursor result set, so it does not return this
value.

SQL_ROW_UPDATED The row was successfully fetched and has changed since
it was last fetched from this result set. If the row is
fetched again from this result set, or is refreshed by
SQLSetPos(), the status changes to the new status for the
row.

DB2 ODBC makes updated rows visible if they continue
to satisfy the predicate of the query. Therefore, for
SQLBulkOperations() or SQLSetPos(), DB2 ODBC can
indicate SQL_ROW_UPDATED, and the row can be
visible upon refetch. However, DB2 ODBC cannot detect
a change in value from the last fetch. It returns
SQL_SUCCESS for a fetch.

SQL_ROW_DELETED The row was deleted after it was last fetched from this
result set.

DB2 ODBC does not make deleted rows visible to a
scrollable cursor result set, so it does not return this
value.

Chapter 5. Advanced features 431

Table 259. Values returned in a row status array (continued)

Row status array value Description

SQL_ROW_NOROW The rowset overlapped the end of the result set, and no
row was returned that corresponds to the corresponding
element of the row status array.

Related reference:
“SQLBulkOperations() - Add, update, delete or fetch a set of rows” on page 128
“SQLFetch() - Fetch the next row” on page 197
“SQLFetchScroll() - Fetch the next row” on page 203
“SQLSetPos - Set the cursor position in a rowset” on page 369

Column-wise and row-wise binding example
An application can bind rows and columns of a result set to a structure.

The following example shows an application that binds rows and columns of a
result set to a structure.
/* ... */
#define NUM_CUSTOMERS 25

SQLCHAR stmt[] =
{ "WITH " /* Common Table expression (or Define Inline View) */

"order (ord_num, cust_num, prod_num, quantity, amount) AS "
"("
"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, ’.’), p.units, char(l.quantity, ’.’)) "
"FROM ord_cust c, ord_line l, product p "
"WHERE c.ord_num = l.ord_num AND l.prod_num = p.prod_num "
"AND cust_num = CNUM(cast (? as integer)) "

"), "
"totals (ord_num, total) AS "
"("
"SELECT ord_num, sum(decimal(amount, 10, 2)) "
"FROM order GROUP BY ord_num "
") "

/* The ’actual’ SELECT from the inline view */
"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,10,2) amount, total "
"FROM order, totals "
"WHERE order.ord_num = totals.ord_num "

};
/* Array of customers to get list of all orders for */

SQLINTEGER Cust[]=
{

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250

};
#define NUM_CUSTOMERS sizeof(Cust)/sizeof(SQLINTEGER)
/* Row-wise (Includes buffer for both column data and length) */

struct {
SQLINTEGER Ord_Num_L;
SQLINTEGER Ord_Num;
SQLINTEGER Cust_Num_L;
SQLINTEGER Cust_Num;
SQLINTEGER Prod_Num_L;
SQLINTEGER Prod_Num;
SQLINTEGER Quant_L;
SQLDOUBLE Quant;
SQLINTEGER Amount_L;
SQLDOUBLE Amount;
SQLINTEGER Total_L;

432 ODBC Guide and Reference

SQLDOUBLE Total;
} Ord[ROWSET_SIZE];
SQLUINTEGER pirow = 0;
SQLUINTEGER pcrow;
SQLINTEGER i;
SQLINTEGER j;

/* ... */
/* Get details and total for each order row-wise */
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
rc = SQLParamOptions(hstmt, NUM_CUSTOMERS, &pirow);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, Cust, 0, NULL);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);
/* SQL_ROWSET_SIZE sets the max number */
/* of result rows to fetch each time */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET_SIZE,

(void *)ROWSET_SIZE, 0);
/* Set size of one row, used for row-wise binding only */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_BIND_TYPE,

(void *)sizeof(Ord) / ROWSET_SIZE, 0);
/* Bind column 1 to the Ord_num Field of the first row in the array*/
rc = SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) &Ord[0].Ord_Num, 0,

&Ord[0].Ord_Num_L);
/* Bind remaining columns ... */

/* ... */
/* NOTE: This sample assumes that an order never has more

rows than ROWSET_SIZE. A check should be added below to call
SQLExtendedFetch multiple times for each result set.

*/
do /* for each result set */
{ rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, NULL);

if (pcrow > 0) /* if 1 or more rows in the result set */
{

i = j = 0;
printf("**************************************\n");
printf("Orders for Customer: 0].Cust_Num);
printf("**************************************\n");
while (i < pcrow)
{ printf("\nOrder #: i].Ord_Num);

printf(" Product Quantity Price\n");
printf(" -------- ---------------- ------------\n");
j = i;
while (Ord[j].Ord_Num == Ord[i].Ord_Num)
{ printf(" %8ld %16.7lf %12.2lf\n",

Ord[i].Prod_Num, Ord[i].Quant, Ord[i].Amount);
i++;

}
printf(" ============\n");
printf(" j].Total);

} /* end while */
} /* end if */

}
while (SQLMoreResults(hstmt) == SQL_SUCCESS);

/* ... */

ODBC limited block fetch
The DB2 ODBC driver can use limited block fetch to improve performance of
FETCH operations on a local DB2 for z/OS server.

Figure 49. An application that retrieves data into an array by column and by row

Chapter 5. Advanced features 433

With limited block fetch, the local DB2 for z/OS server groups the rows that are
retrieved by an SQL query into a block of rows in a query buffer. The DB2 ODBC
driver retrieves those blocks of rows from the query buffer. Applications that
perform single-row fetches or multi-row fetches from large result sets with the
SQLFetch(), SQLExtendedFetch() or SQLFetchScroll() function can benefit from
limited block fetch. Retrieval of a large number of rows at one time can offer better
performance than multiple retrievals of fewer rows.

You can enable limited block fetch without any making any changes to your
applications. To enable limited block fetch:
v Set the LIMITEDBLOCKFETCH initialization keyword to 1.

1 is the default value.
v If the default value of 32767 bytes does not provide adequate performance,

adjust the QUERYDATASIZE initialization parameter to set the number of bytes
that are transferred at one time during FETCH processing. In general, a larger
value of QUERYDATASIZE results in fewer trips to the data source, which can
result in better performance.

Limited block fetch is effective only for non-scrollable cursors that do not update
or delete data.

For applications that use locators when retrieving LOB data from a result set, set
LIMITEDBLOCKFETCH to 0. Otherwise, if you attempt to use the SQLGetData()
function to retrieve a LOB locator into an application variable after the data has
been fetched, the function call fails.

Also, for applications that use the SQL_C_BINARYXML data type, set
LIMITEDBLOCKFETCH to 0. Otherwise, if you attempt to use the SQLGetData()
function to retrieve XML data and have LIMITEDBLOCKFETCH set to 1, the
function call fails.

When you enable limited block fetch, the data that is returned to your application
might not reflect the data that has been committed to the source table. For
example, suppose that limited block fetch is enabled, and that your application
issues SQLFetch() to fetch a row from a result set. DB2 ODBC retrieves and stores
a block of rows. Suppose that another application concurrently deletes all
subsequent rows from the table. The next SQLFetch() calls by your application
retrieve subsequent rows from the stored block of rows. However, those rows no
longer exist in the table. If your application fetches data from tables that are
updated by other users, or if your application uses savepoints and issues
ROLLBACK TO SAVEPOINT to manage transactions, you should disable limited
block fetch.
Related reference:
“DB2 ODBC initialization keywords” on page 65

Scrollable cursors in DB2 ODBC
Scrollable cursors let you move backward and forward in a query result set.

The ability to scroll back and forth in a result set is essential for applications that
need to return to previously fetched rows. Without scrollable cursors, those
applications need to implement expensive, cumbersome methods for accessing
fetched data again, such as closing and reopening cursors, or caching result sets.
Because there is a performance cost for scrollable cursors, you should define
scrollable cursors only when your applications require them.

434 ODBC Guide and Reference

|
|
|
|

|
|
|
|

Scrollable cursor characteristics in DB2 ODBC
In DB2 ODBC, scrollable cursors are defined by whether they are static or
dynamic. Scrollable cursors are also defined by their sensitivity, and their
concurrency.

Static or dynamic cursors

Scrollable cursors can be static or dynamic. Static and dynamic cursors differ in
their ability to detect updates, deletes, and inserts into the result set. The
definitions of static and dynamic cursors are:

Static A read-only cursor. After the cursor is opened, it does not detect any
inserts, deletes or updates that are made by its application, or by any other
application.

Dynamic
A cursor that is sensitive to all inserts, deletes, and updates to the result set
that occur after the cursor is opened. A dynamic cursor can insert into,
delete from, or update the result set.

How to set the characteristics of a DB2 ODBC cursor

Before executing a query, an application can specify the cursor type by calling
SQLSetStmtAttr(), with the statement attribute SQL_ATTR_CURSOR_TYPE. The
default cursor type is forward-only.

An application can specify the characteristics of a cursor rather than specifying the
cursor type. The application does this by setting the following statement attributes
through SQLSetStmtAttr():
v SQL_ATTR_CURSOR_SCROLLABLE
v SQL_ATTR_CURSOR_SENSITIVITY

The ODBC driver selects the cursor type that most efficiently provides the
characteristics that the application requests.

Whenever an application sets any of the following statement attributes, the ODBC
driver changes the other statement attributes in this set, to keep the behavior
consistent:
v SQL_ATTR_CONCURRENCY
v SQL_ATTR_CURSOR_SCROLLABLE
v SQL_TTRCURSOR_SENSITIVITY
v SQL_ATTR_CURSOR_TYPE

The following table lists the default attributes for each cursor type in DB2 ODBC.

Table 260. Cursor attributes for each cursor type

Cursor type Cursor sensitivity Cursor concurrency Cursor scrollability

Forward-only Unspecified Read-only
concurrency

Not scrollable

Static Insensitive Read-only
concurrency

Scrollable

Dynamic Sensitive Lock concurrency Scrollable

Chapter 5. Advanced features 435

How to determine which characteristics are supported

Not all database servers support all types of scrollable cursors. Therefore, before
you can use a scrollable cursor, you must determine whether scrollable cursors are
supported.

To determine the types of scrollable cursors that are supported by the ODBC driver
and the data source, and the capabilities that are supported for each scrollable
cursor type, call SQLGetInfo(). Specify the following InfoType values:
v SQL_CURSOR_SENSITIVITY
v SQL_SCROLL_OPTIONS
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2
v SQL_KEYSET_CURSOR_ATTRIBUTES1
v SQL_KEYSET_CURSOR_ATTRIBUTES2
v SQL_DYNAMIC_CURSOR_ATTRIBUTES1
v SQL_DYNAMIC_CURSOR_ATTRIBUTES2

Relative and absolute scrolling in DB2 ODBC applications
When you use a scrollable cursor, you call SQLFetchScroll() to move the cursor
and fetch rows. The set of rows that you fetch is called a rowset.

The SQLFetchScroll() function supports relative scrolling (moving to the next row,
the previous row, or forward or backward by n rows) and absolute scrolling
(moving to the first row, the last row, or to row number n). The FetchOrientation
parameter of the SQLFetchScroll() call determines the type of scrolling. Possible
values are:
v SQL_FETCH_NEXT
v SQL_FETCH_PRIOR
v SQL_FETCH_FIRST
v SQL_FETCH_LAST
v SQL_FETCH_ABSOLUTE
v SQL_FETCH_RELATIVE

For SQL_FETCH_ABSOLUTE, the FetchOffset parameter determines the row to
which the cursor moves. For SQL_FETCH_RELATIVE, the FetchOffset parameter
determines the number of rows by which the cursor moves.

The following figure demonstrates how the cursor moves within a result set for
SQLFetchScroll() calls with various FetchOffset and FetchOrientation parameter
values. In this example, the rowset size is 3, and the original cursor position is at
three rows from the end of the result set.

436 ODBC Guide and Reference

You cannot assume that the entire rowset contains data. Your application must
check the rowset size after each fetch, to determine whether the rowset contains a
complete set of rows. For example, suppose that you set the rowset size to 10, and
you call SQLFetchScroll() using A FetchOrientation value of
SQL_FETCH_ABSOLUTE and a FetchOffset value of -3. As the following figure
shows, this function call sets the cursor position at three rows from the end of the
result set, and attempts to fetch 10 rows.

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13

Row n
Row n - 1
Row n - 2

Fetch 2:
SQL_FETCH_FIRST

Fetch 1:
SQL_FETCH_LAST

.

.

.

.

Fetch 3:
SQL_FETCH_NEXT

Fetch 4:
SQL_FETCH_RELATIVE
(= -1)FetchOffset

Fetch 5:
SQL_FETCH_ABSOLUTE
(= 11)FetchOffset

Figure 50. Example of cursor movement after SQLFetchScroll() calls

Chapter 5. Advanced features 437

After the fetch, only the first three rows of the rowset contain meaningful data, so
your application must use the data in only those three rows.
Related concepts:
“The ODBC row status array” on page 431
Related reference:
“SQLFetchScroll() - Fetch the next row” on page 203

Steps for retrieving data with scrollable cursors in a DB2
ODBC application

To use a scrollable cursor in a DB2 ODBC application, you must set the rowset
size, specify the scrollable cursor type, set up areas to contain the results of data
retrieval, bind the application data, determine the result set size, fetch data, move
the cursor multiple times, and close the cursor.

Procedure

To retrieve data with scrollable cursors:
1. Call SQLSetStmtAttr() to specify the size of the rowset that is returned from

the result set. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the
number of rows that are returned for each fetch operation. The default rowset
size is 1.
For example, this call declares a rowset size of 35 rows:
#define ROWSET_SIZE 35
/* ... */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

2. Call SQLSetStmtAttr() to specify whether to use a static or dynamic scrollable
cursor. Set the SQL_ATTR_CURSOR_TYPE statement attribute to

Row 1
Row 2
Row 3

Row n
Row n - 1
Row n - 2

Rowset
(= -3)FetchOffset

.

.

.

.

Result set

Valid rows

Invalid rows

Figure 51. Example of a SQLFetchScroll() call that returns an incomplete rowset

438 ODBC Guide and Reference

SQL_CURSOR_STATIC for a static read-only cursor, or to
SQL_CURSOR_DYNAMIC for a dynamic cursor. The default cursor type is
SQL_CURSOR_FORWARD_ONLY.
For example, this call specifies a static cursor:
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_STATIC,
0);

3. Declare a storage area of type SQLUINTEGER to contain the number or rows
that are returned in the rowset from each call to SQLFetchScroll(). Call
SQLSetStmtAttr() to specify the location of that storage area. Set the
SQL_ATTR_ROWS_FETCHED_PTR statement attribute as a pointer to the
storage area.
For example, this code sets up the rowsFetchedNb variable as the storage area
for the number of rows that are returned:
/* ... */
SQLUINTEGER rowsFetchedNb;
/* ... */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,
&rowsFetchedNb,
0);

4. Declare a storage area that is an array of SQLUSMALLINT values, to contain
the row status array. Call SQLSetStmtAttr() to specify the location of the row
status array. Set the SQL_ATTR_ROW_STATUS_PTR statement attribute as a
pointer to the row status array.
The size of the row status array must be equal to the rowset size that is defined
with the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.
For example, this code sets up array row_status as a row status array:
/* ... */
SQLUSMALLINT row_status[ROWSET_SIZE];
/* ... */
/* Set a pointer to the array to use for the row status */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER)
row_status,
0);

5. Execute a SQL SELECT statement that defines the result set. Bind the results
using column-wise or row-wise binding. This step is the same as for
non-scrollable cursors.

6. Call SQLRowCount() to determine the number of rows in the result set.
7. Fetch rowsets of rows from the result set. To do that:

a. Call SQLFetchScroll() to fetch a rowset of data from the result set. Set the
FetchOrientation and FetchOffset arguments to indicate the location of the
rowset in the result set.

b. Determine the number of rows that were returned in the result set. DB2
ODBC sets this value after each call to SQLFetchScroll(), in the location to
which statement attribute SQL_ATTR_ROWS_FETCHED_PTR points, and in
the row status array.
For example, this call sets the cursor at the eleventh row of the result set,
and fetches a rowset:
rc = SQLFetchScroll(hstmt, /* Statement handle */

SQL_FETCH_ABSOLUTE, /* FetchOrientation value */
11); /* Offset value */

Chapter 5. Advanced features 439

c. Display or manipulate the retrieved rows.
d. Repeat the previous substeps in this step to scroll and fetch more rowsets.

8. After you have retrieved all rowsets, close the cursor by calling
SQLCloseCursor(), or free the statement handle by calling SQLFreeHandle() with
a HandleType value of SQL_HANDLE_STMT. When you free the statement
handles, the result set closes.

Related concepts:
“The ODBC row status array” on page 431
“ODBC scrollable cursor example”
Related reference:
“SQLFetchScroll() - Fetch the next row” on page 203
“SQLGetInfo() - Get general information” on page 254
“SQLRowCount() - Get row count” on page 344
“SQLSetStmtAttr() - Set statement attributes” on page 376

ODBC scrollable cursor example
This ODBC program is an example of how a scrollable cursor can be used to move
backward and forward through a result set.

/**/
/* Include the ’C’ include files */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sqlcli1.h"

/**/
/* Variables */
/**/

#ifndef NULL
#define NULL 0
#endif

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHDBC hstmt= SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER i,j,id;
SQLCHAR name[51];
SQLINTEGER namelen, intlen, colcount;
struct sqlca sqlca;
SQLCHAR server[18];
SQLCHAR uid[30];
SQLCHAR pwd[30];
SQLCHAR sqlstmt[500];

SQLINTEGER H1INT4;
SQLCHAR H1CHR10[11];

SQLINTEGER LNH1INT4;
SQLINTEGER LNH1CHR10;

SQLINTEGER output_nts,autocommit,cursor_hold;

// scrollable cursors
#define ROWSET_SIZE 10
SQLUINTEGER numrowsfetched;
SQLUSMALLINT rowStatus[ROWSET_SIZE];

440 ODBC Guide and Reference

static char ROWSTATVALUE[][26] = { "SQL_ROW_SUCCESS", \
"SQL_ROW_SUCCESS_WITH_INFO", \
"SQL_ROW_ERROR", \
"SQL_ROW_NOROW" };

// column-wise binding
SQLINTEGER SH1INT4[ROWSET_SIZE];
SQLCHAR SH1CHR10[ROWSET_SIZE][11];
SQLINTEGER SLNH1CHR10[ROWSET_SIZE];

SQLRETURN check_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char *);
SQLRETURN print_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char *);
SQLRETURN prt_sqlca(void);
#define CHECK_HANDLE(htype, hndl, rc) if (rc != SQL_SUCCESS) \

{check_error(htype,hndl,rc,__LINE__,__FILE__);goto dberror;}

/**/
/* Main Program */
/**/

int main()
{

printf("APDLX INITIALIZATION\n");
//***
printf("APDLX SQLAllocHandle-Environment\n");
henv=0;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
printf("APDLX-henv=%i\n",henv);
//***
printf("APDLX SQLAllocHandle-Connection\n");
hdbc=0;
rc=SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("APDLX-hdbc=%i\n",hdbc);
//***
printf("APDLX SQLConnect\n");
strcpy((char *)uid,"sysadm");
strcpy((char *)pwd,"sysadm");
strcpy((char *)server,"stlec1"); //uwo setting
rc=SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("APDLX successfully issued a SQLconnect\n");

//***
printf("APDLX SQLAllocHandle-Statement\n");
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("APDLX hstmt=%i\n",hstmt);
printf("APDLX successfully issued a SQLAllocStmt\n");

/* Set the number of rows in the rowset */
printf("APDLX SQLSetStmtAttr\n");
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

/* Set the cursor type */
printf("APDLX SQLSetStmtAttr\n");
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_STATIC,
0);

Chapter 5. Advanced features 441

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

/* Set the pointer to the variable numrowsfetched: */
printf("APDLX SQLSetStmtAttr\n");
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,
&numrowsfetched,
0);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

/* Set pointer to the row status array */
printf("APDLX SQLSetStmtAttr\n");
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) rowStatus,
0);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

printf("APDLX SQLExecDirect\n");
strcpy((char *)sqlstmt,"SELECT INT4,CHR10 FROM TABLE2A");
printf("APDLX sqlstmt=%s\n",sqlstmt);
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
printf("APDLX rc=%i\n",rc);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

printf("APDLX SQLColAttributes\n");
colcount=-1;
rc=SQLColAttributes(hstmt,

0,
SQL_COLUMN_COUNT,
NULL,
0,
NULL,
&colcount);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
if(colcount!=2)
{

printf("\nAPDLX colcount=%i\n",colcount);
goto dberror;
}

printf("APDLX SQLBindCol\n");
H1INT4=-1;
LNH1INT4=-1;
rc=SQLBindCol(hstmt,

1,
SQL_C_LONG,
(SQLPOINTER) SH1INT4,
(SQLINTEGER)sizeof(H1INT4),
(SQLINTEGER *) &LNH1INT4);

if(rc != SQL_SUCCESS) goto dberror;
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

printf("APDLX SQLBindCol\n");
strcpy(H1CHR10,"garbage");
LNH1CHR10=-1;
rc=SQLBindCol(hstmt,

2,
SQL_C_DEFAULT,
(SQLPOINTER) SH1CHR10,
11,
SLNH1CHR10);

if(rc != SQL_SUCCESS) goto dberror;
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

printf("\nUse Column-Wise Binding to demonstrate SQLFetchScroll():\n");
printf("\nINT4 CHAR10 \n");

442 ODBC Guide and Reference

printf("-------- -------------- \n");

printf("APDLX SQLFetchScroll FIRST \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);
/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++) {

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
}
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the Row Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

printf("APDLX SQLFetchScroll NEXT \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);

/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++) {

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
}
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the Row Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

printf("APDLX SQLFetchScroll SQL_FETCH_ABSOLUTE 3 \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 3);
/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++) {

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
}
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the Row Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

printf("APDLX SQLFetchScroll SQL_FETCH_RELATIVE -1 \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, -1);
/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++) {

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
}
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the R;ow Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

Chapter 5. Advanced features 443

printf("APDLX SQLFetchScroll SQL_FETCH_FIRST again \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);
printf("rc=%d\n", rc);
/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++) {

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
}
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the Row Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

printf("APDLX SQLFetchScroll SQL_FETCH_NEXT to EOF \n");
for (j = 0; j < 2; j++) {

printf("APDLX SQLFetchScroll NEXT \n");
rc = SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0);
printf("rc=%d\n", rc);
/* Indicate how many rows were in the result set. */
if (rc != SQL_NO_DATA && rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("(%i rows in rowset). ***\n", numrowsfetched);
for (i = 0; i < numrowsfetched; i++)

printf("%8ld %14s\n", SH1INT4[i], SH1CHR10[i]);
/* Output the Row Status Array if the complete rowset was not returned. */
if (numrowsfetched != ROWSET_SIZE) {

printf(" Previous rowset was not full, here is the Row Status Array:\n");
for (i = 0; i < ROWSET_SIZE; i++)

printf(" Row Status Array[%i] = %s\n", i, ROWSTATVALUE[rowStatus[i]]);
}

} // end for

printf("APDLX SQLFreeHandle-Statement\n");
rc=SQLFreeHandle(SQL_HANDLE_STMT,hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
hstmt=0;
printf("APDLX successfully issued a SQLFreeStmt\n");

printf("APDLX SQLEndTran-Commit\n");
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("APDLX successfully issued a SQLTransact\n");

/******** SQLDisconnect **/
printf("APDLX SQLDisconnect\n");
rc=SQLDisconnect(hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("APDLX successfully issued a SQLDisconnect\n");

/******** SQLFreeConnect ***/
printf("APDLX SQLFreeHandle-Connection\n");
rc=SQLFreeHandle(SQL_HANDLE_DBC,hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
hdbc=0;;
printf("APDLX successfully issued a SQLFreeConnect\n");

/******** SQLFreeEnv ***/
printf("APDLX SQLFreeHandle-Environment\n");
rc=SQLFreeHandle(SQL_HANDLE_ENV,henv);
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
henv=0;
printf("APDLX successfully issued a SQLFreeEnv\n");

444 ODBC Guide and Reference

pgmend:

printf("APDLX pgmend: Ending sample\n");
if (rc==0)
printf("APDLX Execution was SUCCESSFUL\n");
else
{
printf("APDLX***************************\n");
printf("APDLX Execution FAILED\n");
printf("APDLX rc = %i\n", rc);
printf("APDLX ***************************\n");
}

return(rc);

dberror:
printf("APDLX dberror: entry dberror rtn\n");
printf("APDLX dberror: rc=%d\n",rc);
printf("APDLX dberror: environment cleanup attempt\n");
printf("APDLX dberror: cleanup SQLFreeEnv\n");
rc=SQLFreeEnv(henv);
printf("APDLX dberror: cleanup SQLFreeEnv rc =%d\n",rc);
rc=12;
printf("APDLX dberror: setting error rc=%d\n",rc);
goto pgmend;

} /*END MAIN*/

/**/
/* check_error */
/**/
/* RETCODE values from sqlcli.h ***************************/
/*#define SQL_SUCCESS 0 ***************************/
/*#define SQL_SUCCESS_WITH_INFO 1 ***************************/
/*#define SQL_NO_DATA_FOUND 100 ***************************/
/*#define SQL_NEED_DATA 99 ***************************/
/*#define SQL_NO_DATA SQL_NO_DATA_FOUND **************/
/*#define SQL_STILL_EXECUTING 2 not currently returned*/
/*#define SQL_ERROR -1 ***************************/
/*#define SQL_INVALID_HANDLE -2 ***************************/
/**/
SQLRETURN check_error(SQLSMALLINT htype, /* A handle type */

SQLHANDLE hndl, /* A handle */
SQLRETURN frc, /* Return code */
int line, /* Line error issued */
char * file /* file error issued */

) {

SQLCHAR cli_sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER cli_sqlcode;
SQLSMALLINT length;

printf("APDLX entry check_error rtn\n");

switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID_HANDLE:

printf("APDLX check_error> SQL_INVALID HANDLE \n");
break;

case SQL_ERROR:
printf("APDLX check_error> SQL_ERROR\n");
break;

case SQL_SUCCESS_WITH_INFO:
printf("APDLX check_error> SQL_SUCCESS_WITH_INFO\n");

Chapter 5. Advanced features 445

break;
case SQL_NO_DATA_FOUND:

printf("APDLX check_error> SQL_NO_DATA_FOUND\n");
break;

default:
printf("APDLX check_error> Received rc from api rc=%i\n",frc);
break;

} /*end switch*/

print_error(htype,hndl,frc,line,file);

printf("APDLX SQLGetSQLCA\n");
rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);
if(rc == SQL_SUCCESS)

prt_sqlca();
else

printf("APDLX check_error SQLGetSQLCA failed rc=%i\n",rc);

printf("APDLX exit check_error rtn\n");
return (frc);

} /* end check_error */

/**/
/* print_error */
/* calls SQLGetDiagRec()displays SQLSTATE and message */
/**/

SQLRETURN print_error(SQLSMALLINT htype, /* A handle type */
SQLHANDLE hndl, /* A handle */
SQLRETURN frc, /* Return code */
int line, /* error from line */
char * file /* error from file */

) {

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1] ;
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1] ;
SQLINTEGER sqlcode ;
SQLSMALLINT length, i ;
SQLRETURN prc;

printf("APDLX entry print_error rtn\n");

printf("APDLX rc=%d reported from file:%s,line:%d ---\n",
frc,
file,
line

) ;
i = 1 ;
while (SQLGetDiagRec(htype,

hndl,
i,
sqlstate,
&sqlcode,
buffer,
SQL_MAX_MESSAGE_LENGTH + 1,
&length

) == SQL_SUCCESS) {
printf("APDLX SQLSTATE: %s\n", sqlstate) ;
printf("APDLX Native Error Code: %ld\n", sqlcode) ;
printf("APDLX buffer: %s \n", buffer) ;
i++ ;

}
printf(">--\n") ;
printf("APDLX exit print_error rtn\n");
return(SQL_ERROR) ;

446 ODBC Guide and Reference

} /* end print_error */

/**/
/* prt_sqlca */
/**/
SQLRETURN

prt_sqlca()
{

int i;
printf("APDLX entry prt_sqlca rtn\n");

printf("\r\rAPDLX*** Printing the SQLCA:\r");
printf("\nAPDLX SQLCAID %s",sqlca.sqlcaid);
printf("\nAPDLX SQLCABC %d",sqlca.sqlcabc);
printf("\nAPDLX SQLCODE %d",sqlca.sqlcode);
printf("\nAPDLX SQLERRML ... %d",sqlca.sqlerrml);
printf("\nAPDLX SQLERRMC ... %s",sqlca.sqlerrmc);
printf("\nAPDLX SQLERRP ... %s",sqlca.sqlerrp);
for (i = 0; i < 6; i++)

printf("\nAPDLX SQLERRD%d ... %d",i+1,sqlca.sqlerrd??(i??));
for (i = 0; i < 10; i++)

printf("\nAPDLX SQLWARN%d ... %c",i,sqlca.sqlwarn[i]);
printf("\nAPDLX SQLWARNA ... %c",sqlca.sqlwarn[10]);
printf("\nAPDLX SQLSTATE ... %s",sqlca.sqlstate);

printf("\nAPDLX exit prt_sqlca rtn\n");
return(0);

} /* End of prt_sqlca */

Related concepts:
“The ODBC row status array” on page 431
Related tasks:
“Steps for retrieving data with scrollable cursors in a DB2 ODBC application” on
page 438
Related reference:
“SQLFetchScroll() - Fetch the next row” on page 203
“SQLGetInfo() - Get general information” on page 254
“SQLRowCount() - Get row count” on page 344
“SQLSetStmtAttr() - Set statement attributes” on page 376

Performing bulk inserts with SQLBulkOperations()
You can insert new rows into a table or view at a data source with a call to
SQLBulkOperations().

Before you begin

Before calling SQLBulkOperations(), an application must ensure that the required
bulk operation is supported. To check for support, call SQLGetInfo() with an
InfoType of SQL_DYNAMIC_CURSOR_ATTRIBUTES1 or
SQL_DYNAMIC_CURSOR_ATTRIBUTES2. Check the following attributes to verify
that support is available:
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

Figure 52. ODBC scrollable cursor example program

Chapter 5. Advanced features 447

v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

About this task

SQLBulkOperations() operates on the current result set through a dynamic cursor,
which allows you detect any changes that are made to the result set.
SQLBulkOperations() inserts a row using data in the application buffers for each
bound column.

Procedure

To perform a bulk insert:
1. Execute a query that returns a result set.
2. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows that you want to insert.
3. Call SQLBindCol() to bind the data that you want to insert. Bind the data to an

array with a size that is equal to the value of SQL_ATTR_ROW_ARRAY_SIZE.
One of the following conditions must be true:
v The size of the row status array to which the

SQL_ATTR_ROW_STATUS_PTR statement attribute points is equal to
SQL_ATTR_ROW_ARRAY_SIZE.

v SQL_ATTR_ROW_STATUS_PTR is a null pointer.
All bound columns that have a data length of SQL_COLUMN_IGNORE, and
all unbound columns must accept NULL values or have a default.

4. Call SQLBulkOperations(StatementHandle, SQL_ADD) to perform the insertion.
SQLBulkOperations() ignores the row operation array to which
SQL_ATTR_ROW_OPERATION_PTR points.

5. If the application has set the SQL_ATTR_ROW_STATUS_PTR statement
attribute, inspect the row status array to see the result of the operation.

Example

The following example is an application that executes a query and uses
SQLBulkOperations() to insert 10 rows of data into table CUSTOMER.
a#define ROWSET_SIZE 10
/* declare and initialize local variables */
SQLCHAR sqlstmt[] =

"SELECT Cust_Num, First_Name, Last_Name FROM CUSTOMER";
SQLINTEGER Cust_Num[ROWSET_SIZE];
SQLCHAR First_Name[ROWSET_SIZE][21];
SQLCHAR Last_Name[ROWSET_SIZE][21];
SQLINTEGER Cust_Num_L[ROWSET_SIZE];
SQLINTEGER First_Name_L[ROWSET_SIZE];
SQLINTEGER Last_Name_L[ROWSET_SIZE];
SQLUSMALLINT rowStatus[ROWSET_SIZE];
/* Set up dynamic cursor type */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_DYNAMIC,
0);

/* Set pointer to row status array */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) rowStatus,
0);

/* Execute query */

448 ODBC Guide and Reference

rc = SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
/* Call SQLBindCol() for each result set column */
rc = SQLBindCol(hstmt,

1,
SQL_C_LONG,
(SQLPOINTER) Cust_Num,
(SQLINTEGER) sizeof(Cust_Num)/ROWSET_SIZE,
Cust_Num_L);

rc = SQLBindCol(hstmt,
2,
SQL_C_CHAR,
(SQLPOINTER) First_Name,
(SQLINTEGER) sizeof(First_Name)/ROWSET_SIZE,
First_Name_L);

rc = SQLBindCol(hstmt,
3,
SQL_C_CHAR,
(SQLPOINTER) Last_Name,
(SQLINTEGER) sizeof(Last_Name)/ROWSET_SIZE,
Last_Name_L);

...
/* For each column, place the new data values in */
/* the rgbValue array, and set each length value */
/* in the pcbValue array to be the length of the */
/* corresponding value in the rgbValue array. */
...
/* Set number of rows to insert */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

/* Perform the bulk insert */
rc = SQLBulkOperations(hstmt, SQL_ADD);

Updates to DB2 tables with SQLSetPos()
You can update or delete any row in a rowset with a call to SQLSetPos().

SQLSetPos() operates on your current rowset through a dynamic cursor.
SQLSetPos() can be used only after a call to SQLFetch() or SQLFetchScroll().
Related tasks:
“Deleting rows in a rowset with SQLSetPos()” on page 451
“Updating rows in a rowset with SQLSetPos()”

Updating rows in a rowset with SQLSetPos()
You can use SQLSetPos() to update any row in a rowset. SQLSetPos() operates on
your current rowset through a dynamic cursor. SQLSetPos() updates a row by
using data in the application buffers for each bound column. All bound columns
with a data length equal to the value of SQL_COLUMN_IGNORE are not updated,
and all unbound columns are not updated.

Before you begin

Before you can call SQLSetPos(), you must call SQLFetch() or SQLFetchScroll().

Procedure

To update rows with SQLSetPos():
1. Call SQLBindCol() to bind the data that you want to update.

Chapter 5. Advanced features 449

a. For each bound column, place the new data value in the buffer that is
specified by the rgbValue argument, and the length of that value in the
buffer that is specified by the pcbValue argument.

b. Set the length of the data value of those columns that are not to be updated
to SQL_COLUMN_IGNORE.

2. Call SQLSetPos() with Operation set to SQL_UPDATE and RowNumber set to the
number of the row to update. If you set RowNumber to 0, all rows in the rowset
are updated.
If you set RowNumber to 0, but you want to update only certain rows, you can
disable the update of the other rows by setting the corresponding elements of
the row operation array that is pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute to
SQL_ROW_IGNORE.

Example

The following example is an application that uses SQLSetPos() to update a row in
table CUSTOMER.
#define ROWSET_SIZE 10
/* Declare and initialize local variables */
SQLCHAR sqlstmt[] =

"SELECT Cust_Num, First_Name, Last_Name FROM CUSTOMER";
SQLINTEGER Cust_Num;
SQLCHAR First_Name[ROWSET_SIZE][21];
SQLCHAR Last_Name[ROWSET_SIZE][21];
SQLINTEGER Cust_Num_L[ROWSET_SIZE];
SQLINTEGER First_Name_L[ROWSET_SIZE];
SQLINTEGER Last_Name_L[ROWSET_SIZE];
SQLUSMALLINT rowStatus[ROWSET_SIZE];
/* Set up dynamic cursor type */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_DYNAMIC,
0);

/* Set pointer to row status array */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) rowStatus,
0);

/* Set number of rows to fetch */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,
0);

/* Fetch the first rowset */
rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);
/* Call SQLBindCol() for each result set column */
rc = SQLBindCol(hstmt,

1,
SQL_C_LONG,
(SQLPOINTER) Cust_Num,
(SQLINTEGER) sizeof(Cust_Num)/ROWSET_SIZE,
Cust_Num_L);

rc = SQLBindCol(hstmt,
2,
SQL_C_CHAR,
(SQLPOINTER) First_Name,
(SQLINTEGER) sizeof(First_Name)/ROWSET_SIZE,
First_Name_L);

rc = SQLBindCol(hstmt,
3,
SQL_C_CHAR,

450 ODBC Guide and Reference

(SQLPOINTER) Last_Name,
(SQLINTEGER) sizeof(Last_Name)/ROWSET_SIZE,
Last_Name_L);

...
/* For each column, place the new data value in */
/* the rgbValue buffer, and set the length of */
/* the value in the buffer specified by the */
/* pcbValue argument */
...
/* Update the first row in the rowset */
rc = SQLSetPos(hstmt, 1, SQL_UPDATE, SQL_LOCK_NO_CHANGE);

Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLFetch() - Fetch the next row” on page 197
“SQLFetchScroll() - Fetch the next row” on page 203
“SQLSetPos - Set the cursor position in a rowset” on page 369

Deleting rows in a rowset with SQLSetPos()
You can use SQLSetPos() to delete any row in a rowset. SQLSetPos() operates on
your current rowset through a dynamic cursor.

Before you begin

Before you can call SQLSetPos(), you must call SQLFetch() or SQLFetchScroll().

Procedure

to delete rows with SQLSetPos():

Call SQLSetPos() with Operation set to SQL_DELETE and RowNumber set to the
number of the row to delete. If you set RowNumber to 0, all rows in the rowset are
deleted.
If you set RowNumber to 0, but you want to delete only certain rows, you can
disable the delete of the other rows by setting the corresponding elements of the
row operation array that is pointed to by the SQL_ATTR_ROW_OPERATION_PTR
statement attribute to SQL_ROW_IGNORE.

Example

The following example is an application that uses SQLSetPos() to delete a row in
table CUSTOMER.
#define ROWSET_SIZE 10
/* declare and initialize local variables */
SQLCHAR sqlstmt[] =

"SELECT Cust_Num, First_Name, Last_Name FROM CUSTOMER";
/* Set up dynamic cursor type */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_CURSOR_TYPE,
(SQLPOINTER) SQL_CURSOR_DYNAMIC,
0);

/* Set pointer to row status array */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_STATUS_PTR,
(SQLPOINTER) rowStatus,
0);

/* Set number of rows to fetch */
rc = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) ROWSET_SIZE,

Chapter 5. Advanced features 451

0);
/* Fetch first rowset */
rc = SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);
/* Delete first row in rowset */
rc = SQLSetPos(hstmt, 1, SQL_DELETE, SQL_LOCK_NO_CHANGE);

Input and retrieval of long data in pieces
When an application must manipulate long data values, loading the entire values
into storage can become impractical. For this reason, DB2 ODBC provides a
technique that enables you to handle long data values in pieces.

The technique for handling long data values in pieces is called specifying parameter
values at execute time. It is the same method that you can use to specify values for
fixed-size non-character data types, such as integers.

The following figure depicts both the processes of sending data in pieces and
retrieving data in pieces. The right side of the figure shows the process that you
use to send data in pieces; the left side of the figure shows the process that you
use to retrieve data in pieces.

452 ODBC Guide and Reference

Data-at-execute parameters

A data-at-execute parameter is a bound parameter for which a value is prompted
at execution time. Normally, you store a value in memory to use for a parameter
before you call SQLExecute() or SQLExecDirect().

To create data-at-execute parameters, call SQLBindParameter() and specify both of
the following arguments for each data-at-execute parameter you want to create:
v Set the pcbValue argument to SQL_DATA_AT_EXEC.
v Set the rgbValue argument to a value you can use to uniquely identify the

parameter for which you need to supply data. This value names that parameter
so that you can refer to it later.

SQLExecDirect() and SQLExecute() return SQL_NEED_DATA for statements that
contain data-at-execute parameters to prompt you to supply a value. When
SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA, you must perform
the following steps in your application:

SQLParamData()

SQLParamData()

SQLBindParameter()

SQLAllocHandle()
(statement)

SQLPrepare() &
SQLExecute()

or
SQLExecDirect()

SQLPrepare() &
SQLExecute()

or
SQLExecDirect()

SQLPutData

SQLGetData()

SQLFreeHandle()
(statement)

SQLFetch()

SQL_DATA_AT_EXEC

SQL_NEED_DATA ?

SQL_NEED_DATA ?
Next parameter

more data ?

SQL_SUCCESS_WITH_INFO ?

SQL_SUCCESS

If statement is not executed again:

()

Figure 53. Input and retrieval of data in pieces

Chapter 5. Advanced features 453

1. Call SQLParamData() to conceptually advance to the first such parameter.
SQLParamData() returns SQL_NEED_DATA and provides the value of the input
rgbValue buffer that you specified in the SQLBindParameter() call. This value
helps you identify the information that you need to supply.

2. Call SQLPutData() to pass the actual data for the parameter. You call
SQLPutData() repeatedly to send long data in pieces.

3. Call SQLParamData() after you provide the entire data for this data-at-execute
parameter. If additional data-at-execute parameters need data, SQLParamData()
returns SQL_NEED_DATA. Repeat steps 2 and 3 until SQLParamData() returns
SQL_SUCCESS.

When all data-at-execute parameters are assigned values, SQLParamData()
completes execution of the SQL statement. SQLParamData() also produces a return
value and diagnostics as the original SQLExecDirect() or SQLExecute() would have
produced. The right side of Figure 53 on page 453 illustrates this flow.

While the data-at-execution flow is in progress, you can call only the following
DB2 ODBC functions:
v SQLParamData() and SQLPutData(), as the previous procedure to specify

parameter values at execute time describes.
v SQLCancel(), which is used to cancel the flow and force an exit from the loops

on the right side of Figure 53 on page 453 without executing the SQL statement.
v SQLGetDiagRec()

You cannot terminate the transaction nor set connection attributes in a
data-at-execution flow.

Data retrieval in pieces

You can call SQLGetData() repeatedly to retrieve smaller pieces of data.

Typically to retrieve data, you allocate application variables to hold the data that
you retrieve, and you call SQLBindCol() to associate these application variables
with a column in a result set.

Based on the size of the values that a column contains, you choose the amount of
memory that values from this column can occupy in your application. (To
determine the size of the largest value in a specific result column, call
SQLDescribeCol(). The output argument pcbColDef returns this information.)

In the case of character and binary data, columns can contain large values. If the
size of a column value exceeds the size of the buffer that you allocate, you can call
SQLGetData() repeatedly to obtain this value in a sequence of pieces that are more
manageable in size.

As the left side Figure 53 on page 453 depicts, SQLGetData() returns
SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate that more data
exists for this column. Call SQLGetData() repeatedly to retrieve the remaining
pieces of data. When you retrieve the final piece of data, SQLGetData() returns
SQL_SUCCESS.

Providing long data for bulk inserts and positioned updates
To provide long data for bulk inserts or positioned updates, use
SQLBulkOperations() or SQLSetPos() calls.

454 ODBC Guide and Reference

Procedure

To perform a bulk insert or positioned update with long data:
1. Bind the data using SQLBindCol(). When you call SQLBindCol():

a. Place an application-defined value, such as the column number, in the
*rgbValue buffer for a data-at-execution column. The value in the *rgbValue
buffer can be used later to identify the column.

b. Place the SQL_DATA_AT_EXEC value in the *pcbValue buffer.
2. Call SQLBulkOperations() or SQLSetPos(). If there are data-at-execution

columns, SQLBulkOperations() returns SQL_NEED_DATA and proceeds to step
3. If there are no data-at-execution columns, the process is complete.

3. Call SQLParamData() to retrieve the address of the *rgbValue buffer for the first
data-at-execution column that is to be processed. SQLParamData() returns
SQL_NEED_DATA.
a. Retrieve the application-defined value from the *rgbValue buffer. Although

data-at-execution parameters are similar to data-at-execution columns, the
value that is returned by SQLParamData() is different for data-at-execution
parameters and data-at-execution columns. Data-at-execution columns are
columns in a rowset for which you send data with SQLPutData() after you
insert or update a row with SQLBulkOperations() or SQLSetPos(). You bind
data-at-execution columns with SQLBindCol(). The value that is returned by
SQLParamData() is the address of the row in the *rgbValue buffer that is
being processed.

4. Call SQLPutData() one or more times to send data for the column. More than
one call is needed if all the data values cannot be returned in the *rgbValue
buffer that is specified in SQLPutData(). Multiple calls to SQLPutData() for the
same column are allowed only under the following circumstances:
v When you send character C data to a column with a character, binary, or

data-source-specific data type
v When you send binary C data to a column with a character, binary, or

data-source-specific data type
5. Call SQLParamData() again to signal that all data has been sent for the column.

v If there are more data-at-execution columns, SQLParamData() returns
SQL_NEED_DATA and the address of the *rgbValue buffer for the next
data-at-execution column that is to be processed. Repeat steps 3 and 3.

v If there are no more data-at-execution columns, the process is complete.
If the statement executes successfully, SQLParamData() returns SQL_SUCCESS
or SQL_SUCCESS_WITH_INFO. If the execution fails, it returns
SQL_ERROR. At this point, SQLParamData() can return any SQLSTATE that
can be returned by SQLBulkOperations().

v If the operation is canceled, or an error occurs in SQLParamData() or
SQLPutData(), after SQLBulkOperations() or SQLSetPos() returns
SQL_NEED_DATA, and before you retrieve data for all data-at-execution
columns, you can call only SQLCancel(), SQLGetDiagRec(),
SQLGetFunctions(), SQLParamData(), or SQLPutData() for the statement or the
connection that is associated with the statement. If you call any other
function for the statement or the connection that is associated with the
statement, the function returns SQL_ERROR and SQLSTATE HY010 (function
sequence error).

v If you call SQLCancel() while ODBC needs data for data-at-execution
columns, ODBC cancels the operation. You can then call

Chapter 5. Advanced features 455

SQLBulkOperations() or SQLSetPos() again. Canceling does not affect the
cursor state or the current cursor position.

Examples of using decimal floating point data in an ODBC application
The DECFLOAT(16) and DECFLOAT(34) SQL data types map to the
SQLDECIMAL64 and SQLDECIMAL128 C types. You must convert the character
data for decimal floating point values to a decimal floating point type before you
can assign the data to DECFLOAT columns. You can convert the data that you
retrieve from DECFLOAT columns to other data types for manipulation in an
application.

The following code demonstrates how to assign decimal floating point data to
DECFLOAT columns. The example:
v Assigns string constants that represent decimal floating point values to character

variables.
v Converts the character variables to SQLDECIMAL64 and SQLDECIMAL128

format, and assigns the results to SQLDECIMAL64 and SQLDECIMAL128
variables.

v Binds the SQLDECIMAL64 variable to a DECFLOAT(16) parameter marker, and
binds the SQLDECIMAL128 variable to a DECFLOAT(34) parameter marker.

/* Declare variables for decimal floating point data */
SQLDECIMAL64 H1DFP16;
SQLDECIMAL128 H1DFP34;

SQLINTEGER LEN_H1DFP16;
SQLINTEGER LEN_H1DFP34;

SQLCHAR H1CHAR[100];
decContext_t l_decCtxt64;
decContext_t l_decCtxt128;

/* Initialize a decContext structure to default values */
decContextDefault(&l_decCtxt64, DEC_INIT_DECIMAL64);
decContextDefault(&l_decCtxt128, DEC_INIT_DECIMAL128);

/* Convert a character string to decimal64 format for insert */
strcpy((char *)H1CHAR, "6400E-2");
decimal64FromString((decimal64_t *)&H1DFP16,

(char *)H1CHAR,
&l_decCtxt64);

LEN_H1DFP16 = sizeof(H1DFP16);

/* Convert a character string to decimal128 format for insert */
strcpy((char *)H1CHAR, "1.28E2");
decimal128FromString((decimal128_t *)&H1DFP34,

(char *)H1CHAR,
&l_decCtxt128);

LEN_H1DFP34 = sizeof(H1DFP34);

/* Bind to DECFLOAT(16)*/
SQLParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_DECIMAL64,

SQL_DECFLOAT,
16,
0,

(SQLPOINTER)&H1DFP16,
sizeof(H1DFP16),
(SQLINTEGER *)&LEN_H1DFP16);

/* Bind to DECFLOAT(34)*/
SQLParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_DECIMAL128,

SQL_DECFLOAT,
34,

456 ODBC Guide and Reference

0,
(SQLPOINTER)&H1DFP34,
sizeof(H1DFP34),
(SQLINTEGER *)&LEN_H1DFP34);

The following code demonstrates how to retrieve decimal floating point data from
DECFLOAT columns. The example:
v Binds a DECFLOAT(16) column to an SQLDECIMAL64 variable, and binds a

DECFLOAT(34) column to an SQLDECIMAL128 variable.
v Retrieves the data from the DECFLOAT columns into the SQLDECIMAL64 and

SQLDECIMAL128 variables.
v Converts the SQLDECIMAL64 and SQLDECIMAL128 variables to character

format, and assigns the results to character variables.
/* Declare variables for decimal floating point data */
SQLDECIMAL64 H1DFP16;
SQLDECIMAL128 H1DFP34;

SQLINTEGER LEN_H1DFP16;
SQLINTEGER LEN_H1DFP34;

SQLCHAR H1CHAR[100];
decNumber_t tempDecNum;

/* Bind DECFLOAT(16) column */
rc = SQLBindCol(hstmt,

1,
SQL_C_DECIMAL64,
(SQLPOINTER)&H1DFP16,
sizeof(H1DFP16),
(SQLINTEGER *)&LEN_H1DFP16);

/* Bind DECFLOAT(34) column */
rc = SQLBindCol(hstmt,

1,
SQL_C_DECIMAL128,
(SQLPOINTER)&H1DFP34,
sizeof(H1DFP34),
(SQLINTEGER *)&LEN_H1DFP34);

rc = SQLFetch(hstmt);

/* Convert H1DFP16 to a character string for display */
decimal64ToString((decimal64_t *)&H1DFP16, (char *)H1CHAR);

/* Convert H1DFP34 to decNumber form in preparation for arithmetic or other operations */
decimal128ToNumber((decimal128_t *)&H1DFP34, &tempDecNum);

Variable-length timestamps in ODBC applications
For the SQL TIMESTAMP data type, you can specify a timestamp precision of
between 0 and 12 digits. You can update timestamps with up to 12 digits of
precision in ODBC applications.

The TIMESTAMP data type maps to the C timestamp data types
SQL_C_TYPE_TIMESTAMP and SQL_C_TYPE_TIMESTAMP_EXT. You can use
SQL_C_TYPE_TIMESTAMP to describe a timestamp with up to 9 fractional digits
(nanoseconds). You can use SQL_C_TYPE_TIMESTAMP_EXT to describe a
timestamp with up to 12 fractional digits (picoseconds).

The C data type SQL_C_TYPE_TIMESTAMP maps to the C data structure
TIMESTAMP_STRUCT. The C data type SQL_C_TYPE_TIMESTAMP_EXT maps to
C data structure TIMESTAMP_STRUCT_EXT. Both C data structures contain a
fraction field that holds the first nine digits of the fractional part of the
timestamp, if the timestamp value has a precision of up to nanoseconds. The
TIMESTAMP_STRUCT_EXT contains a fraction2 field that holds the tenth

Chapter 5. Advanced features 457

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

through twelfth digits of the fractional part of the timestamp, if the timestamp
value has a precision of up to picoseconds.

When you assign a value to the fraction or fraction2 field, and the length of the
value is less than the length of the field, ODBC pads the value on the left to nine
digits for fraction, and three digits for fraction2.

Suppose that a DB2 table is defined like this:
CREATE TABLE CLIT1TB1
(TS0 TIMESTAMP(0),
TS3 TIMESTAMP(3),
TS6 TIMESTAMP(9),
TS9 TIMESTAMP(12),
TS12 TIMESTAMP(12))

The following code demonstrates how to set the fraction and fraction2 fields to
insert timestamp values with fractions of seconds into the table.
/* Variables for input data */
TIMESTAMP_STRUCT_EXT H1TSTMP0; /* For timestamp with 0 digits of precision */
TIMESTAMP_STRUCT_EXT H1TSTMP3; /* For timestamp with 3 digits of precision */
TIMESTAMP_STRUCT_EXT H1TSTMP9; /* For timestamp with 9 digits of precision */
TIMESTAMP_STRUCT_EXT H1TSTMP12; /* For timestamp with 12 digits of precision */
TIMESTAMP_STRUCT_EXT H2TSTMP12; /* For timestamp with 12 digits of precision */
/* Variables for input data lengths */
SQLINTEGER LEN_H1TSTMP0;
SQLINTEGER LEN_H1TSTMP3;
SQLINTEGER LEN_H1TSTMP9;
SQLINTEGER LEN_H1TSTMP12;
SQLINTEGER LEN_H2TSTMP12;

/* Set an initial input timestamp value. For */
/* this example, year, month, day, hour, */
/* minutes, and seconds are the same for all */
/* input variables. fraction and fraction2 */
/* vary. */
TIMESTAMP_STRUCT_EXT input_tstmp =

{2011, 9, 9, 9, 9, 9, 0, 0 };

/* SQL statement buffer */
SQLCHAR sqlstmt[250];
/* Return code for ODBC calls */
SQLRETURN rc = SQL_SUCCESS;
/* Prepare an INSERT statement for inserting */
/* data into table CLIT1TB1. */
strcpy((char *)sqlstmt,

"INSERT INTO CLIT1TB1 VALUES (?, ?, ?, ?, ?)");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

/* Set the first timestamp input host variable */
/* to this value: */
/* 2011-09-09-09.09.09 */
/* Set fraction and fraction2 to 0 because the */
/* first timestamp has no fractional portion. */
H1TSTMP0 = input_tstmp;
H1TSTMP0.fraction=0;
H1TSTMP0.fraction2=0;
/* Set the length of the input host variable */
LEN_H1TSTMP0 = sizeof(H1TSTMP0);
/* Bind the first timestamp value */
rc=SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_TYPE_TIMESTAMP_EXT,

458 ODBC Guide and Reference

|
|

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SQL_TYPE_TIMESTAMP,
0,
0,
&H1TSTMP0,
sizeof(H1TSTMP0),
&LEN_H1TSTMP0);

if (rc!=SQL_SUCCESS) goto dberror;

/* Set the second timestamp input host variable */
/* to this value: */
/* 2011-09-09-09.09.09.123 */
/* For the fractional part to be correctly */
/* interpreted as .123, the fourth through ninth */
/* positions of the fraction field must be set */
/* to zeros. Set fraction2 to 0 to indicate */
/* that the timestamp has no picoseconds */
/* portion. */
H1TSTMP3 = input_tstmp;
H1TSTMP3.fraction=123000000;
H1TSTMP3.fraction2=0;
/* Set the length of the input host variable */
LEN_H1TSTMP3 = sizeof(H1TSTMP3);
/* Bind the second timestamp value */
rc=SQLBindParameter(hstmt,

2,
SQL_PARAM_INPUT,
SQL_C_TYPE_TIMESTAMP_EXT,
SQL_TYPE_TIMESTAMP,
0,
3,
&H1TSTMP3,
sizeof(H1TSTMP3),
&LEN_H1TSTMP3);

if (rc!=SQL_SUCCESS) goto dberror;

/* Set the third timestamp input host variable */
/* to this value: */
/* 2011-09-09-09.09.09.000123456 */
/* You can omit leading zeros from the */
/* fractional part of the timestamp. ODBC adds */
/* the leading zeros for you. */
/* Set fraction2 to 0 to indicate that the */
/* timestamp has no picoseconds portion. */
H1TSTMP9 = input_tstmp;
H1TSTMP9.fraction=123456;
H1TSTMP9.fraction2=0;
/* Set the length of the input host variable */
LEN_H1TSTMP9 = sizeof(H1TSTMP9);
/* Bind the third timestamp value */
rc=SQLBindParameter(hstmt,

3,
SQL_PARAM_INPUT,
SQL_C_TYPE_TIMESTAMP_EXT,
SQL_TYPE_TIMESTAMP,
0,
9,
&H1TSTMP9,
sizeof(H1TSTMP9),
&LEN_H1TSTMP9);

if (rc!=SQL_SUCCESS) goto dberror;

/* Set the fourth timestamp input host variable */
/* to this value: */
/* 2011-09-09-09.09.09.123456789120 */
/* This value has 12 digits of precision, so you */
/* need to set fraction and fraction2. */
/* Set the first nine fractional digits in */

Chapter 5. Advanced features 459

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* fraction, and the last three digits in */
/* fraction2. */
H1TSTMP12 = input_tstmp;
H1TSTMP12.fraction=123456789;
H1TSTMP12.fraction2=120;
/* Set the length of the input host variable */
LEN_H1TSTMP12 = sizeof(H1TSTMP12);
/* Bind the fourth timestamp value */
rc=SQLBindParameter(hstmt,

4,
SQL_PARAM_INPUT,
SQL_C_TYPE_TIMESTAMP_EXT,
SQL_TYPE_TIMESTAMP,
0,
12,
&H1TSTMP12,
sizeof(H1TSTMP12),
&LEN_H1TSTMP12);

if (rc!=SQL_SUCCESS) goto dberror;

/* Set the fifth timestamp input host variable */
/* to this value: */
/* 2011-09-09-09.09.09.123456000012 */
/* This value has 12 digits of precision, so you */
/* need to set fraction and fraction2. */
/* Set the first nine fractional digits in */
/* fraction, and the last three digits in */
/* fraction2. You can omit the leading zero from */
/* the value that goes into fraction2. */
H2TSTMP12 = input_tstmp;
H2TSTMP12.fraction=123456000;
H2TSTMP12.fraction2=12;
/* Set the length of the input host variable */
LEN_H2TSTMP12 = sizeof(H2TSTMP12);
/* Bind the fifth timestamp value */
rc=SQLBindParameter(hstmt,

5,
SQL_PARAM_INPUT,
SQL_C_TYPE_TIMESTAMP_EXT,
SQL_TYPE_TIMESTAMP,
0,
12,
&H2TSTMP12,
sizeof(H2TSTMP12),
&LEN_H2TSTMP12);

if (rc!=SQL_SUCCESS) goto dberror;
/* Execute the INSERT statement */
rc=SQLExecute(hstmt);

Related concepts:

Timestamp (DB2 SQL)
Related reference:
“C and SQL data types” on page 26

Using LOBs
The term large object (LOB) refers to any type of large object. DB2 supports three
LOB data types: binary large object (BLOB), character large object (CLOB), and
double-byte character large object (DBCLOB).

These LOB data types are represented symbolically as SQL_BLOB, SQL_CLOB,
SQL_DBCLOB respectively. All DB2 ODBC functions that accept or return SQL

460 ODBC Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_timestampvalues.htm#db2z_timestampvalues

data type arguments (for example, the SQLBindParameter() and SQLDescribeCol()
functions) can accept or return LOB symbolic constants.

An application can retrieve and manipulate LOB values in the application address
space. However, your application might not require you to transfer the entire LOB
from the database server into application memory. In many cases, you can select a
LOB value and operate on pieces of it. The ODBC model can transfer LOB data
using the piecewise sequential method with SQLGetData() and SQLPutData(). This
method might prove inefficient. You can more efficiently retrieve and manipulate
an individual LOB value by using a LOB locator.

Another alternative for avoiding the use of application storage is to use file
reference variables. With file reference variables, you retrieve LOB values directly
from columns into files, or you update LOB column data directly from files.
Related reference:
“C and SQL data types” on page 26

Using LOB locators
LOB locators enable you to identify and manipulate LOB values at the database
server. They also enable you to retrieve pieces of a LOB value into application
memory.

Locators are a run time concept: they are not a persistent type, nor are they stored
in the database. Conceptually, LOB locators are simple token values (much like a
pointer) that you use to refer to much larger LOB values in the database. LOB
locator values do not persist beyond the transaction in which they are created
(unless you specify otherwise).

A locator references a LOB value, not the physical location (or address) at which a
LOB value resides. The LOB value that a locator references does not change if the
original LOB value in the table is altered. When you perform operations on a
locator, these operations similarly do not alter the original LOB value that the table
contains. To materialize operations that you perform on LOB locators, you must
store the result of these operations in a location on the database server, or in a
variable within your application.

In DB2 ODBC functions, you specify LOB locators with one of the following
symbolic C data types:
v SQL_C_BLOB_LOCATOR for BLOB data
v SQL_C_CLOB_LOCATOR for CLOB data
v SQL_C_DBCLOB_LOCATOR for DBCLOB data

Choose a C type that corresponds to the LOB data to which you refer with the
locator. Through these C data types, you can transfer a small token value to and
from the database server instead of an entire LOB value.

Call SQLBindCol() and SQLFetch(), or SQLGetData() to retrieve a LOB locator that
is associated with a LOB value into an application variable. You can then apply the
following DB2 ODBC functions to that locator:
v SQLGetLength(), which returns the length of the string that a LOB locator

represents.
v SQLGetPosition(), which returns the position of a search string within a source

string that a LOB locator represents. LOB locators can represent both search
strings and source strings.

Chapter 5. Advanced features 461

The following actions implicitly allocate LOB locators:
v Fetching a bound LOB column to the appropriate C locator type.
v Calling SQLGetSubString() and specifying that the substring be retrieved as a

locator.
v Calling SQLGetData() on an unbound LOB column and specifying the

appropriate C locator type. The C locator type must match the LOB column
type; otherwise an error occurs.

You can also use LOB locators to move LOB data at the server without pulling
data into application memory and then sending it back to the server.

Example: The following INSERT SQL statement concatenates two LOB values with
LOB locators (which are represented by the parameter markers) and inserts the
result into a table:
INSERT INTO TABLE4A
VALUES(1,CAST(? AS CLOB(2K)) CONCAT CAST(? AS CLOB(3K)))

You can explicitly free a locator before the end of a transaction with the FREE
LOCATOR statement. You can explicitly retain a locator beyond a unit of work
with the HOLD LOCATOR statement. You execute these statements with the
following syntax:

�� FREE LOCATOR �

,

host_variable ��

�� HOLD LOCATOR �

,

host_variable ��

Although you cannot prepare the FREE LOCATOR SQL statement or the HOLD
LOCATOR SQL statement dynamically, DB2 ODBC accepts these statements in
SQLPrepare() and SQLExecDirect(). Use parameter markers in these statements so
that you can convert application variables that contain LOB locator values to host
variables that these SQL statements can access. Before you call SQLPrepare() or
SQLExecDirect(), call SQLBindParameter() with the data type arguments set to the
appropriate SQL and C symbolic data types. This calls to SQLBindParameter()
passes an application variable that contains the locator value into the parameter
markers as a host variable.

LOB locators and functions that are associated with locators (such as the
SQLGetSubString(), SQLGetPosition(), and SQLGetLength() functions) are not
available when you connect to a DB2 server that does not support large objects. To
determine if a connection supports LOBs, call SQLGetFunctions() with the function
type set to SQL_API_SQLGETSUBSTRING. If the pfExists output argument returns
SQL_TRUE, the current connection supports LOBs. If the pfExists output argument
returns SQL_FALSE, the current connection does not support LOBs.

462 ODBC Guide and Reference

For applications that use locators when retrieving LOB data from a result set, set
the LIMITEDBLOCKFETCH initialization keyword to 0. Otherwise, if you attempt
to use the SQLGetData() function to retrieve a LOB locator into an application
variable after the data has been fetched, the function call fails.
Related reference:
“C and SQL data types” on page 26
“DB2 ODBC initialization keywords” on page 65

LOB and LOB locator example
An application can use LOB values in the application address space, and LOB
locators can help you identify and manipulate these values at the database server.

The following example shows an application that extracts the 'Interests' section
from the RESUME CLOB column of the EMP_RESUME table. This application
transfers only a substring into memory.

LOB file reference variables in ODBC applications
As an alternative to using LOB locators, if an application requires the entire LOB
column value, it can request direct file input and output for LOBs. Database
queries, updates, and inserts can involve the transfer of single LOB column values
into and from files.

The two DB2 ODBC LOB file access functions are:

/* ... */
SQLCHAR stmt2[] =

"SELECT resume FROM emp_resume "
"WHERE empno = ? AND resume_format = ’ascii’";

/* ... */
/**
** Get CLOB locator to selected Resume **
***/

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 7,
0, Empno.s, sizeof(Empno.s), &Empno.ind);

printf("\n>Enter an employee number:\n");
gets(Empno.s);
rc = SQLExecDirect(hstmt, stmt2, SQL_NTS);
rc = SQLBindCol(hstmt, 1, SQL_C_CLOB_LOCATOR, &ClobLoc1, 0,

&pcbValue);
rc = SQLFetch(hstmt);

/**
Search CLOB locator to find "Interests"
Get substring of resume (from position of interests to end)

***/
rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &lhstmt);
/* Get total length */
rc = SQLGetLength(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, &SLength, &Ind);
/* Get starting position */
rc = SQLGetPosition(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, 0,

"Interests", 9, 1, &Pos1, &Ind);
buffer = (SQLCHAR *)malloc(SLength - Pos1 + 1);
/* Get just the "Interests" section of the Resume CLOB */
/* (From Pos1 to end of CLOB) */
rc = SQLGetSubString(lhstmt, SQL_C_CLOB_LOCATOR, ClobLoc1, Pos1,

SLength - Pos1, SQL_C_CHAR, buffer, SLength - Pos1 +1,
&OutLength, &Ind);

/* Print Interest section of Employee’s resume */
printf("\nEmployee #:

/* ... */

Figure 54. An application that uses LOB locators

Chapter 5. Advanced features 463

|
|
|
|

SQLBindFileToCol()
Binds (associates) a LOB column in a result set with a file name.

Example:
SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;
SQLINTEGER fileInd = 0;
SQLSMALLINT fileNameLength = 14;
/* ... */
SQLCHAR fileName[14] = "LOBFile";
/* ... */
rc = SQLBindFileToCol(hstmt, 1, fileName, &fileNameLength,

&fileOption, 14, NULL, &fileInd);

SQLBindFileToParam()
Binds (associates) a LOB parameter marker with a file name.

Example:
SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;
SQLINTEGER fileInd = 0;
SQLSMALLINT fileNameLength = 14;
/* ... */
SQLCHAR fileName[14] = "LOBFile";
/* ... */
rc = SQLBindFileToParam(hstmt, 3, SQL_BLOB, fileName,

&fileNameLength, &fileOption, 14, &fileInd);

The file name is the absolute path name of the file. On execute or fetch, data
transfer to and from the file occurs, in a similar way to that of bound application
variables. A file options argument that is associated with these two functions
indicates how the files are to be handled at the time of transfer.

XML data in ODBC applications
In DB2 tables, the XML built-in data type is used to store XML data in a column as
a structured set of nodes in a tree format.

The ODBC symbolic SQL data type SQL_XML corresponds to the DB2 XML data
type. The symbolic C data types that you can use for updating XML columns or
retrieving data from XML columns are SQL_C_BINARY, SQL_C_CHAR,
SQL_C_DBCHAR or SQL_C_WCHAR. The default C data type is SQL_C_BINARY,
which is also the recommended data type because it enables the data to be
manipulated in its native format. This data type reduces conversion overhead and
minimizes data loss that can result from the conversions.

XML column updates in ODBC applications
When you update or insert data into XML columns of a DB2 table, the input data
can be in textual format or Extensible Dynamic Binary XML DB2 Client/Server
Binary XML Format (binary XML format)

For XML data, when you use SQLBindParameter() or SQLSetParam() to bind
parameter markers to input data buffers, you can specify the data type of the input
data buffer (fCType) as one of the following types:
v SQL_C_BINARY
v SQL_C_BINARYXML
v SQL_C_CHAR
v SQL_C_DBCHAR
v SQL_C_WCHAR.

464 ODBC Guide and Reference

When you bind a data buffer that contains XML data as SQL_C_BINARY, ODBC
processes the XML data as internally encoded data. This is the preferred method
because it avoids the overhead and potential data loss of character conversion.

Important: If the XML data is encoded in an encoding scheme and CCSID other
than the application encoding scheme, you need to include internal encoding in the
data and bind the data as SQL_C_BINARY to avoid character conversion.

When you bind a data buffer that contains XML data as SQL_C_CHAR,
SQL_C_DBCHAR or SQL_C_WCHAR, ODBC processes the XML data as externally
encoded data. ODBC determines the encoding of the data as follows:
v If the fCType value is SQL_C_WCHAR, ODBC assumes that the data is encoded

as UCS-2.
v If the fCType value is SQL_C_CHAR or SQL_C_DBCHAR, ODBC assumes that

the data is encoded in the application encoding scheme.

SQL_C_BINARYXML is neither internally encoded nor externally encoded.
SQL_C_BINARYXML is in binary XML format, as opposed to textual XML format,
and it has no encoding.

If you want DB2 to do an implicit XMLPARSE on the data before storing it in an
XML column, the parameter marker data type in SQLBindParameter() or
SQLSetParam() (fsqlType) must be specified as SQL_XML.

If you do an explicit XMLPARSE on the data, the parameter marker data type in
SQLBindParameter() or SQLSetParam() (fsqlType) can be specified as any character
or binary data type.

Example of inserting XML data into an XML column: The following example
shows how to insert XML data into an XML column by using various C and SQL
data types.
/* Variables for input XML data */
SQLCHAR HVCHAR[32768];
SQLWCHAR HVWCHAR[32768];
/* Variables for input XML data lengths */
SQLINTEGER LEN_HVCHAR;
SQLINTEGER LEN_HVWCHAR;
/* SQL statement buffer */
SQLCHAR sqlstmt[250];
/* Return code for ODBC calls */
SQLRETURN rc = SQL_SUCCESS;
/* Prepare an INSERT statement for inserting */
/* data into an XML column. The input parameter */
/* type is SQL_XML, so DB2 does an implicit */
/* XMLPARSE. */
strcpy((char *)sqlstmt,

"INSERT INTO MYTABLE(XMLCOL) VALUES(?)");
/* Bind input XML data with the SQL_C_CHAR type, */
/* to an SQL_XML SQL type. */
/* The data is assumed to be externally encoded, */
/* in the application encoding scheme. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_XML,

0, 0, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Execute the INSERT statement */
rc = SQLExecute(hstmt);
/* Bind input XML data with the SQL_C_WCHAR type, */
/* to an SQL_XML SQL type. */
/* The data is assumed to be externally encoded, */
/* in the UCS-2 encoding scheme. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_WCHAR, SQL_XML,

Chapter 5. Advanced features 465

0, 0, HVWCHAR, sizeof(HVWCHAR0, &LEN_HVWCHAR);
/* Execute the INSERT statement */
rc = SQLExecute(hstmt);
/* Prepare an INSERT statement for inserting */
/* data into an XML column. The input parameter */
/* type is SQL_CLOB, so the application must */
/* do an explicit XMLPARSE. */
strcpy((char *)sqlstmt,

"INSERT INTO MYTABLE (XMLCOL) ");
strcat((char *)sqlstmt,

"VALUES(XMLPARSE(DOCUMENT CAST ? AS CLOB))");
/* Bind input XML data with the SQL_C_CHAR type, */
/* to an SQL_CLOB SQL type. */
/* An explicit XMLPARSE is required for inserting */
/* character data into an XML column. */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CLOB,

32768, 0, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Execute the INSERT statement */
rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

Example of inserting binary XML data into an XML column: The following
example shows how to insert binary XML data into an XML column by using the
SQL_C_BINARYXML data type.

XML data retrieval in ODBC applications
When you select data from XML columns in a DB2 table, the output data is in
textual format or Extensible Dynamic Binary XML DB2 Client/Server Binary XML
Format (binary XML format).

For XML data, when you use SQLBindCol() to bind columns in a query result set to
application variables, you can specify the data type of the application variables
(fCType) as one of the following types:
v SQL_C_BINARY
v SQL_C_BINARYXML

Figure 55. Example of inserting XML data into an XML column

CREATE TABLE MYTABLE (XML_COL XML);

/* Declare variables for binary XML data */
SQLCHAR HV1BINARYXML[100];
SQLINTEGER LEN_HV1BINARYXML;
SQLCHAR sqlstmt[250];
SQLRETURN rc = SQL_SUCCESS;

/* Assume that HV1BINARYXML contains XML data in binary format
and LEN_HV1BINARYXML contains the length of data in bytes */

/* Prepare insert statement */
strcpy((char *)sqlstmt, "insert into mytable values(?)");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

/* Bind XML_COL column as SQL_C_BINARYXML */
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARYXML, SQL_XML,

0, 0, HV1BINARYXML, sizeof(HV1BINARYXML), &LEN_HV1BINARYXML);

/* Execute insert */
rc = SQLExecute(hstmt);

Figure 56. Example of inserting binary XML data into an XML column

466 ODBC Guide and Reference

v SQL_C_CHAR
v SQL_C_DBCHAR
v SQL_C_WCHAR.

The data is returned as internally encoded data.

ODBC determines the encoding of the data as follows:
v If the fCType value is SQL_C_BINARY, ODBC returns the data in the UTF-8

encoding scheme.
v If the fCType value is SQL_C_BINARYXML, ODBC returns the data in binary

XML format.
v If the fCType value is SQL_C_CHAR or SQL_C_DBCHAR, ODBC returns the

data in the application encoding scheme.
v If the fCType value is SQL_C_WCHAR, ODBC returns the data in the UCS-2

encoding scheme.

DB2 performs an implicit XMLSERIALIZE on the data before returning it to your
application.

For applications that use the SQL_C_BINARYXML data type, set
LIMITEDBLOCKFETCH to 0. Otherwise, if you attempt to use the SQLGetData()
function to retrieve XML data and have LIMITEDBLOCKFETCH set to 1, the
function call fails.

Example of retrieving XML data from an XML column: The following example
shows how to retrieve XML data from an XML column into application variables
with various C data types.

Chapter 5. Advanced features 467

|
|
|
|

Example of retrieving binary XML data from an XML column: The following
example shows how to retrieve binary XML data from an XML column into
application variables by using type SQL_C_BINARYXML.

/* Variables for output XML data */
SQLCHAR HVBINARY[32768];
SQLCHAR HVCHAR[32768];
SQLDBCHAR HVDBCHAR[32768];
SQLWCHAR HVWCHAR[32768];
/* Variables for output XML data lengths */
SQLINTEGER LEN_HVBINARY;
SQLINTEGER LEN_HVCHAR;
SQLINTEGER LEN_HVDBCHAR;
SQLINTEGER LEN_HVWCHAR;
/* SQL statement buffer */
SQLCHAR sqlstmt[250];
/* Return code for ODBC calls */
SQLRETURN rc = SQL_SUCCESS;
/* Prepare an SELECT statement for retrieving */
/* data from XML columns. */
strcpy((char *)sqlstmt,

"SELECT XMLCOL1, XMLCOL2, XMLCOL3, XMLCOL4 ");
strcat((char *)sqlstmt,

"FROM MYTABLE");
/* Bind data for first XML column as SQL_C_BINARY. */
/* This data will be retrieved as internally */
/* encoded, in the UTF-8 encoding scheme. */
rc = SQLBindCol(hstmt, 1, SQL_C_BINARY, HVBINARY, sizeof(HVBINARY), &LEN_HVBINARY);
/* Bind data for second XML column as */
/* SQL_C_CHAR. This data will be retrieved as */
/* internally encoded, in the application encoding */
/* scheme. */
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, HVCHAR, sizeof(HVCHAR), &LEN_HVCHAR);
/* Bind data for third XML column as SQL_C_DBCHAR. */
/* This data will be retrieved as internally */
/* encoded, in the application encoding scheme. */
rc = SQLBindCol(hstmt, 3, SQL_C_DBCHAR, HVDBCHAR, sizeof(HVDBCHAR), &LEN_HVDBCHAR);
/* Bind data for fourth XML column as SQL_C_WCHAR. */
/* This data will be retrieved as internally */
/* encoded, in the UCS-2 encoding scheme. */
rc = SQLBindCol(hstmt, 4, SQL_C_WCHAR, HVWCHAR, sizeof(HVWCHAR), &LEN_HVWCHAR);
/* Execute the SELECT statement and fetch a row */
/* from the result set */
rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);
rc = SQLFetch(hstmt);

Figure 57. Example of retrieving XML data from an XML column

468 ODBC Guide and Reference

Distinct types in DB2 ODBC applications
You can define your own SQL data type, which is called distinct types. When you
create a distinct type, you base it on an existing SQL built-in type. This SQL
built-in type is called the source type.

Internally, a distinct type and the source type are equivalent, but for most
programming operations a distinct type is incompatible with the source type. You
create distinct types with the CREATE DISTINCT TYPE SQL statement.

Distinct types help provide the strong typing control that an object-oriented
program requires. When you use distinct types, you ensure that only functions and
operators that are explicitly defined on a distinct type can be applied to instances
of that type. When you use distinct types, applications continue to work with C
data types for application variables. You must consider only the distinct types
when you construct SQL statements.

The following guidelines apply to distinct types:
v All SQL-to-C data type conversion rules that apply to the source type also apply

to the distinct type.
v The distinct type has the same default C type as the source type.
v SQLDescribeCol() returns the source type for distinct type columns. Call

SQLColAttribute() with the input descriptor type set to
SQL_DESC_DISTINCT_TYPE to obtain distinct type names.

v When you use an SQL predicate that compares a distinct type to a parameter
marker, you must either cast the parameter marker to the distinct type or cast
the distinct type to a source type. This casting is required because distinct types
are not compatible with other data types in comparison operations. Applications
use only C data types that represent SQL built-in types. This difference between
C types and SQL types requires you to cast from the C built-in type to the SQL
distinct type within the SQL statement. Alternatively you can cast the distinct
type to a source type, which C types support. If you do not make one of these
conversions, an error occurs when you prepare the statement.

The following example shows an application that creates distinct types,
user-defined functions, and tables with distinct type columns.

CREATE TABLE MYTABLE (XML_COL XML);

/* Declare variables for binary XML data */
SQLCHAR HV1BINARYXML[100];
SQLINTEGER LEN_HV1BINARYXML;
SQLCHAR sqlstmt[250];
SQLRETURN rc = SQL_SUCCESS;

/* Prepare select statement */
strcpy((char *)sqlstmt, "select * from mytable");
rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

/* Bind column data as SQL_C_BINARYXML */
rc = SQLBindCol(hstmt, 1, SQL_C_BINARYXML, sizeof(HV1BINARYXML), &LEN_HV1BINARYXML);

/* Execute select */
rc = SQLExecute(hstmt);
/* Fetch result set column as binary XML */
rc = SQLFetch(hstmt);

Figure 58. Example of retrieving binary XML data from an XML column

Chapter 5. Advanced features 469

/* ... */
/* Initialize SQL statement strings */
SQLCHAR stmt[][MAX_STMT_LEN] = {

"CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS",
"CREATE DISTINCT TYPE PUNIT AS CHAR(2) WITH COMPARISONS",
"CREATE DISTINCT TYPE UPRICE AS DECIMAL(10, 2) \

WITH COMPARISONS",
"CREATE DISTINCT TYPE PRICE AS DECIMAL(10, 2) \

WITH COMPARISONS",
"CREATE FUNCTION PRICE (CHAR(12), PUNIT, char(16)) \

returns char(12) \
NOT FENCED EXTERNAL NAME ’order!price’ \
NOT VARIANT NO SQL LANGUAGE C PARAMETER STYLE DB2SQL \
NO EXTERNAL ACTION",

"CREATE DISTINCT TYPE PNUM AS INTEGER WITH COMPARISONS",
"CREATE FUNCTION \"+\" (PNUM, INTEGER) RETURNS PNUM \

source sysibm.\"+\"(integer, integer)",
"CREATE FUNCTION MAX (PNUM) RETURNS PNUM \

source max(integer)",
"CREATE DISTINCT TYPE ONUM AS INTEGER WITH COMPARISONS",
"CREATE TABLE CUSTOMER (\

Cust_Num CNUM NOT NULL, \
First_Name CHAR(30) NOT NULL, \
Last_Name CHAR(30) NOT NULL, \
Street CHAR(128) WITH DEFAULT, \
City CHAR(30) WITH DEFAULT, \
Prov_State CHAR(30) WITH DEFAULT, \
PZ_Code CHAR(9) WITH DEFAULT, \
Country CHAR(30) WITH DEFAULT, \
Phone_Num CHAR(20) WITH DEFAULT, \
PRIMARY KEY (Cust_Num))",

"CREATE TABLE PRODUCT (\
Prod_Num PNUM NOT NULL, \
Description VARCHAR(256) NOT NULL, \
Price DECIMAL(10,2) WITH DEFAULT , \
Units PUNIT NOT NULL, \
Combo CHAR(1) WITH DEFAULT, \
PRIMARY KEY (Prod_Num), \
CHECK (Units in (PUNIT(’m’), PUNIT(’l’), PUNIT(’g’), PUNIT(’kg’), \
PUNIT(’ ’))))",

"CREATE TABLE PROD_PARTS (\
Prod_Num PNUM NOT NULL, \
Part_Num PNUM NOT NULL, \
Quantity DECIMAL(14,7), \
PRIMARY KEY (Prod_Num, Part_Num), \
FOREIGN KEY (Prod_Num) REFERENCES Product, \
FOREIGN KEY (Part_Num) REFERENCES Product, \
CHECK (Prod_Num <> Part_Num))",

"CREATE TABLE ORD_CUST(\
Ord_Num ONUM NOT NULL, \
Cust_Num CNUM NOT NULL, \
Ord_Date DATE NOT NULL, \
PRIMARY KEY (Ord_Num), \
FOREIGN KEY (Cust_Num) REFERENCES Customer)",

"CREATE TABLE ORD_LINE(\
Ord_Num ONUM NOT NULL, \
Prod_Num PNUM NOT NULL, \
Quantity DECIMAL(14,7), \
PRIMARY KEY (Ord_Num, Prod_Num), \
FOREIGN KEY (Prod_Num) REFERENCES Product, \
FOREIGN KEY (Ord_Num) REFERENCES Ord_Cust)"

};
/* ... */

num_stmts = sizeof(stmt) / MAX_STMT_LEN;
printf(">Executing stmts);
/* Execute Direct statements */

470 ODBC Guide and Reference

for (i = 0; i < num_stmts; i++) {
rc = SQLExecDirect(hstmt, stmt[i], SQL_NTS);

}
/* ... */

Related concepts:
“Using arrays to pass parameter values” on page 422
“Cast parameter markers to distinct types or distinct types to source types” on
page 510
Related reference:

CREATE TYPE (DB2 SQL)

Stored procedures
You can design an application to run in two parts: one part on the client and one
part on the server. Stored procedures are server applications that run at the database,
within the same transaction as a client application.

You can write stored procedures with either embedded SQL or DB2 ODBC
functions.

Both the main application that calls a stored procedure and a stored procedure
itself can be either a DB2 ODBC application or a standard DB2 precompiled
application. You can use any combination of embedded SQL and DB2 ODBC
applications. The following figure illustrates this concept.

Related concepts:
“Rules for a DB2 ODBC stored procedure” on page 473

Advantages of using stored procedures
With stored procedures, you can avoid network transfer of large amounts of data
that is obtained as part of intermediate results in a long sequence of queries.
Additionally, you can deploy client database applications as client/server pieces.

Stored procedures written in embedded static SQL have the following additional
advantages:
v Performance: Static SQL is prepared at precompile time and has no run time

overhead of access plan (package) generation.

Figure 59. An application that creates distinct types

ODBC client:
Application address space

SP1
SQLPrepare("SELECT * FROM T1")

SQLPrepare("CALL SP1")
SQLExecute()

DB2 for z/OS:
Stored procedure address space

Figure 60. Running stored procedures

Chapter 5. Advanced features 471

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtype.htm#db2z_sql_createtype

v Encapsulation (information hiding): Users do not must know the details about
database objects in order to access them. Static SQL can help enforce this
encapsulation.

v Security: Users' access privileges are encapsulated within the packages
associated with the stored procedures, so you are not required to grant explicit
access to each database object. For example, you can grant a user run access for
a stored procedure that selects data from tables for which the user does not have
SELECT privilege.

Stored procedure calls in a DB2 ODBC application
To invoke stored procedures from a DB2 ODBC application, pass a CALL
statement to SQLExecDirect(), or to SQLPrepare() followed by SQLExecute().

The syntax of the CALL statement is:

�� CALL procedure-name �

,

()
?

��

procedure-name
The name of the stored procedure to execute. Call SQLProcedures() to
obtain a list of stored procedures that are available at the database.

Although the CALL statement cannot be prepared dynamically, DB2 ODBC accepts
the CALL statement as if it can be dynamically prepared. You can also call stored
procedures with the ODBC vendor escape sequence.

The question mark (?) in the CALL statement syntax diagram denotes parameter
markers that correspond to the arguments for a stored procedure. Call
SQLProcedureColumns() to determine the input and output parameters for a stored
procedure. You must pass all arguments to a stored procedure with parameter
markers. Literals, the NULL keyword, and special registers are not allowed.
However, you can use literals if you include a vendor escape clause in your CALL
statement.

You bind the parameter markers in a CALL statement to application variables with
SQLBindParameter(). Although you can use stored procedure arguments that are
both input and output arguments, you should avoid sending unnecessary data
between the client and the server. Specify either SQL_PARAM_INPUT for input
arguments or SQL_PARAM_OUTPUT for output arguments when you call
SQLBindParameter(). Specify SQL_PARAM_INPUT_OUTPUT only if the stored
procedure uses arguments that are both input and output arguments. Literals are
considered type SQL_PARAM_INPUT only.

472 ODBC Guide and Reference

Related concepts:
“Vendor escape clauses” on page 504
Related reference:
“Stored procedure CALL” on page 507

CALL (DB2 SQL)

Rules for a DB2 ODBC stored procedure
DB2 ODBC stored procedures are like other DB2 ODBC applications. However,
several differences exist.

Although stored procedures that are written in embedded SQL provide more
advantages than stored procedures that are written in ODBC, you might want
components of DB2 ODBC applications to run on servers. You can write stored
procedures in DB2 ODBC to minimize the required changes to the code and logic
of those components.

You write ODBC stored procedures as ordinary ODBC applications, with the
following exceptions:
v You must turn off AUTOCOMMIT. Set the SQL_ATTR_AUTOCOMMIT attribute

to SQL_AUTOCOMMIT_OFF with SQLSetConnectAttr(). You can also specify
AUTOCOMMIT=0 in the DB2 ODBC initialization file to disable
AUTOCOMMIT.

v You must make a null database connection with SQLConnect(). A stored
procedure runs under the same connection and transaction as the client
application. A null SQLConnect() call associates a connection handle in the stored
procedure with the underlying connection of the client application. To make a
null SQLConnect() call, set the szDSN, szUID, and szAuthStr argument pointers
to NULL, and set their respective length arguments to 0.

v If your stored procedure contains any LOB data types or distinct types in its
parameter list, specify MVSATTACHTYPE=RRSAF in the DB2 ODBC
initialization file. DB2 for z/OS requires that stored procedures containing any
LOBs or distinct types must run in a WLM-established stored procedure address
space.

When you define a DB2 ODBC stored procedure to DB2, specify the COMMIT ON
RETURN NO clause in the CREATE PROCEDURE SQL statement. For stored
procedures that are written in DB2 ODBC, the COMMIT ON RETURN clause has
no effect on DB2 ODBC rules. However, COMMIT ON RETURN NO overrides the
manual-commit mode that is set in the client application.

Result sets from stored procedures
In DB2 ODBC applications, you use open cursors to retrieve result sets from stored
procedure calls.

Stored procedures that return result sets to DB2 ODBC open one or more cursors
that are each associated with a query, and keep these cursors open when the stored
procedure exits. When a stored procedure leaves more than one cursor open after
it exits, it returns multiple result sets.

When you define a stored procedure that returns result sets, you must specify the
maximum number of result sets that the procedure is to return. You specify this
value in the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE SQL
statement. This value appears in the RESULT_SETS column of the

Chapter 5. Advanced features 473

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call

SYSIBM.SYSROUTINES table for all stored procedures. A zero in this column
indicates that open cursors return no result sets. Zero is the default value.

Programming stored procedures to return result sets
In general, you write a stored procedure that returns result sets to a DB2 ODBC
application to perform various actions.

You can perform the following actions:
v For each result set the stored procedure returns, declare a cursor with the WITH

RETURN option, open the cursor on the result set (that is, execute a query), and
leave the cursor open after you exit the procedure.

v Return a result set for every cursor that is left open after exit, in the order in
which the procedure opened the corresponding cursors.

v Pass only unread rows back to the DB2 ODBC client application.
For example, if the result set of a cursor has 500 rows, but the stored procedure
reads 150 of those rows before it terminates, the stored procedure returns only
rows 151 through 500. You can use this behavior to filter out initial rows in the
result set before you return them to the client application.

More specifically, to write a DB2 ODBC stored procedure that returns result sets,
you must include the following procedure in your application:
1. Issue SQLExecute() or SQLExecDirect() to perform a query that opens a cursor.

In stored procedures, DB2 ODBC declares cursors with the WITH RETURN
option.

2. Optionally, issue SQLFetch() to read rows that you want to filter from the result
set.

3. Issue SQLDisconnect(), SQLFreeHandle() with HandleType set to
SQL_HANDLE_DBC, and SQLFreeHandle() with HandleType set to
SQL_HANDLE_ENV to exit the stored procedure. This exit leaves the
statement handle, and the corresponding cursor, in a valid state.

Do not issue SQLFreeHandle() with HandleType set to SQL_HANDLE_STMT or
SQLCloseCursor(). When you do not free the statement handle or explicitly close
the cursor on that handle, the cursor remains open to return result sets. If you
close a cursor before the stored procedure exit, it is a local cursor. If you keep a
cursor open after you exit the stored procedure, it returns a query result set (also
called a multiple result set) to the client application.
Related concepts:
“Example DB2 ODBC code” on page 572

Restrictions on stored procedures returning result sets
In general, calling a stored procedure that returns a result set is equivalent to
executing a query statement.

Calling a stored procedure that returns a result set is bounded by the following
restrictions:
v SQLDescribeCol() or SQLColAttribute() do not return column names for static

query statements. In this case of static statements, these functions return the
ordinal position of columns instead.

v All result sets are read-only.
v You cannot use schema functions (such as the SQLTables() function) to return a

result set. If you use schema functions within a stored procedure, you must close

474 ODBC Guide and Reference

all cursors that are associated with the statement handles of those functions. If
you do not close these cursors, your stored procedure might return extraneous
result sets.

v When you prepare a stored procedure, you cannot access the column
information for the result set until after you issue the CALL statement.
Normally, you can access result set column information immediately after you
prepare a query.

Programming DB2 ODBC client applications to receive result
sets
After you execute a stored procedure from a client application, you receive the
result sets from that stored procedure. You receive these result sets in the same
way that you receive result sets from a query.

Procedure

To write a DB2 ODBC client application that receives result sets from a stored
procedure:
1. Ensure that no open cursors are associated with the statement handle on which

you plan to issue the CALL SQL statement.
2. Call SQLPrepare() and SQLExecute(), or call SQLExecDirect() to issue the

CALL SQL statement for the stored procedure that you want to invoke. This
execution of the CALL SQL statement effectively causes the cursors that are
associated with the result sets to open.

3. Examine output parameters that the stored procedure returns. For example, the
procedure might be designed with an output parameter that indicates exactly
how many result sets are generated. You could then use this information to
receive those result sets more efficiently.

4. If you do not know the nature of the result set, or the number of columns that
the result set is to contain, call SQLNumResultCols(), SQLDescribeCol(), or
SQLColAttribute()

5. You must process result sets serially. You receive each result set one at a time in
the order that the stored procedure opens the corresponding cursors.

6. Use any permitted combination of SQLBindCol(), SQLFetch(), and SQLGetData()
to obtain the data set from the current cursor. When you finish processing the
current result set, call SQLMoreResults() to check for more result sets to receive.
If an additional result set exists, SQLMoreResults() returns SQL_SUCCESS,
closes the current cursor, and advances processing to the next open cursor.
Otherwise, SQLMoreResults() returns SQL_NO_DATA_FOUND. Repeat steps 3
through 6 until you receive all result sets that the stored procedure returned.

Chapter 5. Advanced features 475

Related reference:
“SQLBindCol() - Bind a column to an application variable” on page 102
“SQLDescribeCol() - Describe column attributes” on page 163
“SQLExecDirect() - Execute a statement directly” on page 182
“SQLExecute() - Execute a statement” on page 187
“SQLGetData() - Get data from a column” on page 232
“SQLMoreResults() - Check for more result sets” on page 304
“SQLNumResultCols() - Get number of result columns” on page 312
“SQLPrepare() - Prepare a statement” on page 317

Multithreaded and multiple-context applications in DB2 ODBC
DB2 ODBC supports multi-threading and multiple contexts. You need to follow
certain guidelines when using multiple contexts and multi-threading together in an
application.

DB2 ODBC support for multiple Language Environment
threads

A Language Environment thread represents an independent instance of a routine
within an application. When you execute a DB2 ODBC application, it begins with
an initial Language Environment thread, or parent thread.

To make your application multithreaded, call the POSIX Pthread function
pthread_create() within your application. This function creates additional
Language Environment threads, or child threads, which work concurrently with
the parent thread.

You must run multithreaded DB2 ODBC applications in one of the following
environments:
v The z/OS UNIX environment.
v For applications that are HFS-resident, TSO or batch environments that use the

IBM-supplied BPXBATCH program.
v For applications that are not HFS-resident, TSO or batch environments that use

the Language Environment run time option POSIX(ON).
Example: To run the multithreaded, non-HFS, DB2 ODBC application APP1 in
the data set USER.RUNLIB.LOAD, you could use one of the following
approaches:
– Use TSO to enter the command:

CALL ’USER.RUNLIB.LOAD(APP1)’ ’POSIX(ON)/’

– Use batch JCL to submit the job:
//STEP1 EXEC PGM=APP1,PARM=’POSIX(ON)/’
//STEPLIB DD DSN=USER.RUNLIB.LOAD,DISP=SHR
// DD ...other libraries needed at run time...

The collection of all the Language Environment threads in an application make an
independent set of routines called a Language Environment enclave. All Language
Environment threads within an enclave share the same reentrant copy of the DB2
ODBC driver code. DB2 ODBC must also protect shared storage when multiple
Language Environment threads run concurrently in the same enclave. Reentrant
code that correctly handles shared storage is referred to as threadsafe. Multithreaded
ODBC applications require a threadsafe driver.

476 ODBC Guide and Reference

The DB2 ODBC driver is threadsafe. DB2 ODBC supports the concurrent execution
of Language Environment threads. Your DB2 ODBC applications will support
multiple Language Environment threads, only if the following conditions are true:
v DB2 ODBC can access the z/OS UNIX environment. DB2 ODBC uses Pthread

mutex functions, which the z/OS UNIX environment provides, to serialize
critical sections of DB2 ODBC code. With these Pthread mutex functions, all DB2
ODBC functions are threadsafe.

v THREADSAFE=0 is not specified in the initialization file. You can use the
THREADSAFE keyword to specify whether the DB2 ODBC driver uses Pthread
mutex functions to make your applications threadsafe.

Multithreaded applications use threads to perform work in parallel. The following
figure depicts an application that performs parallel operations on two different
connections and manages a shared application buffer.

The application that the preceding figure portrays an application that performs the
following steps to make a parallel database-to-database copy:

SQLAllocHandle()
(environment)

Initialize shared buffer, set More_Data flag = true

pthread_create

pthread_create

pthread_join

pthread_join

SQLFree ()
(environment)

Parent LE thread

Handle

Child LE thread 1

SQLAllocHandle()
(connection)

SQLConnect()
Connect to database A

SQLAllocHandle()
(statement)

SQLExecDirect()

SQLBindCol()

Do while More_Data ==true

SQLFetch()
Place row into shared buffer
If SQL_NO_DATA_FOUND, set More_Data = false

pthread_cond_signal(&cond2)

If More_Data ==true
pthread_cond_wait(&cond1 , &mutex)

End do while

pthread_mutex_unlock(&mutex)

SQLDisconnect(), free handles, and pthread_exit

Child LE thread 2

SQLAllocHandle()
(connection)

SQLConnect()
Connect to database B

SQLAllocHandle()
(statement)

SQLBindParameter()

SQLPrepare()

pthread_mutex_lock(&mutex)

pthread_cond_wait(&cond2 , &mutex)

Do while More_Data == true

SQLExecute()
Insert row from shared buffer into table

pthread_cond_signal(&cond1)

pthread_cond_wait(&cond2 , &mutex)

SQLDisconnect(), free handles, and pthread_exit

End do while

pthread_mutex_unlock(&mutex)

pthread_mutex_lock(&mutex)

Figure 61. Multithreaded application

Chapter 5. Advanced features 477

1. Creates two child Language Environment threads from an initial parent thread.
The parent thread remains active for the duration of the child threads. DB2
ODBC requires that the thread that establishes the environment handle must
persist for the duration of the application. The persistence of this thread keeps
DB2 language interface routines resident in the Language Environment enclave.

2. Connects to database A with child Language Environment thread 1 and uses
SQLFetch() to read data from this connection into a shared application buffer.

3. Connects to database B with child Language Environment thread 2. Child
Language Environment thread 2 concurrently reads data from the shared
application buffer and inserts this data into database B.

4. Calls Pthread functions to synchronize the use of the shared application buffer
within each of the child threads.

Related concepts:
“Overview of preparing and executing a DB2 ODBC application” on page 52
Related reference:
“DB2 ODBC initialization keywords” on page 65

z/OS UNIX System Services Command Reference

z/OS XL C/C++ runtime library functions (C/C++ Run-Time Library
Reference)
Related information:

Language Environment Programming Guide (z/OS Language Environment
Programming Guide)

When to use multiple Language Environment threads
Some general application types are well-suited to multithreading. For example,
applications that handle asynchronous work requests make good candidates for
multithreading.

An application that handles asynchronous work requests can take the form of a
parent-child threading model in which the parent Language Environment thread
creates child Language Environment threads to handle incoming work. The parent
thread can then dispatch these work requests, as they arrive, to child threads that
are not currently busy handling other work.
Related reference:

z/OS XL C/C++ Programming Guide

DB2 ODBC support of multiple contexts
A context is the DB2 ODBC equivalent of a DB2 thread. Contexts are the structures
that describe the logical connections that an application makes to data sources and
the internal DB2 ODBC connection information that allows applications to direct
operations to a data source.

You establish a context when you allocate a connection handle when multiple
contexts are enabled. DB2 ODBC always creates a context for the first connection
handle that you create on a Language Environment thread. If you do not enable
DB2 ODBC support for multiple contexts, only these SQLAllocHandle() calls
establish a context. If you enable support for multiple contexts, DB2 ODBC
establishes a separate context (and DB2 thread) each time that you issue
SQLAllocHandle() to allocate a connection handle.

478 ODBC Guide and Reference

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/bpxza5a1/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/edclb1c0/3.0?DN=SA22-7821-13&DT=20110617180047&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/edclb1c0/3.0?DN=SA22-7821-13&DT=20110617180047&SHELF=&CASE=&PATH=/bookmgr/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ceea21c0/CONTENTS?DN=SA22-7561-12&DT=20110618162445&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ceea21c0/CONTENTS?DN=SA22-7561-12&DT=20110618162445&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/CONTENTS?DN=SC09-4765-13&DT=20120802234732&SHELF=&CASE=&PATH=/bookmgr/

To enable or explicitly disable DB2 ODBC support for multiple contexts, use the
MULTICONTEXT keyword in the DB2 ODBC initialization file.

Before you enable multiple contexts, each Language Environment thread that you
create can use only a single context. With only one context for each Language
Environment thread, your application runs with only simulated support for the
ODBC connection model. Multiple contexts are disabled by default. To explicitly
disable multiple contexts, specify MULTICONTEXT=0 in the initialization file.

When you specify MULTICONTEXT=1 in the initialization file, a distinct context is
established for each connection handle, which you establish with
SQLAllocHandle(). With a context for each connection, DB2 ODBC is consistent
with, and provides full support for, the ODBC connection model.

To use multiple contexts, you must specify MVSATTACHTYPE=RRSAF in the
initialization file.

Specifying MULTICONTEXT=1 implies CONNECTTYPE=1. Implicitly concurrent
connection types are consistent with the ODBC connection model. SQLEndTran()
handles all connections independently for both commit and rollback.

In a multiple-context environment, you establish contexts with SQLAllocHandle()
and delete contexts with SQLFreeHandle() (with the HandleType argument on both
functions set to SQL_HANDLE_DBC). All SQLConnect() and SQLDisconnect()
operations that use the same connection handle belong to the same context.
Although you can make only one active connection to a data source within a single
context, you can call SQLDisconnect() and then call SQLConnect() to change the
target data source. When you change data sources in a multiple-context
environment, this change is also subject to the rules of CONNECTTYPE=1.

When you specify MULTICONTEXT=1, DB2 ODBC automatically uses z/OS
Unauthorized Context Services to create and manage contexts for the application.
However, DB2 ODBC does not perform context management for the application if
any of the following conditions are true:
v Your DB2 ODBC application creates a DB2 thread before it invokes DB2 ODBC.

This condition always applies for any stored procedure that uses DB2 ODBC.
v Your DB2 ODBC application creates and switches to a private context before it

invokes DB2 ODBC. For example, an application that explicitly uses z/OS
Unauthorized Context Services and that issues ctxswch() to switch to a private
context prior to invoking DB2 ODBC cannot take advantage of
MULTICONTEXT=1.

v Your DB2 ODBC application starts a unit of recovery with any RRS resource
manager before it invokes DB2 ODBC.

v You specify MVSATTACHTYPE=CAF in the initialization file.
v The operating system level does not support Unauthorized Context Services.

To determine if MULTICONTEXT=1 is active for the DB2 ODBC application, call
SQLGetInfo() with the InfoType argument set to SQL_MULTIPLE_ACTIVE_TXN.

The following table shows the connection characteristics that different
combinations of MULTICONTEXT and CONNECTTYPE produce.

Chapter 5. Advanced features 479

Table 261. Connection characteristics

Setting:
MULTICONTEXT

Setting:
CONNECTTYPE

Result: Language
Environment threads
can have more than
one ODBC connection
with an outstanding
unit of work

Result: Language
Environment
threads can commit
or roll back an
ODBC connection
independently

Result: Number of
DB2 threads that
DB2 ODBC creates
on behalf of
application

0 2 Y N 1 per Language
Environment thread

0 1 N Y 1 per Language
Environment thread

11 1 or 22 Y Y 1 per ODBC
connection handle

Note:

1. MULTICONTEXT=1 requires MVSATTACHTYPE=RRSAF

2. MULTICONTEXT=1 implies CONNECTTYPE=1 characteristics. If you specify MULTICONTEXT=1 and
CONNECTTYPE=2 in the initialization file, DB2 ODBC ignores CONNECTTYPE=2. When you specify
MULTICONTEXT=1, any attempt to set CONNECTTYPE=2 with SQLSetEnvAttr(), SQLSetConnectAttr(), or
SQLDriverConnect() is rejected with SQLSTATE 01S02.

v All connections in a DB2 ODBC application have the same CONNECTTYPE and MULTICONTEXT
characteristics. The connection type of an application (which is specified with the CONNECTTYPE keyword) is
established at the first SQLConnect() call. Multiple-context support (which is specified with the
MULTICONTEXT keyword) is established when you allocate an environment handle.

v For CONNECTTYPE=1 or MULTICONTEXT=1, the AUTOCOMMIT default value is ON. For
CONNECTTYPE=2 or MULTICONTEXT=0, the AUTOCOMMIT default value is OFF.

Related concepts:
“DB2 ODBC restrictions on the ODBC connection model” on page 12
Related reference:
“SQLGetInfo() - Get general information” on page 254
“DB2 ODBC initialization keywords” on page 65

Multiple contexts, one Language Environment thread
When you specify the initialization file setting MULTICONTEXT=1, a DB2 ODBC
application can create multiple independent connections for each Language
Environment thread.

The following example is an application that uses multiple contexts on one
Language Environment thread.

480 ODBC Guide and Reference

Multiple contexts, multiple Language Environment threads
When you combine the initialization file setting MULTICONTEXT=1 with the
default setting THREADSAFE=1, your application can create multiple independent
connections under multiple Language Environment threads. With this capability,
you can use a fixed number of Language Environment threads to implement
complex DB2 ODBC server applications that handle multiple incoming work
requests.

Applications that use both multiple contexts and multiple Language Environment
threads require you to manage application resources. Use the Pthread functions or
another internal mechanism to prevent different threads from using the same
connection handles or statement handles. The following figure shows how an
application can fail without a mechanism to serialize use of handles.

/* Get an environment handle (henv). */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_HANDLE_NULL, &henv);
/*
* Get two connection handles, hdbc1 and hdbc2, which
* represent two independent DB2 threads.
*/
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc1);
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc2);
/* Set autocommit off for both connections. */
/* This is done only to emphasize the */
/* independence of the connections for purposes */
/* of this example, and is not intended as */
/* a general recommendation. */
SQLSetConnectAttr(hdbc1, SQL_ATTR_AUTOCOMMIT, (void *)SQL_AUTOCOMMIT_OFF, 0);
SQLSetConnectAttr(hdbc2, SQL_ATTR_AUTOCOMMIT, (void*)SQL_AUTOCOMMIT_OFF, 0);
/* Perform SQL under DB2 thread 1 at STLEC1. */
SQLConnect(hdbc1, (SQLCHAR *) "STLEC1", ...);
SQLAllocHandle(SQL_HANDLE_STMT, hdbc1, &hstmt1);
SQLExecDirect ...

.

.
/* Perform SQL under DB2 thread 2 at STLEC1. */
SQLConnect(hdbc2, (SQLCHAR *) "STLEC1", ...);
SQLAllocHandle(SQL_HANDLE_STMT, hdbc2, &hstmt2);
SQLExecDirect ...

.

.
/* Commit changes on connection 1. */
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);
/* Rollback changes on connection 2. */
SQLEndTran(SQL_HANDLE_DBC, hdbc2, SQL_ROLLBACK);

.

.

Figure 62. An application that makes independent connections on a single Language
Environment thread

Chapter 5. Advanced features 481

The following figure shows a design that establishes a pool of connections. From
this connection pool, you can map a Language Environment thread to each
connection. This design prevents two Language Environment threads from using
the same connection (or an associated statement handle) at the same time, but it
allows these threads to share resources.

.

.

.

.

.

.

.
SQLFreeHandle(hstmt1 , SQL_DROP);

.

.

.

LE_Thread_2
.
.
.
.
.

rc = SQLExecDirect(hstmt1 , ...);
.
.
.
.
.
.

SQLExecDirect() returns SQL_INVALID_HANDLE
because LE_Thread_2 frees hstmt1 before LE_Thread_1
is finished using that statement handle.

LE_Thread_1

Figure 63. Example of improper serialization

SQLAlloc ()
(environment)

Parent Language Environment thread

Handle

hdbc hdbc
hdbc
1 2

n
SQLConnect()

Connect to database A

SQLAlloc ()
(statement)

SQLExecDirect()

SQLEndTran()

SQLDisconnect()

Signal parent that hdbc
is now available

Wait for more work

Child Language Environment thread 1

Handle

Connection pool

pthread_create
pthread_create

pthread_create

1
2

m

SQLAlloc ()
SQLAlloc ()

SQLAlloc ()
(connection)

1
2

Handle
Handle

Handle n

Mark a connection as in use
Pass handle to child thread

Return connection to pool
Mark connection free

When ready to shutdown:
SQLFree ()
Signal child threads to end
pthread_join

Handle 1 through

1 through

n

m

.

.

.

.

.

.

Figure 64. Model for multithreading with connection pooling (MULTICONTEXT=1)

482 ODBC Guide and Reference

To establish a pool of connections (as Figure 64 on page 482 depicts), include the
following steps in your application:
1. Designate a parent Language Environment thread. In DB2 ODBC, you

designate a parent thread when you establish the environment with
SQLAllocHandle(). This Language Environment thread that establishes the
environment must persist for the duration of the application, so that DB2
language interface routines can remain resident in the Language Environment
enclave.

2. From the parent Language Environment thread, allocate:
v m child threads, one for each application task
v n connection handles. This is the connection pool.

3. Execute each task on a separate child thread. Use the parent thread to dispatch
these tasks to each child thread.

4. When a child thread requires access to a database, use the parent thread to
allocate one of the n connections from the connection pool to the child thread.
Remove this connection handle from the pool by marking it as used.

5. When you finish operating on a connection under a child thread, signal the
parent thread to return this connection to the pool by marking it as free.

6. To terminate your application, free all connection handles with SQLFreeHandle()
and terminate all child threads with pthread_join() from the parent thread.

Connections move from one application thread to another as the connections in the
pool are assigned to child threads, returned to the pool, and assigned again.

With this design, you can create more Language Environment threads than
connections, if threads are also used to perform non-SQL related tasks. You can
also create more connections than threads, if you want to maintain a pool of active
connections but limit the number of active tasks that your application performs.

DB2 ODBC does not control access to other application resources such as bound
columns, parameter buffers, and files. If Language Environment threads need to
share resources in your application, you must implement a mechanism to
synchronize this access.
Related concepts:
“DB2 ODBC support for multiple Language Environment threads” on page 476

External contexts
Typically, the DB2 ODBC driver manages contexts in an ODBC application. With
external contexts, you can write applications that manage contexts outside of DB2
ODBC. You use external contexts in combination with Language Environment
threads in the same way you use multiple contexts in combination with Language
Environment threads.

When you combine external contexts with Language Environment threads, you
must manage both the external contexts and the Language Environment threads
within your application.

To write an application that uses external contexts, specify the following values in
the initialization file:
v MULTICONTEXT=0
v MVSATTACHTYPE=RRSAF

Call the following APIs in your application to manage contexts using Resource
Recovery Services (RRS) instead of the DB2 ODBC driver:

Chapter 5. Advanced features 483

v CRGGRM() to register your application as a resource manager
v CRGSEIF() to set exit routines for your application
v CTXBEGC() to create a private external context
v CTXSWCH() to switch between contexts
v CTXENDC() to end a private external context

When an application attempts to establish multiple active connections to the same
data source from a single context, the ODBC driver rejects the connection request.

You cannot define different connection types for each external context. The
following specifications set the connection type of all connections for every
external context that your DB2 ODBC application creates:
v The CONNECTTYPE keyword in the initialization file
v The SQL_ATTR_CONNECTTYPE attribute in the functions SQLSetEnvAttr() and

SQLSetConnectAttr()

DB2 ODBC does not support external contexts in applications that run as a stored
procedure.

The following example shows an application that manages contexts outside of
ODBC. This application uses RRS APIs to register as a context manager, set exit
routines, create an external context, and switch between contexts.

484 ODBC Guide and Reference

Related reference:
“DB2 ODBC initialization keywords” on page 65

z/OS MVS Programming: Resource Recovery

MVS Authorized Assembler Services Guide

Application deadlocks
When you use multiple connections to access the same database resources
concurrently, you create general contention for database resources. Timeouts and
deadlocks can result from this contention.

The DB2 subsystem detects deadlocks and performs rollbacks on the necessary
connections to resolve these deadlocks. However, the DB2 subsystem cannot detect
a deadlock if the contention that created that deadlock involves application
resources. An application that creates multiple connections with multithreading or
multiple-context support can potentially create deadlocks if the following sequence
occurs:

/* Register as an unauthorized resource manager */
CRGGRM();
/* Set exit information */
CRGSEIF();
/* Get an environment handle (henv) */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* Get a connection handle, hdbc1, and connect to

STLEC1 under the native context. */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc1);
SQLConnect(hdbc1, "STLEC1", ...);
/* Execute SQL under the native context at STLEC1*/
SQLAllocHandle(SQL_HANDLE_STMT, ...);
SQLExecDirect ...

.
.

/* Create a private context */
CTXBEGC(ctxtoken1);
/* Switch to private */
CTXSWCH(ctxtoken1);
An application that manages external contexts
/* Get a connection handle, hdbc2, and connect

to STLEC1 under the private context. */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc2);
SQLConnect(hdbc2, "STLEC1", ...);
/* Execute SQL under the private context at

STLEC1 */
SQLAllocHandle(SQL_HANDLE_STMT, ...);
SQLExecDirect ...

.

.
/* Commit changes on hdbc2 */
SQLEndTran(SQL_HANDLE_DBC, hdbc2, SQL_COMMIT);
/* Switch back to native */
CTXSWCH(0);
/* Execute some more SQL under the native context

at STLEC1 */
SQLAllocHandle(SQL_HANDLE_STMT, ...);
SQLExecDirect ...

.

.
/* Rollback changes on hdbc1 */
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_ROLLBACK);

Figure 65. An application that manages external contexts

Chapter 5. Advanced features 485

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2n1b0/8.6?DN=SA22-7616-11&DT=20110610092026&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2a8a0/CCONTENTS

1. Two Language Environment threads connect to the same data source using two
DB2 threads.

2. One Language Environment thread holds an internal application resource (such
as a mutex) while its DB2 thread waits for access to a database resource.

3. The other Language Environment thread has a lock on a database resource
while waiting for the internal application resource.

When this sequence of events occurs, the DB2 subsystem does not detect a
deadlock because the DB2 subsystem cannot monitor the internal resources of the
application. Although the DB2 subsystem cannot detect the deadlock itself, it does
detect and handle any DB2 thread timeouts that result from that deadlock.

Application encoding schemes and DB2 ODBC
Unicode and ASCII are alternatives to the EBCDIC character encoding scheme. The
DB2 ODBC driver supports input and output character string arguments to ODBC
APIs and input and output host variable data in each of these encoding schemes.

With this support, you can manipulate data, SQL statements, and API string
arguments in EBCDIC, Unicode, or ASCII.

Types of encoding schemes
Different encoding schemes can represent character data. You can incorporate
EBCDIC, ASCII, and Unicode encoding schemes in DB2 ODBC.

The EBCDIC and ASCII encoding scheme include multiple code pages; each code
page represents 256 characters for one specific geography or one generic
geography. The Unicode encoding scheme does not require the use of code pages,
because it represents over 65 000 characters. Unicode can also accommodate many
different languages and geographies.

The Unicode standard defines several implementations including UTF-8, UCS-2,
UTF-16, and UCS-4. ODBC DB2 supports Unicode in the following formats:
v UTF-8 (variable length, 1-byte to 6-byte characters)
v UCS-2 (2-byte characters)

Application programming guidelines for handling different
encoding schemes

The DB2 ODBC driver determines whether an application is an EBCDIC, Unicode,
or ASCII application by evaluating the CURRENTAPPENSCH keyword in the
initialization file. You must compile your application with a compiler option that
corresponds to this setting.

Specify corresponding encoding schemes for the DB2 ODBC driver and your
application, by performing the following actions:
1. Set the CURRENTAPPENSCH keyword in the initialization file to EBCDIC,

UNICODE, or ASCII, or to a CCSID from which the driver derives the
encoding scheme. EBCDIC is the default.

2. Compile the application in EBCDIC, Unicode (with either the UTF-8 or UCS-2
compiler option), or ASCII.

You should specify the same encoding scheme with both of these actions.

486 ODBC Guide and Reference

When you write ODBC applications, you also need to choose API entry points and
bind host variables to C types that are appropriate for the encoding scheme of
your application.

DB2 ODBC API entry points
A DB2 ODBC entry point is a function that provides support for one or more
application encoding schemes. DB2 ODBC supports two entry points for each
function that passes and accepts character string arguments: a generic API and a
wide (suffix-W) API.

The entry point that you use depends on the current encoding scheme of your
application. Use the following guidelines to choose the correct entry points for
your application:
v Use generic APIs for EBCDIC, ASCII, and Unicode UTF-8 string arguments.

Example: To specify a Unicode UTF-8 argument, call a generic API:
SQLExecDirect((SQLHSTMT) hstmt,

(SQLCHAR *) UTF8STR,
(SQLINTEGER) SQL_NTS);

v Use wide (suffix-W) APIs only for Unicode UCS-2 string arguments.
Example: To specify a Unicode UCS-2 argument, call a suffix-W API:
SQLExecDirectW((SQLHSTMT) hstmt,

(SQLWCHAR *) UCS2STR,
(SQLINTEGER) SQL_NTS);

Related reference:
“Suffix-W API function syntax” on page 488

Functions for binding host variables to C types
You use the generic APIs SQLBindCol(), SQLBindParameter(), and SQLGetData() as
the entry points to bind application variables in all encoding schemes. DB2 ODBC
requires only a single entry point to functions that bind application variables.

The DB2 ODBC driver uses the following specifications to determine the encoding
scheme of the character data in these functions:
v The fCType argument value in SQLBindCol(), SQLBindParameter(), and

SQLGetData().
v The setting of the CURRENTAPPENSCH keyword in the DB2 ODBC

initialization file, if the fCType argument value is not SQL_C_WCHAR.
If fCType is SQL_C_WCHAR, the encoding scheme is Unicode UCS-2, regardless
of the CURRENTAPPENSCH setting.

The following table summarizes how to set the CURRENTAPPENSCH keyword,
declare application variables, and declare the fCType argument to bind application
variables in each encoding scheme.

Table 262. Required values to bind application variables in each encoding scheme

DB2 ODBC elements EBCDIC Unicode UCS-2 Unicode UTF-8 ASCII

CURRENTAPPENSCH
keyword setting

EBCDIC (default) Not applicable UNICODE ASCII

Application variable C
type definition

SQLCHAR or
SQLDBCHAR

SQLWCHAR SQLCHAR SQLCHAR or
SQLDBCHAR

Chapter 5. Advanced features 487

Table 262. Required values to bind application variables in each encoding scheme (continued)

DB2 ODBC elements EBCDIC Unicode UCS-2 Unicode UTF-8 ASCII

fCType on
SQLBindParameter(),
SQLBindCol(), or
SQLGetData()

SQL_C_CHAR or
SQL_C_DBCHAR

SQL_C_WCHAR SQL_C_CHAR SQL_C_CHAR or
SQL_C_DBCHAR

Requirement: You must use the symbolic C data type for the fCType argument that
corresponds to the data type you use for application variables. For example, when
you bind SQLCHAR application variables, you must specify the symbolic C data
type SQL_C_CHAR for the fCType argument in your bind function call.

Suffix-W API function syntax
DB2 for z/OS supports function prototypes for suffix-W APIs, which have slight
differences from generic APIs.

The following table compares the function prototypes for suffix-W APIs that DB2
for z/OS supports with the function prototypes of their generic counterparts. The
differences of the suffix-W function prototypes from the generic function
prototypes are highlighted in bold.

Table 263. Comparison of suffix-W APIs to equivalent generic APIs

Generic APIs Suffix-W APIs

SQLRETURN SQLBindFileToCol (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

SQLRETURN SQLBindFileToColW (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLWCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

SQLRETURN SQLBindFileToParam (

SQLHSTMT hstmt,
SQLUSMALLINT TargetType,
SQLSMALLINT DataType,
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *IndicatorValue);

SQLRETURN SQLBindFileToParamW (

SQLHSTMT hstmt,
SQLUSMALLINT TargetType,
SQLSMALLINT DataType,
SQLWCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *IndicatorValue);

SQLRETURN SQLColAttributes (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLUSMALLINT fDescType,
SQLPOINTER rgbDesc,
SQLSMALLINT cbDescMax,
SQLSMALLINT *pcbDesc,
SQLINTEGER *pfDesc);

SQLRETURN SQLColAttributesW (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLUSMALLINT fDescType,
SQLPOINTER rgbDesc,
SQLSMALLINT cbDescMax,
SQLSMALLINT *pcbDesc,
SQLINTEGER *pfDesc);

488 ODBC Guide and Reference

Table 263. Comparison of suffix-W APIs to equivalent generic APIs (continued)

Generic APIs Suffix-W APIs

SQLRETURN SQLColumns (

SQLHSTMT hstmt
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR *szColumnsName,
SQLSMALLINT cbColumnName)

SQLRETURN SQLColumnsW (

SQLHSTMT hstmt
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR*szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLWCHAR *szColumnsName,
SQLSMALLINT cbColumnName);

SQLRETURN SQLColumnPrivileges (

SQLHSTMT hstmt,
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR *szColumnsName,
SQLSMALLINT cbColumnName);

SQLRETURN SQLColumnPrivilegesW (

SQLHSTMT hstmt
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLWCHAR *szColumnsName,
SQLSMALLINT cbColumnName);

SQLRETURN SQLConnect (

SQLHDBC hdbc,
SQLCHAR *szDSN,
SQLSMALLINT cbDSN,
SQLCHAR *szUID,
SQLSMALLINT cbUID,
SQLCHAR *szAuthStr,
SQLSMALLINT cbAuthStr);

SQLRETURN SQLConnectW (

SQLHDBC hdbc,
SQLWCHAR *szDSN,
SQLSMALLINT cbDSN,
SQLWCHAR *szUID,
SQLSMALLINT cbUID,
SQLWCHAR *szAuthStr,
SQLSMALLINT cbAuthStr);

SQLRETURN SQLDataSources (

SQLHENV henv,
SQLUSMALLINT fDirection,
SQLCHAR *szDSN,
SQLSMALLINT cbDSNMax,
SQLSMALLINT *pcbDSN,
SQLCHAR *szDescription,
SQLSMALLINT cbDescriptionMax,
SQLSMALLINT *pcbDescription);

SQLRETURN SQLDataSourcesW (

SQLHENV henv,
SQLUSMALLINT fDirection,
SQLWCHAR *szDSN,
SQLSMALLINT cbDSNMax,
SQLSMALLINT *pcbDSN,
SQLWCHAR *szDescription,
SQLSMALLINT cbDescriptionMax,
SQLSMALLINT *pcbDescription);

SQLRETURN SQLDescribeCol (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLCHAR *szColName,
SQLSMALLINT cbColNameMax,
SQLSMALLINT *pcbColName,
SQLSMALLINT *pfSqlType,
SQLUINTEGER *pcbColDef,
SQLSMALLINT *pibScale,
SQLSMALLINT *pfNullable);

SQLRETURN SQLDescribeColW (

SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLWCHAR *szColName,
SQLSMALLINT cbColNameMax,
SQLSMALLINT *pcbColName,
SQLSMALLINT *pfSqlType,
SQLUINTEGER *pcbColDef,
SQLSMALLINT *pibScale,
SQLSMALLINT *pfNullable);

SQLRETURN SQLDriverConnect (

SQLHDBC hdbc,
SQLHWND hwnd,
SQLCHAR *szConnStrIn,
SQLSMALLINT cbConnStrIn,
SQLCHAR *szConnStrOut,
SQLSMALLINT cbConnStrOutMax,
SQLSMALLINT pcbConnStrOut,
SQLUSMALLINT fDriverCompletion);

SQLRETURN SQLDriverConnectW (

SQLHDBC hdbc,
SQLHWND hwnd,
SQLWCHAR *szConnStrIn,
SQLSMALLINT cbConnStrIn,
SQLWCHAR *szConnStrOut,
SQLSMALLINT cbConnStrOutMax,
SQLSMALLINT pcbConnStrOut,
SQLUSMALLINT fDriverCompletion);

Chapter 5. Advanced features 489

Table 263. Comparison of suffix-W APIs to equivalent generic APIs (continued)

Generic APIs Suffix-W APIs

SQLRETURN SQLError (

SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLCHAR *szSqlState,
SQLINTEGER *pfNativeError,
SQLCHAR *szErrorMsg,
SQLSMALLINT cbErrorMsgMax,
SQLSMALLINT *pcbErrorMsg);

SQLRETURN SQLErrorW (

SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLWCHAR *szSqlState,
SQLINTEGER *pfNativeError,
SQLWCHAR *szErrorMsg,
SQLSMALLINT cbErrorMsgMax,
SQLSMALLINT *pcbErrorMsg);

SQLRETURN SQLExecDirect (

SQLHSTMT hstmt,
SQLCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

SQLRETURN SQLExecDirectW (

SQLHSTMT hstmt,
SQLWCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

SQLRETURN SQLForeignKeys (

SQLHSTMT hstmt,|
SQLCHAR *szPkCatalogName,
SQLSMALLINT :cbPkCatalogName,
SQLCHAR *szPkSchemaName,
SQLSMALLINT :cbPkSchemaName,
SQLCHAR *szPkTableName,
SQLSMALLINT :cbPkTableName,
SQLCHAR *szFkCatalogName,
SQLSMALLINT :cbFkCatalogName,
SQLCHAR *szFkSchemaName,
SQLSMALLINT :cbFkSchemaName,
SQLCHAR *szFkTableName,
SQLSMALLINT :cbFkTableName);

SQLRETURN SQLForeignKeysW (

SQLHSTMT hstmt,|
SQLWCHAR *szPkCatalogName,
SQLSMALLINT :cbPkCatalogName,
SQLWCHAR *szPkSchemaName,
SQLSMALLINT :cbPkSchemaName,
SQLWCHAR *szPkTableName,
SQLSMALLINT :cbPkTableName,
SQLWCHAR *szFkCatalogName,
SQLSMALLINT :cbFkCatalogName,
SQLWCHAR *szFkSchemaName,
SQLSMALLINT :cbFkSchemaName,
SQLWCHAR *szFkTableName,
SQLSMALLINT :cbFkTableName);

SQLRETURN SQLGetConnectOption (

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLUINTEGER pvParam);

SQLRETURN SQLGetConnectOptionW (

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLUINTEGER pvParam);

SQLRETURN SQLGetCursorName (

SQLHSTMT hstmt,
SQLCHAR *szCursor,
SQLSMALLINT cbCursorMax,
SQLSMALLINT *pcbCursor);

SQLRETURN SQLGetCursorNameW (

SQLHSTMT hstmt,
SQLWCHAR *szCursor,
SQLSMALLINT cbCursorMax,
SQLSMALLINT *pcbCursor);

SQLRETURN SQLGetInfo (

SQLHDBC hdbc,
SQLUSMALLINT fInfoType,
SQLPOINTER rgbInfoValue,
SQLSMALLINT cbInfoValueMax,
SQLSMALLINT *pcbInfoValue);

SQLRETURN SQLGetInfoW (

SQLHDBC hdbc,
SQLUSMALLINT fInfoType,
SQLPOINTER rgbInfoValue,
SQLSMALLINT cbInfoValueMax,
SQLSMALLINT *pcbInfoValue);

SQLRETURN SQLGetStmtOption (

SQLHSTMT hstmt,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);

SQLRETURN SQLGetStmtOptionW(

SQLHSTMT hstmt,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);

SQLRETURN SQLGetTypeInfo (

SQLHSTMT hstmt,
SQLSMALLINT fSqlType);

SQLRETURN SQLGetTypeInfoW (

SQLHSTMT hstmt,
SQLSMALLINT fSqlType);

490 ODBC Guide and Reference

Table 263. Comparison of suffix-W APIs to equivalent generic APIs (continued)

Generic APIs Suffix-W APIs

SQLRETURN SQLNativeSql (

SQLHDBC hdbc,
SQLCHAR *szSqlStrIn,
SQLINTEGER cbSqlStrIn,
SQLCHAR *szSqlStr,
SQLINTEGER cbSqlStrMax,
SQLINTEGER *pcbSqlStr);

SQLRETURN SQLNativeSqlW (

SQLHDBC hdbc,
SQLWCHAR *szSqlStrIn,
SQLINTEGER cbSqlStrIn,
SQLWCHAR *szSqlStr,
SQLINTEGER cbSqlStrMax,
SQLINTEGER *pcbSqlStr);

SQLRETURN SQLPrepare (

SQLHSTMT hstmt,
SQLCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

SQLRETURN SQLPrepareW (

SQLHSTMT hstmt,
SQLWCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

SQLRETURN SQLPrimaryKeys (

SQLHSTMT hstmt,
SQLCHAR *szCatalogName,
SQLSMALLINT :cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT :cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT :cbTableName);

SQLRETURN SQLPrimaryKeysW (

SQLHSTMT hstmt,
SQLWCHAR *szCatalogName,
SQLSMALLINT :cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT :cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT :cbTableName);

SQLRETURN SQLProcedureColumns (

SQLHSTMT hstmt,
SQLCHAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLCHAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR *szProcName,
SQLSMALLINT cbProcName,
SQLCHAR *szColumnName,
SQLSMALLINT cbColumnName);

SQLRETURN SQLProcedureColumnsW (

SQLHSTMT hstmt,
SQLWCHAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLWCHAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLWCHAR *szProcName,
SQLSMALLINT cbProcName,
SQLWCHAR *szColumnName,
SQLSMALLINT cbColumnName);

SQLRETURN SQLProcedures (

SQLHSTMT hstmt,
SQLCHAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLCHAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR *szProcName,
SQLSMALLINT cbProcName);

SQLRETURN SQLProceduresW (

SQLHSTMT hstmt,
SQLWCHAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLWCHAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLWCHAR *szProcName,
SQLSMALLINT cbProcName);

SQLRETURN SQLSetConnectOption (

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);

SQLRETURN SQLSetConnectOptionW (

SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);

SQLRETURN SQLSetCursorName (

SQLHSTMT hstmt,
SQLCHAR *szCursor,
SQLSMALLINT cbCursor);

SQLRETURN SQLSetCursorNameW (

SQLHSTMT hstmt,
SQLWCHAR *szCursor,
SQLSMALLINT cbCursor);

SQLRETURN SQLSetStmtOption (

SQLHSTMT hstmt,
SQLUSMALLINT fOption
SQLUINTEGER pvParam);

SQLRETURN SQLSetStmtOptionW (

SQLHSTMT hstmt,
SQLUSMALLINT fOption
SQLUINTEGER pvParam);

Chapter 5. Advanced features 491

Table 263. Comparison of suffix-W APIs to equivalent generic APIs (continued)

Generic APIs Suffix-W APIs

SQLRETURN SQLSpecialColumns (

SQLHSTMT hstmt
SQLUSMALLINT fColType,
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fScope,
SQLUSMALLINT fNullable);

SQLRETURN SQLSpecialColumnsW (

SQLHSTMT hstmt
SQLUSMALLINT fColType,
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fScope,
SQLUSMALLINT fNullable);

SQLRETURN SQLStatistics(

SQLHSTMT hstmt
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fUnique,
SQLUSMALLINT fAccuracy);

SQLRETURN SQLStatisticsW (

SQLHSTMT hstmt
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fUnique,
SQLUSMALLINT fAccuracy);

SQLRETURN SQLTablePrivileges (

SQLHSTMT hstmt
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName);

SQLRETURN SQLTablePrivilegesW (

SQLHSTMT hstmt
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName);

SQLRETURN SQLTables (

SQLHSTMT hstmt
SQLCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR *szTableType,
SQLSMALLINT cbTableType);

SQLRETURN SQLTablesW (

SQLHSTMT hstmt
SQLWCHAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLWCHAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLWCHAR *szTableName,
SQLSMALLINT cbTableName,
SQLWCHAR *szTableType,
SQLSMALLINT cbTableType);

Examples of handling the application encoding scheme
You can use the application encoding scheme to bind a UCS-2 result set column,
bind UTF-8 data to parameter markers, retrieve UTF-8 data into application
variables. The application encoding scheme also allows you to use suffix-W APIs.
To perform these tasks, you must declare variables, specifying data types
appropriately for a particular encoding scheme.

Example of binding result set columns to retrieve UCS-2 data
You can use SQLBindCol() to bind the first column of a result set to a Unicode
UCS-2 application buffer.

The following code shows such an example.
/* Declare variable to bind Unicode UCS-2 data */
SQLWCHAR UCSWSTR [50];
/* Assume CURRENTAPPENSCH=UNICODE is set */
SQLBindCol((SQLHSTMT) hstmt,

492 ODBC Guide and Reference

(SQLUSMALLINT) 1,
(SQLSMALLINT) SQL_C_WCHAR,
(SQLPOINTER) UCSWSTR,
(SQLINTEGER) sizeof(UCSWSTR),
(SQLINTEGER*)&LEN_UCSWSTR);

Example of binding UTF-8 data to parameter markers
You can use SQLBindParameter() to bind application variables that contain UTF-8
data to INTEGER, CHAR, and GRAPHIC parameter markers.

The following example shows how SQLBindParameter() binds three input
application variables containing UTF-8 to the parameter markers.

Example of retrieving UTF-8 data into application variables
You can use SQLGetData() to retrieve UTF-8 data from columns in the current row
of a result set.

The following example shows how SQLGetData() can retrieve UTF-8 data from
three columns (DECIMAL, VARCHAR, and VARGRAPHIC) in the current row of

/* Declare variables for Unicode UTF-8 data */
SQLCHAR HV1INT [50];
SQLCHAR HV1CHAR [50];
SQLCHAR HV1GRAPHIC[50];
SQLINTEGER LEN_HV1INT;
SQLINTEGER LEN_HV1CHAR;
SQLINTEGER LEN_HV1GRAPHIC;
...
/* Assume CURRENTAPPENSCH=UNICODE is set */
/* Bind to DB2 INTEGER */
SQLBindParameter((SQLHSTMT) hstmt,

(SQLUSMALLINT) 1,
(SQLSMALLINT) SQL_PARAM_INPUT,
(SQLSMALLINT) SQL_C_CHAR,

(SQLSMALLINT) SQL_INTEGER,
(SQLUINTEGER) 0,

(SQLSMALLINT) 0,
(SQLPOINTER) HV1INT,
(SQLINTEGER) sizeof(HV1INT),
(SQLINTEGER *) &LEN_HV1INT),

/* Bind to DB2 CHAR(10) */
SQLBindParameter((SQLHSTMT) hstmt,

(SQLUSMALLINT) 2,
(SQLSMALLINT) SQL_PARAM_INPUT,
(SQLSMALLINT) SQL_C_CHAR,

(SQLSMALLINT) SQL_CHAR,
(SQLUINTEGER) 10,

(SQLSMALLINT) 0,
(SQLPOINTER) HV1CHAR,
(SQLINTEGER) sizeof(HV1CHAR),
(SQLINTEGER *) &LEN_HV1CHAR),

/* Bind to DB2 GRAPHIC(20) */
SQLBindParameter((SQLHSTMT) hstmt,

(SQLUSMALLINT) 3,
(SQLSMALLINT) SQL_PARAM_INPUT,
(SQLSMALLINT) SQL_C_CHAR,

(SQLSMALLINT) SQL_GRAPHIC,
(SQLUINTEGER) 20,

(SQLSMALLINT) 0,
(SQLPOINTER) HV1GRAPHIC,
(SQLINTEGER) sizeof(HV1GRAPHIC),
(SQLINTEGER *) &LEN_HV1GRAPHIC);

Figure 66. An application that binds application variables to parameter markers

Chapter 5. Advanced features 493

the result set.

Example of using suffix-W APIs
You can use suffix-W APIs to handle application encoding schemes.

The following example shows an example ODBC application that uses three
suffix-W APIs to handle a Unicode UCS-2 application encoding scheme.
/**/
/* Main program */
/* - CREATE MYTABLE */
/* - INSERT INTO MYTABLE using literals */
/* - INSERT INTO MYTABLE using parameter markers */
/* - SELECT FROM MYTABLE with WHERE clause */
/* */
/* suffix-W APIS used: */
/* - SQLConnectW */
/* - SQLPrepareW */
/* - SQLExecDirectW */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <wstr.h>
#include "sqlcli1.h"
#include <stlca.h>
#include <errno.h>
#include <sys/_messag.h>
#pragma convlit(suspend)

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHSTMT hstmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;

/* Declare variables for Unicode UTF-8 data */
SQLCHAR HV1DECIMAL [50];
SQLCHAR HV1VARCHAR [100];
SQLCHAR HV1VARGRAPHIC[200];
SQLINTEGER LEN_HV1DECIMAL;
SQLINTEGER LEN_HV1VARCHAR;
SQLINTEGER LEN_HV1VARGRAPHIC;
...
/* Assume CURRENTAPPENSCH=UNICODE is set */
/* Bind DECIMAL(10,2) column */
SQLGetData((SQLHSTMT) hstmt,

(SQLUSMALLINT) 1,
(SQLSMALLINT) SQL_C_CHAR,

(SQLPOINTER) HV1DECIMAL,
(SQLINTEGER) sizeof(HV1DECIMAL),
(SQLINTEGER *) &LEN_HV1DECIMAL),

/* Bind VARCHAR(20) column */
SQLGetData((SQLHSTMT) hstmt,

(SQLUSMALLINT) 2,
(SQLSMALLINT) SQL_C_CHAR,

(SQLPOINTER) HV1VARCHAR,
(SQLINTEGER) sizeof(HV1VARCHAR),
(SQLINTEGER *) &LEN_HV1VARCHAR),

/* Bind VARGRAPHIC(30) column */
SQLGetData((SQLHSTMT) hstmt,

(SQLUSMALLINT) 3,
(SQLSMALLINT) SQL_C_CHAR,

(SQLPOINTER) HV1VARGRAPHIC,
(SQLINTEGER) sizeof(HV1VARGRAPHIC),
(SQLINTEGER *) &LEN_HV1VARGRAPHIC);

Figure 67. An application that retrieves result set data into application variables

494 ODBC Guide and Reference

SQLINTEGER id;
SQLSMALLINT scale;
SQLCHAR server[18]
SQLCHAR uid[30]
SQLCHAR pwd[30]
SQLSMALLINT pcpar=0;
SQLSMALLINT pccol=0;
SQLCHAR sqlstmt[200]
SQLINTEGER sqlstmtlen;
SQLWCHAR H1INT4 [50]
SQLWCHAR H1SMINT [50]
SQLWCHAR H1CHR10 [50]
SQLWCHAR H1CHR10MIX [50]
SQLWCHAR H1VCHR20 [50]
SQLWCHAR H1VCHR20MIX [50]
SQLWCHAR H1GRA10 [50]
SQLWCHAR H1VGRA20 [50]
SQLWCHAR H1TTIME [50]
SQLWCHAR H1DDATE [50]
SQLWCHAR H1TSTMP [50]
SQLWCHAR H2INT4 [50]
SQLWCHAR H2SMINT [50]
SQLWCHAR H2CHR10 [50]
SQLWCHAR H2CHR10MIX [50]
SQLWCHAR H2VCHR20 [50]
SQLWCHAR H2VCHR20MIX [50]
SQLWCHAR H2GRA10 [50]
SQLWCHAR H2VGRA20 [50]
SQLWCHAR H2TTIME [50]
SQLWCHAR H2DDATE [50]
SQLWCHAR H2TSTMP [50]
SQLINTEGER LEN_H1INT4;
SQLINTEGER LEN_H1SMINT;
SQLINTEGER LEN_H1CHR10;
SQLINTEGER LEN_H1CHR10MIX;
SQLINTEGER LEN_H1VCHR20;
SQLINTEGER LEN_H1VCHR20MIX;
SQLINTEGER LEN_H1GRA10;
SQLINTEGER LEN_H1VGRA20;
SQLINTEGER LEN_H1TTIME;
SQLINTEGER LEN_H1DDATE;
SQLINTEGER LEN_H1TSTMP;
SQLINTEGER LEN_H2INT4;
SQLINTEGER LEN_H2SMINT;
SQLINTEGER LEN_H2CHR10;
SQLINTEGER LEN_H2CHR10MIX;
SQLINTEGER LEN_H2VCHR20;
SQLINTEGER LEN_H2VCHR20MIX;
SQLINTEGER LEN_H2GRA10;
SQLINTEGER LEN_H2VGRA20;
SQLINTEGER LEN_H2TTIME;
SQLINTEGER LEN_H2DDATE;
SQLINTEGER LEN_H2TSTMP;
SQLWCHAR DROPW1 [100]
SQLWCHAR DELETEW1[100]
SQLWCHAR SELECTW1[100]
SQLWCHAR CREATEW1[500]
SQLWCHAR INSERTW1[500]
SQLWCHAR DROPW2 [100]
SQLWCHAR DELETEW2[100]
SQLWCHAR SELECTW2[100]
SQLWCHAR CREATEW2[500]
SQLWCHAR INSERTW2[500]
SQLINTEGER LEN_H1INT4;
SQLINTEGER LEN_DROPW1;
SQLINTEGER LEN_DELETEW1;
SQLINTEGER LEN_INSERTW1;

Chapter 5. Advanced features 495

SQLINTEGER LEN_CREATEW1;
SQLINTEGER LEN_SELECTW1;
SQLINTEGER LEN_DROPW2;
SQLINTEGER LEN_DELETEW2;
SQLINTEGER LEN_INSERTW2;
SQLINTEGER LEN_CREATEW2;
SQLINTEGER LEN_SELECTW2;
struct {

short LEN;
char DATA&lbracket;200&rbracket;; } STMTSQL;

long SPCODE;
int result;
int ix, locix;

/**/
int main()
{

henv=0;
rc=SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if(rc != SQL_SUCCESS) goto dberror;
hdbc=0;
rc=SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* Setup application host variables (UCS-2 character strings) */
/***/

#pragma convlit(resume)
wcscpy(uid, (wchar_t *)"jgold");
wcscpy(pwd, (wchar_t *)"general");
wcscpy(server, (wchar_t *)"STLEC1");
wcscpy(DROPW1, (wchar_t *)

"DROP TABLE MYTABLE");
LEN_DROPW1=wcslen((wchar_t *)DROPW1);
wcscpy(SELECTW1, (wchar_t *)

"SELECT * FROM MYTABLE WHERE INT4=200");
LEN_SELECTW1=wcslen((wchar_t *)SELECTW1);
wcscpy(CREATEW1, (wchar_t *)

"CREATE TABLE MYTABLE (");
wcscat(CREATEW1, (wchar_t *)

"INT4 INTEGER, SMINT SMALLINT, ");
wcscat(CREATEW1, (wchar_t *)

"CHR10 CHAR(10), CHR10MIX CHAR(10) FOR MIXED DATA, ");
wcscat(CREATEW1, (wchar_t *)

"VCHR20 VARCHAR(20), VCHR20MIX VARCHAR(20) FOR MIXED DATA, ");
wcscat(CREATEW1, (wchar_t *)

"GRA10 GRAPHIC(10), VGRA20 VARGRAPHIC(20), ");
wcscat(CREATEW1, (wchar_t *)

"TTIME TIME, DDATE DATE, TSTMP TIMESTAMP)");
LEN_CREATEW1=wcslen((wchar_t *)CREATEW1);
wcscpy(DELETEW1, (wchar_t *)

"DELETE FROM MYTABLE WHERE INT4 IS NULL OR INT4 IS NOT NULL");
LEN_DELETEW1=wcslen((wchar_t *)DELETEW1);
wcscpy(INSERTW1, (wchar_t *)

"INSERT INTO MYTABLE VALUES (");
wcscat(INSERTW1, (wchar_t *)

"(100,1,’CHAR10’,’CHAR10MIX’,’VARCHAR20’,’VARCHAR20MIX’, ");
wcscat(INSERTW1, (wchar_t *)

"G’ A B C’, VARGRAPHIC(’ABC’), ");
wcscat(INSERTW1, (wchar_t *)

"’3:45 PM’, ’06/12/1999’, ");
wcscat(INSERTW1, (wchar_t *)

"’1999-09-09-09.09.09.090909’)");
LEN_INSERTW1=wcslen((wchar_t *)INSERTW1);
wcscpy(INSERTW2, (wchar_t *)

"INSERT INTO MYTABLE VALUES (?,?,?,?,?,?,?,?,?,?,?)");
LEN_INSERTW2=wcslen((wchar_t *)INSERTW2);
wcscpy(H1INT4 , (wchar_t *)"200");
wcscpy(H1SMINT , (wchar_t *)"5");

496 ODBC Guide and Reference

wcscpy(H1CHR10 , (wchar_t *)"CHAR10");
wcscpy(H1CHR10MIX , (wchar_t *)"CHAR10MIX");
wcscpy(H1VCHR20 , (wchar_t *)"VARCHAR20");
wcscpy(H1VCHR20MIX, (wchar_t *)"VARCHAR20MIX");
wcscpy(H1TTIME , (wchar_t *)"3:45 PM");
wcscpy(H1DDATE , (wchar_t *)"06/12/1999");
wcscpy(H1TSTMP , (wchar_t *)"1999-09-09-09.09.09.090909");

#pragma convlit(suspend)
/* 0xFF21,0xFF22,0xFF23,0x0000 */
wcscpy(H1GRA10 , (wchar_t *)" ");
/* 0x0041,0xFF21,0x0000 */
wcscpy(H1VGRA20 , (wchar_t *)" ");
LEN_H1INT4 = SQL_NTS;
LEN_H1SMINT = SQL_NTS;
LEN_H1CHR10 = SQL_NTS;
LEN_H1CHR10MIX = SQL_NTS;
LEN_H1VCHR20 = SQL_NTS;
LEN_H1VCHR20MIX = SQL_NTS;
LEN_H1GRA10 = SQL_NTS;
LEN_H1VGRA20 = SQL_NTS;
LEN_H1TTIME = SQL_NTS;
LEN_H1DDATE = SQL_NTS;
LEN_H1TSTMP = SQL_NTS;
/***/
/* SQLConnectW */
/***/
rc=SQLConnectW(hdbc, NULL, 0, NULL, 0, NULL, 0);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* DROP TABLE - SQLExecuteDirectW */
/***/
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLExecDirectW(hstmt,DROPW1,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* CREATE TABLE MYTABLE - SQLPrepareW */
/***/
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLPrepareW(hstmt,CREATEW1,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* INSERT INTO MYTABLE with literals - SQLExecDirectW */
/***/
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLExecDirectW(hstmt,DROPW1,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/***/

Chapter 5. Advanced features 497

/* INSERT INTO MYTABLE with parameter markers */
/* - SQLPrepareW */
/* - SQLBindParameter with SQL_C_WCHAR symbolic C data type */
/***/
hstmt=0;

rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/* INSERT INTO MYTABLE VALUES (?,?,?,?,?,?,?,?,?,?,?) */
rc=SQLPrepareW(hstmt,INSERTW2,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLNumParams(hstmt, &pcpar);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPDV1 number= 19");
if(pcpar != 11) goto dberror;
/* Bind INTEGER parameter */
rc= SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_INTEGER,
10,
0,
(SQLPOINTER)H1INT4,
sizeof(H1INT4

), (SQLINTEGER *)&LEN_H1INT4);
if(rc != SQL_SUCCESS) goto dberror;
/* Bind SMALLINT parameter */
rc = SQLBindParameter(hstmt,

2,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_SMALLINT,
5,
0,
(SQLPOINTER)H1SMINT,
sizeof(H1SMINT),
(SQLINTEGER*)&LEN_H1SMINT);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind CHAR(10) parameter */
rc = SQLBindParameter(hstmt,

3,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_CHAR,
10,
0,
(SQLPOINTER)H1CHR10,
sizeof(H1CHR10),
(SQLINTEGER *)&LEN_H1CHR10);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind CHAR(10) parameter */
rc = SQLBindParameter(hstmt,

3,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_CHAR,
10,
0,
(SQLPOINTER)H1CHR10,
sizeof(H1CHR10),
(SQLINTEGER *)&LEN_H1CHR10);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind CHAR(10) FOR MIXED parameter */
rc = SQLBindParameter(hstmt,

4,
SQL_PARAM_INPUT,
SQL_C_WCHAR,

498 ODBC Guide and Reference

SQL_CHAR,
10,
0,
(SQLPOINTER)H1CHR10MIX,
sizeof(H1CHR10MIX),
(SQLINTEGER *)&LEN_H1CHR10MIX);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARCHAR(20) parameter */
rc = SQLBindParameter(hstmt,

5,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_VARCHAR,
20,
0,
(SQLPOINTER)H1VCHR20,
sizeof(H1VCHR20),
(SQLINTEGER *)&LEN_H1VCHR20);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARCHAR(20) FOR MIXED parameter */
rc = SQLBindParameter(hstmt,

6,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_VARCHAR,
20,
0,
(SQLPOINTER)H1VCHR20MIX,
sizeof(H1VCHR20MIX),
(SQLINTEGER *)&LEN_H1VCHR20MIX);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind GRAPHIC(10) parameter */
rc = SQLBindParameter(hstmt,

7,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_GRAPHIC,
10,
0,
(SQLPOINTER)H1GRA10,
sizeof(H1GRA10),
(SQLINTEGER *)&LEN_H1GRA10);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARGRAPHIC(20) parameter*/
rc = SQLBindParameter(hstmt,

8,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_VARGRAPHIC,
20,
0,
(SQLPOINTER)H1VGRA20,
sizeof(H1VGRA20),
(SQLINTEGER *)&LEN_H1VGRA20);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind TIME parameter */
rc= SQLBindParameter(hstmt,

9,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_TIME,
8,
0,
(SQLPOINTER)H1TTIME,
sizeof(H1TTIME),
(SQLINTEGER *)&LEN_H1TTIME);

if(rc != SQL_SUCCESS) goto dberror;

Chapter 5. Advanced features 499

/* Bind DATE parameter */
rc = SQLBindParameter(hstmt,

10,
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_DATE,
10,
0,
(SQLPOINTER)H1DDATE,
sizeof(H1DDATE),
(SQLINTEGER *)&LEN_H1DDATE);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind TIMESTAMP parameter */
rc = SQLBindParameter(hstmt,

11
SQL_PARAM_INPUT,
SQL_C_WCHAR,
SQL_DATE,
26,
0,
(SQLPOINTER)H1TSTMP,
sizeof(H1TSTMP),
(SQLINTEGER *)&LEN_H1TSTMP);

if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPDV1 SQLExecute number= 25");
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPDV1 SQLEndTran number=26");
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPDV1 SQLFreeHandle(SQL_HANDLE_STMT, ...) number= 27");
rc=SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* SELECT FROM MYTABLE WHERE INT4=200 */
/* - SQLBindCol with SQL_C_WCHAR symbolic C data type */
/* - SQLExecDirectW */
/***/
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
/* Bind INTEGER column */
rc = SQLBindCol(hstmt,

1,
SQL_C_WCHAR,
(SQLPOINTER)H2INT4,
sizeof(H2INT4),
(SQLINTEGER *)&LEN_H2INT4);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind SMALLINT column */
rc = SQLBindCol(hstmt,

2,
SQL_C_WCHAR,
(SQLPOINTER)H2SMINT,
sizeof(H2SMINT),
(SQLINTEGER *)&LEN_H2SMINT);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind CHAR(10) column */
rc = SQLBindCol(hstmt,

3,
SQL_C_WCHAR,
(SQLPOINTER)H2CHR10,
sizeof(H2CHR10),
(SQLINTEGER *)&LEN_H2CHR10);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind CHAR(10) FOR MIXED column */
rc = SQLBindCol(hstmt,

500 ODBC Guide and Reference

4,
SQL_C_WCHAR,
(SQLPOINTER)H2CHR10MIX,
sizeof(H2CHR10MIX),
(SQLINTEGER *)&LEN_H2CHR10MIX);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARCHAR(20) column */
rc = SQLBindCol(hstmt,

5,
SQL_C_WCHAR,
(SQLPOINTER)H2VCHR20,
sizeof(H2VCHR20,
(SQLINTEGER *)&LEN_H2VCHR20);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARCHAR(20) FOR MIXED column */
rc = SQLBindCol(hstmt,

6,
SQL_C_WCHAR,
(SQLPOINTER)H2VCHR20MIX,
sizeof(H2VCHR20MIX),
(SQLINTEGER *)&LEN_H2VCHR20MIX);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind GRAPHIC(10) column */
rc = SQLBindCol(hstmt,

7,
SQL_C_WCHAR,
(SQLPOINTER)H2GRA10,
sizeof(H2GRA10),
(SQLINTEGER *)&LEN_H2GRA10);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind VARGRAPHIC(20) column */
rc = SQLBindCol(hstmt,

8,
SQL_C_WCHAR,
(SQLPOINTER)H2VGRA20,
sizeof(H2VGRA20),
(SQLINTEGER *)&LEN_H2VGRA20);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind TIME column */
rc = SQLBindCol(hstmt,

9,
SQL_C_WCHAR,
(SQLPOINTER)H2TTIME,
sizeof(H2TTIME),
(SQLINTEGER *)&LEN_H2TTIME);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind DATE column */
rc = SQLBindCol(hstmt,

10,
SQL_C_WCHAR,
(SQLPOINTER)H2DDATE,
sizeof(H2DDATE),
(SQLINTEGER *)&LEN_H2DDATE);

if(rc != SQL_SUCCESS) goto dberror;
/* Bind TIMESTAMP column */
rc = SQLBindCol(hstmt,

11,
SQL_C_WCHAR,
(SQLPOINTER)H2TSTMP,
sizeof(H2TSTMP),
(SQLINTEGER *)&LEN_H2TSTMP);

if(rc != SQL_SUCCESS) goto dberror;
/*
* SELECT * FROM MYTABLE WHERE INT4=200
*/
rc=SQLExecDirectW(hstmt,SELECTW1,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

Chapter 5. Advanced features 501

rc=SQLFetch(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if(rc != SQL_SUCCESS) goto dberror;

/***/
rc=SQLDisconnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
if(rc != SQL_SUCCESS) goto dberror;
rc=SQLFreeHandle(SQL_HANDLE_ENV, henv);
if(rc != SQL_SUCCESS) goto dberror;
dberror:
rc = SQL_ERROR;
return(rc);

} /*END MAIN*/

Embedded SQL and DB2 ODBC in the same program
You can combine embedded static SQL with DB2 ODBC to write a mixed
application.For 64-bit applications, you cannot use embedded static SQL
statements.

With a mixed application, you can take advantage of both the ease of use that DB2
ODBC functions provide and the performance enhancement that embedded SQL
offers.

Important: To mix DB2 ODBC with embedded SQL, you must not enable DB2
ODBC support for multiple contexts. The initialization file for mixed applications
must specify MULTICONTEXT=0 or exclude MULTICONTEXT keyword.

To mix DB2 ODBC and embedded SQL in an application, you must limit how you
combine these interfaces:
v Handle all connection management and transaction management with either

DB2 ODBC or embedded SQL exclusively. You must perform all connections,
commits, and rollbacks with the same interface.

v Use only one interface (DB2 ODBC or embedded SQL) for each query statement.
For example, an application cannot open a cursor in an embedded SQL routine,
and then call the DB2 ODBC SQLFetch() function to retrieve row data.

Because DB2 ODBC permits multiple connections, you must call
SQLSetConnection() before you call a routine that is written in embedded SQL.
SQLSetConnection() allows you to explicitly specify the connection on which you
want the embedded SQL routine to run. If your application makes only a single
connection, or if you write your application entirely in DB2 ODBC, you do not
need to include a SQLSetConnection() call.

Tip: When you write a mixed application, divide this application into a main
program that makes separate function calls. Structure the mixed application as a
DB2 ODBC application that calls functions that are written with embedded SQL, or
as an embedded SQL application that calls functions that are written with DB2
ODBC. With this kind of structure, you can perform transaction management
separately in the main program, while you make query statements in individual
functions written in a single interface. Functions that are written with DB2 ODBC
must use null connections.

Figure 68. An application that uses suffix-W APIs

502 ODBC Guide and Reference

The following example shows an application that connects to two data sources and
executes both embedded SQL and dynamic SQL using DB2 ODBC.
/* ... */

/* Allocate an environment handle */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* Connect to first data source */
DBconnect(henv, &hdbc[0]);
/* Connect to second data source */
DBconnect(henv, &hdbc[1]);
/********* Start processing step *************************/
/* NOTE: at this point two connections are active */
/* Set current connection to the first database */
if ((rc = SQLSetConnection(hdbc[0])) != SQL_SUCCESS)

printf("Error setting connection 1\n");
/* Call function that contains embedded SQL */
if ((rc = Create_Tab()) != 0)

printf("Error Creating Table on 1st connection, RC=
/* Commit transaction on connection 1 */
SQLEndTran(SQL_HANDLE_DBC, hdbc[0], SQL_COMMIT);
/* set current connection to the second database */
if ((rc = SQLSetConnection(hdbc[1])) != SQL_SUCCESS)

printf("Error setting connection 2\n");
/* call function that contains embedded SQL */
if ((rc = Create_Tab()) != 0)

printf("Error Creating Table on 2nd connection, RC=
/* Commit transaction on connection 2 */
SQLEndTran(SQL_HANDLE_DBC, hdbc[1], SQL_COMMIT);
/* Pause to allow the existance of the tables to be verified. */
printf("Tables created, hit Return to continue\n");
getchar();
SQLSetConnection(hdbc[0]);
if ((rc = Drop_Tab()) != 0)

printf("Error dropping Table on 1st connection, RC=
/* Commit transaction on connection 1 */
SQLEndTran(SQL_HANDLE_DBC, hdbc[0], SQL_COMMIT);
SQLSetConnection(hdbc[1]);
if ((rc = Drop_Tab()) != 0)

printf("Error dropping Table on 2nd connection, RC=
/* Commit transaction on connection 2 */
SQLEndTran(SQL_HANDLE_DBC, hdbc[1], SQL_COMMIT);
printf("Tables dropped\n");
/********* End processing step ***************************/

/* ... */
/************* Embedded SQL functions *******************************
** This would normally be a separate file to avoid having to *
** keep precompiling the embedded file in order to compile the DB2 CLI *
** section50 *
**/
EXEC SQL INCLUDE SQLCA;
int
Create_Tab()
{

EXEC SQL CREATE TABLE mixedup
(ID INTEGER, NAME CHAR(10));

return(SQLCODE);
}
int
Drop_Tab()
{

EXEC SQL DROP TABLE mixedup;
return(SQLCODE);

}
/* ... */

Chapter 5. Advanced features 503

Related concepts:
“Rules for a DB2 ODBC stored procedure” on page 473

Vendor escape clauses
Vendor escape clauses increase the portability of your application if your
application accesses multiple data sources from different vendors. However, if your
application accesses only DB2 data sources, you have no reason to use vendor
escape clauses.

The X/Open SQL CAE specification defines an escape clause as: “a syntactic
mechanism for vendor-specific SQL extensions to be implemented in the
framework of standardized SQL.” Both DB2 ODBC and ODBC support vendor
escape clauses that conform to this X/Open specification.

Data sources are not necessarily consistent in how they implement SQL extensions.
Use vendor escape clauses to implement common SQL extensions in a consistent,
portable format.

DB2 ODBC translates the SQL extensions that ODBC defines to native DB2 SQL
syntax. To display the DB2-specific syntax that results from this translation, call
SQLNativeSql() on an SQL string that contains ODBC vendor escape clauses.
Related concepts:
“ODBC-defined SQL extensions” on page 505

Function for determining ODBC vendor escape clause support
Data sources do not necessarily support the same SQL extensions. The ODBC
drivers for these data sources therefore might not support all ODBC vendor escape
clauses.

To determine if a data source supports vendor escape clauses, call SQLGetInfo()
with the InfoType argument set to SQL_ODBC_SQL_CONFORMANCE. If
SQLGetInfo() returns a value of SQL_OSC_EXTENDED, that data source supports
all ODBC vendor escape clauses.

For SQL extensions that ODBC does not define, you must use the SQL syntax that
is specific to each particular data source. This SQL syntax might not be consistent
among the data sources that your application uses.
Related concepts:
“ODBC-defined SQL extensions” on page 505

Escape clause syntax
Because ODBC vendor escape clauses are implemented identically across all
products and vendors, ODBC defines a short-form escape clause that includes only
the extended SQL text.

DB2 ODBC supports the following short-form escape clause:
{ extended SQL text }

extended SQL text
In ODBC, the string of extended SQL that the ODBC driver translates to data
source specific SQL.

Figure 69. An application that mixes embedded and dynamic SQL

504 ODBC Guide and Reference

This short-form escape clause that does not conform to X/Open specifications, but
it is widely used among ODBC drivers. In ODBC 3.0, the short ODBC format
replaces the deprecated long X/Open format.

DB2 ODBC supports the SQL escape clause X/Open defines with the following
long-form syntax:
--(*vendor(vendor-identifier),

product(product-identifier) extended SQL text*)--

vendor-identifier
Vendor identification that is consistent across all of that vendor's SQL products.
(For DB2 ODBC, this identifier can be set to either IBM or Microsoft.)

product-identifier
Identifier for an SQL product. (For DB2 ODBC, this identifier is always set to
ODBC.)

extended SQL text
The same text that the short-form escape clause uses.

Long-form vendor escape clauses are considered deprecated in ODBC 3.0.
Although DB2 ODBC supports both long and short formats, you should use the
current, short-form escape clauses in your applications.
Related concepts:
“ODBC-defined SQL extensions”

ODBC-defined SQL extensions
ODBC supports various SQL extensions that are not supported by X/Open.

The following list shows the SQL extensions that ODBC defines that are not
defined by X/Open:
v Extended date, time, and timestamp data
v Outer join
v LIKE predicate
v Call stored procedure
v Extended scalar functions

– Numeric functions
– String functions
– System functions

ODBC date, time, and timestamp data
You can use extended SQL syntax for date, time, and timestamp data in a vendor
escape clause to make the definitions portable in your SQL statements.

The following extended SQL syntax defines date, time, and timestamp data
respectively.

�� d
t
ts

‘ value ‘ ��

d Indicates that value is a date in the yyyy-mm-dd format.

Chapter 5. Advanced features 505

t Indicates that value is a time in the hh:mm:ss format.

ts Indicates that value is a timestamp in the yyyy-mm-dd hh:mm:ss[.ffffffffffff]
format.

value Specifies your user data.

Example: You can use either of the following forms of the escape clause to issue a
query on the EMPLOYEE table. In this example, a vendor escape clause specifies
the data for the predicate in each query.
v Short-form syntax:

SELECT * FROM EMPLOYEE WHERE HIREDATE={d ’2004-03-29’}

v Long-form syntax:
SELECT * FROM EMPLOYEE
WHERE HIREDATE=--(*vendor(Microsoft),product(ODBC) d ’2004-03-29’ *)--

You can use the ODBC vendor escape clauses for date, time, and timestamp literals
in input parameters with a C data type of SQL_C_CHAR.

To determine if a data source supports date, time, or timestamp data, call
SQLGetTypeInfo(). If a data source supports any of these data types, the ODBC
driver for that data source supports a corresponding vendor escape clause.

ODBC outer join syntax
In ODBC, you can use outer join syntax in a vendor escape clause to make outer
joins portable in your SQL statements.

The following extended SQL syntax specifies an outer join.

�� oj table-name LEFT
RIGHT
FULL

OUTER JOIN table-name
outer-join

�

� ON search-condition ��

table-name
Specifies the name of the table that you want to join.

LEFT Performs a left outer join.

RIGHT
Performs a right outer join.

FULL Performs a full outer join.

table-name
Specifies the name of the table that you want to join with the previous
table.

outer-join
Specifies the result of an outer join that you want to join with the previous
table. (Use the syntax above without the leading keyword oj.)

search-condition
Specifies the condition on which rows are joined.

506 ODBC Guide and Reference

Example: You can use either of the following forms of the escape clause to perform
an outer join. In this example, a vendor escape clause specifies the outer join in
each SQL statement.
v Short-form syntax:

SELECT * FROM {oj T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3}
WHERE T1.C2>20

v Long-form syntax:
SELECT * FROM

--(*vendor(Microsoft),product(ODBC) oj
T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3*)--

WHERE T1.C2>20

Important: Not all servers support outer join. To determine if the current server
supports outer joins, call SQLGetInfo() twice, first with the InfoType argument set
to SQL_OUTER_JOINS, and then with the InfoType argument set to
SQL_OJ_CAPABILITIES.

LIKE predicate escape clause
In an SQL LIKE predicate, the percent metacharacter (%) matches a string of zero
or more characters, and the underscore metacharacter (_) matches any single
character. With the predicate escape clause, you can define patterns that contain
the actual percent and underscore characters.

To specify that you want these characters to represent literal values, you precede
them with an escape character. You define the LIKE predicate escape character
with the following syntax in a vendor escape clause:

�� escape ‘ escape-character ‘ ��

escape-character
Specifies any character that is supported by the DB2 rules and that governs
the use of the ESCAPE clause.

Example: You can use either of the following forms of the escape clause to include
metacharacters as literals in the LIKE predicate. In this example, both statements
search for a string that ends with the percent character .
v Short-form syntax:

SELECT * FROM EMPLOYEE
WHERE COMMISSION LIKE {escape ’!’} ’%!%’

v Long-form syntax:
SELECT * FROM EMPLOYEE
WHERE COMMISSION LIKE --(*vendor(Microsoft),product(ODBC) escape ’!’*)-- ’%!%’

To determine if a particular data source supports LIKE predicate escape characters,
call SQLGetInfo() with the InfoType argument set to SQL_LIKE_ESCAPE_CLAUSE.

Stored procedure CALL
In ODBC, you can use the extended SQL syntax for calling a stored procedure in a
vendor escape clause to make stored procedure calls portable in your SQL
statements.

Chapter 5. Advanced features 507

The following extended SQL syntax calls a stored procedure.

��
?=

call procedure-name

�

,

(parameter)

��

?= Specifies that you want DB2 ODBC to return the SQLCODE of the stored
procedure call in the first parameter that you specify in
SQLBindParameter(). If ?= is not present, you can retrieve the SQLCA with
SQLGetSQLCA() .

procedure-name
Specifies the name of a procedure that is stored at the data source.

parameter
Specifies a procedure parameter. A procedure can have zero or more
parameters.

Important: Unlike ODBC, DB2 ODBC does not support literals as
procedure arguments. You must use parameter markers to specify a
procedure parameter.

Example: You can use either of the following forms of the escape clause to call a
stored procedure. In this example, the statements call the procedure NETB94,
which uses three parameters.
v Short-form syntax:

{CALL NETB94(?,?,?)}

v Long-form syntax:
--(*vendor(Microsoft),product(ODBC) CALL NEBT94(?,?,?)*)--

To determine if a particular data source supports stored procedure calls, call
SQLGetInfo() with the InfoType argument set to SQL_PROCEDURES.
Related concepts:
“Stored procedures” on page 471

ODBC scalar functions
You can use SQL scalar functions on columns of result sets, or on columns that
restrict rows of a result set.

Use this syntax in a vendor escape clause to make portable scalar function calls in
your SQL statements.

�� fn scalar-function ��

scalar-function
Specifies any string, date and time, and system functions.

508 ODBC Guide and Reference

Example: You can use either of the following forms of the escape clause to call a
scalar function. Both statements in this example use a vendor escape clause in the
select list of a query.
v Short-form syntax:

SELECT {fn CONCAT(FIRSTNAME,LASTNAME)} FROM EMPLOYEE

v Long-form syntax:
SELECT --(*vendor(Microsoft),product(ODBC) fn CONCAT(FIRSTNAME,LASTNAME) *)--

FROM EMPLOYEE

To determine which scalar functions are supported by the current server that is
referenced by a specific connection handle, call SQLGetInfo() with the InfoType
argument set to each of the following values:
v SQL_NUMERIC_FUNCTIONS
v SQL_STRING_FUNCTIONS
v SQL_SYSTEM_FUNCTIONS
v SQL_TIMEDATE_FUNCTIONS
Related reference:
“Extended scalar functions” on page 535

Extended indicators in ODBC applications
ODBC applications can use extended indicators to update all columns in UPDATE,
INSERT, and MERGE statements without specifying the current value of columns
that do not require changes.

If you use extended indicators you do not need to code separate INSERT
statements for every combination of columns that you want to insert. You can
enable extended indicators by setting the EXTENDEDINDICATOR keyword in the
ODBC initialization file, or with the SQL_ATTR_EXTENDED_INDICATORS
connection attribute. When you execute SQLBindParameter(), you can set the
rgbValue to null and the pcbValue to SQL_DEFAULT_PARAM or
SQL_UNASSIGNED.

You can also use the ODBC array input interface to bind a parameter marker to an
array of application variables instead of a single application variable. You are not
required to call SQLExecute() repeatedly on the same INSERT, UPDATE, or
MERGE statement.

ODBC programming hints and tips
When you program a DB2 ODBC application, you can avoid common problems,
improve performance, reduce network flow, and maximize portability.

Guidelines for avoiding common problems
To avoid common problems in DB2 ODBC initialization files, large result sets, and
distinct types, adhere to the ODBC guidelines.

Check the DB2 ODBC initialization file
You need to follow several guidelines to ensure that the DB2 ODBC initialization
file is free from problems.

When you alter the DB2 ODBC initialization file, take the following actions:

Chapter 5. Advanced features 509

v Check the coding of square brackets. The square brackets in the initialization file
must consist of the correct EBCDIC characters. The open square bracket must
use the hexadecimal characters X'AD'. The close square bracket must use the
hexadecimal characters X'BD'. DB2 ODBC does not recognize brackets if you
code them differently.

v Eliminate sequence numbers. DB2 ODBC does not accept sequence numbers in
the initialization file. You must remove all sequence numbers.

Limit the number of rows that an application can fetch
If a result set is too large, it might cause problems for the application. You can
follow guidelines to reduce errors.

To limit the number of rows that your application can fetch, set the
SQL_ATTR_MAX_ROWS attribute with SQLSetStmtAttr(). You can use this
attribute to ensure that a very large result set does not overwhelm your
application. This kind of protection is especially important for applications that run
on clients with limited memory resources.

Important: The server generates a full result set regardless of the
SQL_ATTR_MAX_ROWS attribute value. DB2 ODBC limits only the fetch to
SQL_ATTR_MAX_ROWS.

Cast parameter markers to distinct types or distinct types to
source types
When you use a distinct-type parameter in the predicate of a query statement, you
must use a CAST function. You can cast either the parameter marker to a distinct
type, or you can cast the distinct type to a source type.

Example: Assume that you define the following distinct type and table:
CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS

CREATE TABLE CUSTOMER (
Cust_Num CNUM NOT NULL,
First_Name CHAR(30) NOT NULL,
Last_Name CHAR(30) NOT NULL,
Phone_Num CHAR(20) WITH DEFAULT,
PRIMARY KEY (Cust_Num))

Then you issue the following query statement:
SELECT first_name, last_name, phone_num FROM customer

where cust_num = ?

This query fails because the comparison includes incompatible types; the
parameter marker cannot be type CNUM.

To successfully execute the statement, issue a query that casts the parameter
marker to the distinct type CNUM:
SELECT first_name, last_name, phone_num FROM customer

where cust_num = cast(? as cnum)

Alternatively, issue a query that casts the data type of the column to the source
type INTEGER:
SELECT first_name, last_name, phone_num FROM customer

where cast(cust_num as integer) = ?

510 ODBC Guide and Reference

Related reference:

CAST specification (DB2 SQL)

PREPARE (DB2 SQL)

Techniques for improving application performance
You can follow several techniques to improve your application performance.

To improve the performance of your DB2 ODBC applications, consider taking the
following actions:
v Set isolation levels.
v Disable cursor hold behavior.
v Retrieve result sets efficiently.
v Limit the use of catalog functions.
v Use dynamic statement caching.
v Turn off statement scanning.

Set isolation levels for maximum concurrency and data
consistency
Isolation levels determine the level of locking that is required to execute a
statement and the level of concurrency that is possible in your application. You
need to choose isolation levels for your application that maximize concurrency and
that also ensure data consistency.

Set the minimum isolation level that is possible to maximize concurrency. You can
set isolation levels by statement, by connection, or at the driver level:
v SQLSetConnectAttr() with the SQL_ATTR_TXN_ISOLATION attribute specified

sets the isolation level at which all statements on a connection handle operate.
This isolation level determines the level of concurrency that is possible, and the
level of locking that is required to execute any statement on a connection handle.

v SQLSetStmtAttr() with the SQL_ATTR_STMTTXN_ISOLATION attribute sets the
isolation level at which an individual statement handle operates. (Although you
can set the isolation level on a statement handle, setting the isolation level on
the connection handle is recommended.) This isolation level determines the level
of concurrency that is possible, and the level of locking that is required to
execute the statement.

v The TXNISOLATION initialization keyword sets the default isolation level for
the DB2 ODBC driver.

DB2 ODBC uses resources that are associated with statement handles more
efficiently if you set an appropriate isolation level, rather than leaving all
statements at the default isolation level. This should be attempted only with a
thorough understanding of the locking and isolation levels of the connected
database server.
Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350
“SQLSetStmtAttr() - Set statement attributes” on page 376
“DB2 ODBC initialization keywords” on page 65

isolation-clause (DB2 SQL)

Disable cursor hold behavior for more efficient resource use
DB2 ODBC can more efficiently use resources that are associated with statement
handles if you disable cursor-hold behavior for statements that do not require it.

Chapter 5. Advanced features 511

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_castspecification.htm#db2z_castspecification
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_isolationclause.htm#db2z_sql_isolationclause

To disable cursor-hold behavior on a statement handle, call SQLSetStmtAttr() with
the SQL_ATTR_CURSOR_HOLD attribute set to SQL_CURSOR_HOLD_OFF. You
can also set the cursor-hold behavior for an entire data source through the
initialization file.

The SQL_ATTR_CURSOR_HOLD statement attribute is the DB2 ODBC equivalent
to the CURSOR WITH HOLD clause in SQL. DB2 ODBC cursors exhibit
cursor-hold behavior by default.

Important: Many ODBC applications expect a default behavior in which the cursor
position is maintained after a commit. Consider such applications before you
disable any cursor-hold behavior.
Related reference:
“DB2 ODBC initialization keywords” on page 65

Code ODBC functions for efficient data retrieval
You can retrieve data more efficiently by following several guidelines.

Two actions make your application retrieve data sets more efficiently:
v Define the pcbValue and rgbValue arguments of SQLBindCol() or SQLGetData()

contiguously in memory. (This allows DB2 ODBC to fetch both values with one
copy operation.)
To define the pcbValue and rgbValue arguments contiguously in memory, create a
structure that contains both values. For example, the following code creates such
a structure:
struct { SQLINTEGER pcbValue;

SQLCHAR rgbValue[MAX_BUFFER];
} column;

v Choose an appropriate function with which to retrieve results. Generally the
most efficient approach is to bind application variables to result sets with
SQLBindCol(). However, in some cases calling SQLGetData() to retrieve results is
more efficient. When the data value is large and is variable-length, use
SQLGetData() for the following situations:
– You must retrieve the data in pieces.
– You might not need to retrieve the data. (That is, retrieval is dependent on

another application action.)

Limit the use of catalog functions
You can improve performance and reduce lock contention by limiting the use of
catalog functions.

Limit the number of times that you call catalog functions in your application, limit
the number of rows that the functions return, and close all open cursors on catalog
result sets.

Call each catalog function once and store the information that the function returns
in your application to reduce the number of catalog functions that you call.

Specify the following parameters to limit the number of rows that a catalog
function returns:
v Schema name or pattern for all catalog functions
v Table name or pattern for all catalog functions other than SQLTables()

v Column name or pattern for catalog functions that return detailed column
information

512 ODBC Guide and Reference

Close any open cursors (call the SQLCloseCursor() function) for statement handles
that are used for catalog queries to release any locks against the catalog tables.
Outstanding locks on the catalog tables can prevent CREATE, DROP, or ALTER
statements from executing.

Important: Plan ahead. Although you might develop and test an application on a
data source with hundreds of tables, the final application might need to run on a
production database with thousands of tables.

Use dynamic SQL statement caching
To reduce the overhead for function calls, you can prepare a statement once and
execute it repeatedly throughout the application.

DB2 servers cache prepared versions of dynamic SQL statements. This dynamic
caching allows the DB2 server to reuse previously prepared statements.

To take advantage of dynamic caching, use the same statement handle to execute
identical SQL statements. Free this handle only when you no longer need to
execute that statement repeatedly.

For example, if your application routinely uses a set of 10 SQL statements, you
should allocate 10 statement handles that are associated with each of those
statements. Do not free these statement handles until you can no longer execute
the statements that are associated with them. You can roll back and commit the
transaction without affecting prepared statements. Your application can continue to
prepare and execute the statements in a normal manner. The DB2 server
determines if a prepare is actually needed.

Also, consider setting the LITERALREPLACEMENT property to 1 so that DB2 can
share a cache entry for dynamic statements that are identical except for the literal
constants and also meet the other standard criteria for sharing a cached entry. This
sharing of the dynamic cache entry might improve your application performance.
Related reference:
“DB2 ODBC initialization keywords” on page 65

Turn off statement scanning
To increase performance, you can configure DB2 ODBC to scan for vendor escape
clauses only on handles that have escape clauses.

About this task

By default, DB2 ODBC scans each SQL statement for vendor escape clauses. If
your application does not generate SQL statements that contain vendor escape
clauses, turn off statement scanning.

Procedure

To turn off statement scanning

Set the SQL_ATTR_NOSCAN statement attribute to SQL_NOSCAN_ON. You can
set this attribute with either of the following functions:

Chapter 5. Advanced features 513

Option Description

SQLSetStmtAttr() When you set the SQL_ATTR_NOSCAN
statement attribute to SQL_NOSCAN_ON
with SQLSetStmtAttr(), you turn off
statement scanning for all SQL statements
that are issued on a statement handle.

SQLSetConnectAttr() When you set the SQL_ATTR_NOSCAN
statement attribute to SQL_NOSCAN_ON
with SQLSetConnectAttr(), you turn off
statement scanning for all SQL statements
that are issued on a connection handle.

Related concepts:
“Vendor escape clauses” on page 504
Related reference:
“SQLSetStmtAttr() - Set statement attributes” on page 376
“SQLSetConnectAttr() - Set connection attributes” on page 350

Techniques for reducing network flow
You can take several actions to reduce network flow.

To reduce the network flow that your DB2 ODBC applications generate, consider
the following actions:
v Use SQLSetColAttributes() to reduce network flow.
v Disable autocommit.
v Use arrays to send and retrieve data.
v Manipulate large data values at the server.

Use SQLSetColAttributes() to reduce network flow
Whenever you prepare or execute a query statement directly, DB2 ODBC retrieves
information about the SQL data type and size from the data source. If you use
SQLSetColAttributes() to provide DB2 ODBC with this information in advance,
DB2 ODBC does not need to query the data source.

Elimination of this query can significantly reduce network flow from remote data
sources if the result set that comes back contains a very large number (hundreds)
of columns.

Requirement: You must provide DB2 ODBC with exact result descriptor
information for all columns; otherwise, an error occurs when you fetch the data.

SQLSetColAttributes() reduces the network flow best from queries that generate
result sets with a large number of columns, but a relatively small number of rows.

Disable autocommit to reduce network flow
Generally, to reduce network flow, you should set the SQL_ATTR_AUTOCOMMIT
connection attribute to SQL_AUTOCOMMIT_OFF. Each commit request can
generate extra network flow.

Set this attribute to SQL_AUTOCOMMIT_ON only if the application that you are
writing needs to treat each statement as a single, complete transaction.

514 ODBC Guide and Reference

Important: SQL_AUTOCOMMIT_ON is the default setting for this attribute, unless
it is otherwise specified in the initialization file.
Related reference:
“SQLSetConnectAttr() - Set connection attributes” on page 350
“DB2 ODBC initialization keywords” on page 65

Use arrays to send and retrieve data
For better performance, use arrays to update and retrieve data, and to pass
parameter values and retrieve result sets.

Sending multiple data values through the network using arrays rather than
individual application variables reduces network flow.
Related concepts:
“Using arrays to pass parameter values” on page 422
“Retrieval of a result set into an array” on page 427

Use LOBs to manipulate large data values at the server
Use LOB data types and the functions that support LOB data types for long
strings, whenever possible.

Unlike LONG VARCHAR, LONG VARBINARY, and LONG VARGRAPHIC data
types, LOB data values can use LOB locators and functions, such as
SQLGetPosition() and SQLGetSubString(), to manipulate large data values at the
server.

Techniques for maximizing application portability
You can maximize application portability by following several guidelines.

To maximize the portability of your DB2 ODBC applications, consider the
following actions:
v Use column names of function-generated result sets.
v Use SQLDriverConnect() instead of SQLConnect().

Use column position in function-generated result sets
The column names of result sets that are generated by catalog and get-information
functions, such as SQLGetInfo(), can change as the X/Open and ISO standards
evolve. The position of these columns, however, is fixed.

To maximize the portability of your application, base all dependencies on column
position (referred to as the icol argument in some functions) rather than on the
column name.

Use SQLDriverConnect() instead of SQLConnect()
SQLDriverConnect() overrides any or all of the initialization keyword values that
are specified in the DB2 ODBC initialization file for a target data source.

Use SQLDriverConnect() instead of SQLConnect() to make a connection in your
application behave independently of the DB2 ODBC initialization file.

Chapter 5. Advanced features 515

516 ODBC Guide and Reference

Chapter 6. Problem diagnosis

Several guidelines exist for working with the DB2 ODBC traces, including
information about general diagnosis, debugging, and abnormal terminations.

You can obtain traces for DB2 ODBC applications and diagnostics and DB2 ODBC
stored procedures.

ODBC trace types
DB2 ODBC provides two traces that differ in purpose: an application trace for
debugging user applications, and a service trace for problem diagnosis.

Application trace
You can enable DB2 ODBC application trace by using the APPLTRACE and
APPLTRACEFILENAME keywords in the DB2 ODBC initialization file.

The APPLTRACE keyword is intended for customer application debugging. This
trace records data information at the DB2 ODBC API interface; it is designed to
trace ODBC API calls. The trace is written to the file specified on the
APPLTRACEFILENAME keyword.

Use this trace to debug your DB2 ODBC applications.

Formats for the trace file name
To specify the APPLTRACEFILENAME keyword setting, you can use either JCL
DD statement format or z/OS UNIX environment HFS format.

JCL DD statement format for a trace file name

The primary use of the JCL DD statement format is to write to a z/OS preallocated
sequential data set.

You can also specify z/OS UNIX HFS files on a DD statement. The JCL DD
statement format is APPLTRACEFILENAME="DD:ddname". The ddname value is the name
of the DD statement that is specified in your job or TSO logon procedure.

Example: Assume that the keyword setting is APPLTRACEFILENAME="DD:APPLDD". You
can use the following JCL DD statements in your job or TSO logon procedure to
specify the z/OS trace data set.
v Write to preallocated sequential data set USER01.MYTRACE.

//APPLDD DD DISP=SHR,DSN=USER01.MYTRACE

v Write to preallocated UNIX HFS file MYTRACE in directory /usr/db2.
//APPLDD DD PATH=’/usr/db2/MYTRACE’

v Allocate UNIX HFS file MYTRACE in directory /usr/db2 specifying permission
for the file owner to read from (SIRUSR) and write to (SIWUSR) the trace file:
//APPLDD DD PATH=’/usr/db2/MYTRACE’,

PATHOPTS=(ORDWR,OCREAT,OTRUNC),
PATHMODE=(SIRUSR,SIWUSR)

© Copyright IBM Corp. 1997, 2013 517

z/OS UNIX environment HFS format for a trace file name

The z/OS UNIX environment HFS format is used only for writing to HFS files.

The z/OS UNIX HFS file name format is APPLTRACEFILENAME=hfs_filename. The
hfs_filename value specifies the path and file name for the HFS file. The HFS file
does not have to be preallocated. If the file name does not exist in the specified
directory, the file is dynamically allocated.

Example: The following statements use the APPLTRACEFILENAME keyword to
specify a z/OS UNIX environment HFS trace file.
v Create and write to HFS file named APPLTRC1 in the fully qualified directory

/usr/db2.
APPLTRACEFILENAME=/usr/db2/APPLTRC1

v Create and write to HFS file named APPLTRC1 in the current working directory
of the application.
APPLTRACEFILENAME=./APPLTRC1

v Create and write to HFS file named APPLTRC1 in the parent directory of the
current working directory.
APPLTRACEFILENAME=../APPLTRC1

Example of application trace output
The DB2 ODBC trace facility records information, including the APIs that are
started, values that are used, and data pointers.

The following is an application trace output of the same multi-threaded application
using TRACEPIDTID=1. The execution path of the SQLAllocHandle() call can be
easily followed using the PID and TID information.
v Line 5, 10, and 11 - Call to SQLAllocHandle to allocate a connection handle (

phOutput=2)
v Line 12, 19, and 20 - Call to SQLConnect to establish a connection to the target

data source
v Line 21, 29, and 30 - Call to SQLAllocHandle to allocate a statement handle (

phOutput=2)
v Line 32, 54, and 55 - Call to SQLExecDirect to execute a SELECT on the

statement handle
v Line 56, 57, and 58 - Call to SQLEndTran to commit the transaction
v Line 59, 68, and 69 - Call to SQLFreeHandle to free the statement handle
v Line 70, 71, and 72 - Call to SQLDisconnect to disconnect from the target data

source
v Line 73, 74, and 75 - Call SQLFreeHandle to free the connection handle

518 ODBC Guide and Reference

1 [0400000D 00000000184B2000] SQLAllocHandle(fHandleType=SQL_HANDLE_ENV, hInput=0, ..)
2 [0400000D 00000000184B2000] SQLAllocHandle(phOutput=1)
3 [0400000D 00000000184B2000] ---> SQL_SUCCESS

4 [0400000D 00000000184B5000] SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=1, ..)
5 [0400000D 00000000184B4000] SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=1, ..)
6 [0400000D 00000000184B3000] SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=1, ..)
7 [0400000D 00000000184B5000] SQLAllocHandle(phOutput=1)
8 [0400000D 00000000184B5000] ---> SQL_SUCCESS

9 [0400000D 00000000184B5000] SQLConnect(hDbc=1, szDSN="STLEC1", cbDSN=-3, szUID=Null Pointer, ..)
10 [0400000D 00000000184B4000} SQLAllocHandle(phOutput=2)
11 [0400000D 00000000184B4000] ---> SQL_SUCCESS

12 [0400000D 00000000184B4000] SQLConnect(hDbc=2, szDSN="STLEC1", cbDSN=-3, szUID=Null Pointer, ..)
13 [0400000D 00000000184B3000] SQLAllocHandle(phOutput=3)
14 [0400000D 00000000184B3000] ---> SQL_SUCCESS

15 [0400000D 00000000184B3000] SQLConnect(hDbc=3, szDSN="STLEC1", cbDSN=-3, szUID=Null Pointer, ..)
16 [0400000D 00000000184B5000] SQLConnect()
17 [0400000D 00000000184B5000] ---> SQL_SUCCESS

18 [0400000D 00000000184B5000] SQLAllocHandle(fHandleType=SQL_HANDLE_STMT, hInput=1, ..)
19 [0400000D 00000000184B4000] SQLConnect()
20 [0400000D 00000000184B4000] ---> SQL_SUCCESS

21 [0400000D 00000000184B4000] SQLAllocHandle(fHandleType=SQL_HANDLE_STMT, hInput=2, ..)
22 [0400000D 00000000184B3000] SQLConnect()
23 [0400000D 00000000184B3000] ---> SQL_SUCCESS

24 [0400000D 00000000184B3000] SQLAllocHandle(fHandleType=SQL_HANDLE_STMT, hInput=3, ..)
25 [0400000D 00000000184B5000] SQLAllocHandle(phOutput=1)
26 [0400000D 00000000184B5000] ---> SQL_SUCCESS

27 [0400000D 00000000184B3000] SQLAllocHandle(phOutput=3)
28 [0400000D 00000000184B3000] ---> SQL_SUCCESS

29 [0400000D 00000000184B4000] SQLAllocHandle(phOutput=2)
30 [0400000D 00000000184B4000] ---> SQL_SUCCESS

31 [0400000D 00000000184B5000] SQLExecDirect(hStmt=1, pszSqlStr="SELECT * FROM SYSIBM.SYSDUMMY1", ..)
32 [0400000D 00000000184B4000] SQLExecDirect(hStmt=2, pszSqlStr="SELECT * FROM SYSIBM.SYSDUMMY1", ..)
33 [0400000D 00000000184B3000] SQLExecDirect(hStmt=3, pszSqlStr="SELECT * FROM SYSIBM.SYSDUMMY1", ..)
34 [0400000D 00000000184B5000] SQLExecDirect()
35 [0400000D 00000000184B5000] ---> SQL_SUCCESS

36 [0400000D 00000000184B5000} SQLEndTran(fHandleType=SQL_HANDLE_DBC, hHandle=1, ..)
37 [0400000D 00000000184B5000] SQLEndTran()
38 [0400000D 00000000184B5000] ---> SQL_SUCCESS

39 [0400000D 00000000184B3000] SQLExecDirect()
40 [0400000D 00000000184B3000] ---> SQL_SUCCESS

41 [0400000D 00000000184B3000] SQLEndTran(fHandleType=SQL_HANDLE_DBC, hHandle=3, ..)
42 [0400000D 00000000184B3000] SQLEndTran()
43 [0400000D 00000000184B3000] ---> SQL_SUCCESS

44 [0400000D 00000000184B3000] SQLFreeHandle(fHandleType=SQL_HANDLE_STMT, hHandle=3)
45 [0400000D 00000000184B3000] SQLFreeHandle()
46 [0400000D 00000000184B3000] ---> SQL_SUCCESS

47 [0400000D 00000000184B3000] SQLDisconnect(hDbc=3)
48 [0400000D 00000000184B3000] SQLDisconnect()
49 [0400000D 00000000184B3000] ---> SQL_SUCCESS

50 [0400000D 00000000184B3000] SQLFreeHandle(fHandleType=SQL_HANDLE_DBC, hHandle=3)
51 [0400000D 00000000184B5000] SQLFreeHandle(fHandleType=SQL_HANDLE_STMT, hHandle=1)
52 [0400000D 00000000184B3000] SQLFreeHandle()
53 [0400000D 00000000184B3000] ---> SQL_SUCCESS

54 [0400000D 00000000184B4000] SQLExecDirect()
55 [0400000D 00000000184B4000] ---> SQL_SUCCESS

Chapter 6. Problem diagnosis 519

Related concepts:
“DB2 ODBC initialization file” on page 63

ODBC diagnostic trace
The diagnostic trace captures information to use in DB2 ODBC problem
determination. Use this trace only under the direction of IBM Software Support.
This trace is not intended to assist in debugging user-written DB2 ODBC
applications.

You can view the diagnostic trace to obtain information about the general flow of
an application, such as commit information. However, this trace is intended for
IBM service information only and is therefore subject to change.
Related reference:
“DB2 ODBC initialization keywords” on page 65

Capturing ODBC diagnostic trace information in z/OS
Use the ODBC diagnostic trace only under the direction of IBM Software Support.

Procedure

To capture ODBC diagnostic trace information in z/OS:
1. Activate the diagnostic trace by performing one of the following actions:

v Specify DIAGTRACE=1 in the DB2 ODBC initialization file.
If you activate the diagnostic trace by using the DIAGTRACE keyword in the
initialization file, you must also allocate a DSNAOTRC data set in your job
or TSO logon procedure. You can use one of the following methods to
allocate a DSNAOTRC data set:
– Specify a DSNAOTRC DD statement in your job or TSO logon procedure.
– Use the TSO/E ALLOCATE command.
– Use dynamic allocation in your ODBC application.

v Issue one of the following ODBC diagnostic trace commands:
– DSNAOTRC command for non-XPLINK applications
– DSNAOTRX command for 31-bit XPLINK applications
– DSNAO64T command for 64-bit applications

Recommendation: When tracing 64-bit applications, consider specifying a
diagnostic trace buffer size that is up to 10% bigger than what you would
specify for 31-bit applications. If you activated the trace by specifying
DIAGTRACE=1 in the ODBC initialization file, specify this buffer size with the
DIAGTRACE_BUFFER_SIZE keyword in the initialization file. If you activated
the trace by using a diagnostic trace command, specify this buffer size as a
parameter of that command.

2. Stop, dump, or format the trace as needed by using the appropriate ODBC
diagnostic trace command with the relevant options or by changing the values
of the appropriate keywords in the ODBC initialization file.

520 ODBC Guide and Reference

Related concepts:
“Specifications for the diagnostic trace file” on page 525
Related reference:
“DB2 ODBC initialization keywords” on page 65
“ODBC diagnostic trace commands” on page 523

Capturing ODBC diagnostic trace information in the z/OS UNIX
environment
Use the ODBC diagnostic trace only under the direction of IBM Software Support.
You can activate this diagnostic trace from the z/OS UNIX environment command
line.

Procedure

To capture ODBC diagnostic trace information in the z/OS UNIX environment:
1. Use the TSO/E command, OPUTX, to store the following program load

modules in z/OS UNIX environment HFS files:
v DSNAOTRC, for non-XPLINK applications
v DSNAOTRX, for 31-bit XPLINK applications
v DSNAO64T, for 64-bit applications
The following example uses the OPUTX command to store load module
DSNAOTRC from the partitioned data set prefix.SDSNLOAD to the HFS file
DSNAOTRC in the directory /usr/db2:
OPUTX ’prefix.SDSNLOAD(DSNAOTRC)’ /usr/db2/dsnaotrc

The following example uses the OPUTX command to store load module
DSNAOTRX from the partitioned data set prefix.SDSNLOD2 to the HFS file
DSNAOTRX in the directory /usr/db2:
OPUTX ’prefix.SDSNLOD2(DSNAOTRX)’ /usr/db2/dsnaotrx

The following example uses the OPUTX command to store load module
DSNAO64T from the partitioned data set prefix.SDSNLOD2 to the HFS file
DSNAO64T in the directory /usr/db2:
OPUTX ’prefix.SDSNLOD2(DSNAO64T)’ /usr/db2/dsnao64t

2. Enable the shared address space environment variable for the z/OS UNIX
shell. Issue the following export statement at the command line or specify it in
your $HOME/.profile file:
export _BPX_SHAREAS=YES

Setting this environment variable allows the OMVS command and the z/OS
UNIX shell to run in the same TSO address space.

3. Go to the directory that contains the DSNAOTRC, DSNAOTRX, and
DSNAO64T load modules.

4. Verify that execute permission is established for the DSNAOTRC,
DSNAOTRX, and DSNAO64T load modules. If execute permission was not
granted, use the chmod command to set execute permission for each of the
load modules.

5. Issue one of the following ODBC diagnostic trace commands from the z/OS
UNIX environment command line to activate the diagnostic trace:

Option Description

dsnaotrc on Use this command when tracing
non-XPLINK applications.

Chapter 6. Problem diagnosis 521

Option Description

dsnaotrx on Use this command when tracing 31-bit
XPLINK applications.

dsnao64t on Use this command when tracing 64-bit
XPLINK applications.

The options for activating the diagnostic trace are optional.
6. Run the ODBC application.
7. Issue one of the following ODBC diagnostic trace commands from the z/OS

UNIX environment command line to dump the diagnostic trace:

Option Description

dsnaotrc dmp "raw_trace_file" Use this command when tracing
non-XPLINK applications.

dsnaotrx dmp "raw_trace_file" Use this command when tracing 31-bit
XPLINK applications.

dsnao64t dmp "raw_trace_file" Use this command when tracing 64-bit
XPLINK applications.

The raw_trace_file value is the name of the output file to which DB2 writes the
raw diagnostic trace data.
Each of the following example statements show how to code the trace data set
specification in the non-XPLINK environment. To code the following data set
specifications in the XPLINK environment, replace the DSNAOTRC command
with the DSNAOTRX or DSNAO64 command. All additional syntax for the
trace command in each environment is identical.
v Currently allocated JCL DD statement name TRACEDD

DSNAOTRC DMP DD:TRACEDD

v Sequential data set USER01.DIAGTRC
DSNAOTRC DMP "USER01.DIAGTRC"

v z/OS UNIX environment HFS file that is named DIAGTRC in directory
/usr/db2
DSNAOTRC DMP "/usr/db2/DIAGTRC"

8. Issue one of the following ODBC diagnostic trace commands from the z/OS
UNIX environment command line to deactivate the diagnostic trace:

Option Description

dsnaotrc off Use this command when tracing
non-XPLINK applications.

dsnaotrx off Use this command when tracing 31-bit
XPLINK applications.

dsnao64t off Use this command when tracing 64-bit
XPLINK applications.

9. Issue one of the following ODBC diagnostic trace commands from the z/OS
UNIX environment command line to format the raw trace data records from
input file raw_trace_file to output file fmt_trace_file.

Option Description

dsnaotrc fmt "raw_trace_file"
"fmt_trace_file"

Use this command when requesting detailed
trace reports for non-XPLINK applications.

522 ODBC Guide and Reference

Option Description

dsnaotrc flw "raw_trace_file"
"fmt_trace_file"

Use this command when requesting flow
trace reports for non-XPLINK applications.

dsnaotrx fmt "raw_trace_file"
"fmt_trace_file"

Use this command when requesting detailed
trace reports for 31-bit XPLINK applications.

dsnaotrx flw "raw_trace_file"
"fmt_trace_file"

Use this command when requesting flow
trace reports for 31-bit XPLINK applications.

dsnao64t fmt "raw_trace_file"
"fmt_trace_file"

Use this command when requesting detailed
trace reports for 64-bit XPLINK applications.

dsnao64t flw "raw_trace_file"
"fmt_trace_file"

Use this command when requesting flow
trace reports for 64-bit XPLINK applications.

Each of the following statements show how to code the input data set
specification in the non-XPLINK environment. To code the following data set
specifications in the XPLINK environment, replace the DSNAOTRC command
with the DSNAOTRX or DSNAO64 command. All additional syntax for the
trace command in each environment is identical.
v Currently allocated JCL DD statement name INPDD.

DSNAOTRC FLW DD:INPDD output-dataset-spec

v Sequential data set USER01.DIAGTRC.
DSNAOTRC FLW "USER01.DIAGTRC" output-dataset-spec

v z/OS UNIX environment HFS file DIAGTRC in directory /usr/db2.
DSNAOTRC FLW "/usr/db2/DIAGTRC" output-dataset-spec

Each of the following example statements show how to code the output data
set specification in the non-XPLINK environment. To code the following data
set specifications in the XPLINK environment, replace the DSNAOTRC
command with the DSNAOTRX or DSNAO64 command. All additional syntax
for the trace command in each environment is identical.
v Currently allocated JCL DD statement name OUTPDD.

DSNAOTRC FLW input-dataset-spec DD:OUTPDD

v Sequential data set USER01.TRCFLOW.
DSNAOTRC FLW input-dataset-spec "USER01.TRCFLOW"

v z/OS UNIX environment HFS file TRCFLOW in directory /usr/db2.
DSNAOTRC FLW input-dataset-spec "/usr/db2/TRCFLOW"

10. Delete the DSNAOTRC, DSNAOTRX, and DSNAO64T program modules from
your z/OS UNIX environment directory. Do not attempt to maintain a private
copy of the these program modules in your HFS directory.

Related concepts:
“Specifications for the diagnostic trace file” on page 525
Related reference:
“ODBC diagnostic trace commands”

ODBC diagnostic trace commands
Use an ODBC diagnostic trace command to start and stop traces, query the status
of a trace, capture the trace table, and format the trace information. Use the ODBC
diagnostic trace only under the direction of IBM Software Support.

The following trace commands perform the same tracing tasks and use identical
syntax:

Chapter 6. Problem diagnosis 523

DSNAOTRC
Use this trace command for non-XPLINK ODBC applications.

DSNAOTRX
Use this trace command for 31-bit XPLINK ODBC applications.

DSNAO64T
Use this trace command for 64-bit ODBC applications.

These trace commands perform the following tracing tasks:
v Manually start or stop the recording of memory resident diagnostic trace

records.
v Query the current status of the diagnostic trace.
v Capture the memory resident trace table to a z/OS data set or a z/OS UNIX

environment HFS file.
v Format the DB2 ODBC diagnostic trace.

DSNAOTRC, DSNAOTRX, and DSNAO64T syntax

�� DSNAOTRC
DSNAOTRX
DSNAO64T

�

� ON
-L buffer size -M mask
-I buffer size

OFF
INF
DMP trace data set spec
FMT

input data set spec
output data set spec

FLW input data set spec
output data set spec

��

DSNAOTRC, DSNAOTRX, and DSNAO64T option descriptions

ON Start the DB2 ODBC diagnostic trace.

-L buffer size
L = Last. The trace wraps; it captures the last, most current trace records.

buffer size is the number of bytes to allocate for the trace buffer. This value
is required. The buffer size is rounded to a multiple of 65536 (64K).

-I buffer size
I = Initial. The trace does not wrap; it captures the initial trace records.

buffer size is the number of bytes to allocate for the trace buffer. This value
is required. The buffer size is rounded to a multiple of 65536 (64K).

OFF
Stop the DB2 ODBC diagnostic trace.

INF
Display information about the currently active DB2 ODBC diagnostic trace.

524 ODBC Guide and Reference

DMP
Dump the currently active DB2 ODBC diagnostic trace.

trace data set spec
Specifies the z/OS data set or the z/OS UNIX environment HFS file to
which DB2 writes the raw DB2 ODBC diagnostic trace data. The data set
specification can be either a z/OS data set name, a z/OS UNIX
environment HFS file name, or a currently allocated JCL DD statement
name.

FMT
Generate a formatted detail report of the DB2 ODBC diagnostic trace contents.

Trace data captured through DSNAO64T must be formatted with the
DSNAO64T command. Otherwise, trace data can become corrupted.

FLW
Generate a formatted flow report of the DB2 ODBC diagnostic trace contents.

input data set spec
DSNAO64T The data set that contains the raw DB2 ODBC diagnostic trace
data to be formatted. This data set was generated as the result of a
DSNAOTRC DMP command, the DSNAOTRX DMP command, or the
DSNAO64T DMP command or by the DSNAOTRC DD statement when
the DIAGTRACE initialization keyword enables tracing. The data set
specification can be either a z/OS data set name, a z/OS UNIX
environment HFS file name, or a currently allocated JCL DD statement
name. If this parameter is not specified, the DSNAOTRC, DSNAOTRX, or
DSNAO64T command attempts to format the memory resident
DSNAOTRC that is currently active.

output data set spec
The data set to which the formatted DB2 ODBC diagnostic trace records
are written. The data set specification can be either a z/OS data set name,
a z/OS UNIX environment HFS file name, or a currently allocated JCL DD
statement name. If you specify a z/OS data set or a z/OS UNIX
environment HFS file that does not exist, DB2 allocates it dynamically. If
this parameter is not specified, the output is written to standard output
("STDOUT").

Related concepts:
“Extra performance linkage” on page 47

Specifications for the diagnostic trace file
The diagnostic trace data can be written to a z/OS sequential data set or to a z/OS
UNIX environment HFS file.

A z/OS data set must be preallocated with the following data set attributes:
v Sequential data set organization
v Fixed-block 80 record format

When you execute an ODBC application in the z/OS UNIX environment and
activate the diagnostic trace using the DIAGTRACE keyword in the initialization
file, DB2 writes the diagnostic data to a dynamically allocated file,
DD:DSNAOTRC. This file is located in the current working directory of the
application if the DSNAOTRC DD statement is not available to the ODBC
application. You can format DD:DSNAOTRC by using the DSNAOTRC,
DSNAOTRX, or DSNAO64T trace formatting programs.

Chapter 6. Problem diagnosis 525

Example: The following JCL examples use a DSNAOTRC DD JCL statement to
specify the diagnostic trace file.
v Write to preallocated sequential data set USER01.DIAGTRC.

//DSNAOTRC DD DISP=SHR,DSN=USER01.DIAGTRC

v Write to the preallocated z/OS UNIX environment HFS file DIAGTRC in the
directory /usr/db2.
//DSNAOTRC DD PATH=’/usr/db2/DIAGTRC’

v Allocate the z/OS UNIX environment HFS file DIAGTRC in the directory
/usr/db2 specifying permission for the file owner to read from (SIRUSR) and
write to (SIWUSR) the trace file.
//DSNAOTRC DD PATH=’/usr/db2/DIAGTRC’,

PATHOPTS=(ORDWR,OCREAT,OTRUNC),
PATHMODE=(SIRUSR,SIWUSR)

Stored procedure trace
To obtain an application trace or a diagnostic trace of a DB2 ODBC stored
procedure, you need to perform certain steps in the initialization file.

DB2 ODBC stored procedures run in a WLM-established address space. Both the
main application that calls the stored procedure (client application), and the stored
procedure itself, can be either a DB2 ODBC application or a standard DB2
precompiled application.

If the client application and the stored procedure are DB2 ODBC application
programs, you can trace:
v A client application only
v A stored procedure only
v Both the client application and stored procedure

More than one address space can not share write access to a single data set.
Therefore, you must use the appropriate JCL DD statements to allocate a unique
trace data set for each stored procedure address space that uses the DB2 ODBC
application trace or diagnostic trace.

Tracing a client application
Tracing a client application requires setting certain parameters in the common
section of the initialization file. Additionally, you must specify an APPLTRC DD
statement in the JCL for the application job or in your TSO logon procedure.

Procedure

To obtain an application trace:
1. Set APPLTRACE=1 and APPLTRACEFILENAME="DD:dd-name" in the common

section of the DB2 ODBC initialization file as follows:
[COMMON]
APPLTRACE=1
APPLTRACEFILENAME="DD:APPLTRC"

dd-name is the name of a DD statement specified in the JCL for the application
job or your TSO logon procedure.

2. Specify an APPLTRC DD statement in the JCL for the application job or your
TSO logon procedure. The DD statement references a preallocated z/OS

526 ODBC Guide and Reference

sequential data set with DCB attributes RECFM=VBA,LRECL=137, a z/OS UNIX
environment HFS file to contain the client application trace, as shown in the
following examples:
//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC DD PATH=’/u/cli/appltrc’

Related reference:
“SQL to C data conversion” on page 552

Obtaining an application trace for a stored procedure
Obtaining an application trace for a stored procedure requires modifying the
initialization file.

Procedure

To obtain an application trace:
1. Set APPLTRACE=1 and APPLTRACEFILENAME="DD:dd-name" in the common

section of the DB2 ODBC initialization file as follows:
[COMMON]
APPLTRACE=1
APPLTRACEFILENAME="DD:APPLTRC"

dd-name is the name of a DD statement that is specified in the JCL for the
stored procedure address space.

2. Specify an JCL DD statement in the JCL for the stored procedure address space.
The DD statement references a preallocated sequential data set with DCB
attributes RECFM=VBA,LRECL=137 or a z/OS UNIX environment HFS file to
contain the client application trace, as shown in the following examples:
//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC

//APPLTRC DD PATH=’/u/cli/appltrc’

Obtaining a diagnostic trace for a stored procedure
You can trace a stored procedure with the ODBC diagnostic trace if the stored
procedure is an ODBC application program. Use the ODBC diagnostic trace only
under the direction of IBM Software Support.

Procedure

To obtain a diagnostic trace for a stored procedure:
1. Set DIAGTRACE=1, DIAGTRACE_BUFFER_SIZE=nnnnnnn, and

DIAGTRACE_NO_WRAP=0 or 1 in the common section of the DB2 ODBC
initialization file. nnnnnnn is the number of bytes to allocate for the diagnostic
trace buffer. For example:
[COMMON]
DIAGTRACE=1
DIAGTRACE_BUFFER_SIZE=2000000
DIAGTRACE_NO_WRAP=1

Recommendation: When tracing 64-bit applications, consider specifying a
diagnostic trace buffer size that is up to 10% bigger than what you would
specify for 31-bit applications.

2. Specify a z/OS DSNAOINI DD statement in the JCL for the stored procedure
address space. The DD statement references the DB2 ODBC initialization file, as
shown in the following examples:
//DSNAOINI DD DISP=SHR,DSN=CLI.DSNAOINI

Chapter 6. Problem diagnosis 527

//DSNAOINI DD PATH=’/u/cli/dsnaoini’

3. Specify a DSNAOTRC DD statement in the JCL for the stored procedures space.
The DD statement references a preallocated sequential data set with DCB
attributes RECFM=FB,LRECL=80, or a z/OS UNIX environment HFS file to
contain the unformatted diagnostic data, as shown in the following examples:
//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC

//DSNAOTRC DD PATH=’/u/cli/diagtrc’

4. Execute the client application that calls the stored procedure.
5. After the DB2 ODBC stored procedure executes, stop the stored procedure

address space by using the z/OS command, "VARY WLM,APPLENV=name,QUIESCE".
name is the WLM application environment name.

6. Submit either the formatted or unformatted diagnostic trace data to IBM
Software Support. To format the raw trace data at your site, run the
DSNAOTRC command (or the DSNAOTRX command in the XPLINK
environment or the DSNAO64T command in the 64-bit environment) with the
FMT or FLW options against the diagnostic trace data set.

Obtaining an application trace for a client application and a
stored procedure
You can debug your stored procedure and the calling application with an ODBC
application trace if both the application and stored procedure are DB2 ODBC
application programs.

Procedure

To obtain an application trace for a client application and a stored procedure:
1. Set APPLTRACE=1 and APPLTRACEFILENAME="DD:DDNAME" in the

common section of the DB2 ODBC initialization file as follows:
[COMMON]
APPLTRACE=1
APPLTRACEFILENAME="DD:APPLTRC"

DDNAME is the name of the DD statement specified in both the JCL for the
client application job and the stored procedure address space.

2. Specify a APPLTRC DD statement in the JCL for the client application. The DD
statement references a preallocated sequential data set with DCB attributes
RECFM=VBA,LRECL=137, or a z/OS UNIX environment HFS file to contain
the client application trace, as shown in the following examples:
//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC.CLIENT

//APPLTRC DD PATH=’/u/cli/appltrc.client’

You must allocate a separate application trace data set, or an HFS file for the
client application. Do not attempt to write to the same application trace data set
or HFS file used for the stored procedure.

3. Specify a APPLTRC DD statement in the JCL for the stored procedure address
space. The DD statement references a preallocated sequential data set, or a
z/OS UNIX environment HFS file to contain the stored procedure application
trace, as shown in the following examples:
//APPLTRC DD DISP=SHR,DSN=CLI.APPLTRC.SPROC

//APPLTRC DD PATH=’/u/cli/appltrc.sproc’

You must allocate a separate trace data set or HFS file for the stored procedure.
Do not attempt to write to the same application trace data set or HFS file used
for the client application.

528 ODBC Guide and Reference

Obtaining a diagnostic trace for a client application and a stored
procedure
You can trace a stored procedure and its calling application with the ODBC
diagnostic trace if both the application and stored procedure are ODBC application
programs. Use the ODBC diagnostic trace only under the direction of IBM
Software Support.

Procedure

To obtain a diagnostic trace for a client application and a stored procedure:
1. Set DIAGTRACE=1, DIAGTRACE_BUFFER_SIZE=nnnnnnn, and

DIAGTRACE_NO_WRAP=0 or 1 in the common section of the DB2 ODBC
initialization file. nnnnnnn is the number of bytes to allocate for the diagnostic
trace buffer. For example:
[COMMON]
DIAGTRACE=1
DIAGTRACE_BUFFER_SIZE=2000000
DIAGTRACE_NO_WRAP=1

Recommendation: When tracing 64-bit applications, consider specifying a
diagnostic trace buffer size that is up to 10% bigger than what you would
specify for 31-bit applications.

2. Specify a z/OS DSNAOINI DD statement in the JCL for the stored procedure
address space. The DD statement references the DB2 ODBC initialization file, as
shown in the following examples:
//DSNAOINI DD DISP=SHR,DSN=CLI.DSNAOINI

//DSNAOINI DD PATH=’/u/cli/dsnaoini’

3. Specify a DSNAOTRC DD statement in JCL for the client application job. The
DD statement references a preallocated sequential data set with DCB attributes
RECFM=FB,LRECL=80, or a z/OS UNIX environment HFS file to contain the
unformatted diagnostic data, as shown in the following examples:
//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC.CLIENT

//DSNAOTRC DD PATH=’/u/cli/diagtrc.client’

4. Specify a DSNAOTRC DD statement in the JCL for the stored procedure
address space. The DD statement references a preallocated sequential data set
with DCB attributes RECFM=FB,LRECL=80, or a z/OS UNIX environment HFS
file to contain the stored procedure's unformatted diagnostic data, as shown in
the following examples:
//DSNAOTRC DD DISP=SHR,DSN=CLI.DIAGTRC.SPROC

//DSNAOTRC DD PATH=’/u/cli/diagtrc.sproc’

5. Execute the client application that calls the stored procedure.
6. After the DB2 ODBC stored procedure executes, stop the stored procedure

address space by using the following z/OS command:
VARY WLM,APPLENV=name,QUIESCE

name is the WLM application environment name.
7. Submit either the formatted or unformatted diagnostic trace data to IBM

Software Support. To format the raw trace data at your site, run the
DSNAOTRC command (or the DSNAOTRX command in the XPLINK
environment or the DSNAO64T command in the 64-bit environment) with the
FMT or FLW options against the client application's diagnostic trace data set
and the stored procedure's diagnostic trace data set.

Chapter 6. Problem diagnosis 529

Abnormal termination
Language Environment reports DB2 ODBC abends because DB2 ODBC runs under
Language Environment. Typically, Language Environment reports the type of
abend that occurs and the function that is active in the address space at the time of
the abend.

DB2 ODBC has no facility for abend recovery. When an abend occurs, DB2 ODBC
terminates. Database management systems follow the normal recovery process for
any outstanding DB2 unit of work.

"CEE" is the prefix for all Language Environment messages. If the prefix of the
active function is "CLI", then DB2 ODBC had control during the abend which
indicates that this can be a DB2 ODBC, a DB2, or a user error.

The following example shows an abend:
CEE3250C The system or user abend S04E R=00000000 was issued.

From entry point CLI_mvsCallProcedure(CLI_CONNECTINFO*,...
+091A2376 at address 091A2376...

In this message, you can determine what caused the abend as follows:
v "CEE" indicates that Language Environment is reporting the abend.
v The entry point shows that DB2 ODBC is the active module.
v Abend code "S04E" means that this is a DB2 system abend.
Related reference:

Language Environment Debugging Guide (z/OS Language Environment
Debugging Guide)

Internal error code
DB2 ODBC provides an internal error code for ODBC diagnosis that is intended
for use under the guidance of IBM Software Support. This unique error location,
ERRLOC, is useful for APAR searches.

The following example of a failed SQLAllocHandle() (with HandleType set to
SQL_HANDLE_DBC) shows an error location:
DB2 ODBC Sample SQLError Information
DB2 ODBC Sample SQLSTATE : 58004
DB2 ODBC Sample Native Error Code : -99999
DB2 ODBC Sample Error message text:

{DB2 for z/OS}{ODBC Driver} SQLSTATE=58004 ERRLOC=2:170:4;
RRS "IDENTIFY" failed using DB2 system:V81A,
RC=08 and REASON=00F30091

530 ODBC Guide and Reference

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CEEA11C0/CCONTENTS?DT=20110610154306
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CEEA11C0/CCONTENTS?DT=20110610154306

Chapter 7. DB2 ODBC reference information

To use DB2 ODBC effectively, you need to know about differences between ODBC
and DB2 ODBC, DB2 ODBC data types, extended scalar functions, SQLSTATEs,
deprecated functions. You must also know where to locate example code.

DB2 ODBC and ODBC differences
DB2 ODBC and standard ODBC differ in several ways for their drivers, data types,
and isolation levels.
Related reference:
“Status of support for ODBC functions” on page 90

DB2 ODBC and ODBC drivers
Differences exist between the DB2 ODBC and ODBC drivers. Generally, DB2 ODBC
supports a subset of the functions that the ODBC driver provides.

The following figure compares DB2 ODBC and the DB2 ODBC driver. The left side
of this figure depicts an ODBC driver under the ODBC driver manager. The right
side of this figure depicts DB2 ODBC, a callable interface that is designed for
DB2-specific applications.

© Copyright IBM Corp. 1997, 2013 531

In an ODBC environment, the driver manager provides the interface to the
application. It also dynamically loads the necessary driver for the database server
to which the application connects. It is the driver that implements the ODBC
function set, with the exception of some extended functions that are implemented
by the driver manager.

The DB2 ODBC driver does not execute in this environment. Rather, DB2 ODBC is
a self-sufficient driver which supports a subset of the functions that the ODBC
driver provides.

DB2 ODBC applications interact directly with the ODBC driver which executes
within the application address space. Applications do not interface with a driver
manager. The capabilities that are provided to the application are a subset of the
Microsoft ODBC 2.0specifications.

ODBC APIs and data types
DB2 ODBC supports a subset of the functions that the ODBC driver provides.

The following table summarizes the ODBC 3.0 application programming interfaces,
ODBC SQL data types and ODBC C data types and whether those functions and
data types are supported by DB2 ODBC.

ODBC driver manager
environment

DB2 for z/OS
application environment

Application

ODBC driver manager

ODBC
driver

A

DBMS
B DB2 Connect

Gateway
B

CAE

DB2
ODBC
driver

DB2 for z/OS
ODBC driver

Application

ODBC
driver

B

DB2 for
LINUX,

UNIX and
Windows

DB2
for z/OS

subsystem

DB2 for
z/OS

DB2 Server for
VSE & VM

DB2 for
i5/OS

Other DRDA
DBMS

DBMS
A

Figure 71. DB2 ODBC and ODBC

532 ODBC Guide and Reference

Table 264. DB2 ODBC support

ODBC features DB2 ODBC

Core level functions All, except for:
v SQLDrivers()
v SQLGetDescField()
v SQLSetDescField()
v SQLGetDescRec()
v SQLSetDescRec()
v SQLCopyDesc()

Level 1 functions All, except for SQLBrowseConnect().

Level 2 functions All

Additional DB2 ODBC functions v SQLSetConnection()
v SQLGetEnvAttr()
v SQLSetColAttributes()
v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()
v SQLGetSQLCA()

Minimum SQL data types v SQL_CHAR
v SQL_LONGVARCHAR
v SQL_VARCHAR

Core SQL data types v SQL_DECIMAL
v SQL_NUMERIC
v SQL_SMALLINT
v SQL_INTEGER
v SQL_REAL
v SQL_FLOAT
v SQL_DOUBLE

Extended SQL data types v SQL_BIT
v SQL_TINYINT
v SQL_BIGINT
v SQL_BINARY
v SQL_BLOB
v SQL_BLOB_LOCATOR
v SQL_CLOB
v SQL_CLOB_LOCATOR
v SQL_DBCLOB
v SQL_DBCLOB_LOCATOR
v SQL_DECFLOAT
v SQL_LONGVARBINARY
v SQL_ROWID
v SQL_TYPE_DATE
v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_VARBINARY
v SQL_XML

ODBC 3.0 SQL data types v SQL_GRAPHIC
v SQL_LONGVARGRAPHIC
v SQL_VARGRAPHIC

Core C data types v SQL_C_CHAR
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG (SLONG, ULONG)
v SQL_C_SHORT (SSHORT, USHORT)

Chapter 7. DB2 ODBC reference information 533

Table 264. DB2 ODBC support (continued)

ODBC features DB2 ODBC

Extended C data types v SQL_C_BINARY
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL64
v SQL_C_DECIMAL128
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TINYINT

ODBC 3.0 C data types v SQL_C_DBCHAR

Return codes v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND
v SQL_ERROR
v SQL_INVALID_HANDLE

SQLSTATEs Mapped to X/Open SQLSTATEs with additional IBM
SQLSTATEs

Multiple connections per application Supported but type 1 connections,
SQL_ATTR_CONNECTTYPE =
SQL_CONCURRENT_TRANS. Must be on a transaction
boundary prior to SQLConnect() or SQLSetConnection().

Related reference:
“Status of support for ODBC functions” on page 90
Related information:

Microsoft open database connectivity (ODBC)

Isolation levels
With the exception of the no commit isolation level, all DB2 isolation levels have
corresponding ODBC isolation levels.

The following table maps DB2 isolation levels to ODBC transaction isolation levels.
The SQLGetInfo() function indicates which isolation levels are available.

Table 265. Isolation levels under ODBC

DB2 isolation level ODBC isolation level

Cursor stability SQL_TXN_READ_COMMITTED

Repeatable read SQL_TXN_SERIALIZABLE_READ

Read stability SQL_TXN_REPEATABLE_READ

Uncommitted read SQL_TXN_READ_UNCOMMITTED

No commit (no equivalent in ODBC)

Restriction: SQLSetConnectAttr() and SQLSetStmtAttr() return SQL_ERROR with an
SQLSTATE of HY009 if you try to set an unsupported isolation level.

534 ODBC Guide and Reference

http://msdn.microsoft.com/en-us/library/windows/desktop/ms710252%28v=vs.85%29.aspx

Extended scalar functions
ODBC supports the use of extended scalar functions through vendor escape
clauses. Each function can be called by using the escape clause syntax, or by
calling the equivalent DB2 function.
Related concepts:
“ODBC scalar functions” on page 508

Errors returned by extended scalar functions
All errors that are detected by extended scalar functions return SQLSTATE 38552
when you are connected to a DB2 for Linux, UNIX, and Windows server.

The text portion of the message is of the form SYSFUN:nn where nn is one of the
following reason codes:
01 Numeric value out of range
02 Division by zero
03 Arithmetic overflow or underflow
04 Invalid date format
05 Invalid time format
06 Invalid timestamp format
07 Invalid character representation of a timestamp duration
08 Invalid interval type (must be one of 1, 2, 4, 8, 16, 32, 64, 128, 256)
09 String too long
10 Length or position in string function out of range
11 Invalid character representation of a floating point number

String functions
DB2 supports various string functions that are defined by ODBC using vendor
escape clauses.

The following rules apply to input strings for these functions:
v Character string literals used as arguments to scalar functions must be enclosed

in single quotes.
v Arguments denoted as string_exp can be the name of a column, a string literal,

or the result of another scalar function, where the underlying data type can be
represented as SQL_CHAR, SQL_VARCHAR, or SQL_LONGVARCHAR.

v Arguments denoted as start, length, code, or count can be a numeric literal or the
result of another scalar function, where the underlying data type is integer based
(SQL_SMALLINT, SQL_INTEGER).

v The first character in the string is considered to be at position 1.

ASCII(string_exp)
Returns the ASCII code value of the leftmost character of string_exp as an
integer.

CONCAT(string_exp1, string_exp2)
Returns a character string that is the result of concatenating string_exp2 to
string_exp1.

INSERT(string_exp1, start, length, string_exp2)
Returns a character string where length number of characters beginning at start
is replaced by string_exp2 which contains length characters.

LEFT(string_exp, count)
Returns the leftmost count of characters of string_exp.

Chapter 7. DB2 ODBC reference information 535

LENGTH(string_exp)
Returns the number of characters in string_exp, excluding trailing blanks and
the string termination character.

REPEAT(string_exp, count)
Returns a character string composed of string_exp repeated count times.

RIGHT(string_exp, count)
Returns the rightmost count of characters of string_exp.

SUBSTRING(string_exp, start, length)
Returns a character string that is derived from string_exp beginning at the
character position specified by start for length characters.

Date and time functions
DB2 supports date and time functions that are defined through vendor escape
clauses.

The following rules apply to these functions:
v Arguments denoted as timestamp_exp can be the name of a column, the result of

another scalar function, or a time, date, or timestamp literal.
v Arguments denoted as date_exp can be the name of a column, the result of

another scalar function, or a date or timestamp literal, where the underlying
data type can be character based, or date or timestamp based.

v Arguments denoted as time_exp can be the name of a column, the result of
another scalar function, or a time or timestamp literal, where the underlying
data types can be character based, or time or timestamp based.

CURDATE()
Returns the current date as a date value.

CURTIME()
Returns the current local time as a time value.

DAYOFMONTH(date_exp)
Returns the day of the month in date_exp as an integer value in the range of
1-31.

HOUR(time_exp)
Returns the hour in time_exp as an integer value in the range of 0-23.

MINUTE(time_exp)
Returns the minute in time_exp as integer value in the range of 0-59.

MONTH(date_exp)
Returns the month in date_exp as an integer value in the range of 1-12.

NOW()
Returns the current date and time as a timestamp value.

SECOND(time_exp)
Returns the second in time_exp as an integer value in the range of 0-59.

System functions
DB2 supports system functions that are defined through vendor escape clauses.

The following rules apply to the arguments in these system functions:
v Arguments denoted as exp can be the name of a column, the result of another

scalar function, or a literal.

536 ODBC Guide and Reference

v Arguments denoted as value can be a literal constant.

DATABASE()
Returns the name of the database corresponding to the connection handle
(hdbc). (The name of the database is also available using SQLGetInfo() by
specifying the information type SQL_DATABASE_NAME.)

IFNULL(exp, value)
If exp is null, value is returned. If exp is not null, exp is returned. The possible
data types of value must be compatible with the data type of exp.

USER()
Returns the user's authorization name. (The user's authorization name is also
available using SQLGetInfo() by specifying the information type
SQL_USER_NAME.)

SQLSTATE cross reference
SQLSTATEs are returned by the DB2 ODBC application as a diagnostic tool for
encountered errors, indicating the cause for these errors.

Table 266 is a cross-reference of all the SQLSTATEs for each function. This table
does not include SQLSTATEs that were remapped between ODBC 2.0 and ODBC
3.0, although deprecated functions continue to return these values.

Important: DB2 ODBC can also return SQLSTATEs generated by the server that are
not listed in this table. If the returned SQLSTATE is not listed here, see the
documentation for the server for additional SQLSTATE information.

Table 266. SQLSTATE cross reference

SQLSTATE Description Functions

01000 Warning. v SQLAllocHandle()
v SQLCloseCursor()
v SQLColAttribute()
v SQLDescribeParam()
v SQLEndTran()
v SQLFreeHandle()
v SQLGetConnectAttr()
v SQLGetStmtAttr()
v SQLSetConnectAttr()
v SQLSetStmtAttr()

01002 Disconnect error. v SQLDisconnect()

01004 Data truncated. v SQLColAttribute()
v SQLDataSources()
v SQLDescribeCol()
v SQLDriverConnect()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetConnectAttr()
v SQLGetCursorName()
v SQLGetData()
v SQLGetDiagRec()
v SQLGetInfo()
v SQLGetStmtAttr()
v SQLGetSubString()
v SQLNativeSql()
v SQLPutData()
v SQLSetColAttributes()

Chapter 7. DB2 ODBC reference information 537

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

01504 The UPDATE or DELETE statement does
not include a WHERE clause.

v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

01S00 Invalid connection string attribute. v SQLDriverConnect()

01S01 Error in row. v SQLExtendedFetch()

01S02 Option value changed. v SQLDriverConnect()
v SQLSetConnectAttr()
v SQLSetStmtAttr()

07001 Wrong number of parameters. v SQLExecDirect()
v SQLExecute()

07002 Too many columns. v SQLExtendedFetch()
v SQLFetch()

07005 The statement did not return a result set. v SQLColAttribute()
v SQLDescribeCol()

07006 Invalid conversion. v SQLBindParameter()
v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()
v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()

08001 Unable to connect to data source. v SQLConnect()

08002 Connection in use. v SQLConnect()

08003 Connection is closed. v SQLAllocHandle()
v SQLDisconnect()
v SQLEndTran()
v SQLFreeHandle()
v SQLGetConnectAttr()
v SQLGetInfo()
v SQLNativeSql()
v SQLSetConnectAttr()
v SQLSetConnection()

08004 The application server rejected establishment
of the connection.

v SQLConnect()

08007 Connection failure during transaction. v SQLEndTran()

538 ODBC Guide and Reference

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

08S01 Communication link failure. v SQLBindCol()
v SQLBindFileToCol()
v SQLBindParameter()
v SQLBindFileToParameter()
v SQLCancel()
v SQLColumnPrivileges()
v SQLColumns()
v SQLDescribeCol()
v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLForeignKeys()
v SQLFreeStmt()
v SQLGetCursorName()
v SQLGetData()
v SQLGetFunctions()
v SQLGetInfo()
v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()
v SQLGetTypeInfo()
v SQLMoreResults()
v SQLNumParams()
v SQLNumResultCols()
v SQLParamData()
v SQLParamOptions()
v SQLPrepare()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLPutData()
v SQLRowCount()
v SQLSetColAttributes()
v SQLSetCursorName()
v SQLSetConnectAttr()
v SQLSetStmtAttr()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTablePrivileges()
v SQLTables()

0F001 The LOB token variable does not currently
represent any value.

v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()

21S01 Insert value list does not match column list. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

21S02 Degrees of derived table does not match
column list.

v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

22001 String data right truncation. v SQLExecDirect()
v SQLExecute()
v SQLPutData()

Chapter 7. DB2 ODBC reference information 539

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

22002 Invalid output or indicator buffer specified. v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()

22008 Invalid datetime format or datetime field
overflow.

v SQLExecDirect()
v SQLExecute()
v SQLParamData()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()
v SQLPutData()

22011 A substring error occurred. v SQLGetSubString()

22012 Division by zero is invalid. v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()

22018 Error in assignment. v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()
v SQLPutData()

23000 Integrity constraint violation. v SQLExecDirect()
v SQLExecute()

24000 Invalid cursor state. v SQLCloseCursor()
v SQLColumnPrivileges()
v SQLColumns()
v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLForeignKeys()
v SQLGetData()
v SQLGetStmtAttr()
v SQLGetTypeInfo()
v SQLPrepare()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLSetColAttributes()
v SQLSetStmtAttr()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTablePrivileges()
v SQLTables()

24504 The cursor identified in the UPDATE,
DELETE, SET, or GET statement is not
positioned on a row.

v SQLExecDirect()
v SQLExecute()

25000 25501 Invalid transaction state. v SQLDisconnect()

34000 Invalid cursor name. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()
v SQLSetCursorName()

540 ODBC Guide and Reference

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

37xxx Invalid SQL syntax. v SQLExecDirect()
v SQLExecute()
v SQLNativeSql()
v SQLPrepare()

40001 Transaction rollback. v SQLEndTran()
v SQLExecDirect()
v SQLExecute()
v SQLParamData()
v SQLPrepare()

42xxx Syntax error or access rule violation v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42000 Invalid SQL syntax. v SQLNativeSql()

425xx Syntax error or access rule violation v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42601 PARMLIST syntax error. v SQLProcedureColumns()

42818 The operands of an operator or function are
not compatible.

v SQLGetPosition()

42895 The value of a host variable in the
EXECUTE or OPEN statement cannot be
used because of its data type

v SQLExecDirect()
v SQLExecute()

42S011 Database object already exists. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42S02 Database object does not exist. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42S11 Index already exists. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42S12 Index not found. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42S21 Column already exists. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

42S22 Column not found. v SQLExecDirect()
v SQLExecute()
v SQLPrepare()

44000 Integrity constraint violation. v SQLExecDirect()
v SQLExecute()

54028 The maximum number of concurrent LOB
handles has been reached.

v SQLFetch()

Chapter 7. DB2 ODBC reference information 541

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

58004 Unexpected system failure. v SQLBindCol()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLConnect()
v SQLDriverConnect()
v SQLDataSources()
v SQLDescribeCol()
v SQLDisconnect()
v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLFreeStmt()
v SQLGetCursorName()
v SQLGetData()
v SQLGetFunctions()
v SQLGetInfo()
v SQLGetLength()
v SQLGetPosition()
v SQLGetSubString()
v SQLMoreResults()
v SQLNumResultCols()
v SQLPrepare()
v SQLRowCount()
v SQLSetCursorName()

HY0002 General error. v SQLAllocHandle()
v SQLCloseCursor()
v SQLColAttribute()
v SQLDescribeParam()
v SQLEndTran()
v SQLFreeHandle()
v SQLGetConnectAttr()
v SQLGetStmtAttr()
v SQLSetColAttributes()
v SQLSetConnection()
v SQLSetStmtAttr()

HY001 Memory allocation failure. All functions.

HY002 Invalid column number. v SQLBindCol()
v SQLBindFileToCol()
v SQLColAttribute()
v SQLDescribeCol()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()
v SQLSetColAttributes()

HY003 Program type out of range. v SQLBindCol()
v SQLBindParameter()
v SQLGetData()
v SQLGetLength()
v SQLGetSubString()

HY004 Invalid SQL data type. v SQLBindParameter()
v SQLGetTypeInfo()

542 ODBC Guide and Reference

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

HY009 Invalid use of a null pointer. v SQLAllocHandle()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLColumnPrivileges()
v SQLExecDirect()
v SQLForeignKeys()
v SQLGetData()
v SQLGetFunctions()
v SQLGetInfo()
v SQLGetLength()
v SQLGetPosition()
v SQLNativeSql()
v SQLNumParams()
v SQLNumResultCols()
v SQLPrepare()
v SQLPutData()
v SQLSetCursorName()
v SQLSetConnectAttr()
v SQLSetEnvAttr()
v SQLSetStmtAttr()

Chapter 7. DB2 ODBC reference information 543

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

HY010 Function sequence error. v SQLBindCol()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLCloseCursor()
v SQLColAttribute()
v SQLColumns()
v SQLDescribeCol()
v SQLDescribeParam()
v SQLDisconnect()
v SQLEndTran()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLForeignKeys()
v SQLFreeHandle()
v SQLFreeStmt()
v SQLGetCursorName()
v SQLGetData()
v SQLGetFunctions()
v SQLGetStmtAttr()
v SQLGetTypeInfo()
v SQLMoreResults()
v SQLNumParams()
v SQLNumResultCols()
v SQLParamData()
v SQLParamOptions()
v SQLPrepare()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLPutData()
v SQLRowCount()
v SQLSetColAttributes()
v SQLSetConnectAttr()
v SQLSetCursorName()
v SQLSetStmtAttr()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTablePrivileges()
v SQLTables()

HY011 Operation invalid at this time. v SQLSetConnectAttr()
v SQLSetEnvAttr()
v SQLSetStmtAttr()

HY012 Invalid transaction code. v SQLEndTran()

544 ODBC Guide and Reference

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

HY013 Unexpected memory handling error. v SQLAllocHandle()
v SQLBindCol()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLCancel()
v SQLCloseCursor()
v SQLConnect()
v SQLDataSources()
v SQLDescribeCol()
v SQLDisconnect()
v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLFreeHandle()
v SQLGetCursorName()
v SQLGetData()
v SQLGetFunctions()
v SQLGetLength()
v SQLGetPosition()
v SQLGetStmtAttr()
v SQLGetSubString()
v SQLMoreResults()
v SQLNumParams()
v SQLNumResultCols()
v SQLPrepare()
v SQLRowCount()
v SQLSetColAttributes()
v SQLSetCursorName()

HY014 No more handles. v SQLAllocHandle()
v SQLColumnPrivileges()
v SQLColumns()
v SQLExecDirect()
v SQLExecute()
v SQLForeignKeys()
v SQLPrepare()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTablePrivileges()
v SQLTables()

HY015 No cursor name available. v SQLGetCursorName()

HY019 Numeric value out of range. v SQLExecDirect()
v SQLExecute()
v SQLExtendedFetch()
v SQLFetch()
v SQLGetData()
v SQLPutData()

HY024 Invalid argument value. v SQLConnect()
v SQLGetSubString()
v SQLSetConnectAttr()
v SQLSetEnvAttr()
v SQLSetStmtAttr()

Chapter 7. DB2 ODBC reference information 545

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

HY090 Invalid string or buffer length. v SQLBindCol()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLColAttribute()
v SQLColumnPrivileges()
v SQLColumns()
v SQLConnect()
v SQLDataSources()
v SQLDescribeCol()
v SQLDriverConnect()
v SQLExecDirect()
v SQLParamData()
v SQLForeignKeys()
v SQLGetConnectAttr()
v SQLGetCursorName()
v SQLGetData()
v SQLGetInfo()
v SQLGetPosition()
v SQLGetStmtAttr()
v SQLGetSubString()
v SQLNativeSql()
v SQLPrepare()
v SQLPrimaryKeys()
v SQLProcedures()
v SQLProcedureColumns()
v SQLPutData()
v SQLSetColAttributes()
v SQLSetConnectAttr()
v SQLSetCursorName()
v SQLSetEnvAttr()
v SQLSetStmtAttr()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTables()
v SQLTablePrivileges()

HY091 Descriptor type out of range. v SQLColAttribute()

HY092 Option type out of range. v SQLAllocHandle()
v SQLEndTran()
v SQLFreeStmt()
v SQLGetConnectAttr()
v SQLGetCursorName()
v SQLGetEnvAttr()
v SQLGetStmtAttr()
v SQLSetConnectAttr()
v SQLSetEnvAttr()
v SQLSetStmtAttr()

HY093 Invalid parameter number. v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLDescribeParam()

HY096 Information type out of range. v SQLGetInfo()

HY097 Column type out of range. v SQLSpecialColumns()

HY098 Scope type out of range. v SQLSpecialColumns()

546 ODBC Guide and Reference

Table 266. SQLSTATE cross reference (continued)

SQLSTATE Description Functions

HY099 Nullable type out of range. v SQLSpecialColumns()

HY100 Uniqueness option type out of range. v SQLStatistics()

HY101 Accuracy option type out of range. v SQLStatistics()

HY103 Direction option out of range. v SQLDataSources()

HY104 Invalid precision value. v SQLBindParameter()
v SQLSetColAttributes()

HY105 Invalid parameter type. v SQLBindParameter()

HY106 Fetch type out of range. v SQLExtendedFetch()

HY107 Row value out of range. v SQLParamOptions()

HY109 Invalid cursor position. v SQLGetStmtAttr()

HY110 Invalid driver completion. v SQLDriverConnect()

HY501 Invalid data source name. v SQLConnect()

HY506 Error closing a file. v SQLFreeHandle()

HYC00 Driver not capable. v SQLBindCol()
v SQLBindFileToCol()
v SQLBindFileToParam()
v SQLBindParameter()
v SQLColAttribute()
v SQLColumnPrivileges()
v SQLColumns()
v SQLDescribeCol()
v SQLDescribeParam()
v SQLExtendedFetch()
v SQLFetch()
v SQLForeignKeys()
v SQLGetConnectAttr()
v SQLGetData()
v SQLGetInfo()
v SQLGetLength()
v SQLGetPosition()
v SQLGetStmtAttr()
v SQLGetSubString()
v SQLPrimaryKeys()
v SQLProcedureColumns()
v SQLProcedures()
v SQLSetConnectAttr()
v SQLSetEnvAttr()
v SQLSetStmtAttr()
v SQLSpecialColumns()
v SQLStatistics()
v SQLTables()
v SQLTablePrivileges()

Notes:

1. 42Sxx SQLSTATEs replace S00xx SQLSTATEs.

2. HYxxx SQLSTATEs replace S1xxx SQLSTATEs.

Chapter 7. DB2 ODBC reference information 547

Related reference:
“Deprecated functions and their replacements” on page 566
“SQLSTATE mappings” on page 569
Related information:
Chapter 4, “ODBC Functions,” on page 89

Data conversion between the application and the database server
Data conversion is possible between C and SQL data types. You need to know the
precision, scale, length, and display size of each data type. In addition, you will
also need to know how to convert from one data type to the other.

Identifiers for date, time, and timestamp data types have also changed in ODBC
3.0.
Related reference:
“C and SQL data types” on page 26
“Data conversion” on page 32
“Changes to datetime data types” on page 571

SQL data type attributes
SQL data type attributes include the precision, scale, length, and display size of
this data type.

Precision of SQL data types
The precision of a numeric column or parameter refers to the maximum number of
digits that are used by the data type of the column or parameter. The precision of a
non-numeric column or parameter generally refers to the maximum length or the
defined length of the column or parameter.

The following table defines the precision for each SQL data type.

Table 267. Precision of SQL data types

fSqlType Precision

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined number of characters for the column or parameter. For example,
the precision of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length, in characters, of the column or parameter.1

SQL_DECIMAL
SQL_NUMERIC

The defined maximum number of digits. For example, the precision of a
column defined as NUMERIC(10,3) is 10.

SQL_DECFLOAT 16 if the column is defined as DECFLOAT(16). 34 if the column is defined as
DECFLOAT(34).

SQL_SMALLINT2 5

SQL_INTEGER2 10

SQL_BIGINT2 19

SQL_FLOAT2 15

SQL_REAL2 7

SQL_ROWID 40

SQL_DOUBLE2 15

548 ODBC Guide and Reference

Table 267. Precision of SQL data types (continued)

fSqlType Precision

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length, in characters, of the column or parameter. For example,
the precision of a column defined as CHAR(10) FOR BIT DATA, is 10.

SQL_LONGVARBINARY The maximum length, in characters, of the column or parameter.

SQL_TYPE_DATE2 10 (the number of characters in the yyyy-mm-dd format).

SQL_TYPE_TIME2 8 (the number of characters in the hh:mm:ss format).

SQL_TYPE_TIMESTAMP The number of characters in the #yyyy-mm-dd hh:mm:ss[.ffffffffffff]” or
#yyyy-mm-dd.hh.mm.ss[.ffffffffffff]” format that is used by the TIMESTAMP
data type. For example, if a timestamp does not use seconds or fractional
seconds, the precision is 16 (the number of characters in the "yyyy-mm-dd
hh:mm” format). If a timestamp uses millionths of a second, the precision is
26 (the number of characters in the "yyyy-mm-dd hh:mm:ss.ffffff” format).
The maximum for fractional seconds is 12 digits.

SQL_GRAPHIC SQL_VARGRAPHIC
SQL_DBCLOB

The defined length, in characters, of the column or parameter. For example,
the precision of a column defined as GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length, in characters, of the column or parameter.

SQL_XML2 0

Notes:

1. When defining the precision of a parameter of this data type with SQLBindParameter(), cbColDef should be set to
the total length in bytes of the data, not the precision as defined in this table.

2. The cbColDef argument of SQLBindParameter() is ignored for this data type.

Scale of SQL data types
The scale of a numeric column or parameter refers to the maximum number of
digits to the right of the decimal point. For approximate floating-point number
columns or parameters, the scale is undefined because the number of digits to the
right of the decimal place is not fixed.

The following table defines the scale for each SQL data type

Table 268. Scale of SQL data types

fSqlType Scale

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal place. For example,
the scale of a column defined as NUMERIC(10,3) is 3.

SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

0

SQL_DECFLOAT Not applicable.

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Not applicable.

SQL_ROWID Not applicable.

Chapter 7. DB2 ODBC reference information 549

|
|
|

|

Table 268. Scale of SQL data types (continued)

fSqlType Scale

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Not applicable.

SQL_TYPE_DATE
SQL_TYPE_TIME

Not applicable.

SQL_TYPE_TIMESTAMP The number of digits to the right of the decimal point in the #yyyy-mm-dd
hh:mm:ss[ffffffffffff]” format. For example, if the TIMESTAMP data type uses
the "yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3. The maximum for
fractional seconds is 12 digits. You can retrieve the scale through the pibScale
argument of SQLDescribeCol().

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC
SQL_DBCLOB

Not applicable.

SQL_XML 0

Length of SQL data types
The length of a column is the maximum number of bytes that are returned to the
application when data is transferred to its default C data type.

For character data, the length does not include the nul-termination character. Note
that the length of a column can be different than the number of bytes that are
required to store the data on the data source.

The following table defines the length for each SQL data type.

Table 269. Length of SQL data types

fSqlType Length

SQL_CHAR, SQL_VARCHAR
SQL_CLOB

The defined length, in bytes, of the column. For example, the length of a
column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length, in bytes, of the column.

SQL_DECIMAL, SQL_NUMERIC The maximum number of digits plus two bytes. Because these data types are
returned as character strings, characters are needed for the digits, a sign, and
a decimal point. For example, the length of a column defined as
NUMERIC(10,3) is 12.

SQL_SMALLINT 2 bytes

SQL_INTEGER 4 bytes

SQL_BIGINT 8 bytes

SQL_REAL 4 bytes

SQL_ROWID 40 bytes

SQL_FLOAT 8 bytes

SQL_DOUBLE 8 bytes

SQL_DECFLOAT 23 bytes for DECFLOAT(16). 42 bytes for DECFLOAT(34).

SQL_BINARY, SQL_VARBINARY
SQL_BLOB

The defined length, in bytes, of the column. For example, the length of a
column defined as CHAR(10) FOR BIT DATA is 10.

SQL_LONGVARBINARY The maximum length, in bytes, of the column.

550 ODBC Guide and Reference

|
|
|
|

Table 269. Length of SQL data types (continued)

fSqlType Length

SQL_TYPE_DATE, SQL_TYPE_TIME 6 bytes (the size of the DATE_STRUCT or TIME_STRUCT structure).

SQL_TYPE_TIMESTAMP 20 bytes (the size of the TIMESTAMP_STRUCT structure).

SQL_GRAPHIC, SQL_VARGRAPHIC,
SQL_DBCLOB

The defined length of the column times 2 bytes. For example, the length of a
column defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column times 2 bytes.

SQL_XML 0 bytes. However, stored XML documents are limited to a maximum size of 2
GB.

Display size of SQL data types
The display size of a column is the maximum number of bytes that are needed to
display data in character form.

The following table defines the display size for each SQL data type

Table 270. Display size of SQL data types

fSqlType Display size

SQL_CHAR SQL_VARCHAR,
SQL_CLOB

The defined length, in bytes, of the column. For example, the display size of
a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length, in bytes, of the column.

SQL_DECFLOAT 23 bytes if the column is defined as DECFLOAT(16). 42 bytes if the column is
defined as DECFLOAT(34).

SQL_DECIMAL, SQL_NUMERIC The precision of the column plus two bytes (a sign, precision digits, and a
decimal point). For example, the display size of a column defined as
NUMERIC(10,3) is 12.

SQL_SMALLINT 6 bytes (a sign and 5 digits).

SQL_INTEGER 11 bytes (a sign and 10 digits).

SQL_BIGINT 20 bytes (a sign and 19 digits).

SQL_REAL 13 bytes (a sign, 7 digits, a decimal point, the letter E, a sign, and 2 digits).

SQL_ROWID 40 bytes

SQL_FLOAT, SQL_DOUBLE 22 bytes (a sign, 15 digits, a decimal point, the letter E, a sign, and 3 digits).

SQL_BINARY, SQL_VARBINARY,
SQL_BLOB

The defined length of the column times 2 bytes. (Each binary byte is
represented by a 2 digit hexadecimal number.) For example, the display size
of a column defined as CHAR(10) FOR BIT DATA is 20.

SQL_LONGVARBINARY The maximum length of the column times 2 bytes.

SQL_TYPE_DATE 10 bytes (a date in the format yyyy-mm-dd).

SQL_TYPE_TIME 8 bytes (a time in the format hh:mm:ss).

SQL_TYPE_TIMESTAMP 19 bytes (if the scale of the timestamp is 0) or 20 bytes plus the scale of the
timestamp (if the scale is greater than 0). This value is the number of
characters in the #yyyy-mm-dd hh:mm:ss[.ffffffffffff] or #yyyy-mm-
dd.hh.mm.ss[.ffffffffffff] format. For example, the display size of a column
storing millionths of a second is 23 bytes (the number of characters in
"yyyy-mm-dd hh:mm:ss.ffffff”). The maximum for fractional seconds is 12
digits. You can retrieve the display size of a timestamp column through the
COLUMN_SIZE column that is returned by SQLColumns() or
SQLSpecialColumns(). You can retrieve the display size of a
SQL_TYPE_TIMESTAMP stored procedure parameter through the
COLUMN_SIZE column that is returned by SQLProcedureColumns().

Chapter 7. DB2 ODBC reference information 551

|
|
|

|
|

Table 270. Display size of SQL data types (continued)

fSqlType Display size

SQL_GRAPHIC, SQL_VARGRAPHIC,
SQL_DBCLOB

The defined length of the column or parameter times two bytes. For example,
the display size of a column defined as GRAPHIC(10) is 20 bytes.

SQL_LONGVARGRAPHIC The maximum length, in bytes, of the column or parameter.

SQL_XML 0

SQL to C data conversion
To convert SQL data types to C data types, you need to know the arguments:
fCType , cbValueMax, rgbValue, and pcbValue. The SQLSTATE for each conversion
outcome isreturned.

For each SQL data conversion type, a table lists conversion information. Each
column in these tables lists the following information:
v The first column of the table lists the legal input values of the fCType argument

in SQLBindCol() and SQLGetData().
v The second column lists the outcomes of a test, often using the cbValueMax

argument specified in SQLBindCol() or SQLGetData(), which the driver performs
to determine if it can convert the data.

v The third and fourth columns list the values (for each outcome) of the rgbValue
and pcbValue arguments specified in the SQLBindCol() or SQLGetData() after the
driver has attempted to convert the data.

v The last column lists the SQLSTATE returned for each outcome by SQLFetch(),
SQLExtendedFetch(), or SQLGetData().

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fCType argument in SQLBindCol() or SQLGetData() contains a value not
shown in the table for a given SQL data type, SQLFetch(), or SQLGetData() returns
the SQLSTATE 07006 (restricted data type attribute violation).

If the fCType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLFetch(), or SQLGetData() returns
SQLSTATE HYC00 (driver not capable).

Though it is not shown in the tables, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is null. For an explanation of the use
of pcbValue when multiple calls are made to retrieve data, see SQLGetData().

When SQL data is converted to character C data, the character count returned in
pcbValue does not include the nul-termination character. If rgbValue is a null
pointer, SQLBindCol() or SQLGetData() returns SQLSTATE HY009 (Invalid
argument value).

In the following tables:

Data length
The total length, in bytes, of the data after it has been converted to the
specified C data type (excluding the nul-termination character if the data
was converted to a string). This is true even if data is truncated before it is
returned to the application.

552 ODBC Guide and Reference

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

Display size
The total number of bytes needed to display data in the character format.

SQL to C conversion for character data
The character SQL data types that you can convert to C data types are
SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, and SQL_CLOB.

The following table shows information about converting character SQL data to C
data.

Table 271. Converting character SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR
SQL_C_WCHAR

Data length < cbValueMax Data Data length (in
bytes)1

000002

Data length >= cbValueMax Truncated data Data length (in
bytes)

01004

SQL_C_BINARY Data length <= cbValueMax Data Data length (in
bytes)

000002

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

SQL_C_DECIMAL64
SQL_C_DECIMAL128

Data converted without truncation Data Data length (in
bytes)

000001

Data is not a number Untouched Data length (in
bytes)

220053

SQL_C_SHORT
SQL_C_LONG
SQL_C_BIGINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT

Data converted without truncation3 Data Size (in bytes) of
the C data type

000002

Data converted with truncation, but
without loss of significant digits3

Data Size (in bytes) of
the C data type

01004

Conversion of data would result in
loss of significant digits3

Untouched Size (in bytes) of
the C data type

22003

Data is not a number3 Untouched Size (in bytes) of
the C data type

22005

SQL_C_TYPE_DATE Data value is a valid date3 Data 64 000002

Data value is not a valid date3 Untouched 64 22008

SQL_C_TYPE_TIME Data value is a valid time3 Data 64 000002

Data value is not a valid time3 Untouched 64 22008

SQL_C_TYPE_TIMESTAMP Data value is a valid timestamp3 Data 164 000002

Data value is not a valid
timestamp3

Untouched 164 22008

SQL_C_TYPE_
TIMESTAMP_EXT

Data value is a valid timestamp3 Data 204 000002

Data value is not a valid
timestamp3

Untouched 204 22008

Chapter 7. DB2 ODBC reference information 553

Table 271. Converting character SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

Notes:

1. For the SQL_C_WCHAR data type, the data length is the number of bytes of UCS-2 Unicode data.

2. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

3. The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of
the C data type.

4. This is the size of the corresponding C data type.

Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for graphic data
The graphic SQL data types that you can convert to C data types are
SQL_GRAPHIC, SQL_VARGRAPHIC, SQL_LONGVARGRAPHIC, and
SQL_DBCLOB.

The following table shows information about converting graphic SQL data to C
data.

Table 272. Conversion of graphic SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double-byte characters * 2
<= cbValueMax

Data Length of data (in
bytes)

000001

Number of double-byte characters * 2
<= cbValueMax

Truncated data, to
the nearest even
byte that is less
than cbValueMax.

Length of data (in
bytes)

01004

SQL_C_DBCHAR
SQL_C_WCHAR

Number of double-byte characters * 2
< cbValueMax

Data Length of data (in
bytes)

000001

Number of double-byte characters * 2
>= cbValueMax

Truncated
cbValueMax. data,
to the nearest
even byte that is
less than
cbValueMax.

Length of data (in
bytes)

01004

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for numeric data
You can convert numeric SQL data types into C data types.

The numeric SQL data types are:
SQL_DECIMAL
SQL_DECFLOAT
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER

554 ODBC Guide and Reference

SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

The following table shows information about converting numeric SQL data to C
data.

Table 273. Conversion of numeric SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR
SQL_C_WCHAR

Display size < cbValueMax Data Data length (in
bytes)

000001

Number of significant digits <
cbValueMax

Truncated
data

Data length (in
bytes)

01004

Number of significant digits >=
cbValueMax

Untouched Data length (in
bytes)

22003

SQL_C_SHORT
SQL_C_LONG
SQL_C_BIGINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT
SQL_C_DECIMAL64
SQL_C_DECIMAL128

Data converted without truncation2 Data Size (in bytes) of
the C data type

000001

Data converted with truncation, but
without loss of significant digits2

Truncated
data

Size (in bytes) of
the C data type

01004

Conversion of data would result in
loss of significant digits2

Untouched Size (in bytes) of
the C data type

22003

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of
the C data type.

Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for binary data
You can convert binary SQL data types to C data types. The binary SQL data types
are SQL_BINARY, SQL_VARBINARY, SQL_LONGVARBINARY, and SQL_BLOB.

The following table shows information about converting binary SQL data to C
data.

Table 274. Conversion of binary SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR
SQL_C_WCHAR

(Data length) < cbValueMax Data Data length (in
bytes)1

N/A

(Data length) >= cbValueMax Truncated data Data length (in
bytes)

01004

SQL_C_BINARY Data length <= cbValueMax Data Data length (in
bytes)

N/A

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

Note:

1. For the SQL_C_WCHAR data type, the data length is the number of bytes of UCS-2 Unicode data.

Chapter 7. DB2 ODBC reference information 555

Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for date data
You can convert the date SQL data type, SQL_TYPE_DATE, to a C data type.

The following table shows information about converting date SQL data to C data.

Table 275. Conversion of date SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 000001

cbValueMax < 11 Untouched 10 22003

SQL_C_WCHAR cbValueMax >= 22 Data 20 000001

cbValueMax < 22 Untouched 20 22003

SQL_C_TYPE_DATE None2 Data 64 000001

SQL_C_TYPE_TIMESTAMP None2 Data3 164 000001

SQL_C_TYPE_
TIMESTAMP_EXT

None2 Data5 204 000001

SQL_C_BINARY Data length <= cbValueMax Data Data length (in
bytes)

000001

Data length > cbValueMax Untouched Untouched 22003

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of
the C data type.

3. The time fields of the TIMESTAMP_STRUCT structure are set to zero.

4. This is the size of the corresponding C data type.

5. The time fields of the TIMESTAMP_STRUCT_EXT structure are set to zero.

When the date SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd” format.
Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for time data
You can convert the time SQL data type, SQL_TYPE_TIME, into a C data type.

The following table shows information about converting time SQL data to C data.

Table 276. Conversion of time SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 000001

cbValueMax < 9 Untouched 8 22003

SQL_C_WCHAR cbValueMax >= 18 Data 16 000001

cbValueMax < 18 Untouched 16 22003

SQL_C_TYPE_TIME None2 Data 63 000001

SQL_C_TYPE_TIMESTAMP None2 Data4 163 000001

556 ODBC Guide and Reference

|
|
||||

Table 276. Conversion of time SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_TYPE_
TIMESTAMP_EXT

None2 Data5 203 000001

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of
the C data type.

3. This is the size of the corresponding C data type.

4. The date fields of the TIMESTAMP_STRUCT structure are set to the current system date of the machine that the
application is running, and the time fraction is set to zero.

5. The time fields of the TIMESTAMP_STRUCT_EXT structure are set to zero.

When the time SQL data type is converted to the character C data type, the
resulting string is in the "hh:mm:ss” format.
Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for timestamp data
You can convert the timestamp SQL data type, SQL_TYPE_TIMESTAMP, to a C
data type.

The following table shows information about converting timestamp SQL data to C
data.

Table 277. Conversion of timestamp SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Data length (in
bytes)

000001

19 <= cbValueMax <= Display size Truncated data2 Data length (in
bytes)

01004

cbValueMax < 19 Untouched Data length (in
bytes)

22003

SQL_C_WCHAR Display size < cbValueMax Data Data length (in
bytes)

000001

38 <= cbValueMax <= Display size Truncated data2 Data length (in
bytes)

01004

cbValueMax < 38 Untouched Data length (in
bytes)

22003

SQL_C_TYPE_DATE None Truncated data3 64 01004

SQL_C_TYPE_TIME None 5 Truncated data6 64 01004

SQL_C_TYPE_TIMESTAMP None 5 Data 164 000001

Fractional seconds portion of
timestamp is truncated. 5

Data2 16 01004

SQL_C_TYPE_
TIMESTAMP_EXT

None 5 Data 20 00000

Chapter 7. DB2 ODBC reference information 557

|
|
||||

|
|
||||

Table 277. Conversion of timestamp SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The fractional seconds of the timestamp are truncated.

3. The time portion of the timestamp is deleted.

4. This is the size of the corresponding C data type.

5. The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of
the C data type.

6. The date portion of the timestamp is deleted.

When the timestamp SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd hh:mm:ss[.fff[fff]]” format (regardless of the
precision of the timestamp SQL data type).
Related reference:
“C to SQL data conversion” on page 560

SQL to C conversion for ROWID data
You can convert the ROWID SQL data type, SQL_ROWID, to a C data type.

The following table shows information about converting ROWID SQL data to C
data.

Table 278. Conversion of ROWID SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR
SQL_C_WCHAR

Data length < = cbValueMax Data Data length (in
bytes)

00000

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

Related reference:
“SQL to C data conversion” on page 552

SQL to C conversion for XML data
You can convert the XML SQL data type, SQL_XML, to a C data type.

The following table shows information about converting XML SQL data to C data.

Table 279. Conversion of XML SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Data length < = cbValueMax Data Data length (in
bytes)

000001

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

SQL_C_BINARY Data length < = cbValueMax Data Data length (in
bytes)

000001

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

558 ODBC Guide and Reference

Table 279. Conversion of XML SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BINARYXML Data length < = cbValueMax Data Data length (in
bytes)

000001

Data length > cbValueMax Truncated data Data length (in
bytes)

01004

SQL_C_DBCHAR Number of double-byte characters *
2 < cbValueMax

Data Data length (in
bytes)

000001

Number of double-byte characters *
2 >= cbValueMax

Truncated data, to
the nearest even
byte that is less
than cbValueMax

Data length (in
bytes)

01004

SQL_C_WCHAR Number of double-byte characters *
2 < cbValueMax

Data Data length (in
bytes)

000001

Number of double-byte characters *
2 >= cbValueMax

Truncated data, to
the nearest even
byte that is less
than cbValueMax

Data length (in
bytes)

01004

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Related reference:
“SQL to C data conversion” on page 552

SQL to C data conversion examples
The SQL data types you can convert to C data types are character, graphic,
numeric, binary, date, time, timestamp, ROWID, and XML data.

The following table shows example SQL to C data conversions and the SQLSTATE
values that are associated with these conversions.

Table 280. SQL to C data conversion examples

SQL data type
SQL data
value C data type cbValueMax rgbValue SQLSTATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\01 000002

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 1 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 1 000002

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 1 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 000002

SQL_DECIMAL 1234.56 SQL_C_SHORT Ignored 1234 01004

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 1 000002

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_TYPE_DATE 1992-12-31 SQL_C_TYPE_TIMESTAMP Ignored 1992,12,31,
0,0,0,03

000002

SQL_TYPE_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 1

000002

SQL_TYPE_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 1

01004

Chapter 7. DB2 ODBC reference information 559

Table 280. SQL to C data conversion examples (continued)

SQL data type
SQL data
value C data type cbValueMax rgbValue SQLSTATE

SQL_TYPE_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 --- 22003

Notes:

1. "\0" represents a nul-termination character.

2. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

3. The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

C to SQL data conversion
To convert C data types to SQL data types, you need to know the arguments:
fSqlType and pcbValue. The SQLSTATE for each conversion outcome is returned.

For each C data conversion type a table lists conversion information. Each column
in these tables lists the following information:
v The first column of the table lists the legal input values of the fSqlType argument

in SQLBindParameter().
v The second column lists the outcomes of a test, often using the length, in bytes,

of the parameter data as specified in the pcbValue argument in
SQLBindParameter(), which the driver performs to determine if it can convert the
data.

v The third column lists the SQLSTATE returned for each outcome by
SQLExecDirect() or SQLExecute().

Important: Data is sent to the data source only if the SQLSTATE is 00000
(success).

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fSqlType argument in SQLBindParameter() contains a value not shown in the
table for a given C data type, SQLSTATE 07006 is returned (Restricted data type
attribute violation).

If the fSqlType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLBindParameter() returns SQLSTATE
HYC00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter() are both
null pointers, that function returns SQLSTATE HY009 (Invalid argument value).

Data length
The total length in bytes of the data after it has been converted to the
specified SQL data type (excluding the nul-termination character if the data
was converted to a string). This is true even if data is truncated before it is
sent to the data source.

Column length
The maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does
not include the nul-termination character.

560 ODBC Guide and Reference

Display size
The maximum number of bytes needed to display data in character form.

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

C to SQL conversion for character data
You can convert the C data types, SQL_C_CHAR and SQL_C_WCHAR, to SQL
data types.

The data length for the SQL_C_WCHAR data type is the number of bytes of UCS-2
Unicode data.

The following table shows information about converting character C data to SQL
data.

Table 281. Conversion of character C data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Data length <= Column length 000001

Data length > Column length 01004

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_DECFLOAT

Data converted without truncation 000001

Data converted with truncation, but without loss of significant digits 01004

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

(Data length) < Column length N/A

(Data length) >= Column length 01004

Data value is not a hexadecimal value 22005

SQL_ROWID Data length <= Column length 000001

Data length > Column length 01004

SQL_TYPE_DATE Data value is a valid date 000001

Data value is not a valid date 22008

SQL_TYPE_TIME Data value is a valid time 000001

Data value is not a valid time 22008

Data value is a valid timestamp; time portion is nonzero 01004

SQL_TYPE_TIMESTAMP Data value is a valid timestamp 000001

Data value is not a valid timestamp. 22008

Data value is a valid timestamp; fractional seconds portion is nonzero 01004

SQL_GRAPHIC
SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC
SQL_DBCLOB

Data length / 2 <= Column length 000001

Data length / 2 < Column length 01004

SQL_XML None 000001

Chapter 7. DB2 ODBC reference information 561

Table 281. Conversion of character C data to SQL data (continued)

fSqlType Test SQLSTATE

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for numeric data
You can convert numeric C data types to SQL data types.

The numeric C data types are:
SQL_C_SHORT
SQL_C_LONG
SQL_C_BIGINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT
SQL_C_DECIMAL64
SQL_C_DECIMAL128

The following table shows information about converting numeric C data to SQL
data.

Table 282. Conversion of numeric C data to SQL data

fSqlType Test SQLSTATE

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE
SQL_DECFLOAT

Data converted without truncation 000001

Data converted with truncation, but without loss of significant digits 01004

Conversion of data would result in loss of significant digits 22003

SQL_CHAR
SQL_VARCHAR

Data converted without truncation. 000001

Conversion of data would result in loss of significant digits. 22003

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for binary data
You can convert the binary C data types, SQL_C_BINARY and
SQL_C_BINARYXML, to SQL data types.

The following table shows information about converting C data of type
SQL_C_BINARY to SQL data.

562 ODBC Guide and Reference

Table 283. Conversion of SQL_C_BINARY data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Data length <= Column length N/A

Data length > Column length 01004

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Data length <= Column length N/A

Data length > Column length 01004

SQL_XML None 000001

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

The following table shows information about converting C data of type
SQL_C_BINARYXML to SQL data.

Table 284. Conversion of SQL_C_BINARYXML data to SQL data

fSqlType Test SQLSTATE

SQL_XML None 000001

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for double-byte character data
You can convert the double-byte C data type, SQL_C_DBCHAR, to an SQL data
type.

The following table shows information about converting double-byte character C
data to SQL data.

Table 285. Conversion of double-byte character C data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Data length <= Column length x 2 N/A

Data length > Column length x 2 01004

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Data length <= Column length x 2 N/A

Data length > Column length x 2 01004

SQL_XML None 000001

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Chapter 7. DB2 ODBC reference information 563

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for date data
You can convert the date C data type, SQL_C_TYPE_DATE, to an SQL data type.

The following table shows information about converting date C data to SQL data.

Table 286. Converting date C data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 10 000001

Column length < 10 22003

SQL_TYPE_DATE Data value is a valid date 000001

Data value is not a valid date 22008

SQL_TYPE_TIMESTAMP2 Data value is a valid date 000001

Data value is not a valid date 22008

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The time component of TIMESTAMP is set to zero.

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for time data
You can convert the time C data type, SQL_C_TYPE_TIME, to an SQL data type.

The following table shows information about converting time C data to SQL data.

Table 287. Conversion of time C data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 8 000001

Column length < 8 22003

SQL_TYPE_TIME Data value is a valid time 000001

Data value is not a valid time 22008

SQL_TYPE_TIMESTAMP2 Data value is a valid time 000001

Data value is not a valid time 22008

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The date component of TIMESTAMP is set to the system date of the machine at which the application is running.

Related reference:
“C to SQL data conversion” on page 560

C to SQL conversion for timestamp data
You can convert the timestamp C data type, SQL_C_TYPE_TIMESTAMP, to an SQL
data type.

564 ODBC Guide and Reference

The following table shows information about converting timestamp C data to SQL
data.

Table 288. Conversion of timestamp C data to SQL data

fSqlType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= Display size 000001

19 <= Column length < Display size 01004

Column length < 19 22003

Fractional seconds field length > 12 (display size > 32) 22008

SQL_TYPE_DATE Data value is a valid date, and time fields are 0 00000

Data value is a valid date, and time fields are not 02 01004

Data value is not a valid date 22008

SQL_TYPE_TIME Data value is a valid time. Fractional seconds fields are
zero.

00000

Data value is a valid time. Fractional seconds fields are
not zero.

01004

Data value is not a valid time. 22008

SQL_TYPE_TIMESTAMP Data value is a valid timestamp 000001

Data value is not a valid timestamp 22008

Precision specified by TIMESTAMP(p) <= fractional
seconds field length <= 12

22008

Notes:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

2. The time portion of the timestamp is deleted.

3. The date portion of the timestamp is deleted.

Related reference:
“C to SQL data conversion” on page 560

C to SQL data conversion examples
The C data types that you can convert to SQL data types are character, numeric,
binary, double-byte, date, time, and timestamp data.

The following table shows example C to SQL data conversions and the SQLSTATE
associated with these conversions.

Table 289. C to SQL data conversion examples

C data type C data Value SQL data type Column length SQL data value SQLSTATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef 000001

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 000001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT Not applicable 1234.56 000001

SQL_C_FLOAT 1234.56 SQL_INTEGER Not applicable 1234 01004

Chapter 7. DB2 ODBC reference information 565

|
|
||

|||

||

|
|
|

Table 289. C to SQL data conversion examples (continued)

C data type C data Value SQL data type Column length SQL data value SQLSTATE

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Deprecated functions
DB2 ODBC supports the ODBC 3.0 standard and all deprecated functions. Use the
function replacements where applicable to optimize performance.

This information explains the DB2 for z/OS support of the ODBC 3.0 standard.

Deprecated functions and their replacements
The ODBC 3.0 functions replace, or deprecate, many existing ODBC 2.0 functions.
The DB2 ODBC driver continues to support all of the deprecated functions.

Recommendation: Begin using ODBC 3.0 functional replacements to maintain
optimum portability.

The following table lists the ODBC 2.0 deprecated functions and the ODBC 3.0
replacement functions.

Table 290. ODBC 2.0 deprecated functions

ODBC 2.0 deprecated function Purpose ODBC 3.0 replacement function

SQLAllocConnect() Obtains an connection handle. SQLAllocHandle() with
HandleType=SQL_HANDLE_DBC

SQLAllocEnv() Obtains an environment handle. SQLAllocHandle() with
HandleType=SQL_HANDLE_ENV

SQLAllocStmt() Obtains an statement handle. SQLAllocHandle() with
HandleType=SQL_HANDLE_STMT

SQLColAttributes() Gets column attributes. SQLColAttribute()

SQLError() Returns additional diagnostic
information (multiple fields of the
diagnostic data structure).

SQLGetDiagRec()

SQLFreeConnect() Frees connection handle. SQLFreeHandle() with
HandleType=SQL_HANDLE_DBC

SQLFreeEnv() Frees environment handle. SQLFreeHandle() with
HandleType=SQL_HANDLE_ENV

SQLFreeStmt() with
fOption=SQL_DROP

Frees a statement handle. SQLFreeHandle() with HandleType=
SQL_HANDLE_STMT

SQLGetConnectOption() Returns a value of a connection
attribute.

SQLGetConnectAttr()

SQLGetStmtOption() Returns a value of a statement
attribute.

SQLGetStmtAttr()

SQLParamOptions() Sets multiple values at one time for
each bound parameter.

SQLSetStmtAttr()

SQLSetConnectOption() Sets a value of a connection
attribute.

SQLSetConnectAttr()

566 ODBC Guide and Reference

Table 290. ODBC 2.0 deprecated functions (continued)

ODBC 2.0 deprecated function Purpose ODBC 3.0 replacement function

SQLSetParam() Binds a parameter marker to an
application variable.

SQLBindParameter()

SQLSetStmtOption() Sets a value of a statement attribute. SQLSetStmtAttr()

SQLTransact() Commits or rolls back a transaction. SQLEndTran()

Changes to SQLGetInfo() InfoType argument values
Values of the InfoType arguments for SQLGetInfo() arguments are renamed in
ODBC 3.0.

The following table shows the renamed SQLGetInfo() InfoTypes in ODBC 3.0.

Table 291. Renamed SQLGetInfo() InfoTypes

ODBC 2.0 InfoType ODBC 3.0 InfoType

SQL_ACTIVE_CONNECTIONS SQL_MAX_DRIVER_CONNECTIONS

SQL_ACTIVE_STATEMENTS SQL_MAX_CONCURRENT_ACTIVITIES

SQL_MAX_OWNER_NAME_LEN SQL_MAX_SCHEMA_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN SQL_MAX_CATALOG_NAME_LEN

SQL_ODBC_SQL_OPT_IEF SQL_INTEGRITY

SQL_SCHEMA_TERM SQL_OWNER_TERM

SQL_OWNER_USAGE SQL_SCHEMA_USAGE

SQL_QUALIFIER_LOCATION SQL_CATALOG_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR SQL_CATALOG_NAME_SEPARATOR

SQL_QUALIFIER_TERM SQL_CATALOG_TERM

SQL_QUALIFIER_USAGE SQL_CATALOG_USAGE

Related reference:
“SQLGetInfo() - Get general information” on page 254

Changes to SQLSetConnectAttr() attributes
For SQLSetConnectAttr() attributes, the ODBC driver supports both ODBC 2.0 and
ODBC 3.0 values.

The following table correlates ODBC 2.0 and ODBC 3.0 values.

Table 292. SQLSetConnectAttr() attribute value mapping

ODBC 2.0 attribute ODBC 3.0 attribute

SQL_ACCESS_MODE SQL_ATTR_ACCESS_MODE

SQL_AUTOCOMMIT SQL_ATTR_AUTOCOMMIT

SQL_CONNECTTYPE SQL_ATTR_CONNECTTYPE

SQL_CURRENT_SCHEMA SQL_ATTR_CURRENT_SCHEMA

SQL_MAXCONN SQL_ATTR_MAXCONN

SQL_PARAMOPT_ATOMIC SQL_ATTR_PARAMOPT_ATOMIC

SQL_SYNC_POINT SQL_ATTR_SYNC_POINT

SQL_TXN_ISOLATION SQL_ATTR_TXN_ISOLATION

Chapter 7. DB2 ODBC reference information 567

Changes to SQLSetEnvAttr() attributes
For SQLSetEnvAttr() attributes, the ODBC driver supports both ODBC 2.0 and
ODBC 3.0 values.

The following table lists the SQLSetEnvAttr() attribute values renamed in ODBC
3.0. The ODBC 3.0 attributes support all of the existing ODBC 2.0 attributes.

Table 293. SQLSetEnvAttr() attribute value mapping

ODBC 2.0 attribute ODBC 3.0 attribute

SQL_CONNECTTYPE SQL_ATTR_CONNECTTYPE

SQL_MAXCONN SQL_ATTR_MAXCONN

SQL_OUTPUT_NTS SQL_ATTR_OUTPUT_NTS

Changes to SQLSetStmtAttr() attributes
For SQLSetStmtAttr() attributes, the ODBC driver supports both ODBC 2.0 and
ODBC 3.0 values.

The following table lists the SQLSetStmtAttr() attribute values renamed in ODBC
3.0. The ODBC 3.0 attributes support all of the existing ODBC 2.0 attributes.

Table 294. SQLSetStmtAttr() attribute value mapping

ODBC 2.0 attribute ODBC 3.0 attribute

SQL_BIND_TYPE SQL_ATTR_BIND_TYPE or
SQL_ATTR_ROW_BIND_TYPE

SQL_CLOSE_BEHAVIOR SQL_ATTR_CLOSE_BEHAVIOR

SQL_CONCURRENCY SQL_ATTR_CONCURRENCY

SQL_CURSOR_HOLD SQL_ATTR_CURSOR_HOLD

SQL_CURSOR_TYPE SQL_ATTR_CURSOR_TYPE

SQL_MAX_LENGTH SQL_ATTR_MAX_LENGTH

SQL_MAX_ROWS SQL_ATTR_MAX_ROWS

SQL_NODESCRIBE SQL_ATTR_NODESCRIBE

SQL_NOSCAN SQL_ATTR_NOSCAN

SQL_RETRIEVE_DATA SQL_ATTR_RETRIEVE_DATA

SQL_ROWSET_SIZE SQL_ATTR_ROWSET_SIZE or
SQL_ATTR_ROW_ARRAY_SIZE

SQL_STMTTXN_ISOLATION or
SQL_TXN_ISOLATION

SQL_ATTR_STMTTXN_ISOLATION or
SQL_ATTR_TXN_ISOLATION

ODBC 3.0 driver behavior
Behavioral changes refer to functionality that varies depending on the version of
ODBC that is in use. The ODBC 2.0 and ODBC 3.0 drivers behave according to the
setting of the SQL_ATTR_ODBC_VERSION environment attribute.

The SQL_ATTR_ODBC_VERSION environment attribute controls whether the DB2
ODBC 3.0driver exhibits ODBC 2.0 or ODBC 3.0 behavior. This value is implicitly

568 ODBC Guide and Reference

set by the ODBC driver by application calls to the ODBC 3.0 function
SQLAllocHandle() or the ODBC 2.0 function SQLAllocEnv(). The application can
explicitly set by calls to SQLSetEnvAttr().
v ODBC 3.0 applications first call SQLAllocHandle() to get the environmental

handle. The DB2 ODBC 3.0 driver implicitly sets SQL_ATTR_ODBC_VERSION =
SQL_OV_ODBC3. This setting ensures that ODBC 3.0 applications get ODBC 3.0
behavior.
An ODBC 3.0 application should not invoke SQLAllocHandle() and then call
SQLAllocEnv(). Doing so implicitly resets the application to ODBC 2.0 behavior.
To avoid resetting an application to ODBC 2.0 behavior, ODBC 3.0 applications
should always use SQLAllocHandle() to manage environment handles.

v ODBC 2.0 applications first call SQLAllocEnv() to get the environmental handle.
The DB2 ODBC 2.0 driver implicitly sets SQL_ATTR_ODBC_VERSION =
SQL_OV_ODBC2. This setting ensures that ODBC 2.0 applications get ODBC 2.0
behavior.

An application can verify the ODBC version setting by calling SQLGetEnvAttr() for
attribute SQL_ATTR_ODBC_VERSION. An application can explicitly set the ODBC
version setting by calling SQLSetEnvAttr() for attribute
SQL_ATTR_ODBC_VERSION.

Forward compatibility does not affect ODBC 2.0 applications that were compiled
using the previous DB2 ODBC 2.0driver header files, or ODBC 2.0 applications that
are recompiled using the new ODBC 3.0 header files. These applications can
continue executing as ODBC 2.0 applications on the DB2 ODBC 3.0 driver. These
ODBC 2.0 applications need not call SQLSetEnvAttr(). As stated above, when the
existing ODBC 2.0 application calls SQLAllocEnv() (ODBC 2.0 API to allocate
environment handle), the DB2 ODBC 3.0 driver will implicitly set
SQL_ATTR_ODBC_VERSION = SQL_OV_ODBC2. This will ensure ODBC 2.0
driver behavior when using the DB2 ODBC 3.0 driver.

SQLSTATE mappings
Several SQLSTATEs differ when you call SQLGetDiagRec() or SQLError() under an
ODBC 3.0 driver. All deprecated functions continue to return ODBC 2.0
SQLSTATEs regardless of which environment attributes are set.

The following list shows the affected SQLSTATEs:
v HYxxx SQLSTATEs replace S1xxx SQLSTATEs
v 42Sxx SQLSTATEs replace S00xx SQLSTATEs
v Several SQLSTATEs are redefined

When an ODBC 2.0 application is upgraded to ODBC 3.0, the application must be
changed to expect the ODBC 3.0 SQLSTATEs. An ODBC 3.0 application can set the
environment attribute SQL_ATTR_ODBC_VERSION = SQL_OV_ODBC2 to enable
the DB2 ODBC 3.0 driver to return the ODBC 2.0 SQLSTATEs.

The following table lists ODBC 2.0 to ODBC 3.0 SQLSTATE mappings.

Table 295. ODBC 2.0 to ODBC 3.0 SQLSTATE mappings

ODBC 2.0 SQLSTATE ODBC 3.0 SQLSTATE

22003 HY019

22007 22008

22005 22018

Chapter 7. DB2 ODBC reference information 569

Table 295. ODBC 2.0 to ODBC 3.0 SQLSTATE mappings (continued)

ODBC 2.0 SQLSTATE ODBC 3.0 SQLSTATE

37000 42000

S0001 42S01

S0002 42S02

S0011 42S11

S0012 42S12

S0021 42S21

S0022 42S22

S0023 42S23

S1000 HY000

S1001 HY001

S1002 HY002

S1003 HY003

S1004 HY004

S1009 HY009 or HY024

S1009 is mapped to HY009 for invalid use of null
pointers; S1009 is mapped to HY024 for invalid
attribute values.

S1010 HY010

S1011 HY011

S1012 HY012

S1013 HY013

S1014 HY014

S1015 HY015

S1019 HY019

S1090 HY090

S1091 HY091

S1092 HY092

S1093 HY093

S1096 HY096

S1097 HY097

S1098 HY098

S1099 HY099

S1100 HY100

S1101 HY101

S1103 HY103

S1104 HY104

S1105 HY105

S1106 HY106

S1107 HY107

S1110 HY110

570 ODBC Guide and Reference

Table 295. ODBC 2.0 to ODBC 3.0 SQLSTATE mappings (continued)

ODBC 2.0 SQLSTATE ODBC 3.0 SQLSTATE

S1501 HY501

S1506 HY506

S1C00 HYC00

Changes to datetime data types
The ODBC driver supports both ODBC 2.0 and ODBC 3.0 datetime values for
input. For output, the ODBC driver determines the value to return based on the
setting of the environment attribute.

In ODBC 3.0, the identifiers for date, time, and timestamp have changed. The
#define directives in the include file sqlcli1.h are added for the values defined in
Table 296 for SQL type mappings and Table 297 for C type mappings.
v For input, either ODBC 2.0 or ODBC 3.0 datetime values can be used with the

DB2 ODBC 3.0 driver.
v On output, the DB2 ODBC 3.0 driver determines the appropriate value to return

based on the setting of the SQL_ATTR_ODBC_VERSION environment attribute.
– If SQL_ATTR_ODBC_VERSION = SQL_OV_ODBC2, the output datetime

values are the ODBC 2.0 values.
– If SQL_ATTR_ODBC_VERSION = SQL_OV_ODBC3, the output datetime

values are the ODBC 3.0 values.

The following figures show the corresponding ODBC 2.0 to ODBC 3.0 mappings
for SQL type and C type identifiers respectively.

Table 296. Datetime data type mappings: SQL type identifiers

ODBC 2.0 ODBC 3.0

SQL_DATE(9) SQL_TYPE_DATE(91)

SQL_TIME(10) SQL_TYPE_TIME(92)

SQL_TIMESTAMP(11) SQL_TYPE_TIMESTAMP(93)

Table 297. Datetime data type mappings: C type identifiers

ODBC 2.0 ODBC 3.0

SQL_C_DATE(9) SQL_C_TYPE_DATE(91)

SQL_C_TIME(10) SQL_C_TYPE_TIME(92)

SQL_C_TIMESTAMP(11) SQL_C_TYPE_TIMESTAMP(93)

SQL_C_TIMESTAMP_EXT SQL_C_TYPE_TIMESTAMP_EXT

The datetime data type changes affect the following functions:
v SQLBindCol()
v SQLBindParameter()
v SQLColAttribute()
v SQLColumns()
v SQLDescribeCol()
v SQLDescribeParam()
v SQLGetData()
v SQLGetTypeInfo()

Chapter 7. DB2 ODBC reference information 571

||

v SQLProcedureColumns()
v SQLStatistics()
v SQLSpecialColumns()

Example DB2 ODBC code
You can view example DB2 ODBC code for a sample verification program
DSN8O3VP and for a client application APD29 that calls a stored procedure.

The following sample applications are provided:
v DSN8O3VP, which is also available online in the DSN810.SDSNSAMP data set

can be used to verify that your DB2 ODBC 3.0 installation is correct.
v APD29, a client application that calls a DB2 ODBC stored procedure (SPD29),

includes very fundamental processing of query result sets (a query cursor
opened in a stored procedure and return to client for fetching). For
completeness, the CREATE TABLE, data INSERTs and CREATE PROCEDURE
definition is provided.

Related concepts:
“DSN8O3VP sample application”
“Client application calling a DB2 ODBC stored procedure” on page 576
Related tasks:
“Preparing and executing an ODBC application” on page 54

DSN8O3VP sample application
The DSN8O3VP sample program validates the installation of DB2 ODBC.

The following code contains the sample program
DSN810.SDSNSAMP(DSN8O3VP).

/***/
/* DB2 ODBC 3.0 installation certification test to validate */
/* installation. */
/* */
/* DSNTEJ8 is sample JCL to that can be used to run this */
/* application. */
/***/
/**/
/* Include the ’C’ include files */
/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sqlcli1.h"
/**/
/* Variables */
/**/

#ifndef NULL
#define NULL 0
#endif

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHDBC hstmt= SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER id;
SQLCHAR name[51]
SQLINTEGER namelen, intlen, colcount;
struct sqlca sqlca;
SQLCHAR server[18]

572 ODBC Guide and Reference

SQLCHAR uid[30]
SQLCHAR pwd[30]
SQLCHAR sqlstmt[500]

SQLRETURN check_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char *);
SQLRETURN print_error(SQLSMALLINT,SQLHANDLE,SQLRETURN,int,char *);
SQLRETURN prt_sqlca(void);
#define CHECK_HANDLE(htype, hndl, rc) if (rc != SQL_SUCCESS) \

{check_error(htype,hndl,rc,__LINE__,__FILE__);goto dberror;}

/**/
/* Main Program */
/**/

int main()
{
printf("DSN8O3VP INITIALIZATION\n");
printf("DSN8O3VP SQLAllocHandle-Environment\n");
henv=0;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
printf("DSN8O3VP-henv=%i\n",henv);
printf("DSN8O3VP SQLAllocHandle-Environment successful\n");
printf("DSN8O3VP SQLAllocHandle-Connection\n");
hdbc=0;
rc=SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("DSN8O3VP-hdbc=%i\n",hdbc);
printf("DSN8O3VP SQLAllocHandle-Connection successful\n");
printf("DSN8O3VP SQLConnect\n");
strcpy((char *)uid,"");
strcpy((char *)pwd,"");
strcpy((char *)server,"ignore");
/* sample is NULL connect to default datasource */
rc=SQLConnect(hdbc,NULL,0,NULL,0,NULL,0);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("DSN8O3VP successfully issued a SQLconnect\n");
printf("DSN8O3VP SQLAllocHandle-Statement\n");
hstmt=0;
rc=SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("DSN8O3VP hstmt=%i\n",hstmt);
printf("DSN8O3VP SQLAllocHandle-Statement successful\n");
printf("DSN8O3VP SQLExecDirect\n");
strcpy((char *)sqlstmt,"SELECT * FROM SYSIBM.SYSDUMMY1");
printf("DSN8O3VP sqlstmt=%s\r",sqlstmt);
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("DSN8O3VP successfully issued a SQLExecDirect\n");
/* sample fetch without looking at values */
printf("DSN8O3VP SQLFetch\n");
rc=SQLFetch(hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("DSN8O3VP successfully issued a SQLFetch\n");
printf("DSN8O3VP SQLEndTran-Commit\n");
rc=SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
printf("DSN8O3VP SQLEndTran-Commit successful\n");
printf("DSN8O3VP SQLFreeHandle-Statement\n");
rc=SQLFreeHandle(SQL_HANDLE_STMT,hstmt);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);
hstmt=0;
printf("DSN8O3VP SQLFreeHandle-Statement successful\n");

/******** SQLDisconnect **/
printf("DSN8O3VP SQLDisconnect\n");
rc=SQLDisconnect(hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
printf("DSN8O3VP successfully issued a SQLDisconnect\n");
/******** SQLFreeConnect ***/

Chapter 7. DB2 ODBC reference information 573

printf("DSN8O3VP SQLFreeHandle-Connection\n");
rc=SQLFreeHandle(SQL_HANDLE_DBC,hdbc);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc);
hdbc=0;
printf("DSN8O3VP SQLFreeHandle-Connection successful\n");
/******** SQLFreeEnv ***/
printf("DSN8O3VP SQLFreeHandle-Environment\n");
rc=SQLFreeHandle(SQL_HANDLE_ENV,henv);
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
henv=0;
printf("DSN8O3VP SQLFreeHandle-Environment successful\n");
pgmend:
printf("DSN8O3VP pgmend: Ending sample\n");
if (rc==0)
printf("DSN8O3VP Execution was SUCCESSFUL\n");
else
{
printf("DSN8O3VP***************************\n");
printf("DSN8O3VP Execution FAILED\n");
printf("DSN8O3VP rc = %i\n", rc);
printf("DSN8O3VP ***************************\n");
}
return(rc);
dberror:
printf("DSN8O3VP dberror: entry dberror rtn\n");
printf("DSN8O3VP dberror: rc=%d\n",rc);
printf("DSN8O3VP dberror: environment cleanup attempt\n");
printf("DSN8O3VP dberror: cleanup SQLFreeEnv\n");
rc=SQLFreeEnv(henv);
printf("DSN8O3VP dberror: cleanup SQLFreeEnv rc =%d\n",rc);
rc=12;
printf("DSN8O3VP dberror: setting error rc=%d\n",rc);
goto pgmend;
} /*END MAIN*/

/**/
/* check_error */
/**/
/* RETCODE values from sqlcli.h */
/*#define SQL_SUCCESS 0 */
/*#define SQL_SUCCESS_WITH_INFO 1 */
/*#define SQL_NO_DATA_FOUND 100 */
/*#define SQL_NEED_DATA 99 */
/*#define SQL_NO_DATA SQL_NO_DATA_FOUND */
/*#define SQL_STILL_EXECUTING 2 not currently returned */
/*#define SQL_ERROR -1 */
/*#define SQL_INVALID_HANDLE -2 */
/**/
SQLRETURN check_error(SQLSMALLINT htype, /* A handle type */

SQLHANDLE hndl, /* A handle */
SQLRETURN frc, /* Return code */
int line, /* Line error issued */
char * file /* file error issued */

) {
SQLCHAR cli_sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER cli_sqlcode;
SQLSMALLINT length;
printf("DSN8O3VP entry check_error rtn\n");
switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID_HANDLE:

printf("DSN8O3VP check_error> SQL_INVALID HANDLE \n");
break;

case SQL_ERROR:
printf("DSN8O3VP check_error> SQL_ERROR\n");
break;

case SQL_SUCCESS_WITH_INFO:

574 ODBC Guide and Reference

printf("DSN8O3VP check_error> SQL_SUCCESS_WITH_INFO\n");
break;

case SQL_NO_DATA_FOUND:
printf("DSN8O3VP check_error> SQL_NO_DATA_FOUND\n");
break;

default:
printf("DSN8O3VP check_error> Received rc from api rc=%i\n",frc);
break;

} /*end switch*/
print_error(htype,hndl,frc,line,file);
printf("DSN8O3VP SQLGetSQLCA\n");
rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);
if(rc == SQL_SUCCESS)

prt_sqlca();
else

printf("DSN8O3VP check_error SQLGetSQLCA failed rc=%i\n",rc);
printf("DSN8O3VP exit check_error rtn\n");
return (frc);

} /* end check_error */

/**/
/* print_error */
/* calls SQLGetDiagRec() displays SQLSTATE and message */
/**/
SQLRETURN print_error(SQLSMALLINT htype, /* A handle type */

SQLHANDLE hndl, /* A handle */
SQLRETURN frc, /* Return code */
int line, /* error from line */
char * file /* error from file */

) {
SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1] ;
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1] ;
SQLINTEGER sqlcode ;
SQLSMALLINT length, i ;
SQLRETURN prc;
printf("DSN8O3VP entry print_error rtn\n");
printf("DSN8O3VP rc=%d reported from file:%s,line:%d ---\n",

frc,
file,
line

) ;
i = 1 ;
while (SQLGetDiagRec(htype,

hndl,
i,
sqlstate,
&sqlcode,
buffer,
SQL_MAX_MESSAGE_LENGTH + 1,
&length

) == SQL_SUCCESS) {
printf("DSN8O3VP SQLSTATE: %s\n", sqlstate) ;
printf("DSN8O3VP Native Error Code: %ld\n", sqlcode) ;
printf("DSN8O3VP buffer: %s \n", buffer) ;
i++ ;

}
printf(">--\n") ;
printf("DSN8O3VP exit print_error rtn\n");
return(SQL_ERROR) ;

} /* end print_error */

/**/
/* prt_sqlca */
/**/
SQLRETURN

prt_sqlca()
{

int i;

Chapter 7. DB2 ODBC reference information 575

printf("DSN8O3VP entry prt_sqlca rtn\n");
printf("\r\rDSN8O3VP*** Printing the SQLCA:\r");
printf("\nDSN8O3VP SQLCAID %s",sqlca.sqlcaid);
printf("\nDSN8O3VP SQLCABC %d",sqlca.sqlcabc);
printf("\nDSN8O3VP SQLCODE %d",sqlca.sqlcode);
printf("\nDSN8O3VP SQLERRML ... %d",sqlca.sqlerrml);
printf("\nDSN8O3VP SQLERRMC ... %s",sqlca.sqlerrmc);
printf("\nDSN8O3VP SQLERRP ... %s",sqlca.sqlerrp);
for (i = 0; i < 6; i++)

printf("\nDSN8O3VP SQLERRD%d ... %d",i+1,sqlca.sqlerrd??(i??));
for (i = 0; i < 10; i++)

printf("\nDSN8O3VP SQLWARN%d ... %c",i,sqlca.sqlwarn[i]);
printf("\nDSN8O3VP SQLWARNA ... %c",sqlca.sqlwarn[10]);
printf("\nDSN8O3VP SQLSTATE ... %s",sqlca.sqlstate);
printf("\nDSN8O3VP exit prt_sqlca rtn\n");
return(0);

} /* End of prt_sqlca */
/***/
/* END DSN8O3VP */
/***/

Client application calling a DB2 ODBC stored procedure
The client application, APD29, calls the stored procedure, SPD29, and processes
query result sets. A query cursor opens in a stored procedure and returns to the
client for fetching.

The CREATE TABLE, data INSERT, and CREATE PROCEDURE statements are
provided to define the DB2 objects and procedures that this example uses.
STEP 1. Create table

printf("\nAPDDL SQLExecDirect stmt=
strcpy((char *)sqlstmt,

"CREATE TABLE TABLE2A (INT4 INTEGER,SMINT SMALLINT,FLOAT8 FLOAT");
strcat((char *)sqlstmt,

",DEC312 DECIMAL(31,2),CHR10 CHARACTER(10),VCHR20 VARCHAR(20)");
strcat((char *)sqlstmt,

",LVCHR LONG VARCHAR,CHRSB CHAR(10),CHRBIT CHAR(10) FOR BIT DATA");
strcat((char *)sqlstmt,

",DDATE DATE,TTIME TIME,TSTMP TIMESTAMP)");
printf("\nAPDDL sqlstmt=
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

STEP 2. Insert 101 rows into table

/* insert 100 rows into table2a */
for (jx=1;jx<=100 ;jx++) {

printf("\nAPDIN SQLExecDirect stmt=
strcpy((char *)sqlstmt,"insert into table2a values(");
sprintf((char *)sqlstmt+strlen((char *)sqlstmt),"
strcat((char *)sqlstmt,

",4,8.2E+30,1515151515151.51,’CHAR’,’VCHAR’,’LVCCHAR’,’SBCS’");
strcat((char *)sqlstmt,

",’MIXED’,’01/01/1991’,’3:33 PM’,’1999-09-09-09.09.09.090909’)");
printf("\nAPDIN sqlstmt=
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

} /* endfor */

STEP 3. Define stored procedure with CREATE
PROCEDURE SQL statement

CREATE PROCEDURE SPD29
(INOUT INTEGER)
PROGRAM TYPE MAIN

576 ODBC Guide and Reference

EXTERNAL NAME SPD29
COLLID DSNAOCLI
LANGUAGE C
RESULT SET 2
MODIFIES SQL DATA
PARAMETER STYLE GENERAL
WLM ENVIRONMENT WLMENV1;

STEP 4. Stored procedure

/*START OF SPD29**/
/* PRAGMA TO CALL PLI SUBRTN CSPSUB TO ISSUE CONSOLE MSGS */
#pragma options (rent)
#pragma runopts(plist(os))
/**/
/* Include the ’C’ include files */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sqlcli1.h"
#include <sqlca.h>
#include <decimal.h>
#include <wcstr.h>
/**/
/* Variables for COMPARE routines */
/**/

#ifndef NULL
#define NULL 0
#endif

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHSTMT hstmt = SQL_NULL_HSTMT;
SQLHSTMT hstmt2 = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER id;
SQLCHAR name[51];
SQLINTEGER namelen, intlen, colcount;
SQLSMALLINT scale;
struct sqlca sqlca;
SQLCHAR server[18];
SQLCHAR uid[30];
SQLCHAR pwd[30];
SQLCHAR sqlstmt[500];
SQLCHAR sqlstmt2[500];
SQLSMALLINT pcpar=0;
SQLSMALLINT pccol=0;
SQLCHAR cursor[19];
SQLSMALLINT cursor_len;

SQLINTEGER SPCODE;
struct {

SQLSMALLINT LEN;
SQLCHAR DATA_200}; } STMTSQL;

SQLSMALLINT H1SMINT;
SQLINTEGER H1INT4;
SQLDOUBLE H1FLOAT8;
SQLDOUBLE H1DEC312;
SQLCHAR H1CHR10[11];
SQLCHAR H1VCHR20[21];
SQLCHAR H1LVCHR[21];
SQLCHAR H1CHRSB[11];
SQLCHAR H1CHRBIT[11];
SQLCHAR H1DDATE[11];
SQLCHAR H1TTIME[9];
SQLCHAR H1TSTMP[27];

Chapter 7. DB2 ODBC reference information 577

SQLSMALLINT I1SMINT;
SQLSMALLINT I1INT4;
SQLSMALLINT I1FLOAT8;
SQLSMALLINT I1DEC312;
SQLSMALLINT I1CHR10;
SQLSMALLINT I1VCHR20;
SQLSMALLINT I1LVCHR;
SQLSMALLINT I1CHRSB;
SQLSMALLINT I1CHRBIT;
SQLSMALLINT I1DDATE;
SQLSMALLINT I1TTIME;
SQLSMALLINT I1TSTMP;

SQLINTEGER LEN_H1SMINT;
SQLINTEGER LEN_H1INT4;
SQLINTEGER LEN_H1FLOAT8;
SQLINTEGER LEN_H1DEC312;
SQLINTEGER LEN_H1CHR10;
SQLINTEGER LEN_H1VCHR20;
SQLINTEGER LEN_H1LVCHR;
SQLINTEGER LEN_H1CHRSB;
SQLINTEGER LEN_H1CHRBIT;
SQLINTEGER LEN_H1DDATE;
SQLINTEGER LEN_H1TTIME;
SQLINTEGER LEN_H1TSTMP;

SQLSMALLINT H2SMINT;
SQLINTEGER H2INT4;
SQLDOUBLE H2FLOAT8;
SQLCHAR H2CHR10[11];
SQLCHAR H2VCHR20[21];
SQLCHAR H2LVCHR[21];
SQLCHAR H2CHRSB[11];
SQLCHAR H2CHRBIT[11];
SQLCHAR H2DDATE[11];
SQLCHAR H2TTIME[9];
SQLCHAR H2TSTMP[27];

SQLSMALLINT I2SMINT;
SQLSMALLINT I2INT4;
SQLSMALLINT I2FLOAT8;
SQLSMALLINT I2CHR10;
SQLSMALLINT I2VCHR20;
SQLSMALLINT I2LVCHR;
SQLSMALLINT I2CHRSB;
SQLSMALLINT I2CHRBIT;
SQLSMALLINT I2DDATE;
SQLSMALLINT I2TTIME;
SQLSMALLINT I2TSTMP;

SQLINTEGER LEN_H2SMINT;
SQLINTEGER LEN_H2INT4;
SQLINTEGER LEN_H2FLOAT8;
SQLINTEGER LEN_H2CHR10;
SQLINTEGER LEN_H2VCHR20;
SQLINTEGER LEN_H2LVCHR;
SQLINTEGER LEN_H2CHRSB;
SQLINTEGER LEN_H2CHRBIT;
SQLINTEGER LEN_H2DDATE;
SQLINTEGER LEN_H2TTIME;
SQLINTEGER LEN_H2TSTMP;

SQLCHAR locsite[18] = "stlec1";
SQLCHAR remsite[18] = "stlec1b";

SQLCHAR spname[8];
SQLINTEGER ix,jx,locix;
SQLINTEGER result;

578 ODBC Guide and Reference

SQLCHAR state_blank[6] =" ";

SQLRETURN
check_error(SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc);

SQLRETURN
prt_sqlca();

/**/
/* Main Program */
/**/

SQLINTEGER
main(SQLINTEGER argc, SQLCHAR *argv[])
{
printf("\nSPD29 INITIALIZATION");
scale = 0;
rc=0;

rc=0;
SPCODE=0;

/* argv0 = sp module name */
if (argc != 2)
{
printf("SPD29 parm number error\n ");
printf("SPD29 EXPECTED =
printf("SPD29 received =
goto dberror;
}
strcpy((char *)spname,(char *)argv[0]);
result = strncmp((char *)spname,"SPD29",5);
if (result != 0)
{
printf("SPD29 argv0 sp name error\n ");
printf("SPD29 compare result =
printf("SPD29 expected =
printf("SPD29 received spname=
printf("SPD29 received argv0 =0]);
goto dberror;
}
/* get input spcode value */
SPCODE = *(SQLINTEGER *) argv[1];
printf("\nSPD29 SQLAllocEnv number= 1\n");
henv=0;
rc = SQLAllocEnv(&henv);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nSPD29-henv=
/***/
printf("\nSPD29 SQLAllocConnect ");
hdbc=0;
SQLAllocConnect(henv, &hdbc);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nSPD29-hdbc=

/***/
/* Make sure no autocommits after cursors are allocated, commits */
/* cause sp failure. AUTOCOMMIT=0 could also be specified in the */
/* INI file. */
/* Also, sp could be defined with COMMIT_ON_RETURN in the */
/* DB2 catalog table SYSIBM.SYSROUTINES, but be wary that this */
/* removes control from the client appl to control commit scope. */
/***/
printf("\nSPD29 SQLSetConnectOption-no autocommits in stored procs");
rc = SQLSetConnectOption(hdbc,SQL_AUTOCOMMIT,SQL_AUTOCOMMIT_OFF);
if(rc != SQL_SUCCESS) goto dberror;
/***/
printf("\nSPD29 SQLConnect NULL connect in stored proc ");

Chapter 7. DB2 ODBC reference information 579

strcpy((char *)uid,"cliuser");
strcpy((char *)pwd,"password");
printf("\nSPD29 server=
printf("\nSPD29 uid=
printf("\nSPD29 pwd=
rc=SQLConnect(hdbc, NULL, 0, uid, SQL_NTS, pwd, SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* Start SQL statements **/
/***/
switch(SPCODE)
{
/**/
/* CASE(SPCODE=0) do nothing and return *****/
/**/
case 0:

break;
case 1:
/**/
/* CASE(SPCODE=1) *****/
/* -sqlprepare/sqlexecute insert int4=200 *****/
/* -sqlexecdirect insert int4=201 *****/
/* *validated in client appl that inserts occur *****/
/**/

SPCODE=0;

printf("\nSPD29 SQLAllocStmt \n");
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nSPD29-hstmt=

printf("\nSPD29 SQLPrepare \n");
strcpy((char *)sqlstmt,
"insert into TABLE2A(int4) values(?)");
printf("\nSPD29 sqlstmt=
rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nSPD29 SQLNumParams \n");
rc=SQLNumParams(hstmt,&pcpar);
if(rc != SQL_SUCCESS) goto dberror;
if (pcpar!=1) {

printf("\nSPD29 incorrect pcpar=
goto dberror;
}

printf("\nSPD29 SQLBindParameter int4 \n");
H1INT4=200;
LEN_H1INT4=sizeof(H1INT4);
rc=SQLBindParameter(hstmt,1,SQL_PARAM_INPUT,SQL_C_LONG,
SQL_INTEGER,0,0,&H1INT4,0,(SQLINTEGER *)&LEN_H1INT4);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nSPD29 SQLExecute \n");
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nSPD29 SQLFreeStmt \n");
rc=SQLFreeStmt(hstmt, SQL_DROP);
if(rc != SQL_SUCCESS) goto dberror;

/***/
printf("\nAPDIN SQLAllocStmt stmt=
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPDIN-hstmt=

580 ODBC Guide and Reference

jx=201;
printf("\nAPDIN SQLExecDirect stmt=
strcpy((char *)sqlstmt,"insert into table2a values(");
sprintf((char *)sqlstmt+strlen((char *)sqlstmt),"
strcat((char *)sqlstmt,
",4,8.2E+30,1515151515151.51,’CHAR’,’VCHAR’,’LVCCHAR’,’SBCS’");

strcat((char *)sqlstmt,
",’MIXED’,’01/01/1991’,’3:33 PM’,’1999-09-09-09.09.09.090909’)");
printf("\nAPDIN sqlstmt=
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

break;
/***/
case 2:
/**/
/* CASE(SPCODE=2) *****/
/* -sqlprepare/sqlexecute select int4 from table2a *****/
/* -sqlprepare/sqlexecute select chr10 from table2a *****/
/* *qrs cursors should be allocated and left open by CLI *****/
/**/

SPCODE=0;

/* generate 1st query result set */
printf("\nSPD29 SQLAllocStmt \n");
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nSPD29-hstmt=

printf("\nSPD29 SQLPrepare \n");
strcpy((char *)sqlstmt,
"SELECT INT4 FROM TABLE2A");
printf("\nSPD29 sqlstmt=
rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nSPD29 SQLExecute \n");
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;

/* allocate 2nd stmt handle for 2nd queryresultset */
/* generate 2nd queryresultset */

printf("\nSPD29 SQLAllocStmt \n");
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt2);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nSPD29-hstmt2=

printf("\nSPD29 SQLPrepare \n");
strcpy((char *)sqlstmt2,
"SELECT CHR10 FROM TABLE2A");
printf("\nSPD29 sqlstmt2=
rc=SQLPrepare(hstmt2,sqlstmt2,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nSPD29 SQLExecute \n");
rc=SQLExecute(hstmt2);
if(rc != SQL_SUCCESS) goto dberror;

/*leave queryresultset cursor open for fetch back at client appl */

break;
/**/
default:
{
printf("SPD29 INPUT SPCODE INVALID\n");
printf("SPD29...EXPECTED SPCODE=0-2\n");

Chapter 7. DB2 ODBC reference information 581

printf("SPD29...RECEIVED SPCODE=
goto dberror;
break;
}

}
/***/
/* End SQL statements **/
/***/
/*Be sure NOT to put a SQLTransact with SQL_COMMIT in a DB2 or */
/* z/OS stored procedure. Commit is not allowed in a DB2 or */
/* z/OS stored procedure. Use SQLTransact with SQL_ROLLBACK to */
/* force a must rollback condition for this sp and calling */
/* client application. */
/***/
printf("\nSPD29 SQLDisconnect number= 4\n");
rc=SQLDisconnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;
/***/
printf("\nSPD29 SQLFreeConnect number= 5\n");
rc = SQLFreeConnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;
/***/
printf("\nSPD29 SQLFreeEnv number= 6\n");
rc = SQLFreeEnv(henv);
if(rc != SQL_SUCCESS) goto dberror;
/***/
goto pgmend;

dberror:
printf("\nSPD29 entry dberror label");
printf("\nSPD29 rc=
check_error(henv,hdbc,hstmt,rc);
printf("\nSPD29 SQLFreeEnv number= 7\n");
rc = SQLFreeEnv(henv);

printf("\nSPD29 rc=
rc=12;
rc=12;
SPCODE=12;
goto pgmend;

pgmend:

printf("\nSPD29 TERMINATION ");
if (rc!=0)
{
printf("\nSPD29 WAS NOT SUCCESSFUL");
printf("\nSPD29 SPCODE =
printf("\nSPD29 rc =
}
else
{
printf("\nSPD29 WAS SUCCESSFUL");
}
/* assign output spcode value */
*(SQLINTEGER *) argv[1] = SPCODE;
exit;
} /*END MAIN*/
/***
** check_error - call print_error(), checks severity of return code
***/
SQLRETURN
check_error(SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc)

{
SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

582 ODBC Guide and Reference

SQLCHAR cli_sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER cli_sqlcode;
SQLSMALLINT length;

printf("\nSPD29 entry check_error rtn");

switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID_HANDLE:

printf("\nSPD29 check_error> SQL_INVALID HANDLE ");
case SQL_ERROR:

printf("\nSPD29 check_error> SQL_ERROR ");
break;

case SQL_SUCCESS_WITH_INFO:
printf("\nSPD29 check_error> SQL_SUCCESS_WITH_INFO");
break;

case SQL_NO_DATA_FOUND:
printf("\nSPD29 check_error> SQL_NO_DATA_FOUND ");
break;

default:
printf("\nSPD29 check_error> Invalid rc from api rc=
break;

} /*end switch*/

printf("\nSPD29 SQLError ");
while ((rc=SQLError(henv, hdbc, hstmt, cli_sqlstate, &cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH + 1, &length)) == SQL_SUCCESS) {
printf(" SQLSTATE:
printf("Native Error Code:
printf("

};
if (rc!=SQL_NO_DATA_FOUND)

printf("SQLError api call failed rc=

printf("\nSPD29 SQLGetSQLCA ");
rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);
if(rc == SQL_SUCCESS)

prt_sqlca();
else

printf("\n SPD29-check_error SQLGetSQLCA failed rc=

return (frc);
}

/***/
/* P r i n t S Q L C A */
/***/

SQLRETURN
prt_sqlca()
{

SQLINTEGER i;
printf("\nlSPD29 entry prts_sqlca rtn");
printf("\r\r*** Printing the SQLCA:\r");
printf("\nSQLCAID
printf("\nSQLCABC
printf("\nSQLCODE
printf("\nSQLERRML ...
printf("\nSQLERRMC ...
printf("\nSQLERRP ...
for (i = 0; i < 6; i++)

printf("\nSQLERRD
for (i = 0; i < 10; i++)

printf("\nSQLWARNi]);
printf("\nSQLWARNA ... 10]);
printf("\nSQLSTATE ...

return(0);

Chapter 7. DB2 ODBC reference information 583

} /* End of prtsqlca */
/***/
/*END OF SPD29 ***/

STEP 5. Client application
/**/
/*START OF SPD29***/
/* SCEANRIO PSEUDOCODE: */
/* APD29(CLI CODE CLIENT APPL) */
/* -CALL SPD29 (CLI CODE STORED PROCEDURE APPL) */
/* -SPCODE=0 */
/* -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) */
/* -SPCODE=1 */
/* -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) */
/* -SQLPREPARE/EXECUTE INSERT INT4=200 */
/* -SQLEXECDIRECT INSERT INT4=201 */
/* -SPCODE=2 */
/* -PRINTF MSGS (CHECK SDSF FOR SPAS ADDR TO VERFIFY) */
/* -SQLPREPARE/EXECUTE SELECT INT4 FROM TABLE2A */
/* -SQLPREPARE/EXECUTE SELECT CHR10 FROM TABLE2A */
/* (CLI CURSORS OPENED ’WITH RETURN’)... */
/* -RETURN */
/* -FETCH QRS FROM SP CURSOR */
/* -COMMIT */
/* -VERFIFY INSERTS BY SPD29 */
/**/

/* Include the ’C’ include files */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "sqlcli1.h"
#include <sqlca.h>
/**/
/* Variables for COMPARE routines */
/**/

#ifndef NULL
#define NULL 0
#endif

SQLHENV henv = SQL_NULL_HENV;
SQLHDBC hdbc = SQL_NULL_HDBC;
SQLHSTMT hstmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER id;
SQLCHAR name[51];
SQLINTEGER namelen, intlen, colcount;
SQLSMALLINT scale;
struct sqlca sqlca;
SQLCHAR server[18];
SQLCHAR uid[30];
SQLCHAR pwd[30];
SQLCHAR sqlstmt[250];
SQLSMALLINT pcpar=0;
SQLSMALLINT pccol=0;

SQLINTEGER SPCODE;
struct {

SQLSMALLINT LEN;
SQLCHAR DATA[200]; } STMTSQL;

SQLSMALLINT H1SMINT;
SQLINTEGER H1INT4;
SQLDOUBLE H1FLOAT8;
SQLDOUBLE H1DEC312;
SQLCHAR H1CHR10[11];
SQLCHAR H1VCHR20[21];
SQLCHAR H1LVCHR[21];

584 ODBC Guide and Reference

SQLCHAR H1CHRSB[11];
SQLCHAR H1CHRBIT[11];
SQLCHAR H1DDATE[11];
SQLCHAR H1TTIME[9];
SQLCHAR H1TSTMP[27];

SQLSMALLINT I1SMINT;
SQLSMALLINT I1INT4;
SQLSMALLINT I1FLOAT8;
SQLSMALLINT I1DEC312;
SQLSMALLINT I1CHR10;
SQLSMALLINT I1VCHR20;
SQLSMALLINT I1LVCHR;
SQLSMALLINT I1CHRSB;
SQLSMALLINT I1CHRBIT;
SQLSMALLINT I1DDATE;
SQLSMALLINT I1TTIME;
SQLSMALLINT I1TSTMP;

SQLINTEGER LNH1SMINT;
SQLINTEGER LNH1INT4;
SQLINTEGER LNH1FLOAT8;
SQLINTEGER LNH1DEC312;
SQLINTEGER LNH1CHR10;
SQLINTEGER LNH1VCHR20;
SQLINTEGER LNH1LVCHR;
SQLINTEGER LNH1CHRSB;
SQLINTEGER LNH1CHRBIT;
SQLINTEGER LNH1DDATE;
SQLINTEGER LNH1TTIME;
SQLINTEGER LNH1TSTMP;

SQLSMALLINT H2SMINT;
SQLINTEGER H2INT4;
SQLDOUBLE H2FLOAT8;
SQLCHAR H2CHR10[11];
SQLCHAR H2VCHR20[21];
SQLCHAR H2LVCHR[21];
SQLCHAR H2CHRSB[11];
SQLCHAR H2CHRBIT[11];
SQLCHAR H2DDATE[11];
SQLCHAR H2TTIME[9];
SQLCHAR H2TSTMP[27];

SQLSMALLINT I2SMINT;
SQLSMALLINT I2INT4;
SQLSMALLINT I2FLOAT8;
SQLSMALLINT I2CHR10;
SQLSMALLINT I2VCHR20;
SQLSMALLINT I2LVCHR;
SQLSMALLINT I2CHRSB;
SQLSMALLINT I2CHRBIT;
SQLSMALLINT I2DDATE;
SQLSMALLINT I2TTIME;
SQLSMALLINT I2TSTMP;

SQLINTEGER LNH2SMINT;
SQLINTEGER LNH2INT4;
SQLINTEGER LNH2FLOAT8;
SQLINTEGER LNH2CHR10;
SQLINTEGER LNH2VCHR20;
SQLINTEGER LNH2LVCHR;
SQLINTEGER LNH2CHRSB;
SQLINTEGER LNH2CHRBIT;
SQLINTEGER LNH2DDATE;
SQLINTEGER LNH2TTIME;
SQLINTEGER LNH2TSTMP;

Chapter 7. DB2 ODBC reference information 585

SQLCHAR locsite[18] = "stlec1";
SQLCHAR remsite[18] = "stlec1b";

SQLINTEGER ix,jx,locix;
SQLINTEGER result;
SQLCHAR state_blank[6] =" ";

SQLRETURN
check_error(SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc);

SQLRETURN
prt_sqlca();

/**/
/* Main Program */
/**/

SQLINTEGER
main()
{

printf("\nAPD29 INITIALIZATION");
scale = 0;
rc=0;

printf("\nAPD29 SQLAllocEnv stmt=
henv=0;
rc = SQLAllocEnv(&henv);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-henv=

for (locix=1;locix<=2;locix++)
{
/* Start SQL statements **/
/***/

printf("\nAPD29 SQLAllocConnect ");
hdbc=0;
SQLAllocConnect(henv, &hdbc);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-hdbc=

/***/
printf("\nAPD29 SQLConnect ");
if (locix == 1)
{
strcpy((char *)server,(char *)locsite);
}
else
{
strcpy((char *)server,(char *)remsite);
}

strcpy((char *)uid,"cliuser");
strcpy((char *)pwd,"password");
printf("\nAPD29 server=
printf("\nAPD29 uid=
printf("\nAPD29 pwd=
rc=SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

/***/
/* CASE(SPCODE=0) QRS RETURNED=0 COL=0 ROW=0 */
/***/
printf("\nAPD29 SQLAllocStmt stmt=
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-hstmt=

SPCODE=0;
printf("\nAPD29 call sp SPCODE =

586 ODBC Guide and Reference

printf("\nAPD29 SQLPrepare stmt=
strcpy((char*)sqlstmt,"CALL SPD29(?)");
printf("\nAPD29 sqlstmt=
rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLBindParameter stmt=
rc = SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT_OUTPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
&SPCODE,
0,
NULL);

if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLExecute stmt=
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
if(SPCODE != 0)
{

printf("\nAPD29 SPCODE not zero, spcode=
goto dberror;

}

printf("\nAPD29 SQLTransact stmt=
rc=SQLTransact(henv, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLFreeStmt stmt=
rc=SQLFreeStmt(hstmt, SQL_DROP);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* CASE(SPCODE=1) QRS RETURNED=0 COL=0 ROW=0 */
/***/
printf("\nAPD29 SQLAllocStmt stmt=
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-hstmt=

SPCODE=1;
printf("\nAPD29 call sp SPCODE =
printf("\nAPD29 SQLPrepare stmt=
strcpy((char*)sqlstmt,"CALL SPD29(?)");
printf("\nAPD29 sqlstmt=
rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLBindParameter stmt=
rc = SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT_OUTPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
&SPCODE,
0,
NULL);

if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLExecute stmt=
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;

Chapter 7. DB2 ODBC reference information 587

if(SPCODE != 0)
{

printf("\nAPD29 SPCODE not zero, spcode=
goto dberror;

}

printf("\nAPD29 SQLTransact stmt=
rc=SQLTransact(henv, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLFreeStmt stmt=
rc=SQLFreeStmt(hstmt, SQL_DROP);
if(rc != SQL_SUCCESS) goto dberror;
/***/
/* CASE(SPCODE=2) QRS RETURNED=2 COL=1(int4/chr10) ROW=100+ */
/***/
printf("\nAPD29 SQLAllocStmt number= 18\n");
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-hstmt=

SPCODE=2;
printf("\nAPD29 call sp SPCODE =
printf("\nAPD29 SQLPrepare number= 19\n");
strcpy((char*)sqlstmt,"CALL SPD29(?)");
printf("\nAPD29 sqlstmt=
rc=SQLPrepare(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLBindParameter number= 20\n");
rc = SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT_OUTPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
&SPCODE,
0,
NULL);

if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLExecute number= 21\n");
rc=SQLExecute(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
if(SPCODE != 0)
{

printf("\nAPD29 spcode incorrect");
goto dberror;

}

printf("\nAPD29 SQLNumResultCols number= 22\n");
rc=SQLNumResultCols(hstmt,&pccol);
if (pccol!=1)
{

printf("APD29 col count wrong=
goto dberror;

}

printf("\nAPD29 SQLBindCol number= 23\n");
rc=SQLBindCol(hstmt,

1,
SQL_C_LONG,
(SQLPOINTER) &H1INT4,
(SQLINTEGER)sizeof(SQLINTEGER),
(SQLINTEGER *) &LNH1INT4);

if(rc != SQL_SUCCESS) goto dberror;

588 ODBC Guide and Reference

jx=0;
printf("\nAPD29 SQLFetch number= 24\n");
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)
{
jx++;
printf("\nAPD29 fetch loop jx =
if ((H1INT4<=0) || (H1INT4>=202)

|| (LNH1INT4!=4 && LNH1INT4!=-1))
{ /* data error */

printf("\nAPD29 H1INT4=
printf("\nAPD29 LNH1INT4=
goto dberror;

}
printf("\nAPD29 SQLFetch number= 24\n");
} /* end while loop */

if(rc != SQL_NO_DATA_FOUND)
{

printf("\nAPD29 invalid end of data\n");
goto dberror;

}

printf("\nAPD29 SQLMoreResults number= 25\n");
rc=SQLMoreResults(hstmt);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLNumResultCols number= 26\n");
rc=SQLNumResultCols(hstmt,&pccol);
if (pccol!=1) {

printf("APD29 col count wrong=
goto dberror;

}

printf("\nAPD29 SQLBindCol number= 27\n");
rc=SQLBindCol(hstmt,

1,
SQL_C_CHAR,
(SQLPOINTER) H1CHR10,
(SQLINTEGER)sizeof(H1CHR10),
(SQLINTEGER *) &LNH1CHR10);

if(rc != SQL_SUCCESS) goto dberror;

jx=0;
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)
{
jx++;
printf("\nAPD29 fetch loop jx =
result=strcmp((char *)H1CHR10,"CHAR ");
if ((result!=0)

|| (LNH1INT4!=4 && LNH1INT4!=-1))
{

printf("\nAPD29 H1CHR10=
printf("\nAPD29 result=
printf("\nAPD29 LNH1CHR10=
printf("\nAPD29 strlen(H1CHR10)=
goto dberror;

}
printf("\nAPD29 SQLFetch number= 24\n");
} /* end while loop */

if(rc != SQL_NO_DATA_FOUND)
goto dberror;

printf("\nAPD29 SQLMoreResults number= 29\n");
rc=SQLMoreResults(hstmt);
if(rc != SQL_NO_DATA_FOUND) goto dberror;

Chapter 7. DB2 ODBC reference information 589

printf("\nAPD29 SQLTransact number= 30\n");
rc=SQLTransact(henv, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD29 SQLFreeStmt number= 31\n");
rc=SQLFreeStmt(hstmt, SQL_DROP);
if(rc != SQL_SUCCESS) goto dberror;
/***/

printf("\nAPD29 SQLDisconnect stmt=
rc=SQLDisconnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;

/***/
printf("\nSQLFreeConnect stmt=
rc=SQLFreeConnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;

/***/
/* End SQL statements **/

} /* end for each site perform these stmts */

for (locix=1;locix<=2;locix++)
{
/***/

printf("\nAPD29 SQLAllocConnect ");
hdbc=0;
SQLAllocConnect(henv, &hdbc);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD29-hdbc=

/***/
printf("\nAPD29 SQLConnect ");
if (locix == 1)
{
strcpy((char *)server,(char *)locsite);
}
else
{
strcpy((char *)server,(char *)remsite);
}

strcpy((char *)uid,"cliuser");
strcpy((char *)pwd,"password");
printf("\nAPD29 server=
printf("\nAPD29 uid=
printf("\nAPD29 pwd=
rc=SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

/***/
/* Start validate SQL statements *********************************/
/***/

printf("\nAPD01 SQLAllocStmt \n");
hstmt=0;
rc=SQLAllocStmt(hdbc, &hstmt);
if(rc != SQL_SUCCESS) goto dberror;
printf("\nAPD01-hstmt=

printf("\nAPD01 SQLExecDirect \n");
strcpy((char *)sqlstmt,
"SELECT INT4 FROM TABLE2A WHERE INT4=200");
printf("\nAPD01 sqlstmt=
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLBindCol \n");
rc=SQLBindCol(hstmt,

1,
SQL_C_LONG,
(SQLPOINTER) &H1INT4,;
(SQLINTEGER)sizeof(SQLINTEGER),

590 ODBC Guide and Reference

(SQLINTEGER *) &LNH1INT4);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLFetch \n");
rc=SQLFetch(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
if ((H1INT4!=200) || (LNH1INT4!=4))
{
printf("\nAPD01 H1INT4=
printf("\nAPD01 LNH1INT4=
goto dberror;
}

printf("\nAPD01 SQLTransact \n");
rc=SQLTransact(henv, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLFreeStmt \n");
rc=SQLFreeStmt(hstmt, SQL_CLOSE);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLExecDirect \n");
strcpy((char *)sqlstmt,
"SELECT INT4 FROM TABLE2A WHERE INT4=201");
printf("\nAPD01 sqlstmt=
rc=SQLExecDirect(hstmt,sqlstmt,SQL_NTS);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLFetch \n");
rc=SQLFetch(hstmt);
if(rc != SQL_SUCCESS) goto dberror;
if ((H1INT4!=201) || (LNH1INT4!=4))
{
printf("\nAPD01 H1INT4=
printf("\nAPD01 LNH1INT4=
goto dberror;
}

printf("\nAPD01 SQLTransact \n");
rc=SQLTransact(henv, hdbc, SQL_COMMIT);
if(rc != SQL_SUCCESS) goto dberror;

printf("\nAPD01 SQLFreeStmt \n");
rc=SQLFreeStmt(hstmt, SQL_DROP);
if(rc != SQL_SUCCESS) goto dberror;

/***/
/* End validate SQL statements ***********************************/
/***/

printf("\nAPD29 SQLDisconnect stmt=
rc=SQLDisconnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;

/***/
printf("\nSQLFreeConnect stmt=
rc=SQLFreeConnect(hdbc);
if(rc != SQL_SUCCESS) goto dberror;

} /* end for each site perform these stmts */
/***/

printf("\nSQLFreeEnv stmt=
rc=SQLFreeEnv(henv);
if(rc != SQL_SUCCESS) goto dberror;

/***/
goto pgmend;

dberror:
printf("\nAPD29 entry dberror label");
printf("\nAPD29 rc=
check_error(henv,hdbc,hstmt,rc);

Chapter 7. DB2 ODBC reference information 591

printf("\nAPDXX SQLFreeEnv number= 6\n");
rc=SQLFreeEnv(henv);
printf("\nAPDXX FREEENV rc =
rc=12;
printf("\nAPDXX DBERROR set rc =
goto pgmend;

pgmend:
printf("\nAPD29 TERMINATION ");
if (rc!=0)
{
printf("\nAPD29 WAS NOT SUCCESSFUL");
printf("\nAPD29 SPCODE =
printf("\nAPD29 rc =
}
else
printf("\nAPD29 WAS SUCCESSFUL");

return(rc);

} /*END MAIN*/
/***
** check_error - call print_error(), checks severity of return code
***/
SQLRETURN
check_error(SQLHENV henv,

SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc)

{

SQLCHAR buffer_SQL_MAX_MESSAGE_LENGTH + 1};
SQLCHAR cli_sqlstate_SQL_SQLSTATE_SIZE + 1};
SQLINTEGER cli_sqlcode;
SQLSMALLINT length;

printf("\nAPD29 entry check_error rtn");

switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID_HANDLE:

printf("\nAPD29 check_error> SQL_INVALID HANDLE ");
case SQL_ERROR:

printf("\nAPD29 check_error> SQL_ERROR ");
break;

case SQL_SUCCESS_WITH_INFO:
printf("\nAPD29 check_error> SQL_SUCCESS_WITH_INFO");
break;

case SQL_NO_DATA_FOUND:
printf("\nAPD29 check_error> SQL_NO_DATA_FOUND ");
break;

default:
printf("\nAPD29 check_error> Invalid rc from api rc=
break;

} /*end switch*/

printf("\nAPD29 SQLError ");
while ((rc=SQLError(henv, hdbc, hstmt, cli_sqlstate, &cli_sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH + 1, &length)) == SQL_SUCCESS) {
printf(" SQLSTATE:
printf("Native Error Code:
printf("

};
if (rc!=SQL_NO_DATA_FOUND)

printf("SQLError api call failed rc=

592 ODBC Guide and Reference

printf("\nAPD29 SQLGetSQLCA ");
rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);
if(rc == SQL_SUCCESS)

prt_sqlca();
else

printf("\n APD29-check_error SQLGetSQLCA failed rc=

return (frc);
}

/***/
/* P r i n t S Q L C A */
/***/

SQLRETURN
prt_sqlca()
{

SQLINTEGER i;
printf("\nlAPD29 entry prts_sqlca rtn");
printf("\r\r*** Printing the SQLCA:\r");
printf("\nSQLCAID
printf("\nSQLCABC
printf("\nSQLCODE
printf("\nSQLERRML ...
printf("\nSQLERRMC ...
printf("\nSQLERRP ...
for (i = 0; i < 6; i++)

printf("\nSQLERRD
for (i = 0; i < 10; i++)

printf("\nSQLWARNi]);
printf("\nSQLWARNA ... 10]);
printf("\nSQLSTATE ...

return(0);
} /* End of prtsqlca */
/*END OF APD29**/

Chapter 7. DB2 ODBC reference information 593

594 ODBC Guide and Reference

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF™, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 1997, 2013 595

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

596 ODBC Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1997, 2013 597

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you write applications that use ODBC to
access DB2 11 for z/OS servers. This information primarily documents General-use
Programming Interface and Associated Guidance Information provided by DB2 11
for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

598 ODBC Guide and Reference

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 599

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

600 ODBC Guide and Reference

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1997, 2013 601

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

602 ODBC Guide and Reference

Index

Special characters
_ 419
% 419

Numerics
64-bit applications

compiling 56
link-editing 60

64-bit ODBC applications
example 87
migrating to 86

64-bit ODBC driver 47

A
abends 530
abnormal termination 530
accessibility

keyboard x
shortcut keys x

add rows
SQLBulkOperations() 128

allocate handles
initialization and termination 11
SQLAllocHandle() 97
transaction processing 15

application
bind variables 487
compile 54, 55
compiling XPLINK 56
DLL 53
encoding schemes 486, 492
execute 61
execution steps 54
link-edit 57
multithreaded 476, 478
prelink 57
preparation 52
requirements 53
sample, DSNTEJ8 54
tasks 9
trace 517
trace, obtaining 527, 528

application trace 517
application trace, obtaining 528
application variables, binding 18
array input 422
array output 427
arrays

sending and retrieving data 515
ASCII 486
ASCII scalar function 535
ATRBEG service 415
ATREND service 415
ATRSENV service 415
attributes

connection 407, 409
environment 407
querying and setting 407

attributes (continued)
retrieving

SQLColAttribute() 135
SQLDescribeCol() 163
SQLGetConnectAttr() 224
SQLGetEnvAttr() 247
SQLGetStmtAttr() 290

setting
SQLSetColAttributes() 346
SQLSetConnectAttr() 350
SQLSetEnvAttr() 365
SQLSetStmtAttr() 376

statement 407, 409
unit of work semantics 412

authentication 155
autocommit mode 22

B
batch processing 315
BIGINT

conversion to C 554
length 550
precision 548
scale 549

binary
conversion to C 555

BINARY 555
length 550
precision 548
scale 549

binary data conversion 555
bind functions

SQLBindCol() 102
SQLBindFileToCol() 108
SQLBindFileToParam() 112
SQLBindParameter() 115

binding
application variables

columns 19
parameter markers 18

DBRMs 48
decimal floating point data 456
options for ODBC applications 49
plan 51
return codes 50
sample, DSNTIJCL 47, 51
stored procedures 48
variable-length timestamp data 457

bulk inserts
SQLBulkOperations() 447, 455

C
caching

dynamic SQL statement 513
call level interface 2
cancel function

SQLCancel() 132
case sensitivity 41

© Copyright IBM Corp. 1997, 2013 603

catalog
functions

example 419
input argument 418
limiting use of 512
overview 417
SQLColumnPrivileges() 144
SQLColumns() 148
SQLPrimaryKeys() 324
SQLProcedureColumns() 328
SQLProcedures() 337
SQLSpecialColumns() 388
SQLStatistics() 393
SQLTablePrivileges() 398
SQLTables() 401

querying 417
CHAR

conversion to C 553
display size 551
length 550
precision 548
scale 549

character strings 40, 41
CLISCHEMA keyword

using 420
close cursor 222
column attributes

retrieving 135
setting 346

column functions
SQLColAttribute() 135
SQLColumnPrivileges() 144
SQLColumns() 148
SQLDescribeCol() 163
SQLForeignKeys() 210
SQLNumResultCols() 312
SQLPrimaryKeys() 324
SQLSetColAttributes() 346
SQLSpecialColumns() 388

column-wise binding 427
commit 22, 177
common server 2
compile, application 54, 55
compile, non-XPLINK applications 55
compiling

64-bit applications 56
CONCAT scalar function 535
configuring

application 52
configuring DB2 ODBC 45
connect functions

SQLConnect() 155
SQLDriverConnect() 172

connecting to a data source 155
multiple data sources 13

connection string 407
connections

active 360
attributes

changing 407
setting and retrieving 409
SQLGetConnectAttr() 224
SQLSetConnectAttr() 350

handles
allocating 11
description 4
freeing 11

connections (continued)
handles (continued)

SQLAllocHandle() 97
SQLFreeHandle() 219

type 12
connectivity

ODBC model 12
requirements 46

contexts
multiple 478
private external 483

coordinated distributed transactions 409
coordinated transactions, establishing 410
core level functions 1
CURDATE scalar function 536
CURRENTDATA, bind option for ODBC applications 49
CURRENTSERVER, plan bind option 51
cursors

definition 21
functions

SQLCloseCursor() 134
SQLFreeStmt() 222
SQLGetCursorName() 228
SQLSetCursorName() 363

hold behavior 512
use in DB2 ODBC 4

CURTIME scalar function 536

D
data conversion

C data types 26
C to SQL data types 560
data types 26
default data types 26
description 32
display size of SQL data types 551
length of SQL data types 550
overview 548
precision of SQL data types 548
scale of SQL data types 549
SQL data types 26
SQL to C data types 552
supported data types 32

data conversion, examples 559, 565
data retrieval, guidelines 512
data source information, querying 42
data sources

general information 254
get functions

SQLGetInfo() 254
SQLDataSources() 160
supported data types 297

data structure, SQLCA 285
data types

C 26, 31
generic 31
ODBC 31
SQL 26
SQLGetTypeInfo() 297

data-at-execute 452
DATABASE scalar function 536
DATE

conversion to C 556
display size 551
length 550
precision 548

604 ODBC Guide and Reference

DATE (continued)
scale 549

date and time function 536
DATE_STRUCT 26
datetime data types, changes 571
DAYOFMONTH scalar function 536
DB2 ODBC

advanced features 407
advantages of using 7
application requirements 52
common problems 509
components 52
configuring 45
diagnostic trace 520
encapsulation 7
functions 89
improving performance 511
initialization file 63
installing 45
limited block fetch 434
migration considerations 85
performance 7
restrictions on ODBC 12
security 7
shadow catalog 420
stored procedures 471
traces, debugging 517

DBRMs, binding 47
deadlocks

application
deadlocks 485

debugging 530
DECIMAL

conversion to C 554
length 550
precision 548
scale 549

deferred arguments 18
DELETE 21
delete from rowset

SQLSetPos() 451
deprecated functions

list of 566
SQLAllocConnect() 96
SQLAllocEnv() 97
SQLAllocStmt() 101
SQLColAttributes() 143
SQLFreeConnect() 218
SQLFreeEnv() 219
SQLGetConnectOption() 227
SQLGetStmtOption() 293
SQLSetConnectOption() 362
SQLSetParam() 369
SQLSetStmtOption() 387
SQLTransact() 405

diagnosis
description 24
function, SQLGetDiagRec() 244
trace 520

diagnostic trace
activating in z/OS 520
activating in z/OS UNIX 521

diagnostic trace command 523
diagnostic trace file 525
diagnostic trace, obtaining 529
disability x
DISCONNECT, plan bind option 51

disconnecting 171
display size of SQL data types 551
display size, data type attributes 548
distinct types 510

defining 469
distributed transactions 409
distributed unit of work 409, 410
DOUBLE

conversion to C 554
display size 551
length 550
precision 548
scale 549

driver
DB2 ODBC 531
ODBC 531
ODBC 3.0 behavior 568

driver manager 531
DSN8O3VP, JCL sample 54, 572
DSN8OIVP, JCL sample 54
DSNAO64T 523
DSNAOINI data definition 63
DSNAOTRC 523
DSNAOTRX 523
DSNTEJ8, application sample 54
DSNTIJCL, bind sample 47, 51
DYNAMICRULES, bind option for ODBC applications 49

E
EBCDIC 486
embedded SQL

comparison to DB2 ODBC 4
mixing with DB2 ODBC 360, 502

encoding schemes 486
guidelines 486

entry points 487
environment

attributes
description 407, 409
SQLSetEnvAttr() 365

handle
SQLAllocHandle() 97
SQLFreeHandle() 219

handles
allocating 11
description 4
freeing 11

information, querying 42
run time 45
z/OS UNIX

export statements 63
setup 51
variables 63

error code, internal 530
errors, extended scalar functions 535
errors, retrieving information about 180
escape character 507
escape clause syntax 504
escape clauses, vendor 504

SQLNativeSql() 308
example

scrollable cursor 440
examples

application trace output 518
array INSERT 422
binding decimal floating point data 456

Index 605

examples (continued)
binding UTF-8 data 493
binding variable-length timestamp data 457
catalog functions 419
column-wise binding 432
converting C to SQL data 565
converting SQL to C data 559
distinct types 469
large objects 463
mixing embedded SQL and DB2 ODBC 502
retrieve UCS-2 data 492
retrieving UTF-8 data 493
row-wise binding 432
single Language Environment thread 480
using suffix-W APIs 494
XML column updates 464

execute, application 54, 61
executing a statement 17
executing directly 17
executing SQL

SQLExecDirect() 182
SQLExecute() 188
SQLPrepare() 317

export statements 63
extended fetch 190
extended indicators 509
extended SQL syntax 505
Extra Performance Linkage 47

F
fetching

scrollable cursor 438
SQLExtendedFetch() 190
SQLFetch() 197
SQLFetchScroll() 203
SQLSetPos() 370

FLOAT
conversion to C 554
display size 551
length 550
precision 548
scale 549

foreign key columns, list 210
freeing handles 219
function, date and time 536
functions overview 90
functions, complete list 90
functions, DB2 ODBC 89
functions, string 535
functions, support for ODBC 532
functions, system 536

G
general-use programming information, described 598
generic API 487
get functions

SQLGetConnectAttr() 224
SQLGetCursorName() 228
SQLGetData() 233
SQLGetDiagRec() 244
SQLGetEnvAttr() 247
SQLGetFunctions() 249
SQLGetPosition() 281
SQLGetSQLCA() 285

get functions (continued)
SQLGetStmtAttr() 290
SQLGetSubString() 294
SQLGetTypeInfo() 297

global transactions 415
GRAPHIC

conversion to C 554

H
handles

connection 4, 11
environment 4, 11
SQLAllocHandle() 97
SQLFreeHandle() 219
statement 4

handles, function arguments 31
HOUR scalar function 536

I
IFNULL scalar function 536
improving performance 511
index information, retrieving 393
initialization

file
common errors 64, 509
defaults, changing 407
description 63
specifying 63

structure of 64
tasks 9, 10

initialization keywords
ACCOUNTINGINTERVAL 65
APPLTRACE 65
APPLTRACEFILENAME 65
AUTOCOMMIT 65
BITDATA 65
CLISCHEMA 65
COLLECTIONID 65
CONNECTTYPE 65
CURRENTAPPENSCH 65
CURRENTSQLID 65
CURSORHOLD 65
DB2EXPLAIN 65
DBNAME 65
DIAGTRACE 65
DIAGTRACE_BUFFER_SIZE 65
DIAGTRACE_NO_WRAP 65
EXTENDEDINDICATOR 65
GRANTEELIST 65
GRANTORLIST 65
GRAPHIC 65
LIMITEDBLOCKFETCH 65
MAXCONN 65
MULTICONTEXT 65
MVSATTACHTYPE 65
MVSDEFAULTSSID 65
OPTIMIZEFORNROWS 65
PATCH2 65
PLANNAME 65
QUERYDATASIZE 65
REPORTPUBLICPRIVILEGES 65
RETCATALOGCURRSERVER 65
RETURNALIASES 65
SCHEMALIST 65

606 ODBC Guide and Reference

initialization keywords (continued)
STREAMBUFFERSIZE 65
SYSSCHEMA 65
TABLETYPE 65
THREADSAFE 65
TXNISOLATION 65
UNDERSCORE 65

INSERT 21
INSERT scalar function 535
inserts

SQLBulkOperations() 128
inserts, bulk

SQLBulkOperations() 447, 455
installation 45
INTEGER

conversion to C 554
display size 551
length 550
precision 548
scale 549

internal error code 530
introduction to DB2 ODBC 1
INVALID_HANDLE 24
isolation levels, concurrency and consistency 511
isolation levels, ODBC 534

K
keywords, initialization 64, 65

L
Language Environment threads 476

multiple 478
multiple contexts 480, 481

large objects
example 463
file reference variables 463
locators

finding the position of a string 281
retrieving a portion of a string 294
retrieving string length 279

manipulating large data values 515
LEFT scalar function 535
length of SQL data types 550
LENGTH scalar function 535
length, data type attributes 548
LIKE predicate 507
limited block fetch

DB2 ODBC 434
link-edit, application 57
link-editing

64-bit applications 60
XPLINK applications 59

LOB 460
LOB locators

example 463
get functions

SQLGetLength() 279
SQLGetLength() 279
SQLGetPosition() 281
SQLGetSubString() 294
using 461

long bulk inserts
SQLBulkOperations() 455

long data
retrieving in pieces 452
sending in pieces 452

SQLParamData() 313
SQLPutData() 341

LONGVARBINARY 555
LONGVARCHAR

conversion to C 553
DECIMAL

display size 551
display size 551
length 550
precision 548
scale 549

LONGVARGRAPHIC 554

M
manual-commit mode 22
MERGE 21
metadata character 418
migrating ODBC applications

to 64-bit 86
migration considerations 85
MINUTE scalar function 536
mixed applications 360
MONTH scalar function 536
multiple contexts 12, 478

multiple Language Environment threads 481
single Language Environment thread 480

multithreaded applications 476, 478

N
name, cursor 363
native error code 25
native SQL 308
network flow, reducing 514
NOW scalar function 536
NOXPLINK, compiling 55
nul-terminated strings 40, 41
NUMERIC

conversion to C 554
display size 551
length 550
precision 548
scale 549

O
ODBC

and DB2 ODBC 1, 531
APIs and data types 532
connectivity 12
core level functions 1
date data 505
error reporting 25
function list 90
functions overview 90
isolation levels 534
level conformance 3
SQL extensions 505
support for ODBC features 3
time data 505
timestamp data 505
vendor escape clauses 505

Index 607

ODBC 3.0 driver behavior 568
ODBC driver

64-bit 47
outer join syntax 506

P
packages, binding 47
parameter markers

binding 18
casting to distinct types 510
casting to source types 510
decimal floating point data 456
introduction 4
multiple result sets 304
number in a statement 310
passing data to 341
retrieving a description of 168
sending data in pieces 313
specifying an input array 315
using arrays 422
variable-length timestamp data 457

parameters, stored procedure 328
passwords 155
pattern value 418
plan, binding 51
pointers, function arguments 31
portability 7

techniques for maximizing 515
precision of SQL data types 548
precision, data type attributes 548
prelink, application 57
prepare SQL statements 317
preparing a statement 17
primary key

SQLPrimaryKeys() 324
SQLSpecialColumns() 388

private external contexts 483
privileges

SQLColumnPrivileges() 144
SQLTablePrivileges() 398

programming interface information, described 598

Q
query statements, processing 19
querying

catalog information 417
data source information 42
DB2 catalog 417
environment information 42
shadow catalog 420

R
REAL

conversion to C 554
display size 551
length 550
precision 548
scale 549

reducing network flow 514
remote site, creating packages at 48
REOPT, bind option for ODBC applications 49
REPEAT scalar function 535

result sets
function generated 515
retrieving into array 427
returning from stored procedures 473
SQLExtendedFetch() 190
SQLFetch() 197
SQLFetchScroll() 203
SQLGetData() 233
SQLMoreResults() 304
SQLNumResultCols() 312
SQLSetPos() 370

retrieving data
scrollable cursor 438

retrieving data, guidelines 512
retrieving multiple rows 427
return codes 24
RIGHT scalar function 535
rollback 22, 177
row identifiers 388
row set 190
row status array

ODBC 431
row-wise binding 427, 429
ROWID

conversion to C 558
display size 551
length 550
precision 548
scale 549

rows, number changed 344
rowset

row status array 431
rowset, ODBC

description 436
retrieval 436

run time environment
setting up 47
support 45

S
samples

APD29 576
DSN8O3VP 54, 572
DSN8OIVP 54
DSNTEJ8 54
DSNTIJCL 47, 51
examples

stored procedure 572
scalar functions 508
scale of SQL data types 549
scale, data type attributes 548
scrollable cursor

example 440
ODBC 434, 438

scrollable cursor, advantages 434
search argument 418
SECOND scalar function 536
SELECT 19
service trace 517
set functions

SQLSetColAttributes() 346
SQLSetConnectAttr() 350
SQLSetConnection() 360
SQLSetCursorName() 363
SQLSetEnvAttr() 365
SQLSetStmtAttr() 376

608 ODBC Guide and Reference

shadow catalog
querying 420

shortcut keys
keyboard x

SMALLINT
conversion to C 554
display size 551
length 550
precision 548
scale 549

SMP/E jobs 45
SQL

data type attributes 548
dynamically prepared 4
parameter markers 18
preparing and executing statements 17
query statements 19
SELECT 19
VALUES 19

SQL Access Group 1
SQL_ATTR_ACCESS_MODE 350
SQL_ATTR_AUTOCOMMIT 350, 514
SQL_ATTR_BIND_TYPE 376
SQL_ATTR_CLOSE_BEHAVIOR 376
SQL_ATTR_CONCURRENCY 376
SQL_ATTR_CONNECTTYPE

distributed unit of work 409
SQLGetEnvAttr() 366
SQLSetConnectAttr() 350

SQL_ATTR_CURRENT_SCHEMA 350
SQL_ATTR_CURSOR_HOLD 376, 512
SQL_ATTR_CURSOR_TYPE 376
SQL_ATTR_DB2EXPLAIN 350
SQL_ATTR_MAX_LENGTH 376
SQL_ATTR_MAX_ROWS 376, 510
SQL_ATTR_MAXCONN 350, 366
SQL_ATTR_NODESCRIBE 376
SQL_ATTR_NOSCAN 376, 513
SQL_ATTR_ODBC_VERSION 366
SQL_ATTR_OUTPUT_NTS 366
SQL_ATTR_PARAMOPT_ATOMIC 350
SQL_ATTR_RETRIEVE_DATA 376
SQL_ATTR_ROW_ARRAY_SIZE 376, 427
SQL_ATTR_ROWSET_SIZE 376, 427
SQL_ATTR_STMTTXN_ISOLATION 376
SQL_ATTR_SYNC_POINT 350
SQL_ATTR_TXN_ISOLATION

setting isolation levels 511
SQLSetConnectAttr() 350
SQLSetStmtAttr() 376

SQL_BIGINT 26
SQL_BINARY 26
SQL_BLOB 26
SQL_BLOB_LOCATOR 26
SQL_C_BIGINT 26, 562
SQL_C_BINARY 26, 562
SQL_C_BINARYXML 562
SQL_C_BIT 26, 562
SQL_C_BLOB_LOCATOR 26
SQL_C_CHAR 26, 561
SQL_C_CLOB_LOCATOR 26
SQL_C_DBCHAR 26, 563
SQL_C_DBCLOB_LOCATOR 26
SQL_C_DEFAULT 27
SQL_C_DOUBLE 26, 562
SQL_C_FLOAT 26, 562
SQL_C_LONG 26, 562

SQL_C_SHORT 26, 562
SQL_C_TINYINT 26, 562
SQL_C_TYPE_DATE 26, 564
SQL_C_TYPE_TIME 26, 564
SQL_C_TYPE_TIMESTAMP 26, 565
SQL_C_TYPE_TIMESTAMP_STRUCT_EXT 26
SQL_C_WCHAR 26
SQL_CCSID_CHAR 376
SQL_CCSID_GRAPHIC 376
SQL_CHAR 26
SQL_CLOB 26
SQL_CLOB_LOCATOR 26
SQL_CONCURRENT_TRANS 409
SQL_COORDINATED_TRANS 409
SQL_DATA_AT_EXEC 452
SQL_DBCLOB 26
SQL_DBCLOB_LOCATOR 26
SQL_DECFLOAT 26
SQL_DECIMAL 26
SQL_DOUBLE 26
SQL_ERROR 24
SQL_FLOAT 26
SQL_GRAPHIC 26
SQL_INTEGER 26
SQL_LONGVARBINARY 26
SQL_LONGVARCHAR 26
SQL_LONGVARGRAPHIC 26
SQL_NEED_DATA 24
SQL_NO_DATA_FOUND 24
SQL_NTS 40
SQL_NUMERIC 26
SQL_REAL 26
SQL_ROWID 26
SQL_SMALLINT 26
SQL_SUCCESS 24
SQL_SUCCESS_WITH_INFO 24
SQL_TYPE_DATE 26
SQL_TYPE_TIME 26
SQL_TYPE_TIMESTAMP 26
SQL_VARBINARY 26
SQL_VARCHAR 26
SQL_VARGRAPHIC 26
SQL_XML 26
SQL, native 308
SQLAllocConnect(), deprecated function 96
SQLAllocEnv(), deprecated function 97
SQLAllocHandle()

description 97
introduction 15

SQLAllocStmt(), deprecated function 101
SQLBindCol()

description 102
introduction 15
processing query statements 19

SQLBindFileToCol()
description 108

SQLBindFileToParam()
description 112

SQLBindParameter()
data conversion example 32
description 115
introduction 15
processing query statements 19
using 17, 18

SQLBulkOperations()
bulk inserts 447
description 128

Index 609

SQLBulkOperations() (continued)
long data for bulk inserts 455

SQLCA data structure 285
SQLCancel()

description 132
use in data-at-execute 452

SQLCHAR 26
SQLCloseCursor() 134
SQLColAttribute()

description 135
introduction 15
processing query statements 19

SQLColAttributes(), deprecated function 143
SQLColumnPrivileges() 144
SQLColumns() 148
SQLConnect() 155
SQLDataSources()

description 160
introduction 15

SQLDBCHAR 26
SQLDescribeCol()

description 163
introduction 15
processing query statements 19

SQLDescribeParam() 168
using 18

SQLDisconnect() 171
SQLDOUBLE 26
SQLDriverConnect()

connection string 407
description 172
instead of SQLConnect() 515

SQLEndTran()
description 177
effects of calling 23
introduction 15
processing query statements 19
using 22
when to call 22

SQLERROR, bind option for ODBC applications 49
SQLError() 180
SQLExecDirect()

description 182
introduction 15
using 17

SQLExecute()
description 188
introduction 15
SQLPrepare()

using 17
using 17

SQLExtendedFetch() 190
SQLFetch()

description 197
introduction 15
processing query statements 19

SQLFetchScroll()
description 203

SQLForeignKeys() 210
SQLFreeConnect(), deprecated function 218
SQLFreeEnv(), deprecated function 219
SQLFreeHandle()

description 219
freeing statement handles 23
introduction 15

SQLFreeStmt() 222
SQLGetConnectAttr() 224

SQLGetConnectOption(), deprecated function 227
SQLGetCursorName() 228

retrieving name of cursor 21
SQLGetData()

description 233
introduction 15
processing query statements 19

SQLGetDiagRec() 244
SQLGetEnvAttr() 247
SQLGetFunctions() 249
SQLGetInfo() 254

changes to InfoType values 567
SQLGetLength() 279
SQLGetPosition() 281
SQLGetSQLCA() 285

retrieving SQLCA 26
SQLGetStmtAttr() 290
SQLGetStmtOption() 293
SQLGetSubString() 294
SQLGetTypeInfo() 297
SQLHDBC 31
SQLHENV 31
SQLHSTMT 31
SQLINTEGER 26
SQLMoreResults()

description 304
using 422

SQLNativeSql() 308
SQLNumParams() 310

using 18
SQLNumResultCols()

description 312
introduction 15
processing query statements 19

SQLParamData()
description 313
use in data-at-execute 452

SQLParamOptions() 315
SQLPOINTER 31
SQLPrepare()

description 317
introduction 15

SQLPrimaryKeys() 324
SQLProcedureColumns() 328
SQLProcedures() 337
SQLPutData()

description 341
use in data-at-execute 452

SQLREAL 26
SQLRETURN 31
SQLRowCount()

description 344
introduction 15

SQLSCHAR 26
SQLSetColAttributes() 346

reducing network flow 514
SQLSetConnectAttr() 350

changes to attributes 567
SQLSetConnection() 360
SQLSetConnectOption(), deprecated function 362
SQLSetCursorName() 363

string arguments 41
SQLSetEnvAttr() 365

changes to attributes 568
SQLSetParam(), deprecated function 369
SQLSetPos()

delete from rowset 451

610 ODBC Guide and Reference

SQLSetPos() (continued)
description 370
update rowset 449

SQLSetStmtAttr() 376
changes to attributes 568

SQLSetStmtOption(), deprecated function 387
SQLSMALLINT 26
SQLSpecialColumns() 388
SQLSTATE

description 25
format of 25
function cross reference 537
in DB2 ODBC 4
mappings 569

SQLStatistics() 393
SQLTablePrivileges() 398
SQLTables() 401
SQLTransact(), deprecated function 405
SQLUINTEGER 31
SQLUSMALLINT 31
SQLWCHAR 26, 31
SRRBACK service 415
SRRCMIT service 415
statement

attributes
description 409

statements
attributes

description 407
setting 376
SQLGetStmtAttr() 290

handles
allocating 17
freeing 23
introduction 4
maximum number of 17
SQLAllocHandle() 97
SQLFreeHandle() 219
SQLFreeStmt() 222

preparing 317
statistics, retrieving 393
stored procedures

advantages 471
binding 48
calls in DB2 ODBC 472
diagnostic trace, obtaining 527
example 572
functions

SQLProcedureColumns() 328
SQLProcedures() 337

obtaining an application trace 527
ODBC escape clause 508
receive result sets 475
restrictions 474
return result sets 474
returning result sets 304, 473
tracing 526
using with DB2 ODBC 471
writing in DB2 ODBC 473

string
arguments 40, 41
nul-termination 40
truncation 41

string function 535
SUBSTRING scalar function 535
subsystem, defining 62
Suffix-W APIs 488

syntax diagram
how to read xi

system, functions 536

T
table information, retrieving 401
tables, list of privileges 398
termination tasks 9, 10
threads 476, 478
TIME

conversion to C 556
display size 551
length 550
precision 548
scale 549

TIME_STRUCT 26
timeouts 485
TIMESTAMP

conversion to C 557
display size 551
length 550
precision 548
scale 549

TIMESTAMP_STRUCT 26
TIMESTAMP_STRUCT_EXT 26
trace

a client application 526
application 517
DB2 ODBC diagnosis 520
stored procedure 526

trace file name, formats 517
trace types 517
tracing a client application 526
transaction

isolation levels, ODBC 534
management 22
processing 9

transactions, ending 177
truncation 41

U
Unicode 486
unique indexes 388
unit of work, semantics 412
UPDATE 21
update rowset

SQLSetPos() 449
user IDs 155
USER scalar function 536

V
VALUES 19
VARBINARY 555

length 550
precision 548
scale 549
XML

length 550
VARCHAR

conversion to C 553
display size 551
length 550
precision 548

Index 611

VARCHAR (continued)
scale 549

VARGRAPHIC 554
vendor escape clauses

disabling 513
function for determining 504
SQLNativeSql() 308
using 504

W
writing DB2 ODBC applications 9

X
X/Open CAE 25
X/Open Company 1
X/Open SQL CLI 1
XML

column updates 464
conversion to C 558
data retrieval 466
data types 464
display size 551
precision 548
scale 549

XPLINK 47
XPLINK applications

link-editing 59
XPLINK ODBC driver 47
XPLINK, compiling 56

Z
z/OS Unix

diagnostic trace file 525
z/OS UNIX

activating diagnostic trace 521
compile application 55
DSNTEJ8 58
DSNTEJ8X 58
environment setup 51
environment variable 63
execute application 61
export statements 63
prelink and link-edit 58

612 ODBC Guide and Reference

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4063-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
OD

BC
Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Introduction to DB2 ODBC
	DB2 ODBC background information
	Differences between DB2 ODBC and ODBC 3.0
	DB2 ODBC support for ODBC features

	Differences between DB2 ODBC and embedded SQL
	Advantages of using DB2 ODBC
	Considerations for choosing between SQL and DB2 ODBC

	Chapter 2. Conceptual view of a DB2 ODBC application
	Initialization and termination of an ODBC program
	Handles
	ODBC connection model
	DB2 ODBC restrictions on the ODBC connection model

	How to specify the connection type
	How to connect to one or more data sources

	Transaction processing in DB2 ODBC
	Statement handle allocation
	Preparation and execution of SQL statements
	Functions for binding parameters in SQL statements

	How an ODBC program processes results
	Processing query (SELECT, VALUES) statements
	Processing UPDATE, DELETE, INSERT, and MERGE statements
	Processing other statements

	Commit and rollback in DB2 ODBC
	When to call SQLEndTran()
	Effects of calling SQLEndTran()

	Function for freeing statement handles

	Diagnostics
	Function return codes
	SQLSTATEs for ODBC error reporting
	SQLCA retrieval in an ODBC application

	Data types and data conversion
	C and SQL data types
	C data types that do not map to SQL data types
	Data conversion

	Characteristics of string arguments
	Length of string arguments
	Nul-termination of strings
	String truncation
	Interpretation of strings

	Functions for querying environment and data source information

	Chapter 3. Configuring DB2 ODBC and running sample applications
	Running the SMP/E jobs for DB2 ODBC installation
	The DB2 ODBC run time environment
	Connectivity requirements
	Extra performance linkage
	64-bit ODBC driver

	DB2 ODBC run time environment setup
	Binding DBRMs to create packages
	Impact of package bind options
	Return codes from ODBC package binding

	Binding the application plan
	Setting up DB2 ODBC for the z/OS UNIX environment

	Overview of preparing and executing a DB2 ODBC application
	DB2 ODBC application requirements
	Preparing and executing an ODBC application
	Compiling an ODBC application
	Compiling non-XPLINK applications
	Compiling 31-bit XPLINK applications
	Compiling 64-bit applications

	Prelinking and link-editing an ODBC application
	Prelinking and link-editing non-XPLINK applications
	Link-editing 31-bit XPLINK applications
	Link-editing 64-bit applications

	Executing an ODBC application

	How to define a subsystem to DB2 ODBC
	DB2 ODBC initialization file
	How to use the initialization file
	Structure of the initialization file

	DB2 ODBC initialization keywords

	Database metadata stored procedures
	Migrating to the current DB2 ODBC driver
	Migrating an ODBC 31-bit application to a 64-bit application
	Example 64-bit ODBC application

	Chapter 4. ODBC Functions
	Status of support for ODBC functions
	SQLAllocConnect() - Allocate a connection handle
	SQLAllocEnv() - Allocate an environment handle
	SQLAllocHandle() - Allocate a handle
	SQLAllocStmt() - Allocate a statement handle
	SQLBindCol() - Bind a column to an application variable
	SQLBindFileToCol() - Associate a column with a file reference
	SQLBindFileToParam() - Bind a parameter marker to a file reference
	SQLBindParameter() - Bind a parameter marker to a buffer or LOB locator
	SQLBulkOperations() - Add, update, delete or fetch a set of rows
	SQLCancel() - Cancel statement
	SQLCloseCursor() - Close a cursor and discard pending results
	SQLColAttribute() - Get column attributes
	SQLColAttributes() - Get column attributes
	SQLColumnPrivileges() - Get column privileges
	SQLColumns() - Get column information
	SQLConnect() - Connect to a data source
	SQLDataSources() - Get a list of data sources
	SQLDescribeCol() - Describe column attributes
	SQLDescribeParam() - Describe parameter marker
	SQLDisconnect() - Disconnect from a data source
	SQLDriverConnect() - Use a connection string to connect to a data source
	SQLEndTran() - End transaction of a connection
	SQLError() - Retrieve error information
	SQLExecDirect() - Execute a statement directly
	SQLExecute() - Execute a statement
	SQLExtendedFetch() - Fetch an array of rows
	SQLFetch() - Fetch the next row
	SQLFetchScroll() - Fetch the next row
	SQLForeignKeys() - Get a list of foreign key columns
	SQLFreeConnect() - Free a connection handle
	SQLFreeEnv() - Free an environment handle
	SQLFreeHandle() - Free a handle
	SQLFreeStmt() - Free (or reset) a statement handle
	SQLGetConnectAttr() - Get current attribute setting
	SQLGetConnectOption() - Return current setting of a connect option
	SQLGetCursorName() - Get cursor name
	SQLGetData() - Get data from a column
	SQLGetDiagRec() - Get multiple field settings of diagnostic record
	SQLGetEnvAttr() - Return current setting of an environment attribute
	SQLGetFunctions() - Get functions
	SQLGetInfo() - Get general information
	SQLGetLength() - Retrieve length of a string value
	SQLGetPosition() - Find the starting position of a string
	SQLGetSQLCA() - Get SQLCA data structure
	SQLGetStmtAttr() - Get current setting of a statement attribute
	SQLGetStmtOption() - Return current setting of a statement option
	SQLGetSubString() - Retrieve a portion of a string value
	SQLGetTypeInfo() - Get data type information
	SQLMoreResults() - Check for more result sets
	SQLNativeSql() - Get native SQL text
	SQLNumParams() - Get number of parameters in an SQL statement
	SQLNumResultCols() - Get number of result columns
	SQLParamData() - Get next parameter for which a data value is needed
	SQLParamOptions() - Specify an input array for a parameter
	SQLPrepare() - Prepare a statement
	SQLPrimaryKeys() - Get primary key columns of a table
	SQLProcedureColumns() - Get procedure input/output parameter information
	SQLProcedures() - Get a list of procedure names
	SQLPutData() - Pass a data value for a parameter
	SQLRowCount() - Get row count
	SQLSetColAttributes() - Set column attributes
	SQLSetConnectAttr() - Set connection attributes
	SQLSetConnection() - Set connection handle
	SQLSetConnectOption() - Set connection option
	SQLSetCursorName() - Set cursor name
	SQLSetEnvAttr() - Set environment attributes
	SQLSetParam() - Bind a parameter marker to a buffer
	SQLSetPos - Set the cursor position in a rowset
	SQLSetStmtAttr() - Set statement attributes
	SQLSetStmtOption() - Set statement attribute
	SQLSpecialColumns() - Get special (row identifier) columns
	SQLStatistics() - Get index and statistics information for a base table
	SQLTablePrivileges() - Get table privileges
	SQLTables() - Get table information
	SQLTransact() - Transaction management

	Chapter 5. Advanced features
	Functions for setting and retrieving environment, connection, and statement attributes
	Functions for setting and retrieving environment attributes
	Functions for setting and retrieving connection attributes
	Functions for setting and retrieving statement attributes

	ODBC and distributed units of work
	Functions for establishing a distributed unit-of-work connection
	Coordinated connections in a DB2 ODBC application

	Global transactions in ODBC programs
	Use of ODBC for querying the DB2 catalog
	Catalog query functions
	Input arguments on catalog functions
	Catalog functions example

	The DB2 ODBC shadow catalog

	Using arrays to pass parameter values
	Retrieval of a result set into an array
	Column-wise binding for array data
	Row-wise binding for array data
	The ODBC row status array
	Column-wise and row-wise binding example

	ODBC limited block fetch
	Scrollable cursors in DB2 ODBC
	Scrollable cursor characteristics in DB2 ODBC
	Relative and absolute scrolling in DB2 ODBC applications
	Steps for retrieving data with scrollable cursors in a DB2 ODBC application
	ODBC scrollable cursor example

	Performing bulk inserts with SQLBulkOperations()
	Updates to DB2 tables with SQLSetPos()
	Updating rows in a rowset with SQLSetPos()
	Deleting rows in a rowset with SQLSetPos()

	Input and retrieval of long data in pieces
	Providing long data for bulk inserts and positioned updates
	Examples of using decimal floating point data in an ODBC application
	Variable-length timestamps in ODBC applications
	Using LOBs
	Using LOB locators
	LOB and LOB locator example
	LOB file reference variables in ODBC applications

	XML data in ODBC applications
	XML column updates in ODBC applications
	XML data retrieval in ODBC applications

	Distinct types in DB2 ODBC applications
	Stored procedures
	Advantages of using stored procedures
	Stored procedure calls in a DB2 ODBC application
	Rules for a DB2 ODBC stored procedure
	Result sets from stored procedures
	Programming stored procedures to return result sets
	Restrictions on stored procedures returning result sets
	Programming DB2 ODBC client applications to receive result sets

	Multithreaded and multiple-context applications in DB2 ODBC
	DB2 ODBC support for multiple Language Environment threads
	When to use multiple Language Environment threads
	DB2 ODBC support of multiple contexts
	Multiple contexts, one Language Environment thread
	Multiple contexts, multiple Language Environment threads

	External contexts
	Application deadlocks

	Application encoding schemes and DB2 ODBC
	Types of encoding schemes
	Application programming guidelines for handling different encoding schemes
	DB2 ODBC API entry points
	Functions for binding host variables to C types

	Suffix-W API function syntax
	Examples of handling the application encoding scheme
	Example of binding result set columns to retrieve UCS-2 data
	Example of binding UTF-8 data to parameter markers
	Example of retrieving UTF-8 data into application variables
	Example of using suffix-W APIs

	Embedded SQL and DB2 ODBC in the same program
	Vendor escape clauses
	Function for determining ODBC vendor escape clause support
	Escape clause syntax
	ODBC-defined SQL extensions
	ODBC date, time, and timestamp data
	ODBC outer join syntax
	LIKE predicate escape clause
	Stored procedure CALL
	ODBC scalar functions

	Extended indicators in ODBC applications
	ODBC programming hints and tips
	Guidelines for avoiding common problems
	Check the DB2 ODBC initialization file
	Limit the number of rows that an application can fetch
	Cast parameter markers to distinct types or distinct types to source types

	Techniques for improving application performance
	Set isolation levels for maximum concurrency and data consistency
	Disable cursor hold behavior for more efficient resource use
	Code ODBC functions for efficient data retrieval
	Limit the use of catalog functions
	Use dynamic SQL statement caching
	Turn off statement scanning

	Techniques for reducing network flow
	Use SQLSetColAttributes() to reduce network flow
	Disable autocommit to reduce network flow
	Use arrays to send and retrieve data
	Use LOBs to manipulate large data values at the server

	Techniques for maximizing application portability
	Use column position in function-generated result sets
	Use SQLDriverConnect() instead of SQLConnect()

	Chapter 6. Problem diagnosis
	ODBC trace types
	Application trace
	Formats for the trace file name
	Example of application trace output

	ODBC diagnostic trace
	Capturing ODBC diagnostic trace information in z/OS
	Capturing ODBC diagnostic trace information in the z/OS UNIX environment
	ODBC diagnostic trace commands
	Specifications for the diagnostic trace file

	Stored procedure trace
	Tracing a client application
	Obtaining an application trace for a stored procedure
	Obtaining a diagnostic trace for a stored procedure
	Obtaining an application trace for a client application and a stored procedure
	Obtaining a diagnostic trace for a client application and a stored procedure

	Abnormal termination
	Internal error code

	Chapter 7. DB2 ODBC reference information
	DB2 ODBC and ODBC differences
	DB2 ODBC and ODBC drivers
	ODBC APIs and data types
	Isolation levels

	Extended scalar functions
	Errors returned by extended scalar functions
	String functions
	Date and time functions
	System functions

	SQLSTATE cross reference
	Data conversion between the application and the database server
	SQL data type attributes
	Precision of SQL data types
	Scale of SQL data types
	Length of SQL data types
	Display size of SQL data types

	SQL to C data conversion
	SQL to C conversion for character data
	SQL to C conversion for graphic data
	SQL to C conversion for numeric data
	SQL to C conversion for binary data
	SQL to C conversion for date data
	SQL to C conversion for time data
	SQL to C conversion for timestamp data
	SQL to C conversion for ROWID data
	SQL to C conversion for XML data
	SQL to C data conversion examples

	C to SQL data conversion
	C to SQL conversion for character data
	C to SQL conversion for numeric data
	C to SQL conversion for binary data
	C to SQL conversion for double-byte character data
	C to SQL conversion for date data
	C to SQL conversion for time data
	C to SQL conversion for timestamp data
	C to SQL data conversion examples

	Deprecated functions
	Deprecated functions and their replacements
	Changes to SQLGetInfo() InfoType argument values
	Changes to SQLSetConnectAttr() attributes
	Changes to SQLSetEnvAttr() attributes
	Changes to SQLSetStmtAttr() attributes
	ODBC 3.0 driver behavior
	SQLSTATE mappings
	Changes to datetime data types

	Example DB2 ODBC code
	DSN8O3VP sample application
	Client application calling a DB2 ODBC stored procedure

	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

